

JN-AN-1174 (v1.4) 21-Jun-2016 © NXP B.V. 2016 1

Application Note: JN-AN-1174
IEEE 802.15.4 Application Template for JN516x

This Application Note accompanies the software template for applications designed
to run on NXP JN516x microcontrollers in IEEE 802.15.4-based wireless networks.
This document introduces and details how to use the template.

1 Application Overview
The software template provides a basis for your own application development for JN516x
devices in IEEE 802.15.4-based networks. It is designed to streamline your application
development and to help you rapidly achieve effective IEEE 802.15.4 applications. You can
modify the supplied code to adapt it to your own application needs. Note that the code is
relevant to non-beacon enabled networks only.

The supplied code provides the basic framework for getting a network up and running. It
includes the necessary function calls for setting up the network, and then transmitting and
receiving data. Separate code is provided for the network Co-ordinator and End Devices.

2 Using the Application Template
The IEEE 802.15.4 application template is supplied in the ZIP package for this Application
Note. It should be used in conjunction with the

JN516x IEEE 802.15.4 Software Developer’s Kit (SDK) [JN-SW-4163]
in order to develop IEEE 802.15.4 applications in the

‘BeyondStudio for NXP’ Integrated Development Environment (IDE) [JN-SW-4141]
which is described in the BeyondStudio for NXP Installation and User Guide (JN-UG-3098).
These resources are available via the Wireless Connectivity area of the NXP web site.

 Note: When developing IEEE 802.15.4 applications for JN516x devices,
it may also be useful to refer to the example code in the Application Note
802.15.4 Home Sensor Demonstration for JN516x (JN-AN-1180).

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/

 IEEE 802.15.4 Application Template for JN516x

2 © NXP B.V. 2016 JN-AN-1174 (v1.4) 21-Jun-2016

2.1 Pre-requisites and Assumptions
It is assumed that you have installed BeyondStudio for NXP (JN-SW-4141) and the JN516x
IEEE 802.15.4 SDK (JN-SW-4163) on your development PC.

The skeleton application in the Application Note assumes the following:

• You have one device which will act as the PAN Co-ordinator

• You have at least one other device which will act as an End Device

• You will use pre-determined values for the PAN ID and the short addresses (for the
PAN Co-ordinator and for the End Device(s))

• The network topology will be a Star network

• The network will be non-beacon enabled (meaning that the PAN Co-ordinator will not
transmit regular beacons)

• Short addressing will be used

• Data transfers will be direct transmissions with acknowledgements

• There will be no security implemented

Before starting your IEEE 802.15.4 application development using the supplied template,
you should refer to NXP’s IEEE 802.15.4 Stack User Guide (JN-UG-3024), which is
available from the Wireless Connectivity area of the NXP web site. This User Guide should
be consulted throughout your application development.

2.2 Unpacking the Application Note
Unzip this Application Note (JN-AN-1174) into the Application directory of the SDK
installation:

 <BeyondStudio for NXP installation root>\workspace
where <BeyondStudio for NXP Installation root> is the path into which BeyondStudio for
NXP was installed (by default, this is C:\NXP\bstudio_nxp). The workspace directory is
automatically created when you start BeyondStudio for NXP.

You should rename the Application Note folder with the name of your project.

2.3 Supplied Files
The application's file structure includes the following folders (depending on the Application
Note):

• AN1174_154_Coord - contains source files and makefiles for the PAN Co-ordinator

• AN1174_154_EndD - contains source files and makefiles for an End Device

• Common - contains the config.h header file used for both devices, which defines
certain values used in the source code (e.g. PAN ID, short addresses, channels to
scan)

The AN1046_154_Coord folder contains Source and Build sub-folders, the contents of
which are described below.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity

IEEE 802.15.4 Application Template for JN516x

JN-AN-1174 (v1.4) 21-Jun-2016 © NXP B.V. 2016 3

2.3.1 Source Folders
The contents of the Source folders are as follows:

• AN1174_154_Coord/Source - contains the file AN1174_154_Coord.c which contains
the source code for the PAN Co-ordinator

• AN1174_154_EndD/Source - contains the file AN1174_154_EndD.c which contains
the source code for an End Device

To adapt the skeleton code to your own needs, you may need to modify the above source
files.

