

JenNet-IP Smart Home

Application Note

JN-AN-1162

v2004

28/01/2015

 JenNet-IP Smart Home

Application Note

2 © NXP Laboratories UK 2015 JN-AN-1162 v2004

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 3

Contents

About this Manual 6
Organisation 6
Conventions 7
Acronyms and Abbreviations 7
Compatibility 8
Related Documents 9
Trademarks 10
Certification 10

1 Introduction 11

2 System Concepts 12
2.1 Gateway System Topology 13

2.1.1 Gateway GUIs 15
2.1.2 Gateway Hardware 20

2.2 Coordinator System Topology 22
2.3 Standalone System Topology 23
2.4 Gateway/Coordinator Failure 24
2.5 MIBs and Variables 24
2.6 Custom Protocols 25
2.7 Identifiers 26

2.7.1 Device ID (32 bits) 26
2.7.2 Device Type IDs (16 bits) 27
2.7.3 MIB IDs (32 bits) 28

2.8 Message Transmission 29
2.8.1 Unicast Messaging 29
2.8.2 Multicast Messaging 29

3 Device Concepts 30
3.1.1 Bulbs 30
3.1.2 Remote Controls 33
3.1.1 Low Energy Switches 34
3.1.2 Sensors 35

4 System Operation 41
4.1 Gateway System Operation 42

4.1.1 Gateway System Operation Overview 43
4.1.2 Setting Up the Gateway System 49
4.1.3 Operating the Bulb Devices 60
4.1.4 Operating the Remote Control 75
4.1.5 Operating the Low Energy Switch 85
4.1.6 Operating the Occupancy Sensor 91
4.1.7 Operating the Illuminance Sensor 102
4.1.8 Co-operating Occupancy and Illuminance Sensors 110
4.1.9 Operating the Combined Occupancy/Illuminance Sensor 118

4.2 Standalone System Operation 123
4.2.1 Standalone System Operation Overview 123
4.2.2 Setting Up the Standalone System 126
4.2.3 Operating the Bulb Devices 129
4.2.4 Global Bulb Control from Remote Control 132
4.2.5 Group Bulb Control from Remote Control 132

 JenNet-IP Smart Home

Application Note

4 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5 MIB Variable Reference 133
5.1 Bulb MIBs 134

5.1.1 BulbConfig MIB (0xFFFFFE01) 134
5.1.2 BulbStatus MIB (0xFFFFFE00) 141
5.1.3 BulbScene MIB (0xFFFFFE03) 144
5.1.4 BulbControl MIB (0xFFFFFE04) 148

5.2 Colour MIBs 156
5.2.1 ColourConfig MIB (0xFFFFFE09) 156
5.2.2 ColourControl MIB (0xFFFFFE0C) 161

5.3 Sensor MIBs 176
5.3.1 OccupancyConfig MIB (0xFFFFFE31) 176
5.3.2 OccupancyStatus MIB (0xFFFFFE30) 184
5.3.3 OccupancyControl MIB (0xFFFFFE34) 186
5.3.4 IlluminanceConfig MIB (0xFFFFFE39) 187
5.3.5 IlluminanceStatus MIB (0xFFFFFE38) 191
5.3.6 IlluminanceScene MIB (0xFFFFFE3B) 196
5.3.7 IlluminanceControl MIB (0xFFFFFE3C) 200
5.3.8 OccIllBulbConfig MIB (0xFFFFFE3F) 207
5.3.9 OccupancyMonitor MIB (0xFFFFFE32) 211

5.4 Remote MIBs 217
5.4.1 RemoteConfigGroup MIB (0xFFFFFE25) 217

5.5 Device MIBs 219
5.5.1 DeviceConfig MIB (0xFFFFFEA1) 219
5.5.2 DeviceStatus MIB (0xFFFFFEA0) 219
5.5.3 DeviceControl MIB (0xFFFFFEA2) 220
5.5.4 DeviceScene MIB (0xFFFFFEA3) 222

6 Software Reference 228
6.1 Standard Device Software Features 229

6.1.1 Standard DeviceType Folder Features 230
6.1.2 Common Module Features 242
6.1.3 Standard MIB Module Features 243

6.2 DeviceBulb Folder 246
6.2.1 DeviceBulb Makefile 247
6.2.2 DeviceDefs.h 248
6.2.3 DeviceBulb.c 249
6.2.4 DeviceScene MIB 251
6.2.5 BulbScene MIB 253

6.3 MibBulb Folder 254
6.3.1 BulbConfig MIB 254
6.3.2 BulbStatus MIB 255
6.3.3 BulbControl and Device Control MIBs 256

6.4 MibColour Folder 262
6.4.1 ColourConfig MIB 262
6.4.2 ColourControl MIB 263
6.4.3 Colour Modules 267

6.5 DriverBulb Folder 275
6.5.1 DriverBulb.h, DriverBulb_Type.c 275

6.6 DeviceSensor Folder 278
6.6.1 DeviceSensor Makefile 279
6.6.2 DeviceDefs.h 280
6.6.3 DeviceSensor.c 281

6.7 MibSensor Folder 283
6.7.1 OccupancyConfig MIB 283

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 5

6.7.2 OccupancyStatus MIB 283
6.7.3 OccupancyControl MIB 285
6.7.4 IlluminanceConfig MIB 286
6.7.5 IlluminanceStatus MIB 286
6.7.6 IlluminanceControl MIB 288
6.7.7 IlluminanceScene MIB 289
6.7.8 OccIllBulbConfig MIB 290
6.7.9 OccupancyMonitor MIB 292

6.8 DriverSensor Folder 293
6.8.1 DriverOccupancy.h, DriverOccupancy_Type.c 293
6.8.2 DriverIlluminance.h, DriverIlluminance_Type.c 294

6.9 DeviceRemote Folder 296
6.9.1 DeviceRemote Makefile 296
6.9.2 RemoteDefault.h 297
6.9.3 DeviceRemote.c 297
6.9.4 DriverCapTouch.h, DriverCapTouch.c, DriverCapTouch_DIO.c 303
6.9.5 DriverLed.h, DriverLed.c 304
6.9.6 Key.h, Key.c 304
6.9.7 Mib.h, Mib.c 305
6.9.8 ModeCommission.h, ModeCommission.c 307
6.9.9 JipCallbacks.c 307

6.10 MibRemote Folder 308
6.10.1 RemoteConfigGroup MIB 308

6.11 LowEnergySwitch Folder 310
6.11.1 LowEnergySwitch Makefile 311
6.11.2 LowEnergySwitch.c 311

Appendices 314
A Revision History – JN-SW-4141 Toolchain 314
B Revision History – JN-SW-4041 Toolchain 318

 JenNet-IP Smart Home

Application Note

6 © NXP Laboratories UK 2015 JN-AN-1162 v2004

About this Manual
This manual provides information about the JenNet-IP Smart Home Application
Note (JN-AN-1162). This Application Note provides source code for creating
Smart Devices that operate in a low power Wireless Personal Area Network
(WPAN). These Smart Devices can be monitored and controlled using the
standard Internet Protocol (IP) from within the WPAN, externally from a Local
Area Network (LAN) and also from a Wide Area Network (WAN) such as the
internet.

The design of the source code is covered in detail to provide enough information
for developers to add to the code in order to develop different Smart Devices.
Developers writing applications for devices within the WPAN will find this
information useful.

The Management Information Bases (MIBs) and variables implemented in the
devices in this Application Note are covered. These allow the devices within the
WPAN to be monitored and controlled. Developers writing applications to control
devices within the WPAN from inside or outside the WPAN will find this
information useful.

Organisation

This manual consists of the following chapters:

 Section 1 "Introduction" provides an overview of the Application Note

 Section 2 "System Concepts" describes the features of a JenNet-IP system
at a high level.

 Section 3 "Device Concepts" describes the features of the devices
implemented in the Application Note at a high level.

 Section 4 "System Operation" describes how to operate the devices in the
Application Note as an end user.

 Section 5 "MIB Variable Reference" describes in detail the MIBs and
variables implemented in the devices in this Application Note. These allow
devices within the WPAN to be monitored and controlled. Developers
writing applications to monitor and control devices in the WPAN from
devices inside or outside the WPAN should refer to this chapter.

 Section 6 "Software Reference" describes the source code in detail.
Developers that want to adapt the existing devices or create new devices
that operate within the WPAN should refer to this chapter.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 7

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters and variables are represented in italics type.

Code fragments are represented in the Courier typeface.

Acronyms and Abbreviations

The following acronyms and abbreviations are used in this document:

API Application Programming Interface

CCT Colour Controlled Temperature

DIO Digital Input/Output

GUI Graphical User Interface

HS Shorthand for the hue and saturation of the HSV colour space

HSV Hue, saturation, value colour space

IP Internet Protocol

LAN Local Area Network

LED Light Emitting Diode

LQI Link Quality Indication

MIB Management Information Base

OND Over Network Download

PDM Persistent Data Manager

RGB Red/Green/Blue

SDK Software Developer’s Kit

WAN Wide Area Network

WPAN Wireless Personal Area Network

XY Shorthand for the xy components of the CIE xyY colour space.

xyY Colour representation in the CIE xyY colour space.

XYZ Colour representation in the CIE XYZ colour space.

http://en.wikipedia.org/wiki/Color_temperature
http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
http://en.wikipedia.org/wiki/CIE_1931_color_space

 JenNet-IP Smart Home

Application Note

8 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Compatibility

The software provided with this Application Note has been tested with the
following evaluation kits and SDK versions. The SDK installers are available from
the NXP Wireless Connectivity Techzone JenNet-IP webpage:

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

JN516x Evaluation Kit JN516x EK001 - - JN5168
JN5164

SDK Toolchain JN-SW-4141 v1111 v1111 JN5168
JN5164

JenNet-IP JN516x SDK
Libraries

JN-SW-4165 v1.2 v1107 JN5168

JN5164

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 9

Related Documents

The following documents provide further information on the hardware and
software used in this Application Note. They can be downloaded from the NXP
Wireless Connectivity TechZone JenNet-IP webpage:

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

JN-UG-3093: JN516x EK001 Evaluation Kit User Guide

Provides information on how to operate the JN516x Evaluation Kit.

JN-UG-3098: Beyond Studio for NXP Installation and User Guide

Provides information on installing and using the Software Developer’s Kit.

JN-UG-3080: JenNet-IP WPAN Stack User Guide

Provides detailed information on the concepts and operation of the JenNet-IP
WPAN network stack. This includes reference information for the functions,
structures and variables that make up the JenNet-IP WPAN APIs that were used
to create the applications in this Application Note.

JN-UG-3086: JenNet-IP LAN/WAN Stack User Guide

Provides detailed information on creating applications to access JenNet-IP
devices via a LAN or WAN.

JN-UG-3087: JN516x Integrated Peripherals API

Provides information on the API functions used to program the JN516x on-chip
peripherals.

JN-AN-1110: JenNet-IP Border-Router Application Note

Provides source code for the JenNet-IP border-router.

JN-AN-1162: JenNet-IP Smart Home Application Note

Provides JenNet-IP device examples based upon JenNet-IP Application
Template (JN-AN-1190). These examples are focused upon a Smart Lighting
system.

JN-AN-1190: JenNet-IP Application Template

Provides template software to use a basis for developing Smart Devices.

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

 JenNet-IP Smart Home

Application Note

10 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Trademarks

“JenNet”, “JenNet-IP” and the tree icon are trademarks of NXP B.V..

Certification

In order to use the JenNet-IP trademark and logo on a JenNet-IP product, the
product must be certified. This is to ensure that the product correctly supports
the JenNet-IP protocol and that JenNet-IP products will interoperate with each
other. It is possible to use the JenNet-IP software stack on non-certified products
but, in this case, the JenNet-IP trademark and logo cannot be displayed on the
product. For further information, see www.JenNet-IP.com.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 11

1 Introduction
This Application Note provides software for a Smart Home network allowing the
control and monitoring of Smart Devices via standard Internet Protocol
messages over a low power radio network.

Smart Devices can be controlled and monitored from within the low power radio
network and also, with the addition of a JenNet-IP Gateway, from a standard
Local Area Network and even a Wide Area Network such as the internet.

The Application Note includes software for the following Smart Devices:

 Bulb software allowing the bulb to be turned on, off and dimmed remotely.
Plus monitoring of on-time and counter for bulbs being turned on. White,
colour controlled temperature and full colour bulbs are all supported.

 Sensor software allowing the monitoring of occupancy and/or illuminance
with optional control of bulb devices.

 Remote control providing control of Smart Devices from a small touch
sensitive device.

 Low energy switch providing limited control of Smart Devices from a coin
cell or energy harvesting device.

 JenNet-IP Smart Home

Application Note

12 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2 System Concepts
This section covers the general concepts of a JenNet-IP system.

JenNet-IP networks can operate in one of three modes:

 Gateway Mode includes a gateway device allowing access to the low-
power wireless Smart Devices from other Internet Protocol devices
connected via the local IP network, Wi-Fi or even from the external
internet. Smart Devices can also be controlled by other Smart Devices
within the low power wireless network such as remote controls and
sensors. This system provides the most flexibility and options for
controlling and monitoring Smart Devices.

 Coordinator Mode replaces the gateway device with a simple Coordinator
device. This effectively creates a network from only the low power wireless
Smart Devices and so does not allow connections to a local IP network or
the internet.

 Standalone Mode does not include a gateway device. The Smart Devices
form a low power wireless network that can only be controlled by other
Smart Devices from within the network such as the remote control included
in JenNet-IP Smart Home (JN-AN-1162). This type of system provides a
low cost entry point for building a Smart Device system while allowing a
gateway device to be added later.

 Note the examples and illustrations in this section are taken
from JenNet-IP Smart Home (JN-AN-1162) as they provide
good example of a complete JenNet-IP system.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 13

2.1 Gateway System Topology

The following diagram shows the topology of a typical gateway system built from
the lighting devices in JenNet-IP Smart Home (JN-AN-1162):

The components of the system are as follows:

Routers

The IP routers, provide Internet Protocol routing services for devices in the
network. This provides standard IP routing of packets in the LAN and WAN
domains via standard internet router devices.

Commands from devices in the LAN or WAN can be passed into the WPAN via
the JenNet-IP gateway using cabled Ethernet connections or Wi-Fi links as
shown by the solid and dotted grey lines in the LAN and WAN domains of the
gateway system topology diagram.

Gateway

Adding a JenNet-IP gateway device to the internet router extends the IP network
into the WPAN domain providing low power wireless access to the Smart Device
network. The JenNet-IP gateway includes a border router device, (either
internally or externally), which provides the WPAN radio services.

Commands sent to individual devices in the WPAN follow the tree structure of
the JenNet-IP network, (represented by the dotted grey lines in the WPAN
domain of the gateway system topology diagram).

 JenNet-IP Smart Home

Application Note

14 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Commands broadcast to groups of devices are simply broadcast to every device
in range of the original transmission, receiving devices then re-broadcast the
commands ensuring that they reach every device in the network. Only the
devices that are members of the group the command is addressed to will take
any action (such as turning on a bulb) upon receipt of a group broadcast (though
all devices re-broadcast to ensure the command reaches all devices in the
network).

Smart Devices

 Bulbs: allow wireless control of lighting in the home. These devices act as
router nodes in the low power JenNet-IP wireless network extending the
network for other Smart Devices to join.

 Sensors: monitor occupancy and light levels in an area and can control the
bulbs based upon their readings.

 Remote controls: allow control of other Smart Devices in the low power
JenNet-IP wireless network. These devices operate as sleeping broadcaster
devices in order to allow mobile operation and preserve battery life. To do this
they spend most of their time asleep, thus preserving power, only waking to
read button inputs. Commands are always broadcast to a group of devices so
the remote control does not need to maintain a full connection to the network.
This allows the remote control to be freely moved around the area covered by
the WPAN.

In a gateway system the Smart Devices form a JenNet-IP tree network allowing
messages to be directed to both individual nodes in the form of unicasts and
groups of nodes in the form of broadcasts from within the wireless PAN and any
connected LAN or WAN.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 15

2.1.1 Gateway GUIs

The gateway provides a number of GUIs, served as webpages to allow
administration, monitoring and control of the Smart Devices.

The gateway’s landing page, accessed by entering the IP address of the
gateway into a connected browser, provides links to the various GUIs:

 JenNet-IP Smart Home

Application Note

16 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2.1.1.1 Gateway Configuration Interface

The gateway contains an Administrator GUI, based upon OpenWRT, served as a
series of webpages that allow configuration of WPAN network settings.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 17

The Administrator GUI interface also includes authorisation modules that are
used to control which devices are allowed to join the WPAN. Devices attempting
to join are placed into a grey list so the user is aware of their presence. Devices
in the grey list can be authorised to join by the user in which case they are
placed into a white list and allowed to join the network.

The white list includes the MAC addresses of the devices allowed into the
network and a commissioning key for each device. The commissioning key in the
white list must match the key programmed into the device attempting to join the
network or it will not be able to join.

The devices in this Application Note use a commissioning key derived from the
device’s MAC address which allows the key to be pre-populated when a device
is grey listed. However this is potentially insecure, a more secure solution would
be to provide a random key out of band. The most convenient method for doing
this would be to include an NFC tag on the device or its packaging that can be
scanned into the gateway prior to installation. Other possible methods would be
to print the key on the device and enter it into the gateway when white listing the
device.

 JenNet-IP Smart Home

Application Note

18 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2.1.1.2 Gateway JIP Browser

The gateway contains a generic engineering JenNet-IP Browser interface. This
allows the devices in the WPAN to be discovered. The MIBs and variables in
each device can be accessed allowing them to be viewed and edited.

This interface is a convenient way to explore how devices can be monitored and
controlled before writing applications or creating new devices that need to
interact with other devices in the network, as every variable in every device can
be easily accessed.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 19

2.1.1.3 Gateway Smart Devices Demonstration

The Smart Devices GUI serves webpages specifically designed to control bulb
devices. Bulbs can easily be turned on or off and the brightness level and colour
of the bulbs can be set.

Groups of bulbs may be controlled together to set them all with the same
settings. Finally bulbs can be placed into scenes which allow them to be
configured with different settings but to have those settings activated at the same
time by broadcasting a single command through the network, (and so avoid
having to send a separate command to each bulb).

 The Smart Devices GUI does not provide an interface to
place bulbs into groups or configure scenes, the JenNet-IP
Browser GUI must be used for this purpose.

The Smart Devices GUI only provides control of bulbs, other
device types must be controlled using the JenNet-IP Browser
GUI.

 JenNet-IP Smart Home

Application Note

20 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2.1.2 Gateway Hardware

The Internet Router/JenNet-IP Gateway hardware is formed from three
components:

 Internet Router: This provides standard IP routing services, in most
configurations this is an off-the-shelf device running the stock
manufacturer’s firmware.

 Border Router Host: This runs a version of the Linux based OpenWRT
system customised by NXP to allow the management of JenNet-IP
networks. Connected to the internet router via Ethernet or Wi-Fi. The
software for the border router host is described in JenNet-IP Border
Router (JN-AN-1110).

 Border Router Node: This runs on a JN5168 device and provides the low
power radio services to the border router host. It is connected to the
border router host via a serial link. The software for the border router
node is described in JenNet-IP Border Router (JN-AN-1110).

These three components can be combined in a number of different
configurations:

2.1.2.1 Internet Router with Custom Firmware

This is the configuration provided in the JN516x Evaluation Kit (EK001).

 The internet router is a standard off-the-shelf router running NXP’s
customised version of the Linux based OpenWRT. This allows both
standard internet routing software and the border router host software to
run as a single package in one device, with both pieces of software
running on the same processor. These components run on the Linksys
WRT160NL in the JN516x Evaluation Kit (EK001).

 The border router node runs on a second device with a serial connection
to the border router host. This component runs on a JN516x USB dongle
from the JN516x Evaluation Kit (EK001).

The configuration isn’t really suitable for end users as it requires replacing the
stock firmware in a compatible commercial internet router which is often a
difficult process. However it is suitable for development use as it allows the use
of an easily obtainable consumer internet router in the JN516x Evaluation Kit
(EK001).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 21

2.1.2.2 Combined Border Router

This is the configuration implemented in the Reference Design JN5168/LPC3240
Gateway (JN-RD-6040):

 The internet router is a standard off-the-shelf router running the
manufacturer’s stock firmware.

 The border router host and node are combined in a single device with the
host OpenWRT firmware running on an LPC3240 microcontroller and the
node firmware running on a JN5168. The border router device is
connected to the internet router via Ethernet (or Wi-Fi if using suitable
hardware).

This configuration is most suitable for end users as it allows existing IP systems
to be easily extended to include JenNet-IP devices by simply connecting the
border router device to the network.

 JenNet-IP Smart Home

Application Note

22 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2.2 Coordinator System Topology

The following diagram shows the topology of a coordinator system built from the
lighting devices in JenNet-IP Smart Home (JN-AN-1162):

This topology replaces the gateway with a Coordinator device that does not allow
connection to an existing IP network. The Coordinator device independently
creates the network for the other devices to join and accepts any device
attempting to join its network.

In a Coordinator system the Smart Devices form a JenNet-IP tree network
allowing messages to be directed to both individual nodes in the form of unicasts
and groups of nodes in the form of broadcasts from within the WPAN only.

The Coordinator firmware is implemented in JenNet-IP Application Template
(JN-AN-1190) using the Coordinator build of the template application. This
firmware could be extended to allow additional control over which nodes are
allowed to join the network and also implement control and/or monitoring of the
other devices in the network.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 23

2.3 Standalone System Topology

The following diagram shows the topology of a standalone system built from the
lighting devices in JenNet-IP Smart Home (JN-AN-1162):

This topology does not include a Coordinator node to form the network. Instead a
remote control chooses a security key for the network and can be placed into a
commissioning mode using a sequence of keys. While in commissioning mode
other Smart Devices in range can communicate with the remote control to
retrieve the security key and other network settings and join the network.

Once Smart Devices are members they may be controlled by remote controls
and other devices in the system.

When in standalone mode the Smart Devices do not form a tree network but
instead only accept broadcast commands and re-broadcast them for other
standalone Smart Devices to receive, only devices that are in the broadcast
group the command is addressed to will act upon the command.

The remote control firmware is implemented in JenNet-IP Smart Home (JN-AN-
1162) using the remote control application.

 JenNet-IP Smart Home

Application Note

24 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2.4 Gateway/Coordinator Failure

When devices in a gateway or coordinator system lose contact with the network
they will continue to receive broadcast commands and so operate in a similar
way to devices in a standalone system. While in this mode they attempt to re-join
the network (possibly with a different parent).

This allows Smart Devices to be controlled from other devices running within the
WPAN (such as remote controls and sensors) even while not in the tree network
as long as broadcast messages are used. This situation may occur if a gateway
or coordinator device is powered off.

2.5 MIBs and Variables

The functionality of the Smart Devices is implemented by a set of Management
Information Bases (MIBs). Each MIB provides a set of variables that allow the
device to be monitored and controlled. Each MIB groups together a set of
variables that provides access to a particular function of the device.

Where different devices implement the same functionality they do so via the
same set of MIBs. Therefore some MIBs are common to many devices types
while other MIBs are specific to certain device types.

The template software included in JenNet-IP Application Template (JN-AN-1190)
may be re-used to program additional devices types. The included code and
common MIBs may be used unchanged in order to introduce new devices to a
network. The tasks for a developing a new device type will then typically include
some combination of the following:

 For a device to be remotely monitored – appropriate MIBs and variables
need to be created with the variables being set to appropriate values for
the data being monitored.

 For a device to remotely monitor other devices – it must identify the
devices to be monitored in the network then read the variables to obtain
the data being monitored. Similar functionality is required when writing
applications to monitor devices from outside the WPAN.

 For a device to be remotely controlled – appropriate MIBs and variables
need to be created. When the variables are written to by remote devices
appropriate actions should be taken to respond to the command.

 For a device to remotely control other devices – it must identify the devices
to be controlled in the network then write to the appropriate variables to
control the device. Similar functionality is required when writing
applications to control devices from outside the WPAN.

Section 5 "MIB Variable Reference" covers each MIB and variable implemented
in this Application Note in detail for comprehensive information.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 25

2.6 Custom Protocols

The use of MIB and variables provides a standardised device-centric way to
monitor and control devices. Development of a new application is focussed on
the functionality to be provided by each device rather than on developing
wireless protocols.

In some scenarios it may be necessary to develop custom wireless protocols.
This can be achieved in JenNet-IP by opening additional sockets in devices, then
sending and receiving messages at the 6LoWPAN layer of the stack.

When using 6LoWPAN layer messaging in this way, it is also possible to make
use of JenNet-IP MIBs and variables for additional flexibility.

The JenNet-IP Application Template (JN-AN-1190) includes the DeviceProtocol
application (which can be built as a Coordinator, Router or End Device) that
illustrates how to do this.

 Note: The JenNet-IP Border Router (JN-AN-1110) only opens
the socket used for MIB and variable based communications.
If the border router needs be the source or destination of
6LoWPAN level messages it will be necessary to adapt the
border router firmware. However, it will router 6LoWPAN
messages for other devices in the network unaltered.

 JenNet-IP Smart Home

Application Note

26 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2.7 Identifiers

Various identifiers are used to identify devices, manufacturers, products and
MIBs. These are described in the following sections:

2.7.1 Device ID (32 bits)

The 32-bit Device ID is used to identify different devices. Devices with the same
Device ID must contain identical MIBs.

! The Device ID is often used to cache information about the
MIBs that are present in a device. Therefore if the MIBs are
changed then a new Device ID should be allocated.

! When changing the MIBs in a device during development, it
may be necessary to power down the changed device and
reset the gateway to clear any information cached in the
gateway for the device.

The Device IDs are made available in the DeviceID MIB present in each device.

The Device ID is divided into three components, described below:

2.7.1.1 Sleeping Device Flag (1 bit)

The most significant bit is used to indicate whether a device is a sleeping End
Device. Setting the bit indicates a sleeping End Device.

Software communicating with an End Device may request an End Device to stay
awake to receive further messages and thus improve the responsiveness of the
End Device when many messages need to be sent. This bit can be used to
identify such devices.

2.7.1.2 Manufacturer ID (15-bits)

The next most significant 15 bits represent the Manufacturer ID which identifies
the manufacturer of a device. All the devices in the Application Note use NXP’s
Manufacturer ID of 0x0801.

Manufacturer IDs are allocated by NXP. Customers preparing to go into
production can request a Manufacturer ID from NXP to use in their products.
Customers should not use Manufacturer IDs allocated to other companies,
including NXP’s Manufacturer ID, in their own products.

During development, the Manufacturer ID 0x0001 may be used by anyone.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 27

2.7.1.3 Product ID (16 bits)

The least significant 16 bits represent the Product ID these are allocated by the
manufacturer to identify different products.

Where a manufacturer is using their own Manufacturer ID (or the global 0x0001
Manufacturer ID), they may allocate Product IDs as they see fit.

2.7.2 Device Type IDs (16 bits)

The 16-bit Device Type IDs are used as a short-hand to identify classes of
devices. Multifunctional devices may include more than one Device Type ID. It is
also valid for a device to include no Device Type IDs.

For example, there may be many different manufacturers of bulbs each with a
range of bulbs resulting in many different Device IDs being used in bulbs.
However, they may all use the standard Device Type ID of 0x00E1 to indicate a
single channel dimmable bulb.

The Device Type ID is surfaced to the application layers during some
communications and may be used to decide which action to take depending
upon the Device Type ID. For example, the commissioning features on the
remote control use the Device Type ID included in a join request to determine if a
device is of a type that can currently be commissioned.

The Device Type IDs are made available in the DeviceID MIB present in each
device.

There are two kinds of Device Type IDs, as described below:

2.7.2.1 Standard Device Type IDs

Standard Device Type IDs are allocated by NXP for use in standardised devices.
These can be recognised by the most significant bit being 0.

When using a standard Device Type ID, certain MIBs must be present in the
device in order to provide a standardised device.

2.7.2.2 Manufacturer Device Type IDs

Manufacturer Device Type IDs can be allocated by customers using their own
Manufacturer ID within the Device ID. In order to correctly determine the Device
Type, the Device Type ID must be used in conjunction with the Manufacturer ID
within the Device ID.

 JenNet-IP Smart Home

Application Note

28 © NXP Laboratories UK 2015 JN-AN-1162 v2004

2.7.3 MIB IDs (32 bits)

Each MIB has a 32-bit MIB ID which provides a convenient way to access MIBs
irrespective of the order of the MIBs in a device. MIBs with the same IDs in
different devices must contain the same set of variables. Each MIB also has a
name making it easier for humans to read.

! The MIB ID is often used to cache information about the
variables that are present in a MIB. Therefore if the variables
are changed then a new MIB ID should be allocated.

! When changing the variables in a device during development,
it may be necessary to power down the changed device and
reset the gateway to clear any information cached in the
gateway for the changed MIB.

There are two types of MIB IDs, as described below:

2.7.3.1 Standard MIB IDs

Standard MIB IDs are allocated by NXP for use in standardised devices. These
can be recognised by the upper 16 bits being set to 0xFFFF. The lower 16 bits
identify the purpose of the MIB and are allocated by NXP.

Customers using a standard MIB must include the variables specified for that
MIB by NXP. If the variables in such a MIB are adapted by the customer then the
standard MIB ID should be replaced with a Manufacturer MIB ID to maintain
standardisation.

2.7.3.2 Manufacturer MIB IDs

Manufacturer MIB IDs can be allocated by customers using their own
Manufacturer ID within the Device ID. The upper 16 bits should be the
Manufacturer ID (as used in the Device ID). The lower 16 bits identify the
purpose of the MIB and are allocated by the manufacturer.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 29

2.8 Message Transmission

There are two different ways to transmit messages in a JenNet-IP network, as
described below:

2.8.1 Unicast Messaging

Unicast messages are sent to a single node. They can be used to set or get MIB
variables and any response is returned using a unicast back to the requesting
node. When these messages are sent they must follow the network tree and so
are normally only used in a gateway network.

Typical usage is in a gateway network to monitor and control individual devices.

This method of messaging is also used in a standalone network when a remote
control is commissioning new devices into its network. During this time a minimal
tree network is in place between the remote control and the device being
commissioned, so the remote control is able to use unicasts to commission
devices.

2.8.2 Multicast Messaging

Multicast messages (or broadcasts) are sent to every non-sleeping node in a
network. When each node receives a multicast message it is retransmitted for
other nodes to receive and forward in turn. Each node keeps a history of recently
received messages allowing duplicate messages to be filtered out.

Multicast messages can be addressed to groups of devices. While each
multicast is always retransmitted by every node, only nodes that are members of
the group will act upon the received message. The groups to which each node
belongs can be configured using the stack’s Groups MIB.

Multicast messages can be used to set MIB variables. To avoid radio congestion
no responses are returned for received multicast messages, so they cannot be
used to get variables.

These messages are typically used by the remote control to control devices.
Multicasts may also be issued from or via the gateway or sensors to control
groups of nodes.

 JenNet-IP Smart Home

Application Note

30 © NXP Laboratories UK 2015 JN-AN-1162 v2004

3 Device Concepts
This section covers the concepts of the devices implemented in this Application
Note.

3.1.1 Bulbs

Bulbs, allow wireless control of lighting in the home. These devices act as Router
nodes in the low power JenNet-IP wireless network extending the network for
other Smart Devices to join.

Three types of bulbs are implemented in the Application Note:

1. Dimmable white bulbs, these bulbs can be turned on and off and also have
their brightness levels adjusted.

2. Colour controlled temperature (CCT) bulbs, include the features of dimmable
white bulbs but can also have their colour temperature adjusted.

3. Colour bulbs, include the features of CCT bulbs but can also have their
colour fully adjusted.

3.1.1.1 Basic Control

Bulbs can be turned on or off and also have their brightness level set.
Additionally the colour temperature and colour can be set on bulbs that support
such features.

A variety of methods are provided for controlling the brightness and colour of the
bulbs, these allow different interfaces to control these elements in different ways
by writing to different MIB variables:

 Explicit level: The values can be set to an explicit level. This is the
method used by the gateway’s Smart Devices GUI and sets the level
based upon the position clicked in the brightness bar. Target explicit
levels can be set which the bulb transitions to over time or a current
explicit level can be set which the bulb changes to instantly.

 Change over time: The bulbs can be placed into a mode where the value
is increased or decreased over time, when the desired level is reached
the mode can be cleared to leave the bulbs at the set brightness. This is
the method used by the remote control, touching the up or down button
places the bulb into the up or down mode, releasing the button takes the
bulb out of the up or down mode thus setting the desired level.

 Change by value: The bulbs can have their current values altered up or
down by a fixed amount. This method of control is not used in the
Application Note but would be useful for devices featuring jog controls
where each jog alters the level by a set amount.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 31

3.1.1.2 Group Control

Bulbs can be placed into groups, when a command is broadcast to a group all
the bulbs in that group will carry out the command allowing many bulbs to be
turned on or off and their levels changed together. The remote control always
uses this method to control bulbs while the Smart Devices GUI provides group
control for a limited number of groups.

All bulbs are placed into “All Devices” and “All Bulbs” groups by default, (though
the user may choose to remove them later). The JenNet-IP Browser GUI can be
used to place bulbs into additional groups.

Each bulb can be a member of up to 16 groups in the default configuration
provided in this Application Note.

Group control is most useful where many devices need to have their states set to
the same value activated by a single broadcast command. Any MIB variable can
be controlled this way. Group control may be used with almost all other JenNet-
IP devices as it is a feature provided by the JenNet-IP stack.

3.1.1.3 Scene Control

Bulbs can also be placed into scenes using one of two methods:

1. Using the current settings: First the state and levels of the bulbs taking part in
the scene should be configured, different bulbs may have different settings.
The bulbs are then issued with a command to place themselves into a
specific scene and store their current settings for use when the scene is
activated.

2. Using specific settings: A single command can be issued to place the bulb
into a specific scene with the state and levels specified as part of the
command. The advantage of this method is that the current settings are not
altered in order to create the scene.

To activate a scene a command is transmitted to all bulbs, the bulbs taking part
in the scene will than apply their configuration for the scene. This allows many
bulbs to be placed into different states using a single broadcast command, for
example a “reading” scene may set a reading light to full brightness while
dimming all other bulbs in a room to minimum brightness. The Smart Devices
GUI provides controls to activate a limited number of scenes, (but no controls to
configure scenes – the JenNet-IP Browser must be used for scene
configuration).

 JenNet-IP Smart Home

Application Note

32 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Each bulb can participate in up to 8 scenes in the default configuration provided
in this Application Note.

Scene control is most useful where many devices need to have their states set to
different values activated by a single broadcast command. Only the MIB
variables that form the state of the bulb can be controlled this way. Scene control
can only be used with JenNet-IP devices that have implemented scene support
as it is a feature provided by the application.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 33

3.1.2 Remote Controls

Remote controls, allow control of other Smart Devices in the low power JenNet-
IP wireless network. These devices operate as sleeping broadcaster devices in
order to allow mobile operation and preserve battery life. To do this they spend
most of their time asleep preserving power and only waking to read button
inputs.

Commands are always broadcast to a group of devices so the remote does not
need to maintain a full connection to the network, this allows the remote to be
freely moved around the area covered by the WPAN.

3.1.2.1 Bulb Control

The remote control allows bulbs to be turned on or off and to alter their
brightness and colour.

3.1.2.2 Group Configuration

The remote control is able to broadcast its commands to the “All Bulbs” group,
(which bulbs are placed into by default on start-up).

The remote control can also broadcast to four other groups unique to each
remote control. A key sequence on the remote control can be used to add and
remove bulbs that are within range of a low power transmission into and out of its
groups.

The blue and green dotted ovals attached to the remote control in the gateway
system topology diagram (below) represent two of the remote control’s groups
each containing a single bulb.

 JenNet-IP Smart Home

Application Note

34 © NXP Laboratories UK 2015 JN-AN-1162 v2004

3.1.1 Low Energy Switches

Low energy switches, allow control of other Smart Devices in the low power
JenNet-IP wireless network. These devices operate as broadcasting devices
consuming minimal amounts of power using coin cells or energy harvesting
devices as a power source.

Commands are always broadcast to a group of devices. The low energy
switches do not join the network, instead the devices in the network must be
enabled to receive commands from specific low energy switches and placed into
the unique group each low energy switch transmits to.

Low energy switches are only able to operate in a gateway system as the
gateway is responsible for configuring other devices to receive commands from
the low energy switches.

Low energy switches are configured to operate on only a single channel, (as they
cannot scan for a network), the devices to be controlled by the switch must
therefore be in a network on the same channel.

3.1.1.1 Bulb Control

The low energy switch allows bulbs to be turned on or off using the provided
software.

The software may be extended to allow control of the bulb brightness and colour
where additional inputs on the switch can be used to select an appropriate
operation.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 35

3.1.2 Sensors

Sensors, allow control of other Smart Devices in the low power JenNet-IP
wireless network. These devices operate as either Router nodes extending the
network for other Smart Devices to join or End Devices sleeping to preserve
power and able to run on batteries.

The readings taken by the sensors can be monitored by other devices within the
system. The sensors can also be configured to control other devices, such as
bulbs within the network.

The following sensor types are available in the Application Note:

3.1.2.1 Occupancy Sensors

Occupancy sensors detect whether a room or area is occupied using Passive
Infra-Red (PIR) or other methods of detection. The occupancy state of the
sensor can be monitored remotely.

Bulb Control from Occupancy Sensors

The default configuration of the occupancy sensors allows them to broadcast
group commands to control bulbs based upon the occupancy state.

 When the state is unoccupied bulbs are turned off.

 When the state is occupied bulbs are turned on at full brightness.

While the occupancy state remains unchanged the occupancy sensor regularly
re-sends its last command in order to bring any bulbs that get powered on back
under the sensor’s control.

The group the bulb control commands are broadcast to is unique to each
occupancy sensor, in order to control a bulb from an occupancy sensor it simply
needs to be added to the group the sensor transmits to. It is useful to remove a
bulb being controlled in this way from any other groups, (including the “All
Devices” and “All Bulbs” groups), to avoid different devices conflicting with each
other over the state of the bulb they are both trying to control.

Group Control

Occupancy sensors can be placed into groups, when a command is broadcast to
a group all the occupancy sensors in that group will carry out the command
allowing many occupancy sensors to be controlled together.

All occupancy sensors are placed into “All Devices” and “All Occupancy
Sensors” groups by default, (though the user may choose to remove them later).
The JenNet-IP Browser GUI can be used to place occupancy sensors into
additional groups.

Each occupancy sensor can be a member of up to 16 groups in the default
configuration provided in this Application Note.

Group control is most useful where many devices need to have their states set
the same value activated by a single broadcast command. Any MIB variable can
be controlled this way. Group control may be used with almost all other JenNet-
IP devices as it is a feature provided by the JenNet-IP stack.

 JenNet-IP Smart Home

Application Note

36 © NXP Laboratories UK 2015 JN-AN-1162 v2004

3.1.2.2 Illuminance Sensors

Illuminance sensors detect the amount of light in a room or area using a Photo-
Diode or other methods of detection. The illuminance state of the sensor can be
monitored remotely.

Bulb Control from Illuminance Sensors

The default configuration of the illuminance sensors allows them to broadcast
group commands to control bulbs based upon the illuminance state in order to
bring the measured illuminance within a target band:

 When the illuminance is below the target band bulbs are turned on and
brightened over time until the measured illuminance is within the target
band.

 When the illuminance is above the target band the bulbs are dimmed
over time and turned off if the measured illuminance is still too bright at
the minimum brightness or until the measured illuminance is within the
target band.

While the illuminance state remains within the target band the illuminance sensor
regularly re-sends it last command in order to bring any bulbs that get powered
on back under the sensor’s control.

The group the bulb control commands are broadcast to is unique to each
illuminance sensor, in order to control a bulb from an illuminance sensor it simply
needs to be added to the group the sensor transmits to. It is useful to remove a
bulb being controlled in this way from any other groups, (including the “All
Devices” and “All Bulbs” groups), to avoid different devices conflicting with each
other over the state of the bulb they are both trying to control.

Illuminance Sensor Control

The target band of the illuminance sensor can be controlled in a similar way to
the brightness of bulbs. A variety of methods are provided for this:

 Explicit values: Explicit values can be set for the LuxTarget variable,
(which sets the middle point of the target band), and the LuxBand
variable, (which sets the width of the target band). This method would be
most useful when setting the values using slider controls.

 Change over time: The illuminance sensor can be placed into different
modes that allow the LuxTarget variable to be moved up or down over
time and the LuxWidth variable to be widened or narrowed over time.
Exiting these modes will cause the illuminance sensor to stop altering the
affected variable. This method would be most useful when changing a
value on a button press and stopping the change on release, however
due to the latency in the bulbs reaching the new target band it provides
little feedback to users when the level is set to the required value.

 Change by value: The illuminance sensor can have the current LuxTarget
variable raised or lowered by a fixed amount and the LuxWidth variable
widened or narrowed by a fixed amount. This method would be most
useful for devices featuring jog controls where each jog alters the target
band by a set amount.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 37

Group Control

Illuminance sensors can be placed into groups, when a command is broadcast to
a group all the illuminance sensors in that group will carry out the command
allowing many illuminance sensors to be controlled together.

All illuminance sensors are placed into the “All Devices” and “All Illuminance
Sensors” groups by default, (though the user may choose to remove them later).
The JenNet-IP Browser GUI can be used to place illuminance sensors into
additional groups.

Each illuminance sensor can be a member of up to 16 groups in the default
configuration provided in this Application Note.

Group control is most useful where many devices need to have their states set
the same value activated by a single broadcast command. Any MIB variable can
be controlled this way. Group control may be used with almost all other JenNet-
IP devices as it is a feature provided by the JenNet-IP stack.

Illuminance Sensor Scene Control

Illuminance sensors can also be placed into scenes. First the state and target
band of the illuminance sensors taking part in the scene should be configured,
different illuminance sensors may have different settings. The illuminance
sensors are then issued with a command to place themselves into a specific
scene and store their current settings for use when the scene is activated.
Alternatively an illuminance sensor may be placed directly into a scene along
with the scene’s settings in with a single command, this method avoids having to
alter the current settings to configure a scene.

To activate a scene a command is transmitted to all illuminance sensors, the
illuminance sensors taking part in the scene will than apply their configuration for
the scene. This allows many illuminance sensors to be placed into different
states using a single broadcast command, for example a “night” scene may set
all sensors to maintain a certain level of illumination while an “emergency” scene
may set all sensors to enforce maximum illuminance.

Each illuminance sensor can participate in up to 16 scenes in the default
configuration provided in this Application Note.

Scene control is most useful where many devices need to have their states set to
different values activated by a single broadcast command. Only the MIB
variables that form the state of the illuminance sensor can be controlled this way.
Scene control can only be used with JenNet-IP devices that have implemented
scene support as it is a feature provided by the application.

 JenNet-IP Smart Home

Application Note

38 © NXP Laboratories UK 2015 JN-AN-1162 v2004

3.1.2.3 Occupancy/Illuminance Sensors

Occupancy/illuminance sensors combine an occupancy sensor and illuminance
sensor in a single device. They include the MIBs from both the occupancy
sensor and illuminance sensor devices and so provide almost identical
functionality.

Bulb Control from Occupancy/Illuminance Sensors

The default configuration of the occupancy/illuminance sensors allows them to
broadcast group commands to control bulbs based upon the both the occupancy
and illuminance state combined:

 When the occupancy state is unoccupied bulbs are turned off.

 When the occupancy state is occupied bulbs are controlled to bring the
measured illuminance within the target band in the same way as the
Illuminance Sensor.

It is possible to configure the combined occupancy/illuminance sensor to control
bulbs based only on the occupancy state, (in the same way as the occupancy
sensor), or only on the illuminance state, (in the same way as the illuminance
sensor).

The group the bulb control commands are broadcast to is unique to each
occupancy/illuminance sensor, in order to control a bulb from an
occupancy/illuminance sensor it simply needs to be added to the group the
sensor transmits to. It is useful to remove a bulb being controlled in this way from
any other groups, (including the “All Devices” and “All Bulbs” groups), to avoid
different devices conflicting with each other over the state of the bulb they are
both trying to control.

Group Control

Occupancy/illuminance sensors can be placed into groups, when a command is
broadcast to a group all the occupancy/illuminance sensors in that group will
carry out the command allowing many occupancy/illuminance sensors to be
controlled together.

All occupancy/illuminance sensors are placed into “All Devices”, “All Occupancy
Sensors” and “All Illuminance Sensors” groups by default, (though the user may
choose to remove them later). The JenNet-IP Browser GUI can be used to place
bulbs into additional groups.

Each occupancy/illuminance sensor can be a member of up to 16 groups in the
default configuration provided in this Application Note.

Group control is most useful where many devices need to have their states set
the same value activated by a single broadcast command. Any MIB variable can
be controlled this way. Group control may be used with almost all other JenNet-
IP devices as it is a feature provided by the JenNet-IP stack.

Scene Control

The illuminance sensor settings can be stored and activated as a scene in the
same way as illuminance sensors.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 39

3.1.2.4 Co-operating Occupancy Sensors

It is possible to configure the system so that multiple occupancy sensors can co-
operate to work together.

Each occupancy sensor can be configured to broadcast its occupancy state to
other devices in the system. These broadcasts are transmitted to a group
address unique to the transmitting sensor and different to the group address
used to control bulbs.

Other sensors in the system can be configured to receive the broadcasts from
the occupancy sensor configured in this way. The receiving sensors can then
take the occupancy state of all the transmitting sensors into account when
controlling bulbs. Up to 16 additional occupancy sensors can be monitored in this
way on a single device.

End Devices cannot receive broadcast messages so this system works best
when the device receiving the occupancy status messages is a router within the
WPAN. The broadcast address used by the transmitting occupancy sensors can
be altered to be the unicast address of the receiving device allowing the receiver
to operate as an end device, however this introduces latency into the system, as
there will be a delay between the transmission of the occupancy status and the
receiving device waking from sleep to receive the message. Using unicast
messages in this way also removes the ability for one-to-many transmissions of
the occupancy state that the use of broadcasts allows.

When an occupancy sensor is monitoring additional occupancy sensors the
bulbs will be turned on when any of the occupancy sensors report occupied and
the bulbs will be turned off when all of the occupancy sensors report unoccupied.

When an illuminance sensor is monitoring additional occupancy sensors it can
be configured to take the states of the occupancy sensors into account when
controlling bulbs. When all the occupancy sensors report unoccupied the bulbs
are turned off, when any of the occupancy sensors report occupied the bulbs will
be controlled to meet the illuminance target band.

