Freescale Semiconductor, Inc.

smnf?cans

How to Implement a Viterbi Decoder on the
StarCore SC140

Application Note

Abstract

The application note describes how to implement an efficient Viterbi decoder on
the StarCore SC140. It begins with an overview of convolutional encoding and
Viterbi decoding. The overview is followed by a description of the StarCore
SC140 special instructionsthat allow you to program an efficient Viterbi decoder.
The note describes how to efficiently compute trellis butterflies, the basic
computations in Viterbi decoding. Optimized code for portions of the Viterbi
algorithm, including the branch metric calculation and the kernel, is provided.
The note concludes with optimized assembly code for acomplete Viterbi decoder
according to the GSM TCH/FS standard, including performance benchmarks for
the decoder running on the StarCore SC140.

Wi rnelpriennies graip

Lucent Techmelogies 0
CREE At

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ANSC140VIT/D
Alpha Release 7/18/00

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

- “ freescale"

semiconductor

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

Freescale Semiconductor, Inc.

T able of Contents

Chapter 1: Introduction e 1
11 Topicand PUMPOSEt e e e 1
L2 AUdIENCE ..t 1
1.3 Organizationottt e e 1
Chapter 2: Convolutional Encoding and Viterbi Decoding 3
2.1 FEC Communication SChemet e 3
2.2 How Convolutional EncodingWorks i 4
2.3 How Viterbi Decoding WOrKSot e e e 5
2.4 Viterbi Decoding with Soft DecisionInputs 13
2.5 Viterbi Decoding Algorithm 19
Chapter 3: Special Instructionsfor Viterbi Decoding 27
3 L ADDD 2 . . 28
32 SUB e . 29
3.3 MAX2VIT D4,D2and MAX2VIT D12 D10ciii i 30
3.4 MAX2VIT DO D6 and MAX2VIT D8 D14t 32
B VS AR 34
38 VO AW 36
Chapter 4: Computing TrellisButterflies 39
4.1 TrelisButterfly e 39
4.2 Add-Compare-Select Function i e 40
4.3 Computing Two TrellisButterflies i, 41
Chapter 5: Optimizationsto the Branch Metric Calculation 45
5.1 BranchMetricCalculationt e e e 45
5.2 Optimized Assembly Code e 45
5.3 Further Optimizations i e e e e e 46
How to Implement a Viterbi De&@w@g&@ﬁp&gigg]&p‘ This Product, Page i

Go to: www.freescale.com

Freescale Semiconductor, Inc.
[able of Contents

Chapter 6: Optimizationsto the Viterbi Decoder Kernel 47
6.1 Memory Mapof theKernel 48
6.2 Kernel Assembly Code 49
6.3 PointersUsedintheKernel i 51
6.4 Kernel Cycle Count i e e 51
6.5 How to Modify theKernel for K >5 51
Chapter 7: Endian Modesand Viterbi Decoding 53
7.1 LittleEndian Modeo 54
7.2 BigEndian Mode e 55
7.3 Differencesbetween EndianModes i 56
Chapter 8: Viterbi Decoder for theStarCoreSC140.................... 57
8.1 Viterbi Decoder INPUES . ..ottt 57
8.2 COo0e Parametersttt 57
8.3 Generator Polynomials 57
8.4 Assembly Codeo e e 58
8.5 How to Assemblethe Viterbi Algorithm 64
8.6 How to Test the Viterbi Algorithm 65
8.7 PerformanCeo 66
Chapter O: ReferenCes e 67
9.1 Viterbi DeCodingot e 67
0.2 SArCore SCILA0 . . .o 67
Page ii For More Infklﬂ)p‘éqilg}pmeﬁ&vi}%t&&)@fpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Introduction

This chapter describes the topic, purpose, intended audience, and organization of this application
note.

1.1 Topic and Purpose

Convolutional encoding with Viterbi decoding isone of the most popular forward-error-correction
(FEC) techniques for error correction in communication systems. This application note describes
how to implement the Viterbi decoder portion of this communication scheme on the StarCore
SC140.

The StarCore SC140 Instruction Set contains several specia instructions that greatly enhance the
implementation and performance of the Viterbi decoding algorithm. These instructions take
advantage of the unique bus structure and parallel arithmetic capabilities of the StarCore SC140.
This application note will show you how to use the special instructions of the StarCore SC140 to
program an efficient Viterbi decoder.

1.2 Audience

This application note iswritten specifically for application developers and programmers who want
to learn how to implement an efficient Viterbi decoder on the StarCore SC140.

1.3 Organization

This application note contains the following chapters:
Introduction
Convolutional Encoding and Viterbi Decoding
Special Viterbi Instructions
Computing Trellis Butterflies
Optimizations to the Branch Metric Calculation
Optimizations to the Viterbi Decoder Kernel
Implementation in Endian Modes
Viterbi Decoder for the StarCore SC140
9. References

© N o o s wDd R

Introduction describes the topic, purpose, audience, and organization of this application note.
You are reading the introduction right now.

Convolutional Encoding and Viter bi Decoding provides an overview of convolutional encoding
and Viterbi decoding. It also describes the basic computational steps of the Viterbi decoding
algorithm. Peruse this chapter before continuing to subsequent chapters.

How 10 Implemen a Viterbi Deggef I aHHAHSR'GR This Product, Page 1

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.

.ntroduction

Page 2

Special Viterbi Instructions describes the special instructions of the StarCore SC140 that allow
you to program an efficient Viterbi decoder. Spend some time to become familiar with these
powerful instructions.

Computing Trellis Butterflies provides optimized assembly code for computing two trellis
butterfliesin parallel. This chapter begins by describing the trellis butterfly, the basic computation
in Viterbi decoding, and the Add-Compare-Select (ACS) function, the principal function for
computing trellis butterflies.

Optimizationsto the Branch Metric Calculation describes how to optimize the Branch Metric
(BM) calculation.

Optimizationsto the Viterbi Decoder Kernel provides the memory map, optimized assembly
code, pointer descriptions, and performance benchmarksfor the Viterbi decoder kernel running on
the StarCore SC140. The chapter also describes how to modify the Viterbi decoding algorithm for
convolutional codes with constraint lengths greater than 5.

Endian Modes Support describes how the endian modes support of the StarCore SC140 works
for Viterbi decoding.

Viterbi Decoder for the Star Core SC140 provides complete optimized assembly code for
implementing a Viterbi decoder on the StarCore SC140 according to the Global System for
Mobile Communications (GSM) Traffic Channel/Full-Rate Speech (TCH/FS) standard.

References lists sources where you can obtain more detailed information about Viterbi decoding
and the StarCore SC140.

For More Infbl 4R8P 6 CRhis Brouisgoder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 2

Convolutional Encoding and
Viterbi Decoding

This chapter provides an overview of convolutiona encoding and Viterbi decoding and describes
the basic computational stepsin the Viterbi decoding agorithm. It starts with a description of a
typical forward-error-correction (FEC) communication scheme.

For alist of sources where you can obtain detailed information about convolutional encoding and
Viterbi decoding, see “References’ on page 67.

2.1 FEC Communication Scheme

In atypical communication scheme, a vector of symbolsis transmitted by a source, travels over a
communication channel where it is corrupted by noise and interference, and isreceived at a
destination. The purpose of a FEC communication schemeis to add redundancy to the transmitted
data so that any errors introduced by the communication channel can be corrected at the receiver.
One of the most popular FEC techniquesis convolutional encoding and Viterbi decoding (see

Figure 1):
Source Receiver
r— - - - - - — - — — il r—— - - - - - — - — — il
| | | |
| Input | | Output |
| > i i |
-	o	L
Convolutional ~ Modulator	Communication	Demodulator Viterbi
Encoder	Channel	Decoder
L - _| L - _|

Figure 1. Typical FEC Communication Scheme

Asillustrated in Figure 1, a convolutional encoder operates on an input data stream to generate
encoded data that consists of the input data plus some redundant symbols, called parity symbols.
A Viterbi decoder attemptsto recreate the original stream of input data at its output by using the
parity symbolsto correct any errors introduced by the communication channel.

This application note focuses on the Viterbi decoder portion of this FEC communication scheme.
To understand Viterbi decoding, you need a basic understanding of convolutional encoding.

How 10 Implemen a Viterbi Deggef I aHHAHSR'GR This Product, Page 3

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.

Zonvolutional Encoding and Viterbi Decoding

2.2

Page 4

How Convolutional Encoding Works

A convolutional encoder operates on an input stream of data symbols to generate an output stream
of data symbols consisting of the original input data plus some redundant symbols, called parity
symbols. A typical convolutional encoder comprises K stages of shift registers and one or more
modul o-2 adders (see Figure 2).

Switch Rate = @
2X Input Data Rate / GO
D* D3

Output <—Q/ D? D 1
S3 S, Sy So
\W/

Figure 2. Convolutional Encoder for K=5 and R=1/2

4—— Input

Asillustrated in Figure 2, the input symbols enter the shift register stages one symbol at atime on
the right. The modulo-2 adders, or parity generators, use modulo-2 arithmetic to add the symbols
of selected shift register stages to generate an encoded output symbol. Every time a symbol shifts
into the input, the modul 0-2 adders generate two encoded output symbols. Because there are more
output symbols than input symbols, the output contains redundant symbols. The decoder can use
the redundant symbols to correct any errors that occur during the transmission of the data over a
communication channel.

Convolutiona codes have a standard notation. A convolutional encoder with a code rate of R=m/n
transmits n output symbols for every m input symbols. Each output symboal is a function of the
current input symbol and the K-1 previous input symbols, where K is referred to as the constraint
length of the convolutional encoder. The word (S3,S,,S,,Sp) isthe encoder state. The remaining
symbol is referred to as the input symbol.

The convolutional encoder illustrated in Figure 2 has a constraint length of K=5 and a code rate of
R=1/2. A constraint length of K=5 means that each output symbol depends on the current input
symbol and the four previous input symbols. A code rate of R=1/2 meansthat for each input
symbol, the modulo-2 adders generate two encoded output symbols.

The mathematical connections between the shift register stages and the modulo-2 adders of a
convolutional encoder are typically described by generator polynomials. For the convolutional
encoder illustrated in Figure 2, the upper and lower connections are represented by the following
generator polynomials:

e GO=1+D3+D*
e G1=1+D+D3+D*

Each factor D represents one clock delay for the corresponding modulo-2 adder input.

For More Infbl 4R8P 6 ePhis Brouiegoder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

2.3 How Viterbi Decoding Works

A Viterbi decoder attemptsto recreate asits output the original stream of datathat entered the
convolutional encoder. To understand how a Viterbi decoder works, let’s perform an exercise
where we create some sample encoder input and use the encoder illustrated in Figure 2 to generate
the corresponding encoder output. Then, let’s attempt to decode the encoder output to recreate the
original encoder input.
Note: The purpose of this exercise is to demonstrate the basic concept of Viterbi decoding. The

actual detailsinvolved in a specific implementation of a Viterbi decoder may differ.
2.3.1 Generating Sample Encoder Inputs and Outputs
To get started, let’s create some sample encoder input and generate the corresponding encoder
output. Sample encoder inputs and the corresponding generated outputs appear in Table 1, where
we assume that the encoder isinitially filled with Os.
Table 1: Sample Encoder Inputs and Outputs

Encoder Encoder
Input Output

0 00

1 11

1 10

0 01

0 11
2.3.2 Decoding the Encoder Output
To decode the encoder output, a Viterbi decoder attempts to recreate the set of encoder state
changes, or transitions, that most likely generated the output. To see how a Viterbi decoder might
go about this, let’stry decoding the sample encoder output using the same assumption that the
encoder used to generateit. That is, let’s assume that the initial state of the encoder is 0000.
Before we can begin decoding, we need some sort of criterion to determine how well the outputs
of aset of recreated encoder states compare with the decoder inputs. Asacriterion, let'strack the
agreements between the recreated encoder outputs and the actual decoder inputs. The cumulative
agreement of these inputs and outputs for a set of state changes, or path, leading to a particular
recreated encoder state is called the path metric for that path. Incremental agreements for each
state change, or branch, along a path are called branch metrics.
An encoder state tree defines the possibl e states and transitions of an encoder. Figure 3 shows a
state in an encoder state tree and one of its possible transitions.

Encoder Output/ Next Encoder State
Branch Metric
Path Metric \
Encoder State State Transition
Figure 3. One State of the Encoder State Tree
How to Implement a Viterbi Depgde) I fiigFit4tiahi 'R This Product, Page 5

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

Figure 4 shows the encoder state tree of our example encoder for the first four decoder input pairs.
The boxesin the figure, called state boxes, contain the encoder states. Next to each arrow, or state
transition, appears a number pair showing the encoder output for that state transition (that is, the
output produced immediately before the state changes) and the branch metric associated with the

transition.
Decoder Input: 00 11 10 01 11
4
00
3 00/Ly0000 |77
0000
00/ e Nl
2
0000
5
00
111 3 o012 90010 |77
00/0 Yyt 3
> 100N ooT1 %
0000
S 11
4 oon_y0100] 55
11/2 0010
5
4 U9 Ao 9
00/2 0001 4 8
01/2 11
1072 6 (0110 155
10011 4
0 1000°A1iT] 10
01
0000
3
2 114 000] 11
0100
3
007
o 00/s (1001] 20
0010
2 11
111 > 10/0.91 1010 |55
01/1 (0101 | A
0 012" A 1011 32
10007 |
2
1 111 2100199
10/1 (0110 |)
. 01/0 00/ !!n!ll%%
(0011]
3
0 |00
10/2 3 10/0 11
[OTIT |
01/ 5 o1
(1111 |45

Figure 4. First Four Levels of the Encoder State Tree

The encoder state tree is structured such that transitions corresponding to an encoder input of 0 are
always the upper path and transitions corresponding to an encoder input of 1 are always the lower
path.

Page 6 For More Infklﬁ)p‘éqiwmeﬁ‘&vi}%t&&)g&oder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

Determining the encoder output for any transition is straightforward: Load the encoder of Figure 2
with the state that appearsin the state box just before the transition. Then, enter 0 or 1 for the input
bit, depending on whether the transition is along an upper or alower path. The encoder output is
determined by the generator polynomials of the encoder.

For each transition, compare the recreated encoder output with the decoder input to determine the
number of agreements between the bits. These agreements, referred to as branch metrics, are
shown next to each branch in the encoder state tree. For each encoder state, keep track of the
cumul ative branch metrics to calculate the path metrics. The path metrics appear above each state
box.

