
C-PORT CORPORATION
PROPRIETARY & CONFIDENTIAL

Implementing GMII Interface on C-5

Generation
Date

12/2/01

Revision 1.1

Product C-5, C-Ware Software Toolset

Relevant
version

D0, CST2.0

Description Describes the C-5’s implementation of the
GMII port

Distribution Customer

Author Bing Cheng

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
ForwardLine

rxzb30
copywithline

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 2 of 13

1 INTRODUCTION

GMII stands for Gigabit Media Independent Interface. It is a standard interface specified by the
IEEE Std 802.3. The purpose of this interface is to provide a simple interconnection between
MAC and PHY that is independent of the physical media types.

Many commercial Gigabit Ethernet PHY devices now use GMII as means to communicate to the
MAC device. GMII has become the most common MAC-to-PHY interface for Gigabit Ethernet
applications. The C-5 can implement Gigabit Ethernet MAC functions internally and it can
connect to external PHY devices via GMII. This document is intended to describe how the C-5
works with Ethernet PHY device via GMII.

This document is targeted for the C-5 Rev D0. Previous revisions of the C-5 do not fully support
the GMII interface. It’s assumed that the reader should have adequate knowledge on the
architecture of the C-5.

2 GMII FUNDAMENTALS

The signals for a GMII interface and their directions are shown in Figure 1 below. Refer to the
IEEE Std 802.3 document for more details.

MAC (C-5)PHY

TXD(7:0)

TX_EN

TX_ER

GTX_CLK

COL

RXD(7:0)

RX_ER

RX_DV

RX_CLK

CRS

8

8

 Figure 1 GMII Signals
As shown, there are total 24 pins required for a GMII interface. Below is a brief description of the
functionality of these signals:

� GTX_CLK provides the timing reference for the transfer of the TX_EN, TX_ER and TXD. It’s
supplied by the MAC device, which in this case is the C-5. Its frequency is nominally 125
MHz.

� RX_CLK is the timing reference for the transfer of the RX_DV, RX_ER and RXD signals.
The PHY usually recovers this clock from the receive data from the physical medium and
provides it to the MAC. This clock is derived from the local clock (e.g. GTX_CLK) if the
physical medium is not attached. Its frequency is also nominally 125 MHz.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 3 of 13

� TX_EN (Transmit Enable) is used to indicate to the PHY that data is present on the GMII for
transmission. It is asserted synchronously with the first octet of the preamble and remains
asserted for the duration of the entire data frame.

� TXD(7:0) (Transmit Data) are the 8 data signals that are used for the MAC to supply byte-
aligned data to the PHY for transmission.

� TX_ER (Transmit Coding Error) is used to tell the PHY to transmit an illegal symbol code to
the physical medium.

� RX_DV (Receive Data Valid) is driven by the PHY to indicate the PHY is presenting
recovered and decoded data on the RXD(7:0). It’s asserted during the entire data frame,
and so provide an envelope signal for a valid data frame including Preambles, Start Frame
Delimiter (SFD) and Frame Check Sequence (FCS) bytes. The MAC uses this signal to
delineate the frame.

� RXD(7:0) (Receive Data) are the 8 data signals for the PHY to present byte-aligned receive
data to the MAC. Data byte on these signals is valid only when the RX_DV is asserted and
RX_ER is de-asserted.

� RX_ER (Receive Error) is used by the PHY to indicate detection of illegal symbol code
during a reception of a frame (when RX_DV is asserted), so the MAC can discard the frame.
It’s used to signal Carrier Extension when RX_DV is de-asserted.

� CRS (Carrier Sense) is a signal driven by the PHY. While operating in half duplex mode, the
PHY will assert CRS when either transmit or receive medium is non-idle and de-assert it
when both transmit and receive media are idle. While operating in full duplex mode, the
behavior is the CRS is not specified by the standard, hence it can be ignored by the MAC.

� COL (Collision Detected) is asserted by the PHY upon detection of a collision on the
medium when it’s operating in half duplex mode. While operating in full duplex mode, the
behavior is the COL is not specified by the standard, hence it can be ignored by the MAC.

Permissible code combinations on TXD(7:0), TX_EN and TX_ER are defined as follows.

