
10 - 1EPPC Exception Processing

EPPC Exception Processing

10 - 2EPPC Exception Processing

Exception Terms

User Mode The Privilege Level that Applications run in.

Supervisor Mode The Privilege Level that the Operating System
runs in. Also called “Privileged Mode”

Exception An event which causes deviation� from normal
processing.
 Examples:
 - Interrupt (internal or external)
 - Resets
 - Bus error

Ordered Exception No program state is lost after the exception (the
machine state is saved).

Unordered Exception Program state may be lost after the exception.
Includes reset, machine check and other non-
maskable exceptions.

Asynchronous Exception Exception not caused by an instruction.

Synchronous Exception Exception caused by an instruction.

Precise Exception The exact processor context when the exception
occurred is available, and the exact cause of the
exception is always known.

– Processor backs the machine up to the
instruction which caused the exception

Imprecise Exception The exact processor context is not known when
the exception is processed, because concurrent
operations have affected the information that
comprises the processor context.

Maskable Exception May be masked by the operating system.

10 - 3EPPC Exception Processing

Exception Classes

 ORDERED EXCEPTIONS - When the Exception is taken, No program
state is lost.

 UNORDERED EXCEPTIONS - When the Exception is taken, the program
state is unrecoverable.

Reset and Machine Check Exceptions are unrecoverable, if they
occur during the servicing of another exception.

PRECISE EXCEPTIONS - When the exception is taken, the processor
backs the machine up to the instruction causing the exception. The
instruction causing the exception may not have begun execution, may
partially be completed, or may have completed execution.

The Core implements all storage associated interrupts as precise interrupts.
This means that a load/store instruction is not complete until all possible error
indications have been sampled from the Load/Store Bus.

 CLASS EXCEPTION TYPE

ASYNCHRONOUS, UNORDERED RESET, NON-MASKABLE

SYNCHRONOUS, UNORDERED MACHINE CHECK (BUS ERROR)

ASYNCHRONOUS, ORDERED EXTERNAL INTERRUPT
 DECREMENTER, PIT INTERRUPTS

 SYNCHRONOUS (ORDERED, PRECISE) INSTRUCTION -CAUSED EXCEPTIONS

10 - 4EPPC Exception Processing

System Reset Interrupt
Occurs when the NMI pin is asserted, SWT times out,

Hard or Soft Reset pins are asserted

Machine Check Interrupt The accessed address does not exist or a data error was detected

Data Storage Interrupt
Never generated by the hardware

The software may branch to this location as a result of either

Implementation Specific Data

TLB error interrupt or Implementation Specific Data TLB miss int.

Instruction Storage Interrupt
Never generated by the hardware

The software may branch to this location as a result of an

Implementation Specific Instruction TLB error interrupt

Alignment Interrupt
 Occurs as a result of one of the following cases:

The operand of a Floating-Point load or store is not word aligned.

The operand of Load/Store multiple is not word aligned.

The operand of lwarx or stwcx. is not word aligned.

The operand of Load/Store individual scalar instruction is not

naturally aligned when MSRLE = 1.

An attempt to execute multiple/string instruction is made

when MSRLE = 1

Program Interrupt
Floating-Point Enabled Exception type Program interrupt is not
generated by the EPPC.

Illegal Instruction type program interrupt is not generated by the

Core, an Implementation Dependent Software Emulation Interrupt is

generated instead

Privileged instruction type Program interrupt is generated for on
core valid SPR field or any SPR encoded as an external to the core
special register if spr0=1 and MSRPR=1, as well as an attempt to
execute privileged instruction when MSRPR=1.

Floating Point Unavailable

 Interrupt
Not generated by the EPPC

An Implementation Dependent Software Emulation Interrupt will be

 taken on any attempt to execute

 Floating-Point instruction regardless of MSRFP

Exception Definitions (1 of 2)

10 - 5EPPC Exception Processing

Trace Interrupt
Occurs If MSRSE = 1 and any instruction except rfi is successfully

completed, or MSRBE = 1 and a branch is completed

Floating Point Assist Interrupt
Not generated by the EPPC

An Implementation Dependent Software Emulation Interrupt will be

taken on any attempt to execute Floating-Point instruction

Implementation Dependent

Software Emulation Interrupt

 Occurs as a result of one of the following cases:

•When there is an attempt to execute any non implemented
 instruction. (This include all Illegal and unimplemented optional
 instructions and all floating point instructions).