To select the encoder state sequence that most likely generated the decoder input, choose the path
with the largest cumulative path metric. In Figure 4, the path with the largest path metric displays
in bold.

Thelast step in decoding is to obtain the decoder output. Trace the path with the largest path
metric back through the encoder state tree to its beginning. Then, follow the same path forward to
generate the decoder output by sending 0 to the decoder output each time you traverse an upper
transition and 1 to the decoder output each time you traverse alower transition. Using this method
yields a decoder output of 01100, which agrees with the sample encoder input.

This decoding method would work great and we could end our decoding exercise hereif it weren't
for aproblem: As Figure 4 illustrates, the number of paths that the decoder must track doubles for
each decoder input pair, which means that for any reasonable number of decoder inputs, the
processing power and memory required to track all the pathsisfar too large for any practical
decoder.

How 10 Implemen a Viterbi Deggef U aHHAHSR'GR This Product, Page 7

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

2.3.3 Collapsing the Encoder State Tree

To solve the problem of the ever-growing encoder state tree, consider that a decoder might not
need to track all the possible pathsin the tree. All it really needsto do is find the path with the
largest path metric. If the decoder can somehow conclude, as it processes its way through the
encoder state tree, that certain paths cannot ever have the largest path metric, it can ignore those
paths in its future calculations.

To learn how the decoder might be able to eliminate certain paths in the encoder state tree, let’s
extend the encoder tree for one more pair of decoder inputs. The total number of states then
doubles from 16 to 32. Asit happens, the decoder can eliminate half of these states and maintain
the number of states at 16 indefinitely.

Consider the selected pair of encoder statesin Figure 5. Notice how extending the encoder tree to
accommodate one more pair of decoder inputs yields states with five bits. However, our example
encoder only requires five bits—four state bits and one input bit—to determine its output bits.
Therefore, the fifth, or leading, encoder state bit is superfluous. To emphasize thisin the figure,
we separate the leading bits from the first four bitsin each state box.

00
11
. o] -
[
o
[
[

oo
0 A -

Figure 5. Collapsing the State Tree

Because the leading bits do not affect the encoder outputs, the decoder can ignore them. Asa
result, the 32 states introduced by extending the encoder tree collapse back to 16 states. Figure 5
illustrates how the states collapse.

However, we now have a new problem: Because each state now has two entering paths rather than
one, the decoder must determine which path to keep for each state.

Page 8 For More InfMéQinweFﬁ?svﬁ%%ngpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

2.3.4 Choosing the Correct Path

To learn how the decoder chooses the input path for each state, consider the additive property of
path metrics. Suppose you have two paths that extend from timei to time k and you want to find
the path with the largest path metric. Also, suppose you are interested in the path metrics of these
paths at another timej such that i <j < k. For agiven encoder state S at time |, consider two paths
P1 and P2 that extend from time i to timej and enter state S at time . To get from state S at time |
to another state at time k, consider two more paths, Q1 and Q2. This setup isillustrated in

Figure 6:

|
|
|
|
|
timei time j time k
Figure 6. Choosing the Correct Path

L et the path metric for path P1 up to timej be PM 1. Let the path metric for path P2 up to time j be
PM2. Define QM1 and QM2 to be the partial path metrics for paths Q1 and Q2, respectively. A
partial path metric is the contribution due to the partial path only. That is, QM1 is the path metric
for path Q1 at time k minus the value of the path metric at state S at timej.

Finally, assume that PM1 > PM2. Then, any path containing path P2 cannot be the path with
largest path metric for any time after time j. To understand why, note that the path metric for

P, 0 Q, isPM1+ QML Similarly, P; I Q, has path metric PM1 + QM2, P, L1 Q, has path
metric PM2 + QM1, and P, [Q, has path metric PM2 + QM2. Suppose P, 1 Q, isa
candidate for largest path metric. Then, P, I Q, hasalarger path metric because PM1 + QM2 >
PM2 + QM2 (remember, we assumed that PM1 > PM2). Thisresult holds true for any Q2.
Therefore, if PM1 > PM2, we can eiminate path P2 from further consideration at time j—without
waiting for the “future” decoder inputs from time j to time k!

Thisresult has great significance for our decoding problem. As Figure 5illustrates, each stateisa
junction for two entering paths. The number of paths doubles each time the decoder receives
another pair of inputs, but the decoder can eliminate half of the paths each time aswell. Thisisthe
basis of the Viterbi algorithm.

A Viterbi decoder keeps track of the path metrics for each state up to the current time. By
eliminating the paths that cannot ever have the largest path metric, the decoder maintains the
processing power and memory required to decode itsinput at a practical level. Because the
decoder need only track each encoder state at any time, another type of diagram better illustrates
the Viterbi decoding process: atrellis diagram.

How 10 Implemen a Viterbi Deggef U aHHAHSR'GR This Product, Page 9

Go to: www.freescale.com

P N

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

2.3.5 Trellis Diagram

For Viterbi decoding, the most meaningful way to visualize the relationship between the input and
output data sequences of a convolutional encoder is atrellis diagram (see Figure 7):

j:z: Oz =@ ==Os O O O o

...
RS N
= NN
= NN
o O O O o%}(‘:“‘i‘%}(‘:“.
SOREDE I\
1010 O o o 0 (‘%‘J (‘\
1011 O O O O (1é/\‘}¢o
100 O O O O /\
ot O o o 0
o O 0 0 0

Figure 7. Trellis Diagram for a Convolutional Code with K=5 and R=1/2

AsFigure7 illustrates, atrellis diagram consists of hodes and branches. Each node in the tréllisis
labeled from 0000 to 1111. The label corresponds to the encoder state at that node in the trellis.
The number of states of a convolutional encoder iss=2%"1, where K isthe constraint length of the
encoder.

Page 10 For More |nf£HWéQiW}PBWGFhF§Vﬁ$Bt&R¢?€Pder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

Each branch in the trellis diagram represents a state transition, or asingle input to the encoder. An
input of O corresponds to the upper branch. An input of 1 corresponds to the lower branch.

To determine the encoder output for a branch, load the encoder with the state corresponding to the
node just before the branch and then enter 0 or 1 for the input bit, depending on whether the
branch is an upper or lower branch. The encoder output is determined by the generator
polynomial s of the encoder.

Any encoder input sequence traces a particular path through the trellis, yielding a corresponding
output sequence. For example, if the input sequence to our example encoder is 011001, the
corresponding output sequence is 001110011111. This particular input sequence is indicated by
the dotted path in Figure 7. The corresponding encoder output symbols are shown above the
branches of the path.

The structure of the trellis diagram clarifies the basic mission of a Viterbi decoder. Unlike the
encoder state tree, the number of statesin the trellisis bounded; therefore, the decoder only needs
to keep track of afinite number of states. Also, after a certain stage in the trellis, each state has
two entering paths. The decoder must choose which path to keep for each state at each stage of the
trellis.

2.3.6 Computing Trellis Butterflies

AsFigure7 illustrates, the number of states that the Viterbi decoder must track reaches a constant
after a certain trellis stage. When this happens, the trellisis said to have reached steady state. At
steady state, each state has two entering paths. From this point on, the decoder must select which
path to keep for each state at each trellis stage. This process of selection is referred to as updating
the states.

For program efficiency, Viterbi decoders are typically programmed to update states in pairs.
Updating the statesin pairsisreferred to as computing atrellis butterfly (see Figure 8). The states
that the decoder updates are called the new, or destination, states. The states leading to the
destination states are called the old, or source, states. To update a pair of destination states, the
decoder needs the path metrics of two source states and the branch metrics associated with the
branches |eading to the destination states.

Encoder Output/

Branch Metric 0010 00/ 2 ;
0010 00/ 2 5
0100 0100
11

5
Path Metric

#
0101
0101 4
, 2 00/ 2
1010
1010
Encoder State
Decoder Input: 00
Figure 8. Trellis Butterfly Computation
How to Implement a Viterbi Depgde) I fiigFit4%iah 'R This Product, Page 11

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

Let's consider how a Viterbi decoder updates the pair of states in Figure 8. The decoder first
computes the branch metric for each branch leading from the source states to the destination
states. For example, the lower branch from state 0010 has a recreated encoder output of 11. Since
the decoder input is 00, none of the recreated encoder output bits agrees with the decoder input
bits. Therefore, the decoder assigns a branch metric of 0 to this branch. The decoder performsa
similar computation for the other three branches.

To select which path to keep for each destination state, the decoder adds the branch metric of each
branch to the path metric of its source state, compares the resulting path metrics, and selects the
paths with the largest path metrics as the survivor paths. The path metrics of the two surviving
paths become the path metrics for the two destination states. The decoder updates all the
destination state pairs at each trellis stage.

Note: In general, the source state pairs are not the same as the destination state pairs. For our
example decoder, the source state pair 0OABC and 1ABC provides the path metrics that the
decoder needs to update the destination state pair ABCO and ABC1, where ABC isfixed
for each update.

Page 12 For More |nf1;'ﬂWéQi'6'}PBWGFE?§V3%t&RSPPder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

2.4 Viterbi Decoding with Soft Decision Inputs

To introduce Viterbi decoding in the most straightforward manner, previous sections of this
chapter assumed that the inputs to the decoder were hard decision inputs. However, a major
advantage of a Viterbi decoder isits ability to handle soft decision inputs. This ability greatly
improves the fidelity of the decoder output relative to the encoder input.

This section describes how Viterbi decoders work with soft decisions:
¢ Differences between hard and soft decisions
e Why soft decisions more accurately cater to atypical communication channel
* How to compute branch metrics for soft decisions
* How atrellis works with soft decisions

2.4.1 Differences between Hard and Soft Decisions

Let’s consider a hypothetical communication channel in which the transmitter generates a pul se of
-1.0 volt for one time unit to signify a bit value of 1 and a pulse of +1.0 volt for one time unit to
signify abit value of 0. Of course, channel corruption can distort transmitted voltages, resulting in
dightly altered to grossly distorted received voltages. Regardless of the level of channel
corruption, the receiver must interpret the incoming voltage signals as either a bit value of 1 or 0.
To interpret the incoming signals, receivers use a set of pre-programmed rules. In general, these
rulesfall into one of two categories.

¢ Hard decision rules
e Soft decision rules

Hard decision rules. Continuing with our hypothetical communication channel, let’s take alook
at the situation whereby the receiver operates according to a set of hard decision rules. According
to this set of rules, the receiver interprets received voltages with positive values asa 0 and
received voltages with negative valuesas a 1. That is, the receiver bases its decision on whether
the received voltage represents a 1 or 0 solely on the sign of the voltage.

Although hard decision rules are ssimple, they suffer a major drawback: They don’t consider the
probability that the received voltage is the voltage that was actually transmitted. For example, we
can easily intuit that areceived voltage of -0.9 volts was most likely caused by atransmitted
voltage of -1.0 voltswith a channel corruption of +0.1 volts and that a received value of +1.1 volts
was most likely caused by a transmitted value of +1.0 volts with a channel corruption of

+0.1 volts. In other words, we can say that -0.9 volts most likely represents a transmitted bit value
of 1 and that +1.1 volts most likely represents a transmitted bit value of 0.

However, for received voltages with magnitudes closer to 0.0 valts, such as-0.1 volts or

+0.2 volts, we cannot be so confident which transmitted bit values the voltages represent, for it is
amost equally probable that areceived voltage of, say, -0.1 volts was caused by a transmitted
voltage of -1.0 volts with a corruption of +0.9 volts as it was caused by a transmitted voltage of
+1.0 volts with a corruption of -1.1 volts. In one case, the correct interpretation of the transmitted
bit valueisa 1. In the other case, the correct interpretation is a0.

To summarize the above discussion, we can say that received voltages having magnitudes close to
1.0 volts are more likely to represent their intended bit values than received voltages having
magnitudes close to 0.0 volts, and hard decision rules don't consider that likelihood.

Soft decision rules. A receiver that operates according to a set of soft decision rules makes use
of the sign and magnitude information of a received voltage to estimate the transmitted bit value
based on the probabilities of the received voltage falling within certain voltage ranges for each
transmitted bit value.

How to Implement a Viterbi De%qew}@ﬁlﬁmgpﬁigg%ﬁ This Product, Page 13

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

2.4.2 Soft Decisions and a Typical Communication Channel

Because communication channels are generally subject to additive noise corruption, a number of
transmissions at a given voltage level typically results in arange, or distribution, of received
voltages. If the corruption is random, the range of received voltages will follow a normal
distribution. To learn about the concepts behind soft decision decoding, let’s consider a
hypothetical communication channel that has the transmission characteristicsillustrated in
Figure 9:

A
Probability Area. =1.0

Area = 0.25 Total

Area = 0.075 Area = 0.65

Area = 0.025

[

10 05 0 05 10 Voltage

Received

Figure 9. Received Voltage Distribution (for a transmitted voltage of +1.0 volts)

AsFigure9 illustrates, the received voltage distribution can be divided into a number of regions,
the area of each region representing the probability that areceived voltage will fall within its
range. For example, for atransmitted voltage of +1.0 volts, the probability that the received
voltage will be greater than +0.5 voltsis 0.65.

For our hypothetical communication channel, the received voltage distribution for a transmitted
voltage of -1.0 voltsisamirror image about the y-axis of the distribution shown in Figure 9. A
communication channel that exhibits this type of symmetry in its transmission characteristicsis
referred to as a discrete memoryless channel.

The transmission characteristics of our communication channel have some adverse consequences
for areceiver that operates according to hard decision rules. As Figure 9 illustrates, for a
transmitted voltage of +1.0 volts, the received voltage will be positive with a probability of 0.9,
and negative with a probability of 0.1. For a hard decision receiver, this means that the probability
of abit error is 0.1. Such an error rateis far too high for any practical decoding scheme.

Note: The transmission characteristics of areal communication channel may exhibit a tighter
received voltage distribution (i.e., smaller standard deviation) than the one shown in
Figure 9. Also, in areal channel, the received voltage distribution for atransmitted bit of 1
may not be symmetrical to the received voltage distribution for a transmitted bit of O.
Neverthel ess, the concepts presented in this section are valid.

We can greatly reduce the bit error rate by exploiting our knowledge of the transmission
characteristics of the communication channel to design areceiver. To do this, we need to design
the receiver to make decisions about the received voltage according to a set of rules that considers
the probability that the received voltage is correct. These rules are called soft decision rules.
Here's a set of soft decision rules based on dividing the distribution of Figure 9 into four regions:

* |f thereceived voltage is greater than +0.5 volts, the receiver interprets the voltage as a bit
value of 0 with high confidence. We will designate this decision as OH.