TX_EN TX_ER TXD(7:0) Description

0 0 0x00 through 0xFF Normal inter-frame

0 1 0x00 through 0x0E Reserved

0 1 0x0F Carrier Extend

0 1 0x10 through 0x1E Reserved

0 1 0x1F Carrier Extend Error

0 1 0x20 through 0xFF Reserved

1 0 0x00 through 0xFF Normal data transmission

1 1 0x00 through 0xFF Transmit error propagation

 Table 1 Permissible Code Combination on TX

Permissible code combinations on RXD(7:0), RX_DV and RX_ER are defined as follows.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 4 of 13

RX_DV RX_ER RXD(7:0) Description

0 0 0x00 through 0xFF Normal inter-frame

0 1 0x00 Normal inter-frame

0 1 0x01 through 0x0D Reserved

0 1 0X0E False Carrier indication

0 1 0x0F Carrier Extend

0 1 0x10 through 0x1E Reserved

0 1 0x1F Carrier Extend Error

0 1 0x20 through 0xFF Reserved

1 0 0x00 through 0xFF Normal data reception

1 1 0x00 through 0xFF Data reception error

 Table 2 Permissible Code Combinations on RX

There are two other signals defined for PHY management purpose, which are not shown in
Figure 1. These two signals are MDC and MDIO. They provide means for the MAC device to
access the internal management registers on the PHY device, so that the MAC device can
configure the PHY as well as check the status of the port. The IEEE standard defines a serial
protocol to be applied on these two signals, where MDIO carries the serial data and MDC
provides a clock reference to for the serial data. Multiple PHY devices can share the same
management interface, and each of them needs to be assigned a unique PHY address.

3 GMII IMPLEMENTATION ON THE C-5
Since data transfer rate for GMII is 1 Gb/s in each direction, the CPs need to run in aggregation
mode to share the load of processing the data stream at this speed. Running in aggregation
mode, all the interface pins of 4 CPs in a cluster can be combined and used together to
implement an 8-bit interface required by GMII. For more information on aggregation mode, refer
to the C-5 Network Processor Architecture Guide.

There are a total of 28 pins within a cluster, so each cluster has enough signals to implement
one GMII interface. The SDPs within a cluster are capable of handling the throughput of a full
duplex Gigabit Ethernet port, so the MAC function can fully be implemented in one cluster.
However, the CPRCs may not have enough cycles to process both directions of the traffic
concurrently, and hence, wire speed operation cannot be achieved. Another concern is that the
IMEM space within a cluster may not be big enough to hold both transmit and receive code. The
C-5e, with faster processors, improved architecture and larger IMEM will likely solve these two
problems.

In the current C-5, to ensure we can support the GMII interface at line rate (1 Gb/s full duplex),
one of our Gigabit Ethernet reference design uses two clusters to implement one GMII interface.
This application, where one cluster handles the transmission of the Gigabit Ethernet port and the
other processes the reception of the port, supports Layer 2 Bridging and Layer 3 IP forwarding
functions on the Gigabit Ethernet port. We also have another reference application that

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 5 of 13

implements two single cluster GMII interfaces. This application supports IP forwarding and MPLS
switching on the two Gigabit Ethernet ports, but the two ports do not run at line rate on the C-5.

3.1 Pin Connections
To implement GMII interface, the CP pins are configured to operate at LVTTL levels. The 24
GMII signals are divided into two groups, TX Group and RX Group. The TX Group includes
GTX_CLK, TXD(7:0), TX_EN, TX_ER, CRC and COL. The other signals, RX_CLK, RXD(7:0),
RX_DV and RX_ER are in the RX Group. Whether one cluster or two clusters are used for a
GMII interface, the TX Group signals must be connected to the two lower-numbered CPs in a
cluster, and the RX Group signals must be on the two higher-numbered CPs in a cluster. If two
clusters are used, they can be any two of the four clusters on a C-5.

Shown below is the pin connection map of GMII signals to CP pins.