When a combined occupancy/illuminance sensor is monitoring additional
occupancy sensors the bulbs will be turned off when all of the occupancy
sensors report unoccupied, the brightness of the bulbs will be controlled to meet
the illuminance target band when any of the occupancy sensors report occupied.

 JenNet-IP Smart Home

Application Note

40 © NXP Laboratories UK 2015 JN-AN-1162 v2004

The diagram below shows two occupancy sensors being monitored by a
combined occupancy/illuminance sensor which is controlling three bulbs. The
green and blue dotted ovals represent the groups the occupancy sensors are
transmitting their status to, with the occupancy/illuminance sensor being a
member of these groups. While the red dotted oval represents the group the
combined occupancy/illuminance Sensor is transmitting to in order to control the
bulbs:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 41

4 System Operation
This section describes the operation of the devices implemented in the
Application Note.

The software is written to run on the hardware included in the JN516x Evaluation
Kit (EK001). The hardware provided in the evaluation kit is separately described
in JN516x EK001 Evaluation Kit User Guide (JN-UG-3093).

The devices in this Application Note support three modes of operation:

 Gateway system in which the nodes of a WPAN can be controlled:

 from outside the WPAN, via an IP connection from a PC

 from within the WPAN, from other wireless devices

 Coordinator system in which the nodes of a WPAN can be controlled only
from a wireless device within the WPAN (there is no external IP
connection) using unicasts and/or broadcasts.

 Standalone system in which the nodes of a WPAN can be controlled only
from a wireless device within the WPAN (there is no external IP
connection) using broadcasts.

The devices in the JenNet-IP Application Template (JN-AN-1190) and JenNet-IP
Smart Home (JN-AN-1162) Application Notes are capable of operating in all
three types of systems. However, due to the nature of the included applications
there may be limitations in the functionality when used in certain system types.

Gateway System

The devices in both these Application Notes are fully functional with access to all
features when used in a gateway system using the lighting GUIs and the generic
JenNet-IP browser implemented in the border router host software.

Coordinator System

The Coordinator device is implemented by the template device in JenNet-IP
Application Template (JN-AN-1190). This Coordinator device will accept all the
devices types in the Application Notes into its network except for the low energy
switch devices in JenNet-IP Smart Home (JN-AN-1162).

However as there is no method to provide general access to MIB variables this
template is provided as a simple example of how to create such a system.

Standalone System

The remote control device is implemented in JenNet-IP Smart Home (JN-AN-
1162). The remote control is only able to accept bulb devices into its network.
JenNet-IP Smart Home (JN-AN-1162) describes how to set up a standalone
system using only these devices.

However, as there is no method to provide general access to MIB variables the
functionality is limited to using the remote control to control bulb devices.

 JenNet-IP Smart Home

Application Note

42 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1 Gateway System Operation

This section describes how to use the contents of an evaluation kit to set up and
run JenNet-IP Smart Home (JN-AN-1162) demonstration using a gateway to
allow access to the WPAN from PCs connected to the gateway’s LAN. This
demonstration is based on a WPAN with nodes containing lights and sensors,
which may be monitored and controlled as follows:

 via an IP connection from a remote device on a LAN or WAN (e.g. from a
PC)

 wirelessly from a remote control or low energy switch within the WPAN

 A ‘standalone’ version of the JenNet-IP Smart Home (JN-AN-
1162) demonstration is also available which does not provide
IP connectivity, allowing only wireless control of the nodes
from a remote control within the WPAN. If you prefer to set up
and run the standalone version, go to Section 4.2 "Standalone
System Operation".

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 43

4.1.1 Gateway System Operation Overview

In the JenNet-IP Smart Home (JN-AN-1162) demonstration, a set of lights and
sensors form a WPAN which can be accessed either from a remote control
within the WPAN or from a PC located on an Ethernet bus. The components of
an evaluation kit are used in the demonstration as follows:

 Carrier Boards with Lighting/Sensor Expansion Boards: The four
Carrier Boards (DR1174) supplied in the kit are pre-fitted with
Lighting/Sensor or Generic Expansion Boards and JN516x modules. Each
of these four board assemblies acts as a node of the WPAN, where the
JN516x module on each node is programmed as a WPAN Router or End
Device. These boards are used to run the following devices:

 Bulb device: The white LEDs or the RGB LED on the Lighting/Sensor
Expansion Boards (DR1175) or LED2 on the Generic Expansion Board
(DR1174) are the lights to be controlled.

 Occupancy Sensor: A Parallax Passive Infra-red Module can easily be
fitted to the Carrier Board or Lighting/Sensor Expansion Board to act as
the occupancy sensor. Alternatively this software can be recompiled to
use one of the buttons on the Carrier or Generic Expansion Boards.

 Low Energy Switch: The Carrier Board is used to operate as the Low
Energy Switch.

 Illuminance Sensor: The photo-diode on Lighting/Sensor Expansion
Boards is used to measure illuminance.

 Combined Occupancy/Illuminance Sensor: A Parallax Passive Infra-
red Module can easily be fitted to the Carrier Board or Lighting/Sensor
Expansion Board to act as the occupancy sensor (details of this module
are provided in Section 4.1.6.1 "Setting up the Occupancy Sensor").
Alternatively this software can be recompiled to use one of the buttons
on the Carrier Board. The photo-diode on Lighting/Sensor Expansion
Boards is used to measure illuminance.

 Remote Control: The remote control acts as a node of the WPAN. In the
demo described in this chapter, the unit initially behaves as a WPAN
Router until it has joined the network and then acts as a ‘sleeping
broadcaster’. In the latter mode, the device sleeps and only wakes when it
is needed to broadcast control commands (it does not have the role of a
conventional WPAN node). If sleeping, the unit must be activated using
the Wake (circle) button below the keypad before any other keys are
pressed.

 JenNet-IP Smart Home

Application Note

44 © NXP Laboratories UK 2015 JN-AN-1162 v2004

 USB Dongle: This demonstration uses one of the supplied USB dongles
programmed as a border router and WPAN Coordinator. The dongle
connects to the Linksys router (via the USB extension cable). Together
they provide the gateway which is the interface between the WPAN and
LAN/WAN domains - the dongle handles the WPAN side of this interface.
The dongle is also the Coordinator node of the WPAN.

 Linksys Router: The Linksys router is programmed with an NXP firmware
upgrade, based upon OpenWRT, which allows the router to operate as the
border router host and a standard IP router. It is connected to the above
USB dongle (via the USB extension cable). Together they provide the
gateway which is the interface between the WPAN and LAN/WAN domains
- the IP router handles the LAN/WAN side of the interface and connects to
the Ethernet bus on which the controlling PC is located.

A complete Smart Home demonstration system is illustrated below, (there are
not enough boards in a single evaluation kit to build this system so a subset
should be used when working with a single evaluation kit).

The WPAN will have a tree topology but its precise topology cannot be pre-
determined since the network is formed dynamically. One or more of the Routers
may be leaf-nodes of the tree, in which case their routing capability will not be
used.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 45

4.1.1.1 Lighting Control from a PC

In this demonstration, control and monitoring commands can be issued from a
PC on an Ethernet LAN connected to the border router, from where the
commands will be delivered to the target nodes in a WPAN. A command can be
directed to an individual node in the form of a unicast or to groups of nodes in the
form of a broadcast.

Two web applications are provided on the Linksys router these allow a PC user
to monitor and control the lights in the WPAN. These applications run on the
border router host and serve web pages to a normal web browser on the PC,
allowing the user to interact with the WPAN nodes through the border router. The
applications are:

 Smart Devices Demonstration: This application provides a high-level
interface for monitoring and controlling the lights in the WPAN, through
easy-to-use graphical controls (on-screen buttons and a controls). The
application can be accessed by entering the following (case-sensitive) IP
address into the web browser: http://192.168.11.1/SmartDevices.html

 The JenNet-IP Browser application provides a low-level interface for
monitoring and controlling the devices in the WPAN, allowing the user to
access the MIBs on the WPAN nodes. The application can be accessed by
entering the following (case-sensitive) IP address into the web browser:
http://192.168.11.1/Browser.html

The JenNet-IP Browser, the Smart Devices Demonstration and the Gateway
Configuration interfaces are all provided on the Linksys router. All these
interfaces can be accessed via the gateway’s landing page by simply entering
the IP address of the gateway into a web browser on the PC: http://192.168.11.1/

http://192.168.11.1/SmartDevices.html
http://192.168.11.1/Browser.html
http://192.168.11.1/

 JenNet-IP Smart Home

Application Note

46 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.1.2 Lighting Control from the Remote Control Unit

In this demonstration, control commands can be entered into the remote control
and wirelessly broadcast (in JenNet-IP packets) to the WPAN nodes. A
command can be addressed to all nodes or to a pre-defined group of nodes.

A complete list of the operations that can be performed from the keypad is
provided in Section 4.1.4.4 "Remote Control Command Tables". The table below
provides a summary of the use of individual keys by the demonstration and the
figure below shows the keypad of the remote control.

The group (*, A, B, C, D) is selected first, all operations (I, O, +, -) are then
broadcast to the selected group until a different group is selected. All lights are
automatically placed into the All (*) group further actions must be taken to add
lights to the other (A, B, C, D) groups used by the remote control.

The parameter controlled by the up and down (+, -) keys is selected using the
numeric key (1, 2, 3, 4) all subsequent uses of the up and down keys will affect
that parameter until a different parameter is selected.

 Note: In this manual, operations are generally described as
function sequences followed by the key sequences in square
brackets - for example:

PRG OFF DOWN OFF [# O - O]

Function Key Description

Group Selection * Select “All Bulbs” group

A Select group A

B Select group B

C Select group C

D Select group D

Level Parameter Selection 1 Select brightness parameter

2 Select saturation parameter

3 Select hue parameter

4 Select colour temperature parameter

State Control I Switch on light(s)

O Switch off light(s)

Level Control + Increase level of selected parameter

- Decrease level of selected parameter

Program # Programming mode

Wake • Wake Remote Control Unit from sleep

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 47

The remote control normally operates as a ‘sleeping broadcaster’. Thus, the unit
sleeps until it is needed. If sleeping, the unit can be activated using the Wake
(circle) button below the keypad. Once woken, the unit remains active for 10
minutes following the last key press before going back to sleep. When the unit is
active, pressing any key will cause the left LED to momentarily illuminate (if this
does not happen, you must first activate the unit using the Wake button).

 JenNet-IP Smart Home

Application Note

48 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.1.3 Lighting Control from a Low Energy Switch

In this demonstration control commands are broadcast to a pre-defined group of
nodes.

The software broadcasts a command each time the software is run and then
enters deep sleep mode to preserve power (when running from a coin cell). The
command toggles each time the software is run between turning bulbs off and
on.

To operate the software on the Carrier Board (DR1174) the reset button (marked
RST) should be used to run the software and toggle bulbs off and on.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 49

4.1.2 Setting Up the Gateway System

This section describes the general procedures for setting up the gateway system
using the evaluation kit components, instructions for specific device types are
included in later sections of the Application Note.

4.1.2.1 Programming the Device Firmware

To run the software in this Application Note, the appropriate firmware must be
programmed into the evaluation kit hardware.

 Pre-built firmware binaries are provided with this Application
Note. If you wish to compile your own binaries, instructions for
importing the Application Note into the IDE and compiling are
included in Beyond Studio for NXP Installation and User
Guide (JN-UG-3098).

 Instructions on how to connect the evaluation kit boards to a
PC and program them with firmware are included in Beyond
Studio for NXP Installation and User Guide (JN-UG-3098).

 If the board has previously been used, it will retain settings
(e.g. PAN ID) from the previous network to which it belonged,
which may prevent it joining the JenNet-IP network. These
settings may be cleared during programming by erasing the
EEPROM data in the device.

Pre-built binary files are included in the Binary folder of the Application Note for
programming into the evaluation kit boards. The binaries to be used are specified
in the sections covering each device type later in this document.

4.1.2.2 Setting Up the Border Router

In setting up the LAN part of the demo system, you will need the following
components:

 A PC running Windows XP or Windows 7

 Linksys router and USB extension cable (from the evaluation kit)

 USB dongle (from the evaluation kit)

 Ethernet cable (from the evaluation kit)

To set up the border router part of the system, follow the instructions below.

Step 1 Program the border router node firmware into a USB dongle (once only)

If the USB dongle is not already programmed with the latest border router node
firmware it should be updated prior to running the application.

 JenNet-IP Smart Home

Application Note

50 © NXP Laboratories UK 2015 JN-AN-1162 v2004

 The USB dongles provided in the evaluation kit are pre-
loaded with an older version of the border router node
firmware and should be updated to the latest version before
using the Application Note. The Application Note JenNet-IP
Border Router (JN-AN-1110) contains the border router node
firmware.

 Instructions on how to connect the USB dongles to a PC and
program them with firmware are included in Beyond Studio for
NXP Installation and User Guide (JN-UG-3098).

Step 2 Connect the PC to the Linksys router

a) Boot up the PC.

b) Use the supplied Ethernet cable to connect the PC to the Linksys router (but
do not power on the Linksys router yet). Use a blue Ethernet socket on the
router (do not use the yellow socket labelled ‘Internet’).

Step 3 Connect the USB dongle to the Linksys router

Connect the USB dongle (which is programmed as a border router node and as
a WPAN Coordinator) to the USB socket of the Linksys router via the supplied
USB extension cable (use of this cable improves the radio performance of the
dongle).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 51

Step 4 Power on the Linksys router

Connect the power supply to the Linksys router. The unit will automatically power
on (this will also start the USB dongle). The power LED will first flash and then
the central LED will flash. The unit is ready when the central LED stops flashing
and remains illuminated.

Since the USB dongle will also be the Coordinator of the WPAN, this device will
create a network, for the moment consisting of just the Coordinator - the rest of
the network will be formed later.

Step 5 Program the border router host firmware into the Linksys router (once
only)

If the Linksys router is not already programmed with the latest border router host
firmware it should be updated before continuing to run the application.

 The Linksys router provided in the evaluation kit is pre-loaded
with an older version of the border router host firmware and
should be updated to the latest version before using the
Application Note.

 The Application Note JenNet-IP Border Router (JN-AN-1110)
contains the border router host firmware and instructions to
update the Linksys router.

Step 6 Enable JenNet-IP in the Linksys router from the PC (once only)

The latest border router host firmware is able to work with JenNet-IP or ZigBee
PRO low power wireless networks. The Linksys router firmware must be enabled
for use with a JenNet-IP system before continuing to use the application.

a) Launch a web browser on the PC.

b) Access the JenNet-IP Border Router Configuration interface on the Linksys
router by entering the following IP address into the browser:
http://192.168.11.1/ then click the Gateway Configuration Interface link

c) On the resulting web page, log in with username “root” and password
“snap”.

http://192.168.11.1/

 JenNet-IP Smart Home

Application Note

52 © NXP Laboratories UK 2015 JN-AN-1162 v2004

d) On the next web page, select the ZigBee Gateway tab, then select the
ZigBee – JIP sub-tab.

The ZigBee – JIP sub-tab is illustrated in the screenshot below:

c) In the ZigBee - JIP sub-tab, make sure that the Enable checkbox is not
ticked.

d) If the checkbox was cleared, click the Save & Apply button to save the
changes.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 53

e) Next select the JenNet-IP tab, then select the 6LoWPANd sub-tab.

The 6LoWPANd sub-tab is illustrated in the screenshot below:

f) In the 6LoWPANd sub-tab, make sure that the Enable checkbox is ticked.

g) If the checkbox was set click the Save & Apply button to save the changes.

h) Once the border router has correctly created a network the IEEE 802.15.4
Channel value will be non-zero and the IEEE 802.15.4 PAN ID will display a
value different than 0xffff. The page may need to be refreshed to update this
information.

Step 7 Check the Linksys router configuration from the PC (optional)

If you wish, you can now check the system configuration on the Linksys router as
described below - you should not need to change the default settings.

 Note: The low energy switch binary included in JenNet-IP
Smart Home (JN-AN-1162) operates only on channel 21. If
you intend to add the low energy switch to your system you
should channel to channel 21 at this stage.

a) Use a web browser on the PC to access the 6LoWPANd sub-tab in the
JenNet-IP Border Router Configuration interface as described in Step 6 if it
is not already open.

 JenNet-IP Smart Home

Application Note

54 © NXP Laboratories UK 2015 JN-AN-1162 v2004

b) The 6LoWPANd sub-tab is illustrated in the screenshot above.

The fields in the above screenshot are described in the table below.

Field Description

Enable Checkbox used to enable/disable the 6LoWPANd
interface

Serial Device Indicates serial port to which border router node
(dongle) is connected on the Linksys router

Interface Indicates the network interface that hosts the JenNet-
IP network.

IEEE 802.15.4 Channel Number of the radio channel used in the WPAN -
selected by the Coordinator in this demo and should
not be changed when running the demo system.

IEEE 802.15.4 PAN ID 16-bit PAN ID of wireless network – selected by the
Coordinator in this demo and should not be changed
when running the demo system

 JenNet ID 32-bit Network Application ID of WPAN

Wireless Network IPv6 Pre-fix 64-bit IPv6 address prefix for WPAN

c) In the 6LoWPANd sub-tab, click the Edit button on the right-hand side.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 55

d) In the 6LoWPANd Configuration screen (which now appears), click on the
General Setup tab. This displays similar fields to those listed in the table
above, as shown in the screenshot below:

e) In the General Setup tab:

 Ensure that the Enable Interface checkbox is ticked.

 Ensure that the Enable 15.4 Bandwidth Throttling checkbox is unticked.

 Ensure that the JenNet Network Id to start field is set to 0x11111111 (this
is an application-specific identifier).

 JenNet-IP Smart Home

Application Note

56 © NXP Laboratories UK 2015 JN-AN-1162 v2004

 If you intend to add the low energy switch from JenNet-IP Smart Home
(JN-AN-1162) to the system, change the Channel field to 21

f) Now select the Security tab (see screenshot below) and ensure that the
JenNet Security Enabled checkbox is ticked.

g) If you have made any changes, click the Save & Apply button to implement
them.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 57

4.1.2.3 Adding Devices to the WPAN

This section describes the general process used to add devices to the WPAN,

instructions for specific devices are included in later sections.

In setting up the WPAN part of the demo system, you will need the following

components:

 Border router part of the system (set up as described in Section 4.1.2.2
"Setting Up the Border Router")

 Evaluation kit boards fitted with JN516x modules, optional expansion
boards, antennae and batteries. These boards must be programmed with
the required firmware

 JN516x EK001 Evaluation Kit User Guide (JN-UG-3093)
contains instructions for connecting the evaluation kit
components together.

You can use as many of the boards as you like in this demonstration - for

example, you may wish to initially use only one board.

General instructions applicable to all devices are below, (further information for

specific device types, where applicable, are included in the following sections):

Step 1 Start the node

Perform the following for just one node:

On power-up, the node will attempt to join the WPAN (for which the USB dongle

is the Coordinator). There is no timeout on the node’s attempt to find and join the

WPAN, but the node will not be able to join until it has been whitelisted (next

step).

 Note: If the board has previously been used, it will retain
settings (e.g. PAN ID) from the previous network to which it
belonged. This information can be cleared during
programming by erasing the EEPROM data held in the
device. To clear this information at run-time and return to the
factory settings, perform a factory reset as follows: Wait at
least 2 seconds following power-up and then press the Reset
button on the carrier board 4 times with less than 2 seconds
between two consecutive presses. After the reset, the board
will try to join a new network.

 JenNet-IP Smart Home

Application Note

58 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 2 Access the Gateway Configuration interface from the PC

If not already done (from the border router set-up), access the JenNet-IP

Gateway Configuration interface from the PC as follows:

e) Launch a web browser on the PC.

f) Access the JenNet-IP landing page on the Linksys router by entering the
following IP address into the browser:

http://192.168.11.1/

g) Select the Gateway Configuration Interface link

h) On the resulting web page, log in with username root and password snap.

Step 3 Display the ‘whitelist’ of WPAN nodes in the interface on the PC

i) In the interface, select the JenNet-IP tab and then select the Whitelist sub-
tab. Normally, this sub-tab shows a list of the detected WPAN nodes,
identified by their MAC addresses, as illustrated in the screenshot below.
Those nodes that are ticked (in the checkbox on the left-hand side) are in
the whitelist and so are allowed into the network. Currently, only the
evaluation kit board should be listed and should be unticked (greylisted) - if
it does not appear, refresh the list by clicking Whitelist again.

h) Put the evaluation kit board into the whitelist by ticking its checkbox on the
left-hand side and click the Save & Apply button. The unit should now be
able to join the network.

 The easiest way to check whether a device has joined the
network is to access the JIP Browser interface in the gateway
as described in the next section.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 59

Step 4 Add additional nodes to the whitelist in the JenNet-IP Gateway
Configuration interface

Additional nodes can be added to the whitelist by repeating the above steps.

 JenNet-IP Smart Home

Application Note

60 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.3 Operating the Bulb Devices

This section describes how to setup and operate the bulb devices included in the

Application Note using a PC outside of the WPAN (via IP) control the lights

(white or RGB LEDs) on the nodes in the WPAN.

This section sets up a network with a white, CCT and colour bulb which can be
controlled from a PC connected to the gateway as shown in the image below:

4.1.3.1 Setting Up the Bulb Devices

In setting up the bulb part of the demo system, you will need the following

components:

 LAN part of the system (set up as described in Section 4.1.2.2 "Setting Up
the Border Router".

 Three Carrier Boards (DR1174) fitted with JN516x modules and
Lighting/Sensor Expansion Boards (DR1175), antennae and batteries
programmed with the required firmware.

To set up the bulb part of the system follow the instructions below:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 61

Step 1 Setup bulb hardware

The bulb software runs on a Carrier Board (DR1174) fitted with the
Lighting/Sensor Expansion Board (DR1175) as shown below:

The setup procedure is identical for the white, CCT and colour bulbs which differ
only in the LEDs used to represent the bulb, (circled in the image above).

It is recommended that three boards are configured this way for this part of the
demonstration.

Step 2 Program the bulb software

The following pre-built binaries are provided in the Application Note for use on
the evaluation kit boards. It is recommended that the three types of bulb software
are used to create a white, CCT and colour bulb, (either of the white bulb builds
may be used).

0x11111111s_DeviceBulbWhite_JN516X_Router_JN5168_v0000.bin

This binary file is for a white bulb driving the three white LEDs, shown with a
white circle in the image above, on the Carrier Board and Lighting/Sensor
Expansion Board combination.

0x11111111s_DeviceBulbWhite_DR1175_Router_JN5168_v0000.bin

This binary file is for a white bulb driving the RGB LED, shown with a magenta
circle above, (displaying white only), on the Carrier Board and Lighting/Sensor
Expansion Board combination.

0x11111111s_DeviceBulbTemperature_DR1175_Router_JN5168_v0000.bin

This binary file is for a CCT bulb driving the RGB LED, shown with a magenta
circle above, (displaying CCT colours only), on the Carrier Board and
Lighting/Sensor Expansion Board combination.

 JenNet-IP Smart Home

Application Note

62 © NXP Laboratories UK 2015 JN-AN-1162 v2004

0x11111111s_DeviceBulbColour_DR1175_Router_JN5168_v0000.bin

This binary file is for a colour bulb driving the RGB LED, shown with a magenta
circle above, (displaying a full range of colours), on the Carrier Board and
Lighting/Sensor Expansion Board combination.

! It is recommended to erase the contents of the device’s
EEPROM when programming the device otherwise it may
retain settings for an old network and be prevented from
joining the new network created in this section.

Step 3 Add the bulbs to the network

Follow the general procedure for powering on the boards and white listing the
devices described in Section 4.1.2.3 "Adding Devices to the WPAN".

The three white LEDs or the RGB LED on the Lighting/Sensor Expansion Board
(DR1175) are controlled by the application and act as the bulb’s light source.

On power-up, the node will attempt to join the WPAN (for which the USB dongle

is the Coordinator). While the node is trying to join the network, the LEDs on the

expansion board will be fully illuminated (they are very bright and, to avoid eye

damage, you must not look directly into them for an extended period of time).

Step 4 Bulb feedback

Once the node has joined the network, the LEDs will flash twice to indicate this

and then remain fully illuminated.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 63

4.1.3.2 Global Bulb Control from PC

The lights in the WPAN can be controlled from the PC via IP. This method of

control allows the lights to be switched on, switched off and to alter the levels

individually, as a group or globally (all lights).

You can control the lights in the WPAN from the Smart Devices Demonstration

interface which is accessed by directing the web browser on the PC to the

following (case-sensitive) IP address (or via the gateway’s landing page):

http://192.168.11.1/SmartDevices.html

The Border Router Selection page is displayed first when accessing this

interface:

More than one border router may be connected to a LAN and the Smart Devices

interface allows the devices in many WPANs to be controlled together by

selecting multiple border routers in this interface.

When working with the evaluation kit there should only be a single border router

in the table. The IPv6 address is shown on th e left of the table. To select the

border router’s devices ensure that the tick box on the right of the table is ticked
and click the Discover Networks button.

The Border Router Selection page can be returned to from the other pages in

this interface by clicking the Settings drop-down then the Border Router

Selection option.

http://192.168.11.1/SmartDevices.html

 JenNet-IP Smart Home

Application Note

64 © NXP Laboratories UK 2015 JN-AN-1162 v2004

The Global tab should be displayed by default once the border routers have

been selected, (or it can be selected from the tabs along the top of each page).

In the Global tab, there is a set of controls as depicted in the figure below:

Using the controls, you can control all the bulbs in the network together:

 Switch the lights on by clicking on the On box

 Switch the lights off by clicking on the Off box

 Vary the brightness of the lights (dimmer operation) using the horizontal
control with the blue bar (to the right to brighten, to the left to dim) - this is
achieved by clicking the desired location in the bar (rather than moving the
vertical slider)

 Alter the colour temperature of CCT and colour bulbs by clicking the control
showing a square fading from blue at the top to red at the bottom. This will
open a new control window, clicking in the coloured area will set the bulb to
that colour. The Close button will close the window. Some CCT bulbs
cannot display the full range of colours and will get as close as they can to
the selected colour when an out-of-range value is selected.

 Alter colour of colour bulbs by clicking the control showing a circular colour
wheel. This will open a new window, clicking the colour circle will set the
bulb to that colour. Clicking the Start Loop button will cause the bulb to
loop around the colour wheel at its current saturation, the Stop Loop
button will end this, while the Close button closes the window.

Bulbs that do not support the colour features will not be affected by the use of the

colour controls. So white bulbs will not change when the CCT or colour is set and

white or CCT bulbs will not change when the colour wheel is used. The colour

controls will only be displayed if there are devices that support those features in

the WPAN.

The global control operates by using a multicast to the “All Devices” group that all

devices are placed into when started from the factory state. The group address

takes the form of a special IPv6 address, the address for the “All Devices” group

is FF15::F00F and is on the middle right of the image above.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 65

4.1.3.3 Individual Bulb Control from PC

The Individual tab contains sections for all the nodes in the WPAN which have

lights that can be controlled (a node is identified by a name and its IPv6

address). For each node, there is a set of controls as depicted in the figure

below.

The controls work in the same as the controls in the Global tab but only affect

the individual nodes.

The Individual tab only displays devices that have been discovered in the

network if devices are being powered cycled or started one at a time it may be
necessary to re-discover the devices in the network. Selecting the Refresh

Devices option from the Settings drop-down will re-discover the individual

devices in the network.

 JenNet-IP Smart Home

Application Note

66 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.3.4 Group Bulb Control from PC

The Group tab contains a section for two groups of lights (“Hall” and “Lounge”).

For each group, there is a similar set of controls as described above for the

Individual tab:

The group controls will have no effect on the bulbs currently in the network as

they have not yet been enrolled into the Hall or Lounge groups.

The lights within a group can be controlled synchronously by issuing a single

command for the group. For example, in a real situation, the table lamps in a

lounge could belong to a group, allowing all the table lamps to be switched on/off

or dimmed at the same time. Note that a light can be enrolled into more than one

group (or into no groups).

A group has an associated multicast address which is stored inside each

member node. A command for a group includes the relevant multicast address

but is broadcast to all nodes in the WPAN. A receiving node is able to use the

multicast address to identify itself as a member of the group and therefore

execute the command.

The JenNet-IP Smart Home demonstration transmits to the following fixed

groups from the Groups tab:

 “Hall” with multicast address FF15::A00A - this group is initially empty

 “Lounge” with multicast address FF15::B00B - this group is initially empty

The interface uses a group identifier which is derived from the group’s multicast

address - for an IPv6 multicast address of the format FF15::gggg, the group

identifier is of the format 0x15gggg (for example, FF15::A00A is abbreviated to

0x15A00A).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 67

Groups of lights can be set up from the JenNet-IP Browser, which runs on the

Linksys router and is accessed via a normal web browser on the PC. The

JenNet-IP browser is accessed by directing the web browser on the PC to the

following (case-sensitive) IP address (or via the gateway’s landing page):

http://192.168.11.1/Browser.html

 Opening the JenNet-IP Browser in a new tab will make
switching between the two interfaces easier.

The first page displayed is a Border Router Selection page that operates

identically to the Border Router Selection page in the Smart Devices
Demonstration interface. Select the Border Router and then the Discover

Networks button to display the devices in the network:

In the above example each node is listed by name. The default names are

assigned automatically according to the device type, (the user can change the

names to more meaningful values by editing the Node MIB’s DescriptiveName

variable):

 ‘Border-Router’ refers to the USB dongle attached to the Linksys router

 The entry beginning with “B” refers to the WPAN nodes that are running
the white bulb device firmware - for example, ‘BE634r68 2FBB3C’ where
‘B’ indicates a White Bulb, ‘E634’ is the Product ID of the device, ‘r’
indicates a router node, ‘68’ indicates that a JN5168 chip is being used.
The final ‘2FBB3C’ is the least significant part of the MAC address of the
node.

 Entries beginning ‘P’ indicate CCT Bulbs.

 Entries beginning ‘C’ indicate colour Bulbs.

http://192.168.11.1/Browser.html

 JenNet-IP Smart Home

Application Note

68 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Clicking on a network node displays a Node MIBs page for that particular node,

containing a list of the Management Information Bases (MIBs) on the node, as

illustrated in the screenshot below for a colour bulb device:

The IPv6 address of the relevant node is shown on the near the top of the page.

The name of each MIB in the device is presented on the left and the MIB ID on

the right.

Clicking on the Devices tab will take you back to the devices page.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 69

To configure the node’s group memberships, click on the Groups MIB on the

Node MIBs page. This takes you to the Groups MIB page that lists the variables

contained in the Groups MIB, as illustrated in the screenshot below.

The Groups table variable lists the groups the device is currently a member of.

The 0x15F00F group is the “All Devices” groups that all devices place

themselves into by default, the 0x15FE04 group is the “All Bulbs” group that all

bulb devices place themselves into by default, the 0x15FE0C is the “Colour

Bulbs” group that CCT and colour bulbs place themselves into by default.

This page can be used to modify the group memberships of the node (with IPv6

address indicated at the top of the page), by means of the following fields:

 AddGroup: To add the node to a group:

a) Enter the identifier of the group in this field (removing the curly bracket,
if necessary), e.g. 0x15A00A for the “Hall” group.

b) Click on the Set button for AddGroup.

c) Refresh the Groups table by clicking the Refresh button. The new
group should now appear in the Groups section of the page.

 JenNet-IP Smart Home

Application Note

70 © NXP Laboratories UK 2015 JN-AN-1162 v2004

 RemoveGroup: To remove the node from a group:

a) Enter the identifier of the group in this field (removing the curly bracket,
if necessary), e.g. 0x15B00B for the “Lounge” group.

b) Click on the Set button for RemoveGroup.

c) Refresh the Groups table by clicking the Refresh button. The group
should now disappear from the Groups section of the page.

 ClearGroups: To remove the node from all groups:

a) Enter any value in this field.

b) Click on the Set button for ClearGroups.

c) Click on the orange MIB Groups tab to refresh the page. All groups
should now disappear from the Groups section of the page.

The group addresses are displayed and entered using a shortened version of the
IPv6 group address. A value of 0x15A00A is expanded into a full IPv6 address of
FF15::A00A. The leading FF is assumed for all values displayed and entered into
the variables in this MIB and the 15 is shifted to the most significant position
(after the assumed FF). The remaining digits are right shifted into the least
significant position of the IPv6 address with zeros padding out the middle

Once bulbs have been added to the “Hall” group (0x15A00A) or “Lounge” group
(0x15B00B) they can be controlled from the Group page of the gateway’s Smart
Devices Demonstration interface.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 71

4.1.3.5 Scene Bulb Control from PC

The lights on the nodes in the WPAN can be enrolled into scenes. The lights

participating in a scene can be set to different states by broadcasting a command

to activate a scene to the network. For example in a real situation a “night” scene

might consist of a single bulb turned on at minimum brightness while turning off

all other lights. A “reading” scene could dim all lights in a room to the minimum

brightness while setting a single reading lamp to full brightness.

Note that a light can be enrolled into more than one scene (or into no scenes).

Scenes must be configured using the JenNet-IP Browser. The Smart Devices
interface may be used to activate a limited number of scenes, alternatively full
control is available via the JenNet-IP Browser.

The Scene tab in the Smart Devices Demonstration interface presents four fixed
scenes that can be activated by clicking the appropriate button:

Each scene is identified by a 16-bit Scene ID, the Scene IDs allocated in the
Smart Home Demonstration interface are shown below:

Scene Name Scene ID

Home 0xA00A

Away 0xB00B

Movie 0xC00C

Reading 0xD00D

The following instructions describe how to configure and activate scenes. The
steps below operate by first changing the current settings of the bulbs to match
the settings they should display in the scene, then telling the bulb to use the
current settings for a particular scene. An alternative method that allows the
settings to be set in a single operation, without altering the current settings, is
also available.

 JenNet-IP Smart Home

Application Note

72 © NXP Laboratories UK 2015 JN-AN-1162 v2004

To configure the bulbs to take part in a scene follow the instructions below:

Step 1 Apply bulb settings to be used in the scene

The first step in configuring a scene is to place the bulbs taking part in the scene
into the state that they should be in when the scene is activated.

Use the Smart Devices Demonstration interface to navigate to the Individual tab
and use the controls to alter the state of the bulbs as they should appear when
the scene is activated.

For example, to set the bulbs into appropriate state for a “reading” scene ensure
the white bulb is on at full brightness and turn off the CCT and colour bulbs.

Step 5 Enroll bulbs into the scene

Next the bulbs need to be told to apply their current state when placed into the
scene. Use the JenNet-IP Browser to navigate to the DeviceScene MIB for the
first bulb as shown in the screenshot below:

Each scene is identified by a 16-bit Scene ID. The Smart Devices interface
provides controls to activate 4 different scenes, including a “reading” scene with
an ID of 0xD00D. To configure the bulb to apply its current settings when the
reading scene is activated enter “0xD00D” into the AddSceneId variable and
click the Set button.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 73

The enrolment of the bulb into the scene can be checked by refreshing the
SceneTable variable:

The first row of data should be non-zero. The highlighted section of the data is
the Scene ID which should match that entered into the AddSceneId variable
previously. The remaining data identified the device type the scene applies to
and the settings for that scene. The above screenshot is for a white bulb, the
CCT and colour bulbs will contain additional data used to specify the colour to be
applied when the scene is activated.

The device can be added to additional scenes by repeating this step.

Additional bulbs can be added to the scene by repeating this step on those
devices. For example when configuring the “reading” scene the process should
be repeated on all three bulbs.

 JenNet-IP Smart Home

Application Note

74 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 6 Activating a scene

In order to better observe the effects of activating the scene the bulbs should be
set to medium brightness and turned on from the Smart Devices Demonstaration
interface using the Global tab.

The “reading” scene configured in the previous section can be easily activated
from the Smart Devices interface on the Scenes tab. Click the “Reading” scene
control to activate the scene. The white bulb will turn on (if off) and adjust to the
brightness set when the bulbs were placed into the “reading” scene. The CCT
and colour bulbs will turn off (if on).

The scene activation works by writing the Scene ID to the BulbControl MIB’s
Scene ID variable.

Step 7 Removing bulbs from a scene (optional)

A bulb can be removed from a scene by entering the appropriate Scene ID into
the DelSceneId variable and clicking the Set button.

Bulbs not taking part in a scene are unaffected when that scene is activated.

This can be observed by removing one of the colour bulbs from the reading
scene, ensuring it is on, and observing that it no longer turns off when the scene
is activated.

Step 8 Updating a scene (optional)

The settings for a scene can be updated by altering the state of the bulb then re-
adding the bulb to the scene by re-entering the Scene ID into the AddSceneId
field again.

This can observed by altering the remaining CCT or colour bulb enrolled into the
reading scene so it is on a full brightness, then repeating the entry of the Scene
ID. When the scene is activated this bulb should turn on a full brightness in
addition to the white bulb.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 75

4.1.4 Operating the Remote Control

The lights on the nodes of the WPAN can be controlled from within the network

using the remote control. This method of control allows the lights to be switched

on, switched off and the levels controlled.

This section adds a remote control to the system created earlier to create the

system shown below:

4.1.4.1 Setting Up the Remote Control

In setting up the remote control part of the demo system, you will need the

following components:

 LAN part of the system

 Bulbs operating in the network.

 Remote control programmed with appropriate firmware

 Batteries for the above board

To set up the remote control part of the system follow the instructions below:

 JenNet-IP Smart Home

Application Note

76 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 1 Program the remote control software

The following pre-built binary is provided in the Application Note for use on the
remote control.

0x11111111s_DeviceRemote_RD6035_JN5168_v0000.bin

This is the binary file for the remote control device running on the remote control.

! It is recommended to erase the contents of the device’s
EEPROM when programming the device otherwise it may
retain settings for an old network and be prevented from
joining the new network created in this section.

Step 2 Set up the remote control hardware

Remove the battery compartment slide-cover on the rear of the remote control

and insert two of the supplied AAA batteries (the required polarities are indicated

inside the battery compartment). Then replace the cover.

On installing the batteries, the remote control will automatically power up. The

unit will then attempt to join the WPAN that has been created by the USB dongle

(Coordinator) attached to the Linksys router. The left LED on the remote control

will flash twice per second while the unit is trying to join the network, but the unit

will not be able to join until it has been white listed.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 77

 Note 1: If the remote control has been previously used, it will
remember the last network to which it belonged. To clear this
information and return to the factory settings, either erase the
EEPROM during programming or enter the following key
sequence into the unit: PRG OFF DOWN OFF [# O - O].

Note 2: While the remote control will initially join the WPAN as
a Router node, it will then discard its Router functionality and
become a ‘sleeping broadcaster’ (see Section 3.1). In order to
wake the unit from sleep at any time, press the Wake (circle)
button located below the keypad.

Step 9 Add the remote control to the network

Follow the general procedure for powering on the boards and white listing the
devices described in Section 4.1.2.3 "Adding Devices to the WPAN".

Step 10 Remote control feedback

Once the unit has joined the network, the left LED will illuminate solidly for 5
seconds before being extinguished (note that the unit does not sleep and wake
while trying to join a network, and should therefore not be left in this state for a
long period of time in order to conserve battery power).

After joining the network, the remote control enters a configuration mode for

about 30 seconds, during which the left LED will flash slowly. This mode provides

an opportunity for configuration to be performed via the border router, but is not

used in this demonstration. Once out of this mode, the left LED is extinguished

and the unit enters ‘sleeping broadcaster’ mode (when required, the unit can be

brought out of the sleep state by pressing the Wake (circle) button).

 JenNet-IP Smart Home

Application Note

78 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.4.2 Global Bulb Control from Remote Control

The remote control allows the control of a group of nodes or all the nodes in the

network. Nodes can only be controlled individually if they have been assigned to

separate groups, one node per group. Therefore, if groups of nodes have not

been configured, the remote control can only be used to control all lights

(synchronously).

The main operations that can be performed on the lights from the remote control

are described below.

 Note 1: All possible operations and their associated key
sequences are summarised in Section 4.1.4.4 "Remote
Control Command Tables".

 Note 2: If the remote control is sleeping (the left LED does
not illuminate when a key is pressed), the unit must be
activated using the Wake (circle) button below the keypad
before entering any command sequences.

The main operations that can be performed on the lights from the remote control
are described below:

Step 1 Select the Global Group

The remote control broadcasts commands to a group address. To select the
global “All Devices” group the * key should be pressed. This group address will
be used for all future transmissions until a different group address is selected
using the A, B, C or D group keys.

Step 2 Turn off bulbs

The bulbs (in the selected group) can be turned off by pressing the key:

OFF [O]

Step 3 Turn on bulbs

The bulbs (in the selected group) can be switched on by pressing the key:

ON [I]

If a light is off when this key is pressed, it will be illuminated in the same state
that it had before it was last switched off.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 79

Step 4 Changing the brightness of lights

First select the brightness level parameter by pressing the 1 key. All future level

commands will affect the brightness level until a different level parameter is

selected using the 2, 3 or 4 keys.

The bulbs (in the selected group) can be increased in brightness by pressing the

key:

UP [+]

 The brightness will only increase while the key is being pressed, until the
key is released or maximum brightness is reached (to avoid eye damage,
do not look directly into the LEDs when they are at or near maximum
brightness).

 If a light is off when this key is pressed, the command will switch on the
light.

The lights (in the selected group) can be decreased in brightness by pressing the

key:

DOWN [-]

 The brightness will only decrease while the key is being pressed, until the
key is released or the minimum brightness is reached (the lights cannot be
completely switched off with this key).

 If a light is off when this key is pressed, the command will have no effect.

Step 5 Changing the colour temperature of lights

First select the colour temperature level parameter by pressing the 4 key.

The Up (+) and Down (-) keys will control the colour temperature of CCT and
colour bulbs in a similar way to controlling the brightness level.

Step 6 Changing the saturation of lights

First select the saturation level parameter by pressing the 2 key.

The Up (+) and Down (-) keys will control the saturation of colour bulbs in a
similar way to controlling the brightness level.

Step 7 Changing the hue of lights

First select the hue level parameter by pressing the 3 key.

The Up (+) and Down (-) keys will control the hue of colour bulbs in a similar way
to controlling the brightness level.

The effect is only noticeable when the colour of the bulb is somewhat saturated,
changing the hue of a bulb while it is white in colour will have no visible effect.

When changing the hue the colour cycles round the colour wheel, in order to
allow colour bulbs displaying different colours to be brought to the same colour
using the remote control the hue up and down controls stop at red at the
minimum and maximum hue values.

 JenNet-IP Smart Home

Application Note

80 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 8 Test modes

Each of the level parameters has a test mode that is accessed by pressing the >
key, it has the following effects depending upon the selected level parameter:

Level Parameter Effect

Brightness Toggles the bulbs between on and off

Saturation Displays random colours and saturations. Pressing the button ends
the mode and returns to the original settings.

Hue Loops continuously around the colour wheel at the current saturation.
Pressing the button ends the effect and returns to the original
settings.

CCT Displays random colours and brightness in the orange region of the
CCT band. Pressing the button a second time ends the effect and
returns to the original settings.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 81

4.1.4.3 Group Bulb Control from Remote Control

This section describes how to set up groups of lights (WPAN nodes) for control

from the remote control in the WPAN.

On the remote control, there are keys for four default groups: A, B, C and D.

These groups are initially empty. In addition, there is a key for the All group (the *

key). The running nodes in the WPAN will be automatically put into the All group.

To assign one or more nodes to another group (other than All), follow the

instructions below:

 Note 1: When assigning a node to a group, the radio
transmitter of the remote control operates in a low-power
mode. This requires the unit to be brought near to the node to
be added to a group.

 Note 2: Group memberships set up using the remote control
are particular to that unit and do not automatically apply to
other remote controls or to control from a PC via the Smart
Devices interface.

 Note 3: Grouping also provides a method of controlling
individual nodes from the remote control, by assigning one
node per group.

Step 1 Remove the nodes that are not required in the group

The nodes that are not required in the group should be powered off (e.g. by
removing their batteries) or positioned some distance from the nodes that are
required in the group.

Step 2 Locate the remote control near to the node to be added

Place the remote control close to the node to be added to the group.

Step 3 Add the node to the group

Add the nearby node to the group by entering the following key sequence into
the remote control: PRG UP ON GRP [# + I A/B/C/D]

 For group A, enter: # + I A

 For group B, enter: # + I B

 For group C, enter: # + I C

 For group D, enter: # + I D

 JenNet-IP Smart Home

Application Note

82 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 4 Repeat for another node

If another node is to be added to the group, repeat the procedure from Step 2.

 Note: A node can be removed from a group using the
command PRG DOWN OFF GRP - for example, for group A
the required key sequence is # - O A.

Once bulbs have been added to a remote control’s group they can be controlled
from the remote control by first pressing the key (A, B, C or D) for the group to be
controlled and then using the command keys (O, I, +, -).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 83

4.1.4.4 Remote Control Command Tables

The following tables show all the commands that can be used on the remote
controls:

Generic Expansion Board (DR1199) Remote Control

The table below summarises the key sequences and associated operations that

can be performed from the Carrier Board (DR1174) fitted with the Generic

Expansion Board (DR1199).

Note that this remote control transmits commands to a group address unique to

each remote control – devices must be added to the remote control’s group

before they can be controlled.

Operation Key Combination

Switch on lights in selected group ON SW1

Switch off lights in selected group OFF SW2

Increase brightness of lights in selected group (increase

occurs while key UP [SW3] key is pressed). If a light is off, it is
switched on.

UP SW3

Decrease brightness of lights in selected group (decrease

occurs while key DOWN [SW4] key is pressed). If a light is off,
command has no effect.

DOWN SW4

Add nodes (within radio range) to the remote’s group (the radio
is put in a low-power mode for this operation)

ON + UP SW1 + SW3

Commission and then add bulbs (within radio range) to the

remote’s network.
PRG + ON DIO8 + SW1

Remove nodes (within radio range) from the remote’s group
(the radio is put in a low-power mode for this operation)

ON + DOWN SW1 + SW4

Decommission nodes (within radio range) from the specified

group.
PRG + DOWN DIO8 + SW4

Commission nodes (within radio range) to learn network

settings in extending standalone WPAN to full JIP system, use
for devices that do not have specific commissioning sequences.
(Bulbs and Remote Controls should be commissioned using the
device specific sequences)

PRG + UP DIO8 + SW3

Commission an additional Remote Control Unit (within radio
range) to act as independent Remote Control Unit for WPAN.

PRG + OFF DIO8 + SW2

Try to join an existing WPAN. ON + Power SW1 + RESET

Create a standalone WPAN. PRG + Power DIO8 + RESET

Perform a factory reset. OFF + Power SW2 + RESET

Table 7: DR1199 Remote Control Key Sequences and Associated Operations

SW1 = ON SW2 = OFF SW3 = UP SW4 = DOWN DIO8 = PRG Power = RESET

 JenNet-IP Smart Home

Application Note

84 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Touch Remote Control (RD6035/DR1159 5v4)

The table below summarises the key sequences and associated operations that
can be performed from the evaluation kit remote control. Note that a selected
group or level parameter is used for all future operations, the group and level do
not need to be re-selected prior to every command.