* |f thereceived voltage is between 0.0 and +0.5 volts, the receiver interprets the voltage as a
bit value of 0 with low confidence. We will designate this decision as OL.

Page 14 For More InfMéinmeﬁ?&Vﬁ%t&R@fpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

* |f thereceived voltage is between -0.5 and 0.0 volts, the receiver interprets the voltage as a
bit value of 1 with low confidence. We will designate this decision as 1L.

* |f thereceived voltage is less than -0.5 volts, the receiver interprets the voltage as a bit
value of 1 with high confidence. We will designate this decision as 1H.

For this set of soft decision rules, the possible soft decision outputs of the receiver for each
transmitted bit are illustrated in Figure 10:

0.65

Figure 10. Binary to Quartenary Discrete Memoryless Channel

In Figure 10, the numbers adjacent to each path correspond to the probability of each receiver soft
decision (i.e., OH, OL, 1L, 1H) for each transmitted bit (i.e., 0 or 1). These probahilities are also
shown in Table 2.

Table 2: Transition Probabilities of the Discrete Memoryless Channel

OH oL 1L 1H

0 065 | 025 | 0.075 | 0.025

1 0.025 | 0.075 | 0.25 | 0.65

In Table 2, each entry represents the probability of a specific receiver decision given a certain
transmitted voltage. For example, the entry in row 1 column 1 represents the probability that the
receiver will interpret the received voltage as a bit value of 0 with high confidence (i.e., OH) given
that a bit value of 0 was actually transmitted.

Note: For simplicity of discussion, we chose to divide the received voltage distribution of
Figure 9 into only four regions, which resulted in four soft decision rules. We could have
chosen to divide the received voltage distribution into alarger number of regions, which
would have resulted in a larger—and more accurate! —set of soft decision rules. In fact,
Viterbi decoderstypically receive afinely discretized set of soft decision inputs, each input
representing the confidence that the receiver hasin the received signal. For example, the
confidence that areceiver hasin abit value transmission of a1 or a0 can be discretized
into the following range of fixed point binary inputs to the decoder: FF to 7F.

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 15

Go to: www.freescale.com

| g

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

2.4.3 Computing Branch Metrics for Soft Decisions

To apply the knowledge of the characteristics of our communication channel to a Viterbi decoder,
we need to find away to work with the soft decision inputsin our trellis. Remember, in Viterbi
decoding, we are trying to find the most likely path through thetrellis. That is, we are interested in
the path whose sequence of transitions has the highest probability.

To find the probability of a sequence of transitions, we must find the probability for each
transition and then compute their product. However, by working with the logarithms of the
probabilities instead, we can take advantage of the following math property:

log(axb) = loga+ logb

From a computational standpoint, it is easier to work with the logarithms of the probabilities than
with the probabilities themselves, because we can then add the probabilities for each transition to
compute the probability for each path.

Note: The branch metric of atransition isthe probability of the transition. The path metric of a
path is the probability of the sequence of transitions that constitute the path. These
statements are the key to understanding soft decision decoding!

The logarithms of the transition probabilities for our hypothetical communication channel are
shown in Table 3.

Table 3: Logarithmic Values of the Transition Probabilities

OH oL 1L 1H

0 -0.19 | -060 | -1.12 | -1.60

1 -160 | -1.12 | -0.60 | -0.19

We are now in the position to begin the decoding process. We first compute the branch metrics for
each trellis transition at each stage of thetrellis. To do this, we work with the logarithms of the
transition probabilities as follows:
For each trellis transition:

1. Determine the encoder output.

2. Using Table 3, find the transition probability of each decoder input (i.e., receiver soft
decision) for its corresponding encoder output.

3. Add thetransition probabilities for the pair of decoder inputsto compute the branch metric
of the trellistransition.

Page 16 For More |nf1;'ﬂWéQi'6'}PBWGFE?§V3%t&RSPPder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

The branch metric calculation for a pair of trellis transitions and a sample pair of soft decoder
inputsisillustrated in Figure 11.

Encoder Output /
Branch Metric

00/ -2.20

0000 @

11/-1.31

0001 @

Decoder Input: 1H OL

Figure 11. Branch Metric Calculation for Soft Decision Inputs (for K=5)

The branch metricsin Figure 11 are calculated as follows:

Upper transition:

For the upper transition, the encoder output is 00.

1.

In Table 3, find the transition probability for adecoder input of 1H given an encoder output
of 0. The entry is-1.60.

In Table 3, find the transition probability for a decoder input of OL given an encoder output
of 0. The entry is-0.60.

Add the transition probabilities of the two decoder inputsto calculate the branch metric. The
result is-2.20.

Lower transition:

For the lower transition, the encoder output is 11.

1. InTable 3, find the transition probability for adecoder input of 1H given an encoder output
of 1. The entry is-0.19.
2. InTable 3, find the transition probability for a decoder input of OL given an encoder output
of 1. Theentry is-1.12.
3. Addthetransition probabilities of the two decoder inputsto cal culate the branch metric. The
resultis-1.31.
How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 17

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding
2.4.4 How a Trellis Works with Soft Decisions

Therest of the decoding processis the same as for the hard decision example presented earlier in
this chapter:

1. Compute the branch metric for each transition at each trellis stage.

2. Add the branch metrics for each path to compute the path metrics.

3. Select the path with the largest path metric.

4, Trace the best path back to its beginning, and then follow the path forward, outputting O

each time you traverse an upper transition, and 1 each time you traverse a lower transition.

Note: Because the branch metrics are logarithms with negative values, the path metric of the best
path has the smallest magnitude.

The results of the decoding process for part of the trellis and a sample sequence of soft decoder
inputs areillustrated in Figure 12.

Decoder Input: 1H OL 1L 1L 1H OH 1H 1H

0000

00/ -2.20 00/ -2.24 00/-1.79 00/ -3.20

11/-1.31 11/-1.20 11/-1.79

0001 e
01/-1.72 01/-3.20 01/-1.79
10/-1.72 10/-0.38 10/-1.79
0010 e L4
00/-1.79 00/ -3.20
11/-1.79 11/-0.38
0011 e L L

Figure 12. Partial Trellis for Soft Decision Inputs (for K=5)

In Figure 12, the encoder outputs and the branch metrics display next to each transition. The best
path appearsin bold.

Now that you understand how Viterbi decoding worksin theory, let’s explore how it worksin
practice. The next section describes the Viterbi decoder implementation presented in this
application note.

Page 18 For More |nf1;'ﬂWéQi'6'}PBWGFE?§V3%t&RSPPder on the StarCore SC140

Go to: www.freescale.com

2.5

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

Viterbi Decoding Algorithm

To decode a convolutional code, a decoder must use some type of decoding rule to find a path
through the trellis, where each path in the trellis defines a unique decoder output sequence.
Ideally, the decoder chooses a path that minimizes any discrepancies between the encoder output
sequence derived from the trellis and the actual input to the decoder. Such a path most likely
represents the actual encoder input, which is the data that the decoder is attempting to reproduce
asits output.

The Viterbi decoding algorithm is a maximum-likelihood decoding algorithm for convolutional
codes. Maximum-likelihood decoding produces an output sequence that maximizes the log-
likelihood function, which represents the probability that the decoder output sequence matchesthe
encoder input sequence.

Viterbi decoding is one of the most popular forward-error-correction (FEC) techniques because it
is simple to implement and offers alarge coding gain. The large coding gain results mainly from
the ease with which the Viterbi decoding algorithm handles soft decision inputs received from the
demodulator.

The Viterbi decoding algorithm consists of the following modules (see Figure 13):
e [|nitiaization
e Branch metric calculation
* Viterbi decoder kernel
e Sub-blocks save
e Traceback

How to Implement a Viterbi De%qew}@ﬁlﬁmgpﬁigg%ﬁ This Product, Page 19

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

Initialization

'

> Branch Metric
— Calculation

'

Viterbi Decoder
Kernel

Number of trellis
stages traversed
=127

No

Yes

|

Al

Sub-Blocks Save

Number
of saved sub-blocks
=167

No

Yes i

Traceback

Figure 13. Flow Chart of the Viterbi Decoding Algorithm

2.5.1 Initialization

Theinitialization portion of the Viterbi decoding algorithm establishes the types of variables used
by the algorithm and sets their initial values.

Page 20 For More |nf£ﬁWéQi'£;'}PBWth?§Vﬁ%t&£’é€Pder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

2.5.2 Branch Metric Calculation

The Viterbi decoding algorithm starts at state 0000 and works its way through the trellis. At each
trellis node, the algorithm performs a branch metric calculation. For each branch entering the
node, the algorithm cal cul ates the number of agreements between the encoder output derived from
traversing the branch and the current input to the decoder. The number of agreementsisreferred to
as the branch metric.

Note: The Viterbi decoding algorithm provided for GSM TCH/FS integrates the branch metric
calculation and the Viterbi decoder kernel.

The branch metric calculation used by the Viterbi algorithm presented in this paper is based on a
well known method called The Manhattan Metric. According to this method, the algorithm for
detemining the branch metric for each trellis transition is as follows:
To calculate the branch metric of atrellistransition:
1. Determine the encoder output bits.
Note: The number of encoder output bitsis /R, where R is the encoder rate.

2. For each encoder output bit, perform the following:

If... Then . ..

The encoder output Add the respective decoder

bitisO input (i.e., the receiver soft
decision).

The encoder output Subtract the respective
bitis1 decoder input.

3. Accumulate the soft values of the decoder input bits according to their signsin step 2.
Note: The result isthe branch metric of the transition.

According to this algorithm, the branch metrics of any two competing transitions can be shown to
have the same magnitude but opposite signs. Because of this, atrellis butterfly calculation can use
asingle branch metric magnitude (different signs) for all four state transitions. That is, when
processing atrellis butterfly, we can calculate a single branch metric magnitude and determine its
sign according to the state transition as follows:

A transition from this state . .. [To this state ... |Yields this branch metric . ..
OXXX XXX0 +BM
IXXX XXX0 -BM
OXXX XXX1 -BM
IXXX XXX1 +BM

The rationale underpinning the Manhattan Metric is straightforward: The decoder input (i.e., the
received signal) can have any fixed point binary value FF81 to 007F, where FF81 represents a
strong 1 (-a) and 007F represents a strong 0 (+a). The value of 0000 is considered neutral.

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 21

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zonvolutional Encoding and Viterbi Decoding

For example, let's assume that the encoder output bits are 0 and 1, and that the receiver samples
the values of +a and -arespectively (i.e., correct levels with highest probability). The branch
metric isthen calculated as +a - (-a) = +2a, which provides the highest positive branch metric
(representing the highest probability) for the transition. Any other value for the received signal
will result in asmaller branch metric for the transition. In other words, the larger the corrupting
noise, the smaller the resulting branch metric.

In summary, the branch metric represents the probability of atransition, and it is calculated by
simply manipulating the received signal values to the decoder, without translations into Gaussian
probability tables, as are performed in traditional soft decision decoding (see “Viterbi Decoding
with Soft Decision Inputs’ on page 13).

2.5.3 Viterbi Decoder Kernel

The Viterbi decoder kernel represents the heart of the Viterbi decoding algorithm, determining
how to proceed through the trellis to find a path that best represents the encoder input. To
determine the best path, the kernel performs the following tasks for every node at each trellis
stage:

1. Updates the path metrics for each of the two paths leading to the node.

2. Savesthe path with the largest path metric and discards the other path.

Updating the path metrics. The kernel uses the branch metrics to determine the path metrics for
each path entering atrellis node. The path metric of a path is the cumulative number of
agreements between the encoder output derived from traversing that path through the trellis and
the inputs to the decoder up to that stage in the trellis. To compute the path metric of a path
entering a node, the kernel performs the following:

1. Retrievesthe previous path metric of the path from memory.
2. Addsthe previous path metric to the branch metric for that path from the latest branch
metric calculation.
3. Updates the previous path metric in memory with the current path metric.
Saving the survivor paths. After the kernel computes the path metrics for each path entering a
node, it compares the path metrics of the two paths and saves the path with the largest path metric.

The other path is discarded. Retained paths are referred to as survivor paths. The number of
survivor pathsis equal to the number of encoder states.

Page 22 For More InfMéinmeﬁ?&Vﬁ%t&R@fpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

2.5.4 Sub-Blocks Save

The Viterbi decoder kernel updates the path metrics and survivor paths at each trellis stage. A
survivor path corresponds to each of the 2K-1 encoder states, where K is the constraint length of
the convolutional code.

The kernel updates the survivor paths at each trellis stage by using the VSL instruction (see
“Special Instructions for Viterbi Decoding” on page 27). To update the survivor paths, the VSL
instruction shifts |eft the register holding the previous survivor path and inserts 0 or 1 in the least
significant bit (L SB), depending on which state the new survivor path belongsto.

The sub-blocks save module assigns each of the 2K survivor paths to a 16-bit word in either the
high or low portion of a 32-bit register (see Figure 14).

| S = 2K-1 = Number of States

State 0 | ' SP(0)

State 1 | | SP(1) |

State 2 | I SP(2) |
I I ® I
| | o |
| | L4 |
I I ° I
I I . I

State S-1 ISP (S-1)

K-1 bits

Figure 14. Sub-Blocks Save

As Figure 14 shows, the sub-blocks save modul e reserves some of the two bytes of memory—K-1
bits of it—for pointing to the previous state number. The module uses the remaining bits—
16-(K-1) bits—for the actual data.

After the decoder traverses 16 stages of the trellis, the sub-blocks save module must save the
registers that contain the survivor paths in memory so they will not be lost as the decoder
continues to traverse forward through the trellis. In practice, however, the sub-blocks save module
actually savesthe survivor paths more often—every 16-(K-1) stages. The saved survivor paths are
referred to as a sub-block.

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 23

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.

Zonvolutional Encoding and Viterbi Decoding

2.5.5 Traceback

The sub-blocks save module works in tandem with the Viterbi decoder kernel to produce a series
of sub-blocks, each sub-block containing a portion of the survivor paths for each state in the trellis
(see Figure 15). There are 2K"1 partial survivor pathsin each sub-block.

