

High IP3 MMIC LNA at 1.8-2.4 GHz

Application note for the BGA2012

The BGA2012 is a MMIC 50 Ω LNA block for cellular applications at 1.8 GHz to 2.4 GHz that require low noise, high gain and good linearity. Possible applications:

- 1.8 GHz DECT gain 15 dB, low noise 1.7 dB, supply curent 4 mA
- 1.9 GHz CDMA high IIP3 +10 dBm, gain 12 dB, NF 2.2 dB, supply current 7 mA
 2.4 GHz Blue Tooth gain 11.5 dB, NF 2.3 dB, supply current 6 mA

The MMIC is produced in the single metal DPO Philips process and is packaged in the small 6 pins SOT363. The circuit is equipped with a control pin that can set the amplifier to low current-low noise mode or to high current-high linearity mode and/or disable (off) mode. A simple solution requires only input/output decoupling capacitors.

This report describes an application in which the LNA can be tuned for gain and input IP3. At 1900 Mhz, the input IP3 is adjustable between 5 dBm at 16 dB gain and 10 dBm at 12 dB gain.

Circuit description

The LNA is a one stage amplifier. The RF transistor is biased with the controlled bias circuit that can set the collector current of RF transistor to the desired value. With the control voltage from 0 to 3 Volt it is posssible to set the collector current from 0 to 7 mA (enable/disable

2

function as well). The best performance on gain, noise and linearity is achieved in the range of 4 to 7 mA.

Low noise and high gain is obtained by the current source that biases the RF transistor and by the layout of RF transistor.

The device works directly without the external components except input/output decoupling capacitors. However, to get even higher gain and linearity (IIP3), a few more external components are necessary.

The next four examples show some possible applications:

- version 1 : simple solution with only 2 decoupling capacitors; acceptable gain and low noise
- version 2: high gain through output shunt coil \Rightarrow one component more than version 1
- version 3: high IIP3 and high gain with input filter \Rightarrow three components more than version 1
- version 4: super high IIP3 \Rightarrow like version 3 with ustripline to ground

Measured results

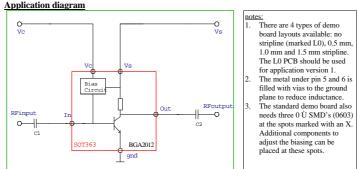
General conditions: Vsupply= 3V, temp=25 deg

Quick overview of all four versions:

frequency=1.9 GHz

Parameter	Unit	Version1	Version 2	Version 3	Version 4	Conditions
		simple	high gain	high IIP3, gain	high IIP3	Isupply [mA]
Gain S21 ²	dB	13.7	14.9	15.4	12.0	4
		14.0	15.5	15.8	12.3	7
NF	dB	1.7	1.8	2.0	2.1	4
		1.7	1.8	2.1	2.3	7
IIP3	dBm	-9	-9	0	7	4
		-7	-7	5	10	7

<u>note:</u> IIP3 - input IP3 measured with $\Delta f=100$ kHz and Pin -25 dBm


Isupply - is a total supply current from 3 Volt supply source Control current from a control voltage does not exceed 120 uA. (@max Vc=3V)

The next tabels and figures show more data for each version.

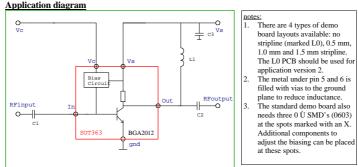
Version 1

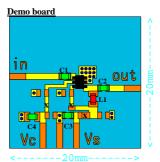
		Frequency				Conditions	
Parameter	Unit	1.8 GHz	1.9 GHz	2.1 GHz	2.4 GHz	Isupply [mA]	Vcontrol [V]
0Gain S21 ²	dB	13.6	13.2	12.5	11.5	3.5	2.0
		14.3	13.9	13.1	12.1	5.3	2.6
		14.4	14	13.2	12.2	7	3.0
NF	dB	1.7	1.7	1.8	2.3	3.5	2.0
		1.7	1.7	1.8	2.3	5.3	2.6
		1.7	1.7	1.8	2.3	7	3.0
Return Loss	dB		9			3.5	2.0
input			11			5.3	2.6
		10	11	11	12	7	3.0
Return Loss	dB		8			3.5	2.0
output			9			5.3	2.6
		9	9	9	10	7	3.0
IIP3	dBm		-9			3.5	2.0
			-7			5.3	2.6
$\Delta f=100 kHz$			-7			7	3.0

Application diagram

Vc

Vs

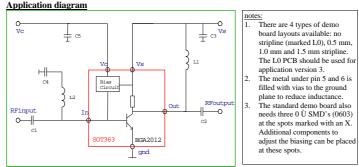

Component	Value	Тур		
C1	100 pF	Philips 0603		
C2	100 pF	Philips 0603		
C3	22 nF	Philips 0603		
C4	22 nF	Philips 0603		
Component	Function			
C1, C2		DC decoupling capacitors		
C2 C4	I E filter o	f do supply source		