C-5 Pin Name GMII Signal Name MII Signal Name I/O Direction on C-5

CPn_0 GTX_CLK Not Used O

CPn_1 Not Used TXCLK I

CPn_2 TXD(0) TXD(0) O

CPn_3 TXD(1) TXD(1) O

CPn_4 TXD(2) TXD(2) O

CPn_5 TXD(3) TXD(3) O

CPn_6 TX_EN TX_EN O

CPn+1_0 No Connect No Connect

CPn+1_1 COL COL I

CPn+1_2 TXD(4) Not Used O

CPn+1_3 TXD(5) Not Used O

CPn+1_4 TXD(6) Not Used O

CPn+1_5 TXD(7) Not Used O

CPn+1_6 TX_ER TX_ER O

CPm+2_0 No Connect No Connect

CPm+2_1 RX_CLK RX_CLK I

CPm+2_2 RXD(0) RXD(0) I

CPm+2_3 RXD(1) RXD(1) I

CPm+2_4 RXD(2) RXD(2) I

CPm+2_5 RXD(3) RXD(3) I

CPm+2_6 RX_DV RX_DV I

CPm+3_0 No Connect No Connect

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 6 of 13

CPm+3_1 CRS CRS I

CPm+3_2 RXD(4) Not Used I

CPm+3_3 RXD(5) Not Used I

CPm+3_4 RXD(6) Not Used I

CPm+3_5 RXD(7) Not Used I

CPm+3_6 RX_ER RX_ER I

Note: n and m in column 1 of the above table can be 0, 4, 8 or 12. If a single cluster is used,
n = m; if two are used, n ≠ m.

 Table 3 GMII to CP Pin Map

3.2 Mode Register Configuration
In order to configure the CPs to operate as a GMII MAC, the following registers in the CPs need
to be set up: SDP_Mode3, SDP_Mode4, SDP_Mode5 and PIN_Mode. All the bits in these
registers need to be set properly for the GMII interface to function.

There is a CPI function that can be used to do this. The CPI function is
psEthernetportConfigure(), which is part of the Protocol Services of the CPI. The application
software just need to call this function for each CP with the proper parameters, the registers
mentioned above for the CP will be configured appropriately. The parameters that need to be
specified include: 1) the processor ID of the CP to configure, 2) what type of PHY is used (GMII,
MII, TBI or RMII), and 3) whether you need to configure the RX side, TX side or both of the CP.
Therefore, the software doesn’t need to deal with what value need to be programmed onto each
register. Refer to the C-Ware CPI User Guide for details on how to use this function.

The settings for these registers are given as a reference in 4 Appendix section.

3.3 Auto-Negotiation Implementation
Most if not all of the GMII PHY devices support Auto-Negotiation, so the C-5 functioning as a
MAC device needs to adjust its operation according to the Auto-Negotiation results. The
communication of the results is done via the PHY management interface.

3.3.1 PHY Management

The C-5 has a serial interface port that can implement the MDC and MDIO management protocol
specified by the standard. This interface is used to access management registers in the PHY
device. There is a set of 16-bit registers implemented in any GMII PHY device. Some of them
are specified and required by the IEEE standard, and some are specific to the PHY. Via the
serial interface, the C-5 can write to these registers to configure the PHY as well as read from
these registers to check status of the PHY or gather statistics for the network port.

The speed of the serial interface is programmable. It can also be configured to run with or
without Preamble suppression, which is specified by the IEEE standard. To adjust to the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 7 of 13

implementation of some PHY device in the market, the C-5 provides an option to run the serial
interface with 1 turn around bits in MDIO read operation. Note that the standard requires two turn
around bits. All of these options are configured through the Serial Bus Configuration Register. In
the program, the user can simply call the ksSerialBusConfigMdio() CPI function to set up these
options. CPI functions, ksMdioRead() and ksMdioWrite() can be used to access the PHY
registers.

In some cases, it’s desirable to configure the physical port to operate in a certain mode, and
some PHY devices need to be initialized before it can be put to use. The C-5 can configure the
PHY by writing to its management registers at initialization time and command it to start the
Auto-Negotiation process.

