MOTOR CONTROL SOLUTIONS BASED ON S32K1 MCUS

The S32K1 family of 32-bit AEC-Q100 qualified MCUs combines a scalable family of Arm® Cortex®-M0-based microcontrollers built on long-lasting features with a comprehensive suite of production-grade tools. S32K1 MCUs are included in NXP’s Product Longevity Program, guaranteeing a minimum of 15 years of assured supply.

S32K1 VALUE PROPOSITION FOR MOTOR CONTROL

SCALABLE MCU PLATFORM

- Hardware- and Software- compatible MCU family
- 48 MHz Arm Cortex-M0+ core or up to 112 MHz Arm Cortex-M4F core
- Flash memory: from 128 KB up to 2 MB
- QFN, LQFP, MAPBGA packages, from 32 to 176 pin count
- CAN FD, FlexIO, and QSPI Ethernet and serial audio interfaces
- AEC-Q100 qualified:
 - Grade 0 = -40° C to +150° C
 - Grade 1 = -40° C to +125° C
 - Grade 2 = -40° C to +105° C
- Functional Safety compliant: ISO 26262 up to ASIL B
- Cryptographic Services Engine compressed (CSEc) security engine: AES-128 and SHE compliant

MOTOR CONTROL COVERAGE

- Engineered tools for Brushed DC motors, 3-phase PMSM, and 3-phase BLDC motor control targeting body and chassis
- Dedicated peripherals set for rapid motor control loop implementation: FlexTimer (FTM), TRGMUX, Programmable Delay Block (PDB), Analog to Digital Converter (ADC), and Analog Comparator (CMP)

COMPREHENSIVE MOTOR CONTROL ECOSYSTEM

- Diverse hardware solutions supporting motor control applications
- S32K1 software ecosystem with production-ready algorithm library:
 - AMMCLIB set
 - FreeMASTER and MCAT tool
 - Model-Based Design Toolbox (MBDT)
- Dedicated technical support and on-line community

nxp.com/S32K1MCdevKits
S32K1 PRODUCT OVERVIEW

S32K1 provides a scalable platform with high hardware and software compatibility to address various motor control techniques and applications.

S32K116 vs. S32K118 Common Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>S32K116</th>
<th>S32K118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm® Cortex®-M0+</td>
<td>128 KB Flash</td>
<td>256 KB Flash</td>
</tr>
<tr>
<td></td>
<td>17 KB SRAM</td>
<td>24 KB SRAM</td>
</tr>
<tr>
<td>I/Os</td>
<td>up to 42 I/Os</td>
<td>up to 58 I/Os</td>
</tr>
<tr>
<td>eDMA</td>
<td>4 channel eDMA</td>
<td>1 x FlexCAN with 1 x FD</td>
</tr>
<tr>
<td>SRAM</td>
<td>17 KB SRAM</td>
<td>24 KB SRAM</td>
</tr>
<tr>
<td></td>
<td>32 KB SRAM</td>
<td>64 KB SRAM</td>
</tr>
<tr>
<td></td>
<td>128 KB SRAM</td>
<td>256 KB SRAM</td>
</tr>
<tr>
<td></td>
<td>256 KB SRAM</td>
<td>512 KB SRAM</td>
</tr>
</tbody>
</table>