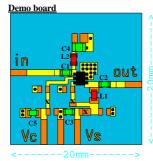

LF filter of dc supply source C3, C4

Version 2

		Frequency			Conditions		
Parameter	Unit	1.8 GHz	1.9 GHz	2.1 GHz	2.4 GHz	Isupply [mA]	Vcontrol [V]
Gain S21 ²	dB	14.8	14.5	13.0	11.0	3.5	1.8
		15.6	15.2	13.8	11.4	5.3	2.5
		16.0	15.5	14.0	11.5	7.5	3.0
NF	dB	1.7	1.7	1.8	2.2	3.5	1.8
		1.7	1.7	1.9	2.3	5.3	2.5
		1.8	1.8	1.9	2.3	7.5	3.0
Return Loss	dB		8			3.5	1.8
input			10			5.3	2.5
		10	10	11	12	7.5	3.0
Return Loss	dB		9			3.5	1.8
output			9			5.3	2.5
		9	10	10	10	7.5	3.0
ПР3	dBm		-9			3.5	1.8
			-7			5.3	2.5
$\Delta f=100 kHz$			-7			7.5	3.0

Application diagram


Value	Тур
100 pF	Philips 0603
100 pF	Philips 0603
22 nF	Philips 0603
22 nF	Philips 0603
10 nH	TDK 0603
	100 pF 100 pF 22 nF 22 nF

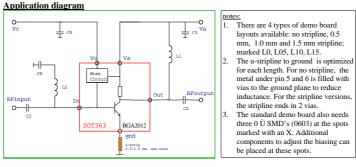

Component	Function
C1, C2	DC decoupling capacitors
C3, C4	LF filter of dc supply source
L1	Output schunt coil, higher Vce

Version 3

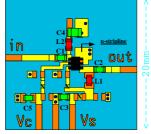
		Frequency			Conditions		
Parameter	Unit	1.8 GHz	1.9 GHz	2.1 GHz	2.4 GHz	Isupply [mA]	Vcontrol [V]
Gain S21 ²	dB	15.3	15.0	13.5	10.9	3.5	1.8
		16.1	15.7	14.0	11.4	5.3	2.5
		16.2	15.8	14.1	11.4	7.5	3.0
NF	dB	2.0	2.0	2.1	2.4	3.5	1.8
		2.0	2.1	2.3	2.5	5.3	2.5
		2.1	2.2	2.3	2.6	7.5	3.0
Return Loss	dB		18			3.5	1.8
input			22			5.3	2.5
		23	23	18	14	7.5	3.0
Return Loss	dB		9			3.5	1.8
output			10			5.3	2.5
		10	10	12	13	7.5	3.0
IIP3	dBm		-1			3.5	1.8
			3			5.3	2.5
$\Delta f=100 kHz$			5			7.5	3.0

Application diagram

Component	Value	Тур
C1	100 pF	Philips 0603
C2	100 pF	Philips 0603
C3	22 nF	Philips 0603
C4	100 nF	Philips 0805
C5	22 nH	Philips 0603
L1	3.9 nH	TDK 0603
L2	3.9 nH	TDK0603


Component	Function
C1, C2	DC decoupling capacitors
C3, C5	LF filter of dc supply source
L1	Output schunt coil, higher Vce
L2, C4	Input LP filter to increase IP3

Version 4 with 0.5 mm stripline


		Frequency				Conditions	
Parameter	Unit	1.8 GHz	1.9 GHz	2.1 GHz	2.4 GHz	Isupply [mA]	Vcontrol [V]
Gain S21 ²	dB	14.0	13.3	12.5	9.9	3.5	1.8
		14.4	13.9	12.9	10.3	5.3	2.5
		14.5	14.0	13.0	10.3	7.5	3.0
NF	dB	2.0	2.1	2.2	2.5	3.5	1.8
		2.2	2.2	2.3	2.7	5.3	2.5
		2.2	2.3	2.4	2.7	7.5	3.0
Return Loss	dB		13			3.5	1.8
input			14			5.3	2.5
		11	14	16	16	7.5	3.0
Return Loss	dB		8			3.5	1.8
output			8			5.3	2.5
		8	8	8	10	7.5	3.0
IIP3	dBm		1			3.5	1.8
			6			5.3	2.5
$\Delta f=100 kHz$			7*			7.5	3.0

Application diagram

* with 1.5 mm stripline, the IIP3 improves to 10 dBm at 12.2 dB gain

Component	Value	Тур
C1	100 pF	Philips 0603
C2	100 pF	Philips 0603
C3	22 nF	Philips 0603
C4	100 nF	Philips 0805
C5	22 nH	Philips 0603
L1	3.9 nH	TDK 0603
L2	3.9 nH	TDK0603

Function like in version 3 Component