•When there is an attempt to execute a mtspr or mfspr which
specifies on core non implemented register. (regardless of spr0).

•When there is an attempt to execute a mtspr or mfspr which
 specifies off core non implemented register and spr0=0 or
 MSRPR=0

Implementation Specific

 Instruction TLB Miss Interrupt
 Occurs when MSRIR=1 and there is an attempt to fetch an instruction
 from a page that its Effective Page Number can not be translated by

 the Instruction TLB

Implementation Specific

 Instruction TLB Error Interrupt
 Occurs in the following cases:
•The effective address cannot be translated (either Segment valid bit or

 Page valid bit of this page are cleared in the translation table)

•The fetch access violates storage protection

•The fetch access is to Guarded storage and MSRIR=1

Implementation Specific

Data TLB Miss Interrupt
Occurs when MSRDR=1 and there is an attempt to access a page

 that its Effective Page Number can not be translated by the Data TLB

Implementation Specific

Data TLB Error Interrupt
 Occurs in the following cases:

•The effective address of a Load, Store, icbi, dcbz, dcbst, dcbf or
 dcbi instruction cannot be translated (either Segment valid bit or
 Page valid bit of this page are cleared in the translation table)

•The access violates the storage protection

•An attempt to write to a page with negated Change Bit

Exception Definitions (2 of 2)

10 - 6EPPC Exception Processing

Interrupt Priority Mapping

Instruction Related Interrupt Detection Order

Interrupt Type Caused By
#1 Development non-maskable interrupt Signal from the Development Port

#2 System reset NMI_L assertion
#3 Instruction Related Interrupts Instruction Processing
#4 Peripheral breakpoint request or Dev Port maskable interrupt Breakpoint signal from any peripheral

#5 External Interrupt Signal from the interrupt controller

#6 Decrementer interrupt Decrementer request

Interrupt Type Caused by

#1 Trace Trace bit asserted
#2 Implementation Dependent Instruction TLB miss Instruction MMU TLB Miss
#3 Implementation Dependent Instruction TLB error Instruction MMU protection/translation error

#4 Machine Check Interrupt Fetch Error
#5 Debug I- Breakpoint Match detection
#6 Implementation Dependent Software Emulation Interrupt Attempt to invoke un-implemented feature

#7 Floating-Point Unavailable Attempt is made to execute Floating-Point instruction and MSRFP=0

#8 Privileged Instruction Attempt to execute priviledged instruction in problem mode

Alignment Interrupt Load store checking
System Call Interrupt SC Instruction
Trap Trap Instruction

#9 Implementation Dependent Data TLB miss Data MMU TLB Miss
#10 Implementation Dependent Data TLB error Dat MMU TLB Protection/translation error

#11 Machine Check Interrupt Load or store access error
#12 Debug -L Breakpoint Match detection

10 - 7EPPC Exception Processing

MSR - MACHINE STATE REGISTER

EE PR FP ME FE0 SE BE FE1 RESVD

IP

IR DR RESVD RESVD RI LE

RESERVED POW ISF ILE

Vector Table

0...*..0

IP = 0 Vector Table Address at 0x00000000
 = 1 Vector Table Address at 0xFFF00000.

HARD & SRESETS

IRQ[1 :7], PIT, TB, RTC, PCMCIA, CPM

ALIGNMENT ERROR
INSTR. TRAPS,ERRORS, ILLEGAL, PRIVILEGED
MSR[FP]=0 & F.P. INSTRUCTION ENCOUNTERED

DECREMENTER REGISTER

'SC' INSTRUCTION

TEA (BUS ERROR)

SINGLE-STEP OR BRANCH TRACING

SOFTWARE ASSIST FOR INFREQUENT &
COMPLEX FP OPERATIONS

0 0000

0 0100

0 0200

0 0300

0 0400

0 0500

0 0600

0 0700

0 0800

0 0900

0 0A00

0 0B00

0 0D00

0 0C00

VECTOR
OFFSET
(HEX)