S32K142 vs. S32K144 vs. S32K146 vs. S32K148

<table>
<thead>
<tr>
<th>Feature</th>
<th>S32K142</th>
<th>S32K144</th>
<th>S32K146</th>
<th>S32K148</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm® Cortex-M4F</td>
<td>256 KB Flash</td>
<td>512 KB Flash</td>
<td>1 MB Flash</td>
<td>2 MB Flash</td>
</tr>
<tr>
<td></td>
<td>32 KB SRAM</td>
<td>64 KB SRAM</td>
<td>128 KB SRAM</td>
<td>256 KB SRAM</td>
</tr>
<tr>
<td>I/Os</td>
<td>up to 49 I/Os</td>
<td>up to 89 I/Os</td>
<td>up to 128 I/Os</td>
<td>up to 156 I/Os</td>
</tr>
<tr>
<td>eDMA</td>
<td>16-channel eDMA</td>
<td>2 x FlexCAN with 1 x FD</td>
<td>3 x FlexCAN with 2 x FD</td>
<td>3 x FlexCAN with 3 x FD</td>
</tr>
<tr>
<td>SRAM</td>
<td>32 KB SRAM</td>
<td>64 KB SRAM</td>
<td>128 KB SRAM</td>
<td>256 KB SRAM</td>
</tr>
<tr>
<td></td>
<td>256 KB SRAM</td>
<td>512 KB SRAM</td>
<td>1 MB SRAM</td>
<td>2 MB SRAM</td>
</tr>
</tbody>
</table>

Motor Control Peripherals

<table>
<thead>
<tr>
<th>Feature</th>
<th>S32K142</th>
<th>S32K144</th>
<th>S32K146</th>
<th>S32K148</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCs</td>
<td>1 x 13-ch. 12-bit ADC</td>
<td>2 x 16-ch. 12-bit ADC</td>
<td>2 x 16-ch. 12-bit ADC</td>
<td>2 x 16-ch. 12-bit ADC</td>
</tr>
<tr>
<td></td>
<td>1 x 16-ch. 12-bit ADC</td>
<td>2 x 16-ch. 12-bit ADC</td>
<td>2 x 24-ch. 12-bit ADC</td>
<td>2 x 32-ch. 12-bit ADC</td>
</tr>
<tr>
<td></td>
<td>1 x PDB</td>
<td>2 x PDB</td>
<td>4 x 16-bit FTM (32-ch.)</td>
<td>6 x 16-bit FTM (48-ch.)</td>
</tr>
</tbody>
</table>

S32K1 MOTOR CONTROL LINE-UP

S32K1 vs. MC Techniques Line Up

- 3ph PMSM FOC Sensorless
- 3ph PMSM FOC Encoder / Resolver
- 3ph BLDC 6-step Sensorless
- 3ph BLDC 6-step HALL
- Dual DC motor servo
- DC and Stepper Motor Dual Direction

S32K1 vs. Typical MC Applications Line Up

- Belt Starter Generator
- Crankshaft Motor Generator
- Transmission Actuators
- Pumps
- Engine Cooling
- HVAC Blower
- Window Lift (3ph PMSM)
- Sunroof (3ph PMSM)
- Trunk Opener (Dual DC motor)
- Window Lift (DC motor)
- Seat Control (DC motor)
- Mirror Control (Stepper motor)

nxp.com/S32KMCdevKits
AUTOMOTIVE MATH AND MOTOR CONTROL LIBRARY (AMMCLIB) SET
- Precompiled software library including NXP-patented control math algorithms
- Automotive production-ready software (SPICE Level 3, CMMI and ISO 9001/TS 16949)
- Delivered as bit-accurate models for MATLAB®/Simulink® and C code
- Single API across NXP MCUs, simple migration across platforms

MODEL-BASED DESIGN TOOLBOX (MBDT)
- Model-based design environment in MATLAB/Simulink for motor control software on S32K MCUs
- Automatic code generation for S32K1xx peripherals and applications prototyping
- Extensive online community and tutorials available
- Model-based design approach helps to save R&D time and test efforts

FREEMASTER (LITE)
- Real-time data visualization tool for debugging and tuning embedded algorithm during development
- Graphs, tabular grids, and web views embedded directly in the desktop application
- FreeMASTER Lite supports JSON RPC protocol and is able to run on Windows® or Linux® host PC, enabling custom UI on web browsers

MOTOR CONTROL APPLICATION TUNNING (MCAT)
- HTML-based graphical user interface tool, plug-in to FreeMASTER and fully compliant with AMMCLib set API
- Real-time tuning and updating of control parameters