S S s s =trell Sub-Block N
o S1, - - - Sg, Sg = trellis states Path Sunvivor
A B, C,...P Q,R, x=4-bit binary numbers Metrics Paths
So PXXXX $Pxx0
$KxxJ Si | $xxxx $Pxx1
Last 12 decoded bits S; | Maximum | $KxxJ
First 4 decoded bits
(serve as a pointer) SeE | $xxxx $PxXXE
SE | $xxxx $PXXF
Survivor Paths Survivor Paths Survivor Paths Survivor Paths
of Sub-Block 0 of Sub-Block 1 of Sub-Block N-2 of Sub-Block N-1
So | $Pxx0 So | $Pxx0 So| $Pxx0 So $Pxx0
S1 | $Pxxi S1| $Pxxi ®®® S| $Pxxti Sy $Pxx1
Sp| $OxxP | -
S <J_ S -
Q| $RxxQ < -S| o L X SLxxK
Se | $PxxE Se| $PxxE Se| $PxxE Se | $PxxE
Sk | $PxxF Sk | $PxxF Sk | $PxxF Sk | $PxxF
Output Buffer
xxQ xxP - — — — — — — — - xxL xxK xxJ ‘

Figure 15. Traceback Function

The traceback module builds the maximum-likelihood survivor path by selecting as the final state
of the trellis the state that corresponds to the survivor path with the largest path metric. The
modul e then performs a traceback of the corresponding paths in each sub-block to build the
maximum-likelihood survivor path. For GSM channels, the final state is specified as the zero
state. The Viterbi algorithm for GSM TCH/FS produces afinal state of zero by appending K-1
zeros, called tail bits, to each block of encoded bits.

AsFigure 15 illustrates, the traceback module extracts a portion —12 bits—of the maximum-
likelihood survivor path from each sub-block. The module can easily move from aword in a sub-
block to the appropriate word in the previous sub-block because of the way the Viterbi algorithm
is structured: Because a sub-block is saved every 16-(K-1) trellis stages, the last K-1 bitsin each
word are the same as the first K-1 bits of the appropriate word in the previous sub-block.

Page 24 For More InfMéinm%&Vﬁ?a%Réfpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Convolutional Encoding and Viterbi Decoding

Thefirst K-1 bits of each word correspond to the address of the next appropriate word. That is, the
first word in a sub-block contains 0000 in itslast K-1 bits; the second word in a sub-block
contains 0001 in itslast K-1 bits; and so forth. In short, the first K-1 bits of each word serve as a
pointer to the appropriate word—that is, the one that belongs to the maximum likelihood survivor
path—in the previous sub-block.

The traceback function comprises two steps:

1. Readsthelast 16-(K-1) bitsfrom the selected word in the current sub-block and copiesthem
to the output buffer.

2. Readsthefirst K-1 bits from the selected word to determine the address of the appropriate
word in the previous sub-block.

The traceback function repeats these two steps until it reaches the last sub-block, which is labeled
sub-block 0. After the traceback function reaches the sub-block 0, it has copied the maximum-
likelihood survivor path to the output buffer.

In summary, the traceback function extracts 12 bits of data from each sub-block and copies them
to the output buffer, where they appear as a continuous stream of decoded bits.

How to Implement a Viterbi De%qew}@ﬁlﬁmgpﬁigg%ﬁ This Product, Page 25

Go to: www.freescale.com

P

Freescale Semiconductor, Inc.

Zonvolutional Encoding and Viterbi Decoding

Page 26

For More Infbl 4R8P 6 CPhis Brouisgoder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 3

Special Instructions for Viterbi
Decoding

Viterbi decoding makes extensive use of the add-compare-select (ACS) function, which you will
learn more about in the next chapter. The ACS function consumes the majority of the cycles
during Viterbi decoding. To reduce the cycle counts consumed by the ACS function, the StarCore
SC140 instruction set contains several specia instructions that allow you to program an efficient
ACS function. Spend some time to become familiar with these powerful instructions:

» ADD2
* SUB2
* MAX2VIT
e VSL.AF
e VSL.AW
To understand these instructions and how they help you to program an efficient Viterbi decoder,

you need some basic information about the StarCore SC140 architecture. The StarCore SC140
architecture contains.. . .

* Four dataarithmetic logic units (DALUS)

e Two address generation units (AGUS)

e 16 genera purpose 40-bit data registers (DO through D15)
e 16 addressregisters (RO through R15)

In asingle clock cycle, the StarCore SC140 can perform four DALU operations on 32-bit
operands and two AGU operations for transferring up to 64 bits of data.

Several instructions further increase the capabilities of the StarCore SC140 by dividing a 32-bit
dataregister into two 16-bit registers, which are denoted by D.L for the low portion of the register
and D.H for the high portion of the register. Each data register has an overflow byte.

For detailed information about the StarCore SC140 architecture and instruction set, refer to the
SarCore SC140 Core Reference Manual.

How to Implement a Viterbi De?%‘;%@?:ﬁﬁﬁ?ﬁi%ﬁ%ﬁ This Product, Page 27

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.1 ADD2

The ADD2 instruction performs two add operations on 16-bit operandsin one DALU unit (see
Figure 16).

3.1.1 Operation and Assembler Syntax

The following table provides the operation and the assembler syntax for the ADD2 instruction.

Operation Assembler Syntax

DaH +DnH - DnH ADD2 Da,Dn
DalL + Dn.L - Dn.L

3.1.2 Description

The ADD2 instruction performs the following:

1. Addsthe source 16-bit operand Da.L to the destination operand Dn.L and storestheresultin
the destination Dn.L.

2. Adds the source 16-bit operand Da.H to the destination operand Dn.H and stores the result
in the destination Dn.H.

Note: Carry isdisabled between bits 15 and 16. The extension Dn.E of the result is undefined.

3.1.3 Instruction Fields
{Da} All dataregisters[DO. .. D15].
{Dn} All dataregisters[DO. .. D15].

3.1.4 Use in Viterbi Decoding

The Viterbi decoder kernel usesthe ADD2 and SUBZ2 instructions to update the path metrics for
each state at each trellis stage (see Figure 16).

DO ‘ PM1 ‘ PMO ‘ PM = Path Metric
BM = Branch Metric

H L

D4 \ BM1 | BMO \
H L

D4 PM1 + BM1 PMO + BMO DO PM1 - BM1 PMO - BMO
H L H L
ADD2 DO0,D4 SUB2 D4,D0

Figure 16. Register Schematic for ADD2 d0,d4 and SUB2 d4,d0

Page 28 For More |nf£ﬁWéQi'£;'}PBWth?§Vﬁ%t&£’é€Pder on the StarCore SC140

Go to: www.freescale.com

3.2

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

SUB2

This SUB2 instruction performs two subtract operations of 16-bit operandsin one DALU unit (see
Figure 16).

3.2.1 Operation and Assembler Syntax

The following table provides the operation and assembler syntax for the SUB2 instruction.

Operation Assembler Syntax

Dn.H-DaH - DnH SUB2 Da,Dn
Dn.L-DalL - Dn.L

3.2.2 Description

The SUB2 instruction performs the following:

1. Subtracts the source 16-bit operand Da.L from the destination operand Dn.L and stores the
result in the destination Dn.L.

2. Subtracts the source 16-bit operand Da.H from the destination operand Dn.H and stores the
result in the destination Dn.H.

Note: Carry isdisabled between bits 15 and 16. The extension Dn.E of the result is undefined.

3.2.3 Instruction Fields
{Da} All dataregisters[DO0...D15].
{Dn} All dataregisters[DO...D15].

3.2.4 Use in Viterbi Decoding

The Viterbi decoder kernel uses the ADD2 and SUBZ2 instructions to update the path metrics for
each state at each trellis stage (see Figure 16).

How to Implement a Viterbi Deﬁ%‘#%}&‘?.ﬁ%‘{ﬁ?&%iﬁﬁ%ﬂ This Product, Page 29

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.3 MAX2VIT D4,D2 and MAX2VIT D12,D10

The section describes these MAX2VIT instructions:
e MAX2VIT D4,D2
* MAX2VIT D12,D10

Use a prefix with the MAX2VIT D12,D10 instruction to encode the high bank registers.

3.3.1 Operation and Assembler Syntax

The following table provides the operation and the assembler syntax for these MAX2VIT
instructions. VFO and VF1 are Viterhi flagsin the status register, SR.

Operation Assembler Syntax

If D4.L>D2L,thenD4.L - D2.L andVFO=0 MAX2VIT D4,D2
ElseVFO=1

If D4H>D2H, thenD4.H - D2.H and VF1=0
ElseVF1=1

3.3.2 Description

The MAX2VIT instruction performs the following (see Figure 17):
1. Subtractsthe signed value of D4.L from the signed value of D2.L.

2. If thedifferenceisnegative (D4.L > D2.L), then VFO = 0 and D4.L istransferred to D2.L.
Otherwise, D2.L is not changed and VFO = 1.

3. Subtractsthe signed value of D4.H from the signed value of D2.H.
4. |If the differenceis negative (D4.H > D2.H), then VF1 = 0 and D4.H istransferred to D2.H.
Otherwise, D2.H is not changed and VF1 = 1.

Note: Theinstruction transfers the extension Dn.E with the high portion according to the status
of Viterbi flag VF1. The extension Dn.E does not influence subtractions. Only bits 15 and
31 determine the sign.

High Low
c A D4
D B D2
Max (C, D) Max (A, B) D2
VF1=0ifC>D VFO=0ifA>B
VF1=1ifC<=D VFO=1ifA<=B

Figure 17. Register Schematic for the MAX2VIT Instruction

Page 30 For More InfMéinm%&Vﬁ?a%Réfpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.3.3 Use in Viterbi Decoding

The MAX2VIT instruction performs the Compare and part of the Select for an add-compare-
select (ACS) function:
e Compares and selects the paths with the largest path metrics for two new states.
e SetsViterbi flags VFO and VF1, one for each new state, to indicate that the survivor paths
have been updated.

For example, if D4.L is greater than D2.L, the instruction clears VFO. If the reverseistrue, the
instruction sets VFO. Viterbi flag VFO indicates whether the survivor path corresponding to state
2j comes from old state J or old state F+S/2 (see “ Computing Trellis Butterflies” on page 39).

How to Implement a Viterbi De%qew}@ﬁlﬁmgpﬁigg%ﬁ This Product, Page 31

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.4 MAX2VIT D0,D6 and MAX2VIT D8,D14
The section describes these MAX2VIT instructions:
* MAX2VIT DO,D6
e MAX2VIT D8,D14
Use a prefix with the MAX2VIT D8,D14 instruction to encode the high bank registers.

Note: The MAX2VIT D0O,D6 and MAX2VIT D8,D14 instructions are similar to the
MAX2VIT D4,D2 and MAX2VIT D12,D10 instructions. The only difference isthat the
instructions operate on different sets of source registers and Viterbi flags.

3.4.1 Operation and Assembler Syntax

The following table provides the operation and the assembler syntax of these MAX2VIT
instructions. VF2 and VF3 are Viterbi flagsin the status register, SR.

Operation Assembler Syntax

If DO.L >D6.L, thenDO.L - D6.L andVF2=0 MAX2VIT DO,D6
ElseVF2=1

If DO.H > D6.H, then DO.H —» D6.H and VF3=0
ElseVF3=1

3.4.2 Description

The MAX2VIT instruction performs the following (see Figure 18):
1. Subtractsthe signed value of DO.L from the signed value of D6.L.
2. If thedifferenceis negative (DO.L > D6.L), then VF2 =0 and DO.L istransferred to D6.L.
Otherwise, D6.L isnot changed and VF2 = 1.
3. Subtractsthe signed value of DO.H from the signed value of D6.H.

4. If the differenceis negative (DO.H > D6.H), then VF3 = 0 and DO.H is transferred to D6.H.
Otherwise, D6.H is not changed and VF3 = 1.

Note: Theinstruction transfers the extension Dn.E with the high portion according to the status
of Viterbi flag VF3. The extension Dn.E does not influence subtractions. Only bits 15 and
31 determine the sign.

High Low
D B D6
Max (C, D) Max (A, B) D6
VF3=0ifC>D VF2=0ifA>B
VF3=1ifC<=D VF2=1ifA<=B

Figure 18. Register Schematic for MAX2VIT Instruction

Page 32 For More InfMéinm%&Vﬁ?a%Réfpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.4.3 Use in Viterbi Decoding

The MAX2VIT instruction performs the Compare and part of the Select for an add-compare-
select (ACS) function:
e Compares and selects the paths with the largest path metrics for two new states.
e SetsViterbi flags VF2 and VF3, one for each new state, to indicate that the survivor paths
have been updated.

For example, if DO.L is greater than D6.L, the instruction clears VF2. If the reverseistrue, the
instruction sets VF2. Viterbi flag VF2 indicates whether the survivor path corresponding to state
2j comes from old state J or old state F+S/2 (see “ Computing Trellis Butterflies” on page 39).

How to Implement a Viterbi De%qew}@ﬁlﬁmgpﬁigg%ﬁ This Product, Page 33

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.5 VSL.4F

The section describes the V SL .4F instructions:
e VSL.4F D2:D6:D1:D3, (Rn)+NO
e VSL.4F D10:D14:D9:D11, (Rn)+NO

Use a prefix with VSL.4F D10:D14:D9:D11, (Rn)+NO to encode the high bank registers.

3.5.1 Operation and Assembler Syntax

The following table provides the operation and the assembler syntax of the V SL.4F instructions.

Operation Assembler Syntax

D2.H - (address0) VSL.4F D2:D6:D1:D3, (Rn) + NO
D6.H - (address 1)

If VF1==1, then (D3.H << 1,0) - (address 2)
Else (D1.H << 1,0) - (address?2)

If VF3==1, then (D3.H << 1,1) - (address 3)
Else (D1.H << 1,1) - (address3)

Inthistable. ..
e Theterm << 1,0 means shift left 1 bit and fill the least significant bit (LSB, bit 16) with 0.
¢ Theterm << 1,1 means shift left 1 bit and fill the LSB with 1.

The memory word locations to which the addresses 0, 1, 2, and 3 refer depend on the endian

mode:
Address Big Endian Mode Little Endian Mode
0 (Rn+2) (Rn)
1 (Rn) (Rn+2)
2 (Rn+6) (Rn+4)
3 (Rn+4) (Rn+6)
Page 34 For More |nf£ﬁWéQi'£;'}PBWth?§Vﬁ%t&£’é€Pder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.5.2 Description

The VSL.4F instruction writes four consecutive words taken from the high portion of the source
dataregisters to the memory (see Figure 19). The instruction does not change the valuesin the
registers.

Theinstruction first writes D2.H and D6.H to the location of the first two words in the memory.
The order in which the instruction writes the words to memory depends on the endian mode.