2.3.2 Build Folders
The contents of the Build folders are similar for the two Application Notes, comprising the
makefile (Makefile) for compilation of the source code for the JN516x microcontroller.

The Build folder is also the place where a compilation outputs the resulting binary file.

3 Code Descriptions
This section describes the supplied source code at function level. The sub-sections below
describe the code for the PAN Co-ordinator and the code for the End Device. The config.h
header file is referenced in both source files, as are the following header files: jendefs.h,
AppHardwareApi.h, AppQueueApi.h, mac_sap.h and mac_pib.h.

3.1 Contents of AN1174_154_Coord.c
The entry point from the boot loader into the Co-ordinator application is the function
AppColdStart() - this is the equivalent of the main() function in other C programs. This
function performs the following tasks (also illustrated in Figure 1):

1. AppColdStart() calls the function vInitSystem(), which itself performs the following
tasks:

• Initialises the IEEE 802.15.4 stack on the device

• Sets the PAN ID and short address of the PAN Co-ordinator - in this application, these
are pre-determined and are defined in the file config.h

• Switches on the radio receiver

• Enables the device to accept association requests from other devices

2. AppColdStart() calls the function vStartEnergyScan() which starts an Energy
Detection Scan to assess the level of activity in the possible radio frequency channels -
the channels to be scanned are defined in the file config.h along with the scan duration.
Initiation of the scan is handled as an MLME request to the IEEE 802.15.4 MAC sub-
layer.

3. AppColdStart() waits for an MLME response using the function
vProcessEventQueues() - this function checks each of the three event queues and
processes items found. The function uses the function vProcessIncomingMlme() to
handle the MLME response. This function calls vHandleEnergyScanResponse() which
processes the results of the Energy Detection Scan - the function searches the results
to find the quietest channel and sets this as the adopted channel for the network. The
last function then calls vStartCoordinator() which sets the required parameters and
then submits an MLME request to start the network (note that no response is expected
for this request).

 IEEE 802.15.4 Application Template for JN516x

4 © NXP B.V. 2016 JN-AN-1174 (v1.4) 21-Jun-2016

4. AppColdStart() loops the function vProcessEventQueues() to wait for an association
request from another device, which arrives as an MLME request (note that the beacon
request from the device is handled by the IEEE 802.15.4 stack and is not seen by the
application). When the association request arrives, the function
vHandleNodeAssociation() is called to process the request. This function creates and
submits an association response via MLME.

5. AppColdStart() loops the function vProcessEventQueues() to wait for messages from
the associated device arriving via the MCPS and hardware queues.

• When data arrives in the MCPS queue, vProcessEventQueues() first uses the
function vProcessIncomingMcps() to accept the incoming data frame. Note that
vProcessIncomingMcps() uses vHandleMcpsDataInd(), which calls
vProcessReceivedDataPacket() in which you must define the processing to be done
on the data.

• When an event arrives in the hardware queue, vProcessEventQueues() calls the
function vProcessIncomingHwEvent() to accept the incoming event. You must define
the processing to be performed in this function.

 Note: As it stands, the code is only designed to receive data. To transmit
data from the PAN Co-ordinator, you must modify the code - a
transmission function is provided (see Section 4.6).

The above Co-ordinator set-up process is illustrated in Figure 1 below.