EXCEPTION TYPE

0 0E00

0 1000

0 1100

RESERVED

SYSTEM RESET

MACHINE CHECK

DATA STORAGE

INSTRUCTION STORAGE

EXTERNAL INTERRUPT

ALIGNMENT

PROGRAM

FLOATING-POINT UNAVAILIABLE

DECREMENTER

RESERVED

RESERVED

SYSTEM CALL

TRACE*

FLOATING-POINT ASSIST*

IMPLEMENTATION DEPENDENT SOFTWARE EMULATION

IMPLEMENTATION DEPENDENT INSTRUCTION TLB MISS

IMPLEMENTATION DEPENDENT DATA TLB MISS

IMPLEMENTATION DEPENDENT INSTRUCTION TLB ERROR

IMPLEMENTATION DEPENDENT DATA TLB ERROR

RESERVED

IMPLEMENTATION DEPENDENT DATA BREAKPOINT

IMPLEMENTATION DEPENDENT INSTRUCTION BREAKPOINT

IMPLEMENTATION DEPENDENT PERIPHERAL BREAKPOINT

IMPLEMENTATION DEPENDENT NON MASKABLE DEVELOPMENT PORT

0 1200

0 1300

0 1400
0 1500 -
01BFF

0 1C00

0 1D00

0 1E00

0 1F00

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 - 8EPPC Exception Processing

MSR After Hard Reset

MSR AFTER RESET:

MSR - MACHINE STATE REGISTER

EE PR FP ME FE0 SE BE FE1 RESVD IP IR DR RESVD RESVD RI LE

RESERVED POW ISF ILE

POW 0 Power Management Disable
ISF 0 Implementation Specific Function
ILE 0 Interrupt Little Endian Mode Disabled
EE 0 External and DEC Interrupt are disabled
PR 0 Privilege Level is Supervisor.
FP 0 Floating Point Unit not available
ME 0 Machine Check Disabled: If transfer error acknowledge (TEA) occurs, the
 Chip will go to Checkstop State. The SIU may assert reset in order to
 recover.

FE0 0 Floating-Point Exception Mode 0(has no effect).
SE 0 Single Step Trace Disabled.
BE 0 Branch Trace Disabled.

FE1 0 Floating-Point Exception Mode 1(has no effect).
IP * Interrupt Prefix . Vector Table Located
 at 0x000n - nnnn or at 0xFFFn - nnnn for a value
 of a “0” or a “1” respectively.
IR 0 Instruction Relocate
DR 0 Data Relocate
RI 0 Recoverable Interrupt Mode is Disabled.
LE 0 Normal Processing is set for Big Endian Mode.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 - 9EPPC Exception Processing

Exception Processing Sequence (1 of 2)

• For most exceptions, the machine state is saved only in SRR0 and SRR1.

• Some exceptions will save other information in DSISR and DAR:
– DSISR (Source Instruction Service Register) - 7 bit field identifies which instruction caused the

exception.

– DAR (Data Address Register): Contains the effective address o the load or store for misaligned

exceptions.

Y
E
S

 Copy MSR into SRR1

Loads SRR0 with next Instruction
Address or the instruction that
caused the exception.

Change MSR (switch to
Supervisor mode and disable all
maskable exceptions [EE bit = 0
and RI = 0])

Point to the Exception vector
and begin the service routine

NOException

“ ? “

 Execute
next

instruction

10 - 10EPPC Exception Processing

Exception Processing Sequence (2 of 2)

Applications Operating System

CONTEXT SWITCHING

• SRR0, SRR1 and MSR are changed after every exception
• All exceptions cause the core to enter the supervisor mode.
• The RFI instruction restores the Machine State back to User Mode.
• The RFI instruction is usually the last instruction in the exception handler.

Errors,
Traps,
Interrupts

Supervisor
Privilege

Level

Exception

RFI

Normal

Supervisor Mode

User
Privilege

Level

(Exception Handlers)

Change to Exception ValueRESERVED

MSR - MACHINE STATE REGISTER

0 15 16 31

Holds copy of MSR before exception

SRR1 - Save and Restore Register 127

0 15 16 31

Holds address of next instruction to be executed

SRR0 - Save and Restore Register 026

10 - 11EPPC Exception Processing

How the RFI Instruction Operates

.

RFI Instruction is Supervisor-only used to restore previous Machine State.

APPLICATION
CODE
instr.
instr.
instr.
instr.
instr.
 •
 •
 •
instr.
instr.
instr.

EXCEPTION
HANDLER
instr.
instr.
instr.
instr.
instr.
 •
 •
 •
instr.
instr.
rfi

User Mode Supervisor Mode

EXCEPTION PROCESSING

1. HW Saves Instr. Addr to SRR0
2. HW Saves MSR to SRR1
3. HW changes MSR (change to
 Supervisor Mode, mask other

maskable exceptions...)