The next two words that the instruction writes are . . .

e A left-shifted value of D1.H or D3.H, according to the status of Viterbi flag VF1. If VF1is
set, the left-shifted D3.H is chosen. Otherwise, the left-shifted D1.H is chosen. The LSB is
filled with O.

e A left-shifted value of D1.H or D3.H, according to the status of Viterbi flag VF3. If VF3is
set, the left-shifted D3.H is chosen. Otherwise, the left-shifted D1.H is chosen. The LSB is
filled with 1.

The order in which the instruction writes these words to memory also depends on the endian
mode.

For the address expression (Rn)+NO, the instruction multiplies the valuein NO by 8 to yield the
actual addressincrement. For example, if NO=1, the instruction allocates eight bytes of memory
for storing four 16-bit words.

T = Survivor Path
PM = Path Metric

D3 D1 D6 D2
T9 T8 T1 TO
PM3 new PM2 new
-
To Memory

Figure 19. Register Schematic for the VSL.4F Instruction
3.5.3 Instruction Fields
{Rn} All addressregisters[RO . . . R15].
3.5.4 Use in Viterbi Decoding
The VSL.4F instruction performs the Select part of the ACS function:

* Storesthe new path metrics in memory.

e Updates and stores the survivor paths in memory.
For example, the instruction stores the new path metrics D2 and D6 in memory. The instruction
aso reads the Viterbi flags and determines which survivor path to select for each new state. The
instruction updates the survivor paths by shifting left the register that contains the old path and
inserting either 0 or 1 in the least significant bit (L SB), depending on which state the survivor path
comes from.

How to Implement a Viterbi Depgdel} i aFrestiahi 'OR This Product, Page 35

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.6 VSL.AW

The section describes the VSL.4W instructions:
e VSL.AW D2:D6:D1:D3, (Rn)+NO
e VSL.4W D10:D14:D9:D11, (Rn)+NO
Use a prefix with VSL.4W D10:D14:D9:D11, (Rn)+NO to encode the high bank registers.

Note: TheVSL.4W and VSL .4F instructions are similar except for the following: The VSL.4W
instruction operates on the low portions of the source registers, whereasthe VSL.4F
instruction operates on the high portions. Also, the operations of the instructions depend on
different Viterbi flags.

3.6.1 Operation and Assembler Syntax
The following table provides the operation and the assembler syntax for the VSL.4W instruction.

Operation Assembler Syntax

D2.L - (addressO0) VSL.4W D2:D6:D1:D3, (Rn) + NO
D6.L - (address 1)

If VFO==1, then (D3.L <<1,0) - (address 2)
Else(D1L << 1,0) - (address?2)

If VF2==1, then (D3.L <<1,1) - (address 3)
Else (D1.L <<1,1) — (address3)

Inthistable. ..
* Theterm << 1,0 means shift left 1 bit and fill the least significant bit (LSB, bit 16) with O.
* Theterm << 1,1 means shift left 1 bit and fill the LSB with 1.

The memory word locations that addresses 0, 1, 2 and 3 refer to depend on the endian mode:

Address Big Endian Mode Little Endian Mode
0 (Rn+2) (Rn)
1 (Rn) (Rn+2)
2 (Rn+6) (Rn+4)
3 (Rn+4) (Rn+6)
Page 36 For More InfMéinm%&Vﬁ?a%Réfpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

3.6.2 Description

The VSL.4W instruction writes four consecutive words from the lower portion of the source data
registers to the memory (see Figure 20). The instruction does not change the valuesin the
registers.

The instruction writes D2.L and D6.L to the location of the first two words in the memory. The
order in which the instruction writes the words to memory depends on the endian mode.

The next two words that the instruction writes are . . .

e A left-shifted value of D1.L or D3.L, according to the status of Viterbi flag VFO. If VFO is
set, the left-shifted D3.L is chosen. Otherwise, the left-shifted D1.L ischosen. The LSB is
filled with O.

e A left-shifted value of D1.L or D3.L, according to the status of Viterbi flag VF2. If VF2 is

set, the left-shifted D3.L is chosen. Otherwise, the left-shifted D1.L ischosen. The LSB is
filled with 1.

The order in which the instruction writes these words to memory also depends on the endian
mode.

For the address expression (Rn)+NO, the instruction multiplies the valuein NO by 8 to yield the
actual addressincrement. For example, if NO=1, the instruction allocates eight bytes of memory
for storing four 16-bit words.

T = Survivor Path
PM = Path Metric

D3 D1 D6 D2

T9 T8 T1 TO

PM1 new PMO new

To Memory

Figure 20. Register Schematic for the VSL.4W Instruction

3.6.3 Instruction Fields
{Rn} All addressregisters[RO . . . R15].

3.6.4 Use in Viterbi Decoding

The VSL.4W instruction performs the Select part of the ACS function:

* Storesthe new path metricsin memory.

e Updates and stores the survivor paths in memory.
For example, the instruction stores the new path metrics D2 and D6 in memory. The instruction
also reads the Viterbi flags and determines which survivor path to select for each new state. The
instruction updates the survivor paths by shifting left the register that contains the old path and

inserting either 0 or 1 in the least significant bit (L SB), depending on which state the survivor path
comes from.

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 37

Go to: www.freescale.com

P N

Freescale Semiconductor, Inc.
Special Instructions for Viterbi Decoding

Page 38 For More Infklﬂ)p‘éqilg}pmeﬁ&vi}%t&&)@fpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 4

Computing Trellis Butterflies

4.1

To design an efficient Viterbi decoder, programmers typically design the decoder to incorporate as
much parallel processing as the processor will allow. Doing thisincreases processing speed,
because many of the tasks that would be performed sequentually are instead performed
simultaneously. One opportunity for taking advantage of parallel processing in Viterbi decoding is
to design the algorithm to compute more than one trellis butterfly in parallel.

This chapter shows you how to use the special instructions of the StarCore SC140 to compute two
trellis butterfliesin parallel. The chapter begins by describing the trellis butterfly, the basic
computation performed in Viterbi decoding, and the Add-Compare-Select (ACS) function, the
principal function for computing trellis butterflies.

Before reading this chapter, review the special instructions of the StarCore SC140 that help you
program an efficient Viterbi decoder (see“ Specia Instructions for Viterbi Decoding” on page 27).

Trellis Butterfly

A trellisdiagram is a simple way to visualize the input and output sequences of a convolutional
code (see “Convolutional Encoding and Viterbi Decoding” on page 3). Thetrellis diagram for a
R=1/n convolutional code can be subdivided into a number of basic modules (see Figure 21).

BM _ ,
State J State 2J BM=branch metric

S=number of states
 BM 0<J<sSi2-1

- BM

State (J+S/2) " State (2J+1)

Figure 21. Trellis Butterfly

These modules, called trellis butterflies, illustrate the transitions between two old states at trellis
stage i and two new states at trellis stage i+1.

Notice that the branch metrics for the upper and lower paths from each old state are equal and
opposite. That is, the branch metric of the upper path from state Jis equal and opposite the branch
metric of the upper path from state +S/2. The sameis true for the lower paths from the two old
states.

The symmetry of the branch metrics for the upper and lower paths arises from the nature of the
trellis structure and the generator polynomials. The negative branch metrics arise from soft
decision inputs that can be positive or negative and that span a range that is symmetrical about
zero.

How to Implement a Viterbi De?%‘;%@?:ﬁﬁﬁ?ﬁi%ﬁ%ﬁ This Product, Page 39

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ZComputing Trellis Butterflies

Each stage of atrellis diagram contains 2 ~*/2 trellis butterflies, where K is the constraint length
of the convolutional code. To visualize this feature of atrellis diagram, consider one stage of the
trellis diagram for an R=1/n convolutional code with a constraint length of K=3 (see Figure 22).

00 Cl~
~

BM

Transition caused by ‘0’ input

Transition caused by ‘1’ input

~
“~

01

10

N Fmmmmmmmn

Figure 22. One Stage of a Trellis Diagram for K=3 and R=1/n

4.2 Add-Compare-Select Function

The Viterbi decoder kernel computestrellis butterflies by using a basic mathematical function
called the Add-Compare-Select (ACS) function (see Figure 23).

Old Path Metric (j) Old Path Metric (j+s/2)| | Old Path Metric (j) Old Path Metric (j+s/2)
Branch Metric Branch Metric Branch Metric Branch Metric
%V \N %7 V*
ADD SUB SUB ADD
Y \ y
Compare Compare
R — —
> Select > Select
Update new Path Metric (2)) Update new Path Metric (2j+1)

Figure 23. Trellis Butterfly Computation Using Two ACS Functions

Page 40 For More |nf8'.QWéQik§’}P'6Wthi§Vﬁ%t&Rédeer on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Computing Trellis Butterflies

Since one ACS function selects the transition to one new state, the Viterbi decoder kernel must

perform two ACS functions to compute one trellis butterfly. Computing atrellis butterfly
comprises these operations.

1. Reading the path metrics and survivor paths of statesj and j+5/2 at stagei.

2. Computing the path metrics of states 2j and 2j+1 at stage i+1.

3. Comparing the two path metrics and selecting the path with the largest path metric.
4, Storing the updated path metrics and survivor paths.

4.3 Computing Two Trellis Butterflies
For efficient processing, the Viterbi decoder kernel presented in this application note is

programmed to compute two trellis butterflies in parallel. To compute two trellis butterfliesin

paralel, the kernel usesthe parameters defined in Figure 24.

PMO new
SPO new

PMO old +BMO
SPO old
-

~u
N PM1 new
e 4 SP1 new

PM1 old
SP1old

PM8 old PM2 new
SP8 old SP2 new
PM9 old PM3 new
SP9 old SP3 new

Figure 24. Computing Two Trellis Butterflies (for K=5 and R=1/n)

To design the Viterbi decoder kernel to efficiently compute two butterfliesin parallel, you have

two methods:
* In-place method
¢ Dedicated register method

How to Implement a Viterbi Degadeifil tntHeritioh '6R This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ZComputing Trellis Butterflies

4.3.1 In-Place Method

To use the in-place method to compute two trellis butterfliesin parallel, design the Viterbi decoder
kernel such that the registers that hold the branch metrics (BMs) also hold the new path metrics
(PMs). Figure 25 shows theinitial StarCore SC140 register map for computing two trellis
butterflies using the in-place method:

D4 | BM1 | BMO |
Do | PMiold | Pmoold |
D2 [PMoold | Pmgold |
p1| sPiod | spood |
D3| SPoold | SP8old |

Figure 25. Initial Register Map for Two Trellis Butterflies - In-Place Method

Inthisfigure. . .
¢ Register D4 contains the BMs.
¢ Registers DO and D2 contain the PMs from the previous trellis stage for states 0, 1, 8, and 9.

¢ Registers D1 and D3 contain the survivor paths (SPs) from the previous trellis stage for
states 0, 1, 8, and 9.

The optimized StarCore SC140 assembly code for computing two trellis butterflies using the in-
place method is shown in Example 1. If you design the Viterbi decoding algorithm such that the
BMs, SPs, and PMs are stored in the StarCore SC140 data registers shown in Figure 25, the code
of this example computes two trellis butterflies in three cycles. On average, the number of cycles
required to compute each trellis butterfly is 1.5 cycles.

Note: Because the loading of the data from memory can be performed in parallel with the
processing of the previous trellis butterfly, the cycles required for loading the data don’t
contribute to the cycle count.

Example 1. Assembly Code for Computing Two Butterflies - In-Place Method

; Read fromnenory the pre-cal cul ated BM.
nmove. | (rl)+, d4

Read the old SPs and PMs from menory.
[tfr d4,d6 nove. 2l (r2)+, do: dl
nmove. 2| (r3)+,d2:d3
]
; Add and subtract the BM fromthe ol d PM.
[add2 dO,d4 sub2 d6, d2
sub2 d4,d0 add2 d2, dé

]

Page 42 For More |nf£HWéQi'£;'}PBWGFh&Vﬁ%%ESEPdef on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Computing Trellis Butterflies

; Conpare the PM6 for each path and select the paths with the
; largest PMs as the SPs.

max2vit d4,d2 max2vit dO, d6

Move the new SPs and PMs to nenory.
[vsl.4w d2:d6:d1:d3, (r4)+n0 vsl.4f d2:d6:d1:d3, (r5)+n0

]

4.3.2 Dedicated Register Method

You can also design the Viterbi decoder kernel to process two butterfliesin parallel using the
dedicated register method. This method is similar to the in-place method, except that it stores the
BMsin adedicated register. Because the BMs stored in the dedicated register are not overwritten
during the trellis butterfly computation, the algorithm can reuse them to compute other trellis
butterflies that have the same BMs. Figure 26 shows the initial StarCore SC140 register map for
computing two trellis butterflies using the dedicated register method:

D7 | BM1 | BMO |
Do | PMiod | PMmoold |
D2 | PMoold | PMBold |
D1 | sPiod | spood |
D3 | sSPood | SPsod |

Figure 26. Initial Register Map for Two Trellis Butterflies - Dedicated Register Method

Inthisfigure. ..
¢ Register D7 contains the BMs.
* Registers DO and D2 contain the PMs from the previous trellis stage for states O, 1, 8, and 9.
* Registers D1 and D3 contain the SPs from the previous trellis stage for states 0, 1, 8, and 9.

The StarCore SC140 assembly code for computing two trellis butterflies using the dedicated
register method is shown in Example 2.

Example 2. Assembly Code for Computing Two Butterflies - Dedicated Register Method

Read the old SPs and PMs from menory.
[nove.2l (r2)+,d0:dl nove.2l (r3)+, d2:d3
]
; Read the pre-calcul ated BM from menory.
[tfr dO,d4 tfr d2,d6
nove. | (rl)+ d7

]

How to Implement a Viterbi De?‘&%@ﬁﬁﬁﬁ%ﬁigg%ﬂ This Product, Page 43

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ZComputing Trellis Butterflies

; Add and subtract the B fromthe ol d PM.
[add2 d7,d4 sub2 d7,d2
sub2 d7,d0 add2 d7, d6

]

; Conpare the PM6 for each path and select the paths with the
; largest PM5 as the SPs.

max2vit d4,d2 max2vit do, dé

Move the new SPs and PMs to nenory.
[vsl.4w d2:d6:d1:d3, (r4)+n0 vsl.4f d2:d6: d1:d3, (r5)+n0

]

4.3.3 Advantages and Disadvantages

Each method for computing two trellis butterflies in parallel hasits advantages and disadvantages.
The in-place method reduces the number of register transfers because the registers that hold the
BMs aso hold the new PMs.