Most of the GMII PHY devices can be programmed to generate hardware interrupts to the MAC
it connects to upon changes of certain PHY status. The C-5 has an interrupt input pin, XPUHOT
that can connect to the PHY interrupt. Changes in the PHY status will interrupt the XP of the C-5
so that the XP program can take the appropriate measures. Of course, the alternative way for
the C-5 to find out status changes in the PHY is to use polling. In that case, the XP program will
implement a timed loop that polls the internal management registers periodically to check for
status changes.

The serial port is only accessible by the XP or the host processor (via address mapping on the
PCI bus).

3.3.2 Adjust to Auto-Negotiation Results

Auto-Negotiation is a process where the PHY device negotiates with its link partner to reach the
most optimum operation mode between them. The important options to negotiate are: at what
speed data is transported on the line; whether the line is full duplex or half duplex; and whether
flow control (pause frames) can be applied to the link. Upon detection of the physical link, the
PHY device automatically performs this process. The result of Auto-Negotiation is stored in the
management registers.

The C-5 can access the PHY management registers to check the Auto-Negotiation result. The
XP is the only internal processor that can access this serial port. The way our reference
application handles Auto-Negotiation is that the XP will read the PHY registers. If any thing
changes in the operation mode on a physical interface, it will send a control message to the
corresponding CP. The CP will make the adjustment to adapt the new operation mode. This
adjustment can be as simple as setting a control register bit or as complicated as reloading
different piece of micro-code to its SDPs.

3.3.3 Switching to MII interface

When the PHY device determines during the Auto-Negotiation process that it needs to run at 10
or 100 Mb/s speed, it will switch to MII type of interface. MII is also specified in the IEEE802.3
standard. The differences between MII and GMII is the TX and RX data buses are 4-bit wide in
MII and TX clock is output from the PHY device (see Table 3 for details). To adjust to these
differences, the mode registers on the CPs need to be reprogrammed. Again, it can be done by
calling the CPI function, psEthernetportConfigure() in the XP program. The settings for these
registers when the interface operates as a MII type are given as a reference in 4 Appendix
section.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 8 of 13

Moreover, the CPRC needs to load different microcode to its SDP. The difference in the
microcode is the TxBit and RxBit processor code where the data bus width is differentiated.

3.4 Clock and Signal Timing
A GMII PHY device requires a 125 MHz clock for the timing reference for the TX signals, and the
MAC provides this clock on the GTX_CLK (CPn_0, where n = 0, 4, 8 or 12). The C-5 has a clock
input pin, CCLK6, which can take in a 125 MHz reference clock. This clock source is supplied to
each CP cluster to provide individual transmit reference clock for each GMII interface.

On the RX side, the C-5 expects the PHY to provide the 125 MHz clock reference for the RXD,
RX_ER and RX_DV signals. This clock signal is driven on the RCLK pin (CPn+2_1, where n =
0, 4, 8 or 12). The C-5 used this clock to latch in the other input signals.

The input and output signal timing relative to their reference clocks on the C-5 is shown below.

GTX_CLK

TXD/TX_ER/
RX_EN

RCLK

RXD/RX_ER/
RX_DV

tOD

tIS
tIH

 Figure 2 C-5 GMII Signal Timing

Symbol Parameter Min Typ Max Unit

tOD Output delay 3.2 5.8 ns

tIS Input setup time 2.0 ns

tIH Input hold time 2.5 ns

 Table 4 C-5 GMII Signal Timing Parameters

3.5 Implementation-specific Issues
Since the MAC function is implemented by the microcode running on the SDPs, the PHY status
and control pins such as RX_DV, RX_ER, CRC, COL, TX_EN and TX_ER need to be accessed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 9 of 13

and controlled by the RxBit and TxBit processors. The table below outlines the mapping of these
pins to the internal bit processor signals with the mode register settings in GMII interface.

Bit Processor Signal GMII PHY Pin

PhyStatus0 RX_DVRxBit

PhyStatus1 RX_ER

PhyControl0 TX_ENTxBit

PhyControl1 TX_ER

PhyStatus0 CRSTxBit

PhyStatus1 COL

 Table 5 Bit Processor Signal Mapping

The CP clusters operatein aggregation mode for GMII. In this mode, all of the 4 RxBit processors
of the RX cluster are running four copies of the same piece of code simultaneously. They all
process the entire data stream. They delineate each data frame being received and send it up
stream to the RxByte processor. Therefore, the 4 RxByte processors in the cluster all see every
frame from the data stream. However, there is a hardware token being passed among them in
round robin fashion. Only the processor who has the token will process the data frame that’s
currently being received and send it up stream to the payload memory. Those who don’t have
the token just discard the frame. After receiving the entire frame, this RxByte processor releases
the token, so that the next RxByte processor will have the token and process the next frame.
That way, each RxByte processor only receives every 4th frame.