Operation Key Sequence

Switch on lights in selected group [GRP/ALL] ON A/B/C/D/* I

Switch off lights in selected group [GRP/ALL] OFF A/B/C/D/* O

Increase level of lights in selected group (increase occurs while

key UP [+] key is pressed).
[GRP/ALL] [LVL] UP

A/B/C/D +
* +

Decrease level of lights in selected group (decrease occurs

while key DOWN [-] key is pressed).
[GRP/ALL] [LVL] DOWN

A/B/C/D -
* -

Select Brightness Level Parameter LVL 1

Select Saturation Level Parameter LVL 2

Select Hue Level Parameter LVL 3

Select CCT Level Parameter LVL 4

Add nodes (within radio range) to the specified group (the radio
is put in a low-power mode for this operation)

PRG UP ON GRP/ALL # + I A/B/C/D/*

Commission and then add bulbs (within radio range) to the

specified group as well as to the ‘All’ group.
PRG ON OFF ON GRP # I O I A/B/C/D

Commission and then add bulbs (within radio range) to the
‘All’ group only.

PRG ON OFF ON ALL # I O I *

Remove nodes (within radio range) from the specified group
(the radio is put in a low-power mode for this operation)

PRG DOWN OFF GRP/ALL # - O A/B/C/D/*

Decommission nodes (within radio range) from the specified

group.
PRG OFF ON OFF GRP # O I O A/B/C/D

Decommission nodes (within radio range) from the ‘All’ group
only.

PRG OFF ON OFF ALL # O I O *

Commission an additional Remote Control Unit (within radio
range) to act as independent Remote Control Unit for WPAN.

PRG ON OFF ON DOWN # I O I -

Commission an additional Remote Control Unit (within radio
range) to act as cloned Remote Control Unit for WPAN.

PRG ON OFF ON UP # I O I +

Commission nodes (within radio range) to learn network

settings. (Bulbs, Remote Controls and Low Energy Devices
should be commissioned using the device specific sequences)

PRG ON OFF ON OFF # I O I O

Join an existing WPAN. PRG UP DOWN UP # + - +

Create a standalone WPAN. PRG DOWN UP DOWN # - + -

Perform a factory reset. PRG OFF DOWN OFF # O - O

Perform a software reset. PRG ON UP ON # I + I

Table 7: RD6035 Remote Control Key Sequences and Associated Operations

I = ON O = OFF + = UP - = DOWN # = PRG * = ALL

GRP = A, B, C or D LVL = 1, 2, 3 or 4

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 85

4.1.5 Operating the Low Energy Switch

The lights on the nodes of the WPAN can be controlled from within the network

using the low energy switch. This method of control allows the lights to be

switched on and off. With suitable hardware featuring additional inputs it could be

extended to allow control of the bulb levels.

This section adds a low energy switch to the system created earlier to create the

system shown below:

4.1.5.1 Setting up the Low Energy Switch

In setting up the low energy switch part of the demo system, you will need the

following components:

 LAN part of the system

 Bulbs operating in the network.

 Carrier Board programmed with appropriate firmware

 Batteries for the above board

To set up the low energy switch part of the system follow the instructions below:

 JenNet-IP Smart Home

Application Note

86 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 1 Setup low energy switch hardware

The low energy switch software runs on a Carrier Board (DR1174) as shown
below:

The reset button marked RST, (circled in the image above), is used to wake the
switch from deep sleep mode and transmit commands to the bulbs.

Step 2 Program the low energy switch software

The following pre-built binaries are provided in the Application Note for use on
the evaluation kit boards.

CH21_LowEnergySwitch_DR1174_v0000.bin

This binary file is compiled to operate on channel 21 only. The channel used for
the network can be found in the Gateway Configuration Interface accessed via
the JenNet-IP > 6LoWPANd tab. If you are using a different channel you can
perofrm one of the following actions:

 Compile the low energy switch software for a different channel by changing
the CHANNEL variable in the makefile for the low energy switch.

 Move the network to channel 21 by first changing the channel in the
Gateway Configuration interface, then factory resetting the devices in the
network so they re-join the network on the new channel. (The devices in
this application note lock themselves onto the channel and PAN ID of the
network they join to reduce the re-join time – this behaviour can be altered
by changing the application code so they scan all channels and PAN ID for
use in systems where the channel may be regularly changed.)

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 87

Step 3 Add the low energy switch to the network

Unlike the other devices in this Application Note the low energy switch does not

join the network in the normal way, it simply broadcasts commands to bulbs

whenever it is powered up or reset.

However the low energy switch must still be added to the white list in the

gateway for its commands to be recognised by the network.

Once the node has been powered up press the reset button a few times. This will

generate some commands and make the nodes in the network aware of its

presence. The bulbs send commands to the gateway indicating that there is a

low energy switch attempting to communicate with them that they do not

recognise. The gateway in turn will grey list the low energy switch adding its

MAC address to the table but leaving the tickbox unticked.

Add node to white list in the JenNet-IP Border Router Configuration interface
following the general instructions. The low energy switch uses a fixed security
key of 0x10203040506070801121314151617181, (instead of one derived from
the MAC address), which is which must be entered into the white list as shown in
the following screenshot:

 JenNet-IP Smart Home

Application Note

88 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 4 Once the low energy switch has been white listed devices receiving a command
from a switch for the first time will query the gateway and be informed if it is a
recognised device. Once authorised by the gateway devices in the network can
decode the commands and react to them as appropriate.

 At this stage the bulbs will not react to commands from the
low energy switch, the bulbs must be placed into the group
the low energy switch broadcasts its commands to as
described in the next section.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 89

4.1.5.2 Group Bulb Control from Low Energy Switch

This section describes how to add lights (WPAN nodes) to the groups used by

low energy switches from a PC via an IP connection. Groups of lights can be set

up from the JenNet-IP Browser, which runs on the Linksys router and is

accessed via a normal web browser on the PC.

The process is the same as one used in Section 4.1.3.4 "Group Bulb Control

from PC" but the unique group address used by each low energy switch must be

entered. This address is derived from the MAC address of the low energy switch

as follows:

FF15::MMMM:MMMM:MMMM:MMMM:0000

With the Ms replaced by the MAC address of the low energy switch. The

following screenshot shows the entry for a low energy switch with a MAC

address of 0x00158D000032D79D the group for which is entered into the
AddGroup variable as 0x1500158D000032D79D0000 (with an added 15

specifying a group address shown in bold). The MAC address of the low energy

switch can be easily copied from the white list entry set up in the previous

section.

 JenNet-IP Smart Home

Application Note

90 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Once the switch has been white listed and lights added to the low energy

switch’s group those lights can be toggled on and off each time the low energy

switch is reset by pressing and releasing the RST button on the Carrier Board

(DR1174).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 91

4.1.6 Operating the Occupancy Sensor

The lights on the nodes of the WPAN can be controlled from within the network

using the occupancy sensor. This method of control allows the lights to be

switched on when the sensor detects an area is occupied and off when

unoccupied.

This section replaces the low energy switch in the system created earlier with an

occupancy sensor to create the system shown below:

4.1.6.1 Setting up the Occupancy Sensor

In setting up the occupancy sensor part of the demo system, you will need the

following components:

 LAN part of the system

 Bulbs operating in the network.

 Carrier Board (DR1174) fitted with the Generic Expansion Board (DR1199)
programmed with appropriate firmware

or

Carrier Board (DR1174) fitted with Parallax PIR module programmed with
appropriate firmware

 Batteries for the above board

When using a single evaluation kit it is suggested that the board used as the low

energy switch be re-used as the occupancy sensor.

To set up the occupancy sensor part of the system follow the instructions below:

 JenNet-IP Smart Home

Application Note

92 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 1 Setup occupancy sensor hardware

Two hardware configurations are available for the occupancy sensor:

a) Occupancy Sensor using Generic Expansion Board

A Carrier Board fitted with the Generic Expansion Board may be used when
only the evaluation kit hardware is available for use. The button marked
SW4 on the Generic Expansion Board is monitored by the application and
acts as the occupancy sensor. The button registers as unoccupied when
pressed and occupied when released.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 93

b) Occupancy sensor using PIR module

A Carrier Board fitted with the following Parallax PIR module (item code:
555-28027) may be used to create an Occupancy Sensor using a real PIR
sensor, (the Parallax PIR module is not supplied as part of the evaluation
kit):

http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/Cate
goryID/51/List/0/SortField/0/Level/a/ProductID/83/Default.aspx

Install a Parallax PIR Module onto the Carrier Board as follows:

 Bend the OUT pin of the PIR module back 90 degrees.

 Insert the GND and VCC pins into the GND and 5V sockets of the
CN3 connector of the Carrier Board.

 Connect the OUT pin to socket 10 (DIO 1) on the CN2 connector of
the Carrier Board.

The following image shows the Parallax PIR module fitted to the Carrier
Board:

http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/CategoryID/51/List/0/SortField/0/Level/a/ProductID/83/Default.aspx
http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/CategoryID/51/List/0/SortField/0/Level/a/ProductID/83/Default.aspx

 JenNet-IP Smart Home

Application Note

94 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 2 Program the occupancy sensor software

The following pre-built binaries are provided in the Application Note for use on
the evaluation kit boards.

0x11111111s_DeviceSensorOccupancy_DR1174_Router_JN5168_v0000.bin
0x11111111s_DeviceSensorOccupancy_DR1174_EndDevice_JN5168_v0000.bin

The Router build operates as a Router node in the network, extending the
network for other devices to join and so must be permanently powered.

The End Device build operates as an End Device node in the network. End
Devices spend the majority of their time asleep and thus are suitable for battery
powered operation.

Either build may be used for this part of the demonstration, it is recommended to
use the End Device build in order to introduce an End Device node into the
network.

! It may be necessary to remove the Parallax PIR module
during programming, depending upon the power supply used,
as it draws additional power.

Step 3 Add the occupancy sensor to the network

Follow the general procedure for powering on the boards and white listing the
devices described in Section 4.1.2.3 "Adding Devices to the WPAN".

Step 5 Occupancy sensor feedback

The occupancy sensor does not provide any feedback when it joins a network.

The JenNet-IP Browser interface provided by the gateway can be used to check

if the occupancy sensor has joined the network.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 95

4.1.6.2 Occupancy Sensor Monitoring from PC

The sensors in the WPAN can be monitored from the PC via IP. This method of

monitoring allows the state of the sensor devices to be read.

Step 1 Access the JenNet-IP Browser

You can monitor the state of the sensors using the JenNet-IP Browser. Navigate
through the Border Router Selection page to display the Devices tab to display

the devices in the network as shown in the screenshot below:

Occupancy sensors use a default name beginning ‘O’, illustrated by the last entry

in the screenshot above.

 JenNet-IP Smart Home

Application Note

96 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 2 Select the occupancy sensor

Clicking on a network node displays a Node MIBs page for that particular node,

containing a list of the Management Information Bases (MIBs) on the node, as

illustrated in the screenshot for the occupancy sensor below:

A number of the MIBs are dedicated to the operation of the occupancy sensor.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 97

Step 3 Select the OccupancyStatus MIB

To monitor the status of the occupancy sensor, click on the OccupancyStatus

MIB on the MIBs page. This takes you to the OccupancyStatus MIB page that

lists the variables contained in the OccupancyStatus MIB, as illustrated in the

screenshot below.

The Occupancy variable indicates the occupancy state of the occupancy

sensor. A value of 0 indicates unoccupied while a value of 1 indicates occupied.

 The web page browser does not update in real time to read a
changed value the variable needs to be refreshed by pressing
the Refresh button.

Step 4 Monitor the occupancy state

The state will be updated to occupied as soon as the sensor hardware indicates

occupation, however the state is only updated to unoccupied when the hardware

sensor has reported unoccupied for a period of 30 seconds. The configuration of

the occupancy sensor, including the guard periods, can be altered by changing

the variables in the OccupancyConfig MIB, these variables are described in

detail in Section 5.3.1 "OccupancyConfig MIB".

The occupancy state is also indicated by the LEDs on the Carrier Board:

 When unoccupied LEDs D3 and D6 are off.

 When occupied LEDs D3 and D6 are on.

 JenNet-IP Smart Home

Application Note

98 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.6.3 Group Bulb Control from Occupancy Sensor

The lights on the nodes in the WPAN can be controlled from the occupancy
sensor devices. The bulbs are turned on and off based upon the measurements
taken from the sensors.

When unoccupied the bulbs are turned off, when occupied the bulbs are turned
on at full brightness.

The sensors are configured by default to broadcast bulb control commands to a
group address unique to each sensor. To configure a bulb to be controlled by a
sensor it simply needs to be added to the group the sensor transmits to using the
JenNet-IP Browser.

The sensor devices regularly re-transmit their most recent bulb control
commands in order to bring any bulbs that are powered cycled back under the
control of the device. These commands may conflict with any commands issued
through the gateway or from a remote control. It is best practice to remove such
bulbs from all groups except the group of sensor that should be controlling the
bulb.

Similar issues may arise when placing a bulb under the control of more than one
sensor device by adding it to multiple groups, for example controlling a bulb from
two occupancy sensors may cause conflicts if one sensor is reporting occupied
while the other reports unoccupied. It is possible to configure multiple occupancy
sensors to work together and/or with an illuminance sensor to provide combined
control, this mode of operation is covered later in the documentation.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 99

Step 1 Check the bulb control mode

Identify the sensor that should control the bulbs in the Browser’s device list and
navigate to the OccIllBulbConfig MIB for the occupancy sensor device:

This MIB is also used in the illuminance and combined occupancy/illuminance
sensor devices and is used to configure the way the bulbs should be controlled
by the sensor readings.

The Mode variable determines which sensors the sensor device should take into
account when controlling bulbs. The default value is set to a value appropriate to
the type of sensor device. The following values are available:

 0: Disable bulb control

 1: Control bulbs based upon the occupancy sensor, this is the default for
occupancy sensor devices, and should be used for this part of the
demonstration.

 2: Control bulbs based upon the illuminance sensor, this is the default for
illuminance sensor devices.

 3: Control bulbs based upon both the occupancy and illuminance sensor,
this is the default for combined occupancy/illuminance sensor devices.

 JenNet-IP Smart Home

Application Note

100 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 2 Copy the group address the occupancy sensor broadcasts commands to

The Address variable contains the group address the sensor device broadcasts
its bulb control commands to. The address is derived from the sensor device’s
MAC address and the MIB ID of the OccIllBulbConfig MIB forming a unique
address for each sensor device. Users may change the address if required to
manipulate the operation of the system, writing a value of 0 will revert the
address back to the default value.

Select and copy the address from the variable’s edit box.

Step 3 Remove bulb from existing groups

Next navigate to the Groups MIB for the bulb to be controlled from the sensor.

As the sensor regularly transmits commands to its group address it is best to
remove the bulb from any existing groups before adding it to the occupancy
sensor’s control group.

This can be achieved by entering a non-zero value in the ClearGroups variable
and clicking the Set button. Refreshing the Groups table should indicate that the
bulb has been removed from all groups, as shown in the screenshot below:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 101

Step 4 Add bulb to occupancy sensor’s control group

Paste the sensor’s group address into the AddGroup variable’s edit box. Delete
the “FF” immediately following the “0x” in the pasted value (this is the expected
format for group addresses used in the Groups MIB). Click the Set button. Check
that the bulb has been added to the group by refreshing Groups table, (it is
normal for intermediate 0s between the initial 15 and the rest of the group
address to be stripped out in this table). This final state is shown in the following
screenshot:

Step 5 Bulb control from occupancy sensor

The bulb should then be under the control of the sensor. Holding down SW4 on
the Generic Expansion Board (DR1199) or remaining stationary when using the
PIR module for approximately 30 seconds should cause the sensor to turn off the
light. The light should be turned back on immediately when SW4 is released or
motion detected.

These timings and other configuration settings can adjusted by altering the
variables described in Section 5.3.1 "OccupancyConfig MIB" .

The way the sensor interacts with the bulbs can be adjusted by altering the
variables described in Section 5.3.8 "OccIllBulbConfig MIB".

Step 6 Add additional bulbs to the occupancy sensor’s control group (optional)

Additional bulbs can be added to a sensor’s group by repeating the above steps.

 JenNet-IP Smart Home

Application Note

102 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.7 Operating the Illuminance Sensor

The lights on the nodes of the WPAN can be controlled from within the network

using the illuminance sensor. This method of control allows the brightness of the

lights to be adjusted to specified level automatically.

This section replaces a bulb in the system created earlier with an illuminance

sensor to create the system shown below (the occupancy sensor from the

previous section may be left in the network):

4.1.7.1 Setting up the Illuminance Sensor

In setting up the illuminance sensor part of the demo system, you will need the

following components:

 LAN part of the system

 Bulbs operating in the network.

 Carrier Board fitted with the Lighting/Sesnor Expansion Board programmed
with appropriate firmware

 Batteries for the above board

When using a single evaluation kit it is suggested that the one of the boards used

as a bulb be re-used as the illuminance sensor. In this case it is recommended to

erase the contents of the EEPROM during programming and also note that the

device will already be white listed in the gateway.

To set up the illuminance sensor part of the system follow the instructions below:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 103

Step 1 Setup the illuminance sensor hardware

The illuminance sensor software runs on a Carrier Board (DR1174) fitted with the
Sensor/Lighting Expansion Board (DR1175). The photo-diode marked U4 on the
Lighting/Sensor Expansion Board (circled in the image below) is monitored by
the application and acts as the illuminance sensor:

Step 2 Program the illuminance sensor software

The following pre-built binaries are provided in the Application Note for use on
the evaluation kit boards.

0x11111111s_DeviceSensorIlluminance_DR1175_Router_JN5168_v0000.bin
0x11111111s_DeviceSensorIlluminance_DR1175_EndDevice_JN5168_v0000.bin

The Router build operates as a Router node in the network, extending the
network for other devices to join and so must be permanently powered.

The End Device build operates as an End Device node in the network, End
Devices spend the majority of their time asleep and thus are suitable for battery
powered operation.

Either build may be used for this part of the demonstration, it is recommended to
use the Router build if you intend configure the occupancy sensor and
illuminance sensor to co-operate with each other.

Step 3 Add the illuminance sensor to the network

Follow the general procedure for powering on the boards and white listing the
devices described in Section 4.1.2.3 "Adding Devices to the WPAN".

Step 4 Illuminance sensor feedback

The illuminance sensor does not provide any feedback when it joins a network.

The JenNet-IP Browser interface provided by the gateway can be used to check

if the illuminance sensor has joined the network.

 JenNet-IP Smart Home

Application Note

104 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.7.2 Illuminance Sensor Monitoring from PC

To monitor the status of the illuminance sensor, navigate to the

IlluminanceStatus MIB page for the illuminance sensor in the JenNet-IP Browser.

The default name for the illuminance sensor begins with an ‘I’. This page lists the

variables contained in the IlluminanceStatus MIB as illustrated in the screenshot

below:

The LuxCurrent variable indicates the light level measured by the illuminance

sensor in Lux. This value can be changed by shading the sensor, shining a torch

on the sensor or altering the ambient lighting levels.

 The web page browser does not update in real time use the
Refresh button to update the LuxCurrent value to the most
recent reading.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 105

The illuminance sensor also provides a simple state in the form of the
TargetStatus variable. This value is the result of a comparison between the

measured illuminance and a target illuminance level, (set in the
IlluminanceControl MIB). The TargetStatus variable indicates the following

states:

 0: Sensor disabled

 1: On target

 2: Below target

 3: Above target

The illuminance state is also indicated by the LEDs on the Carrier Board:

 When on target both LEDs D3 and D6 are on

 When below target LED D3 is on and LED D6 is off

 When above target LED D3 is off and LED D6 is on

 JenNet-IP Smart Home

Application Note

106 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.7.3 Illuminance Sensor Control from PC

To alter the target illuminance - navigate to the IlluminanceControl MIB using the

JenNet-IP Browser as shown in the following illustration:

The LuxTarget variable is used to set the target illuminance in Lux that the

sensor should compare its readings against. The LuxBand variable is used to

set the width of the target band in Lux. Additional variables may be used to

adjust the target band in different ways, these variables are described in detail in

Section 5.3.7 "IlluminanceControl MIB".

The comparison of the measured light level against the target band is used when

controlling the brightness of lights in order to illuminate an area to a specified

brightness.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 107

4.1.7.4 Group Bulb Control from Illuminance Sensor

The lights on the nodes in the WPAN can be controlled from the illuminance
sensor devices. When the illuminance is lower than the target band the bulbs are
turned on and their brightness increased over time. When the illuminance is too
high the bulbs brightness is decreased over time and if the minimum brightness
is reached they are turned off.

In order to demonstrate the control of bulbs by an illuminance sensor it may be
necessary to shine a torch on the sensor to simulate bright conditions or cover
the sensor to simulate dark conditions and so cause a change in the bulb’s
brightness. In a true lighting system an illuminance sensor should be placed so
that the light from the bulbs being controlled falls upon the illuminance sensor
thus allowing the target band to be reached.

The illuminance sensors control the bulbs in exactly the same way as the

occupancy sensor, broadcasting commands to the bulbs using a group address

unique to the illuminance sensor.

The procedure for controlling bulbs from the illuminance sensor is the same as

that for the occupancy sensor, though a different control mode is specified that

also adjusts the bulbs brightness based upon the sensor reading.

Step 1 Check the bulb control mode

Identify the sensor that should control the bulbs in the Browser’s device list and
navigate to the OccIllBulbConfig MIB for the illuminance sensor device:

 JenNet-IP Smart Home

Application Note

108 © NXP Laboratories UK 2015 JN-AN-1162 v2004

The default Mode variable value should be set to 2, indicating that bulbs should
be controlled based upon readings from the illuminance sensor.

Step 2 Copy the group address the illuminance sensor broadcasts commands to

The Address variable contains the group address the sensor device broadcasts
its bulb control commands to. The address is derived from the sensor device’s
MAC address and the MIB ID of the OccIllBulbConfig MIB forming a unique
address for each sensor device. Users may change the address if required to
manipulate the operation of the system, writing a value of 0 will revert the
address back to the default value.

Select and copy the address from the variable’s edit box.

Step 3 Remove bulb from existing groups

Next navigate to the Groups MIB for the bulb to be controlled from the sensor.

As the sensor regularly transmits commands to its group address it is best to
remove the bulb from any existing groups before adding it to the Illuminance
Sensor’s control group. This can be achieved by entering a non-zero value in the
ClearGroups variable and clicking the Set button.

Step 4 Add bulb to occupancy sensor’s control group

Paste the sensor’s group address into the AddGroup variable’s edit box. Delete
the “FF” immediately following the “0x” in the pasted value (this is the expected
format for group addresses used in the Groups MIB). Click the Set button. Check
that the bulb has been added to the group by refreshing Groups table, (it is
normal for intermediate 0s between the initial 15 and the rest of the group
address to be stripped out in this table). This final state is shown in the following
screenshot:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 109

Step 5 Bulb control from illuminance sensor

The bulb should then be under the control of the sensor.

The default target brightness is set quite high, it may be necessary to shine a
torch on the light sensor, move it closer to light source or lower the target level to
observe the light sensor altering the brightness of the bulb device.

The default configuration also adjusts the brightness of the light very slowly it
may be necessary to illuminate the sensor for some time before the effect is
noticed. This behaviour can be altered by adjusting the variables in the sensor’s
OccIllBulbConfig MIB, see Section 5.3.8 "OccIllBulbConfig MIB" for full details.

In a properly set up system a brighter light source than the LEDs used on the
Lighting/Sensor Expansion Board would be used and the sensor sited so that the
light falls upon the illuminance sensor.

Step 6 Add additional bulbs to the illuminance sensor’s control group (optional)

Additional bulbs can be added to a sensor’s group by repeating the above steps.

 JenNet-IP Smart Home

Application Note

110 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.8 Co-operating Occupancy and Illuminance Sensors

The occupancy sensors can be configured to send their occupancy state to other
occupancy sensors, illuminance sensors or combined occupancy/illuminance
sensors. The receiving sensors can then take the occupancy state of many
external occupancy sensors into account when controlling bulbs:

 When any of the monitored occupancy sensors (or the local occupancy
sensor) report occupied the whole area covered by all the co-operating
sensors is considered occupied and bulbs are controlled appropriately.

 When all of the monitored occupancy sensors (including the local
occupancy sensor) report unoccupied the whole area covered by the co-
operating sensors is considered unoccupied and bulbs are controlled
appropriately.

The following steps describe how to configure an occupancy sensor to provide
its occupancy state to an illuminance sensor in order to control bulbs based upon
a combination of the two sensors.

The same steps may be followed to configure the monitoring of additional
occupancy sensors by the same illuminance sensor or to configure the
occupancy sensor reporting to another occupancy sensor or an
occupancy/illuminance sensor.

4.1.8.1 Setting up the Co-operating Sensors

In setting up the co-operating sensors part of the demo system, you will need the

following components:

 LAN part of the system

 Bulbs operating in the network

 Occupancy sensor operating in the network

 Illuminance sensor operating in the network

To set up the co-operating sensors part of the system follow the instructions

below:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 111

Step 1 Occupancy sensor transmission configuration

First the occupancy sensor needs to be configured to broadcast its occupancy
state to a group address. Navigate to the OccupancyConfig MIB of the
occupancy sensor in the JenNet-IP browser, as shown in the following
screenshot (with the default settings):

The occupancy sensor’s default configuration disables the transmission of the
occupancy state in order to prevent unneeded data being transmitted in the
network.

 JenNet-IP Smart Home

Application Note

112 © NXP Laboratories UK 2015 JN-AN-1162 v2004

To enable the transmission a non-zero value needs to be entered into the
StateMibId variable which defines the MIB ID to write the occupancy state into
when transmitting. All of the sensor devices include an OccupancyMonitor MIB to
receive such updates with an MIB ID of 0xFFFFFE32. Enter “0xFFFFFE32” into
the StateMibId variable and click the Set button to enable transmission of the
occupancy state, (as shown in the screenshot below).

The occupancy sensor’s default configuration also uses an invalid variable index
to write the data to. To correctly configure the transmission the variable index of
the OccupancyMonitor MIB’s Occupancy variable’s index needs to be specified
which has an index value of 2. Enter “2” into the into the StateVarIdx variable
and click the Set button to enable transmission, (also shown in the screenshot
below).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 113

This same configuration should be used in all the external occupancy sensor
devices to be monitored. The receiving device will take the source address of the
received message into account in order to monitor multiple occupancy sensors.

Finally the occupancy sensors are configured to transmit their occupancy status
to a group address derived from the MAC address of the device and the MIB ID
of the OccupancyConfig MIB, thus creating a group address unique to the
sensor. This group address is specified in the StateAddress variable. Select this
value and copy it for use in configuring the receiving sensor.

The use of a group address allows many sensors to receive the occupancy
status of a single occupancy sensor if required. However the transmission
address may also be changed by the user to adapt the behaviour of this feature.

 JenNet-IP Smart Home

Application Note

114 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 2 Illuminance sensor group configuration

The receiving illuminance sensor needs to be configured to receive the
transmissions from the occupancy sensor.

The first step is to add the illuminance sensor to the group the occupancy sensor
is transmitting its command to. Navigate to the Groups MIB for the illuminance
sensor as shown in the following screenshot:

Paste the occupancy sensor’s group address into the AddGroup variable’s edit
box. Delete the “FF” immediately following the “0x” in the pasted value to enter
the group address with the correct formatting. Click the Set button.

The illuminance sensor should now be able to receive the broadcasts from the
occupancy sensor.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 115

Step 3 Illuminance sensor monitoring configuration

The next step is to enable the illuminance sensor to monitor the external
occupancy sensor, (as this is disabled by default). Navigate to the
OccupancyMonitor MIB for the receiving sensor as shown in the screenshot
below:

Change the value of the Mode variable from “0” to “1” then click the Set button to
enable monitoring of external occupancy sensors.

The occupancy sensors regularly re-transmit their occupancy status even when it
remains unchanged. If a monitored occupancy sensor fails to send an update
within the period defined by the Timeout variable (in seconds) it is considered
lost and no longer taken into account when calculating the occupancy of the area
covered by the sensors.

The Occupancy variable is used to receive the occupancy state from all the
occupancy sensors being monitored.

 JenNet-IP Smart Home

Application Note

116 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 4 Illuminance sensor monitoring operation

Once the OccupancyMonitor MIB is enabled it should start receiving the
occupancy status from the external occupancy sensors. The status of the
external occupancy sensors can be monitored using the remaining variables of
the OccupancyMonitor MIB as shown in the screenshot below:

The Enabled variable is a bitmask, with each bit indicating if an external
occupancy sensor is being monitored.

The Occupied and Unoccupied variables are also bitmasks with each bit
indicating if an external occupancy sensor state is occupied or unoccupied
respectively.

The MaxDevices variable indicates the maximum number of external occupancy
sensors that can be monitored.

The DeviceTable variable lists the IPv6 Addresses of the external occupancy
sensors currently being monitored. Entry 0 corresponds to bit 0 in the bitmasks
used for the Enabled, Occupied and Unoccupied variables.

It may be necessary to refresh the variables or the entire page to update these
variables.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 117

Step 5 Illuminance sensor bulb control configuration

The final step, for a receiving illuminance sensor, is to configure bulb control to
take the occupancy state into account when controlling bulbs, (as the default
configuration only uses the illuminance state).

Navigate to the OccIllBulbConfig MIB for the receiving illuminance sensor as
shown in the screenshot below:

Change the default “2” value, (illuminance only control), to a “3” to enable control
of the bulbs based upon both the local illuminance state and external occupancy
states.

The bulb configured for control by the illuminance sensor in the previous section
should now be controlled by a combination of the occupancy and illuminance
sensors readings as follows:

 When all of the occupancy sensors report unoccupied the bulbs are turned
off.

 When any of the occupancy sensors report occupied the brightness of the
bulbs is controlled to bring the illuminance into the target illuminance band,
(which may include turning the bulbs on or off).

The bulb originally configured to be controlled by the occupancy sensor will
continue to be controlled by the occupancy sensor alone.

Step 6 Extending the system with additional bulbs and sensors

Additional bulbs can be brought under the control of appropriate sensors by
altering the groups they are enrolled in.

If the control of bulbs by the occupancy sensor alone is no longer required the
bulb control commands can be disabled to avoid unnecessary radio
communications.

Additional occupancy sensors can provide their readings to the illuminance
sensor by repeating the appropriate steps above.

Occupancy sensors are also able to provide their readings to other occupancy
sensors and also the combined occupancy/illuminance sensor described in the
following section.

 JenNet-IP Smart Home

Application Note

118 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.9 Operating the Combined Occupancy/Illuminance Sensor

The combined occupancy/illuminance sensor device contains all the MIBs that

are in the individual occupancy sensor and illuminance sensor devices, thus

providing the functionality of both devices in a single device.

This section replaces the illuminance sensor in the system created earlier with a
combined occupancy/illuminance sensor to create the system shown below (the
occupancy sensor from the previous section may be left in the network):

4.1.9.1 Operating the Combined Sensor

In setting up the combined sensor part of the demo system, you will need the

following components:

 LAN part of the system

 Bulbs operating in the network.

 Carrier Board (DR1174) fitted with the Lighting/Sensor Expansion Board
(DR1175)

 (Optional) Parallax PIR module

 Batteries for the above board

When using a single evaluation kit it is suggested that the board used as the

illuminance sensor be re-used as the combined sensor.

To set up the combined sensor part of the system follow the instructions below:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 119

Step 1 Setup combined sensor hardware

Two hardware configurations are available for the combined sensor:

a) Combined sensor using Lighting/Sensor Expansion Board only

A Carrier Board fitted with the Lighting/Sensor Expansion Board may be
used when only the evaluation kit hardware is available for use. As there are
no buttons on this expansion board the appropriate input on the DIO header
must be used instead. Inserting a wire into the input on CN2 marked 10
(indicated by a red arrow in the photo below) will allow the input to be
connected to ground (for unoccupied marked by a black arrow below) or left
to float high (for occupied).

 JenNet-IP Smart Home

Application Note

120 © NXP Laboratories UK 2015 JN-AN-1162 v2004

b) Combined sensor using Lighting/Sensor Expansion Board and PIR
module

A Carrier Board fitted with both a Lighting/Sensor Expansion Board and the
following Parallax PIR module (item code: 555-28027) may be used to
create an combined sensor using a real PIR sensor, (the Parallax PIR
module is not supplied as part of the evaluation kit):

http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/Cate
goryID/51/List/0/SortField/0/Level/a/ProductID/83/Default.aspx

Install a Parallax PIR Module onto the Carrier Board as follows:

 Bend the OUT pin of the PIR module back 90 degrees.

 Insert the GND and VCC pins into the GND and 5V sockets of the
CN3 connector of the Carrier Board.

 Connect the OUT pin to socket 10 (DIO 1) on the CN2 connector of
the Carrier Board.

The following image shows the Parallax PIR module fitted to the Carrier
Board and Lighting/Sensor Expansion Board combination:

http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/CategoryID/51/List/0/SortField/0/Level/a/ProductID/83/Default.aspx
http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/CategoryID/51/List/0/SortField/0/Level/a/ProductID/83/Default.aspx

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 121

Step 2 Program the combined sensor software

The following pre-built binaries are provided in the Application Note for use on
the evaluation kit boards.

0x11111111s_DeviceSensorOccupancyIlluminance_DR1175_Router_JN5168_v000
0.bin
0x11111111s_DeviceSensorOccupancyIlluminance_DR1175_EndDevice_JN5168_v
0000.bin

The Router build operates as a Router node in the network, extending the
network for other devices to join and so must be permanently powered.

The End Device build operates as an End Device node in the network, End
Devices spend the majority of their time asleep and thus are suitable for battery
powered operation.

Either build may be used for this part of the demonstration, if you intend to
experiment further by monitoring other occupancy sensors in the combined
sensor it is recommended to use the Router build to allow it to receive the
broadcast messages from the occupancy sensors.

! It may be necessary to remove the Parallax PIR module
during programming, depending upon the power supply used,
as it draws additional power.

Step 3 Add the combined sensor to the network

Follow the general procedure for powering on the boards and white listing the
devices described in Section 4.1.2.3 "Adding Devices to the WPAN" .

Step 4 Combined sensor feedback

The occupancy sensor does not provide any feedback when it joins a network.

The JenNet-IP Browser interface provided by the gateway can be used to check

if the occupancy sensor has joined the network.

4.1.9.2 Combined Sensor Monitoring from PC

To monitor the status of a combined occupancy/illuminance sensor, navigate to

the OccupancyStatus MIB to monitor the occupancy state or the

IlluminanceStatus MIB to monitor the illuminance state. These MIBs operate the

same way as those for the individual sensor devices. The combined sensor’s

default name begins with an ‘S’ to allow identification in the Devices tab.

The status of the combined device is indicated by the LEDs on the Carrier Board:

 When unoccupied LEDs D3 and D6 are off

 When occupied and on target LEDs D3 and D6 are on

 When occupied and below target LED D3 is on and LED D6 is off

 When occupied and above target LED D3 is off and LED D6 is on

 JenNet-IP Smart Home

Application Note

122 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.1.9.3 Combined Sensor Control from PC

The target illuminance is altered in exactly the same way as in the illuminance
sensor by changing the values of the LuxTarget and LuxBand variables in the

IlluminanceControl MIB.

4.1.9.4 Group Bulb Control from Combined Sensor

The lights on the nodes in the WPAN can be controlled from the combined
sensor devices in the following way:

 When unoccupied the lights are turned off, (in the same way as the
occupancy sensor device)

 When occupied the brightness of the lights is controlled to reach a
specified target level, (in the same way as the illuminance sensor device)

Configuring bulbs for control from the combined sensor is identical to the
configuration for the individual occupancy sensor and illuminance sensor. The
Mode variable in the OccIllBulbConfig MIB needs to be set to 3 (the default
value) to control bulbs based upon both the occupancy and illuminance readings,
as shown in the following screenshot:

This Mode variable can also be altered to control the bulbs based upon the
occupancy reading alone or the illuminance reading alone, in the same way as
the individual sensor devices.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 123

4.2 Standalone System Operation

The chapter describes how to use the contents of an evaluation kit to set up and

run the JenNet-IP Smart Home demonstration in ‘standalone’ mode. This

demonstration is based on an isolated WPAN with nodes containing lights, which

can be controlled wirelessly from a remote control.

The standalone version of the JenNet-IP Smart Home demonstration does not

provide IP connectivity. Therefore, unlike in the version of the demo described in

Section 4.1 "Gateway System Operation", the standalone WPAN cannot be

monitored and controlled from a remote PC via an IP connection. In practice, a

JenNet-IP system may be developed as a standalone system that can be

extended to a full system with IP connectivity by simply adding a gateway - for

example, an entry-level lighting system may be sold as a standalone system

consisting of lamps and a remote control until, with the potential to add IP

connectivity by purchasing an optional border router.

4.2.1 Standalone System Operation Overview

In the standalone version of the JenNet-IP Smart Home demonstration, lights on

the nodes of a WPAN can be controlled from a remote control within the WPAN.

The components of the evaluation kit used in the demonstration are as follows:

 Carrier Boards with Lighting/Sensor Expansion Boards: The four
Carrier Boards (DR1174) supplied in the kit are pre-fitted with
Lighting/Sensor Expansion Boards (DR1175) or Generic Expansion
Boards (DR1199) and JN516x modules. Each of these four board
assemblies acts as a node of the WPAN, where the JN516x module on
each node is programmed as a WPAN Router or End Device. These
boards are used to run the following devices:

 Bulb device: The white LEDs or the RGB LED (on the Lighting/Sensor
Expansion Boards) or LED2 (on the Generic Expansion Board) are the
lights to be controlled.

 Remote Control: The remote control acts as a node of the WPAN. In the
standalone version of the demo, described in this chapter, the unit can act
as the Coordinator which creates the WPAN, but normally acts as a
‘sleeping broadcaster’. In the latter mode, the device sleeps and only
wakes when it is needed to broadcast control commands (and does not
have the role of a conventional WPAN node). If sleeping, the unit must be
activated using the Wake button below the keypad before any other keys
are pressed.

 JenNet-IP Smart Home

Application Note

124 © NXP Laboratories UK 2015 JN-AN-1162 v2004

The standalone version of the JenNet-IP Smart Home demo system is illustrated

in the figure below:

During WPAN formation, the remote control is enabled as a Coordinator through

which other nodes join the WPAN. However, once the network has been formed,

the remote control is used in its default mode as a ‘sleeping broadcaster’.

Commands from the remote control will then be broadcast to nodes, so routing

down the WPAN tree will not be adhered to.

 Note: The remote control can be put into Coordinator mode
for node commissioning (through the key sequence PRG ON
OFF ON GRP). It will remain in this mode for 5 minutes, but
the mode can be exited at any time by pressing the Wake
button (below the keypad).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 125

4.2.1.1 Lighting Control from the Remote Control

In this demonstration, control commands will be entered into the remote control

and wirelessly broadcast (in JenNet-IP packets) to the WPAN nodes. A

command can be addressed to all nodes or to a pre-defined group of nodes.

A complete list of the operations that can be performed from the keypad is

provided in Section 4.1.4.4 "Remote Control Command Tables". The table below

provides a summary of the use of individual keys by the demonstration and the

figure shows the keypad of the remote control.

 Note: In this manual, operations are generally described as
function sequences followed by the key sequences in square
brackets - for example: PRG DOWN UP DOWN [# - + -]

Key Function Description

I ON Switch on light(s)

O OFF Switch off light(s)

+ UP Increase brightness of light(s)

- DOWN Decrease brightness of light(s)

PRG Programming mode

* ALL All groups

A GRP Group A

B Group B

C Group C

D Group D

• Wake Wake Remote Control Unit from sleep

 JenNet-IP Smart Home

Application Note

126 © NXP Laboratories UK 2015 JN-AN-1162 v2004

The remote control normally operates as a ‘sleeping broadcaster’. Thus, the unit

sleeps until it is needed. If sleeping, the unit can be activated using the Wake

(circle) button below the keypad. Once woken, the unit remains active for 10

minutes following the last key press before going back to sleep. When the unit is

active, pressing any key will cause the left LED to momentarily illuminate (if this

does not happen, you must first activate the unit using the Wake button).

4.2.2 Setting Up the Standalone System

This section describes how to set up the standalone demo system using the

evaluation kit remote control.

4.2.2.1 Setting Up the Remote Control

In setting up the remote control part of the demo system, you will need the

following components:

 Remote control programmed with appropriate firmware

 Batteries for the above board

To set up the remote control part of the system follow the instructions below:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 127

Step 1 Program the remote control software

The following pre-built binary is provided in the Application Note for use on the
evaluation kit remote control.

0x11111111s_DeviceRemote_RD6035_JN5168_v0000.bin

This is the binary file for the remote control device running on the evaluation kit
remote control.

! It is recommended to erase the contents of the device’s
EEPROM when programming the device otherwise it may
retain settings for an old network and be prevented from
joining the new network created in this section.

Step 2 Setting up remote control hardware

Remove the battery compartment slide-cover on the rear of the remote control

and insert two of the supplied AAA batteries (the required polarities are indicated

inside the battery compartment). Then replace the cover.

On installing the batteries, the remote control will automatically power up. The

unit will then attempt to join an existing WPAN. The left LED on the remote

control will flash twice per second while the unit is trying to join the network.

 JenNet-IP Smart Home

Application Note

128 © NXP Laboratories UK 2015 JN-AN-1162 v2004

 Note 1: If the remote control has been previously used, it will
remember the last network to which it belonged. To clear this
information and return to the factory settings, either erase the
EEPROM during programming or enter the following key
sequence into the unit: PRG OFF DOWN OFF [# O - O].

Note 2: While the remote control will initially create the the
WPAN as a Coordinator node, it will then discard its
Coordinator functionality and become a ‘sleeping
broadcaster’. In order to wake the unit from sleep at any time,
press the Wake (circle) button located below the keypad.

Step 4 Create the standalone network using the remote control

By default, the remote control is configured to join an existing WPAN in the full
JenNet-IP Smart Home demonstration described in Section 4.1 "Gateway
System Operation". To exit this mode and put the unit into standalone mode,
enter the following key sequence into the unit (you may first need to activate the
unit using the Wake button):

PRG DOWN UP DOWN [# - + -]

Step 5 Remote control feedback

The unit will then act as a WPAN Coordinator and create a WPAN. The left LED
on the remote control will flash while the unit is creating the network and will stay
illuminated for a few seconds once the network is created (with no other nodes
yet). The remote control will then revert to ‘sleeping broadcaster’ mode.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 129

4.2.3 Operating the Bulb Devices

This section describes how to setup and operate the bulb devices included in the

Application Note using a remote control in a standalone network.

4.2.3.1 Setting Up the Bulb Devices

In setting up the bulb part of the demo system, you will need the following

components:

 Remote control part of the system

 Three Carrier Boards (DR1174) fitted with JN516x modules and
Lighting/Sensor Expansion Boards (DR1175), antennae and batteries
programmed with the required firmware.

To set up the bulb part of the system follow the instructions below:

Step 1 Setup bulb hardware

The bulb software runs on a Carrier Board fitted with the Lighting/Sensor
Expansion Board as shown below:

The setup procedure is identical for the white, CCT and colour bulbs which differ
only in the LEDs used to represent the bulb, (circled in the image above).

It is recommended that three boards are configured this way for this part of the
demonstration.

 JenNet-IP Smart Home

Application Note

130 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Step 2 Program the bulb software

The following pre-built binaries are provided in the Application Note for use on
the evaluation kit boards. It is recommended that the three types of bulb software
are used to create a white, CCT and colour bulb, (either of the white bulb builds
may be used).

0x11111111s_DeviceBulbWhite_JN516X_Router_JN5168_v0000.bin

This binary file is for a white bulb driving the three white LEDs, shown with a
white circle in the image above, on the evaluation kit Carrier Board and
Lighting/Sensor Expansion Board combination.

0x11111111s_DeviceBulbWhite_DR1175_Router_JN5168_v0000.bin

This binary file is for a white bulb driving the RGB LED, shown with a magenta
circle above, (displaying white only), on the evaluation kit Carrier Board and
Lighting/Sensor Expansion Board combination.

0x11111111s_DeviceBulbTemperature_DR1175_Router_JN5168_v0000.bin

This binary file is for a colour controlled temperature bulb driving the RGB LED,
shown with a magenta circle above, (displaying CCT colours only), on the
evaluation kit Carrier Board and Lighting/Sensor Expansion Board combination.

0x11111111s_DeviceBulbColour_DR1175_Router_JN5168_v0000.bin

This binary file is for a colour bulb driving the RGB LED, shown with a magenta
circle above, (displaying a full range of colours), on the evaluation kit Carrier
Board and Lighting/Sensor Expansion Board combination.

! It is recommended to erase the contents of the device’s
EEPROM when programming the device otherwise it may
retain settings for an old network and be prevented from
joining the new network created in this section.

Step 3 Commission bulb into the remote control’s WPAN

To allow the node to join the WPAN of the remote control (note that at this stage,

the node will be assigned to a group):

a) Bring the remote control to within direct radio range of the node.

b) Put the remote control into Coordinator mode and enable the node to join
the WPAN by entering the following key sequence into the unit:

PRG ON OFF ON GRP [# I O I A/B/C/D/*]

 Note: In this key sequence, you must specify the group GRP
to which the node will be assigned: A, B, C, D or *. The star
(*) option refers to the All group. A node is automatically
added to the All group (as well as to the specified group).
However, you can specify the All group in the key sequence if
you do not wish the node to be assigned to any other group.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 131

c) Following the above key sequence, the remote control will allow 5 minutes
for nodes to join the network, during which the left LED on the unit will be
illuminated. At the end of this period, the unit will revert from Coordinator
mode to ‘sleeping broadcaster’ mode. You can escape from Coordinator
mode at any time by pressing the Wake button (below the keypad).

d) On power-up, the node will attempt to join the WPAN (for which the USB
dongle is the Coordinator). While the node is trying to join the network, the
LEDs on the expansion board will be fully illuminated (they are very bright
and, to avoid eye damage, you must not look directly into them for an
extended period of time).

e) Wait for the node to successfully join the network, which is indicated by the
LEDs on the node flashing twice and then remaining illuminated at full
brightness. In the case of a successful join, the left LED on the remote
control will also blink. If the node fails to join, power off the node (e.g.
remove the batteries) and restart from Step 3 (possibly bringing the remote
control closer to the node).

f) Once the node has joined the network, if the 5-minute timeout has not
elapsed then press the Wake button (below the keypad) on the remote
control to escape from Coordinator mode.