The dedicated register method uses a dedicated register for the BMs and is therefore more flexible
for calculating the new PM s than the in-place method. For example, the dedicated register method
computes two butterfliesin paralel using BM1 and BMO and two additional butterfliesin parallel
using -BM1 and -BMO. The kernel performs these computations using the same pre-determined
BM1 and BMO stored in register D7. To perform the computations, the kernel simply aternates
use of the ADD2 and SUBZ2 ingtructions. However, the computational flexibility associated with
this method comes at a cost: This method requires more register transfers.

Fortunately, you don’t have to choose one method or the other. You can design the Viterbi decoder
kernel to capitalize on the advantages of both methods. The optimized assembly code for the GSM
TCH/FS Viterbi Decoder provided in this application note incorporates both methods to achieve
better performance (e.g., cycle counts and code size) than it would be capable of if it used either
method alone (see “Viterbi Decoder for the StarCore SC140” on page 57).

Page 44 For More |nf£HWéQi'£;'}PBWGFh&Vﬁ%%ESEPdef on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 5

Optimizations to the Branch Metric
Calculation

This chapter describes how to optimize the branch metric (BM) calculation.

5.1 Branch Metric Calculation

The Viterbi decoder kernel requires branch metrics (BMs) to calculate the path metrics (PMs).
Theinput data for calculating the BMs are the soft-decision encoded symbols that the decoder
receives from the demodulator.

The decoder calculates the BMsasafunction of . . .
e Constraint length, K
e Coderate, R
* Generator polynomias, GO, G1, .. Gn
» Soft-decision encoded symbols

5.2 Optimized Assembly Code

Example 3 shows the optimized assembly code for the branch metric calculation. Thiscodeis
targeted for the StarCore SC140 and conforms to the Glabal System for M obile Communications
(GSM) Traffic Channel/Full-Rate Speech (TCH/FS) standard.

The assembly code is for decoding convolutional codes with a constraint length of K=5, a code
rate of R=1/2, and the following generator polynomials:

+ G0=1+D3+D*
e Gl1=1+D+D3+D*

The code of Example 3 stores the soft decision encoded symbolsin registers D13 and D15. The
code stores the BMs in the high and low portions of registers D5 and D7. The BMs in register D7
are used to calculate the first set of four butterflies. The BMsin register D5 are used to calculate
the second set of four butterflies.

How to Implement a Viterbi De?%‘;%@?:ﬁﬁﬁ?ﬁi%ﬁ%ﬁ This Product, Page 45

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Jptimizations to the Branch Metric Calculation

Example 3. Branch Metric calculation for GSR TCH/FS

Get the soft decision inputs for the first stage.
nove. w (r0)+nl, d15 nove.w (r1)+nl, d13

; Calculate the BMfor the first stage of the trellis.
[add d15,d13,d7 sub di3, di5, d13
clr d5
]
; d7 = BML| |BMD is used for the first four trellis butterflies.
[insert #16,#16,d13,d7 neg di13
sub d7, d5, d5
]
; d5 = BVB||BM2 is used for the last four trellis butterflies.
i nsert #16, #16, d13, d5

5.3 Further Optimizations

Example 3 shows that the BMs for calculating eight trellis butterfliesin GSM TCH/FS have a
special feature: The low and high portions of register d5 contain the negatives of the BMsin the
low and high portions of register d7, respectively. You can use this feature of the algorithm to
further optimize the assembly code as follows:

¢ Determinethe BMsin register d7 only.
e Calculatetrellis butterflies according to the dedicated register method (see “ Dedicated
Register Method” on page 43).

The assembly code of the GSM TCH/FS Viterbi decoder incorporates the branch metric
calculation into the main kernel of the trellis butterfly computation and makes use of this
optimization technique to achieve improved performance (see “Viterbi Decoder for the StarCore
SC140" on page 57).

Page 46 For More InfMéinm%&Vﬁ?a%Réfpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 6

Optimizations to the Viterbi
Decoder Kernel

This chapter provides optimized assembly code for the Viterbi decoder kernel. The kernel updates
the path metrics and saves the survivor paths at each trellis stage. Basically, the kernel is the heart
of Viterbi decoding, determining the path through the trellis that most likely represents the
encoder input.

The Viterbi decoder kernel isthe most computationally intensive part of the Viterbi decoding
agorithm, performing 2 ~* add-compare-select (ACS) computations for each decoded bit. To
reduce the cycle counts consumed by the ACS computation, the kernel assembly code capitalizes
on the variable-length-execution-set (VLES) capabilities of the StarCore SC140.

Because of the VLES capabilities of the StarCore SC140, the Viterbi decoder kernel presented in
this application note performs two ACS calculations (for two different trellis butterflies) in
parallel. In addition, the kernel incorporates pipelining techniques for computing the 2 ~%/2
trellis butterflies at each trellis stage. These techniques maximize the parallelism of the assembly
code, reducing the overall cycle count.

The StarCore SC140 instruction set contains special instructions that reduce the cycle counts
consumed by the Viterbi decoder kernel (see “ Special Instructions for Viterbi Decoding” on

page 27).
This chapter includes the following:
* Memory map illustrating where the kernel stores its results
* Optimized assembly code for the kernel
* Description of the pointers in the assembly code
¢ Performance benchmarks for the kernel running on a StarCore SC140
¢ How to modify the kernel for convolutional codes with constraint lengths greater than 5

How to Implement a Viterbi De?%‘;%@?:ﬁﬁﬁ?ﬁi%ﬁ%ﬁ This Product, Page 47

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Jptimizations to the Viterbi Decoder Kernel

6.1 Memory Map of the Kernel

The memory map for the Viterbi decoder kernel illustrates where the kernel stores the updated
path metrics and survivor paths at each trellis stage (see Figure 27).

R2- - > | SP1 | SPO | PM1 | PMO |
SP3	sp2	PM3	PM2
SP5	SP4	PM5	PM4
SP7	SP6	PM7	PM6
R3-- >	SP9	SP8	PM9
spu	spio	pMm	PMi0
spis	spi2	pPmiz	PMi2
spis	spia	pPmis	PmMu4
R4 - - >	SP1	SPO	PM1
R5 - - >	SP3	SP2	PM3
SP5	SP4	PM5	PM4
SP7	SP6	PM7	PM6
SP9	SP8	PM9	PM8
spu	spio	pMm	PMi0
spis	spi2	pPmiz	PmMi2
spis	spia	pPmis	pPmMu4

Figure 27. Memory Map for the Viterbi Decoder Kernel

This memory map applies to convolutional codes with a constraint length of K=5 and a code rate
of R=1/n. A similar memory map can be derived for convolutional codes with other constraint
lengths.

The data buffer illustrated by the memory map is a modulo buffer. In amodulo buffer,

one block—either Block 0 or Block 1—saves the path metrics and survivor paths from the
previous trellis stage. The other block saves the path metrics and survivor paths from the current
trellis stage. The roles of these blocks alternate every trellis stage.

The datain each block are the path metrics and the survivor paths for each encoder state. Each cell
in ablock represents 2 bytes of data. Each block contains 2~ * 2* 2=64 bytes.

Page 48 For More |nf1;'ﬂWéQi'6'}PBWGFE?§V3%t&RSPPder on the StarCore SC140

Go to: www.freescale.com

6.2

Freescale Semiconductor, Inc.
Optimizations to the Viterbi Decoder Kernel

Kernel Assembly Code

This section provides the assembly code for the Viterbi decoder kernel. This code appliesto
convolutional codes with aconstraint length of K=5 and a code rate of R=1/n. The code comprises
an initialization step followed by 10 execution sets.

hkhkkhkkhkhkhhkhkhhkhhkhhhhhhhhdhhdhhhhhhhkhhhhhhhhhhdhhdhhdhhhhhhhhddhddrddhdhdrdxdx

Kernel Initialization

hhkkhkkhhkhhkhhkhkhhkhhhhhhhhhhdhhdhhhhhhhhhhhhhdhhhdhhdhhdhhhhhhhdhddhddrdrdhdrdxdx

Read the first 4 branch metrics (BMs) fromthe registers.
nove. 2| (r1)+, d4: d5

LR R RS S SRS RS RS E SRS SRS RS E R E SRR EEEEEEEEEEEEEEEEEEE SRS

Viterbi Decoder Kernel

LR R RS S SRS RS SRR S SRR RS E RS RS EE R EE RS EEREEEEEEEEEEEEEEEEEEEE SRS

Execution Set 1
Read the path netrics (PM and survivor path (SP) values for the first two
trellis butterflies.

[tfr d4,d6 nove. 2l (r2)+, dO:dl
nove. 2| (r3)+,d2: d3
]

Execution Set 2

Performthe add operation for the first two trellis butterflies.
Read next 4 BMs.

[add2 dO,d4 sub2 d6, d2
sub2 d4,d0 add2 d2, d6
nmove. 2| (r1)+,d12:d13
]

Execution Set 3

Performthe conpare and sel ect operation for the first two trellis
butterflies. Read the second pair of PMs and SPs.

[max2vit d4,d2 nmax2vit dO, d6
tfr d12,d14 nove.2l (r2)+,d8:d9
nove. 2| (r3)+, d10: d11
]

Execution Set 4

Process the second pair of trellis butterflies. Mve sel ected PM and SPs
to nenory.

[add2 d8,d12 sub2 d14, d10
sub2 d12,d8 add2 d10, d14
vsl . 4w d2: d6: d1: d3, (r4)+n0 vsl . 4f d2: d6: d1:d3, (r5) +n0

]

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 49

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Jptimizations to the Viterbi Decoder Kernel

; Execution Set 5
; Performthe conpare and sel ect operation for the second pair of
; trellis butterflies. Read the third pair of PM and SPs.

[max2vit d12,d10 max2vit d8, d14
tfr d5,d6 tfr d5,d4
nmove. 2l (r2)+,d0:dl nove. 2l (r3)+,d2:d3
]
Execution Set 6
; Process the third pair of trellis butterflies. Mve selected PMs and SPs
; to nenory.
[add2 dO,d4 sub2 d6, d2
sub2 d4,d0 add2 d2, d6
vsl . 4w d10: d14: d9: d11, (r4) +n0 vsl . 4f d10: d14: d9: d11, (r5) +n0
]
Execution Set 7

Performthe conpare and sel ect operation for the third pair of trellis
butterflies. Read the fourth pair of PMs and SPs.

[max2vit d4,d2 max2vit dO, d6
tfr di3,d12 tfr di3,d14
nove. 2| (r2)+,d8:d9 nove. 2| (r3)+ d10: d11
]
; Execution Set 8

; Process the fourth pair of trellis butterflies. Mve sel ected PV and SPs
; to nenory.

[add2 d8,d12 sub2 d14, d10
sub2 d12,d8 add2 d10, d14
vsl . 4w d2: d6: d1: d3, (r4)+n0 vsl . 4f d2: d6: d1:d3, (r5) +n0
]
Execution Set 9

Performthe conpare and sel ect operation for the fourth pair of trellis
butterflies. Read the next 4 BM for the next stage.

[max2vit d12,d10 nax2vit d8, d14
nmove. 2| (r1)+,d4: d5
]

Execution Set 10
Move sel ected PM and SPs to menory.

[vsl.4w d10: d14: d9: d11, (r4)+n0 vsl . 4f d10: d14: d9: d11, (r5) +n0
]

Page 50 For More |nf1;'ﬂWéQi'6'}PBWGFE?§V3%t&RSPPder on the StarCore SC140

Go to: www.freescale.com

6.3

6.4

6.5

Freescale Semiconductor, Inc.
Optimizations to the Viterbi Decoder Kernel

Pointers Used in the Kernel
The following table describes the pointers in the assembly code:

The address in

this register . . . el s

R1 Branch metric (BM) table

R2 State j of the previous trellis stage

R3 State (j+1/2) of the previoustrellis stage

R4 State 2j of the current trellis stage

R5 State (2j+1) of the current trellis stage

Kernel Cycle Count

Running on the StarCore SC140, the Viterbi decoder kernel processes eight trellis butterfliesin 10
cycles (for convolutional codes with a constraint length of K=5). On average, the processing of
each trellis butterfly consumes 1.25 cycles.

How to Modify the Kernel for K>5

You can modify the Viterbi decoding agorithm for a convolutional code with a constraint length
of K greater than 5. All you need to do is program the kernel to run in aloop of 2> times per
trellis stage.

After you program the kernel to run in aloop, you can further optimize the kernel assembly code
for GSM channels by concatenating execution set 10 to execution set 2 such that the last execution
set of atrellis stage is performed on the next trellis stage.
To do this, make the following changes to the Viterbi decoder kernel:
1. Deletenove. 2l (r2) +, d0: d1 from execution set 1 and append it to the kernel
initialization.
2. Appendnove. 2| (r2) +, dO: d1 to execution set 9.
Deletenove. 21 (r1) +, d12: d13 from execution set 2 and append it to execution set 1.

4. Append execution set 10 to execution set 2.

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 51

Go to: www.freescale.com

h -

P

Freescale Semiconductor, Inc.

Jptimizations to the Viterbi Decoder Kernel

Page 52

For More Infbl 4R8P 6 CPhis Brouisgoder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 7

Endian Modes and Viterbi
Decoding

The StarCore SC140 supports little and big endian computer architectures. Little endianisa
computer architecture in which the least significant byte of a multi-byte numeric word has the
lowest address. That is, each word is stored little byte first. In a big endian architecture, the most
significant byte of a multi-byte numeric word has the lowest address. That is, each word is stored
big bytefirst.

This section describes the memory maps of the kernel and the sub-blocks save modules of the
Viterbi decoding algorithm for little and big endian architectures.

For detailed information about the endian modes support of the StarCore SC140, refer to the
SarCore SC140 Core Reference Manual.

How to Implement a Viterbi De&@w@g&@ﬁp&gigg]&p‘ This Product, Page 53

Go to: www.freescale.com

Freescale Semiconductor, Inc.
=ndian Modes and Viterbi Decoding

7.1 Little Endian Mode

For little endian mode, the memory maps of the Viterbi decoder kernel and the sub-block saveis
illustrated in Figure 28.