S32K1 ADDITIONAL SOFTWARE
- S32 Design Studio IDE: Eclipse, GCC, and debugger
- Production-grade S32 Software Development Kit (S32 SDK): SPICE Level 3 compliant, MISRA tested
- NXP AUTOSAR® MCAL (QM and ISO 26262 compliant) and OS
- Security firmware – NXP provided
- Core Self-Test Library for functional safety applications
- Production-grade ASIL compliant Real Time Drivers (RTD) support
- Third-party ecosystem support to reduce time-to-market
PRODUCTS

<table>
<thead>
<tr>
<th></th>
<th>3-Phase Low-Power Motor Control Development Kits</th>
<th>3-Phase High-Power Motor Control Development Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU</td>
<td>S32K116</td>
<td>S32K144</td>
</tr>
<tr>
<td>Analog</td>
<td>UJA1169 – Mini high-speed system basis chip</td>
<td>TJA1021 – LIN PHY TJA1043 – CAN PHY GD3000 – MOSFET gate Driver for 3-phase motor</td>
</tr>
<tr>
<td>Motor</td>
<td>3-phase BLDC motor with Hall sensor</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>Up to 100 W</td>
<td>Up to 800 W</td>
</tr>
<tr>
<td>Voltage</td>
<td>12 V (10-18 V)</td>
<td>12/24 V (10-36 V)</td>
</tr>
<tr>
<td>Current sensing</td>
<td>Single-, dual-, and triple-shunt</td>
<td></td>
</tr>
<tr>
<td>Position sensing</td>
<td>Hall, encoder</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>CAN (FD), LIN, UART, PWM</td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE

Motor
- 3-phase BLDC motor with Hall sensor
- 24 VDC, 9000 RPM, 95 W
- 24 VDC, 4000 RPM, 40 W
- N/A

Power
- Up to 100 W
- Up to 800 W

Voltage
- 12 V (10-18 V)
- 12/24 V (10-36 V)

Current sensing
- Single-, dual-, and triple-shunt

Position sensing
- Hall, encoder

Communication
- CAN (FD), LIN, UART, PWM

MOTOR CONTROL SOFTWARE APPLICATION

PMSM FOC
- 3-phase field-oriented control (FOC) with field weakening (FW)
- Sensor (Encoder) or sensorless control (back-EMF observer)
- Single-shunt and dual-shunt current sensing and 3-phase stator current reconstruction

BLDC Six-step
- 3-phase 6-step commutation control
- Sensor (Hall) or sensorless control based on back-EMF zero-cross detection method

TOOLS

Integrated development environment
- S32 Design Studio for Arm®

MCU peripherals settings and control
- S32K1 SDK and software configuration tool

Motor control library
- Automotive Math and Motor Control Library

Visualization and motor control tuning
- FreeMASTER and Motor Control Application Tuning (MCAT)
S32K1 MOTOR CONTROL BLOCK DIAGRAMS

FIELD ORIENTED CONTROL (FOC) FOR PMSM MOTOR

S32K1xx

Current Loop

Field Weakening

Current q PI Controller

Current d PI Controller

Inverse Park Transformation d, q → α, β

Forward Clark Transformation α, β → d, q

Back-EMF and Angle Tracking Observer

Sensorless Encoder Sensor

Overall Speed

Overall Torque

Overall Current

Overall Power

S32K1 RESOURCES

S32K1 MCUs
nxp.com/S32K1

S32 Motor Control Development kits
nxp.com/S32KMCdevKits

S32 Design Studio IDE
nxp.com/S32DS

Model-Based Design Toolbox
nxp.com/MBDT

FreeMASTER
nxp.com/FreeMaster

Automotive Math and Motor Control Library
nxp.com/AMMCLib

S32K online support
nxp.com/S32K1community

MBDT online support
nxp.com/MBDTcommunity

nxp.com/S32KMCdevKits

NXP, the NXP logo and Processor Expert are trademarks of NXP B.V. All rights reserved. All other product or service names are the property of their respective owners. Arm and Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. © 2020 NXP B.V.