IEEE 802.15.4 Application Template for JN516x

JN-AN-1174 (v1.4) 21-Jun-2016 © NXP B.V. 2016 5

AppColdStart()

vInitSystem()

vStartEnergyScan()

vProcessEventQueues()

vProcessIncomingMlme()

vHandleEnergyScanResponse()

vStartCoordinator()

vHandleNodeAssociation()

vProcessIncomingMcps()

vProcessIncomingHwEvent()

Deals with results of
energy scan and starts
Co-ordinator

Deals with association
request

Deals with incoming
data packet

vHandleMcpsDataInd()

vProcessReceivedDataPacket()

Figure 1: PAN Co-ordinator Set-up Process

 IEEE 802.15.4 Application Template for JN516x

6 © NXP B.V. 2016 JN-AN-1174 (v1.4) 21-Jun-2016

3.2 Contents of AN1174_154_EndD.c
The entry point from the boot loader into the End Device application is the function
AppColdStart() - this is the equivalent of the main() function in other C programs. In
AN1174_154_EndD.c, this function is defined differently from that in AN1174_154_Coord.c.
For the End Device, it performs the following tasks (also illustrated in Figure 2):

1. AppColdStart() calls the function vInitSystem(), which initialises the IEEE 802.15.4
stack on the device.

2. AppColdStart() calls the function vStartActiveScan() which starts an Active Channel
Scan in which the device sends beacon requests to be detected by the PAN Co-
ordinator, which then sends out a beacon in response - the channels to be scanned are
defined in the file config.h along with the scan duration. Initiation of the scan is handled
as an MLME request to the IEEE 802.15.4 MAC sub-layer.

3. AppColdStart() waits for an MLME response using the function
vProcessEventQueues() which checks each of the three event queues and processes
the items it finds. The function uses the vProcessIncomingMlme() function to handle
the MLME response. This function calls the function vHandleActiveScanResponse()
which processes the results of the Active Channel Scan:

• If a PAN Co-ordinator is found, the function stores the Co-ordinator details (PAN ID,
short address, logical channel) and calls vStartAssociate() to submit an association
request to the Co-ordinator - this is handled as an MLME request.

• If a PAN Co-ordinator is not found (possibly because the Co-ordinator has not yet
been initialised), the function recalls vStartActiveScan() in order to restart the scan (in
which case this process continues as described from Step 2).

4. AppColdStart() loops the function vProcessEventQueues() to wait for an association
response from the Co-ordinator. When the response is received,
vProcessIncomingMlme() is called, which (provided that the device is in the
associating state) calls the function vHandleAssociateResponse() to process the
response. The last functions checks the association response:

• If the PAN Co-ordinator has accepted the association, the function puts the device into
the 'associated' state.

• If the PAN Co-ordinator has rejected the association, the function recalls
vStartActiveScan() to start a search for another PAN Co-ordinator (in which case this
process continues as described from Step 2).

5. AppColdStart() loops the function vProcessEventQueues() to wait for messages from
the PAN Co-ordinator arriving via the MCPS and hardware queues.

• When data arrives in the MCPS queue, vProcessEventQueues() first uses the
function vProcessIncomingMcps() to accept the incoming data frame. Note that
vProcessIncomingMcps() uses vHandleMcpsDataInd(), which calls
vProcessReceivedDataPacket() in which you must define the processing to be done
on the data.

• When an event arrives in the hardware queue, vProcessEventQueues() calls the
function vProcessIncomingHwEvent() to accept the incoming event. You must define
the processing to be performed in this function.

IEEE 802.15.4 Application Template for JN516x

JN-AN-1174 (v1.4) 21-Jun-2016 © NXP B.V. 2016 7

 Note: As it stands, the code is only designed to receive data. To transmit
data from the device, you must modify the code - a transmission function
is provided (see Section 4.6).

The above End Device set-up process is illustrated in Figure 2 below.

AppColdStart()

vInitSystem()

vStartActiveScan()

vProcessEventQueues()

vProcessIncomingMlme()

vHandleActiveScanResponse()

vStartAssociate()

vHandleAssociateResponse()

vProcessIncomingMcps()

vProcessIncomingHwEvent()

Deals with results of
channel scan and
starts association
process

Deals with association
response

Deals with incoming
data packet

vHandleMcpsDataInd()

vProcessReceivedDataPacket()

This diagram shows the program flow
assuming that all requests result in
successful responses

Figure 2: End Device Set-up Process

 IEEE 802.15.4 Application Template for JN516x

8 © NXP B.V. 2016 JN-AN-1174 (v1.4) 21-Jun-2016

4 Adapting the Skeleton Code
• This section provides guidelines on how to modify the supplied skeleton code to

achieve different requirements. The modifications covered are:

• How Do I Add End Devices to the Network?