Viterbi decoder kernel sub-block save

Go to: www.freescale.com

(Rn + 6) (Rn + 4) (Rn +2) (Rn +0) (Rn +2) (Rn +0)
SP1 SPO PM1 PMO SP1 SPO
(Rn + 14) (Rn +12) (Rn + 10) (Rn + 8) (Rn + 6) (Rn + 4)
SP3 SP2 PM3 PM2 SP3 SP2
(Rn +22) (Rn + 20) (Rn +18) (Rn + 16) (Rn +10) (Rn + 8)
SP5 SP4 PM5 PM4 SP5 SP4
(Rn + 30) (Rn + 28) (Rn + 26) (Rn +24) (Rn + 14) (Rn+12)
SP7 SP6 PM7 PM6 SP7 SP6
(Rn + 38) (Rn + 36) (Rn + 34) (Rn +32) (Rn +18) (Rn + 16)
SP9 SP8 PM9 PM8 SP9 SP8
(Rn + 46) (Rn + 44) (Rn +42) (Rn + 40) (Rn +22) (Rn + 20)
SP11 SP10 PM11 PM10 SP11 SP10
(Rn + 54) (Rn +52) (Rn + 50) (Rn + 48) (Rn + 26) (Rn + 24)
SP13 SP12 PM13 PM12 SP13 SP12
(Rn +62) (Rn + 60) (Rn +58) (Rn + 56) (Rn + 30) (Rn + 28)
SP15 SP14 PM15 PM14 SP15 SP14

Figure 28. Memory Map for Little Endian Mode
Page 54 For More |nfBHWéQiL§'}PBWGPE&Vﬁ‘F&t&R§PPdef on the StarCore SC140

Freescale Semiconductor, Inc.
Endian Modes and Viterbi Decoding

7.2 Big Endian Mode

For big endian mode, the memory map of the Viterbi decoder kernel and the sub-block saveis
illustrated in Figure 29.

Viterbi decoder kernel sub-block save

(Rn +0) (Rn +2) (Rn + 4) (Rn + 6) (Rn +0) (Rn +2)
PM1 PMO SP1 SPO SP1 SPO
(Rn + 8) (Rn + 10) (Rn +12) (Rn + 14) (Rn + 4) (Rn + 6)
PM3 PM2 SP3 SP2 SP3 SP2
(Rn + 16) (Rn +18) (Rn + 20) (Rn +22) (Rn + 8) (Rn +10)
PM5 PM4 SP5 SP4 SP5 SP4
(Rn + 24) (Rn + 26) (Rn + 28) (Rn + 30) (Rn +12) (Rn + 14)
PM7 PM6 SP7 SP6 SP7 SP6
(Rn +32) (Rn + 34) (Rn + 36) (Rn + 38) (Rn + 16) (Rn + 18)
PM9 PM8 SP9 SP8 SP9 SP8
(Rn + 40) (Rn +42) (Rn + 44) (Rn + 46) (Rn + 20) (Rn + 22)
PM11 PM10 SP11 SP10 SP11 SP10
(Rn + 48) (Rn + 50) (Rn +52) (Rn +54) (Rn + 24) (Rn + 26)
PM13 PM12 SP13 SP12 SP13 SP12
(Rn + 56) (Rn +58) (Rn + 60) (Rn + 62) (Rn + 28) (Rn + 30)
PM15 PM14 SP15 SP14 SP15 SP14

Figure 29. Memory Map for Big Endian Mode
How to Implement a Viterbi De%qew}@ﬁﬁ@;%gigg]ép. This Product, Page 55

Go to: www.freescale.com

h -
P

Freescale Semiconductor, Inc.

=ndian Modes and Viterbi Decoding

7.3

Differences between Endian Modes

Figure 28 and Figure 29 show that in big endian mode, pairs of survivor paths and path metrics
are switched in 16-hit word address locations. As aresult, the big endian version of the Viterbi
code reguires one more operation for determining the correct offset to the survivor path during
traceback than the little endian version of the code. After the traceback module calculates the
offset from the sub-block base address, it inverts the least significant bit (LSB) of the offset in big
endian mode. Although this offset correction adds one cycle to the processing of every 12 decoded
bits, it does not significantly affect the total cycle count.

The traceback module for the GSM TCH/FS Viterbi decoder contains assembler directives that
instruct the assembler which portions of the code to convert to opcode depending on whether the
target architectureislittle or big endian:

. IF
« ELSE
« ENDIF

The assembl er uses these directives to include or exclude certain portions of the assembly code for
conversion into opcode as requried by the target architecture.

You must specify the target architecture to the assembler. To do this, you have two choices:
e Specify the target architecture on a command line when you invoke the assembler.
* Specify the target architecture in the assembly sourcefile.

If you specify the target architecture in the assembly source file, the instruction that you use must
precede the assembly directives.

Page 56 For More InfMéinmeﬁ?&Vﬁ%t&R@fpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 8

Viterbi Decoder for the
StarCore SC140

This chapter provides optimized assembly code for implementing a complete Viterbi decoder on
the StarCore SC140. This code complies with the Global System for Mobile Communications
(GSM) Traffic Channel/Full-Rate Speech (TCH/FS) standard. This standard is the most widely
used digital cellular communications standard in the world.

This chapter also provides performance statistics for thisimplementation of a Viterbi decoder
running on the StarCore SC140.

8.1 Viterbi Decoder Inputs

Asdefined in GSM Standard 05.03, the Viterbi decoder for GSM TCH/FS receives 378 soft
decision symbols in each input block.

Note: The size of the buffer is set to twice the size of the input frame (i.e., 2 x 189 = 378).

8.2 Code Parameters

The convolutiona code for thisimplementation of a Viterbi decoder has a constraint length of
K=5 and a code rate of R=1/2.

8.3 Generator Polynomials
The generator polynomials for the convolutional code are. . .
+ GO=1+D3+D*
+ Gl=1+D+D3+D*

How to Implement a Viterbi De?%‘;%@?:ﬁﬁﬁ?ﬁi%ﬁ%ﬁ This Product, Page 57

Go to: www.freescale.com

h -

P

Freescale Semiconductor, Inc.

/iterbi Decoder for the StarCore SC140

8.4 Assembly Code
This section provides the assembly code for implementing the Viterbi decoder for GSM TCH/FS
on the StarCore SC140. The code comprises four main parts.
e Initialization
* Viterbi decoder kernel (includes branch metric calculation)
e Sub-blocks save
e Traceback
B R R I R R I R I I R R I R I R R I IR R I R R R I R R R
; Viterbi Decoder for GSM TCH FS
B R I I R R S i S R R R R I R R R IRk I R R R I R R I I
; Copyright Mdtorola Inc., 2000. Al rights reserved.
; Copyright Lucent Technol ogies Inc., 2000. Al rights reserved.
; Reverse engineering is prohibited.
; Purpose: GSM TCH FS Viterbi decoding - including traceback
; Code rate R= 1/2
; Constraint length K=5
; Generator Polynomals: @=1+D‘3+D*4
; GL=1+D+D"3+DM4
; Inputs: EQJ QUTPUTS - 378 soft decisions buffer.
; Qutputs: PACKED TRACEBACK QUTPUTS - Miterbi decodi ng outputs buffer
; Packed in 16-bit contiguous words
; Registers used: dO0-di5, r0-r9, b2-b5, n0-n3, nD, nttl
ckkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkkhkhkhkhkhkhkkhkhkhhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkikhkkkkkhkhkkkkkk,*k*%x
NO CF_STATES define "16" ; Nunber of trellis encoder states
NO CF STACES define "189" ; Nunber of Viterbi trellis stages
PMINT define "0" ; Path metric initialization for all states
; Path netric initialization of state 0. The purpose of the follow ng
; initialization is to increase the weight of state O.
ZERO IN T define "1000"
ckkkkkhkkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkkhkkk,kkkkkk,k*%x
; | mpl enentati on of GSM TCH FS Viterbi Decoder
ckkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkkkhkkhkhkhkkkkk,khkkkkk,k*%x
; The remainder = 9 for 189 decoded bits.
RESI DUE equ NO OF STAGES- (((NO_OF_STACGES-1)/12)*12)
Page 58 For More InfSiH 4R BRoFhis BrERggoder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Viterbi Decoder for the StarCore SC140

KRR KRR XXX KKK KRR XX K
; Initialization
KRR KRR KKK XK KKK KKK KRR R KKK K
org p: $4000
align 4
EQU _QUTPUTS
INCLUDE 'viterbi _input.in” ; ds NO CF STAGES*2*2
align 8
PACKED TRACEBACK QUTPUTS ; Qutput bits are packed in 16-bit words.
ds ((NO OF_STAGES-1)/16+1)*2 ; = 24 for 189 decoded bits
align 8
PM RAM SP_RAM

; The argument of DSM contains 128 bytes for GSM TCH FS. There are 16 states
; and 2 words per state for SP||PM Each word contains 2 bytes and
; 1's doubl e buffered.

dsm 2* (NO_OF_STATES*2) *2

; The PM RAM SP_RAM and SAVED SP buffers must be in different groups
; to prevent stalls.

org p: $BDOO
align 8
SAVED SP
ds (((NO COF_STAGES-1)/12+1)*NO O _STATES)*2 ; = 512 for 189 decoded bits.

org p:
j np $1000

org p: $1000

nove. | #EQJ QUTPUTS, rO0 ; r0,rl are pointers to soft decision inputs.
nmove.l #PM RAM SP RAMd4 ; r2,r3 are old state pointers.

nove. | #SAVED SP,r6 nove.l d4,r2 ; r6,r7 are sub-bl ocks pointers.
adda #2,r0,r1 nove.l d4,b2

nove. | #PM RAM SP RAMr64+48,r4 ; r4,r5 are new state pointers.
doensh0 #NO O _STATES/ 2-1 adda #8,r2,r3 ; path netric init.

adda #8,r4,r5 nmove.w #11, n3

nmove.w #2,n1 nove.w #-2,n0 ; nO advances in the reverse order.

[clr d1 clr d3

nmove. w #ZERO IN T, d2 nove.w #PM | N T, dO

]

i nsert #16, #16,d0,d0 insert #16, #16, dO, d2

nove. 21 d2:d3, (r2)+nl1 nove. 2l dO:d1, (r3)+nl

| oopstartO

nove. 2|l dO:di, (r2)+n1 nove. 2l dO:d1, (r3)+nl

| oopendO

nove. | d4,b3 nove.l #3$00888800, MCTL

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 59

Go to: www.freescale.com

h -
P

Freescale Semiconductor, Inc.
/iterbi Decoder for the StarCore SC140

[

Last butterflies are processed first.
[nove.l #PM RAM SP _RAM24,r2

Set base address for r2,r3,r4,r5. Al registers use M nodul o addressi ng.
nove.| d4, b4

]
nove.| d4,b5 nove.w #128, nD

IR RS R R SRR R RS SRR R R SRR R E SRR R EEEEEEREEEEEEEEEEEEEREEEEEEE
)

Butterfly Initialization

IR RS E R R SRR R RS EEE R R SRR R E SRR EEEREEEEEEEEEEREEEEEEEEEEEEEE
)

d4 is loop count for the Viterbi kernel.
nmove. w #<12,d4 doset upO _out _| oop

adda #32,r2,r3 adda #8,r6,r7 ; r7 is the sub-blocks pointer.
[clr d5
Get soft decision inputs for the first trellis stage.
nove. w (r0)+nl,d7 nove.w (rl)+nl, d6
]
[add d7,d6,d7 sub d6,d7,d0 ; Calculate BMfor the first trellis stage.
nmove #<4,n2 dosetupl _viterbi_kernel
]
[insert #16,#16,d0,d7 add #<(NO O STAGES-1)/12,d5 ; d7 = BML || BW
nove. 2| (r2)-,d8:d9 nove.2l (r3)-,d10:d1l1 ; d5 = 15 for 189 decoded bits
]
[tfr d8,d12 tfr di0,d14
doen0 #(NO OF STAGES-1)/12+1
]
| oopstartO
_out | oop:

ckkkhkkhkkhkhkkhhkkhhkhhkkhhkkhhkkhhkhhkhhhhhhhhhhhkdhhdhhhhhhdhhhhhhhhhhhhhkhhkhhkhddhdhhrhrdxkxx
)

; Mai n Loop (NO OF STAGES 1)/12+1
RS RS SRS S S SRS EE LRSS
[sub dO,d0,d0 sub dil,dl,dl ; dummy NOPs to align start of |oop
sub d2,d2,d2 sub d3,d3, d3
doenl d4
]
falign
| oopstartl

Page 60 For More InfMéinm%&Vﬁ?a%Réfpder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Viterbi Decoder for the StarCore SC140

_viterbi _kernel

ckkkhkkhkkhkhkkhhkhhkhhkkhhkhhkhhkhhkhhhhkhhhhhhhkdhhkhhdhhdhhdhhhhhhhhhhhhhkhhkhhkhddhdhhhhhdrkx*x
1

; Viterbi Decoder Kerne

ckkkhkkkhkkhkhkkhhkhhkhhkkhhkhhkkhhkhhkhhhhkhhhhhhhkdhhdhdhhdhhdhhhhhhhhhhhhhkhhkhhkhddhdhhrhrdxk*x
1

[sub2 d7,d12 add2 d7,d10

add2 d7,d8 sub2 d7,d14

nove. 2| (r2)-,d0:dl nove. 2l (r3)-,d2:d3
]

[max2vit d12,d10 max2vit d8, d14

tfr do,d4 tfr d2,d6

nove. w (r0)+nl, d15 nove.w (r1)+nl, d13

]

[sub2 d7,d4 add2 d7,d2

add2 d7,d0 sub2 d7,d6

vsl . 4w d10: d14: d9: d11, (r4) +n0

vsl . 4f d10: d14: d9: d11, (r5) +n0

]

[max2vit d4,d2 max2vit dO, d6

tfr d7,d12 tfr d7,d14

nove. 2| (r2)-,d8:d9 nove.2l (r3)-,d10:dl1l
]

[add2 d8,d12 sub2 di4, d10

sub2 d12,d8 add2 di10, d14

vsl . 4w d2: d6: d1: d3, (r4) +n0

vsl . 4f d2:d6: d1:d3, (r5)+n0

]

[max2vit d12,d10 max2vit d8, d14

tfr d7,d4 tfr d7,d6

nmove. 2| (r2)+n3,d0:d1l rnove.2l (r3)+n3,d2:d3
]

[add2 dO,d4 sub2 d6, d2

sub2 d4,d0 add2 d2, d6

vsl . 4w d10: d14: d9: d11, (r4) +n0

vsl . 4f d10: d14: d9: d11, (r5) +n0

]

[max2vit d4,d2 nmax2vit dO, d6

add d15,d13,d7 sub di3, di5, d13

nove. 2l (r2)-,d8:d9 nove.2l (r3)-,d10:d11
]

[tfr d8,d12 tfr di0,d14

i nsert #16, #16, d13, d7

vsl . 4w d2: d6: d1: d3, (r4) +n0

vsl . 4f d2:d6: d1:d3, (r5)+n0

]
| oopendl

How to Implement a Viterbi Degadeifl tntHritioh '6R This Product,

Go to: www.freescale.com

Page 61

h -

P

Freescale Semiconductor, Inc.