The three white LEDs or the RGB LED on the Lighting/Sensor Expansion Board
are controlled by the application and act as the bulb’s light source.

Step 4 Bulb feedback

Once the node has joined the network, the white LEDs will flash twice to indicate

this and then remain fully illuminated.

Step 5 Check that the node has joined the WPAN

Use the remote control to check that the node has joined the WPAN. For

example, use the unit to switch off the lights on the node by entering the

following key sequence into the unit:

GRP OFF [A/B/C/D/* O]

where GRP identifies the group to which the node was assigned.

Then switch all lights in the WPAN back on by entering the command GRP ON [*

I].

If the node fails to respond to commands from the Remote Control Unit, you

should return to Step 4 (and failing that, to Step 3).

Step 6 Start and install the next node (if any)

If there are still nodes to be started, start and install the next node as described

from Step 3.

 JenNet-IP Smart Home

Application Note

132 © NXP Laboratories UK 2015 JN-AN-1162 v2004

4.2.4 Global Bulb Control from Remote Control

Global control of the bulbs in the standalone more network is identical to that in a

gateway network as described in Section 4.1.4.2 "Global Bulb Control from

Remote Control".

4.2.5 Group Bulb Control from Remote Control

Global control of the bulbs in the standalone more network is identical to that in a

Gateway network as described in Section 4.1.4.3 "Group Bulb Control from

Remote Control".

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 133

5 MIB Variable Reference
This section provides reference information on the MIBs and variables created by

the JenNet-IP Smart Home (JN-AN-1162).

Section 4 "System Operation" describes how to perform common tasks using a

limited set of MIB variables, this section provides comprehensive details of all the

MIBs and their variables implemented in this Application Note including:

 Alternative ways to control bulb brightness and colour.

 Configuration of sensor device hardware.

 Configuration of sensor device control of bulbs.

Note that the JenNet-IP stack provides a number of MIBs and variables that
become available in every JenNet-IP device. These MIBs and variables are
documented in JenNet-IP WPAN Stack User Guide (JN-UG-3080). These are
the Node, JenNet, Groups, OND and Device ID MIBs.

There are a number of MIBs that are common to many different device types that
are implemented in the application. These have been taken from JenNet-IP
Application Template (JN-AN-1190) which contains full reference documentation
for the common MIBs. These are the NodeStatus, NodeControl, NwkConfig,
NwkProfile, NwkStatus, NwkSecurity, NwkTest and AdcStatus MIBs.

 JenNet-IP Smart Home

Application Note

134 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1 Bulb MIBs

The Bulb MIBs provide the main functionality for bulb devices, allowing them to
be monitored, configured and controlled.

5.1.1 BulbConfig MIB (0xFFFFFE01)

The BulbConfig MIB contains variables that can be used to configure the settings
used by the bulb.

5.1.1.1 LumRate Variable

Description

The LumRate variable specifies the speed at which the bulb should change
from one luminance level to another.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

1 to 255 The amount to alter the current luminance by every
10ms while fading to the target luminance.

Default

2 Full range change takes 1.25 seconds.

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 135

5.1.1.2 InitMode Variable

Description

The InitMode variable specifies the mode the bulb should enter at
initialisation.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 9 Use a specific mode from those in the BulbControl MIB
Mode variable.

10 to 255 Restore BulbControl MIB Mode variable value from flash.

Default

1 Bulb turned on mode.

Trap Notifications

On remote edit.

5.1.1.3 InitLumTarget Variable

Description

The InitLumTarget variable specifies the luminance target that should be
applied by the bulb at initialisation when the InitMode variable is applying a
mode rather than restoring from flash.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 255 Initial luminosity of bulb.

Default

255 Maximum luminosity.

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

136 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.1.4 DownUpCadFlags Variable

Description

The DownUpCadFlags variable specifies the conditions when the bulb should
display a cadence effect if the network connection is down or up.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0x01 The bulb should always display the down cadence when
the network reset or is lost.

0x02 The bulb should display the down cadence when the
network is down following a reset.

0x04 The bulb should display the down cadence when the
network is down following a factory reset.

0x10 The bulb should always display the up cadence
whenever the network is joined.

0x20 The bulb should display the up cadence the first time the
network is joined following a reset.

0x40 The bulb should display the up cadence the first time the
network is joined following a factory reset.

Default

0x20 The bulb should display the up cadence the first time the
network is joined following a reset.

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 137

5.1.1.5 DownCadence Variable

Description

The DownCadence variable specifies the cadence the bulb should display
when the network is down as specified by the DownUpCadFlags variable.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

The DownCadence variable is actually composed of 4 different settings each
being encoded into 1 byte of the specified value as follows:

0x000000FF The minimum luminosity is encoded as the least
significant byte of the value.

0x0000FF00 The maximum luminosity is encoded as the second least
significant byte of the value.

0x00FF0000 The fade rate is encoded as the second most significant
byte of the value. This is the number of luminosity steps
that the bulb should fade by each 10ms.

0xFF000000 The switch time is encoded as the most significant byte
of the value. This is the length of time in 10ms units to
switch between the min and max luminosity values.

 If both a fade and switch values are specified the fade
takes priority.

Default

0x0002ff50 Fade between max and 30% luminosity, (though
disabled by default DownUpCadFlags).

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

138 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.1.6 DownCadTimer Variable

Description

The DownCadTimer variable specifies the length of time the bulb should
display the down cadence as specified by the DownUpCadFlags variable.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 Disabled, the cadence effect is not enabled.

1 - 65534 The time to display the cadence effect in 10ms units.

65535 Continuously, the cadence effect is displayed until the
LumCadTimer variable or the LumCadence variable is
cleared.

Default

30000 5 minutes, (though disabled by default
DownUpCadFlags).

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 139

5.1.1.7 UpCadence Variable

Description

The UpCadence variable specifies the cadence the bulb should display when
the network is up (joined) as specified by the DownUpCadFlags variable.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

The UpCadence variable is actually composed of 4 different settings each
being encoded into 1 byte of the specified value as follows:

0x000000FF The minimum luminosity is encoded as the least
significant byte of the value.

0x0000FF00 The maximum luminosity is encoded as the second least
significant byte of the value.

0x00FF0000 The fade rate is encoded as the second most significant
byte of the value. This is the number of luminosity steps
that the bulb should fade by each 10ms.

0xFF000000 The switch time is encoded as the most significant byte
of the value. This is the length of time in 10ms units to
switch between the min and max luminosity values.

 If both a fade and switch values are specified the fade
takes priority.

Default

0x1000ff00 Switch quickly between max and min luminosity.

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

140 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.1.8 UpCadTimer Variable

Description

The UpCadTimer variable specifies the length of time the bulb should display
the down cadence as specified by the DownUpCadFlags variable.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 Disabled, the cadence effect is not enabled.

1 - 65534 The time to display the cadence effect in 10ms units.

65535 Continuously, the cadence effect is displayed until the
LumCadTimer variable or the LumCadence variable is
cleared.

Default

64 640ms.

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 141

5.1.2 BulbStatus MIB (0xFFFFFE00)

The BulbStatus MIB contains variables that indicate the status of the bulb. Each
variable and its use are described in the following chapters:

5.1.2.1 OnCount Variable

Description

The variable specifies how many times the bulb has been turned on.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535

Default

0

Trap Notifications

When bulb is turned on.

5.1.2.2 OnTime Variable

Description

The variable specifies how long the bulb has been turned on in seconds.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 4294967296

Default

0

Trap Notifications

 JenNet-IP Smart Home

Application Note

142 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Hourly while the bulb is on.

When the bulb is turned off.

5.1.2.3 OffTime Variable

Description

The variable specifies how long the bulb has been turned off in seconds.

Storage

Permanent.

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 4294967296

Default

0

Trap Notifications

Hourly while the bulb is off.

When the bulb is turned on.

5.1.2.4 ChipTemp Variable

Description

The chip temperature tenths of a degree Centigrade.

Type

Int16 Signed Integer, 16 bits

Access

Read

Values

-9996 to 4909 Temperature read by the bulb.

Default

As read

Trap Notifications

None

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 143

5.1.2.5 BusVolts Variable

Description

The BusVolts variable contains the bus voltage in the bulb measured on
ADC4 in volts.

Type

Int16 Signed Integer, 16 bits

Access

Read

Values

0 to 32767 Actual maximum is dependent upon bulb type.

Default

As read

Trap Notifications

None

 JenNet-IP Smart Home

Application Note

144 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.3 BulbScene MIB (0xFFFFFE03)

The BulbScene MIB contains variables that can be used to configure the scenes
used by the bulb.

The more flexible DeviceScene MIB should be used in preference to the
BulbScene MIB, which adds the ability to configure scenes without changing the
current settings. The BulbScene MIB is retained in the bulbs for backwards
compatibility with older controlling devices.

5.1.3.1 AddSceneId Variable

Description

When written to the AddSceneId variable adds or updates the specified scene
ID with the current settings of the bulb. If the Scene ID is new but there is not
an unused SceneId variable then the write will fail.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

1 to 65535 Scene ID to add.

Default

0 No scene added.

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 145

5.1.3.2 DelSceneId Variable

Description

When written to the DelSceneId variable deletes the specified Scene ID if in
use.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

1 to 65535 Scene ID to delete.

Default

0 No scene deleted.

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

146 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.3.3 SceneId Table

Description

The SceneId table specifies up to 8 Scene IDs that the bulb is currently
participating in. The corresponding SceneLumTarget tables specify the bulb’s
settings for the scene.

Storage

Permanent

Type

Uint16 [8] Unsigned Integer, 16 bits, 8 entries

Access

Read

Values

0 Unused scene.

1 to 65535 SceneId to participate in.

Default

0 Unused scene.

Trap Notifications

When altered by writing to the AddSceneId or DelSceneId variables.

5.1.3.4 SceneMode Table

Description

The SceneMode table specifies the bulb should be on or off for each scene.

Storage

Permanent

Type

Uint8 [8] Unsigned Integer, 8 bits, 8 entries

Access

Read

Values

0 Off.

1 On.

Default

0 Unused scene

Trap Notifications

When altered by writing to the AddSceneId or DelSceneId variables

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 147

5.1.3.5 SceneLumTarget Table

Description

The SceneLumTarget table specifies the luminance target for each scene.

Storage

Permanent

Type

Uint8 [8] Unsigned Integer, 8 bits, 8 entries

Access

Read

Values

0 to 255 Luminance of bulb when scene is applied.

Default

0 Unused scene

Trap Notifications

When altered by writing to the AddSceneId or DelSceneId variables.

 JenNet-IP Smart Home

Application Note

148 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.4 BulbControl MIB (0xFFFFFE04)

The BulbControl MIB contains variables that can be used to control the bulb.

5.1.4.1 Mode Variable

Description

The Mode variable specifies the operating mode of the bulb. At its most basic
it can be used to turn the bulb on and off however it also provides access to
additional modes for more advanced use.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 (Off) In this mode the bulb is completely turned off.

 When entering this mode from another the bulb is
instantly turned off, it does not fade to off.

1 (On) In this mode the bulb is turned on with the luminance set
by the Current and/or Target variables.

 When entering this mode from the Off mode the bulb is
instantly turned on to the previous Target luminance
level.

2 (Toggle On/Off) Writing this mode toggles between the On and Off
modes but only if the Mode is already set to Off or On.

 If the bulb is in On or Off mode when this value is written
the request will be successful but the final value of the
variable will be Off or On as appropriate.

 If the bulb is in any other mode when this value is written
the remote write will return failed.

3 (Test) In Test mode the bulb fades between minimum and
maximum luminance while the node is trying to join a
network.

 While in a network the bulb’s luminance is determined by
the strength of the signal to its parent node.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 149

4 (Down) When in Down mode the bulb fades from the current
luminance towards the minimum luminance.

 If the bulb reaches the minimum luminance while in this
mode the mode is updated to 1 (On).

 If the bulb is Off when entering this mode it will instantly
be turned on to the previous Target luminance before
starting to fade down.

5 (Up) When in Up mode the bulb fades from the current
luminance towards the maximum luminance.

 If the bulb reaches the maximum luminance while in this
mode the mode is updated to 1 (On).

 If the bulb is Off when entering this mode it will instantly
be turned on to the previous Target luminance before
starting to fade up.

6 (Down if On) This mode works in the same way as the Down mode
but only if the bulb is already in On mode when this
value is written. Otherwise a fail will be returned for the
remote set request.

7 (Up if On) This mode works in the same way as the Up mode but
only if the bulb is already in On mode when this value is
written. Otherwise a fail will be returned for the remote
set request.

8 (On if Down/Up) This mode turns the bulb on but only if it is fading up or
down. Should be used to end fading when using the
Down if On or Up if On modes.

9 (Failed) This mode indicates that the bulb hardware has failed
and so can no longer be controlled.

Default

1 (On) The default on power on can be altered using the
BulbConfig MIB InitMode variable.

Trap Notifications

On remote set.

When entering On mode from Down mode when the minimum luminance is
reached.

When entering On mode from Up mode when maximum luminance is
reached.

When the mode is changed as a result of applying a scene.

When the bulb hardware failure is detected.

 JenNet-IP Smart Home

Application Note

150 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.4.2 SceneId Variable

Description

The SceneId variable when set switches the bulb to the settings for the
specified Scene ID, if settings for the specified Scene ID are present in the
BulbScene MIB.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 None.

1 to 65535 Scene ID to switch to.

Default

0 None.

Trap Notifications

On remote set.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 151

5.1.4.3 LumTarget Variable

Description

The LumTarget variable specifies the required luminance of the bulb.

If the bulb is in the On mode when this is set it will fade from the current
luminance to the target luminance.

If the bulb is in the Off mode the value will be retained and applied when the
bulb is turned on.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 255 Target luminance for the bulb.

Default

255 The default on power on can be altered using the
BulbConfig MIB InitMode and InitLumTarget variables.

Trap Notifications

On remote set.

When entering On mode from Down, Up, ID or Test modes.

When changed as a result of applying a scene.

When setting the LumCurrent level in On or Off modes if the LumTarget level
is not already set to the new LumCurrent level.

When the LumTarget level is altered by setting the LumChange variable while
in On or Off modes.

 JenNet-IP Smart Home

Application Note

152 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.4.4 LumCurrent Variable

Description

The LumCurrent variable specifies the current luminance of the bulb.

If the bulb is in the On mode when this is set it will instantly change to the set
luminance.

If the bulb is in the Off mode the value will be retained and applied when the
bulb is turned on.

When the LumCurrent variable is set the LumTarget variable is updated to the
same value if it is currently different.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 255 Current luminance for the bulb.

Default

255 The default on power on can be altered using the
BulbConfig MIB InitMode and InitLumTarget variables.

Trap Notifications

On remote set.

When the LumCurrent level fades to the LumTarget level when in On mode.

When entering On mode from Down, Up, ID or Test modes.

When entering On, Down or Up modes from Off mode and the LumCurrent
level is not already set to the LumTarget.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 153

5.1.4.5 LumChange Variable

Description

The LumChange variable when set changes the LumTarget variable by the
set amount. This is most useful to jog the luminance level up and down by
fixed amounts.

Storage

Volatile

Type

Int16 Signed Integer, 16 bits

Access

Read, Write

Values

-255 to 255 Target luminance change for the bulb.

Default

0

Trap Notifications

On remote set.

 JenNet-IP Smart Home

Application Note

154 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.1.4.6 LumCadence Variable

Description

The LumCadence variable in conjunction with the LumCadTimer variable
allows a wide range of luminosity level fading and switching effects to be
implemented.

To take effect the LumCadence value must include a non-zero fade or switch
setting and the LumCadTimer variable must be non-zero.

When a cadence effect is ended the bulb will restore the current mode of the
lamp, if On the blub will fade to the target luminosity from the final luminosity
level of the cadence effect.

The LumCadence variable is used to specify the min and max luminosity of
the effect together with timings for either fading or switching between those
levels.

Storage

Volatile

Type

Unt32 Unsigned Integer, 32 bits

Access

Read, Write

Values

The LumCadence variable is actually composed of 4 different settings each
being encoded into 1 byte of the specified value as follows:

0x000000FF The minimum luminosity is encoded as the least
significant byte of the value.

0x0000FF00 The maximum luminosity is encoded as the second least
significant byte of the value.

0x00FF0000 The fade rate is encoded as the second most significant
byte of the value. This is the number of luminosity steps
that the bulb should fade by each 10ms.

0xFF000000 The switch time is encoded as the most significant byte
of the value. This is the length of time in 10ms units to
switch between the min and max luminosity values.

 If both a fade and switch values are specified the fade
takes priority.

Default

0

Trap Notifications

On remote set.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 155

5.1.4.7 LumCadTimer Variable

Description

The LumCadTimer variable in conjunction with the LumCadence variable
allows a wide range of luminosity level fading and switching effects to be
implemented.

To take effect the LumCadence value must include a non-zero fade or switch
setting and the LumCadTimer variable must be non-zero.

When a cadence effect is ended the bulb will restore the current mode of the
lamp, if On the blub will fade to the target luminosity from the final luminosity
level of the cadence effect.

The LumCadTimer variable is used to control the duration of the cadence
effect.

Storage

Volatile

Type

Unt16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 Disabled, the cadence effect is not enabled.

1 - 65534 The time to display the cadence effect in 10ms units.

65535 Continuously, the cadence effect is displayed until the
LumCadTimer variable or the LumCadence variable is
cleared.

Default

0

Trap Notifications

On remote set.

 JenNet-IP Smart Home

Application Note

156 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2 Colour MIBs

The Colour MIBs provide the colour functionality for CCT and colour bulb
devices, allowing them to be monitored, configured and controlled.

5.2.1 ColourConfig MIB (0xFFFFFE09)

The ColourConfig MIB contains variables that can be used to configure the
settings used by colour bulbs.

5.2.1.1 TransitionTime Variable

Description

The TransitionTime variable specifies the time to transition from the current
colour to a target colour in 10ms intervals. Multiples of the transition time are
also used to control the rate at which the colour components are altered when
in the Up and Down modes set by the ColourControl MIB’s Mode variable.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 to 65535 Transition time in 10ms intervals

Default

500 5 seconds.

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 157

5.2.1.2 InitMode Variable

Description

The InitMode variable specifies the colour mode the bulb should enter at
initialisation.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 10 Use a specific mode from those in the ColourControl MIB
Mode variable.

11 to 255 Restore ColourControl MIB Mode variable value from
flash.

Default

0 Stop (unchanging) mode.

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

158 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.1.3 InitXYTarget Variable

Description

The InitXYTarget variable specifies the colour target that should be applied by
the bulb at initialisation when the InitMode variable is applying a mode rather
than restoring from flash.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0x0 - 0xFFFFFFFF Initial colour of bulb.

Default

Varies White, (hardware dependent).

Trap Notifications

On remote edit.

5.2.1.4 XYPrimaryWhite Variable

Description

The XYPrimaryWhite variable specifies the white colour point of the bulb and
is used to ensure that the colours are set correctly.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0x0 - 0xFFFFFFFF White point of bulb.

Bits 31-16 X Component

Bits 15-0 Y Component

Default

Varies Hardware dependent.

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 159

5.2.1.5 XYPrimary1-6 Variables

Description

The XYPrimary1-6 variables specifies the primary colour points of the bulb
and are used to ensure that the colours are set correctly.

XYPrimary1 is commonly used as the red point, XYPrimary2 as the green
point and XYPrimary3 as the blue point. The other primaries may be used
when the bulb hardware has emitters in additional colours, (the colour
software however is written to operate on only red, green and blue primaries).

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0x0 - 0xFFFFFFFF Colour points of bulb.

Bits 31-16 X Component

Bits 15-0 Y Component

Default

Varies Hardware dependent.

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

160 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.1.6 CctMin and CctMax Variables

Description

These variables specify the colour temperature range that the bulb can
display in mireds.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 to 1000 In mireds.

Default

Varies Hardware dependent.

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 161

5.2.2 ColourControl MIB (0xFFFFFE0C)

The ColourControl MIB contains variables that can be used to control the colour
of bulbs.

5.2.2.1 Mode Variable

Description

The Mode variable specifies the operating mode of the bulb.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 (Stop) In this mode the colour of the bulb is static.

1 (Hue loop down) In this mode the hue of the bulb is continually looped
down.

2 (Hue loop up) In this mode the hue of the bulb in continually looped up.

3 (Test Hue/Sat) This test mode randomly alters the hue and saturation of
the bulb.

4 (Test CCT) This test mode randomly alters the luminance and colour
temperature of the bulb in the orange area of the CCT
spectrum.

5 (Hue Down) When in Hue Down mode the bulb lowers the hue over
time stopping when it reaches red.

 If the bulb reaches the minimum (red) while in this mode
the mode is updated to 0 (Stop).

6 (Hue Up) When in Hue Up mode the bulb increases the hue over
time stopping when it reaches red.

 If the bulb reaches the maximum (red) while in this mode
the mode is updated to 0 (Stop).

7 (Sat Down) When in Sat Down mode the bulb lowers the saturation
over time stopping when it reaches white.

 If the bulb reaches the minimum (white) while in this
mode the mode is updated to 0 (Stop).

8 (Sat Up) When in Sat Up mode the bulb increases the saturation
over time stopping when fully saturated.

 If the bulb reaches the maximum while in this mode the
mode is updated to 0 (Stop).

 JenNet-IP Smart Home

Application Note

162 © NXP Laboratories UK 2015 JN-AN-1162 v2004

7 (CCT Down) When in CCT Down mode the bulb lowers the colour
temperature over time stopping when it reaches blue.

 If the bulb reaches the minimum (blue) while in this mode
the mode is updated to 0 (Stop).

8 (CCT Up) When in CCT Up mode the bulb increases the colour
temperature over time stopping when it reaches red.

 If the bulb reaches the maximum (red) while in this mode
the mode is updated to 0 (Stop).

Default

0 (Stop) The default on power on can be altered using the
ColourConfig MIB InitMode variable.

Trap Notifications

On remote set.

When entering Stop mode from the Down or Up modes when the limit is
reached.

When the mode is changed as a result of applying a scene.

5.2.2.2 SceneId Variable

Description

The SceneId variable when set switches the colour to the settings for the
specified Scene ID, if settings for the specified Scene ID are present in the
DeviceScene MIB.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 None.

1 to 65535 Scene ID to switch to.

Default

0 None.

Trap Notifications

On remote set.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 163

5.2.2.3 XYTarget Variable

Description

The XYTarget variable specifies the required colour of the bulb in the XY
space. The bulb will transition from the current colour to the target colour over
time.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0x0 – 0xFFFFFFFF Target colour for the bulb.

Bits 31-16 X Component

Bits 15-0 Y Component

Default

White The default value is the white point for the bulb.

 The default on power on can be altered using the
BulbConfig MIB InitMode and InitLumTarget variables.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

 JenNet-IP Smart Home

Application Note

164 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.2.4 XYCurrent Variable

Description

The XYCurrent variable specifies the current colour of the bulb in the XY
space. The bulb will change to the new colour instantly.

When the XYCurrent variable is set the XYTarget variable is updated to the
same value if it is currently different.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0x0 to 0xFFFFFFFF Current colour for the bulb.

Bits 31-16 X Component

Bits 15-0 Y Component

Default

White The default value is the white point for the bulb.

 The default on power on can be altered using the
BulbConfig MIB InitMode and InitLumTarget variables.

Trap Notifications

On remote set.

When the XYCurrent level fades to the XYTarget level when in On mode.

When entering Stop mode from the Down or Up modes.

When altering the current colour via another variable.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 165

5.2.2.5 XTarget and YTarget Variables

Description

The XTarget and YTarget variables specifies the required colour of the bulb in
the XY space on a single axis. The bulb will transition from the current colour
to the target colour over time.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0x0 – 0xFFFF Target colour for the bulb.

Default

White The default value is the white point for the bulb.

 The default on power on can be altered using the
BulbConfig MIB InitMode and InitLumTarget variables.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

 JenNet-IP Smart Home

Application Note

166 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.2.6 HueTarget Variable

Description

The HueTarget variable specifies the required hue of the bulb. The bulb will
transition from the current colour to the target colour over time.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 – 3600 Target hue for the bulb in tenths of a degree.

Default

White The default value is the white point for the bulb.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 167

5.2.2.7 HueChange Variable

Description

The HueChange variable when set changes the HueTarget variable by the
set amount. This is most useful to jog the hue level up and down by fixed
amounts.

Storage

Volatile

Type

Int16 Signed Integer, 16 bits

Access

Read, Write

Values

-3600 to 3600 Target hue change for the bulb in tenths of a degree.

Default

0

Trap Notifications

On remote set.

 JenNet-IP Smart Home

Application Note

168 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.2.8 SatTarget Variable

Description

The SatTarget variable specifies the required saturation of the bulb. The bulb
will transition from the current colour to the target colour over time.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 – 255 Target saturation for the bulb.

Default

White The default value is the white point for the bulb.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 169

5.2.2.9 SatChange Variable

Description

The SatChange variable when set changes the SatTarget variable by the set
amount. This is most useful to jog the saturation level up and down by fixed
amounts.

Storage

Volatile

Type

Int8 Signed Integer, 8 bits

Access

Read, Write

Values

-127 to 127 Target saturation change for the bulb in tenths of a
degree.

Default

0

Trap Notifications

On remote set.

 JenNet-IP Smart Home

Application Note

170 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.2.10 HueSatTarget Variable

Description

The HueSatTarget variable specifies the required hue and saturation of the
bulb in a single operation. The bulb will transition from the current colour to
the target colour over time.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0x0 – 0xFFFFFFFF Target hue and saturation for the bulb.

Bits 23-8 Hue in tenths of a degree

Bits 7-0 Saturation

Default

White The default value is the white point for the bulb.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 171

5.2.2.11 HueSatCurrent Variable

Description

The HueSatCurrent variable specifies the required hue and saturation of the
bulb in a single operation. The bulb will change to the new colour instantly.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0x0 – 0xFFFFFFFF Target hue and saturation for the bulb.

Bits 23-8 Hue in tenths of a degree

Bits 7-0 Saturation

Default

White The default value is the white point for the bulb.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

 JenNet-IP Smart Home

Application Note

172 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.2.12 CctTarget Variable

Description

The CctTarget variable specifies the required colour temperature of the bulb.
The bulb will transition from the current colour to the target colour over time.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 – 1000 Target colour temperature for the bulb in mireds.

Default

White The default value is the white point for the bulb.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 173

5.2.2.13 CctCurrent Variable

Description

The CctTarget variable specifies the required colour temperature of the bulb.
The bulb will change to the new colour instantly.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 – 1000 Target colour temperature for the bulb in mireds.

Default

White The default value is the white point for the bulb.

Trap Notifications

On remote set.

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

 JenNet-IP Smart Home

Application Note

174 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.2.2.14 CctChange Variable

Description

The CctChange variable when set changes the CctTarget variable by the set
amount. This is most useful to jog the colour temperature level up and down
by fixed amounts.

Storage

Volatile

Type

Int16 Signed Integer, 16 bits

Access

Read, Write

Values

-1000 to 1000 CCT change for the bulb in mireds.

Default

0

Trap Notifications

On remote set.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 175

5.2.2.15 RedCurrent, GreenCurrent and BlueCurrent Variables

Description

These variables allow the current values for the red, green and blue channels
to be read from the bulb.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Target CCT change for the bulb in mireds.

Default

White The default value is the white point for the bulb.

Trap Notifications

When entering Stop mode from the Up or Down modes.

When changed as a result of applying a scene.

When altering the target colour via another variable.

 JenNet-IP Smart Home

Application Note

176 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3 Sensor MIBs

The Sensor MIBs provide the main functionality for sensor devices, allowing
them to be monitored, configured and controlled.

5.3.1 OccupancyConfig MIB (0xFFFFFE31)

The OccupancyConfig MIB contains variables that can be used to configure the
settings used by an occupancy sensor.

5.3.1.1 Sensitivity Variable

Description

The Sensitivity variable specifies the sensitivity setting for devices that
support such a feature.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 Disabled

1 to 255 Sensitivity where 1 is least sensitive and 255 most
sensitive.

Default

255 Full sensitivity.

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 177

5.3.1.2 UnnoccupiedDelay Variable

Description

The UnoccupiedDelay variable specifies the time period that the occupancy
sensor hardware must continuously indicate unoccupied for the device to
enter the unoccupied state. The time period is specified in 10ms intervals.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0 to 4294967296

Default

3000 30 seconds.

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

178 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.1.3 OccupiedDelay Variable

Description

When both OccupiedDelay and OccupiedEvents are set there must be
OccupiedEvents within the OccupiedDelay period from the sensor hardware
to register as occupied in the software.

When only OccupiedDelay is set the sensor hardware must indicate occupied
continuously for the whole period to register as occupied in the software.

When OccupiedDelay and OccupiedEvents are both zero the sensor will
enter the occupied state immediately upon an occupied transition from the
sensor hardware.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 to 65535

Default

0

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 179

5.3.1.4 OccupiedEvents Variable

Description

When both OccupiedDelay and OccupiedEvents are set there must be
OccupiedEvents within the OccupiedDelay period from the sensor hardware
to register as occupied in the software.

When only OccupiedEvents is set there must be OccupiedEvents from the
sensor hardware to register as occupied in the software.

When OccupiedDelay and OccupiedEvents are both zero the sensor will
enter the occupied state immediately upon an occupied transition from the
sensor hardware.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 255

Default

0

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

180 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.1.5 StateMibId Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
occupancy state whenever the state changes and at regular intervals. The
value of the StateMibId variable is the MIB ID written to in these
transmissions.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0 Disabled

0thers MIB ID to write to

Default

0

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 181

5.3.1.6 StateVarIdx Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
occupancy state whenever the state changes and at regular intervals. The
value of the StateVarIdx variable is the variable index written to in these
transmissions.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0-255 Variable index to write to

Default

255 Essentially disabled (MIBs are unlikely to have 255
variables)

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

182 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.1.7 StateAddress Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
occupancy state whenever the state changes and at regular intervals. The
value of the StateAddress variable is the address these transmissions are
sent to. The default value is a group address derived from the sensor’s MAC
address and the OccupancyConfig MIB ID.

Storage

Permanent

Type

Blob Blob, 128 bits

Access

Read, Write

Values

Any IPv6 address

Default

Device specific

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 183

5.3.1.8 StateRefresh Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
occupancy state whenever the state changes and at regular intervals. The
value of the StateRefresh variable specifies the period between transmissions
if the state is unchanged in 10ms intervals. A value of 0 disables the refresh
transmissions.

Storage

Permanent

Type

Uint16 Unsigned integer, 16 bits

Access

Read, Write

Values

0 Disabled

1 to 65535 Refresh interval in 10ms intervals

Default

1000 10 seconds

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

184 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.2 OccupancyStatus MIB (0xFFFFFE30)

The OccupancyStatus MIB contains variables that can be used to monitor the
status of an occupancy sensor.

5.3.2.1 Occupancy Variable

Description

The Occupancy variable indicates the occupancy state of the sensor.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 Unoccupied

1 Occupied.

Others Reserved

Default

0 Unoccupied.

Trap Notifications

On state changes.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 185

5.3.2.2 SensorType Variable

Description

The SensorType variable indicates the type of occupancy sensor.

Storage

Volatile (but usually a constant)

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 Passive Infra-red

1 Ultrasound.

2 Light Dependant Resistor

3 Microwave

Others Reserved

255 Unknown

Default

Hardware dependant

Trap Notifications

None.

 JenNet-IP Smart Home

Application Note

186 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.3 OccupancyControl MIB (0xFFFFFE34)

The OccupancyControl MIB contains variables that can be used to control an
occupancy sensor.

5.3.3.1 Mode Variable

Description

The Mode variable is used to set the operating mode of the sensor.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 Disabled

1 Enabled.

Others Reserved

Default

1 Enabled.

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 187

5.3.4 IlluminanceConfig MIB (0xFFFFFE39)

The OccupancyConfig MIB contains variables that can be used to configure the
settings used by an occupancy sensor.

5.3.4.1 StateMibId Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
illuminance state whenever the state changes and at regular intervals. The
value of the StateMibId variable is the MIB ID written to in these
transmissions.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 Disabled

0x0001 to 0xFFFF MIB ID to write to

Default

0

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

188 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.4.2 StateVarIdx Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
illuminance state whenever the state changes and at regular intervals. The
value of the StateVarIdx variable is the variable index written to in these
transmissions.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0-255 Variable index to write to

Default

255 Essentially disabled (MIBs are unlikely to have 255
variables)

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 189

5.3.4.3 StateAddress Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
illuminance state whenever the state changes and at regular intervals. The
value of the StateAddress variable is the address these transmissions are
sent to. The default value is a group address derived from the sensor’s MAC
address and the IlluminanceConfig MIB ID.

Storage

Permanent

Type

Blob Blob, 128 bits

Access

Read, Write

Values

Any IPv6 address

Default

Device specific

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

190 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.4.4 StateRefresh Variable

Description

When the StateMibId variable is non-zero it enables the transmission of the
illuminance state whenever the state changes and at regular intervals. The
value of the StateRefresh variable specifies the period between transmissions
if the state is unchanged in 10ms intervals. A value of 0 disables the refresh
transmissions.

Storage

Permanent

Type

Uint16 Unsigned integer, 16 bits

Access

Read, Write

Values

1 Disabled

1 to 65535 Refresh interval in 10ms intervals

Default

1000 10 seconds

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 191

5.3.5 IlluminanceStatus MIB (0xFFFFFE38)

The IlluminanceStatus MIB contains variables that can be used to monitor the
status of an illuminance sensor.

5.3.5.1 LuxCurrent Variable

Description

The LuxCurrent variable indicates the current Lux measurement of the
illuminance sensor.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535 Current illuminance in Lux

Default

None

Trap Notifications

On changes.

 JenNet-IP Smart Home

Application Note

192 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.5.2 TargetStatus Variable

Description

The TargetStatus variable indicates the status of the measured light level
compared to the target band set in the IlluminanceControl MIB.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 Disabled

1 OK, (within target band).

2 Low

3 High

Others Reserved

Default

None

Trap Notifications

On changes.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 193

5.3.5.3 SensorType Variable

Description

The SensorType variable indicates the type of illuminance sensor.

Storage

Volatile (but usually a constant)

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 Photodiode

1 CMOS

255 Unknown

Others Reserved

Default

Hardware dependant

Trap Notifications

None.

 JenNet-IP Smart Home

Application Note

194 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.5.4 LuxMin Variable

Description

The LuxMin variable indicates the minimum illuminance the sensor can
measure in Lux.

Storage

Volatile (but usually a constant)

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535 Minimum Lux

Default

Hardware dependant

Trap Notifications

None.

5.3.5.5 LuxMax Variable

Description

The LuxMax variable indicates the maximum illuminance the sensor can
measure in Lux.

Storage

Volatile (but usually a constant)

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535 Maximum Lux

Default

Hardware dependant

Trap Notifications

None.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 195

5.3.5.6 LuxTolerance Variable

Description

The LuxTolerance variable indicates the possible error of the illuminance
sensor in Lux where known.

Storage

Volatile (but usually a constant)

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 65535 Minimum Lux

Default

Hardware dependant

Trap Notifications

None.

 JenNet-IP Smart Home

Application Note

196 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.6 IlluminanceScene MIB (0xFFFFFE3B)

The IlluminanceScene MIB contains variables that can be used to configure the
scenes used by the illuminance sensor.

5.3.6.1 AddSceneId Variable

Description

When written to the AddSceneId variable adds or updates the specified
Scene ID with the current settings of the illuminance sensor. If the Scene ID is
new but there is not an unused SceneId variable then the write will fail.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

1 to 65535 Scene ID to add.

Default

0 No scene added.

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 197

5.3.6.2 DelSceneId Variable

Description

When written to the DelSceneId variable deletes the specified Scene ID if in
use.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

1 to 65535 Scene ID to delete.

Default

0 No scene deleted.

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

198 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.6.3 SetScene Variable

Description

When written to the SetScene variable sets or updates the specified scene
with all the settings for the scene. This allows a scene to be without having to
alter the device’s current settings.

Storage

Volatile

Type

Blob Blob with the following structure declared in
MibIlluminanceScene.h:

typedef struct

{

 uint16 u16Id;

 uint16 u16LuxTarget;

 uint16 u16LuxBand;

} PACK tsIlluminanceScene;

Access

Read, Write

Values

Any

Default

0 No scene set

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 199

5.3.6.4 SceneTable Variable

Description

The SceneTable table variable contains the Scene IDs and settings for all
scenes the device is taking part in.

Storage

Permanent

Type

Table Blob Table of blob each entry has the following structure
declared in MibIlluminanceScene.h:

typedef struct

{

 uint16 u16Id;

 uint16 u16LuxTarget;

 uint16 u16LuxBand;

} PACK tsIlluminanceScene;

Access

Read

Values

Any

Default

0 No scenes configured

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

200 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.7 IlluminanceControl MIB (0xFFFFFE3C)

The IlluminanceControl MIB contains variables that can be used to control an
illuminance sensor.

5.3.7.1 Mode Variable

Description

The Mode variable is used to set the operating mode of the sensor.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 Disabled

1 Enabled.

Others Reserved

Default

1 Enabled.

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 201

5.3.7.2 SceneId Variable

Description

The SceneId variable when set switches the illuminance sensor to the
settings for the specified Scene ID, if settings for the specified Scene ID are
present in the IlluminanceScene MIB.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 None.

1 to 65535 Scene ID to switch to.

Default

0 None.

Trap Notifications

On remote set.

 JenNet-IP Smart Home

Application Note

202 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.7.3 LuxTarget Variable

Description

The LuxTarget variable specifies the desired illuminance in the area the
illuminance sensor is monitoring in Lux.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 to 65535 Target illuminance in Lux (may be limited by hardware)

Default

750 750 Lux

Trap Notifications

On remote set.

Following changes due to using the Adjust variable.

On changes when using the LuxTargetChange variable

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 203

5.3.7.4 LuxBand Variable

Description

The LuxBandTarget variable specifies the width of the desired illuminance
band in the area the illuminance sensor is monitoring in Lux. The band is
cantered on the LuxTarget variable.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

10 to 150 Target illuminance in Lux (may be limited by hardware)

Default

50 50 Lux

Trap Notifications

On remote set.

Following changes due to using the Adjust variable.

On changes when using the LuxBandChange variable

 JenNet-IP Smart Home

Application Note

204 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.7.5 Adjust Variable

Description

The Adjust variable allows the LuxTarget and LuxBand variables to be altered
without having to set specific values for the variables. This operates as mode
control altering the variables while the Adjust variable has a particular value.
This is most useful when setting these values from remote controls.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 No adjustments

1 (Down) Decreases LuxTarget by 5 Lux every 10ms

2 (Up) Increases LuxTarget by 5 Lux every 10ms

3 (Narrow) Decreases LuxBand by 1 Lux every 10ms

4 (Widen) Increases LuxBand by 1 Lux every 10ms

Others Reserved

Default

0 No adjustments

Trap Notifications

On remote edits.

On reaching the minimum or maximum values for the LuxTarget or LuxBand
when reverting back to the No Adjustments value.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 205

5.3.7.6 LuxTargetChange Variable

Description

The LuxTargetChange variable when written to allows the LuxTarget variable
to be changed by a fixed amount in Lux. This is most useful to move the
LuxTarget up or down by a fixed amount without having to set an explicit
value. This may be useful on controls like a jog dial.

Storage

Volatile

Type

Int16 Signed Integer, 16 bits

Access

Read, Write

Values

-32768 to 32767 Changes to the LuxTarget variable are limited to the
variable’s range

Default

0 No change

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

206 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.7.7 LuxBandChange Variable

Description

The LuxBandChange variable when written to allows the LuxBand variable to
be changed by a fixed amount in Lux. This is most useful to change the
LuxBand by a fixed amount without having to set an explicit value. This may
be useful on controls like a jog dial.

Storage

Volatile

Type

Int16 Signed Integer, 16 bits

Access

Read, Write

Values

-32768 to 32767 Changes to the LuxBand variable are limited to the
variable’s range

Default

0 No change

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 207

5.3.8 OccIllBulbConfig MIB (0xFFFFFE3F)

The OccIllBulbConfig MIB contains variables that can be used to configure the
control of Bulb devices based upon readings from occupancy and illuminance
sensors.

5.3.8.1 Mode Variable

Description

The Mode variable specifies the sensor types that should be taken into
account when controlling bulbs.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 Disabled, no bulb control packets are transmitted.

1 Occupancy, when unoccupied bulbs are turned off, when
occupied bulbs are turned on at full brightness.

2 Illuminance, bulb brightness is altered until the measured
illuminance is within the target band (bulbs may be
turned on or off to achieve this). Best used when light
from bulbs falls on illuminance sensor.

3 Occupancy and illuminance (Auto), when unoccupied
bulbs are turned off, when occupied bulb brightness is
altered until the measured illuminance is within the target
band (bulbs may be turned on or off to achieve this).
Best used when light from bulbs falls on sensor.

4 Occupancy and Illuminance (Max), when occupied and
light level is low bulbs are turned on at maximum
brightness, when unoccupied or light level is high bulbs
are turned off. Best used when light from bulbs does not
fall on sensor.

5 Always Off, disregards sensors and keeps bulbs off.

6 Always On, used to disregard sensors and keep bulbs
on at maximum brightness.

Others Reserved.

Default

1 Occupancy for occupancy only sensor devices.

2 Illuminance for illuminance only sensor devices.

3 Occupancy and illuminance for combined sensor
devices.

 JenNet-IP Smart Home

Application Note

208 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 209

5.3.8.2 LuminanceDelta Variable

Description

Specifies the amount that the BulbControl MIB LumTarget variable should be
altered by when the measured illuminance is too low or too high.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 255

Default

1

Trap Notifications

On remote edit.

5.3.8.3 AdjustInterval Variable

Description

Specifies the time period between adjustments in 10ms intervals to the
BulbControl MIB LumTarget variable when being altered. Adjustments are
also limited by the time taken to obtain an illuminance reading.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 to 65535

Default

32 320ms

Trap Notifications

On remote edit.

 JenNet-IP Smart Home

Application Note

210 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.8.4 RefreshInterval Variable

Description

Specifies the time period between transmissions when no adjustments need
to be made in 10ms intervals. This is used to ensure that bulbs are brought
under control of the sensor when they are powered on if conditions are not
changing.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 to 65535

Default

1000 10s

Trap Notifications

On remote edit.

5.3.8.5 Address Variable

Description

This is the IPv6 address that bulb commands are transmitted to. The default
value is a group address derived from the sensor’s MAC address and the
IlluminanceConfig MIB ID.

Storage

Permanent

Type

Blob Blob, 128 bits

Access

Read, Write

Values

Any IPv6 address

Default

Device specific

Trap Notifications

On remote edit.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 211

5.3.9 OccupancyMonitor MIB (0xFFFFFE32)

The OccupancyMonitor MIB contains variables that can be used to monitor
occupancy sensors in other devices.

The “real” occupancy sensors must be configured to write to the Occupancy
variable using the variables in the OccupancyConfig MIB. Where the transmitting
device is using a broadcast group address the receiving device must be in the
group.

The OccIllBulbConfig MIB is able to control bulbs based upon the readings from
many occupancy sensors writing their data into the OccupancyMonitor MIB. The
area will considered to be occupied if any of the monitored occupancy sensors
report occupied, or if the local OccupancyStatus MIB Occupancy variable is set.

5.3.9.1 Mode Variable

Description

The Mode variable is used to set the operating mode of the monitor.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 Disabled

1 Enabled.

Others Reserved

Default

0 Disabled.

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

212 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.9.2 Timeout Variable

Description

The Timeout variable is used to invalidate older readings and is set in
seconds. Each time a device updates its reading a timer is started with this
value. If the timer expires before another write is received from the device it is
timed-out and not used when calculating occupancy. The Enabled variable
contains a read-only bitmask indicating which device readings are considered
valid.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 Disabled

1 to 65535 Timeout period in 1s intervals

Default

300 5 minutes.

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 213

5.3.9.3 Occupancy Variable

Description

The Occupancy variable is made available for occupancy sensors in other
devices to write into. The source address of the write is used to hold a record
for each device internally even though all devices write to the same variable.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 Unoccupied

1 Occupied

Others Reserved

Default

0 Unoccupied

Trap Notifications

On updates

 JenNet-IP Smart Home

Application Note

214 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.9.4 Enabled Variable

Description

The Enabled variable provides an overview of which entries in the device
table are in use, (have recent readings written to them), in the form of a
bitmask with each bit mapping to its corresponding device in the DeviceTable
variable.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 0xFFFFFFFF Bitmask of enabled sensors

Default

0

Trap Notifications

On changes.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 215

5.3.9.5 Occupied Variable

Description

The Occupied variable provides an overview of which monitored devices are
occupied in the form of a bitmask with each bit mapping to a corresponding
entry in the DeviceTable variable.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 0xFFFFFFFF Bitmask of sensors reporting occupied

Default

0

Trap Notifications

On changes.

5.3.9.6 Unoccupied Variable

Description

The Unoccupied variable provides an overview of which monitored devices
are unoccupied in the form of a bitmask with each bit mapping to a
corresponding entry in the DeviceTable variable.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 0xFFFFFFFF Bitmask of sensors reporting occupied

Default

0

Trap Notifications

On changes.

 JenNet-IP Smart Home

Application Note

216 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.3.9.7 MaxDevices Variable

Description

The MaxDevices variable indicates how many occupancy sensor devices can
be monitored.

Storage

Constant

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 32 Number of available monitors

Default

Device specific

Trap Notifications

None

5.3.9.8 DeviceTable Variable

Description

The DeviceTable table variable contains the IPv6 addresses of the occupancy
sensor devices currently being monitored.

Storage

Volatile

Type

Table Blob Table of blobs each entry is the IPv6 address structure
in6_addr declared in 6LP.h.

Access

Read

Values

Any

Default

0 No scenes configured

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 217

5.4 Remote MIBs

The Remote MIBs provide a common level of functionality for remote control
devices.

5.4.1 RemoteConfigGroup MIB (0xFFFFFE25)

The RemoteConfigGroup MIB contains variables to configure the group
addresses associated with the remote’s group buttons. These are used when
transmitting broadcast group commands from the remote.

5.4.1.1 Count Variable

Description

The Count variable specifies the number of group addresses supported by
the remote control.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Number of group addresses supported by device.

Default

? Device dependant.

Trap Notifications

None.

 JenNet-IP Smart Home

Application Note

218 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.4.1.2 Finish Variable

Description

The Finish variable is used to notify the remote control that configuration has
finished when the remote joins a network.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 Configuration not finished.

1 to 255 Configuration finished.