• How Do I Program the Channel Scans?

• How Do I Define the Processing of Received Data Packets?

• How Do I Program Data Transmission?

• How Do I Program a Pre-defined PAN ID?

• How Do I Program Pre-defined Short Addresses?

• How Do I Add End Devices to the Network?

• How Do I Program the Channel Scans?

• How Do I Define the Processing of Received Data Packets?

• How Do I Program Data Transmission?

4.1 How Do I Program a Pre-defined PAN ID?
The PAN ID is pre-defined in the file config.h. In the skeleton code, it is set to 0xCAFE.

To use a different PAN ID, open config.h and change the hex number in the following line:
#define PAN_ID 0xCAFE

! Caution: The chosen PAN ID must not conflict with the PAN IDs of any
other IEEE 802.15.4-based networks in the vicinity.

4.2 How Do I Program Pre-defined Short Addresses?
The 16-bit short addresses of the PAN Co-ordinator and End Device are pre-defined in the
file config.h. In the skeleton code, the short addresses are set to 0x0000 for the Co-
ordinator and 0x0001 for the first End Device. The latter is a start address for the End
Devices - if you have multiple End Devices, their short addresses will be automatically
numbered from this value upwards in increments of 0x0001.

To use different short addresses, open config.h and change the hex numbers in the
following lines:

#define COORDINATOR_ADR 0x0000

#define END_DEVICE_START_ADR 0x0001

 Note: It is usual to set 0x0000 as the short address of the PAN Co-
ordinator.

IEEE 802.15.4 Application Template for JN516x

JN-AN-1174 (v1.4) 21-Jun-2016 © NXP B.V. 2016 9

4.3 How Do I Add End Devices to the Network?
The skeleton code is designed for a network consisting of at least two devices - a PAN Co-
ordinator and an End Device. By default, the maximum number of End Devices defined in
the code is 10 - this means that you can use up to ten End Devices without any
modifications. However, you can use more End Devices by modifying the code as described
below.

 Note: When using multiple End Devices, their short addresses are
automatically assigned starting with the address
END_DEVICE_START_ADR defined in the config.h file (see Section
4.2)

Modifications to config.h
The file config.h contains a line defining the maximum number of End Devices supported by
the application - in the supplied code, it is set to 10, as shown below:

#define MAX_END_DEVICES 10

To increase or decrease the maximum number of End Devices, open config.h and change
this number.

Modifications to AN1174_154_EndD.c
The source file AN1174_154_EndD.c provides the code to be loaded into an End Device. If
you have more than one End Device and they are of different types (e.g. one a temperature
sensor, the other a humidity sensor), they are likely to need different source code. Therefore,
when adding End Devices, you may need to devise specific code for the new devices.

Modifications to AN1174_154_Coord.c
To add End Devices to your network, you do not need to modify the file
AN1174_154_Coord.c.

4.4 How Do I Program the Channel Scans?
The skeleton code involves two frequency channel scans:

• An Energy Detection Scan invoked by the PAN Co-ordinator during network set-up to
find the most suitable channel for network operation.

• An Active Channel Scan invoked by the End Device during device association to find
the operating channel of the PAN Co-ordinator.

It is not normally necessary to check all possible frequency channels. The 27 channels
(numbered 0 to 26) of the IEEE 802.15.4 standard are distributed among the three frequency
bands (868, 915 and 2400 MHz). Since a network is usually intended to work in only one of
these bands, there is little point in scanning channels in the other two bands (NXP products
operate in the 2400-MHz band; channels 11 to 26). In addition, you may be aware that
another network in the locality already operates in one of the channels, so this channel
should be excluded from the scan. Therefore, you can pre-define the channels that will be
checked in these scans. You can also define the amount of time spent checking each
channel in each of the scans. These definitions are made in the header file config.h, as
described below.