/iterbi Decoder for the StarCore SC140

Page 62

ckkkhkkhkkhhkkhhkhhkhhkhhkhhkhkhkhhhhkhhhhhhhkdhkhhkhhdhdhhhhhhhhhhhhhkhhhhhdkdhhhhrhhdx
1

ckkkhkkhkkhkhkhhkkhhkhhkhhkhhkkhkkhkhhhhkhhhhhhhkhhkhhkhkdhhdhhhhhhhhhhhhhkhhkhhhddhhhhhhrix

Sub- Bl ocks Save

[clr d4 clr d6 ; r8 points to SP1|| SPO

ro points to SP3||SP2 in the PM RAM SP RAM t abl e.

adda #-12,r2,r8 adda #-4,r2,r9

]

[add #<12,d4 deceq d5 ; T-bit set indicates the |ast sub-bl ock.
nmove. |l (r8)+n2,d0 nove.l (r9)+n2,dl

]
[add #<RES|I DUE, d6

Last sub-bl ock contains the renmai nder = 9 decoded bits.

nove. |l (r8)+n2,d2 nove.l (r9)+n2,d3

]

[tfrt d6,d4 ; d4 = 9 when processing the |ast sub-bl ock
nmove. 2| dO:di, (r6)+nl rmove.2l d2:d3,(r7)+nl

]

move. |l (r8)+n2,d0 nove.l (r9)+n2,dl

nove. |l (r8)+n2,d2 nove.l (r9)+n2,d3

nmove. 2| dO:di, (r6)+nl rmove.2l d2:d3,(r7)+nl

| oopendO

nmove. | #$00000000, MCTL

IEEE R RS LSRR SRR R RS SRR SRR E R R R SRR RS EEEEEEEEEEEEEREEEREEEEE SRR
)

Tr aceback

IEEE RS LS EEE SRR R RS SRR E RS R R SRR RS EEEEEEEEEEEEEEEEEEEEEEEEE

| F Bl G ENDI AN

ro points to the last sub-bl ock.

nove. | #SAVED SP+NO OF STATES*((NO OF_STAGES-1)/12)*2+2,r0
ELSE

nove. | #SAVED SP+NO CF STATES*((NO OF_STAGES-1)/12)*2,r0
ENDI F

[dosetupO _traceback_| oop

Every four sub-bl ocks, traceback generates three 16-bit words of
packed decoded bits.

doenO #((NO COF_STAGES-1)/12+1)/4

]

[clr d2

| F Bl G ENDI AN

nmove.w (r0)-,dl ; Start traceback fromstate zero.
ELSE

nmove. w (r0), dl

ENDI F

For More Infbl 4R8P 6 CPhis Brouisgoder on the StarCore SC140

Go to: www.freescale.com

END

Freescale Semiconductor, Inc.
Viterbi Decoder for the StarCore SC140

nove. | #PACKED TRACEBACK QUTPUTSH (NO CF _STAGES-1)/16)*2,r1

]

[extractu #4, #RESI DUE, d1,d2 ; Last sub-bl ock contains 9 decoded bits.
asl| #<(12-RESIDUE),d1 ; align RESIDUE to | eft

nove. w #-2*NO CF _STATES, n1 ; offset to next sub-bl ock

nmove.w #1,d5 ; d5 is used for big endian only.
]
| oopstartO
traceback| oop
| F Bl G ENDI AN
eor d5,d2 ; offset correction
ENDI F
move.l d2,n0 ; survivor path index in the next sub-block
adda n1,r0 nove.wdl, (rl)- ; Wite 16 decoded bits to the output buffer.

nmove. w (r0+n0), d1

extractu #4,#12,d1,d2 asrr #<4,d1l
| F Bl G ENDI AN

eor d5,d2 ; offset correction
END F

nove. | d2, n0

adda n1,r0

nove. w (r0+n0), d3

extractu #4, #12, d3, d4

| F Bl G ENDI AN
eor d5,d4 ; offset correction
ENDI F

[insert #8,#8,d3,d asrr #<8,d3
nove. | d4, nO

]

adda nl1,r0 nove.wdl,(rl)-
nmove. w (r0+n0), d1

extractu #4, #12, d1, d2

| F Bl G END AN
eor d5,d2 ; offset correction
ENDI F

i nsert #12,#4,d1,d3 nove.l d2,n0
adda n1,r0 rnove.w d3,(r1l)-
nove. w (r0+n0), d1

extractu #4,#12,d1, d2

| oopendO

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 63

Go to: www.freescale.com

h -
P

Freescale Semiconductor, Inc.
/iterbi Decoder for the StarCore SC140

8.5 How to Assemble the Viterbi Algorithm
This section describes how to assemble the Viterbi algorithm provided in this application note:
* How to handle input data
¢ Which assembly commands to use for big and little endian architectures
To assemble the Viterbi algorithm, you must have the SC100 Assembler installed on your
computer. You may also want to refer to the following materials:
e SC100 Assembly Language Tools User’s Manual
e Getting Sarted with the SC100 Tools

These materials are publications of Lucent Technologies and Freescale You can access them by
clicking the Documentation link at www.starcore-dsp.com.

Note: The procedure provided in this section applies when you are using the SC100 Assembler
in the command-line mode. However, even if you are using the SC100 Assembler within
an integrated development environment (IDE), you may still find the information
contained in this procedure helpful.

8.5.1 How to Handle the Input Data

When you assembl e the Viterbi a gorithm, the assembler looks for afile entitled,
"viterbi_input.in." Thisfile consists of 378 soft decision inputs structured as follows:
dc $ffaa

dc $ffcl

For the Viterbi algorithm to assembl e correctly, you must place theinput file in the same directory
folder as the algorithm.

8.5.2 Which Assembly Commands to Use

After you have placed the Viterbi algorithm and the input file in the same directory folder, you are
ready to assemble the algorithm. To assemble the Viterbi algorithm using the SC100 Assembler,
use one of the following commands:

For ... Use this command . . .

Little endian asmscl00 -a-b -l -g -sall -d BIG_ENDIAN 0 viterbi.asm
architecture

Big endian asmscl100 -a-b -1 -g -sall -d BIG_ENDIAN 1 -obe viterbi.asm
architecture

When invoked with one of these commands, the SC100 Assembler will produce an executablefile
and store it in the same directory folder as the algorithm. You can then run the executable on the
SC100 Simulator to test the application (see “How to Test the Viterbi Algorithm” on page 65).

Page 64 For More InfMéQiWBweﬁ?svﬁ%%Rgfpder on the StarCore SC140

Go to: www.freescale.com

8.6

Freescale Semiconductor, Inc.
Viterbi Decoder for the StarCore SC140

How to Test the Viterbi Algorithm

You typically test an algorithm by running it on its target processor or simulator and comparing
the output to areference output that is known to be correct for the input data. This section
describes how to test the Viterbi algorithm using the SC100 Simulator:

* Which simulator commands to use for big and little endian architectures
* How to check the decoder output
To test the Viterbi algorithm, you must have the SC100 Simulator installed on your computer.

Also, you must have already assembled the algorithm using the SC100 Assembler (see “How to
Assemble the Viterbi Algorithm” on page 64).

Note: The procedure provided in this section applies when you are using the SC100 Simulator in
the command-line mode. However, even if you are using the SC100 Simulator within an
integrated development environment (IDE), you may still find the information contained in
this procedure helpful.

8.6.1 Which Simulator Commands to Use

To test the Viterbi application using the SC100 Simulator, perform the following:

1. Make sure that the executable file produced by the SC100 Assembler and the input file are
in the same directory folder.

2. Enter the following command:
simsc100

3. Run one of the following sequences of commands:

For ...

Run this sequence of commands . . .

Little endian reset d mo
architecture load viterbi.cld

break END

go
display p:PACKED_TRACEBACK_OUTPUTS..PACKED_TRACEBACK_OUTPUTS+$16

Big endian reset d mi
architecture load viterbi.cld

break END

go
display p:PACKED_TRACEBACK_OUTPUTS..PACKED_TRACEBACK_OUTPUTS+$16

8.6.2 How to Check the Decoder Output

When run on the SC100 Simulator, the Viterbi decoder generates 189 hits of data structured as
follows:

10010001011001011

Check to be sure that the actual output of the simulator agrees with the reference output
corresponding to the input data.

How to Implement a Viterbi Deﬁ%‘iﬂ%}@ﬁﬁﬁﬁ%ﬁ%ﬁ%ﬂ This Product, Page 65

Go to: www.freescale.com

h -
P

Freescale Semiconductor, Inc.

/iterbi Decoder for the StarCore SC140

8.7 Performance
This section provides performance benchmarks for the GSM TCH/FS Viterbi decoder running on
the StarCore SC140:
e Cycle count
e Datamemory consumption
8.7.1 Cycle Count
The cycles consumed by the Viterbi decoder is governed by the following formula:
C=[(l(B-1)/12]+1)x8+Bx9+28] +[(| (B—1)/12 |+ 1) x(5+E) + 3]
Where. ..
* Cisthe number of cycles consumed
* B istheblock size, or the number of decoded bitsin each block
e Eistheendian mode (E=1 for big endian; E=0 for little endian)
Thisformulaappliesto GSM channels, convolutional codes with a constraint length of K=5 and a
code rate of R=1/2, and a Viterbi decoder algorithm that saves a sub-block every 12 trellis stages.
Thefirst term of the formula represents the cycles consumed by the following modules: branch
metric (BM) calculation, add-compare-select (ACS) function, and sub-blocks save. The second
term represents the cycles consumed by the traceback module.
The number of convolutional encoded bitsin the GSM TCH/FS block is B=189. Therefore, in
little endian mode, the cycle count for Viterbi decoding of a GSM TCH/FS block is 1940 cycles.
In big endian mode, the traceback routine consumes 16 additional cycles, resulting in atotal cycle
count of 1956 cycles.
8.7.2 Data Memory Consumption
The data memory consumed by the Viterbi decoder is governed by the following formula:
M= [20¢+2] +[(L(B —1)/12]+1) x 2]
Where. ..
e M isnumber of bytes of data memory consumed
* K isthe constraint length of the convolutional code
* B istheblock size, or the number of decoded bitsin each block
Thefirst term of the formula represents the bytes of memory consumed by the add-compare-select
(ACS) function. The second term represents the bytes of memory consumed by the sub-blocks
save module.
For the GSM TCH/FS Viterbi decoder, B=189 and K=5. Therefore, the data memory consumed is
640 bytes.
8.7.3 Program Memory Consumption
The Viterbi decoder consumes 476 bytes of program memory.
Page 66 For More InfMéinmeﬁ?&Vﬁ%t&R@deer on the StarCore SC140
H

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 9

References

This chapter provides sources where you can obtain detailed information about Viterbi decoding
and the StarCore SC140.

9.1 Viterbi Decoding

For additional information about the Viterbi algorithm, refer to the following:

e Clark, G. & Cain, J. Error Correction Coding for Digital Communications,
Plenum Press, 1982.

* Forney, G The Viterbi Algorithm, Proceedings of the IEEE 61 pp. 268-278, March 1973.
* GSM 05 Series, Physical layer on Radio Path, ETSI, V7, Release 1998.

e Lin,S. & Costello, D. J. Error Control Coding, Prentice-Hall, 1983.

¢ Rorabaugh, C. Britton Error Control Cookbook, McGraw-Hill, 1996.

e Wicker, Stephen B. Error Control Systems for Digital Communication and Storage,
Prentice-Hall, 1995.

9.2 StarCore SC140

For additional information about the StarCore SC140 and its associated tools, refer to the
following:

* StarCore SC140 Core Reference Manual
e SC100 Assembly Language Tools User’s Manual
* Getting Sarted with the SC100 Tools

These materials are publications of Lucent Technologies and Freescale. You can access them by
clicking the Documentation link at www.starcore-dsp.com.

How to Implement a Viterbi De&@w@g&@@&gigg]&p‘ This Product, Page 67

Go to: www.freescale.com

h -

P N

eferences

Page 68

Freescale Semiconductor, Inc.

For More Infbl 4R8P 6 CPhis Brouisgoder on the StarCore SC140

Go to: www.freescale.com

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

STAR/ ({CORE

BRIGHTER” DSP TECHNOLOGY!

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

= “ freescale”

semiconductor

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	How to Implement a Viterbi Decoder on the StarCore SC140
	Copyright Information
	Table of Contents
	Introduction
	1.1 Topic and Purpose
	1.2 Audience
	1.3 Organization

	Convolutional Encoding and Viterbi Decoding
	2.1 FEC Communication Scheme
	2.2 How Convolutional Encoding Works
	2.3 How Viterbi Decoding Works
	2.4 Viterbi Decoding with Soft Decision Inputs
	2.5 Viterbi Decoding Algorithm

	Special Instructions for Viterbi Decoding
	3.1 ADD2
	3.2 SUB2
	3.3 MAX2VIT D4,D2 and MAX2VIT D12,D10
	3.4 MAX2VIT D0,D6 and MAX2VIT D8,D14
	3.5 VSL.4F
	3.6 VSL.4W

	Computing Trellis Butterflies
	4.1 Trellis Butterfly
	4.2 Add-Compare-Select Function
	4.3 Computing Two Trellis Butterflies

	Optimizations to the Branch Metric Calculation
	5.1 Branch Metric Calculation
	5.2 Optimized Assembly Code
	5.3 Further Optimizations

	Optimizations to the Viterbi Decoder Kernel
	6.1 Memory Map of the Kernel
	6.2 Kernel Assembly Code
	6.3 Pointers Used in the Kernel
	6.4 Kernel Cycle Count
	6.5 How to Modify the Kernel for K > 5

	Endian Modes and Viterbi Decoding
	7.1 Little Endian Mode
	7.2 Big Endian Mode
	7.3 Differences between Endian Modes

	Viterbi Decoder for the StarCore SC140
	8.1 Viterbi Decoder Inputs
	8.2 Code Parameters
	8.3 Generator Polynomials
	8.4 Assembly Code
	8.5 How to Assemble the Viterbi Algorithm
	8.6 How to Test the Viterbi Algorithm
	8.7 Performance

	References
	9.1 Viterbi Decoding
	9.2 StarCore SC140

	How to Reach Us