Default

? Device dependant.

Trap Notifications

None.

5.4.1.3 AddrX Variables

Description

The AddrX variables (where X is numeric starting from 0) provide access to
the group address variables associated with each button.

Storage

Permanent

Type

Blob Blob, 128 bits

Access

Read, Write

Values

Any Group address.

Default

? Device dependant.

Trap Notifications

None.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 219

5.5 Device MIBs

The Device MIBs provide a common level of functionality across many device
types. This allows basic control of different devices that implement the Device
MIBs.

The variables in these MIBs duplicate a subset of the variables in the device
specific MIBs.

5.5.1 DeviceConfig MIB (0xFFFFFEA1)

The DeviceConfig MIB is reserved for future use.

5.5.2 DeviceStatus MIB (0xFFFFFEA0)

The DeviceStatus MIB is reserved for future use.

 JenNet-IP Smart Home

Application Note

220 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.5.3 DeviceControl MIB (0xFFFFFEA2)

The DeviceControl MIB contains variables that can be used to control generic
devices.

5.5.3.1 Mode Variable

Description

The Mode variable specifies the operating mode of the device. At its most
basic it can be used to turn the device on and off however it also provides
access to additional modes for more advanced use.

Storage

Permanent

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 (Off) In this mode the device is turned off.

1 (On) In this mode the device is turned on.

2 (Toggle On/Off) Writing this mode toggles between the On and Off
modes but only if the Mode is already set to Off or On.

 If the device is in On or Off mode when this value is
written the request will be successful but the final value
of the variable will be Off or On as appropriate.

 If the device is in any other mode when this value is
written the remote write will return failed.

Default

? Device dependant.

Trap Notifications

On remote set.

When the mode is changed as a result of applying a scene.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 221

5.5.3.2 SceneId Variable

Description

The SceneId variable when set switches the device to the settings for the
specified Scene ID, if settings for the specified Scene ID are present in the
Device.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 None.

1 to 65535 Scene ID to switch to.

Default

0 None.

Trap Notifications

On remote set.

 JenNet-IP Smart Home

Application Note

222 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.5.4 DeviceScene MIB (0xFFFFFEA3)

The DeviceScene MIB contains variables that can be used to configure scenes
in generic devices.

As this MIB is intended for use in many different device types the data and
implementation of the MIB varies depending upon the device. This MIB is
currently only implemented in the bulb devices.

5.5.4.1 AddSceneId Variable

Description

When written to the AddSceneId variable adds or updates the specified scene
ID with the current settings of the device. If the Scene ID is new but there is
not an unused SceneId variable then the write will fail.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

1 to 65535 Scene ID to add.

Default

0 No scene added.

Trap Notifications

On remote edits.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 223

5.5.4.2 DelSceneId Variable

Description

When written to the DelSceneId variable deletes the specified Scene ID if in
use.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

1 to 65535 Scene ID to delete.

Default

0 No scene deleted.

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

224 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.5.4.3 AddScene Variable

Description

When written to the AddScene variable sets or updates the specified scene
with all the settings for the scene. This allows a scene to be set without
having to alter the device’s current settings.

The data structure used will be different in different devices types and also
incorporates the Device Type ID that the scene applies to, allowing devices
with a non-matching Device Type ID to ignore the request.

Storage

Volatile

Type (White Bulb – Device Type ID 0x00E1)

Blob Blob with the following structure declared in
MibDeviceScene.h:

typedef struct

{

 uint16 u16DeviceTypeId = 0x00E1;

 uint16 u16SceneId;

 uint8 u8BulbControlMode;

 uint16 u8BulbControlLumTarget;

} PACK tsDeviceScene;

Type (CCT Bulb – Device Type ID 0x00F2)

Blob Blob with the following structure declared in
MibDeviceScene.h:

typedef struct

{

 uint16 u16DeviceTypeId = 0x00F2;

 uint16 u16SceneId;

 uint8 u8BulbControlMode;

 uint16 u8BulbControlLumTarget;

 uint8 u8ColourControlMode;

 uint16 u16ColourControlCctTarget;

} PACK tsDeviceScene;

Type (Colour Bulb – Device Type ID 0x00F3)

Blob Blob with the following structure declared in
MibDeviceScene.h:

typedef struct

{

 uint16 u16DeviceTypeId = 0x00F3;

 uint16 u16SceneId;

 uint8 u8BulbControlMode;

 uint16 u8BulbControlLumTarget;

 uint8 u8ColourControlMode;

 uint32 u8ColourControlXYTarget;

} PACK tsDeviceScene;

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 225

Access

Read, Write

Values

Any

Default

0 No scene set

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

226 © NXP Laboratories UK 2015 JN-AN-1162 v2004

5.5.4.4 SceneTable Variable

Description

The SceneTable table variable contains the Scene IDs and settings for all
scenes the device is taking part in.

Storage

Permanent

Type (White Bulb – Device Type ID 0x00E1)

Table Blob Each blob entry in the table has the following structure
declared in MibDeviceScene.h:

typedef struct

{

 uint16 u16DeviceTypeId = 0x00E1;

 uint16 u16SceneId;

 uint8 u8BulbControlMode;

 uint16 u8BulbControlLumTarget;

} PACK tsDeviceScene;

Type (CCT Bulb – Device Type ID 0x00F2)

Table Blob Each blob entry in the table has the following structure
declared in MibDeviceScene.h:

typedef struct

{

 uint16 u16DeviceTypeId = 0x00F2;

 uint16 u16SceneId;

 uint8 u8BulbControlMode;

 uint16 u8BulbControlLumTarget;

 uint8 u8ColourControlMode;

 uint16 u16ColourControlCctTarget;

} PACK tsDeviceScene;

Type (Colour Bulb – Device Type ID 0x00F3)

Table Blob Each blob entry in the table has the following structure
declared in MibDeviceScene.h:

typedef struct

{

 uint16 u16DeviceTypeId = 0x00F3;

 uint16 u16SceneId;

 uint8 u8BulbControlMode;

 uint16 u8BulbControlLumTarget;

 uint8 u8ColourControlMode;

 uint32 u8ColourControlXYTarget;

} PACK tsDeviceScene;

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 227

Access

Read

Values

Any

Default

0 No scenes configured

Trap Notifications

On remote edits.

 JenNet-IP Smart Home

Application Note

228 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6 Software Reference
This section provides information on the software for each of the device types.
Every device follows the same basic flow of function calls that form a JenNet-IP
device application, as detailed in JenNet-IP WPAN Stack User Guide (JN-UG-
3080).

JenNet-IP applications are built using the JenNet-IP WPAN Stack API and
Integrated Peripherals API. The majority of application calls are into the top
layers of each stack, though there may be cases where the lower layers are
accessed directly.

The diagram below shows the layers upon which the application is written. The
black arrows represent the majority of calls to the upper layers of the stack, while
the lighter grey arrows indicate the minority of calls into the lower layers:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 229

6.1 Standard Device Software Features

This section covers features that are common to all device software.

The upper layer of application software for each device group is contained in a
folder named DeviceType, where Type is the type of the device. For example
the upper layer of software for the template application will be found in the
DeviceTemplate folder. Within this folder the main source file for the device,
including the entry point for the code, is found in a file named DeviceType.c.

Every JenNet-IP device shares common functionality. This common code is
located in the Common folder and all device types call into it to perform standard
processing tasks. This code is responsible for managing the device’s place in the
network.

The core application functionality of a JenNet-IP device is provided by the code
for the MIBs that the device supports. The code for the MIBs is grouped together
where a set of MIBs provide related functionality. The code for the MIBs can be
found in folders named MibGroup where Group is the name for the group of
MIBs.

The MibCommon folder groups together the MIBs that are found in all device
types. These MIBs provide functionality to manage the node and its place in the
network. The functions that implement these MIBs are called from the code
located in the Common folder, allowing them to be easily reused in all device
types.

Other MibGroup folders also exist to provide MIBs that are specific to certain
device types. For example, the MibBulb folder contains the code for the bulb
MIBs used by the bulb device. The functions that implement these MIBs are
called directly from the DeviceType.c module.

Some device types will also include a set of hardware driver source files in a
folder named DriverType where Type is the type of driver. These drivers are
called into from the MIB code that controls the hardware. All drivers of a specific
type share a common interface. This makes creating different types of a
particular device very easy, as only the hardware driver for the particular
hardware needs to be replaced.

The image below shows these application layers for the JenNet-IP Smart Home
(JN-AN-1162) bulb application:

The following sections describe the features commonly found in all these
components. Later sections describe the specific features of the code for each
device type, the common code and the MIB code.

 JenNet-IP Smart Home

Application Note

230 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.1.1 Standard DeviceType Folder Features

The source files for each device type are found in a folder named DeviceType,
where Type is the name of the device.

A makefile can be found in the Build sub-folder, while the source code is
located in the Source sub-folder.

6.1.1.1 Standard DeviceType Makefile

Each device type has a makefile. The makefile (or values passed into it on the
command line) determines which CPU and hardware platform the software is
built to run upon.

Makefile variables are also used to specify network parameters and settings.

Further makefile variables control which MIBs are built into the application and
also which MIBs are registered with JIP to make them available for use in the
device. This is most useful to add test MIBs during development while reducing
the memory overhead.

The following sections describe the significant variables used in the makefile.

TARGET

This variable specifies the target name for the compilation. It should only be
necessary to change this if creating a new device type from a copy of the
template.

JENNIC_SDK

This variable specifies the SDK installation in the Beyond Studio for NXP
toolchain that should be used to compile the application. It should not be
necessary to change this value.

JENNIC_CHIP

This variable specifies the microcontroller for which the software should be
compiled.

Each individual value creates a separate #define that is used to determine the
microcontroller type, where necessary, in the source code.

The following values are valid:

JN5168 for JN5168-001 chips, this creates the #define JENNIC_CHIP_JN5168.

JN5164 for JN5164-001 chips, this creates the #define JENNIC_CHIP_JN5164.

JENNIC_CHIP_FAMILY

This variable specifies the chip family.

JENNIC_CHIP_SHORT

This variable is a short, two-character name for the chip and is used to form the
default value for the Node MIB’s Name variable.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 231

DEVICE_NAME

This variable specifies the hardware platform for which the software should be
compiled. This generally equates to the circuit board on which the microcontroller
is mounted upon, but may also take into account additional hardware on other
circuit boards within the device.

In some devices, such as bulbs, the same source may be recompiled for
different hardware with just minor changes, usually at the lowest hardware driver
level, to support different hardware platforms.

This value is usually passed into make on the command line, depending upon

which build target was selected.

The #define MK_DEVICE_NAME is set to the contents of this variable in the
form of a string to allow source code decisions to be made based on the
hardware platform being targeted.

This variable is also used to select the values for the JIP Device ID, JIP Device
Type and Over Network Download Image via the JIP_DEVICE_ID,
JIP_DEVICE_TYPE and OND_DEVICE_TYPE makefile variables. The first two
of these are exposed to the source files as the #defines MK_JIP_DEVICE_ID
and MK_JIP_DEVICE_TYPE.

NODE_TYPE

This variable specifies the node type for which the application should be
compiled. The following options are available:

 Coordinator: The node runs as a Coordinator device. Only the template
device can be compiled as a Coordinator.

 Router: The node runs as a Router device.

 EndDevice: The node runs as an End Device.

This variable is usually passed into make on the command line.

The node type is exposed to the application source files as the #define
MK_NODE_TYPE.

NODE_TYPE_CHAR

This variable is a short, single-character name for the node type and is used to
form the default value for the Node MIB’s Name variable.

 JenNet-IP Smart Home

Application Note

232 © NXP Laboratories UK 2015 JN-AN-1162 v2004

NETWORK_ID

This variable specifies the 32-bit JenNet-IP Network ID used to control which
network the template binary is able to join. This value is surfaced to the source
code via the #define MK_NETWORK_ID.

Where devices are being created with the intention of interoperating with other
standard JenNet-IP devices and networks, the default value of 0x11111111
should be retained.

Where manufacturers are creating closed systems built from only their products
a value may be chosen at random. In particular, when building a system with a
Coordinator based upon the template (instead of the border router) it is sensible
to choose a different value for the NETWORK_ID. This is because the default
Coordinator template will accept any node attempting to join its network and thus
devices may not join the appropriate network when there is more than one in
range.

CHANNEL

This variable specifies the channels that the device may operate on. The default
value of 0 allows all channels, while a value between 11 and 26 allows only that
single channel. The value is surfaced to the source code via the #define
MK_CHANNEL

SECURITY

This variable specifies if radio communications should be encrypted. The default
value of 1 enables security mode, while a value of 0 disables security mode. This
value is surfaced to the source code via the #define MK_SECURITY.

It is recommended that security be used. While the application can be compiled
for unsecured use, it is not a supported mode of operation for the application.

PRODUCTION

This variable specifies if the binary is a production build and is surfaced to the
source code via the #define MK_PRODUCTION.

A value of 1 enables a production build, this will override the SECURITY variable
value by enforcing encryption of radio data, and also reset the software if an
exception is raised.

The default value of 0 disables a production build.

FACTORY_RESET_MAGIC

This variable can be used to overwrite the default magic number used to verify
the EEPROM contents.

It is sometimes useful to overwrite this to force a factory reset when updating
software in a device.

JENNIC_PCB

This variable specifies the evaluation kit hardware to compile for and includes
the appropriate platform libraries in the compilation.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 233

JENNIC_STACK

This variable specifies the networking stack to compile for and includes the
appropriate network libraries in the compilation.

There should be no need to change this value.

JENNIC_MAC

This variable specifies the IEEE 802.15.4 MAC libraries to be compiled into the
application.

There should be no need to change it from the default value.

OND_CHIPSET

This variable specifies the chip for which the binary is built, as used by the Over
Network Download (OND) functionality.

OND_DEVICE_TYPE

This is the 32-bit ID used to identify different software builds, as used in OND.

Usually this matches JIP_DEVICE_ID but may be different where new software
has a different set of MIBs from the old software, requiring a change in Device ID
while still preserving the ability to update the software using OND.

TRACE

This variable when set to 1 enables debugging of application events to the
UART. This adds considerable extra code.

The default value of 0 disables the debug build.

JIP_DEVICE_TYPE

This variable specifies the 16-bit Device Type ID compiled into the application.

It may be necessary to change this when creating a new device from the
template.

JIP_DEVICE_TYPE_CHAR

This variable is a short, single-character name for the device type and is used to
form the default value for the Node MIB’s Name variable.

JIP_CR_MANUFACTURER_ID

This variable is the 16-bit Manufacturer ID that forms part of the 32-bit JIP
Device ID.

This value is used for Coordinator or Router node types, with the most significant
bit cleared to indicate a non-sleeping device.

To prevent re-use of Device IDs, this value should be replaced with your own
Manufacturer ID when creating your own devices.

 JenNet-IP Smart Home

Application Note

234 © NXP Laboratories UK 2015 JN-AN-1162 v2004

JIP_ED_MANUFACTURER_ID

This variable is the 16-bit Manufacturer ID that forms part of the 32-bit JIP
Device ID.

This value is used for End Device node types, with the most significant bit set to
indicate a sleeping device.

To prevent re-use of Device IDs, this value should be replaced with your own
Manufacturer ID when creating your own devices.

JIP_PRODUCT_ID

This variable is the 16-bit Product ID that forms part of the 32-bit JIP Device ID.

When creating your own devices you may allocate your own Product IDs when
used in conjunction with your Manufacturer ID.

JIP_DEVICE_ID

This variable is the 32-bit JIP Device ID formed from the Manufacturer and
Product IDs.

This value is used to identify different devices within a JenNet-IP network.

JIP_NODE_NAME

This variable specifies the default value for the Node MIB’s DescriptiveName
variable.

The default value forms a name from shortened forms of the Device Type,
Product ID, Node Type and Chip variables.

This variable may be overridden from the command line.

This variable is surfaced to the application via the #define
MK_JIP_NODE_NAME.

The software appends the least significant 3 bytes of the device’s MAC address
in hexadecimal to complete the name.

BLD_MIB_NAME Variables

The set of variables beginning BLD_MIB determine which MIBs are compiled
into the application. A value of 1 will build that MIB into the application, while a
value of 0 will exclude it.

These flags are used in the makefile to specify compilation of appropriate source
files.

The flags are also used in the source code via the equivalent #defines beginning
MK_BLD_MIB.

Removing unnecessary MIBs from a device during development frees up
additional memory that may allow the use of other test MIBs and UART
debugging code.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 235

REG_MIB_NAME Variables

The set of variables beginning REG_MIB determine which MIBs are registered
with the stack making their variables available for remote access. The
corresponding BLD_MIB variable must be 1 for this flag to have any effect.

When set to 1 the MIB will be registered and the variables made available for
remote access, when set to 0 the MIB is not registered.

These flags are used by the source code via the equivalent #defines beginning
MK_REG_MIB.

Compiling a MIB but leaving it unregistered allows the MIB to perform its role in
the device using a set of hardcoded values while freeing up RAM to be used for
other purposes.

VERSION

This variable embeds a 16-bit version number into the binary file that can be
queried remotely and also used to automate software downloads using the Over
Network Download (OND) features of JenNet-IP.

This value may be passed in on the command line. Pre-built binaries in the
Application Note will have their version number set via the command line. Each
release will increase this value from its previous value.

Building without passing in a value will cause a value to be automatically
generated from the day of the week, the hour and minute of the build. While this
will produce different values for each build, the counter will effectively reset to a
lower value every 7 days.

The automatic OND features rely on an increasing version number to be
effective. A formal release scheme that includes increasing version numbers is
recommended to make best use of this feature.

 JenNet-IP Smart Home

Application Note

236 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Binary File Naming

The names of the binary files incorporate a number of the variables described
above in the following format:

{NETWORK_ID}{SECURITY_CHAR}_CH{CHANNEL}_DeviceType_
{DEVICE_NAME}_{NODE_TYPE}_{JENNIC_CHIP}_{BUILD}_v{VERSION}.bin

where:

 {NETWORK_ID} is the NETWORK_ID variable value.

 {SECURITY_CHAR} is p for a production build, s for a secure build, u for
an unsecure build.

 {CHANNEL} specifies the single channel the device will operate on. If all
channels are supported, this component is not included in the name.

 {DEVICE_NAME} is the DEVICE_NAME variable value.

 {NODE_TYPE} is the NODE_TYPE variable value.

 {JENNIC_CHIP} is the JENNIC_CHIP variable value.

 {BUILD} is set to DEBUG when the TRACE variable is 1 and is omitted
from the filename for non-debug binaries.

 {VERSION} is the value of the VERSION variable. This is only included in

the filename when specified on the command line to make.

The compilation produces a single file for JN516x devices:

 .bin may be used both when directly programming a device using one of
the Flash Programmer utilities and also updating devices using the OND
mechanism.

6.1.1.2 Standard DeviceDefs.h Features

This header file contains #defines that can be used to configure the default
behaviour of the device and alter the timing characteristics of the device.

The initial set of operating defines are also used by the Common\Node.c
module and so must be present for all devices.

For some devices types there may also be #defines that are accessed by the
MIB modules. Such #defines must be present to allow compilation of the MIB
modules.

A set of debug flags are then included that control which modules output
debugging messages when debugging is enabled.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 237

6.1.1.3 Standard DeviceType.c Features

The main module for each device type is named DeviceType.c where Type
indicates the type of the device. All device types follow the same basic pattern
described below. Where additional functionality is included, this is described in
the sections for the source code for the individual device.

The standard JIP callback functions are implemented in this source file along
with code to operate the application at the highest level. However, the main body
of code that performs the actual work is mostly contained in the common
modules used by the application. As such, different device types are
implemented by calling into a different set of MIB modules as required.

The following sections describe the features of the DeviceType.c source code.
Functions called during initialisation of the device are mostly presented in the
order in which they are called, though it is not a fully linear sequence.

#defines

There are a number of local #define values that control the operation of the
device. The most notable are described below.

#define DEVICE_ADC_MASK

This value defines the mask of ADC readings that should be monitored by the
AdcStatus MIB.

The on-chip temperature sensor should be included in order to allow
recalibration of the radio and oscillator control due to changes in temperature.

Some hardware platforms use an ADC input to monitor the bus voltage in the
device which may need to be above a particular level to allow operation of the
device.

The value is therefore selected from a combination of the hardware platform and
microcontroller being used.

#define DEVICE_ADC_SRC_BUS_VOLTS

This value determines which of the ADC inputs is being used to monitor the
device’s bus voltage so that the appropriate reading can be passed to other
modules for monitoring.

The value is selected from a combination of the hardware platform and
microcontroller being used.

#define DEVICE_ADC_PERIOD 25

This is the period at which the ADC readings are made in units of 10ms. The
default value of 25 equates to 250ms, so each reading is taken 4 times per
second.

 JenNet-IP Smart Home

Application Note

238 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Local Variables

The following local variables are used in DeviceType.c

PRIVATE bool_t bSleep;

This variable is used by the End Device build of the application to flag when it is
ready to sleep.

Public Functions

The following public functions are commonly used:

void AppColdStart (void);

This function is the entry point to the application following a reset or waking from
sleep without memory held.

It simply calls Device_vInit().

void AppWarmStart (void);

This function is the entry point to the application following a wake from sleep with
memory held, which should only happen on sleeping End Devices.

It simply calls Device_vInit().

void Device_vInit (bool_t bWarmStart);

This function controls the overall initialisation of the device.

The code mostly consists of calling initialisation functions in various other stack,
peripheral and common modules, to ensure they are ready to be used.

The common node handling module is initialised by a call to Node_vInit().

The next initialisation steps for a cold start are:

Calls the Node_bTestFactoryResetEeprom() function to test if a factory
reset should be applied due to an on – off – on – off – on sequence.

A call is made to Device_vPdmInit() to initialise the Persistent Data Manager
and data used by the MIBs in the application.

If a factory reset is required the Device_vReset() function is called to carry
out the reset.

A call is made to Device_eJipInit() which takes care of initialising the JenNet-
IP stack and begin the process of joining a network.

Once the above initialisation is completed the software enters the main loop,
contained in the Device_vMain() function.

If Device_vMain() is allowed to exit on an End Device the node is placed into
sleep mode with a call to Device_vSleep().

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 239

void Device_vPdmInit (void);

This function simply calls Node_vPdmInit() to initialise the Persistent Data
Manager (PDM) and each of the common MIBs used by the application.

When building on the template additional MIBs may be initialised following the
call to Node_vPdmInit() once the PDM has been initialised.

void Device_vReset (bool_t bFactoryReset);

This function is used to reset the device. The parameter determines whether it
should be a standard reset or a factory reset.

In the template this function simply calls the common Node_vReset() function
which resets data in the common MIBs (if appropriate for a factory reset) before
resetting the device.

When building on the template, additional MIBs may be factory reset before the
call to Node_vReset() where the device is actually reset.

teJIP_Status Device_eJipInit (void);

This function initialises the JIP stack and registers the common MIBs with the
stack by calling the common Node_eJipInit() function.

When building on the template, additional MIBs may be registered with the stack
after the call to Node_eJipInit() when the stack is up and running.

void v6LP_ConfigureNetwork (

 tsNetworkConfigData *psNetworkConfigData);

This callback function is called by the stack from the eJIP_Init() function during
initialisation to allow the operation of the stack to be configured.

This function simply calls the common Node_v6lpConfigureNetwork() function
to handle this task.

 JenNet-IP Smart Home

Application Note

240 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void Device_vMain (void);

This function contains the main application loop which runs while the device is to
stay awake.

Before entering the loop, the bSleep variable is set to FALSE and the loop
continues until this variable is set to TRUE.

Each time around the loop:

 The on-chip watchdog is restarted.

 The common modules are given the opportunity to perform main loop
processing with a call to Node_vMain().

 If the stack is not running the main loop is allowed to exit in order to place
the device into sleep mode.

 If not entering sleep the device is placed into doze mode until the next
interrupt in order to preserve power.

This function only returns when the software decides that the device should be
placed into a sleep mode.

When building on the application template, other modules can perform main loop
processing by calling into them from here.

void v6LP_DataEvent (int iSocket,

 te6LP_DataEvent eEvent,

 ts6LP_SockAddr *psAddr,

 uint8 u8AddrLen);

This callback function is called by the stack for data events at the 6LowPAN
level. It simply calls the common Node_v6lpDataEvent() function.

As this application is written to operate at the JIP level (reading and writing to
MIB variables), any packets received from this level of the stack are simply
discarded by Node_v6lpDataEvent().

void vJIP_StackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This callback function is used to inform the application of stack events relating to
the status of the device in the network. This function simply calls the common
Node_bJipStackEvent() function to handle these events.

The return value from Node_bJipStackEvent() indicates if an End Device poll
has indicated that there is no data remaining in the parent device. In the
application template, End Devices are prepared for sleep mode when this takes
place.

When building on the template, stack events may be passed to other modules
from this function as required.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 241

void v6LP_PeripheralEvent (uint32 u32Device,

 uint32 u32ItemBitmap);

This callback function is called by the stack each time a peripheral raises an
interrupt. This function is called from within the interrupt context. The following
peripheral device enumerations are handled in this function. (Interrupts from
other peripherals can be accessed here when adapting the template to create
other device types):

E_AHI_DEVICE_SYSCTRL

The application uses Wake Timer 1 for general timing purposes on End
Devices, as it can be used to maintain accurate timing periods. This Wake
Timer is regularly calibrated against other system clocks to maintain accuracy

On sleeping End Device the stack uses Wake Timer 0 to time sleep periods.
While in a network, the stack’s use of Wake Timer 0 is largely circumvented
by the use of Wake Timer 1, but it is allowed to run normally when joining a
network.

The wake timer interrupt events are part of the system controller and so raise
interrupts for this device. These are passed on to the common modules
through a call to Node_vSysCtrlEvent().

E_AHI_DEVICE_TICK_TIMER

The JenNet-IP stack runs the tick timer so that it generates an interrupt every
10ms. This is used internally by JenNet-IP for timing and may also be used by
applications as long as its operation is unchanged.

Coordinator and Router applications make use of this timer to maintain
accurate timing periods, as this timer is always run along with the stack.

End Devices make little use of this timer as it only runs when the stack is
running. It is only used to time short operations that require the use of the
radio.

These events are simply passed on to the common modules through a call to
Node_vTickTimerEvent().

E_AHI_DEVICE_ANALOGUE

When using the common Node.c software the AdcStatus MIB is configured to
manage the ADC peripherals to take regular readings. Each time a reading is
completed an interrupt will be generated. The interrupts are passed on to
Node.c by calling the Node_u8AnalogueEvent() function.

The Node_u8Analogue() function returns the ADC input for the completed
reading. The ADC readings can be passed into other MIBs for further
processing (when building on the template).

void Device_vTick (void);

This function is called by Node_vMain() whenever the tick timer has fired
outside of interrupt context.

This function is empty in the application template but code may be added to pass
tick timer events into other modules (when building on the template).

 JenNet-IP Smart Home

Application Note

242 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void Device_vAppTimer100ms (void);

This function is called by Node_vMain() whenever the Wake Timer 1 has fired
outside of interrupt context. This timer is run with an interval of 100ms by the
application.

This function is empty in the application template but code may be added to pass
these events into other modules when building upon the template.

void Device_vSecond (void);

This function is called by Node_vMain() each time a second passes.

This function is empty in the application template but code may be added to pass
these events into other modules (when building upon the template).

void Device_vException (uint32 u32HeapAddr,

 uint32 u32Vector,

 uint32 u32Code);

This function, if present in an application, is called following the standard
exception handler in Exception.c. It may be used to take additional actions if an
exception is raised.

In the template, the software is simply restarted.

void Device_vSleep (void);

This function is called in End Device nodes if the main loop is allowed to exit and
puts the node into sleep mode.

The function Node_vSleep() is called to allow the common pre-sleep handling to
take place before entering sleep mode.

When building on the template, additional pre-sleep handling can be added
before the call to Node_vSleep().

void Device_vPreSleepCallback (void);

This function is called from Node.c just before the stack enters sleep mode.

The function is empty in the template application but it is a useful place to disable
peripherals and external devices to preserve power while sleeping (when
building upon the template).

6.1.2 Common Module Features

The DeviceType.c files rely heavily on a set of common modules located in the
Common folder.

The most important file of these is the Node.c file that implements code common
to all node types, wrapping the use of the common MIBs into a single source file.

A detailed description of the common modules is included in JenNet-IP
Application Template (JN-AN-1190).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 243

6.1.3 Standard MIB Module Features

Each MIB implemented in the Application Note is included in a group with a
folder named MibGroup, where Group defines the group name. Each MIB in a
group works with the others to provide a set functionality serving a common
purpose. For example the MibCommon folder contains MIBs that are useful in
all devices types.

Each individual MIB is built from a number of files with a common naming
scheme, example filenames are given in the form MibName below, where Name
should be replaced with the actual MIB’s name.

6.1.3.1 MibGroup.h

MibGroup.h contains defines used throughout the MibGroup modules. These
are mostly MIB ID numbers, variable indices within each MIB and specific MIB
variable values where a set of enumerations is used.

6.1.3.2 MibNameDef.h

Each MIB has a MIB definition header file named MibNameDef.h. These header
files make use of JenNet-IP macro definitions to define the variables in each
MIB. This includes their names, data types and access flags.

6.1.3.3 MibNameDec.c

Each MIB has a MIB declaration file named MibNameDec.c. These source files
make use of JenNet-IP macro definitions to declare each MIB and its variables,
including the read and write function pointers and a pointer to the data
associated with each variable. These source files also instantiate each MIB’s
handle that is needed for various JIP functions.

6.1.3.4 MibName.h

Each MIB has a header file named MibName.h. This header includes the data
structure definitions used by the MIB and the public function prototypes
implemented by the MIB.

typedef struct tsMibNamePerm;

Each MIB that stores data in the PDM has a data structure named
tsMibNamePerm, which is retrieved from the PDM at initialisation and stored
when the data changes. The members of this structure map onto the permanent
variables of the MIB.

typedef struct tsMibNameTemp;

Each MIB that has variables that do not need to be stored in the PDM has a data
structure named tsMibNameTemp. The members of this structure map onto the
temporary variables of the MIB.

 JenNet-IP Smart Home

Application Note

244 © NXP Laboratories UK 2015 JN-AN-1162 v2004

typedef struct tsMibName;

Each MIB has a structure named tsMibName that contains all the global data
used by the MIB. This includes instances of the permanent and temporary data
structures. This structure also includes the MIB handle, the PDM record
descriptor (in MIBs that use the PDM) and other data specific to the MIB.

6.1.3.5 MibName.c

Each MIB has a source file named MibName.c. These source files implement
the functions required of each MIB. Many MIBs contain similar functions that
carry out a common task in each MIB (though the effects in each MIB differ). For
example, all MIBs contain an initialisation function that is called when a device
using that MIB is started. However each MIB will initialise its own data and
hardware (that will vary from MIB to MIB).

The following functions are commonly found in the MIB source files, not that not
all MIB implement all functions:

PUBLIC void MibName_vInit(thJIP_Mib *hMibNameInit,

 tsMibName *psMibNameInit);

This function initialises the MIB’s data structure, reading data from the PDM if
required.

PUBLIC void MibName_vRegister (void);

This function registers the MIB with the stack, making the variables available to
be accessed by other devices.

A flag is often set to ensure that default data is written to the PDM the first time
the device runs.

PUBLIC void MibName_vMain (void);

This function is called each time around the main loop and allows the MIB to
perform frequently required processing activities.

PUBLIC void MibName_vTick (void);

This function should be called each time the stack’s 10ms tick timer fires and
may be used for timing purposes by the MIB software.

The function checks if any of its MIB variables have trap updates to transmit and
calls Node_vJipNotifyChanged() to produce the transmission.

PUBLIC void MibName_vAppTimer100ms (void);

This function should be called each time the application’s 100ms timer fires and
may be used for timing purposes by the MIB software.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 245

PUBLIC void MibName_vSecond (void);

This function should be called once per second and may be used for timing
purposes.

It is common to make a call to MibName_vSaveRecord() to save data to the
PDM, if required.

PUBLIC void MibName_vStackEvent (

 te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This function is used to track if the node is a member of a network.

PUBLIC void MibName_vSaveRecord (void);

This function checks the save record flag and saves the record to PDM where
appropriate.

 JenNet-IP Smart Home

Application Note

246 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.2 DeviceBulb Folder

The DeviceBulb folder of the Application Note contains source code that is
specific to the bulb devices in JenNet-IP Smart Home (JN-AN-1162). The bulb
device operates as a Router node extending the network for other devices to
join. It is able to join and maintain its place within the network in addition to
providing bulb functionality.

The bulb application is based upon the template device implemented in JenNet-
IP Application Template (JN-AN-1190). This section details the additions to
template to create a bulb device. The reader should refer to JenNet-IP
Application Template (JN-AN-1190) for details of how the template software
works, including the implementation of the Common MIBs.

The common source Common\Node.c actually provides the majority of the
network joining and maintenance code. Node.c in turn makes use of a number of
MIBs that can be used to monitor, configure and control an individual node and
its operation within the network. These MIBs are implemented in the
MibCommon fodler. This common code is described in JenNet-IP Application
Template (JN-AN-1190).

The source code in the DeviceBulb folder contains the main module
implementing the standard JIP callback functions, these callback functions then
make calls into the stack and MIB libraries as required.

The source code for the MIBs and their variables used to monitor and control the
bulbs are contained in the MibBulb folder that is described in section 6.3
MibBulb Folder. The CCT and colour bulb software also makes use of a set of
colour MIBs, the source code for these is in the MibColour folder.

The other source files are then hardware level drivers that are mainly called by
code in the MibBulb library to control the operation of the bulb at the hardware
layer.

The following diagram shows the layers that form the bulb application on top of
the JenNet-IP WPAN Stack:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 247

6.2.1 DeviceBulb Makefile

The makefile for the bulb uses the variables listed in Section 6.1.1.1 "Standard
DeviceType Makefile" with the following differences:

DEVICE_NAME

The bulb device supports the following values:

 JN516X for native PWM output on the JN516x’s timer pins. This can be
compiled as a white bulb, which will drive the three white LEDs on the
Lighting/Sensor Expansion Board (DR1175), or as a colour bulb driving
three PWM outputs for red, green and blue (this is included as an example
only).

 DR1175 to drive the RGB LED on the Lighting/Sensor Expansion Board
(DR1175) using the PCA9634 driver chip. This can be compiled as a white,
CCT or colour bulb all of which drive the RGB LED.

 DR1173 to drive the NXP prototype RGB board (not included in the
evaluation kit). This can only be compiled as a colour bulb.

 DR1190 to drive the NXP SSL2108 asynchronous bulb reference design
(not included in the evaluation kit). This can only be compiled as a white
bulb.

 DR1192 to drive the NXP SSL2108 synchronous bulb reference design
(not included in the evaluation kit). This can only be compiled as a white
bulb.

 DR1221 to drive the NXP CCT bulb reference design (not included in the
evaluation kit). This can only be compiled as a CCT bulb.

NODE_TYPE

The bulb device can only be compiled as a Router node type.

DRIVER_TYPE

This variable specifies which type of bulb to build and supports the following
values:

 White to build a white bulb.

 Temperature to build a CCT bulb.

 Colour to build a colour bulb.

DEVICE_DOZE

When set to 1 the bulb software is placed in doze mode to preserve power when
not processing, this is the default.

The DR1192 build is unable to accurately drive the bulb when dozing so doze
mode is disabled by setting the value to 0.

 JenNet-IP Smart Home

Application Note

248 © NXP Laboratories UK 2015 JN-AN-1162 v2004

BLD_MIB_NAME Variables

The bulb device makefile adds additional variables to control the building of the
bulb and colour MIBs.

REG_MIB_NAME Variables

The bulb device makefile adds additional variables to control the registration of
the Bulb and Colour MIBs.

6.2.1.1 Binary File Naming

The names of the bulb binary files incorporates the DRIVER_TYPE variable to
indicate if it is a white, CCT or colour bulb.

6.2.2 DeviceDefs.h

This header file contains a few #defines that can be used to configure the default
behaviour of the device. This are the same as those described in Section 6.1.1.2
"Standard DeviceDefs.h Features" with the following differences:

The number of scenes available in the DeviceScene MIB is defined.

Default values for some bulb MIB variables are defined.

Additional debug flags for bulb and colour MIBs are included.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 249

6.2.3 DeviceBulb.c

DeviceBulb.c contains the main source code for the bulb application. It follows
the pattern described in Section 6.1.1.3 "Standard DeviceType.c Features" with
the following changes:

6.2.3.1 #includes

Additional #includes are used to provide access to the bulb and colour MIB
modules used in DeviceBulb.c.

6.2.3.2 External Variables

External data variables are added to access the data and handles of the DIO
MIBs. Each MIB has two variables:

 sMibName: Data used by the MIB is contained in a structure of the type
tsMibName with the variable name sMibName, (where Name is the actual
name of the MIB.) These data structure types are defined in the
corresponding MibName.h include file of the Application Note, while the
structure itself is declared in the MibNameDec.c source file of the
Application Note which contains the MIB declaration.

 hMibName: MIB handle passed to JIP functions to allow access to MIBs
and variables. These are of the type thJIP_Mib and named hMibName
(where Name is the actual name of the MIB). The variable is actually
declared in the MibNameDec.c source file of the Application Note.

6.2.3.3 Public Functions

The following public functions are implemented in DeviceBulb.c:

void Device_vInit (bool_t bWarmStart);

The bulb driver software is initialised early on with a call to DriverBulb_vInit() in
order to turn the bulb on as soon as possible.

void Device_vPdmInit (void);

The bulb and colour MIBs are initialised here following the call to
Node_vPdmInit() once the PDM has been initialised.

void Device_vReset (bool_t bFactoryReset);

The factory reset of the bulb and colour MIB’s permanent data is performed here.
Device_eJipInit() Function

teJIP_Status Device_eJipInit (void);

The bulb and colour MIBs are registered here.

 JenNet-IP Smart Home

Application Note

250 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void vJIP_StackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

Stack events are passed to the BulbControl and ColourControl MIBs here.

void v6LP_PeripheralEvent (uint32 u32Device,

 uint32 u32ItemBitmap);

This function includes the same code as DeviceTemplate.c but adds:

 A call to vDecimator() when the thermal control loop is included in the
application to allow compensation for temperature changes.

 A call to MibBulbStatus_vAnalogue() to allow the bus voltage of the
bulb to be monitored by the BulbStatus MIB.

void Device_vTick (void);

This function is called from the common Node.c module every 10ms when the
stack is running.

Tick functions in the DIO MIBs are called to allow the MIBs to interact with the
stack.

void Device_vSecond (uint32 u32TimerSeconds);

This function is called from the common Node.c module every second.

The timer is simply passed on to the bulb and colour MIBs that perform timing
tasks based on the 1 second timer.

void Device_vException (uint32 u32HeapAddr,

 uint32 u32Vector,

 uint32 u32Code);

This function, if present in an application, is called following the standard
exception handler in Exception.c. It may be used to take additional actions if an
exception is raised.

In a production bulb build the bulb software is simply restarted.

In non-production bulb builds the bulb driver is used to directly flash the bulb
bright and dim to indicate that an exception has taken place. The number of
flashes indicates the exception type.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 251

6.2.4 DeviceScene MIB

The DeviceBulb folder contains the code for the DeviceScene MIB with its
specific implementation for bulb devices. This MIB follows the pattern described
in Section 6.1.3 "Standard MIB Module Features" with the following changes.

6.2.4.1 MibDeviceScene.c

This source file contains the code that implements the DeviceScene MIB for bulb
devices.

6.2.4.1.1 External Variables

The external variables for the BulbScene, BulbControl and ColourControl MIBs
data structures are declared to allow access by the DeviceScene MIB software.

6.2.4.2 Public Functions

The following public functions are implemented in MibDeviceScene.c.

void MibDeviceScene_vInit (void);

The scene data, read from the PDM, is transferred to the BulbScene MIB’s data
structures to keep the two MIBs synchronised for backwards compatibility.

uint8 MibDeviceScene_u8FindSceneId (uint16 u16SceneId);

This function searches through the scene table looking for a specific Scene ID. If
found the index of the scene in the table is returned.

teJIP_Status MibDeviceScene_eMakeScene (uint16 u16SceneId);

This function creates or updates the specified scene using the current state of
the device from the appropriate MIBs.

teJIP_Status MibDeviceScene_eAddScene (

 tsDeviceScene *psAddScene);

This function creates or updates the specified scene using the settings specified
in the passed in scene structure. It only does this when the Device Type ID in the
structure matches that of the device running the software.

teJIP_Status MibDeviceScene_eDelScene (uint16 u16SceneId);

This function deletes the specified scene from the scene table.

teJIP_Status MibDeviceScene_eActivateScene (

 uint16 u16SceneId);

This function activates the specified scene, if stored, by calling functions in the
appropriate MIBs.

 JenNet-IP Smart Home

Application Note

252 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void MibDeviceScene_vBulbScene (uint8 u8Scene,

 bool_t bNotifyChange);

This function transfers a scene from the DeviceScene MIB to the BulbScene MIB
to keep the two MIBs synchronised for backwards compatibility.

teJIP_Status MibDeviceScene_eSetAddSceneId (uint16 u16Val,

 void *pvCbData);

This is the callback function for a write to the AddSceneId variable. It creates or
updates the specified scene using the device’s current settings.

teJIP_Status MibDeviceScene_eSetDelSceneId (uint16 u16Val,

 void *pvCbData);

This is the callback function for a write to the DelSceneId variable. It deletes the
specified scene.

teJIP_Status MibDeviceScene_eSetAddScene (

 const uint8 *pu8Val,

 uint8 u8Len,

 void *pvCbData);

This is the callback function for a write to the AddScene variable. It creates or
updates the specified scene using the settings included in the data structure.

void MibDeviceScene_vGetAddScene (thJIP_Packet hPacket,

 void *pvCbData);

This is the callback function for reading the AddScene variable. It adds the
variable data to the specified packet.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 253

6.2.5 BulbScene MIB

The DeviceBulb folder contains the code for the BulbScene MIB with its specific
implementation for bulb devices.

It is recommended that the generic DeviceScene MIB be used to configure
scenes. The BulbScene MIB is provided for backwards compatibility with older
software that expects to use this MIB to configure scenes in bulbs. The main
code to control scenes is included in the DeviceScene MIB, the majority of the
BulbScene MIB code therefore simply accesses the data and functions in the
DeviceScene MIB.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following changes.

6.2.5.1 MibBulbScene.c

This source file contains the code that implements the BulbScene MIB.

6.2.5.1.1 External Variables

The external variable for the DeviceScene MIB’s data structure is declared to
allow access by the BulbScene MIB software.

6.2.5.2 Public Functions

The following public functions are implemented in MibDeviceScene.c.

void MibBulbScene_vInit (void);

This function is empty. The scene data is transferred into the BulbScene data
tables by the DeviceScene MIB. The BulbScene MIB does not store any data of
its own.

teJIP_Status MibBulbScene_eSetAddSceneId (uint16 u16Val,

 void *pvCbData);

This is the callback function for a write to the AddSceneId variable. It creates or
updates the specified scene using the device’s current settings by calling into the
DeviceScene MIB.

teJIP_Status MibBulbScene_eSetDelSceneId (uint16 u16Val,

 void *pvCbData);

This is the callback function for a write to the DelSceneId variable. It deletes the
specified scene by calling into the DeviceScene MIB.

 JenNet-IP Smart Home

Application Note

254 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.3 MibBulb Folder

The MibBulb folder contains modules that implement MIBs for configuring,
monitoring and controlling dimmable bulbs.

6.3.1 BulbConfig MIB

The BulbConfig MIB allows the operation of the bulb to be configured. The rate
at which the brightness changes can be configured. The initial mode and
brightness of the bulb when power is applied can be set. Cadence effects can be
configured to provide feedback when the bulb joins and leaves the network.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.3.1.1 MibBulbConfig.c

This source file contains the code that implements the BulbConfig MIB.

Public Functions

The following public functions are implemented in MibBulbConfig.c:

teJIP_Status MibBulbConfig_eSetUint8 (uint8 u8Val,

 void *pvCbData);

teJIP_Status MibBulbConfig_eSetUint16 (uint16 u16Val,

 void *pvCbData);

teJIP_Status MibBulbConfig_eSetUint32 (uint32 u32Val,

 void *pvCbData);

These generic functions are called by the stack to set the value of variables in
the BulbConfig MIB and are specified in the MIB declaration in
MibBulbConfigDec.c. When these functions are called the new values are
saved by the PDM.

These functions are used when the new value of the variable does not need to
be validated.

teJIP_Status MibBulbConfig_eSetLumRate (uint8 u8Val,

 void *pvCbData);

This function is called by the stack to set the value of the LumRate variable in the
BulbConfig MIB and is specified in the MIB declaration in MibBulbConfigDec.c.
This function validates the new value then saves it using the PDM.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 255

6.3.2 BulbStatus MIB

The BulbStatus MIB provides information on the status of the bulb, including
counts for how many times the bulb has been illuminated, length of time
illuminated, temperature and bus voltage.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.3.2.1 MibBulbStatus.c

This source file contains the code that implements the BulbStatus MIB.

Public Functions

The following public functions are implemented in MibBulbStatus.c:

void MibBulbStatus_vSecond (void);

Timers recording how long the bulb has been illuminated are updated here.

void MibBulbStatus_vAnalogue (uint8 u8Adc);

This function should be called when an analogue reading has completed.

Readings from the bus voltage ADC are passed into the bulb driver via the
DriverBulb_i16Analogue() function and the returned value stored in BusVolts
MIB variable.

Readings from the on-chip temperature sensor are converted into 10th of degree
Centigrade and stored in the ChipTemp MIB variable.

void MibBulbStatus_vOn (void);

This function should be called each time the bulb is illuminated to allow the
status of the bulb to be maintained.

void MibBulbStatus_vOff (void);

This function should be called each time the bulb is extinguished to allow the
status of the bulb to be maintained.

 JenNet-IP Smart Home

Application Note

256 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.3.3 BulbControl and Device Control MIBs

The BulbControl MIB allows the bulb to be turned on or off and provides control
of the brightness level. Scenes can be activated and cadence effects displayed
for user feedback.

The source code for this MIB also implements the DeviceControl MIB which
contains a subset of the BulbControl variables. These variables allow generic
devices to be controlled in a standard way. The DeviceControl MIB allows
devices to be turned on or off and scenes may be activated.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.3.3.1 MibBulbControl.c

This source file contains the code that implements the BulbControl MIB.