 IEEE 802.15.4 Application Template for JN516x

10 © NXP B.V. 2016 JN-AN-1174 (v1.4) 21-Jun-2016

Defining the Channels to be Scanned
The file config.h includes the following line:

#define SCAN_CHANNELS 0x07FFF800UL

SCAN_CHANNELS defines exactly which channels will be scanned. Each bit of the value
(0x07FFF800 in this case) corresponds to a channel, where the least significant bit (LSB)
corresponds to channel 0; see Figure 3.

• A bit value of 1 means 'scan'

• A bit value of 0 means 'do not scan'

To change the channels to be scanned, modify this hex value.

LSBMSB

C
h

0

C
h

1

C
h

10

C
h

11

C
h

26

Bit 0Bit 31

868-MHz Band

915-MHz Band2400-MHz BandNot Used

Figure 3: Channel Allocations in SCAN_CHANNELS

 Note: SCAN_CHANNELS applies to both the Energy Detection Scan and
the Active Channel Scan.

! Caution: Since the JN516x wireless microcontroller only operates in the
2400-MHz band, there is no point in configuring scans in channels of the
lower bands.

Defining the Channel Scan Durations
The file config.h includes the following two lines:

#define ACTIVE_SCAN_DURATION 3

#define ENERGY_SCAN_DURATION 3

Each of these parameters defines the time taken to check each channel in a scan:

• ACTIVE_SCAN_DURATION for an Active Channel Scan

• ENERGY_SCAN_DURATION for an Energy Detection Scan

These parameters take a positive integer value that determines the scan duration per
channel, in milliseconds, according to the following formulae:

For an Active Channel Scan:
Channel scan duration (ms) = 15.36 x (2ACTIVE_SCAN_DURATION + 1)

For an Energy Detection Scan:
Channel scan duration (ms) = 15.36 x (2ENERGY_SCAN_DURATION + 1)

IEEE 802.15.4 Application Template for JN516x

JN-AN-1174 (v1.4) 21-Jun-2016 © NXP B.V. 2016 11

Thus, in each case, a value of 3 gives a channel scan duration of 138.24 ms. To change the
channel scan durations, modify the above code values.

 Note: The value of each of ACTIVE_SCAN_DURATION and
ENERGY_SCAN_DURATION must be an integer in the range 0 to 14
(inclusive). Thus, the channel scan durations can be in the range 30.72
ms to 251.6736 s.

4.5 How Do I Define the Processing of Received Data Packets?
The IEEE 802.15.4 stack puts an incoming data packet into the MCPS queue on the
destination device. The skeleton code for both the PAN Co-ordinator and End Device will
retrieve the data packet from the queue but will not process the data in any way - you must
define how you want to process the data. However, an empty function already exists in the
code to accommodate your data processing code - vProcessReceivedDataPacket(). You
must define the required processing for this function in the files AN1174_154_Coord.c and
AN1174_154_EndD.c.

 Note: The empty vProcessReceivedDataPacket() function appears in
both AN1174_154_Coord.c and AN1174_154_EndD.c. However, the
PAN Co-ordinator is likely to process received data packets in a different
way from an End Device. Therefore, you are likely to define
vProcessReceivedDataPacket() differently in the two source files.

4.6 How Do I Program Data Transmission?
In each of the source files AN1174_154_Coord.c and AN1174_154_EndD.c, a function for
transmitting data is already defined - vTransmitDataPacket(). You simply need to add code
to call this function as appropriate for your application.

 IEEE 802.15.4 Application Template for JN516x

12 © NXP B.V. 2016 JN-AN-1174 (v1.4) 21-Jun-2016

5 Building and Downloading the Application
These applications can be built for the JN516x microcontrollers using BeyondStudio for NXP
or makefiles.

Build the application as described in the appropriate section below, depending on whether
you intend to use BeyondStudio or makefiles.