NORMAL PROCESSING

reserved

27 SRR1 - Save and Restore Register 1

0 3115 16 copy of MSR

SRR0 - Save and Restore Register 026

instruction address0 29

0 31

MSR- Machine State RegisterNext Instruction Address

0 0

10 - 12EPPC Exception Processing

How to Make the ESR Recoverable

EE

PR FP ME FE0 SE BE FE1 RESVD IP IR DR RESVD RESVD

RI

LE

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED POW ISF ILE

RST: 0..0

RST: 0...0

Mnemonic MSREE MSRRI Used For

NRI(82) 0 0 Non-Recoverable Interrupt

EID (81) 0 1
External Interrupt Disable, but other

interrupts are recoverable

EIE (80) 1 1 External Interrupt Enable

 asm (“ stwu r9,-12(r1); /* SAVE R9 */
 asm (" mfspr r9,26"); /* PUSH SRR0 ONTO STACK */
 asm (" stw r9,4(r1)");
 asm (" mfspr r9,27"); /* PUSH SRR1 ONTO STACK */
 asm (" stw r9,8(r1)");
 asm (" mtspr 80,0"); /* ENABLE INTERRUPTS */

Making the
ESR

Recoverable

Before ESR
Exit

 asm (" mtspr 82,0"); /* MAKE NON-RECOVERABLE */
 asm (" lwz r9,8(r1)"); /* PULL SRR1 FROM STACK */
 asm (" mtspr 27,r9");
 asm (" lwz r9,4(r1)"); /* PULL SRR0 FROM STACK */
 asm (" mtspr 26,r9");
 asm (“ lwz r9,0(r1)”); /* PULL R9 FROM STACK */
 asm (" addi r1,r1,12");

10 - 13EPPC Exception Processing

ex1.c

MOTOROLA
Motorola Technical Training - MPC860 Course
Phoenix, Arizona

Title:

Handling a System Call Exception

Creation Date: Jan. 10, 1996 From: 68360 Course

Author: Bob Bratt

Description:

The results of this routine are:
1. Initializes the exception vector area with a service routine to
 increment an LED counter each time a system call instruction is
 executed.
2. The exception service routine is made recoverable.
Assumptions:
1. Reset conditions exist.

Objective:

If the program executes properly, the LED counter has a count of 1.

Equipment:

MPC860ADS board and UDLP1.

UDLP1 Switch Settings: N/A

Connections:

Updates:

MPC860ADS board and UDLP1 are connected at P13.

10 - 14EPPC Exception Processing

ex1.c (1 of 2)

/* (EX1.C) */
#include "mpc860.h" /* DUAL PORT RAM EQUATES*/
struct dprbase *pdpr; /* PNTR TO DUAL PORT RAM*/

main()
{
 void esr(); /* EXCEPTION SERVICE RTN */
 int *ptrs,*ptrd; /* SOURCE & DEST POINTERS*/

 pdpr = (struct dprbase *) (getimmr() & 0xFFFF0000);
 /* INIT PNTR TO DPRBASE */
 ptrs = (int *) esr; /* INIT SOURCE POINTER */
 ptrd = (int *)(getevt() + 0xC00); /* INIT DEST POINTER */
 do /* MOVE ESR TO EVT */
 *ptrd++ = *ptrs; /* MOVE UNTIL */
 while (*ptrs++ != 0x4c000064); /* RFI INTRUCTION */
 pdpr->PDDAT = 0; /* CLEAR PORT D DATA REG */
 pdpr->PDDIR = 0xff; /* MAKE PORT D8-15 OUTPUT*/
 asm(" sc"); /* SYSTEM CALL */
}

#pragma interrupt esr
void esr()
{
 asm (" stwu r9,-12(r1)"); /* PUSH GPR9 ONTO STACK */
 asm (" mfspr r9,26"); /* PUSH SRR0 ONTO STACK */
 asm (" stw r9,4(r1)");
 asm (" mfspr r9,27"); /* PUSH SRR1 ONTO STACK */
 asm (" stw r9,8(r1)");
 asm (" mtspr 80,0"); /* ENABLE INTERRUPTS */
 pdpr->PDDAT += 1;
 asm (" mtspr 82,0"); /* MAKE NON-RECOVERABLE */
 asm (" lwz r9,8(r1)"); /* PULL SRR1 FROM STACK */
 asm (" mtspr 27,r9");
 asm (" lwz r9,4(r1)"); /* PULL SRR0 FROM STACK */
 asm (" mtspr 26,r9");
 asm (" lwz r9,0(r1)"); /* PULL GPR9 FROM STACK */
 asm (" addi r1,r1,12"); /* RESTORE STACK POINTER */
}

getimmr()
{
 asm(" mfspr 3,638");
}

getevt() /* GET EVT LOCATION */
{
 if ((getmsr() & 0x40) == 0) /* IF MSR.IP IS 0 */
 return (0); /* THEN EVT IS IN LOW MEM*/
 else /* ELSE */
 return (0xFFF00000); /* EVT IS IN HIGH MEM */
}