Public Functions

The following public functions are implemented in MibBulbControl.c:

void MibBulbControl_vInit (

 thJIP_Mib hMibBulbControlInit,

 thJIP_Mib hMibDeviceControlInit,

 tsMibBulbControl *psMibBulbControlInit,

 void *psMibBulbStatusInit,

 void *psMibBulbConfigInit,

 void *psMibBulbSceneInit,

 void *psMibCOlourControlInit);

If the data for the Groups MIB was not loaded from the PDM the bulb is placed
into the “All Bulbs” group.

If the BulbConfig MIB specifies that the bulb should be set to a specific mode
and luminance level at initialisation the settings are transferred from the
BulbConfig MIB.

The initial mode of the bulb is validated to ensure it does not initialise to a state
that is altering the bulb’s luminance.

The bulb driver is initialized.

The network down cadence effect is applied if required.

void MibBulbControl_vDeviceControlRegister (void);

This function registers the DeviceControl MIB with the stack making the variables
available to be accessed by other devices.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 257

void MibBulbControl_vSecond (void);

The driver is checked to see if the hardware has failed. In the event of a failure
the bulb is placed into failed mode and further control of the bulb is prevented.

This function should be called once per second. The PDM data is checked and if
updated the new data is written to the PDM. This limits writes of the BulbControl
MIB’s data to a maximum of one write per second.

void MibBulbControl_vTick (void);

This function should be called every 10ms driven by the tick timer. It is used for
timing small intervals, in particular controlling the fading of the bulb.

The tick is passed down to the bulb driver via the DriverBulb_vTick() function to
allow the timing of small intervals in the driver.

The tick is also passed into the MibBulbControl_vTickDriverReady() function
that monitors and reacts to the ready state of the bulb driver.

Next MibBulbControl_bTickLumCadence() is called to update the bulb’s
brightness if cadence effects are being applied.

If no cadence effects are being applied a helper function is called depending
upon the current mode of the bulb:

 MibBulbControl_vTickModeOff(), when the bulb is in the OFF Mode.

 MibBulbControl_vTickModeOn(), when the bulb is in the ON Mode.

 MibBulbControl_vTickModeDownUp(), when the bulb is in the DOWN,
UP, DOWN_IF_ON or UP_IF_ON Modes.

 MibBulbControl_vTickModeTest(), when the bulb is in the TEST Mode.

void MibBulbControl_vTickDriverReady (void);

This function is called every 10ms.

The bulb driver is checked to see if the bulb is ready to be driven at the hardware
level, using the DriverBulb_bReady() function.

If the driver becomes ready to control the latest user mode and brightness are
applied to the bulb.

bool_t MibBulbControl_bTickLumCadence (void);

This function applies cadence effects if required.

The cadence timer is updated, once expired the cadence display is ended.

If the cadence timer is still running the cadence effect is applied by fading or
switching the brightness of the bulb as required.

 JenNet-IP Smart Home

Application Note

258 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void MibBulbControl_vTickModeTest (void);

This function updates the brightness of the bulb while in test mode using the
MibBulbControl_bFadeLumCurrent() function.

While the node is a member of a network the brightness is set to the level of the
signal strength to the parent node.

While the node is not a member of a network the brightness is faded between
the maximum and minimum.

void MibBulbControl_vTickModeOff (void);

This empty function is a placeholder to be used if timings need to be made while
the bulb is off.

void MibBulbControl_vTickModeOn (void);

This function controls the fading of the bulb’s brightness while it is in the ON
Mode using the MibBulbControl_bFadeLumCurrent() function. This is done is
response to the TargetLuminance variable being set.

void MibBulbControl_vTickModeDownUp (void);

This function controls the fading of the bulb’s brightness while it is in an UP,
DOWN, UP_IF_ON or DOWN_IF_ON mode. The bulb’s brightness is altered
every 10ms until the Mode is changed or the maximum or minimum brightness is
reached.

bool_t MibBulbControl_bFadeLumCurrent (uint8 u8LumTarget,

 uint8 u8LumRate);

This function controls the current fade level of the bulb moving the current fade
level towards the target fade level.

void MibBulbControlPatch_vStackEvent (

 te6LP_StackEvent eEvent);

Stack events should be passed into this function so the bulb can react to joining
and leaving the network.

When the network is joined the state of the device within the network is updated
and flagged to be written to the PDM. The event is passed into the
MibBulbControl_vLumCadenceStackEvent() function to apply a cadence
effect if configured to do so.

When the network is lost the state of the device within the network is updated
and flagged to be written to the PDM. The event is passed into the
MibBulbControl_vLumCadenceStackEvent() function to apply a cadence
effect if configured to do so.

uint8 MibBulbControl_u8ParentLqi (void);

This function reads the parent node’s LQI and is used when in TEST mode.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 259

void MibBulbControl_vLumCadence (uint32 u32LumCadence,

 int16 u16LumCadTimer);

This function is used to start or end displaying a cadence effect.

void MibBulbControl_vLumCadenceStop (void);

This function is used to stop displaying a cadence effect.

bool_t MibBulbControl_bLumCadence (void);

This function is used to test if a cadence effect is currently being displayed.

void MibBulbControl_vLumCadenceStackEvent (

 te6LP_StackEvent eEvent);

This function applies cadence effects, if configured to do so, when joining or
leaving a network.

teJIP_Status MibBulbControl_eSetMode (uint8 u8Val,

 void *pvCbData);

This callback function is called by to handle writes to the Mode variable.

teJIP_Status MibDeviceControl_eSetMode (uint8 u8Val,

 void *pvCbData);

This function is called by the stack to set the value of the Mode variable in the
DeviceControl MIB.

It implements the handling for the OFF, ON and TOGGLE Mode variable values.

teJIP_Status MibBulbControl_eSetSceneId (uint16 u16Val,

 void *pvCbData);

This function is called by the stack to set the value of the SceneId variable in the
BulbControl MIB as specified by the declaration in MibBulbControlDec.c.

This function simply calls the MibBulbDeviceControl_eSetSceneId() helper
function.

teJIP_Status MibDeviceControl_eSetSceneId (uint16 u16Val,

 void *pvCbData);

This function is called by the stack to set the value of the SceneId variable in the
DeviceControl MIB as specified by the declaration in MibBulbControlDec.c.

This function simply calls the MibBulbDeviceControl_eSetSceneId() helper
function.

 JenNet-IP Smart Home

Application Note

260 © NXP Laboratories UK 2015 JN-AN-1162 v2004

teJIP_Status MibBulbDeviceControl_eSetSceneId (

 uint16 u16Val,

 void *pvCbData,

 bool_t bBulbControl);

This helper function is called to activate a scene if the bulb is participating in the
scene with the specified ID by setting the bulb’s mode and brightness as
specified for the scene.

If the bulb is not taking part in the scene no action is taken.

teJIP_Status MibBulbControl_eSetLumTarget (uint8 u8Val,

 void *pvCbData);

This function is called by the stack to set the value of the LumTarget variable in
the BulbControl MIB as specified by the declaration in MibBulbControlDec.c.

When the bulb is illuminated it will begin to fade the brightness towards this
value.

teJIP_Status MibBulbControl_eSetLumCurrent (uint8 u8Val,

 void *pvCbData);

This function is called by the stack to set the value of the LumCurrent variable in
the BulbControl MIB as specified by the declaration in MibBulbControlDec.c.

When the bulb is illuminated it will immediately change the brightness to this
value.

teJIP_Status MibBulbControl_eSetLumCurrent (int16 i16Val,

 void *pvCbData);

This function is called by the stack to set the value of the LumChange variable in
the BulbControl MIB as specified by the declaration in MibBulbControlDec.c.

When the bulb is illuminated it will fade up or down by the set amount specified
by the new variable value.

teJIP_Status MibBulbControl_eSetLumCadence (

 uint32 u32Val,

 void *pvCbData);

This function is called by the stack to set the value of the LumCadence variable
in the BulbControl MIB as specified by the declaration in MibBulbControlDec.c.

This value when used in conjunction with the LumCadTimer variable causes the
bulb to display brightness fading or switch effects to provide user feedback. This
variable sets the effect type, timings and brightness levels for the cadence effect.

This function simply calls the MibBulbControl_vLumCadence() helper function.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 261

teJIP_Status MibBulbControl_eSetLumCadTimer (

 uint16 u16Val,

 void *pvCbData);

This patch function is called by the stack to set the value of the LumCadTimer
variable in the BulbControl MIB as specified by the declaration in
MibBulbControlDec.c.

This value when used in conjunction with the LumCadence variable causes the
bulb to display brightness fading or switch effects to provide user feedback. This
variable sets the duration of cadence effect.

This function simply calls the MibBulbControl_vLumCadence() helper function.

teJIP_Status MibBulbControl_eSetModeOff (uint8 *pu8Mode);

This helper function handles the Mode variable being set to OFF by
extinguishing the bulb if a cadence effect is not being displayed.

teJIP_Status MibBulbControl_eSetModeOn (uint8 *pu8Mode);

This helper function handles the Mode variable being set to ON by illuminating
the bulb if a cadence effect is not being displayed. The brightness is also set to
the required level if necessary.

teJIP_Status MibBulbControl_eSetModeDownUp (uint8 *pu8Mode);

This helper function handles the Mode variable being set to UP, DOWN,
UP_IF_ON or DOWN_IF_ON when a cadence effect is not being displayed. The
bulb is illuminated if required.

teJIP_Status MibBulbControl_eSetModeToggle (uint8 *pu8Mode);

This helper function handles the Mode variable being set to TOGGLE when a
cadence effect is not being displayed. This toggles the bulb mode between ON
and OFF.

teJIP_Status MibBulbControl_eSetModeTest (uint8 *pu8Mode);

This helper function handles the Mode variable being set to TEST by illuminating
the bulb if a cadence effect is not being displayed.

uint8 MibBulbControl_u8FindSceneId (uint16 u16SceneId);

This function is only compiled if the DeviceScene MIB is not included in the
application and is used to find a specific scene in the BulbScene MIB’s scene
table.

 JenNet-IP Smart Home

Application Note

262 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.4 MibColour Folder

The MibColour folder contains modules that implement MIBs for configuring,
monitoring and controlling the colour of CCT and colour bulbs.

This folder also contains modules for converting between different colour spaces,
transitioning from one colour to another over time and a generic interpolation
engine that is used during transitions.

6.4.1 ColourConfig MIB

The ColourConfig MIB allows the colour operation of the bulb to be configured.

The rate at which the colour changes can be configured. The initial mode and
colour of the bulb when power is applied can be set. The colour primary points
used to generate accurate colours and the range of CCT values are also
accessible.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.4.1.1 MibColourConfig.c

This source file contains the code that implements the ColourConfig MIB.

Public Functions

The following public functions are implemented in MibColourConfig.c:

void MibColourConfig_vInit (void);

If configuration data is not read from the PDM the variables are initialised to a set
of defaults. In this case the InitXYTarget variable is set to white and the primaries
are set to generic default values.

The matrices used for converted between colour spaces are then calculated from
the primaries.

teJIP_Status MibColourConfig_eSetTransitionTime (

 uint16 u16Val,

 void *pvCbData);

This callback function is called when the TransitionTime variable is set remotely.
It validates the new value and writes the data to the PDM.

teJIP_Status MibColourConfig_eSetInitMode (uint8 u8Val,

 void *pvCbData);

This callback function is called when the InitMode variable is set remotely.

teJIP_Status MibColourConfig_eSetInitXYTarget (

 uint32 u32Val,

 void *pvCbData);

This callback function is called when the InitXYTarget variable is set remotely.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 263

teJIP_Status MibColourConfig_eSetPrimary (uint32 u32Val,

 void *pvCbData);

This callback function is called when the colour primary values are set remotely.

The colour conversion matrices are recalculated.

teJIP_Status MibColourConfig_eSetCct (uint16 u16Val,

 void *pvCbData);

This callback function is called when the CCT limit variables are set remotely.

6.4.2 ColourControl MIB

The ColourControl MIB allows the colour operation of the bulb to be controlled.

The colour of the bulb can be set using different colour spaces with changes
being made immediately or over time.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.4.2.1 MibColourControl.c

This source file contains the code that implements the ColourControl MIB.

Public Functions

The following public functions are implemented in MibColourControl.c:

void MibColourControl_vInit (void);

If data is not read from the PDM by the Groups MIB the bulb is placed into the
“All Colour Bulbs” group

If the ColourControl MIB’s data is not read from the PDM the target colour is
initialised to white.

When the ColourConfig MIB specifies an initialisation mode and colour the
values are transferred into the ColourControl MIB.

The data structures used to transition from one colour to another over time are
initialised.

The representations of the colour that are not stored in the PDM are derived from
the starting colour.

The bulb driver is used to set the initial colour of the bulb.

 JenNet-IP Smart Home

Application Note

264 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void MibColourControl_vSecond (void);

If data stored in the PDM has changed the data is written to the PDM. This
ensures that there is no more than one write per second of data that might
change frequently to the EEPROM.

void MibColourControl_vTick (void);

This function should be called every 10ms.

If the bulb is transitioning between two colours the next step of the transition is
calculated and the bulb driver used to update the colour of the bulb.

When the final step of a transition has been calculated the variables that contain
the current colour of the bulb are updated.

If the bulb completes a transition for one of the UP or DOWN modes due to
reaching the maximum or minimum value, the target variables are updated with
the final colour.

If the bulb completes a transition for one of the LOOP or TEST modes the next
transition for the mode is started.

bool_t MibColourControl_bModeStop (bool_t bInternal);

This function is called when the Mode variable is set to STOP.

If a colour transition is running it is stopped and the colour variables updated with
the current colour.

When in a test mode the colour that was displayed before entering test mode is
restored.

teJIP_Status MibColourControl_eSetMode (uint8 u8Val,

 void *pvCbData);

This callback function is called when the Mode variable is set remotely. Internal
functions are used to put the new mode into effect.

teJIP_Status MibColourControl_eSetSceneId (uint16 u16Val,

 void *pvCbData);

This callback function is called when the SceneId variable is set remotely. It calls
the MibDeviceScene_eActivateScene() function to activate the specified
scene.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 265

teJIP_Status MibColourControl_eSetXYTarget (uint32 u32Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetXTarget (uint16 u16Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetYTarget (uint16 u16Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetHueTarget (

 uint16 u16Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetSatTarget (

 uint8 u8Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetHueSatTarget (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetCctTarget (

 uint16 u16Val,

 void *pvCbData);

These callback functions handle the target colour variables being set remotely,
beginning the transition to the new colour.

teJIP_Status MibColourControl_eSetXYCurrent (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetHueSatCurrent (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetCctCurrent (

 uint16 u16Val,

 void *pvCbData);

These callback functions handle the current colour variables being set remotely,
changing to the new colour and updating the target variables to match.

teJIP_Status MibColourControl_eSetHueChange (

 int16 u16Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetSatChange (

 int8 u8Val,

 void *pvCbData);

teJIP_Status MibColourControl_eSetCctChange (

 int16 u16Val,

 void *pvCbData);

These callback functions handle the change colour variables being set remotely,
beginning the transition to the new colour.

 JenNet-IP Smart Home

Application Note

266 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Private Functions

The following private functions are implemented and used internally in
MibColourControl.c:

void MibColourControl_vInitTransition (

 uint16 u16TransitionTime);

This function initialises a transition from one colour to another setting up the
transition interpolation structures using the MIB variable values.

bool_t MibColourControl_bNewXYTarget (

 bool_t bNotifyChanged,

 uint16 u16TransitionTime);

This function is used whenever any of the XY space target colour variables are
changed. The XY target colour is converted into the other colour spaces and the
target variables updated accordingly.

The transition to the new colour is initialised and started.

bool_t MibColourControl_bNewHueChange (

 bool_t bNotifyChanged,

 uint16 u16TransitionTime);

This function is used when the HueChange variable is changed. The HueTarget
variable is updated by the specified amount and the
MibColourControl_bNewHueSatTarget() function called to process the new
target colour.

bool_t MibColourControl_bNewHueSatTarget (

 bool_t bNotifyChanged,

 uint16 u16TransitionTime,

 bool_t bOptimise);

This function is used whenever any of the hue/saturation space target colour
variables are changed. The hue/saturation target colour is converted into the
other colour spaces and the target variables updated accordingly.

The transition to the new colour is initialised and started.

bool_t MibColourControl_bNewCctChange (

 bool_t bNotifyChanged,

 uint16 u16TransitionTime);

This function is used when the CctChange variable is changed. The CctTarget
variable is updated by the specified amount and the
MibColourControl_bNewCctTarget() function called to process the new target
colour.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 267

bool_t MibColourControl_bNewCctTarget (

 bool_t bNotifyChanged,

 uint16 u16TransitionTime);

This function is used when the CCT space target colour variable is changed. The
CCT target colour is converted into the other colour spaces and the target
variables updated accordingly.

The transition to the new colour is initialised and started.

bool_t MibColourControl_bModeTestHueSatNext (void);

bool_t MibColourControl_bModeTestCctNext (void);

These functions are used when in the test modes to start a new transition when
the current transition ends.

6.4.3 Colour Modules

The MIbColour folder also contains modules to handle the conversion of colours
between colour spaces, to transition from one colour to another over time and a
generic interpolation engine using during transitions.

The ColourControl MIB makes extensive use of these modules.

6.4.3.1 ColourConversion.c

This source file contains the code that converts between the different colour
spaces.

All of the main processing on colours goes via the xyY colour space. When
converting to or from the xyY colour space the colour conversion matrices
derived from the colour primaries of the bulb are incorporated to ensure that
different bulbs set to the same colours display the same actual colour (so long as
the colour primaries are set accurately).

This module is an adapted version of the colour conversion software taken from
the ZigBee lighting source code. As such it contains some conditional
compilation options depending upon whether the code is being compiled for a
ZigBee or JenNet-IP application. The header file for this module also includes
some structures, types and #defines as used in the ZigBee applications.

Public Functions

The following public functions are implemented in ColourConversion.c:

teZCL_Status eCLD_ColourControl_GetRGB (

 tsCLD_ColourControlCustomDataStructure *psCommon,

 uint16 u16X,

 uint16 u16Y,

 uint8 *pu8Red,

 uint8 *pu8Green,

 uint8 *pu8Blue);

This function converts the passed in colour in the xyY colour space to the RGB
colour space.

 JenNet-IP Smart Home

Application Note

268 © NXP Laboratories UK 2015 JN-AN-1162 v2004

teZCL_Status eCLD_ColourControl_RGB2xyY (

 sCLD_ColourControlCustomDataStructure *psCustomDataStructPtr,

 uint8 u8Red,

 uint8 u8Green,

 uint8 u8Blue,

 uint16 *pu16x,

 uint16 *pu16y,

 uint8 *pu8Y);

This function converts the passed in colour in the RGB colour space to the xyY
colour space.

teZCL_Status eCLD_ColourControl_HSV2xyY (

 tsCLD_ColourControlCustomDataStructure *psCustomDataStructPtr,

 uint16 u16Hue,

 uint8 u8Saturation,

 uint8 u8Value,

 uint16 *pu16x,

 uint16 *pu16y,

 uint8 *pu8Y);

This function converts the passed in colour in the HSV colour space to the xyY
colour space.

void vCLD_ColourControl_CCT2xyY(uint16 u16ColourTemperature,

 uint16 *pu16x,

 uint16 *pu16y,

 uint8 *pu8Y);

This function converts the passed in colour in the CCT colour space to the xyY
colour space.

teZCL_Status eCLD_ColourControl_xyY2HSV (

 tsCLD_ColourControlCustomDataStructure *psCustomDataStructPtr,

 uint16 u16x,

 uint16 u16y,

 uint8 u8Y,

 uint16 *pu16Hue,

 uint8 *pu8Saturation,

 uint8 *pu8Value);

This function converts the passed in colour in the xyY colour space to the HSV
colour space.

void vCLD_ColourControl_xyY2CCT (

 uint16 u16x,

 uint16 u16y,

 uint8 u8Y,

 uint16 *pu16ColourTemperature);

This function converts the passed in colour in the xyY colour space to the CCT
colour space.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 269

teZCL_Status eCLD_ColourControlCalculateConversionMatrices(

 tsCLD_ColourControlCustomDataStructure *psCustomDataStructure,

 float fRedX,

 float fRedY,

 float fGreenX,

 float fGreenY,

 float fBlueX,

 float fBlueY,

 float fWhiteX,

 float fWhiteY);

This function calculates the colour conversion matrices from the passed in
primary colours in the xyY colour space.

Private Functions

ColourConversion.c implements the following internal functions.

void vCLD_ColourControl_HSV2RGB(float fHue,

 float fSaturation,

 float fValue,

 float *pfRed,

 float *pfGreen,

 float *pfBlue);

This function converts from the HSV colour space to the RGB colour space.

void vCLD_ColourControl_RGB2HSV(float fRed,

 float fGreen,

 float fBlue,

 float *pfHue,

 float *pfSaturation,

 float *pfValue);

This function converts from the RGB colour space to the HSV colour space.

void vCLD_ColourControl_RGB2XYZ(float afMatrix[3][3],

 float fRed,

 float fGreen,

 float fBlue,

 float *pfX,

 float *pfY,

 float *pfZ);

This function converts from the RGB colour space to the XYZ colour space.

 JenNet-IP Smart Home

Application Note

270 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void vCLD_ColourControl_XYZ2RGB (float afMatrix[3][3],

 float fX,

 float fY,

 float fZ,

 float *pfRed,

 float *pfGreen,

 float *pfBlue);

This function converts from the XYZ colour space to the RGB colour space.

teZCL_Status eCLD_ColourControl_XYZ2xyY (float fX,

 float fY,

 float fZ,

 float *pfx,

 float *pfy,

 float *pfY);

This function converts from the XYZ colour space to the xyY colour space.

teZCL_Status eCLD_ColourControl_xyY2XYZ (float fx,

 float fy,

 float fY,

 float *pfX,

 float *pfY,

 float *pfZ);

This functions converts from the xyY colour space to the XYZ colour space.

bool bCLD_ColourControl_NumberIsValid (float fValue);

This function checks if the floating point value is in a valid range.

6.4.3.2 ColourTransition.h, ColourTransition.c

These source files contain the code that controls the transition over time from
one colour to another.

The module can transition the colour across the XY, Hue/Saturation or CCT
colour spaces. However each step across these colour spaces involves
significant floating point maths which takes time. In order to provide a smooth
transition the movement through these colour spaces takes a series of coarse
steps.

Within each of the coarse steps a number of fine steps across the RGB colour
space is made. This results in a smooth transition through the appropriate colour
space while losing some accuracy while the fine steps are made across the RGB
colour space.

The transition code is written so that the timings are controlled externally. The
ColourControl MIB uses this code to make a fine (RGB) step every 10ms with a
coarse step every 80ms.

The colour transition code makes use of the generic interpolation engine,
implemented in Interpolation.c, to calculate the coarse and fine steps.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 271

Structures

The following structures are defined in ColourTransition.h.

tsColourTransition

typedef struct

{

 tsCLD_ColourControlCustomDataStructure *psColourData;

 tsInterpolation sXYInterpolation;

 tsInterpolation sHSInterpolation;

 tsInterpolation sCctInterpolation;

 tsInterpolation sRGBInterpolation;

 uint8 u8Mode;

} tsColourTransition;

This structure is used to contain all the details for a transition. This includes a
pointer to the structure containing the colour conversion matrices, an
interpolation structure for each colour space and a transition mode used to
indicate the primary colour space the transition is moving through.

The module managing the transition is responsible for creating a transition
structure which is passed into the transition functions. This allows the transition
code to operate more than one transition at a time (if required).

Public Functions

The following public functions are implemented in ColourTransition.c:

bool_t ColourTransition_bXYStart (

 tsColourTransition *psColourTransition);

bool_t ColourTransition_bHSStart (

 tsColourTransition *psColourTransition,

 bool_t bOptimise);

bool_t ColourTransition_bCctStart (

 tsColourTransition *psColourTransition);

These functions start a transition through the colour space in the function name.
The main members of the transition structure parameter should be set before
calling the function. These functions calculate the first step of the coarse colour
space interpolation and initialise the fine interpolation through the RGB colour
space.

The function to start a transition through the Hue/Saturation colour space
includes an extra bOptimise parameter which has the follow effects:

 TRUE, transitions using the shortest path from the source to the target
colour, passing through red when this is most efficient. This is used when
transitioning as a result of the target colour being.

 FALSE, transitions without passing through red even if that requires taking
a longer path to the target colour. This is used when transitioning due to
being in the UP, DOWN or LOOP modes.

 JenNet-IP Smart Home

Application Note

272 © NXP Laboratories UK 2015 JN-AN-1162 v2004

bool_t ColourTransition_bXYNext (

 tsColourTransition *psColourTransition);

bool_t ColourTransition_bHSNext (

 tsColourTransition *psColourTransition);

bool_t ColourTransition_bCctNext (

 tsColourTransition *psColourTransition);

These functions calculate the next step of the transition in the appropriate colour
space. This includes calculating the next coarse step through the colour space
when the fine steps through the RGB colour space have been completed.

bool_t ColourTransition_bEnd (

 tsColourTransition *psColourTransition);

This function ends a transition that is currently running. It is used when entering
the STOP mode from the modes that alter the colour of the bulb.

Private Functions

ColourTransition.c implements the following internal functions.

bool_t ColourTransition_bRGBInit (

 tsColourTransition *psColourTransition);

This function initialises the transition through the RGB colour space from the first
coarse step in the transition through the primary colour space.

bool_t ColourTransition_bRGBJump (

 tsColourTransition *psColourTransition);

This function sets up the transition through the RGB colour space for the coarse
steps through the primary colour space after the first.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 273

6.4.3.3 Interpolation.h, Interpolation.c

These source files implement a generic interpolation engine that can operate on
values in multiple dimensions. A source and target co-ordinate are specified
along with the required number of steps and the engine will calculate the co-
ordinates for each step, one at a time.

This engine is used by ColourTransition.c to calculate the coarse and fine
steps during a colour transition.

Structures

The following structures are defined in Interpolation.h.

tsInterpolation

typedef struct

{

 /* Diagnostic data */

 char acName[16];

 /* Input data */

 uint32 au32Source[DIMENSIONS_MAX];

 uint32 au32Target[DIMENSIONS_MAX];

 uint8 u8StepsPowerOfTwo;

 uint32 u32Steps;

 uint8 u8Dimensions;

 uint8 u8Bits;

 bool_t bForced;

 /* Output data */

 uint32 au32SourceStep[DIMENSIONS_MAX];

 uint32 au32TargetStep[DIMENSIONS_MAX];

 uint32 u32RemainingSteps;

 /* Internal data */

 uint32 au32ScaledCumulativeDiff[DIMENSIONS_MAX];

 uint32 au32ScaledStepDiff[DIMENSIONS_MAX];

 uint8 u8Scale;

} tsInterpolation;

This structure is used to contain all the details for an interpolation calculation.

The diagnostic data members are used during debugging and can be used to
name and identify an interpolation structure.

The input data section must be filled in prior to beginning an interpolation.

The output data is calculated by the engine and contains the results for the
current step and the number of remaining steps.

The internal data is used when calculating each step.

The public functions all expect a pointer to an interpolation structure to be
passed in as a parameter. This allows the engine to run multiple interpolations at
the same time.

 JenNet-IP Smart Home

Application Note

274 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Public Functions

The following public functions are implemented in Interpolation.c:

bool_t Interpolation_bStart (

 tsInterpolation *psInterpolation);

This function starts a new interpolation. It uses the data in the passed in
interpolation structure to calculate the size of each step of the interpolation.

bool_t Interpolation_bInterpolate (

 tsInterpolation *psInterpolation);

This function calculate the next step of an interpolation.

bool_t Interpolation_bEnd (tsInterpolation *psInterpolation);

This function ends a running interpolation.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 275

6.5 DriverBulb Folder

The DriverBulb folder contains the hardware drivers for bulb devices. These all
share a common interface defined in DriverBulb.h. There are separate driver C
files for each hardware platform, these have a suffix matching the value of the
DEVICE_NAME variable in the makefile.

6.5.1 DriverBulb.h, DriverBulb_Type.c

Software in the Bulb MIBs make calls into the lighting driver software which must
implement a common set of functions as defined in DriverBulb.h. This set of
functions is responsible for operating the bulb at the hardware level in response
to commands from the higher Bulb MIBs that provide the JIP interface to the
bulb.

The DriverBulb_Type.c files may also contain additional helper functions
specific to that particular bulb type.

As there are a number of different DriverBulb_Type.c files the later sections of
this chapter describe the task that should be implemented within each of the
common functions rather than the specifics of a single driver.

Public Functions

The following public functions are implemented in DriverBulb_Type.c.

void DriverBulb_vInit (void);

This function is used to initialize the bulb driver. It is called directly from
DeviceBulb.c early on in the initialization process in order to setup the hardware
as soon as possible. There is also a later call from within the BulbControl MIB’s
initialization so this function must be tolerant of being called multiple times.

It is usual to set up any DIO lines that are used to control or monitor the bulb’s
operation and to also configure the PWM timer used to operate the bulb. The
bulb is usually illuminated at this stage in order to provide immediate feedback to
the user that the bulb is operating when power is applied.

void DriverBulb_vOn (void);

This function is called from the Bulb MIBs to illuminate the bulb.

Some bulb drivers may simply toggle output lines while others may need to step
through a number of states to achieve this.

void DriverBulb_vOff (void);

This function is called from the MIbBulb modules to extinguish the bulb.

Some bulb drivers may simply toggle output lines while others may need to step
through a number of states to achieve this.

 JenNet-IP Smart Home

Application Note

276 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void DriverBulb_vSetOnOff (bool_t bOn);

This function can be used to turn the bulb on or off depending upon the value of
the parameter.

void DriverBulb_vSetLevel (uint8 u8Level);

This function is called form the Bulb MIBs to set the brightness level of the bulb.
The u8Level parameter sets the brightness with 255 being the brightest setting
and 0 being the dimmest setting.

Usually if the bulb is not illuminated it remains that way but the PWM output is
updated to an appropriate value.

void DriverBulb_vSetColour (uint32 u32Red,

 uint32 u32Green,

 uint32 u32Blue);

This function is used in colour bulbs using RGB emitters to set the colour of the
bulb. Despite the use of uint32 parameters the valid ranges are 0 to 255.

bool_t DriverBulb_bOn (void);

This function is called from the Bulb MIBs to check if the bulb is illuminated.

bool_t DriverBulb_bReady (void);

This function is called from the Bulb MIBs to check if the bulb is ready to be
controlled.

Where bulbs require a minimum bus voltage to operate, the most recent voltage
is checked and used to set the return value.

For bulbs that do not need to meet any conditions to be controlled this function
may simply return TRUE.

bool_t DriverBulb_bFailed (void);

This function may be used to report hardware failures in the bulb to the higher
MibBulb layers. These higher layers can be configured to lock a failed bulb in
order to prevent any further attempts to illuminate or control it.

Returning TRUE indicates a failed bulb. Bulbs that do not detect such failures
may simply return FALSE from this function.

void DriverBulb_vTick (void);

This function is called approximately every 10ms by the MibBulb code.

This may be used within the bulb driver for timing purposes.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 277

int16 DriverBulb_i16Analogue (uint8 u8Adc,

 uint16 u16AdcRead);

This function is called by the MibBulb code to pass completed ADC readings to
the bulb driver.

This is used in many drivers to monitor the bus voltage in order to determine if it
is possible to drive the bulb.

void DriverBulb_vSetTunableWhiteColourTemperature (

 int32 i32ColourTemperature);

This function is used in CCT bulbs to set the colour temperature of the bulb. The
temperature should be passed in in Kelvins.

 JenNet-IP Smart Home

Application Note

278 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.6 DeviceSensor Folder

The DeviceSensor folder of the Application Note contain source code that is
specific to the sensor devices in JenNet-IP Smart Home (JN-AN-1162). The
following sensors types can be built:

 Occupancy sensor, monitors the occupancy of an area and optionally
controls lights based upon the occupancy state.

 Illuminance sensor, monitors the lighting levels of an area and optionally
controls lights based upon the illuminance state.

 Combined occupancy/illuminance sensor, a combination of the above
two devices in a single device.

Each of the sensor type operates in a similar way with each differing only in the
calls they make to the Sensor MIB modules in order to provide appropriate
functionality for the sensor type.

The sensor devices can operate as the following node types:

 Routers, extending the network for other devices to join. They are able to
join and maintain their place within the network in addition to providing
sensor functionality.

 End Devices, sleeping to preserve power allowing them to be battery
powered.

The sensor applications are based upon the template device implemented in
JenNet-IP Application Template (JN-AN-1190). This section details the additions
to the template to create a sensor device. The reader should refer to JenNet-IP
Application Template (JN-AN-1190) for details of how the template software
works, including the implementation of the Common MIBs.

The common source Common\Node.c file actually provides the majority of the
network joining and maintenance code. Node.c in turn makes use of a number of
MIBs that can be used to monitor, configure and control the individual node and
its operation within the network, these MIBs are implemented in the
MibCommon folder. This common code is described in JenNet-IP Application
Template (JN-AN-1190).

The source code in the DeviceSensor folder contains the main module for a
sensor device implementing the standard JIP callback functions, which then
make calls into the stack and MIB code as required. The type of sensor built is
determined by a set of options specified in the makefile.

The source code for the MIBs and their variables used to monitor and control the
sensors are contained in the MibSensor folder.

The other source files are then hardware level drivers that are mainly called by
code in the MibSensor modules to control the operation of the sensor at the
hardware layer.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 279

The following diagram shows the layers that form the DeviceSensor applications
on top of the JenNet-IP WPAN stack:

6.6.1 DeviceSensor Makefile

The makefile for the sensors uses the variables listed in Section 6.1.1.1
"Standard DeviceType Makefile" with the following differences:

DEVICE_NAME

The sensor device supports the following values:

 DR1174 to use the basic Carrier Board (DR1174). This option should be
used when compiling the occupancy sensor.

 DR1175 to use the ambient light sensor on the Lighting/Sensor Expansion
Board (DR1175). This option should be used when compiling the
illuminace sensor or combined sensor.

NODE_TYPE

The sensor devices can be compiled as either Router or End Device node types.

DRIVER_TYPE

This variable specifies which type of sensor to build and supports the following
values:

 Occupancy to build an occupancy sensor.

 Illuminance to build an illuminance sensor.

 OccupancyIlluminance to build a combined sensor.

BLD_MIB_NAME Variables

The sensor device makefile adds additional variables to control the building of
the sensor MIBs.

REG_MIB_NAME Variables

The sensor device makefile adds additional variables to control the registration of
the sensor MIBs.

 JenNet-IP Smart Home

Application Note

280 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.6.1.1 Binary File Naming

The names of the sensor binary files incorporates the DRIVER_TYPE variable to
indicate the sensor type.

6.6.2 DeviceDefs.h

This header file contains a few #defines that can be used to configure the default
behaviour of the device. This are the same as those described in Section 6.1.1.2
"Standard DeviceDefs.h Features" with the following additions:

The digital I/O lines used to read the occupancy state and output the sensor
status are defined..

Default values for some sensor MIB variables are defined.

Additional debug flags for sensor MIBs and drivers are included.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 281

6.6.3 DeviceSensor.c

DeviceSensor.c contains the main source code for the sensor application. It
follows the pattern described in Section 6.1.1.3 "Standard DeviceType.c
Features" with the following changes.

6.6.3.1 #includes

Additional #includes are used to provide access to the sensor MIB modules used
in DeviceSensor.c.

6.6.3.2 External Variables

External data variables are added to access the data and handles of the sensor
MIBs. Each MIB has two variables:

 sMibName: Data used by the MIB is contained in a structure of the type
tsMibName with the variable name sMibName, (where Name is the actual
name of the MIB.) These data structure types are defined in the
corresponding MibName.h include file of the Application Note, while the
structure itself is declared in the MibNameDec.c source file of the
Application Note which contains the MIB declaration.

 hMibName: MIB handle passed to JIP functions to allow access to MIBs
and variables. These are of the type thJIP_Mib and named hMibName
(where Name is the actual name of the MIB). The variable is actually
declared in the MibNameDec.c source file of the Application Note.

6.6.3.3 Public Functions

The following public functions are implemented in DeviceSensor.c:

void Device_vInit (bool_t bWarmStart);

When waking from sleep operating as an End Device using the illuminance
sensor the illuminance sensor is restarted using a call to
MibIlluminanceStatus_vResume().

void Device_vPdmInit (void);

The sensor MIBs are initialised here following the call to Node_vPdmInit() once
the PDM has been initialised.

void Device_vReset (bool_t bFactoryReset);

The factory reset of the sensor MIB’s permanent data is performed here.

teJIP_Status Device_eJipInit (void);

The sensor MIBs are registered with the stack here.

 JenNet-IP Smart Home

Application Note

282 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void Device_vTick (void);

This function is called from the common Node.c module every 10ms when the
stack is running.

Tick functions in the sensor MIBs are called to allow the MIBs to interact with the
stack.

void Device_vAppTimer100ms (void);

This function is called every 100ms to allow tasks to be timed.

Timer functions in the sensor MIBs are called to allow the MIBs to run timed
tasks.

void Device_vSecond (uint32 u32TimerSeconds);

This function is called from the common Node.c module every second.

The timer is simply passed on to the sensor MIBs that perform timing tasks
based on the 1 second timer.

void Device_vSleep (void);

This function is used to place End Devices into sleep mode when the stack is not
running.

The MibIlluminanceStatus_vSleep() function is called to suspend running the
illuminance sensor.

void Device_vPreSleepCallback (void);

This callback function is called by the stack prior to entering sleep mode when
the stack is running.

The MibIlluminanceStatus_vSleep() function is called to suspend running the
illuminance sensor.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 283

6.7 MibSensor Folder

The MibBulb folder contains modules that implement MIBs for configuring,
monitoring and controlling sensors.

6.7.1 OccupancyConfig MIB

The OccupancyConfig MIB provides variables to configure the operation of the
occupancy sensor.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.1.1 MibOccupancyConfig.c

This source file contains the code that implements the OccupancyConfig MIB.

Public Functions

The following public functions are implemented in MibOccupancyConfig.c:

void MibOccupancyConfig_vRegister (void)

This function builds the default address, if required, for transmitting the
occupancy state to in addition to registering the MIB with the stack. The default
address is built from the MAC address and OccupancyConfig MIB’s ID to form
an address unique to each occupancy sensor.

6.7.2 OccupancyStatus MIB

The OccupancyStatus MIB provides variables to monitor the status of the
occupancy sensor.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.2.1 MibOccupancyStatus.c

This source file contains the code that implements the OccupancyStatus MIB.

Public Functions

The following public functions are implemented in MibOccupancyStatus.c:

 JenNet-IP Smart Home

Application Note

284 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void MibOccupancyStatus_vInit (

 thJIP_Mib hMibOccupancyStatusInit,

 tsMibOccupancyStatus *psMibOccupancyStatusInit,

 void *pvMibOccupancyConfigInit,

 void *pvMibOccupancyControlInit)

In addition to the standard initialisation this function performs the following tasks:

 Initialises the occupancy driver using a call to DriverOccupancy_vInit().

 Initialises LEDs to display the occupancy state, if configured.

void MibOccupancyStatus_vTick (void)

This function is called every 10ms when the stack is running.

This function transmits occupancy status updates when configured to do so.

void MibOccupancyStatus_vAppTimer100ms (void);

This function reads the occupancy status from the occupancy driver using a call
to DriverOccupancy_bRead().

The occupancy state and timers are updated and checked, if the occupancy
state at the MIB level (which takes the timers into account) has changed the
Occupancy MIB variable is updated.

When the occupancy state changes the
MibOccupancyStatus_vQueueTxState() function is called to transmit the new
Occupancy variable value when the occupancy sensor is configured to do so.

If the Occupancy variable is unchanged the internal refresh timer is updated and
if required the existing Occupancy variable value is retransmitted with a call to
MibOccupancyStatus_vQueueTxState() (if configured).

void MibOccupancyStatus_vQueueTxState (bool_t bImmediate);

This function queues the transmission of the occupancy state to allow other
devices to monitor the occupancy sensor.

In End Devices the bImmediate flag is used to indicate if the transmission should
be sent immediately (resuming the stack if necessary) or if it can wait until the
stack is scheduled to run (in order to poll the parent node for messages).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 285

6.7.3 OccupancyControl MIB

The OccupancyControl MIB provides variables to control the operation of the
Occupancy Sensor.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.3.1 MibOccupancyControl.c

This source file contains the code that implements the OccupancyControl MIB.

Public Functions

The following public functions are implemented in MibOccupancyControl.c:

void MibOccupancyControl_vInit (

 thJIP_Mib hMibOccupancyControlInit,

 tsMibOccupancyControl *psMibOccupancyControlInit);

This function places the occupancy sensor into the “All Occupancy Sensors”
group the first time it starts from the factory default state.

 JenNet-IP Smart Home

Application Note

286 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.7.4 IlluminanceConfig MIB

The IlluminanceConfig MIB provides variables to configure the operation of the
illuminance sensor.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.4.1 MibIlluminanceConfig.c

This source file contains the code that implements the IlluminanceConfig MIB.

Public Functions

The following public functions are implemented in MibIlluminanceConfig.c:

void MibIlluminanceConfig_vRegister (void)

This function builds the default address, if required, for transmitting the
illuminance state to in addition to registering the MIB with the stack. The default
address is built from the MAC address and IlluminanceConfig MIB’s ID to form
an address unique to each illuminance sensor.

6.7.5 IlluminanceStatus MIB

The IlluminanceStatus MIB provides variables to monitor the status of the
illuminance sensor.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.5.1 MibIlluminanceStatus.c

This source file contains the code that implements the IlluminanceStatus MIB.

Public Functions

The following public functions are implemented in MibIlluminanceStatus.c:

void MibIlluminanceStatus_vInit (

 thJIP_Mib hMibIlluminanceStatusInit,

 tsMibIlluminanceStatus *psMibIlluminanceStatusInit,

 void *pvMibIlluminanceConfigInit,

 void *pvMibIlluminanceControlInit)

In addition to the standard initialisation this function performs the following tasks:

 Initialises the illuminance driver using a call to DriverIlluminance_vInit()
and starts to take the initial reading using a call to
DriverIlluminance_vStart().

 Initialises LEDs to display the illuminance state, if configured.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 287

void MibIlluminanceStatus_vTick (void)

This function is called every 10ms when the stack is running.

This function transmits illuminance status updates when configured to do so.

void MibOccupancyStatus_vAppTimer100ms (void);

This function handles changes to the Mode variable turning the sensor on or off
as required.

If a new reading has been calculated by the driver this function reads the
illuminance from the illuminance driver using a call to
DriverIlluminance_u16Lux() , then starts the next reading. The reading is
compared to the target illuminance band and the illuminance status updated as
necessary.

The illuminance state and timers are updated and checked, if the illuminance
state has changed the TargetStatus MIB variable is updated.

When the illuminance state changes the
MibIlluminanceStatus_vQueueTxState() function is called to transmit the new
TargetStatus variable value when the illuminance sensor is configured to do so.

If the TargetStatus variable is unchanged the internal refresh timer is updated
and if required the existing TargetStatus variable value is retransmitted with a
call to MibIlluminanceStatus_vQueueTxState() (if configured).

void MibIlluminanceStatus_vQueueTxState (bool_t bImmediate);

This function queues the transmission of the illuminance state to allow other
devices to monitor the illuminance sensor.

In End Devices the bImmediate flag is used to indicate if the transmission should
be sent immediately (resuming the stack if necessary) or if it can wait until the
stack is scheduled to run (in order to poll the parent node for messages).

void MibIlluminanceStatus_vResume (void);

This function is used to resume running the illuminance sensor at the hardware
level when waking from sleep in an End Device.

 JenNet-IP Smart Home

Application Note

288 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.7.6 IlluminanceControl MIB

The IlluminanceControl MIB provides variables to control the operation of the
illuminance sensor.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.6.1 MibIlluminanceControl.c

This source file contains the code that implements the IlluminanceControl MIB.

Public Functions

The following public functions are implemented in MibIlluminanceControl.c:

void MibIlluminanceControl_vInit(

 thJIP_Mib hMibIlluminanceControlInit,

 tsMibIlluminanceControl *psMibIlluminanceControlInit,

 void *pvMibIlluminanceStatusInit,

 void *pvMibIlluminanceSceneInit);

This function places the illuminance sensor into the “All Illuminance Sensors”
group the first time it starts from the factory default state.

teJIP_Status MibIlluminanceControl_eSetSceneId (

 uint16 u16Val,

 void *pvCbData);

This callback function is called when the SceneId variable is set remotely.

It looks up the scene settings in the IlluminanceScene MIB and applies them to
the device.

void MibIlluminanceControl_vTick (void);

This function is called every 10ms.

In Router devices if the LuxAdjust variable is set appropriately it adjusts the
LuxTarget or LuxBand variables over time. This allows remote controls to be
used to alter the target illuminance.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 289

6.7.7 IlluminanceScene MIB

The IlluminanceScene MIB provides variables to configure scenes in the
illuminance sensor.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.7.1 MibIlluminanceScene.c

This source file contains the code that implements the IlluminanceScene MIB.

Public Functions

The following public functions are implemented in MibIlluminanceScene.c:

uint8 MibIlluminanceScene_u8FindSceneId (uint16 u16SceneId);

This helper function is used to find a scene with the passed in ID in the scene
table.

bool_t MibIlluminanceScene_bSetScene (uint16 u16Id,

 uint16 u16LuxTarget,

 uint16 u16LuxBand);

This helper function is used to configure the settings for a scene.

It is called by the MibIlluminanceScene_eSetAddSceneId() function when the
AddSceneId variable is written to, passing the current illuminance settings to
configure a scene.

It is called by the MibIlluminanceScene_eSetSetScene() function when the
SetScene variable is written to, passing in the illuminance settings contained in
the value written to the variable.

 JenNet-IP Smart Home

Application Note

290 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.7.8 OccIllBulbConfig MIB

The OccIllBulbConfig MIB provides variables to configure the control of bulb
devices based upon readings from occupancy and/or illuminance sensors.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.8.1 MibOccIllBulbConfig.c

This source file contains the code that implements the OccIllBulbConfig MIB.

Public Functions

The following public functions are implemented in MibOccIllBulbConfig.c:

void MibOccIllBulbConfig_vInit (

 thJIP_Mib hMibOccIllBulbConfigInit,

 tsMibOccIllBulbConfig *psMibOccIllBulbConfigInit,

 void *pvMibOccupancyStatusInit,

 void *pvMibOccupancyMonitorInit,

 void *pvMibOccupancyControlInit,

 void *pvMibIlluminanceStatusInit,

 void *pvMibIlluminanceControlInit);

In addition to the standard handling this function initialises the LEDs to display
the sensor state when configured to do so.

void MibOccIllBulbConfig_vRegister (void);

This function builds the default address, if required, for transmitting the bulb
control commands to in addition to registering the MIB with the stack. The default
address is built from the MAC address and OccIllBulbConfig MIB’s ID to form an
address unique to each sensor.

void MibOccIllBulbConfig_vTick (void);

This function is called every 10ms when the stack is running.