To delineate the data frames, every RxBit processor monitorsthe PhyStatus0 signal that
represents RX_DV for valid data. The logic combination of RX_DV*(~RX_ER) is brought in as
the 9th data bit in the Small FIFO, so the processor uses the CAM to examine the data and check
for an error on every data byte received. This is to ensure data can be received and examined
fast enough for wire speed operation on the GMII interface. The RxBit processor also uses the
PhyStatus1 that represents RX_ER to confirm error data within a valid frame.

In the TX direction, only one TxBit processor is operating. It takes data frame from one of the 4
TxByte processors and sends it out to the GMII interface with proper preambles and delimiters.
There is a hardware token being passed among the 4 TxByte processors in round robin fashion.
The TxBit processor can only take data from the large FIFO of the TxByte processor who
currently owns the token. Therefore, it transmits a frame from each TxByte processor in round
robin fashion. When there is no data frame to be transmitted, the TxBit processor will generate
IDLE patterns, and it also ensures a minimum IPG is inserted between frames. Since TX_EN is
mapped to the PhyControl0 signal, when the TxBit processor transmits a frame, it asserts the
PhyControl0 so that the TX_EN is driven high for the duration of the frame. For every byte it
sends out, it can choose to assert or de-assert the TX_EN. The PhyControl1 signal, which maps
to TX_ER, can be controlled the same way, so the TxBit processor can assert the TX_ER for any
data byte it needs.

CRS and COL, which are mapped to PhyStatus0 and PhyStatus1 respectively, can also be
examined by the TxBit processor. They only need to be considered when the interface is in half
duplex mode. Currently the GMII microcode provided by C-Port does not support half duplex.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 10 of 13

Because of the flexibility in microcode programming, the GMII MAC function can be implemented
in different ways. The current GMII microcode as shipped with the CST has the following
characteristics:

� On TX, Carrier Extend and Carrier Extend Error code are never generated.

� The TX_ER signal is never asserted, so the C-5 will not command the PHY to send illegal
symbols on the line on purpose.

� The C-5 will receive data only when the RX_DV is asserted. Therefore, False Carrier
Indication, Carrier Extend and Carrier Extend Error conditions are ignored by the microcode.
These errors are not counted.

� If during reception of a normal packet (RX_DV is asserted), RX_ER is high for any clock
cycle, the packet will be discarded. The packet is counted as one miss-alignment error for
now. The code can be changed to report this error to be a more appropriate type.

� Half duplex operation for 1000 or 10/100 Mbps is not supported. Both CRS and COL signals
are ignored by the microcode. We have no plans in supporting half duplex at this point in
time. If the user is interested in that, please consult with C-Port.

� There are two way to avoid TX underrun: 1) using the WaterMark feature, and 2) using the
byte processor to bit processor handshaking mechanism. In 1), the application program will
set the Large FIFO Watermark value in the SDP_Mode4 Register. When the number of
bytes sent to the Large FIFO exceeds this water mark value, the TxBit processor will start
transmitting data out of the Large FIFO. In 2), when the TxByte processor loads up the
Large FIFO with enough data bytes, it will set the TxByteToBit flag to tell the TxBit processor
to start sending the data. Both solutions work to ensure all the data in a frame will be sent
to the GMII continuously. Mechanism 2) is currently used in the microcode provided by C-
Port.

Obviously, the microcode can be modified easily to add more features or change its
implementation. The user should be aware that any change to the microcode may alter the
behavior of the code, hence IEEE standard compliance will not be guaranteed. Note that the
microcode C-Port provides will be tested by the InterOperability Lab of University of New
Hampshire (test results can be provided upon request).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 11 of 13

4 APPENDIX

Shown below are the settings for these registers in the CPs of cluster n when this cluster is used
to implement full duplex Gigabit Ethernet port (one GMII interface), where n is 0, 4, 8 or 12.