10 - 15EPPC Exception Processing

ex1.c (2 of 2)

getmsr() /* GET MACHINE STATE REG VALUE */
{
 asm(" mfmsr 3"); /* LOAD MACHINE STATE REG TO r3 */
}

10 - 16EPPC Exception Processing

ex2.c

MOTOROLA
Motorola Technical Training - MPC860 Course
Phoenix, Arizona

Title:

Handling a Alignment Error Exception

Creation Date: Jan. 10, 1996 From: 68360 Course

Author: Bob Bratt

Description:

The results of this routine are:
1. Initializes the exception vector area with a service routine to
 increment an LED counter each time an alignment error occurs.
2. The exception service routine is made recoverable.
Assumptions:
1. Reset conditions exist.

Objective:

If the program executes properly, the LED counter contains a
random count.

Equipment:

MPC860ADS board and a UDLP1.

UDLP1 Switch Settings: N/A

Connections:

Updates:

MPC860ADS board and a UDLP1 are connected through P13.

10 - 17EPPC Exception Processing

ex2.c (1 of 2)

/* (EX2.C) */
#include "mpc860.h" /* DUAL PORT RAM EQUATES*/
struct dprbase *pdpr; /* PNTR TO DUAL PORT RAM*/

main()
{
 void esr(); /* EXCEPTION SERVICE RTN */
 int *ptrs,*ptrd; /* SOURCE & DEST POINTERS*/

 pdpr = (struct dprbase *) (getimmr() & 0xFFFF0000);
 /* INIT PNTR TO DPRBASE */
 ptrs = (int *) esr; /* INIT SOURCE POINTER */
 ptrd = (int *)(getevt() + 0x600); /* INIT DEST POINTER */
 do /* MOVE ESR TO EVT */
 *ptrd++ = *ptrs; /* MOVE UNTIL */
 while (*ptrs++ != 0x4c000064); /* RFI INTRUCTION */
 pdpr->PDDAT = 0; /* CLEAR PORT D DATA REG */
 pdpr->PDDIR = 0xff; /* MAKE PORT D8-15 OUTPUT*/
 asm(“ li r21,0x1001”); /* INIT r21 TO UNALIGNED */
 asm(" lwarx r20,r0,r21"); /* ALIGNMENT INTERRUPT */
}

#pragma interrupt esr
void esr()
{
 asm (" stwu r9,-12(r1)"); /* PUSH GPR9 ONTO STACK */
 asm (" mfspr r9,26"); /* PUSH SRR0 ONTO STACK */
 asm (" stw r9,4(r1)");
 asm (" mfspr r9,27"); /* PUSH SRR1 ONTO STACK */
 asm (" stw r9,8(r1)");
 asm (" mtspr 80,0"); /* ENABLE INTERRUPTS */
 pdpr->PDDAT += 1;
 asm (" mtspr 82,0"); /* MAKE NON-RECOVERABLE */
 asm (" lwz r9,8(r1)"); /* PULL SRR1 FROM STACK */
 asm (" mtspr 27,r9");
 asm (" lwz r9,4(r1)"); /* PULL SRR0 FROM STACK */
 asm (" mtspr 26,r9");
 asm (" lwz r9,0(r1)"); /* PULL GPR9 FROM STACK */
 asm (" addi r1,r1,12"); /* RESTORE STACK POINTER */
}

getimmr()
{
 asm(" mfspr 3,638");
}

getevt() /* GET EVT LOCATION */
{
 if ((getmsr() & 0x40) == 0) /* IF MSR.IP IS 0 */
 return (0); /* THEN EVT IS IN LOW MEM*/
 else /* ELSE */
 return (0xFFF00000); /* EVT IS IN HIGH MEM */
}

10 - 18EPPC Exception Processing

ex2.c (2 of 2)

getmsr() /* GET MACHINE STATE REG VALUE */
{
 asm(" mfmsr 3"); /* LOAD MACHINE STATE REG TO r3 */
}