5.1 Using BeyondStudio
To build one of the applications and load it into a JN516x-based module, follow the
instructions below (only one application can be present in Flash memory at a time):

1. Ensure that the project directory is located in

 <BeyondStudio for NXP installation root>\workspace
 where <BeyondStudio for NXP Installation root> is the path into which BeyondStudio

for NXP was installed (by default, this is C:\NXP\bstudio_nxp). The workspace
directory is automatically created when you start BeyondStudio for NXP.

2. Start BeyondStudio for NXP and import the relevant project as follows:

a) In BeyondStudio, follow the menu path File>Import to display the Import dialogue
box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left panel of
BeyondStudio and use the drop-down list associated with the hammer icon in the
toolbar to select the relevant build configuration - once selected, the application will
automatically build. Repeat this to build the other application.

 The binary files will be created in the relevant Build directory.

4. Load the resulting binary files into the boards. Do this using the integrated Flash
programmer, as described in the BeyondStudio for NXP Installation and User Guide
(JN-UG-3098).

5.2 Using Makefiles
Each application has its own Build directory, which contains the makefiles for the
application.

To build each application and load it into a JN516x-based board, follow the instructions
below:

1. Ensure that the project directory is located in

 <BeyondStudio for NXP installation root>\workspace
 where <BeyondStudio for NXP Installation root> is the path into which BeyondStudio

for NXP was installed (by default, this is C:\NXP\bstudio_nxp). The workspace
directory is automatically created when you start BeyondStudio for NXP.

2. Start an MSYS shell by following the Windows Start menu path:

 All Programs > NXP > MSYS Shell

IEEE 802.15.4 Application Template for JN516x

JN-AN-1174 (v1.4) 21-Jun-2016 © NXP B.V. 2016 13

3. In the command window, navigate to the Build directory for the application to be built
and follow the instructions below for your chip type:

 For JN5168:
 At the command prompt, enter:
 make clean all

 Note that for the JN5168, you can alternatively enter the above command from the top
level of the project directory, which will build the binaries for both the applications.

 For JN5169:
 At the command prompt, enter:
 make JENNIC_CHIP=JN5169 clean all

 For JN5164:
 At the command prompt, enter:
 make JENNIC_CHIP=JN5164 clean all

 For JN5161:
 At the command prompt, enter:
 make JENNIC_CHIP=JN5161 clean all

 In all the above cases, the binary file will be created in the Build directory for the
application, the resulting filename reflecting the name of the source file and the chip
type (e.g. JN5168) for which the application has been built.

4. Load the resulting binary file from the Build directory into the boards. You can do this
from the command line using the JN51xx Production Flash Programmer (described in
the JN51xx Production Flash Programmer User Guide (JN-UG-3099)).

 IEEE 802.15.4 Application Template for JN516x

14 © NXP B.V. 2016 JN-AN-1174 (v1.4) 21-Jun-2016

Revision History
Version Notes

1.0 First release
1.1 Documentation references updated
1.2 Updated for BeyondStudio
1.3 Software updated for the JN5169 device
1.4 Document updated to incorporate full details of the application template

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including
- without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products
or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	1 Application Overview
	2 Using the Application Template
	2.1 Pre-requisites and Assumptions
	2.2 Unpacking the Application Note
	2.3 Supplied Files
	2.3.1 Source Folders
	2.3.2 Build Folders

	3 Code Descriptions
	3.1 Contents of AN1174_154_Coord.c
	3.2 Contents of AN1174_154_EndD.c

	4 Adapting the Skeleton Code
	4.1 How Do I Program a Pre-defined PAN ID?
	4.2 How Do I Program Pre-defined Short Addresses?
	4.3 How Do I Add End Devices to the Network?
	4.4 How Do I Program the Channel Scans?
	4.5 How Do I Define the Processing of Received Data Packets?
	4.6 How Do I Program Data Transmission?

	5 Building and Downloading the Application
	5.1 Using BeyondStudio
	5.2 Using Makefiles