This function transmits bulb control commands when configured to do so.

void MibOccIllBulbConfig_vAppTimer100ms (void);

This function checks the status of the occupancy and illuminance sensors.

If action needs to be taken to control bulbs the bulb control commands are
queued with a call to MibOccIllBulbConfig_vQueueTxBulb().

The timers that are used to control the regular refresh bulb control commands
are checked and if a refresh needs to be sent a call if made to
MibOccIllBulbConfig_vQueueTxBulb().

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 291

bool_t MibOccIllBulbConfig_bOccupancy (uint8 u8Occupancy);

This helper function is called when the bulb control commands need to be
transmitted based upon the state of the occupancy sensor. The function
calculates the appropriate values to write to the BulbControl MIB variables
dependent on the occupancy state.

bool_t MibOccIllBulbConfig_bIlluminanceAuto (

 uint8 u8TargetStatus);

This helper function is called when the bulb control commands need to be
transmitted based upon the state of the illuminance sensor. The function
calculates the appropriate values to write to the BulbControl MIB variables
dependent on the illuminance state to attempt to bring the illuminance level into
the target band.

bool_t MibOccIllBulbConfig_bIlluminanceMax (

 uint8 u8TargetStatus);

This helper function is called when the bulb control commands need to be
transmitted based upon the state of the illuminance sensor. The function
calculates the appropriate values to write to the BulbControl MIB variables
dependent on the illuminance state to attempt to turn the bulbs on fully when the
light is low and off when it if high.

void MibOccIllBulbConfig_vRefreshIntervalUpdate (void);

This helper function is used to update the refresh interval timer used to regularly
re-transmit the latest bulb control commands when sensor readings are
unchanged.

void MibOccIllBulbConfig_vQueueTxState (bool_t bImmediate);

This function queues the transmission of the bulb control commands.

In End Devices the bImmediate flag is used to indicate if the transmission should
be sent immediately (resuming the stack if necessary) or if it can wait until the
stack is scheduled to run (in order to poll the parent node for messages).

 JenNet-IP Smart Home

Application Note

292 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.7.9 OccupancyMonitor MIB

The OccupancyMonitor MIB provides variables to allow the monitoring of multiple
external occupancy sensors from another sensor. The OccupancyMonitor MIB is
used to receive the occupancy state from the external occupancy sensors and
can be read to monitor the external occupancy sensors.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.7.9.1 MibOccupancyMonitor.c

This source file contains the code that implements the OccupancyMonitor MIB.

Public Functions

The following public functions are implemented in MibOccupancyMonitor.c:

void MibOccupancyMonitor_vSecond (void);

This function is called every second.

The timers used to detect whether monitored occupancy sensors have stopped
transmitting data are updated. When the timeout value is reached for a
monitored sensor the sensor is removed from the table and trap updates issued.

uint8 MibOccupancyMonitor_u8FindDevice (

 in6_addr *psIn6Address);

This helper function is used to find a device in the monitored device table.

teJIP_Status MibOccupancyMonitor_eSetOccupancy (

 uint8 u8Val,

 void *pvCbData);

This callback function is called when an occupancy sensor writes its occupancy
state to the Occupancy variable.

All occupancy sensors write their occupancy status to this same variable.

If the sending occupancy sensor is not already in the device table it is added (if
there is room for it).

The code in this function extracts the source address of the sending occupancy
sensor and updates its occupancy status in the device table.

The bitmask variables used to indicate which device table entries are enabled
and occupied or unoccupied are updated.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 293

6.8 DriverSensor Folder

The DriverSensor folder contains the hardware drivers for sensor devices. The
occupancy drivers share a common interface defined in DriverOccupancy.h
and the illuminance drivers share a common interface defined in
DriverIlluminance.h. There are separate driver C files for each hardware
platform, these have a suffix indicating the hardware sensor they can drive.

6.8.1 DriverOccupancy.h, DriverOccupancy_Type.c

The occupancy sensors allow for easy replacement of the hardware driver in
order to support different sensor hardware. These drivers should all share a
common interface as defined by DriverOccupancy.h but different
implementations in DriverOccupancy_Type.c files.

A single DriverOccupancy_DIO.c file is provided which uses a digital input line
to monitor the occupancy status. When the input line is high the area is
considered occupied and when low unoccupied.

Software in the MibSensor modules makes calls into the occupancy driver
software which must implement a common set of functions as defined in
DriverOccupancy.h.

Public Functions

The following public functions are implemented in DriverOccupancy_Type.c.

void DriverOccupancy_vInit (void);

This function is used to initialize the occupancy driver. It sets up the specified
DIO line as an input.

bool_t DriverOccupancy_bRead (void);

This function is called to initiate a read of the occupancy sensor hardware. It
reads the DIO input line status.

bool_t DriverOccupancy_bOccupancy (void);

This function is returns the most recent occupancy state read from the hardware.

uint8 DriverOccupancy_u8Type (void);

This function returns the hardware type of the occupancy sensor.

 JenNet-IP Smart Home

Application Note

294 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.8.2 DriverIlluminance.h, DriverIlluminance_Type.c

The illuminance sensors allow for easy replacement of the hardware driver in
order to support different sensor hardware. These drivers should all share a
common interface as defined by DriverIlluminance.h but different
implementations in DriverIlluminance_Type.c files.

A single DriverIlluminance_TSL2550.c file is provided which interfaces with the
TAOS TSL2550 ambient light sensor on the Lighting/Sensor Expansion Board
(DR1175) to monitor the illuminance status.

Software in the MibSensor modules makes calls into the illuminance driver
software which must implement a common set of functions as defined in
DriverIlluminance.h.

#defines

Various #defines are used for the addresses and commands to control the
TSL2550 via its serial bus.

Other #defines are used to indicate the timings of taking a measurement.

Public Functions

The following public functions are implemented in DriverOccupancy_Type.c.

bool_t DriverIlluminance_bInit (void);

This function is used to initialize the illuminance sensor by issuing commands on
the serial bus.

The return value indicates if the serial bus requests were successful.

bool_t DriverIlluminance_bPowerDown (void);

This function is used to power down the illuminance sensor hardware.

bool_t DriverIlluminance_bOpen (void);

This function is used resume running the sensor after waking from sleep.

The return value indicates if the request was successful.

bool_t DriverIlluminance_bClose (void);

This function is used to place the illuminance sensor into sleep.

The return value indicates if request was successful.

bool_t DriverIlluminance_bStart (void);

This function is starts the process of taking a reading from the sensor hardware.

The return value indicates if request was successful.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 295

bool_t DriverIlluminance_bTick (void);

This function should be called regularly is used to check for completed
illuminance measurements.

The return value indicates if new measurement is available.

bool_t DriverIlluminance_bReady (void);

This function can be called to check if a new measurement is available.

The return value indicates if new measurement is available.

uint16 DriverIlluminance_u16Lux (void);

This function returns the most recent illuminance measurement in Lux.

uint8 DriverIlluminance_u8Type (void);

This function returns the hardware type of the illuminance sensor.

uint16 DriverIlluminance_u16LuxMin (void);

This function returns the minimum illuminance the sensor can measure in Lux.

uint16 DriverIlluminance_u16LuxMax (void);

This function returns the maximum illuminance the sensor can measure in Lux.

uint16 DriverIlluminance_u16LuxTolerance (void);

This function returns the possible errors in in the measurements provided by the
sensor in Lux.

 JenNet-IP Smart Home

Application Note

296 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.9 DeviceRemote Folder

The DeviceRemote folder of the Application Note contains source code that is
specific to the remote control devices in JenNet-IP Smart Home (JN-AN-1162).

The remote control does not have many MIBs as it is largely a controlling device
that writes to variables in the MIBs of devices being controlled. The MIBs that are
available in the remote control are contained in the MibRemote folder.

The source code in the DeviceRemote folder contains the main module
implementing the standard JIP callback functions, which then makes calls into
the stack and MIB modules as required. Other modules in this folder encapsulate
certain functionality of the remote control software, including hardware level
drivers.

Due to its nature a sleeping broadcaster device it does not share any of the code
from the Common folder or include the MIBs from the MibCommon folder.

The following diagram shows the layers of that form the DeviceRemote
application on top of the JenNet-IP WPAN Stack:

6.9.1 DeviceRemote Makefile

The makefile (or values passed into it on the command line) determines which
CPU and hardware platform the software is built to run upon.

Makefile variables are also used to specify network parameters and settings.

Many of the variables used in the makefile match those described in Section
6.1.1.1 "Standard DeviceType Makefile" the other variables are described below.

DEVICE_NAME

The remote control device supports the following values:

 RD6035 for the Touch Capacitance Remote Control (DR1159-5V2).

 DR1199 for the Carrier Board (DR1174) fitted with the Generic Expansion
Board (DR1199).

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 297

6.9.2 RemoteDefault.h

This header file contains a few #defines that can be used to configure the default
behaviour of the remote control.

6.9.3 DeviceRemote.c

DeviceRemote.c contains the main source code for the remote control device
application.

The standard JIP callback functions are implemented in this source file along
with code to operate the application at the highest level. However various helper
modules and functions are used to read the hardware at the lowest level and
abstract key presses and sequences for handling by the upper layers.

The following sections briefly describe the features of the DeviceRemote.c
source code. For functions called during initialisation of the device they are
mostly presented in the order in which they are called, though it is not a fully
linear sequence.

Defines

There are a number of local #define values in DeviceRemote.c that control the
operation of the remote control. The most notable are described below:

DIO_WAKEMASK

The RD6035 build enters a sleep mode after 15 minutes of inactivity. The remote
will only exit this mode when a digital input changes state. The input to be used
for this is configured by the #define DIO_WAKEMASK. This mode of operation
extends the battery life.

Other hardware designs that need to implement this feature can use the #define
to configure one or more input lines to wake from sleep.

For hardware designs that do not feature a hardware button this value should be
set to 0 to disable this feature.

Local Data

There are a few local variables in the application.

sRemotePdm

This structure contains data that is written to the PDM.

 JenNet-IP Smart Home

Application Note

298 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Public Functions

The following public functions are implemented in DeviceRemote.c.

void AppColdStart (void);

This function is the entry point to the application following a reset or waking from
sleep without memory held.

This function first initialises the exception handler and hardware peripherals.

Then the PDM is initialised and the data record read if available.

The RemoteConfigGroup MIB is initialised. The stack is started with a call to
vStartStack(). Then the RemoteConfigGroup MIB is registered with the stack.

The touch capacitance handler is initialised and the background capacitance is
read by calling eTouchProcess().

The remote control then remains in a loop until the network is formed, joined or
re-joined. During this time the remote control enters the doze mode only but
does not sleep to preserve power. Battery life while trying to join a network is
reduced compared to normal operation when in a network. Once the remote is
operating in the network it enters sleep mode with RAM held, when it wakes up
via the AppWarmStart() function it is able to operate as a sleeping remote
control and broadcast commands to other devices.

void AppWarmStart (void);

This function is the entry point to the application following a wake from sleep with
memory held.

First hardware is re-initialised, including the touch capacitance driver.

The remote software then loops checking the touch pads for activity and taking
appropriate actions until it is time for the remote to sleep once again.

void vInitPeripherals (void);

This function initializes the peripherals used by the remote control, including the
touch capacitance drivers.

void vStartStack (void);

This function is called during a cold start to initialize the JenNet-IP stack and
start it running to form or join a network.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 299

void v6LP_ConfigureNetwork (

 tsNetworkConfigData *psNetworkConfigData);

This callback function is called by the stack from the eJIP_Init() function during
initialisation to allow the operation of the stack to be configured.

The Remote_vSetUserData() function is called to set the correct Network ID
and Device Type ID used while joining a network.

Network security is applied and if the device was previously a member of a
network the operation of that network type is resumed.

When joining a network for the first time an appropriate joining profile is set and
network keys chosen.

Finally the appropriate network key is set.

void Remote_vResumeGateway (

 tsNetworkConfigData *psNetworkConfigData);

This function is used during network configuration to resume operation in a
gateway network.

void Remote_vResumeStandalone (

 tsNetworkConfigData *psNetworkConfigData);

This function is used during network configuration to resume operation in a
standalone network.

void Remote_vSetSecurityKey (uint8 u8Key);

This function is used to set the security key being used by the stack.

void Remote_vSetProfile (bool_t bStandalone);

This function set an appropriate stack run profile depending upon the stack
mode.

void v6LP_DataEvent (int iSocket,

 te6LP_DataEvent eEvent,

 ts6LP_SockAddr *psAddr,

 uint8 u8AddrLen);

This callback function is called by the stack for data events at the 6LoWPAN
level. As this application is written to operate at the JIP level reading and writing
to MIB variables any packets received from this level of the stack are simply
discarded by the application in this function.

 JenNet-IP Smart Home

Application Note

300 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void v6LP_PeripheralEvent (uint32 u32Device,

 uint32 u32ItemBitmap);

This callback function is called by the stack each time a peripheral raises an
interrupt. This function is called from within the interrupt context. The following
peripherals are handled in this function:

E_AHI_DEVICE_TICK_TIMER

The JenNet-IP stack runs the tick timer so it raises an interrupt every 10ms.
This is used internally by JenNet-IP for timing and may also be used by
applications as long as it operation is unchanged.

The remote control uses the tick timer event to time various activities in the
application.

void vJIP_StackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This callback function is used to inform the application of stack events relating to
the status of the remote in the network. The following events are handled:

E_STACK_STARTED

E_STACK_JOINED

Indicates the bulb has successfully formed, joined or re-joined a network.

Where a network is formed the LEDs and state of the device are updated.

When a gateway network is joined the remote control enters a learning state
for 40 seconds. During this time it remains a full member of the network
operating as a router. This time period allows the gateway to read or write to
the MIB variables of a remote control that has joined its network before it
becomes unavailable due to running as a sleeping broadcaster.

When a standalone network is joined the remote control enters the learning
state for 10 seconds to allow the commissioning device to read or configure
the newly commissioned remote control.

The user data containing the Network ID and Device Type IDs is refreshed,
and the stack mode updated if required.

Finally PDM data is updated and written to flash to allow the network to be
resumed in the event of a cold start.

E_STACK_RESET

Indicates the remote control has lost contact with its network. This is expected
in the remote control software once it starts running in sleeping broadcaster
mode which does not need to maintain full contact with the network.

This event is also raised when swapping between gateway and standalone
network modes. In these cases code in this function ensures that the settings
for the new mode are configured correctly and the stack restarted
appropriately to enter gateway or standalone mode.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 301

E_STACK_NODE_JOINED

This event is raised whenever the remote control accepts a new device as a
child, this should only happen in standalone networks when the remote
control is being used to commission new devices into the network.

The software checks that the commissioned device type is correct if in
commissioning mode. It will also initiate the setting of groups in bulbs and
additional remote controls as they are accepted into the remote control’s
network.

E_STACK_NODE_AUTHORISE

This event is raised whenever a node attempts to communicate with the
remote control using an unknown encryption key. This is usually during the
process of a device trying to join the remote control’s standalone network.

If the remote is in commissioning mode the joining node’s MAC address is
noted and the authorisation state machine is moved on, (this will result in the
joining node’s commissioning key being applied).

void vJIP_Remote_DataSent (ts6LP_SockAddr *psAddr,

 teJIP_Status eStatus);

This function is called by the stack to report the outcome of a data transmission
request.

In the remote control this sets the ready to sleep flag following a transmission
attempt.

void vAppSleep (bool_t bSleepType);

This function places the remote control into sleep mode after appropriately
configuring various hardware peripherals.

void vAppSave (void);

This function saves the PDM data to flash if required.

void vCbTouchEventButton (eTouchButtonEvent eEvent,

 uint8 u8ButtonNumber);

This callback function is called by the touch driver to pass key presses to the
application.

void vTouchChecker (void);

This function is regularly called by the application to check for new button events.

Events are passed into the eKeyPressTracker() function in Key.c which
handles single key presses and also checks for key press sequences. If a key
press sequence is detected appropriate actions are taken to initiate the task
associated with the sequence.

 JenNet-IP Smart Home

Application Note

302 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void vJIP_Remote_SetResponse (

 ts6LP_SockAddr *psAddr,

 uint8 u8Handle,

 uint8 u8ModuleIndex,

 uint8 u8VarIndex,

 teJIP_Status eStatus);

This function is called by the stack when a set MIB variable response is received
from a set MIB variable request that has been unicast to another device.

This is used during the commissioning of a device when its group variables are
being configured. When success is returned the commissioning state machine is
moved on or completed as required.

void Remote_vSetUserData (void);

This function sets the Network ID and Device Type IDs contained in the beacon
response and establish route messages transmitted by the node.

This function also sets the callback handlers for beacon responses and network
authorization.

bool_t Remote_bBeaconNotifyCallback (

 tsScanElement *psBeaconInfo,

 uint16 u16ProtocolVersion);

This function is called by the stack each time a beacon response message is
received while trying to join a network.

The beacon response is first checked to ensure it has come from a network the
device may be interested in joining.

If the beacon response is acceptable but is from a node in standalone
commissioning mode while the remote is trying to join a gateway network the
process is begun to switch over to joining a standalone network.

bool_t Remote_bNwkCallback (MAC_ExtAddr_s *psAddr,

 uint8 u8DataLength,

 uint8 *pu8Data);

This function is called by the stack each time a device is attempting to establish
a route while joining the network.

The remote control only allows devices to join while in a commissioning mode.

The Network ID from the node attempting to join is compared to the Network ID
of the remote control with the node only allowed to join if the two match. This
keeps unwanted nodes out of a network.

The Device Type IDs of nodes requesting membership are also checked and
only accepted if the remote control is in a commissioning mode for that device
type.

void PTS_UartInit (void);

This function is used to initialize the UART in non-debug builds to allow
production testing of the touch keyboard.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 303

6.9.4 DriverCapTouch.h, DriverCapTouch.c,
DriverCapTouch_DIO.c

These modules provide the low level driver software that detects presses and
releases of the keys on the remote control.

There are two implementations of these drivers, both implement the same set of
public functions as defined in the DriverCapTouch.h header file, though they
both use different internal functions appropriate to the hardware used:

1. DriverCapTouch.c provides the true capacitance touch driver, reading the
capacitance changes on the DIO lines converting them to key press and
release events. This driver is used with all the touch capacitance remote
control hardware designs.

2. DriverCapTouch_DIO.c provides a driver that operates upon actual button
inputs, (instead of capacitance touch pads). This driver is used to allow the
Generic Expansion Boards (DR1199) to be used as a remote control.

Public Functions

The following public functions are implemented in DeviceRemote.c.

teTouchStatus eTouchInit (void);

This function is used to initialize the driver hardware.

teTouchStatus eTouchSleep (void);

This function is used to prepare the driver for the device entering into a sleep
mode.

teTouchStatus eTouchWake (void);

This function is used to prepare the driver for use after waking from a sleep
mode.

teTouchStatus eTouchProcess (void);

This function must be regularly called in order to read and process the button or
pad inputs.

 JenNet-IP Smart Home

Application Note

304 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.9.5 DriverLed.h, DriverLed.c

This module provides a driver for the LEDs used on the remote control boards.

This module provides functions to turn LEDs on, off and also to flash at defined
intervals.

6.9.6 Key.h, Key.c

This module tracks key presses passed in from the hardware driver, reacting to
simple commands and detecting key sequences.

Public Functions

The following public functions are implemented in Key.c.

teKeyStatusCode eKeyPressTracker (teTouchKeys eTouchKeys,

 bool_t bNormal);

This function should be called each time a key press is detected from the touch
driver.

It maintains a history of key presses and returns status code values when a
sequence is detected that requires further actions to be taken.

Simple one key commands are passed into the vSetModeMibVar() function for
handling.

uint8 u8GetLastGroup (void);

This function returns the index of the last pressed group key.

void vKeyTick (void);

This function is called regularly to allow the key handler to time events.

teKeyType eGetKeyType (teTouchKeys eTouchKeys);

This function returns the type of an individual key press.

The last pressed group selection key is retained for future use.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 305

6.9.7 Mib.h, Mib.c

This module provides a set of functions that are used to write to MIB variables in
other devices in order to control them.

Public Functions

The following public functions are implemented in Mib.c.

void vSetModeMibVar (teTouchKeys eTouchKeys);

This function is used to set the BulbControl MIB Mode variable to the value
specified by the touch key passed in. The command is broadcast to the address
of the last pressed group key.

void vSetGroupMibVar (MAC_ExtAddr_s *psMacAddr,

 uint32 u32MibId,

 uint8 u8VarIdx,

 uint8 u8Group);

This function is used to write to the Groups MIB AddGroup and RemoveGroup
variables to an individual device using a unicast. It used during commissioning of
new devices.

teJIP_Status eBcastGroupMibVar (uint16 u16GroupAddr,

 uint32 u32MibId,

 uint8 u8VarIdx,

 uint8 u8Group);

This function is used to write to the Groups MIB AddGroup and RemoveGroup
variables to multiple devices using a broadcast. The command is transmitted
with a lower power than other commands as it is used to configure groups at
short range for devices already in the network. The command is also prevented
from being rebroadcast though the network so only devices in range of the
remote are updated.

void vSetNodeControlMibVar (uint8 u8CountDown);

This function is used to broadcast a write to the NodeControl MIB FactoryReset
variable to schedule a factory reset. This is used for the decommission bulb
command.

void vSetMibVarUint16 (MAC_ExtAddr_s *psMacAddr,

 uint32 u32MibId,

 uint8 u8VarIdx,

 uint16 u16Val);

This function is used to transmit a MIB variable write for variables of the type
uint16.

 JenNet-IP Smart Home

Application Note

306 © NXP Laboratories UK 2015 JN-AN-1162 v2004

void vSetMibVarUint8 (MAC_ExtAddr_s *psMacAddr,

 uint32 u32MibId,

 uint8 u8VarIdx,

 uint8 u8Val);

This function is used to transmit a MIB variable write for variables of the type
uint8.

void vSetSafetoSleep (void);

This function sets the “safe to sleep” flag.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 307

6.9.8 ModeCommission.h, ModeCommission.c

This module handles the commissioning of new devices into the network.

It controls the acceptance of new devices and also once accepted applies any
grouping configuration appropriate to the commissioning mode.

Public Functions

The following public functions are implemented in ModeCommission.c.

void vCommissionInit (tsDevice *psDevice ,

 tsAuthorise *psAuthorise);

This function begins the commissioning process placing the stack into
standalone commissioning mode and starting the commissioning timer.

void vCommissionMode (tsDevice *psDevice ,

 tsAuthorise *psAuthorise,

 teSysState *peSysState);

This function manages the commissioning process for a device maintaining a
state machine to step through the various stages of commissioning.

This includes applying the commissioning key for new devices and placing them
into groups by writing to the Groups MIB variables.

void vDecommissionInit (void);

This function begins the decommissioning process. It prevents the rebroadcast
of decommission commands, sets the number of decommission transmissions to
be made and starts the decommissioning timer.

void vDecommissionEnd (void);

This function ends the decommissioning process allowing future broadcasts to
be rebroadcast through the network.

void vTtlOverride (uint8 u8MaxBcastTtl);

This function overrides the “time to live” for broadcast packets. This is usually
used to prevent rebroadcasting of transmissions by setting it to 0.

void vTtlRestore (void);

This function restores the “time to live” for broadcast packets, allowing them to
be rebroadcast to the whole network once again.

6.9.9 JipCallbacks.c

This module contains the JenNet-IP callback functions that are not used by the
application as such they are all empty.

 JenNet-IP Smart Home

Application Note

308 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.10 MibRemote Folder

The MibRemote folder implements MIBs that can be reused in many different
remote types.

At this time only the RemoteConfigGroup MIB is included. This MIB allows the
addresses associated with the remote’s group buttons to be read or written.
These are the group addresses that the remote control transmits commands to.

6.10.1 RemoteConfigGroup MIB

The RemoteConfigGroup MIB allows the addresses associated with the remote’s
group buttons to be configured. These are the addresses that bulb commands
are transmitted to.

It can be useful to read or write to these variables when the remote first joins a
gateway so the groups that can be controlled by the remote are known or
configured as required. Once a remote has started sleeping it will be necessary
to force it to re-join the network to make it available for data access.

This MIB follows the pattern described in Section 6.1.3 "Standard MIB Module
Features" with the following alterations.

6.10.1.1 MibRemoteConfigGroup.c

This source file contains the code that implements the RemoteConfigGroup MIB.

Public Functions

The following public functions are implemented in MibRemoteConfigGroup.c:

void MibRemoteConfigGroup_vRegister (void);

This function registers the MIB with the stack making the variables available to
be accessed by other devices.

If groups have not been read from the PDM then they are initialized with default
values.

The address for the “All” group is set to the “All Bulbs” group address, this means
that every remote control’s “All” group will control every bulb in a network.

The remaining group addresses are set to values that incorporate the remote
control’s MAC address. This makes these group addresses unique to each
remote control, group A on one remote will always be different to group A on
another remote.

A flag is set to ensure that default data is written to the PDM the first time the
device runs.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 309

void MibRemoteConfigGroup_vBuildAddr (

 in6_addr *psAddr,

 MAC_ExtAddr_s *psMacAddr,

 uint16 u16Group);

This function builds a group address from a combination of MAC address and/or
a 16-bit group number.

teJIP_Status MibRemoteConfigGroup_eSetAddr (uint8 *pu8Val,

 uint8 u8Len,

 void *pvCbData);

This function is called by the stack to set the value of the Addr variables in the
RemoteConfigGroup MIB and is specified in the MIB declaration in
MibRemoteConfigGroupDec.c. When this function is called the new values are
saved to the PDM.

void MibRemoteConfigGroup_vGetAddr (thJIP_Packet hPacket,

 void *pvCbData);

This function is called by the stack to get the value of the Addr variables in the
RemoteConfigGroup MIB and is specified in the MIB declaration in
MibRemoteConfigGroupDec.c.

 JenNet-IP Smart Home

Application Note

310 © NXP Laboratories UK 2015 JN-AN-1162 v2004

6.11 LowEnergySwitch Folder

The LowEnergySwitch folder of the application note contains source code that
is specific to the low energy switches in JenNet-IP Smart Home (JN-AN-1162)

The low energy switch does not have any MIBs as it is only transmits writes to
variables in the MIBs of devices being controlled. At all other times it is either in
deep sleep mode, (when battery powered), or completely powered down, (when
powered by an energy harvester).

The source code in the LowEnergySwitch folder contains the only module
implementing low energy switch. This application is built upon the limited IEEE
802.15.4 Micro-MAC. This version of the IEEE 802.15.4 MAC contains a minimal
set of APIs supporting only the most basic radio operations making it suitable for
use in devices that require very low energy use.

The following diagram shows the layers of that form the low energy switch
application on top of the Micro-MAC stack:

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 311

6.11.1 LowEnergySwitch Makefile

The makefile (or values passed into it on the command line) determines which
CPU and hardware platform the software is built to run upon.

Makefile variables are also used to specify radio parameters and settings.

Many of the variables used in the makefile match those described in Section
6.1.1.1 "Standard DeviceType Makefile" the other variables are described below.

DEVICE_NAME

The remote device supports the following values:

 DR1174 for the Carrier Board (DR1174).

 DR1197 for the ZF Energy Harvester Reference Design (DR1197).

CHANNEL

This variable specifies the channel that the device may operate on. The low
energy switch can only operate on a single channel. The default value of 21
produces a binary that only operates on channel 21. To operate on a different
channel this variable must be changed. The value is surfaced to the source code
via the #define MK_CHANNEL.

6.11.2 LowEnergySwitch.c

LowEnergySwitch.c contains the source code for the low energy switch
application.

The standard JIP callback functions are not present as this application makes
use of the Micro-MAC APIs providing access to the minimal set of functions
required to perform the most common radio tasks.

The following sections briefly describe the features of the LowEnergySwitch.c
source code. The functions are presented in this documentation in the order they
are called, though they appear in a different order in the source code file.

Defines

There are a number of local #define values in LowEnergySwitch.c that control
the operation of the low energy switch. The most notable are described below:

DIO_BUTTON_MASK

This define is used when the hardware platform includes buttons that must be
read to control the operation of the low energy switch. This value is taken from
MK_DIO_BUTTON defined in the makefile.

The DR1197 build for the ZF Energy Harvesting Reference Design uses DIO8 as
an input to ensure that commands packets are only transmitted when the switch
is pressed and nothing is transmitted when the switch is released.

 JenNet-IP Smart Home

Application Note

312 © NXP Laboratories UK 2015 JN-AN-1162 v2004

TAG_CHANNEL

This define is used to set the single radio channel the switch transmits upon. The
value is taken from the MK_CHANNEL defined in the makefile.

Public Functions

The following public functions are implemented in LowEnergySwitch.c.

void AppColdStart (void);

This function is the entry point to the application following a reset or waking from
sleep without memory held.

This function simply calls the AppWarmStart() function.

void AppWarmStart (void);

This function is the entry point to the application following a wake from sleep with
memory held. This application does not use such a sleep mode and so is never
called directly in this way, though it is called from the AppColdStart() function.

This function first performs system initialisation, including the radio and hardware
peripherals.

If a button input is specified the button is read and the results check to determine
is a packet should be transmitted. Where a button is not specified the command
is always transmitted.

If a command is to be transmitted the current frame counter for the command is
read from EEPROM, incremented and written back to EEPROM. The command
value is derived from the least significant bit of the frame counter which results in
alternating on and off commands each time the application runs.

The command is then transmitted using a call to vSendFrame().

Finally the application is ended in one of two ways depending upon the power
source being used:

1. Energy Harvester: When building for an energy harvester device the
software is put into a while loop until the harvested energy runs out.

2. Battery: When building for battery power the device is placed into deep
sleep mode to preserve power until the software is reset.

void vSendFrame (uint8 u8Command);

This function builds the command packet and encrypts it using the fixed security
key. The packet is then transmitted three times. The vInterruptFired() callback
function is used to flag when the transmission has completed and the
vHwDeviceIntCallback() callback function is used to insert a small delay
between each transmission using the a wake timer.

void vInterruptFired (uint32 u32InterruptBitmap);

The vInterruptFired() callback function is used to flag when the transmission
has completed.

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 313

void vInterruptFired (uint32 u32DeviceId

 uint32 u32ItemBitmap);

The vInterruptFired() callback function is used to flag when the wake timer
delay is over.

 JenNet-IP Smart Home

Application Note

314 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Appendices

A Revision History – JN-SW-4141 Toolchain

This appendix contains the revision history for the Application Note, built on the
JN-SW-4141 Beyond Studio for NXP Toolchain, most recent first.

A.1 28/01/2015: Public v2004

Changes

Public release on Beyond Studio for NXP Toolchain.

Lpap440: Remote – fast standalone commissioning needs to be re-enabled

Done, to work with lpap443.

Also uses a standalone profile when in standalone mode so it gets passed to the
joining devices allowing them to check the configured ping interval upon joining.

Lpap443: Devices – detect joining a standalone network via fast commissioning.

Devices detect joining a standalone network via fast commissioning. If the ping
interval is 0 the device enters standalone mode (if not already in standalone
mode).

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v1111 v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 315

A.2 21/10/2014: Internal v2003

Changes

This release includes a draft version of the manual for review and the following
changes:

Lpap076: Bulb – Update to current bulb drivers

Updated to use latest bulb drivers.

Lpap297: Bulbs – Re-introduce BulbConfig MIB to white bulbs

Device IDs for existing bulbs also updated.

Lpap298: Bulbs – Add generic DeviceScene MIB

Provides a way to configure scenes in all device types using the same
mechanism.

Lpap363: Documentation – Update with new features and code structure

Draft copy created for review.

Lpap365: Devices – Choose best settings for u8JNT_IndirectTxBuffers

To minimise packet loss when sending to End Devices.

Lpap400: Devices – Protect against EEPROM corruption

If power is lost during a write of the factory reset data.

Lpap406: Sensors – Combine separate sensor folders into a single folder

Use compilation options to select what type of sensor to build.

Lpap437: Bulb – Add CctMax and CctMin variables to ColourConfig MIB

Placeholder values added.

Lpap438: Remote – Add commissioning of CCT and colour bulbs

To allow their addition to standalone mode networks.

Lpap439: Devices – Set appropriate profile when entering and leaving
standalone mode

Allowing devices to correctly operate in a standalone mode network.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v?.? v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

316 © NXP Laboratories UK 2015 JN-AN-1162 v2004

A.3 21/10/2014: Internal v2002

Changes

This release tidies up the compilation warnings from the previous release and
adds a preview of the colour bulb device.

Lpap303: Colour Bulb – Add Colour Bulb MIBs

The Colour Bulb MIBs are now fully functional.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v?.? v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 317

A.4 26/09/2014: Internal v2001

Changes

This release tidies up the compilation warnings from the previous release and
adds a preview of the colour bulb device.

Lpap303: Colour Bulb – Add Colour Bulb MIBs [Not yet complete]

The majority of the ColourControl MIB variables for setting colour in the XY and
Hue, Saturation colour spaces are implemented including transitions across
those spaces. The Colour Wheel in the Gateway’s Smart Devices interface can
be used to set colour. The MIB Browser can be used to explore the other
implemented MIB variables.

ColourControl MIB variables that have not been implemented are read only.

The ColourConfig MIB transition time variable is used when making transitions.

Colour scenes are not implemented.

Lpap378: Devices – Port to Beyond Studio for NXP Toolchain

Done.

Lpap379: Devices – Increase security frame counter on all power cycles

Avoids potential issues with messages being ignored, previously this was only
increased for devices that were in a standalone mode network.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v?.? v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

A.5 29/08/2014: Internal v2000

Changes

This release is the initial port onto the new Toolchain for internal test purposes.
There are lots of compilation warnings and errors however the code does
compile and run.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v?.? v1051 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

318 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B Revision History – JN-SW-4041 Toolchain

This appendix contains the revision history for the Application Note, built on the
JN-SW-4041 Eclipse Toolchain, most recent first.

B.1 01/08/2014: Internal v1068

Changes

The following application changes were made in this release:

Lpap373: Devices – Better generation of automatic version number

With old scheme spaces in user names could mess up the number of words in
the parsed output that generated the version number.

Lpap375: End Devices – Set ping interval to 2

Now End Devices ping when they wake up changing this setting prevents pings if
application data was sent in the previous wake cycle.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 V1.1.3 v1097 JN5168
JN5164

B.1 23/07/2014: Internal v1067

Changes

This release is built on a new version of the JIP SDK that includes various stack
fixes.

The following application changes were made in this release:

Lpsw5263: End Devices – Re-joins with commissioning key instead of network
key

If an End Device is power cycled twice without re-joining the application clears
the flag indicating that the device was in a network and so on the second power
cycle re-joins using the commissioning key – fixed (in application).

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 V1.1.3 v1094 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 319

B.2 20/05/2014: Internal v1066

Changes

This release is identical to the v1065 release with the exception of the binaries
being compiled using a patched version of the JenNet.

The following changes were made in this release:

Lpsw4947: Devices – JenNet only tries to join first scan result entry

Needs to time out the Establish Route Request and move onto the next entry
(instead of resetting the stack and starting again) – fixed.

Note this fix requires a patched JenNet library that is not included in the current
v1050 installer.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v1050

(Patched)

JN5168
JN5164

 JenNet-IP Smart Home

Application Note

320 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.3 08/05/2014: Internal v1065

Changes

This main purpose of this release is to complete a few final bug fixes.

The following changes were made in this release:

Lpap368: Devices – Use static variable for in call to vJIP_SetDeviceTypes()

Otherwise they don’t get correctly reported in the DeviceID MIB – fixed.

Lpap369: Devices – Optional join timeout fires repeatedly

The optional join timeout that stops a device trying to join after a certain time
fires repeatedly once the timeout value is reached – fixed.

End Devices should only stop trying to join while the stack is running and the
application must place the chip into sleep mode when joining is cancelled – fixed.

Lpap370: Devices – Enable debug earlier

Especially for End Devices as problems may be caused if not enabled – fixed.

Lpap371: Devices – Make sure MibNwkSecurity_vSecond is called

Instead of calling MibNwkStatus_vSecond() twice – fixed.

Lpap372: Devices – Rejoin (without power cycle) scanning all channels and PAN
IDs

Need to limit the channel and PAN IDs in the stack when JOINED event is raised
– fixed.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v1050 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 321

B.4 16/04/2014: Internal v1064

Changes

This main purpose of this release is to port the applications on to the new Mini-
MAC to free up additional code-space for application use.

The following changes were made in this release:

Lpap339: End Device Sensors - Allow broadcasts while trying to re-join

Applications updated to allow this along with a stack fix.

Lpap366: End Devices – remove software reset following network loss

Done, (this was a workaround for lpsw4766).

Lpsw4766: End Devices - not sleeping after network re-join

Fixed in stack.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v1050 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

322 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.5 27/03/2014: Internal v1063

Changes

This main purpose of this release is to port the applications on to the new Mini-
MAC to free up additional code-space for application use.

The following changes were made in this release:

Lpap332: MibBulb - Remove MIB library

Flatten structure, remove patch functions, adapt timings for End Device use,
drop 4x support.

Lpap357: Remote - Cloning remotes into a standalone network is broken

Fixed

Lpap361: Devices - Adapt for use with Mini-MAC

To create additional code-space for applications.

Known Issues

The following issues remain in this release:

Lpsw4766: End Devices - not sleeping after network re-join

Workaround in place to software reset End Devices when they lose contact with
the network.

Lpap339: End Device Sensors - Allow broadcasts while trying to re-join

Stack should allow this, need to adapt application and test, requires fix for
Lpsw4766.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - V1015 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 323

B.6 03/02/2014: Internal v1062

Changes

The main purpose of this release is to optimise the battery life of the End Device
Occupancy Sensor. The End Device Illuminance Sensor has also been added to
the package. Only source code for the Occupancy Sensor and Illuminance
Sensor is included in the release package.

The following changes were made in this release:

Lpap349: DeviceOccupancyIlluminance – Adapt for new template

Allowing use as Router or End Device.

Lpap356: Devices – Initialise DIO lines for lowest power consumption

For best battery life on End Devices.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

324 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.7 21/01/2014: Internal v1061

Changes

This main purpose of this release is to optimise the battery life of the End Device
Occupancy Sensor. The End Device Illuminance Sensor has also been added to
the package. Only source code for the Occupancy Sensor and Illuminance
Sensor is included in the release package.

The following changes were made in this release:

Lpap337: DeviceIlluminance – adapt for End Device operation

Techniques used for the Occupancy Sensor have been applied to the
Illuminance Sensor.

Lpap340: End Device Sensors – Exclude MIB Group modules from compilation

End Devices cannot receive broadcasts so it is pointless to persist group
memberships and some code space is gained.

Lpap341: End Devices – Optimise startup time

Wait until the stack or UART needs to be used before waiting for the 32MHz
clock to stablise.

Lpap342: End Devices – Use network key for rejoin following a power cycle

Instead of the commissioning key.

Lpap351: Sensors – Exclude MIB NodeStatus from compilation

Does not provide much benefit, removed to save code space.

Lpap353: End Devices – Optimise battery life

Removed unnecessary idling, doesn't doze before sleeping, optimised path
through main loop.

Respect "stay awake" flag by sleeping then polling a short period later instead of
actually staying awake in doze mode.

Alter default timing intervals, 2s parent poll, 5m OND query, 100ms between
OND query and data poll, 30s for sensor refresh transmissions.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 325

B.8 27/11/2013: Internal v1060

Changes

This main purpose of this release is to allow the Occupancy Sensor Device to
run as an EndDevice. Only source code for the Occupancy Sensor is included in
the release package.

The following changes were made in this release:

Lpap268: Sensors - add new modes to OccIllBulbConfig MIB Mode variable

Renamed the existing mode OCC_ILL (3) to OCC_ILL_AUTO (3). This mode
automatically adjusts the bulb brightness to get the illuminance into the target
band. This is therefore best used where the light of the bulbs falls upon the
sensor.

Added OCC_ILL_MAX (4) mode. This mode:

 Turns the bulbs on at maximum brightness when occupied and the
illuminance is low

 Turn off the bulbs when the illuminance is high.

This is therefore best used where the light of the bulbs does not fall upon the
sensor.

Added ALWAYS_OFF and ALWAYS_ON modes, that disregard the sensor
readings and turns the bulbs off or on respectively.

Lpap269: Remote - Add activate scene support

Buttons 1-4 activate scenes 0xA00A-0xD00D.

Lpap300: MibCommon – remove MIB libraries and refactor for EndDevice use

The code has been flattened to remove the libraries and the patches to the old
JN514x libraries and ROM builds integrated into the flattened code. As a result
this code is now suitable for only JN516x chips.

Lpap301: DeviceOccupancy - allow operation as sleeping End Device

In this mode the sensor wakes every 100ms to read the input sensor, only
starting the stack when it has data to transmit.

When running as an End Device it cannot switch into standalone mode and so
cannot control bulbs when the network is lost.

End Devices cannot receive broadcasts messages if the device is being used to
receive occupancy updates from other sensors they will need to be unicast to the
End Device sensor.

 JenNet-IP Smart Home

Application Note

326 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Lpap334: MibSensor – adapt for End Device use

Done for MIBs used by Device Occupancy

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

B.9 04/09/2013: Public v1059

Changes

The following changes were made in this release:

Low Energy Switches

Low Energy Switch application has been added suitable for use with coin cell or
energy harvesting power sources.

Lpap217: Remove commented out include paths from makefiles

Done

Lpap229: Place Sensors into default groups

All Sensors are placed into the “All Devices” group.

Occupancy and Occupancy/Illuminance Sensors are placed into the “All
Occupancy Sensors” group.

Illuminance and Occupancy/Illuminance Sensors are placed into the “All
Illuminance Sensors” group.

Lpap231: Remove JN514x build targets from Eclipse

Removed due to diverging stack APIs.

Lpap233: Add DeviceControl MIB to Sensors

Done.

Lpap252: Move Occupancy Sensor DIO to DIO 1

Allowing use with either Parallax PIR module or Generic Expansion Board.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 327

B.10 23/07/2013: Internal v1058

Changes

The following changes were made in this release:

Minor Changes

Fixed Remote Controls not joining networks with addition of fast commissioning
code.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v932 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

328 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.11 18/07/2013: Internal v1057

Changes

The following changes were made in this release:

OccupancyMonitor MIB

A single Occupancy variable can now be written to by all devices instead of each
device having to be configured for a different variable.

Added Unoccupied variable for monitoring lack of occupancy.

Added DeviceTable variable to allow the devices being monitored to be read.

Renamed Devices variables to MaxDevices.

Lpsw3905: Fast standalone commissioning

Now uses fast commissioning for standalone mode. Joining nodes are all
configured with the fast commissioning parameters. Remote controls transmit
double fast commissioning packets when starting commissioning and every 30
seconds whilst commissioning.

Lpsw4023: Implement use of stay awake requests from JIP on End Devices

End Devices will stay awake for an extra 500ms following each stay awake
request.

Minor Changes

Re-instated mimic of PWM output to DIO17 in DriverBulb_PWM.c.

Bulb software built using the SSL2108SYNC driver no longer doze.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v932 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 329

B.12 12/07/2013: Internal v1056

Changes

Updated sensor ALPHA which implements a bulb controlling occupancy and/or
illuminance sensor device. See Sensor MIBs and Appendix B for details. Note
that we intend to further alter the OccupancyMonitor MIB to remove the
OccupancyX variables and replace with a single variable all devices can write to.
This is to simplify the configuration of multiple occupancy sensor devices where
each needs to be configured with a different variable to write their state into. This
will use the source address of the write once the stack has been updated.

 Split DeviceSensor into three different devices DeviceOccupancy,
DeviceIlluminance and DeviceOccupancyIlluminance.

 Setting OccIllBulbConfig MIB RefreshInterval variable to zero disables
refresh transmissions.

 Setting OccIllBulbConfig MIB AdjustInterval variable to zero disables
adjustment transmissions.

 OccupancyConfig MIB OccupiedDelay and OccupiedEvents variables can
now be set individually.

 Added variables to OccupancyConfig MIB to allow transmission of
occupied state to other devices, (most usefully the OccupancyMonitor
MIB).

 Added IlluminanceConfig MIB which includes variables to allow
transmission of illuminance state to other devices.

 Added OccupancyMonitor MIB to receive and combine occupancy states
from other occupancy sensors.

 Added variables to IlluminanceControl MIB to provide additional methods
for altering the target band from remote controls.

 Added checks in IlluminanceControl MIB to ensure the LuxTarget and
LuxBand variables cannot be set out of range.

 Added full documentation for sensor MIBs and explained the use of
OccupancyMonitor MIB in Appendix B.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v910 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

330 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.13 27/06/2013: Internal v1055

Changes

Added DeviceSensor ALPHA which implements a bulb controlling occupancy
and illuminance sensor device.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v910 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 331

B.14 13/06/2013: Internal v1054

Changes

Built on new stack release v910.

Lpap190: Bulb – Scene levels not being properly applied on DR1175 bulb builds

Fixed – driver was not retaining light level whilst off, the replacement of the
DR1175 driver with the generic PWM driver has fixed this.

Lpap214: End Devices – End Devices going into standalone mode

Fixed.

Lpsw3928: Device – Implement I/O Device Type

DeviceDio in Application Template includes this functionality.

Lpsw3931: Remote – Implement battery powered switch

Done.

Lpsw3941: Devices – Implement code simplification

Core network code now in common modules

Lpsw3994: Devices – Exception in PDM after binary update

Fixed.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v910 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

332 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.15 28/05/2013: Internal v1053

Changes

Built on new stack release, includes the following new notable features:

New DeviceRemote builds for use in switches with push buttons.

DemoSensor device intended as a starting point for discussion and evaluation of
Occupancy and Light Level sensor with automatic bulb control. This software is
not production quality in particular the MIBs will need to be significantly re-
organised. See DemoSensor\Doc\Readme.txt for brief instructions.

Lpap173: Bulb – Add PWM only driver

Added.

Note: the new DriverBulb_PWM.c is now used in the Bulb DR1175 build
instead of DriverBulb_DR1175.c (which will be removed in a future release).

Lpap195: Bulb – Enable network state colours in PCA9634Z End Device Bulb

Fixed.

Lpap196: Remote – Remote DR1047 build not working

Fixed.

Note this build target has been removed from Eclipse and replaced by the more
suitable DR1199 and DR1047A Remote builds. This DR1047 build is still
available via the command line or adding a build target.