CP
Number

Register
Name

Setting for
GMII

Setting for
MII

Notes

SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

SDP_Mode4 0x00000000 0x00000000 Large FIFO Watermark is not used.

SDP_Mode5 0x10801940 0x10801140 TxBit processor is enabled the base
CP.

CPn+0

PIN_Mode 0x005e407d 0x005dc07d

SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

SDP_Mode4 0x00000000 0x00000000 Large FIFO Watermark is not used.

SDP_Mode5 0x00801940 0x00801140 TxBit processor is not enabled.

CPn+1

PIN_Mode 0x005e407c 0x005dc07c

SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

SDP_Mode4 0x00000000 0x00000000 Only the Large FIFO Watermark bits
are set.

SDP_Mode5 0x00801940 0x00801140 TxBit processor is not enabled.

CPn+2

PIN_Mode 0x001e4000 0x001dc000

SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

SDP_Mode4 0x00000000 0x00000000 Large FIFO Watermark is not used.

SDP_Mode5 0x00801940 0x00801140 TxBit processor is not enabled.

CPn+3

PIN_Mode 0x001e4000 0x001dc000

 Table 6 Register Settings for Single Cluster Implementation

When two clusters (n and m) are used to implement a Gigabit Ethernet port, the setting for the
two clusters are shown in the following table, where n and m can be 0, 4, 8 or 12, and n ≠ m.
Here cluster n implements RX and cluster m implements TX.

CP
Number

Register
Name

Setting for
GMII

Setting for
MII

Notes

CPn+0 SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 12 of 13

SDP_Mode4 Not set Not set TxSDP is not used.

SDP_Mode5 Not set Not set TxSDP is not used.

PIN_Mode 0x005e4000 0x005c0000

SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

SDP_Mode4 Not set Not set TxSDP is not used.

SDP_Mode5 Not set Not set TxSDP is not used.

CPn+1

PIN_Mode 0x005e4000 0x005c0000

SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

SDP_Mode4 Not set Not set TxSDP is not used.

SDP_Mode5 Not set Not set TxSDP is not used.

CPn+2

PIN_Mode 0x001e4000 0x001c0000

SDP_Mode3 0x00931941 0x00931141 All enable bits for the RxSDP are
not set yet.

SDP_Mode4 Not set Not set TxSDP is not used.

SDP_Mode5 Not set Not set TxSDP is not used.

CPn+3

PIN_Mode 0x001e4000 0x001c0000

SDP_Mode3 0x00000000 0x00000000 Turn off processors in the RxSDP.

SDP_Mode4 0x00000000 0x00000000 Large FIFO Watermark is not used.

SDP_Mode5 0x10801940 0x10801140 TxBit processor is enabled the base
CP.

CPm+0

PIN_Mode 0x00801940 0x0055c07d

SDP_Mode3 0x00000000 0x00000000 Turn off processors in the RxSDP.

SDP_Mode4 0x00000000 0x00000000 Large FIFO Watermark is not used.

SDP_Mode5 0x00801940 0x00801140 TxBit processor is not enabled.

CPm+1

PIN_Mode 0x0056407c 0x0055c07c

SDP_Mode3 0x00000000 0x00000000 Turn off processors in the RxSDP.

SDP_Mode4 0x00000000 0x00000000 Large FIFO Watermark is not used.

SDP_Mode5 0x00801940 0x00801140 TxBit processor is not enabled.

CPm+2

PIN_Mode 0x00064000 0x0015c000

SDP_Mode3 0x00000000 0x00000000 Turn off processors in the RxSDP.

SDP_Mode4 0x00000000 0x00000000 Large FIFO Watermark is not used.

CPm+3

SDP_Mode5 0x00801940 0x00801140 TxBit processor is not enabled..

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

C-PORT CORPORATION PROPRIETARY & CONFIDENTIAL
Page 13 of 13

PIN_Mode 0x00064000 0x0015c000

 Table 7 Register Settings for Dual Cluster Implementation

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