Lpap211: Devices – Improve default Node MIB Name Variable value

The default value for the Node MIB Name variable value will be:

TPPPPNCC MMMMMM

where:

T indicates device type

B=Bulb, R=Remote, S=Sensor

PPPP is the Product ID in hex digits

N indicates node type

c=Coordinator, r=Router, e=End Device

CC indicates chip type

2J = JN5142J01, 48 = JN4148, 8J = JN5148J01, 64 = JN5164, 68 = JN5168

MMMMMM is the least significant 6 digits of the MAC Address in hex digits

Alternatively the TPPPPNCC part can be overridden by specifying a value for the
JIP_NODE_NAME makefile variable on the command line

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 333

Lpap212: Devices – Allow factory reset magic number to be overridden from
make command line

Add makefile variable FACTORY_RESET_MAGIC to allow the factory reset
magic number to be overridden.

Intended for testing use.

Lpap213: Remote - Add button driven remote control (switch)

Added DeviceRemote_DR1199_JN5148J01 and
DeviceRemote_DR1199_JN5168 builds running on Evaluation Kit Generic
Shield.

Added DeviceRemote_DR1047A_JN5148J01 running on Evaluation Kit
Controller Board.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - V905 JN5168
JN5164

B.16 08/05/2013: Internal v1052

Changes

Built on new but patched stack release, mainly as a marker for first attempts at
End Devices and shared common code.

Lpap174: Devices – Move common networking functionality into common
source files

Common code for many device types moved out of DeviceBulb\DeviceBulb.c
and into Common\Node.c to allow reuse in other projects. Node.c supports both
Routers and End Devices.

Lpap194: Devices – Add basic End Device support

PCA9634 bulbs may be built as End Devices for experimentation.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v857 +
PATCH

JN5168
JN5164

 JenNet-IP Smart Home

Application Note

334 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.17 24/01/2013: Public 1v5 (Internal v1050)

Changes

Built on new JenNet-IP stack release.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v857 JN5168
JN5164

B.18 21/01/2013: Internal v1049

Changes

Lpap167: Bulb JN516x – Check validity of EEPROM data on start-up

Validates EEPROM data as the number of sectors allocated to the PDM has
changed which will confuse the PDM if an upgrade takes place without erasing
the EEPROM (as happens with OND).

On start-up the data in the EEPROM sector used for factory reset detection
should be validated against a new magic number and also the Device ID (to
protect against changes in devices) and the EEPROM wiped if either do not
match.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v811 JN5168
JN5164

B.19 18/01/2013: Internal v1048

Withdrawn

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 335

B.20 11/01/2013: Internal v1047

Changes

Lpap163: Bulb JN516x – Moved factory reset flags into EEPROM

Now uses an EEPROM sector to store factory reset detection flags.

Bulb – Make thermal control loop optional

The thermal control loop is now optional and disabled by default in public bulb
releases.

Bulb JN516x – Enables high temperature operation

Calls vAHI_ExtendedTemperatureOperation(TRUE).

Remote – Replace bAHI_PhyRadioSetPower()

eAppApiPlmeSet(PHY_PIB_ATTR_TX_POWER, 34+10*x) should be used
instead.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v811 JN5168
JN5164

 JenNet-IP Smart Home

Application Note

336 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.21 20/12/2012: Public 1v4 (Internal v1046)

This release adds support for the JN516x chip family.

Known Issues

Lpap163: Bulb JN516x – Move factory reset flags into EEPROM

The wake timer register method currently used is very dependent upon the
hardware power supply, though it should be sufficient with Evaluation Kit boards.
For production bulbs this data ought to be stored in EEPROM either directly or
via the PDM.

Changes

Lpap160: Bulb SSL2108 SYNC – Reduces flicker by using constant current

Avoids flicker on some hardware platforms that are sensitive to current draw.

Lpap162: Bulb – Allows deletion of “All Devices” and “All Bulbs” groups

Previously these groups would be restored upon joining or re-joining a network.
A User may have valid reasons to want to remove a bulb from these groups.

Lpap164: Devices JN516x – Validate PDM data matches that used by running
software

Where data in the PDM indicates the data was saved for a device with a different
JIP Device ID to the running software the PDM data is deleted and the device
restarted. Most useful during development on JN516x Evaluation Kits as the
software in a module may change often without necessarily clearing out the
EEPROM when re-programmed.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN514x SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 v1.0 v783 JN5168
JN5164

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 337

B.22 26/11/2012: Internal v1044

Changes

Other: Bulb – Added SSL2108 Synchronised driver

This driver removes flicker on some SSL2108 bulb driver hardware platforms.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

B.23 09/11/2012: Public 1v3

Changes

Lpap161: Bulb – Setting scenes is not activating scenes

Fixed.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

 JenNet-IP Smart Home

Application Note

338 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.24 05/11/2012: Internal 1v2

Changes

Lpap115: Bulb – ThermalControl.c Warning “will never be executed”

Fixed.

Lpap133: Bulb – Correct reduction of routing table size for debug builds

Now uses correct debug #define.

Lpap157: Remote – Limit abort for commissioning to hardware button only

Touch pads no longer abort commissioning, sometimes radio communications
could trigger a pad and hence abort commissioning.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.2 v695 JN5148-J01
JN5142-J01

B.25 01/10/2012: Internal 1v1v5

Internal only development release.

B.26 26/09/2012: Public 1v1v4

Changes

Lpap147: Remote – incorrectly using bulb device Type

Fixed to use Remote Device Type again allowing commissioning of additional
remotes into standalone systems.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.1 v607 JN5148-J01
JN5142-J01

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 339

B.27 14/09/2012: Internal 1v1v3

Changes

Lpap139: Bulb – User profile being applied when joining a network

Application source code for this release is unchanged from version 1v1v1 but it
was built upon an updated JenNet-IP stack release v607.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.1 v607 JN5148-J01
JN5142-J01

B.28 Internal 1v1v2

This was an unreleased internal version.

B.29 10/09/2012: Internal 1v1v1

Changes

Lpap139: Bulb – User profile being applied when joining a network

Removed so standard profile continues to be used.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 - v594 JN5148-J01
JN5142-J01

 JenNet-IP Smart Home

Application Note

340 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.30 06/09/2012: Internal 1v1

Changes

Lpap135: Bulb – Use standard join profile 6 instead of user profile

Allowing the profile to be overridden as required by the network coordinator.

Lpap136: Bulb – Apply minimum LQIs in beacon response handler

To allow differentiation between joins and re-joins when using join profiles with
the lowest LQI settings.

Lpap137: Bulb – delete child table when resetting stack on mode changes

To aid node recovery.

Lpap138: Bulb – revert to using join profile 6 on STACK_RESETs when joining a
network for the first time

To prevent networks running different profiles overriding the profile when the
bulb is not allowed to join those networks.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 - v592 JN5148-J01
JN5142-J01

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 341

B.31 10/08/2012: Internal 1v0v2

Changes

Lpap53: Remote – Factory reset takes too long

PDM_vDelete() was not returning and so the watchdog kicked in after 16
seconds. Workaround added to delete the flash sectors directly using AHI calls.

Lpap105: Bulb – Check that ending cadence effects return to the bulb to an off
state

DriverBulb_DR1175.c was not updating the on state of the bulb correctly
causing the bulb to not be turned off after a cadence effect (if it was off before
the cadence effect was started).

Lpap117: Bulb – Remove commented out code in DriverBulb_DR1175.c
vCbTimer1() function

Removed to avoid confusion.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.0 v533 JN5148-J01
JN5142-J01

 JenNet-IP Smart Home

Application Note

342 © NXP Laboratories UK 2015 JN-AN-1162 v2004

B.32 13/07/2012: Internal 1v0v1

Changes

Lpap112: Bulb – Security frame counter rolling back on stack reset

Fixed, frame counter from PIB now passed into NwkSecurity Resume functions
used when changing stack modes.

Lpap114: Eclipse – Warning "Error launching external scanner info generator"

Fixed, project files updated to correct this.

Lpap116: NwkTest MIB – expanded for bi-directional measurements.

Added MacRetries, TxLqiMin, TxLqiMax, TxLqiMean and RxLqi variables.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.0 v533 JN5148-J01
JN5142-J01

B.33 09/07/2012: Public 1v0

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP SDK Libraries JN-SW-4051 v1.0 v533 JN5148-J01
JN5142-J01

JenNet-IP Smart Home
Application Note

JN-AN-1162 v2004 © NXP Laboratories UK 2015 343

 JenNet-IP Smart Home

Application Note

344 © NXP Laboratories UK 2015 JN-AN-1162 v2004

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable.
However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to
the accuracy or completeness of such information and shall have no liability for the consequences of use of
such information. NXP Semiconductors takes no responsibility for the content in this document if provided by
an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential
damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the
removal or replacement of any products or rework charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published
in this document, including without limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable
for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death
or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such
inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes
only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP
Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors
product is suitable and fit for the customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is
based on any weakness or default in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s
applications and products using NXP Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party customer(s). NXP does not accept any
liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control
regulations. Export might require a prior authorization from competent authorities.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Compatibility
	Related Documents
	Trademarks
	Certification

	1 Introduction
	2 System Concepts
	2.1 Gateway System Topology
	2.1.1 Gateway GUIs
	2.1.1.1 Gateway Configuration Interface
	2.1.1.2 Gateway JIP Browser
	2.1.1.3 Gateway Smart Devices Demonstration

	2.1.2 Gateway Hardware
	2.1.2.1 Internet Router with Custom Firmware
	2.1.2.2 Combined Border Router

	2.2 Coordinator System Topology
	2.3 Standalone System Topology
	2.4 Gateway/Coordinator Failure
	2.5 MIBs and Variables
	2.6 Custom Protocols
	2.7 Identifiers
	2.7.1 Device ID (32 bits)
	2.7.1.1 Sleeping Device Flag (1 bit)
	2.7.1.2 Manufacturer ID (15-bits)
	2.7.1.3 Product ID (16 bits)

	2.7.2 Device Type IDs (16 bits)
	2.7.2.1 Standard Device Type IDs
	2.7.2.2 Manufacturer Device Type IDs

	2.7.3 MIB IDs (32 bits)
	2.7.3.1 Standard MIB IDs
	2.7.3.2 Manufacturer MIB IDs

	2.8 Message Transmission
	2.8.1 Unicast Messaging
	2.8.2 Multicast Messaging

	3 Device Concepts
	3.1.1 Bulbs
	3.1.1.1 Basic Control
	3.1.1.2 Group Control
	3.1.1.3 Scene Control

	3.1.2 Remote Controls
	3.1.2.1 Bulb Control
	3.1.2.2 Group Configuration

	3.1.1 Low Energy Switches
	3.1.1.1 Bulb Control

	3.1.2 Sensors
	3.1.2.1 Occupancy Sensors
	3.1.2.2 Illuminance Sensors
	3.1.2.3 Occupancy/Illuminance Sensors
	3.1.2.4 Co-operating Occupancy Sensors

	4 System Operation
	4.1 Gateway System Operation
	4.1.1 Gateway System Operation Overview
	4.1.1.1 Lighting Control from a PC
	4.1.1.2 Lighting Control from the Remote Control Unit
	4.1.1.3 Lighting Control from a Low Energy Switch

	4.1.2 Setting Up the Gateway System
	4.1.2.1 Programming the Device Firmware
	4.1.2.2 Setting Up the Border Router
	4.1.2.3 Adding Devices to the WPAN

	4.1.3 Operating the Bulb Devices
	4.1.3.1 Setting Up the Bulb Devices
	4.1.3.2 Global Bulb Control from PC
	4.1.3.3 Individual Bulb Control from PC
	4.1.3.4 Group Bulb Control from PC
	4.1.3.5 Scene Bulb Control from PC

	4.1.4 Operating the Remote Control
	4.1.4.1 Setting Up the Remote Control
	4.1.4.2 Global Bulb Control from Remote Control
	4.1.4.3 Group Bulb Control from Remote Control
	4.1.4.4 Remote Control Command Tables

	4.1.5 Operating the Low Energy Switch
	4.1.5.1 Setting up the Low Energy Switch
	4.1.5.2 Group Bulb Control from Low Energy Switch

	4.1.6 Operating the Occupancy Sensor
	4.1.6.1 Setting up the Occupancy Sensor
	4.1.6.2 Occupancy Sensor Monitoring from PC
	4.1.6.3 Group Bulb Control from Occupancy Sensor

	4.1.7 Operating the Illuminance Sensor
	4.1.7.1 Setting up the Illuminance Sensor
	4.1.7.2 Illuminance Sensor Monitoring from PC
	4.1.7.3 Illuminance Sensor Control from PC
	4.1.7.4 Group Bulb Control from Illuminance Sensor

	4.1.8 Co-operating Occupancy and Illuminance Sensors
	4.1.8.1 Setting up the Co-operating Sensors

	4.1.9 Operating the Combined Occupancy/Illuminance Sensor
	4.1.9.1 Operating the Combined Sensor
	4.1.9.2 Combined Sensor Monitoring from PC
	4.1.9.3 Combined Sensor Control from PC
	4.1.9.4 Group Bulb Control from Combined Sensor

	4.2 Standalone System Operation
	4.2.1 Standalone System Operation Overview
	4.2.1.1 Lighting Control from the Remote Control

	4.2.2 Setting Up the Standalone System
	4.2.2.1 Setting Up the Remote Control

	4.2.3 Operating the Bulb Devices
	4.2.3.1 Setting Up the Bulb Devices

	4.2.4 Global Bulb Control from Remote Control
	4.2.5 Group Bulb Control from Remote Control

	5 MIB Variable Reference
	5.1 Bulb MIBs
	5.1.1 BulbConfig MIB (0xFFFFFE01)
	5.1.1.1 LumRate Variable
	5.1.1.2 InitMode Variable
	5.1.1.3 InitLumTarget Variable
	5.1.1.4 DownUpCadFlags Variable
	5.1.1.5 DownCadence Variable
	5.1.1.6 DownCadTimer Variable
	5.1.1.7 UpCadence Variable
	5.1.1.8 UpCadTimer Variable

	5.1.2 BulbStatus MIB (0xFFFFFE00)
	5.1.2.1 OnCount Variable
	5.1.2.2 OnTime Variable
	5.1.2.3 OffTime Variable
	5.1.2.4 ChipTemp Variable
	5.1.2.5 BusVolts Variable

	5.1.3 BulbScene MIB (0xFFFFFE03)
	5.1.3.1 AddSceneId Variable
	5.1.3.2 DelSceneId Variable
	5.1.3.3 SceneId Table
	5.1.3.4 SceneMode Table
	5.1.3.5 SceneLumTarget Table

	5.1.4 BulbControl MIB (0xFFFFFE04)
	5.1.4.1 Mode Variable
	5.1.4.2 SceneId Variable
	5.1.4.3 LumTarget Variable
	5.1.4.4 LumCurrent Variable
	5.1.4.5 LumChange Variable
	5.1.4.6 LumCadence Variable
	5.1.4.7 LumCadTimer Variable

	5.2 Colour MIBs
	5.2.1 ColourConfig MIB (0xFFFFFE09)
	5.2.1.1 TransitionTime Variable
	5.2.1.2 InitMode Variable
	5.2.1.3 InitXYTarget Variable
	5.2.1.4 XYPrimaryWhite Variable
	5.2.1.5 XYPrimary1-6 Variables
	5.2.1.6 CctMin and CctMax Variables

	5.2.2 ColourControl MIB (0xFFFFFE0C)
	5.2.2.1 Mode Variable
	5.2.2.2 SceneId Variable
	5.2.2.3 XYTarget Variable
	5.2.2.4 XYCurrent Variable
	5.2.2.5 XTarget and YTarget Variables
	5.2.2.6 HueTarget Variable
	5.2.2.7 HueChange Variable
	5.2.2.8 SatTarget Variable
	5.2.2.9 SatChange Variable
	5.2.2.10 HueSatTarget Variable
	5.2.2.11 HueSatCurrent Variable
	5.2.2.12 CctTarget Variable
	5.2.2.13 CctCurrent Variable
	5.2.2.14 CctChange Variable
	5.2.2.15 RedCurrent, GreenCurrent and BlueCurrent Variables

	5.3 Sensor MIBs
	5.3.1 OccupancyConfig MIB (0xFFFFFE31)
	5.3.1.1 Sensitivity Variable
	5.3.1.2 UnnoccupiedDelay Variable
	5.3.1.3 OccupiedDelay Variable
	5.3.1.4 OccupiedEvents Variable
	5.3.1.5 StateMibId Variable
	5.3.1.6 StateVarIdx Variable
	5.3.1.7 StateAddress Variable
	5.3.1.8 StateRefresh Variable

	5.3.2 OccupancyStatus MIB (0xFFFFFE30)
	5.3.2.1 Occupancy Variable
	5.3.2.2 SensorType Variable

	5.3.3 OccupancyControl MIB (0xFFFFFE34)
	5.3.3.1 Mode Variable

	5.3.4 IlluminanceConfig MIB (0xFFFFFE39)
	5.3.4.1 StateMibId Variable
	5.3.4.2 StateVarIdx Variable
	5.3.4.3 StateAddress Variable
	5.3.4.4 StateRefresh Variable

	5.3.5 IlluminanceStatus MIB (0xFFFFFE38)
	5.3.5.1 LuxCurrent Variable
	5.3.5.2 TargetStatus Variable
	5.3.5.3 SensorType Variable
	5.3.5.4 LuxMin Variable
	5.3.5.5 LuxMax Variable
	5.3.5.6 LuxTolerance Variable

	5.3.6 IlluminanceScene MIB (0xFFFFFE3B)
	5.3.6.1 AddSceneId Variable
	5.3.6.2 DelSceneId Variable
	5.3.6.3 SetScene Variable
	5.3.6.4 SceneTable Variable

	5.3.7 IlluminanceControl MIB (0xFFFFFE3C)
	5.3.7.1 Mode Variable
	5.3.7.2 SceneId Variable
	5.3.7.3 LuxTarget Variable
	5.3.7.4 LuxBand Variable
	5.3.7.5 Adjust Variable
	5.3.7.6 LuxTargetChange Variable
	5.3.7.7 LuxBandChange Variable

	5.3.8 OccIllBulbConfig MIB (0xFFFFFE3F)
	5.3.8.1 Mode Variable
	5.3.8.2 LuminanceDelta Variable
	5.3.8.3 AdjustInterval Variable
	5.3.8.4 RefreshInterval Variable
	5.3.8.5 Address Variable

	5.3.9 OccupancyMonitor MIB (0xFFFFFE32)
	5.3.9.1 Mode Variable
	5.3.9.2 Timeout Variable
	5.3.9.3 Occupancy Variable
	5.3.9.4 Enabled Variable
	5.3.9.5 Occupied Variable
	5.3.9.6 Unoccupied Variable
	5.3.9.7 MaxDevices Variable
	5.3.9.8 DeviceTable Variable

	5.4 Remote MIBs
	5.4.1 RemoteConfigGroup MIB (0xFFFFFE25)
	5.4.1.1 Count Variable
	5.4.1.2 Finish Variable
	5.4.1.3 AddrX Variables

	5.5 Device MIBs
	5.5.1 DeviceConfig MIB (0xFFFFFEA1)
	5.5.2 DeviceStatus MIB (0xFFFFFEA0)
	5.5.3 DeviceControl MIB (0xFFFFFEA2)
	5.5.3.1 Mode Variable
	5.5.3.2 SceneId Variable

	5.5.4 DeviceScene MIB (0xFFFFFEA3)
	5.5.4.1 AddSceneId Variable
	5.5.4.2 DelSceneId Variable
	5.5.4.3 AddScene Variable
	5.5.4.4 SceneTable Variable

	6 Software Reference
	6.1 Standard Device Software Features
	6.1.1 Standard DeviceType Folder Features
	6.1.1.1 Standard DeviceType Makefile
	TARGET
	JENNIC_SDK
	JENNIC_CHIP
	JENNIC_CHIP_FAMILY
	JENNIC_CHIP_SHORT
	DEVICE_NAME
	NODE_TYPE
	NODE_TYPE_CHAR
	NETWORK_ID
	CHANNEL
	SECURITY
	PRODUCTION
	FACTORY_RESET_MAGIC
	JENNIC_PCB
	JENNIC_STACK
	JENNIC_MAC
	OND_CHIPSET
	OND_DEVICE_TYPE
	TRACE
	JIP_DEVICE_TYPE
	JIP_DEVICE_TYPE_CHAR
	JIP_CR_MANUFACTURER_ID
	JIP_ED_MANUFACTURER_ID
	JIP_PRODUCT_ID
	JIP_DEVICE_ID
	JIP_NODE_NAME
	BLD_MIB_NAME Variables
	REG_MIB_NAME Variables
	VERSION
	Binary File Naming

	6.1.1.2 Standard DeviceDefs.h Features
	6.1.1.3 Standard DeviceType.c Features
	#defines
	#define DEVICE_ADC_MASK
	#define DEVICE_ADC_SRC_BUS_VOLTS
	#define DEVICE_ADC_PERIOD 25
	Local Variables
	PRIVATE bool_t bSleep;
	Public Functions
	void AppColdStart (void);
	void AppWarmStart (void);
	void Device_vInit (bool_t bWarmStart);
	void Device_vPdmInit (void);
	void Device_vReset (bool_t bFactoryReset);
	teJIP_Status Device_eJipInit (void);
	void v6LP_ConfigureNetwork (tsNetworkConfigData *psNetworkConfigData);
	void Device_vMain (void);
	void v6LP_DataEvent (int iSocket, te6LP_DataEvent eEvent, ts6LP_SockAddr *psAddr, uint8 u8AddrLen);
	void vJIP_StackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void v6LP_PeripheralEvent (uint32 u32Device, uint32 u32ItemBitmap);
	void Device_vTick (void);
	void Device_vAppTimer100ms (void);
	void Device_vSecond (void);
	void Device_vException (uint32 u32HeapAddr, uint32 u32Vector, uint32 u32Code);
	void Device_vSleep (void);
	void Device_vPreSleepCallback (void);

	6.1.2 Common Module Features
	6.1.3 Standard MIB Module Features
	6.1.3.1 MibGroup.h
	6.1.3.2 MibNameDef.h
	6.1.3.3 MibNameDec.c
	6.1.3.4 MibName.h
	typedef struct tsMibNamePerm;
	typedef struct tsMibNameTemp;
	typedef struct tsMibName;

	6.1.3.5 MibName.c
	PUBLIC void MibName_vInit(thJIP_Mib *hMibNameInit, tsMibName *psMibNameInit);
	PUBLIC void MibName_vRegister (void);
	PUBLIC void MibName_vMain (void);
	PUBLIC void MibName_vTick (void);
	PUBLIC void MibName_vAppTimer100ms (void);
	PUBLIC void MibName_vSecond (void);
	PUBLIC void MibName_vStackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	PUBLIC void MibName_vSaveRecord (void);

	6.2 DeviceBulb Folder
	6.2.1 DeviceBulb Makefile
	DEVICE_NAME
	NODE_TYPE
	DRIVER_TYPE
	DEVICE_DOZE
	BLD_MIB_NAME Variables
	REG_MIB_NAME Variables
	6.2.1.1 Binary File Naming

	6.2.2 DeviceDefs.h
	6.2.3 DeviceBulb.c
	6.2.3.1 #includes
	6.2.3.2 External Variables
	6.2.3.3 Public Functions
	void Device_vInit (bool_t bWarmStart);
	void Device_vPdmInit (void);
	void Device_vReset (bool_t bFactoryReset);
	teJIP_Status Device_eJipInit (void);
	void vJIP_StackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void v6LP_PeripheralEvent (uint32 u32Device, uint32 u32ItemBitmap);
	void Device_vTick (void);
	void Device_vSecond (uint32 u32TimerSeconds);
	void Device_vException (uint32 u32HeapAddr, uint32 u32Vector, uint32 u32Code);

	6.2.4 DeviceScene MIB
	6.2.4.1 MibDeviceScene.c
	6.2.4.1.1 External Variables

	6.2.4.2 Public Functions
	void MibDeviceScene_vInit (void);
	uint8 MibDeviceScene_u8FindSceneId (uint16 u16SceneId);
	teJIP_Status MibDeviceScene_eMakeScene (uint16 u16SceneId);
	teJIP_Status MibDeviceScene_eAddScene (tsDeviceScene *psAddScene);
	teJIP_Status MibDeviceScene_eDelScene (uint16 u16SceneId);
	teJIP_Status MibDeviceScene_eActivateScene (uint16 u16SceneId);
	void MibDeviceScene_vBulbScene (uint8 u8Scene, bool_t bNotifyChange);
	teJIP_Status MibDeviceScene_eSetAddSceneId (uint16 u16Val, void *pvCbData);
	teJIP_Status MibDeviceScene_eSetDelSceneId (uint16 u16Val, void *pvCbData);
	teJIP_Status MibDeviceScene_eSetAddScene (const uint8 *pu8Val, uint8 u8Len, void *pvCbData);
	void MibDeviceScene_vGetAddScene (thJIP_Packet hPacket, void *pvCbData);

	6.2.5 BulbScene MIB
	6.2.5.1 MibBulbScene.c
	6.2.5.1.1 External Variables

	6.2.5.2 Public Functions
	void MibBulbScene_vInit (void);
	teJIP_Status MibBulbScene_eSetAddSceneId (uint16 u16Val, void *pvCbData);
	teJIP_Status MibBulbScene_eSetDelSceneId (uint16 u16Val, void *pvCbData);

	6.3 MibBulb Folder
	6.3.1 BulbConfig MIB
	6.3.1.1 MibBulbConfig.c
	Public Functions
	teJIP_Status MibBulbConfig_eSetUint8 (uint8 u8Val, void *pvCbData); teJIP_Status MibBulbConfig_eSetUint16 (uint16 u16Val, void *pvCbData); teJIP_Status MibBulb...
	teJIP_Status MibBulbConfig_eSetLumRate (uint8 u8Val, void *pvCbData);

	6.3.2 BulbStatus MIB
	6.3.2.1 MibBulbStatus.c
	Public Functions
	void MibBulbStatus_vSecond (void);
	void MibBulbStatus_vAnalogue (uint8 u8Adc);
	void MibBulbStatus_vOn (void);
	void MibBulbStatus_vOff (void);

	6.3.3 BulbControl and Device Control MIBs
	6.3.3.1 MibBulbControl.c
	Public Functions
	void MibBulbControl_vInit (thJIP_Mib hMibBulbControlInit, thJIP_Mib hMibDeviceControlInit, tsMibBulbControl *psMibBulbControlInit, void ...
	void MibBulbControl_vDeviceControlRegister (void);
	void MibBulbControl_vSecond (void);
	void MibBulbControl_vTick (void);
	void MibBulbControl_vTickDriverReady (void);
	bool_t MibBulbControl_bTickLumCadence (void);
	void MibBulbControl_vTickModeTest (void);
	void MibBulbControl_vTickModeOff (void);
	void MibBulbControl_vTickModeOn (void);
	void MibBulbControl_vTickModeDownUp (void);
	bool_t MibBulbControl_bFadeLumCurrent (uint8 u8LumTarget, uint8 u8LumRate);
	void MibBulbControlPatch_vStackEvent (te6LP_StackEvent eEvent);
	uint8 MibBulbControl_u8ParentLqi (void);
	void MibBulbControl_vLumCadence (uint32 u32LumCadence, int16 u16LumCadTimer);
	void MibBulbControl_vLumCadenceStop (void);
	bool_t MibBulbControl_bLumCadence (void);
	void MibBulbControl_vLumCadenceStackEvent (te6LP_StackEvent eEvent);
	teJIP_Status MibBulbControl_eSetMode (uint8 u8Val, void *pvCbData);
	teJIP_Status MibDeviceControl_eSetMode (uint8 u8Val, void *pvCbData);
	teJIP_Status MibBulbControl_eSetSceneId (uint16 u16Val, void *pvCbData);
	teJIP_Status MibDeviceControl_eSetSceneId (uint16 u16Val, void *pvCbData);
	teJIP_Status MibBulbDeviceControl_eSetSceneId (uint16 u16Val, void *pvCbData, bool_t bBulbControl);
	teJIP_Status MibBulbControl_eSetLumTarget (uint8 u8Val, void *pvCbData);
	teJIP_Status MibBulbControl_eSetLumCurrent (uint8 u8Val, void *pvCbData);
	teJIP_Status MibBulbControl_eSetLumCurrent (int16 i16Val, void *pvCbData);
	teJIP_Status MibBulbControl_eSetLumCadence (uint32 u32Val, void *pvCbData);
	teJIP_Status MibBulbControl_eSetLumCadTimer (uint16 u16Val, void *pvCbData);
	teJIP_Status MibBulbControl_eSetModeOff (uint8 *pu8Mode);
	teJIP_Status MibBulbControl_eSetModeOn (uint8 *pu8Mode);
	teJIP_Status MibBulbControl_eSetModeDownUp (uint8 *pu8Mode);
	teJIP_Status MibBulbControl_eSetModeToggle (uint8 *pu8Mode);
	teJIP_Status MibBulbControl_eSetModeTest (uint8 *pu8Mode);
	uint8 MibBulbControl_u8FindSceneId (uint16 u16SceneId);

	6.4 MibColour Folder
	6.4.1 ColourConfig MIB
	6.4.1.1 MibColourConfig.c
	Public Functions
	void MibColourConfig_vInit (void);
	teJIP_Status MibColourConfig_eSetTransitionTime (uint16 u16Val, void *pvCbData);
	teJIP_Status MibColourConfig_eSetInitMode (uint8 u8Val, void *pvCbData);
	teJIP_Status MibColourConfig_eSetInitXYTarget (uint32 u32Val, void *pvCbData);
	teJIP_Status MibColourConfig_eSetPrimary (uint32 u32Val, void *pvCbData);
	teJIP_Status MibColourConfig_eSetCct (uint16 u16Val, void *pvCbData);

	6.4.2 ColourControl MIB
	6.4.2.1 MibColourControl.c
	Public Functions
	void MibColourControl_vInit (void);
	void MibColourControl_vSecond (void);
	void MibColourControl_vTick (void);
	bool_t MibColourControl_bModeStop (bool_t bInternal);
	teJIP_Status MibColourControl_eSetMode (uint8 u8Val, void *pvCbData);
	teJIP_Status MibColourControl_eSetSceneId (uint16 u16Val, void *pvCbData);
	teJIP_Status MibColourControl_eSetXYTarget (uint32 u32Val, void *pvCbData); teJIP_Status MibColourControl_eSetXTarget (uint16 u16Val, void *pvCbData)...
	teJIP_Status MibColourControl_eSetXYCurrent (uint32 u32Val, void *pvCbData); teJIP_Status MibColourControl_eSetHueSatCurrent (...
	teJIP_Status MibColourControl_eSetHueChange (int16 u16Val, void *pvCbData); teJIP_Status MibColourControl_eSetSatChange (...

	Private Functions
	void MibColourControl_vInitTransition (uint16 u16TransitionTime);
	bool_t MibColourControl_bNewXYTarget (bool_t bNotifyChanged, uint16 u16TransitionTime);
	bool_t MibColourControl_bNewHueChange (bool_t bNotifyChanged, uint16 u16TransitionTime);
	bool_t MibColourControl_bNewHueSatTarget (bool_t bNotifyChanged, uint16 u16TransitionTime, bool_t bOptimise);
	bool_t MibColourControl_bNewCctChange (bool_t bNotifyChanged, uint16 u16TransitionTime);
	bool_t MibColourControl_bNewCctTarget (bool_t bNotifyChanged, uint16 u16TransitionTime);
	bool_t MibColourControl_bModeTestHueSatNext (void); bool_t MibColourControl_bModeTestCctNext (void);

	6.4.3 Colour Modules
	6.4.3.1 ColourConversion.c
	Public Functions
	teZCL_Status eCLD_ColourControl_GetRGB (tsCLD_ColourControlCustomDataStructure *psCommon, uint16 u16X, uint16 u16Y, uint8 ...
	teZCL_Status eCLD_ColourControl_RGB2xyY (sCLD_ColourControlCustomDataStructure *psCustomDataStructPtr, uint8 u8Red, uint8 u8Green, uint8 u8...
	teZCL_Status eCLD_ColourControl_HSV2xyY (tsCLD_ColourControlCustomDataStructure *psCustomDataStructPtr, uint16 u16Hue, uint8 u8Saturation, uint8 ...
	void vCLD_ColourControl_CCT2xyY(uint16 u16ColourTemperature, uint16 *pu16x, uint16 *pu16y, uint8 *pu8Y);
	teZCL_Status eCLD_ColourControl_xyY2HSV (tsCLD_ColourControlCustomDataStructure *psCustomDataStructPtr, uint16 u16x, uint16 u16y, uint8 u8Y, u...
	void vCLD_ColourControl_xyY2CCT (uint16 u16x, uint16 u16y, uint8 u8Y, uint16 *pu16ColourTemperature);
	teZCL_Status eCLD_ColourControlCalculateConversionMatrices(tsCLD_ColourControlCustomDataStructure *psCustomDataStructure, float fRedX, float fRedY, float ...

	Private Functions
	void vCLD_ColourControl_HSV2RGB(float fHue, float fSaturation, float fValue, float *pfRed, float *pfGreen, ...
	void vCLD_ColourControl_RGB2HSV(float fRed, float fGreen, float fBlue, float *pfHue, float *pfSaturation, ...
	void vCLD_ColourControl_RGB2XYZ(float afMatrix[3][3], float fRed, float fGreen, float fBlue, float *pfX, ...
	void vCLD_ColourControl_XYZ2RGB (float afMatrix[3][3], float fX, float fY, float fZ, float *pfRed, ...
	teZCL_Status eCLD_ColourControl_XYZ2xyY (float fX, float fY, float fZ, float *pfx, ...
	teZCL_Status eCLD_ColourControl_xyY2XYZ (float fx, float fy, float fY, float *pfX, ...
	bool bCLD_ColourControl_NumberIsValid (float fValue);

	6.4.3.2 ColourTransition.h, ColourTransition.c
	Structures
	tsColourTransition

	Public Functions
	bool_t ColourTransition_bXYStart (tsColourTransition *psColourTransition); bool_t ColourTransition_bHSStart (tsColourTransition *psColourTransition, bool_t bOptimise...
	bool_t ColourTransition_bXYNext (tsColourTransition *psColourTransition); bool_t ColourTransition_bHSNext (tsColourTransition *psColourTransition); bool_t ColourTransition_bCctNext (...
	bool_t ColourTransition_bEnd (tsColourTransition *psColourTransition);

	Private Functions
	bool_t ColourTransition_bRGBInit (tsColourTransition *psColourTransition);
	bool_t ColourTransition_bRGBJump (tsColourTransition *psColourTransition);

	6.4.3.3 Interpolation.h, Interpolation.c
	Structures
	tsInterpolation

	Public Functions
	bool_t Interpolation_bStart (tsInterpolation *psInterpolation);
	bool_t Interpolation_bInterpolate (tsInterpolation *psInterpolation);
	bool_t Interpolation_bEnd (tsInterpolation *psInterpolation);

	6.5 DriverBulb Folder
	6.5.1 DriverBulb.h, DriverBulb_Type.c
	Public Functions
	void DriverBulb_vInit (void);
	void DriverBulb_vOn (void);
	void DriverBulb_vOff (void);
	void DriverBulb_vSetOnOff (bool_t bOn);
	void DriverBulb_vSetLevel (uint8 u8Level);
	void DriverBulb_vSetColour (uint32 u32Red, uint32 u32Green, uint32 u32Blue);
	bool_t DriverBulb_bOn (void);
	bool_t DriverBulb_bReady (void);
	bool_t DriverBulb_bFailed (void);
	void DriverBulb_vTick (void);
	int16 DriverBulb_i16Analogue (uint8 u8Adc, uint16 u16AdcRead);
	void DriverBulb_vSetTunableWhiteColourTemperature (int32 i32ColourTemperature);

	6.6 DeviceSensor Folder
	6.6.1 DeviceSensor Makefile
	DEVICE_NAME
	NODE_TYPE
	DRIVER_TYPE
	BLD_MIB_NAME Variables
	REG_MIB_NAME Variables
	6.6.1.1 Binary File Naming

	6.6.2 DeviceDefs.h
	6.6.3 DeviceSensor.c
	6.6.3.1 #includes
	6.6.3.2 External Variables
	6.6.3.3 Public Functions
	void Device_vInit (bool_t bWarmStart);
	void Device_vPdmInit (void);
	void Device_vReset (bool_t bFactoryReset);
	teJIP_Status Device_eJipInit (void);
	void Device_vTick (void);
	void Device_vAppTimer100ms (void);
	void Device_vSecond (uint32 u32TimerSeconds);
	void Device_vSleep (void);
	void Device_vPreSleepCallback (void);

	6.7 MibSensor Folder
	6.7.1 OccupancyConfig MIB
	6.7.1.1 MibOccupancyConfig.c
	Public Functions
	void MibOccupancyConfig_vRegister (void)

	6.7.2 OccupancyStatus MIB
	6.7.2.1 MibOccupancyStatus.c
	Public Functions
	void MibOccupancyStatus_vInit (thJIP_Mib hMibOccupancyStatusInit, tsMibOccupancyStatus *psMibOccupancyStatusInit, void *pvMibOccupancyConfigInit, void ...
	void MibOccupancyStatus_vTick (void)
	void MibOccupancyStatus_vAppTimer100ms (void);
	void MibOccupancyStatus_vQueueTxState (bool_t bImmediate);

	6.7.3 OccupancyControl MIB
	6.7.3.1 MibOccupancyControl.c
	Public Functions
	void MibOccupancyControl_vInit (thJIP_Mib hMibOccupancyControlInit, tsMibOccupancyControl *psMibOccupancyControlInit);

	6.7.4 IlluminanceConfig MIB
	6.7.4.1 MibIlluminanceConfig.c
	Public Functions
	void MibIlluminanceConfig_vRegister (void)

	6.7.5 IlluminanceStatus MIB
	6.7.5.1 MibIlluminanceStatus.c
	Public Functions
	void MibIlluminanceStatus_vInit (thJIP_Mib hMibIlluminanceStatusInit, tsMibIlluminanceStatus *psMibIlluminanceStatusInit, void *pvMibIlluminanceConfigInit, void ...
	void MibIlluminanceStatus_vTick (void)
	void MibOccupancyStatus_vAppTimer100ms (void);
	void MibIlluminanceStatus_vQueueTxState (bool_t bImmediate);
	void MibIlluminanceStatus_vResume (void);

	6.7.6 IlluminanceControl MIB
	6.7.6.1 MibIlluminanceControl.c
	Public Functions
	void MibIlluminanceControl_vInit(thJIP_Mib hMibIlluminanceControlInit, tsMibIlluminanceControl *psMibIlluminanceControlInit, void *pvMibIlluminanceStatusInit, void ...
	teJIP_Status MibIlluminanceControl_eSetSceneId (uint16 u16Val, void *pvCbData);
	void MibIlluminanceControl_vTick (void);

	6.7.7 IlluminanceScene MIB
	6.7.7.1 MibIlluminanceScene.c
	Public Functions
	uint8 MibIlluminanceScene_u8FindSceneId (uint16 u16SceneId);
	bool_t MibIlluminanceScene_bSetScene (uint16 u16Id, uint16 u16LuxTarget, uint16 u16LuxBand);

	6.7.8 OccIllBulbConfig MIB
	6.7.8.1 MibOccIllBulbConfig.c
	Public Functions
	void MibOccIllBulbConfig_vInit (thJIP_Mib hMibOccIllBulbConfigInit, tsMibOccIllBulbConfig *psMibOccIllBulbConfigInit, void *pvMibOccupancyStatusInit, void *pv...
	void MibOccIllBulbConfig_vRegister (void);
	void MibOccIllBulbConfig_vTick (void);
	void MibOccIllBulbConfig_vAppTimer100ms (void);
	bool_t MibOccIllBulbConfig_bOccupancy (uint8 u8Occupancy);
	bool_t MibOccIllBulbConfig_bIlluminanceAuto (uint8 u8TargetStatus);
	bool_t MibOccIllBulbConfig_bIlluminanceMax (uint8 u8TargetStatus);
	void MibOccIllBulbConfig_vRefreshIntervalUpdate (void);
	void MibOccIllBulbConfig_vQueueTxState (bool_t bImmediate);

	6.7.9 OccupancyMonitor MIB
	6.7.9.1 MibOccupancyMonitor.c
	Public Functions
	void MibOccupancyMonitor_vSecond (void);
	uint8 MibOccupancyMonitor_u8FindDevice (in6_addr *psIn6Address);
	teJIP_Status MibOccupancyMonitor_eSetOccupancy (uint8 u8Val, void *pvCbData);

	6.8 DriverSensor Folder
	6.8.1 DriverOccupancy.h, DriverOccupancy_Type.c
	Public Functions
	void DriverOccupancy_vInit (void);
	bool_t DriverOccupancy_bRead (void);
	bool_t DriverOccupancy_bOccupancy (void);
	uint8 DriverOccupancy_u8Type (void);

	6.8.2 DriverIlluminance.h, DriverIlluminance_Type.c
	#defines
	Public Functions
	bool_t DriverIlluminance_bInit (void);
	bool_t DriverIlluminance_bPowerDown (void);
	bool_t DriverIlluminance_bOpen (void);
	bool_t DriverIlluminance_bClose (void);
	bool_t DriverIlluminance_bStart (void);
	bool_t DriverIlluminance_bTick (void);
	bool_t DriverIlluminance_bReady (void);
	uint16 DriverIlluminance_u16Lux (void);
	uint8 DriverIlluminance_u8Type (void);
	uint16 DriverIlluminance_u16LuxMin (void);
	uint16 DriverIlluminance_u16LuxMax (void);
	uint16 DriverIlluminance_u16LuxTolerance (void);

	6.9 DeviceRemote Folder
	6.9.1 DeviceRemote Makefile
	DEVICE_NAME

	6.9.2 RemoteDefault.h
	6.9.3 DeviceRemote.c
	Defines
	DIO_WAKEMASK

	Local Data
	sRemotePdm

	Public Functions
	void AppColdStart (void);
	void AppWarmStart (void);
	void vInitPeripherals (void);
	void vStartStack (void);
	void v6LP_ConfigureNetwork (tsNetworkConfigData *psNetworkConfigData);
	void Remote_vResumeGateway (tsNetworkConfigData *psNetworkConfigData);
	void Remote_vResumeStandalone (tsNetworkConfigData *psNetworkConfigData);
	void Remote_vSetSecurityKey (uint8 u8Key);
	void Remote_vSetProfile (bool_t bStandalone);
	void v6LP_DataEvent (int iSocket, te6LP_DataEvent eEvent, ts6LP_SockAddr *psAddr, uint8 u8AddrLen);
	void v6LP_PeripheralEvent (uint32 u32Device, uint32 u32ItemBitmap);
	void vJIP_StackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void vJIP_Remote_DataSent (ts6LP_SockAddr *psAddr, teJIP_Status eStatus);
	void vAppSleep (bool_t bSleepType);
	void vAppSave (void);
	void vCbTouchEventButton (eTouchButtonEvent eEvent, uint8 u8ButtonNumber);
	void vTouchChecker (void);
	void vJIP_Remote_SetResponse (ts6LP_SockAddr *psAddr, uint8 u8Handle, uint8 u8ModuleIndex, uint8 u8VarI...
	void Remote_vSetUserData (void);
	bool_t Remote_bBeaconNotifyCallback (tsScanElement *psBeaconInfo, uint16 u16ProtocolVersion);
	bool_t Remote_bNwkCallback (MAC_ExtAddr_s *psAddr, uint8 u8DataLength, uint8 *pu8Data);
	void PTS_UartInit (void);

	6.9.4 DriverCapTouch.h, DriverCapTouch.c, DriverCapTouch_DIO.c
	Public Functions
	teTouchStatus eTouchInit (void);
	teTouchStatus eTouchSleep (void);
	teTouchStatus eTouchWake (void);
	teTouchStatus eTouchProcess (void);

	6.9.5 DriverLed.h, DriverLed.c
	6.9.6 Key.h, Key.c
	Public Functions
	teKeyStatusCode eKeyPressTracker (teTouchKeys eTouchKeys, bool_t bNormal);
	uint8 u8GetLastGroup (void);
	void vKeyTick (void);
	teKeyType eGetKeyType (teTouchKeys eTouchKeys);

	6.9.7 Mib.h, Mib.c
	Public Functions
	void vSetModeMibVar (teTouchKeys eTouchKeys);
	void vSetGroupMibVar (MAC_ExtAddr_s *psMacAddr, uint32 u32MibId, uint8 u8VarIdx, uint8 u8Group);
	teJIP_Status eBcastGroupMibVar (uint16 u16GroupAddr, uint32 u32MibId, uint8 u8VarIdx, uint8 u8Group);
	void vSetNodeControlMibVar (uint8 u8CountDown);
	void vSetMibVarUint16 (MAC_ExtAddr_s *psMacAddr, uint32 u32MibId, uint8 u8VarIdx, uint16 u16Val);
	void vSetMibVarUint8 (MAC_ExtAddr_s *psMacAddr, uint32 u32MibId, uint8 u8VarIdx, uint8 u8Val);
	void vSetSafetoSleep (void);

	6.9.8 ModeCommission.h, ModeCommission.c
	Public Functions
	void vCommissionInit (tsDevice *psDevice , tsAuthorise *psAuthorise);
	void vCommissionMode (tsDevice *psDevice , tsAuthorise *psAuthorise, teSysState *peSysState);
	void vDecommissionInit (void);
	void vDecommissionEnd (void);
	void vTtlOverride (uint8 u8MaxBcastTtl);
	void vTtlRestore (void);

	6.9.9 JipCallbacks.c

	6.10 MibRemote Folder
	6.10.1 RemoteConfigGroup MIB
	6.10.1.1 MibRemoteConfigGroup.c
	Public Functions
	void MibRemoteConfigGroup_vRegister (void);
	void MibRemoteConfigGroup_vBuildAddr (in6_addr *psAddr, MAC_ExtAddr_s *psMacAddr, uint16 u16Group);
	teJIP_Status MibRemoteConfigGroup_eSetAddr (uint8 *pu8Val, uint8 u8Len, void *pvCbData);
	void MibRemoteConfigGroup_vGetAddr (thJIP_Packet hPacket, void *pvCbData);

	6.11 LowEnergySwitch Folder
	6.11.1 LowEnergySwitch Makefile
	DEVICE_NAME
	CHANNEL

	6.11.2 LowEnergySwitch.c
	Defines
	DIO_BUTTON_MASK
	TAG_CHANNEL

	Public Functions
	void AppColdStart (void);
	void AppWarmStart (void);
	void vSendFrame (uint8 u8Command);
	void vInterruptFired (uint32 u32InterruptBitmap);
	void vInterruptFired (uint32 u32DeviceId uint32 u32ItemBitmap);

	Appendices

