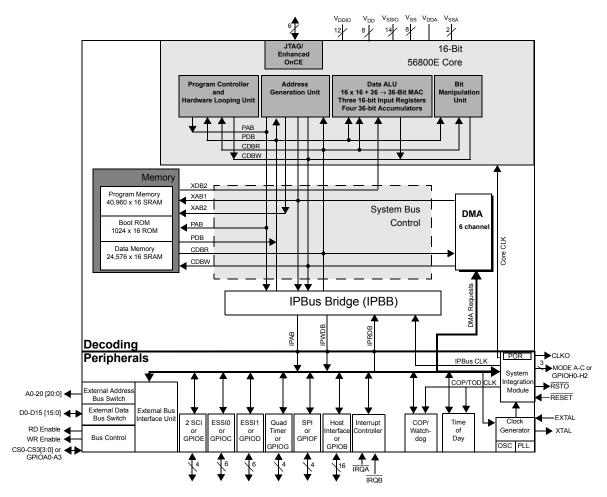


Data Sheet Technical Data

56800E 16-bit Digital Signal Controllers

DSP56858 Rev. 6 01/2007

freescale.com



DSP56858 General Description

- 120 MIPS at 120MHz
- 40K x 16-bit Program SRAM
- 24K x 16-bit Data SRAM
- 1K x 16-bit Boot ROM
- Access up to 2M words of program memory or 8M data memory
- Chip Select Logic for glue-less interface to ROM and SRAM
- Six (6) independent channels of DMA
- Two (2) Enhanced Synchronous Serial Interfaces (ESSI)

- Two (2) Serial Communication Interfaces (SCI)
- Serial Port Interface (SPI)
- 8-bit Parallel Host Interface
- General Purpose 16-bit Quad Timer
- JTAG/Enhanced On-Chip Emulation (OnCE[™]) for unobtrusive, real-time debugging
- Computer Operating Properly (COP)/Watchdog Timer
- Time-of -Day (TOD)
- 144 LQFP and 144 MAPBGA packages
- Up to 47 GPIO

56858 Block Diagram

Part 1 Overview

1.1 56858 Features

1.1.1 Digital Signal Processing Core

- Efficient 16-bit engine with dual Harvard architecture
- 120 Million Instructions Per Second (MIPS) at 120MHz core frequency
- Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)
- Four (4) 36-bit accumulators including extension bits
- 16-bit bidirectional shifter
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Three (3) internal address buses and one (1) external address bus
- Four (4) internal data buses and one (1) external data bus
- Instruction set supports both DSP and controller functions
- Four (4) hardware interrupt levels
- Five (5) software interrupt levels
- Controller-style addressing modes and instructions for compact code
- Efficient C-Compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/Enhanced OnCE debug programming interface

1.1.2 Memory

- Harvard architecture permits up to three (3) simultaneous accesses to program and data memory
- On-Chip Memory
 - 40K × 16-bit Program RAM
 - 24K × 16-bit Data RAM
 - 1K × 16-bit Boot ROM
- Off-Chip Memory Expansion (EMI)
 - Access up to 2M words of program or 8M data memory (using chip selects)
 - Chip Select Logic for glue-less interface to ROM and SRAM

1.1.3 56858 Peripheral Circuit Features

- General Purpose 16-bit Quad Timer*
- Two Serial Communication Interfaces (SCI)*
- Serial Peripheral Interface (SPI) Port*
- Two (2) Enhanced Synchronous Serial Interface (ESSI) modules*
- Computer Operating Properly (COP)/Watchdog Timer
- JTAG/Enhanced On-Chip Emulation (EOnCE) for unobtrusive, real-time debugging

- Six (6) independent channels of DMA
- 8-bit Parallel Host Interface*
- Time-of-Day (TOD)
- Up to 47 GPIO
- * Each peripheral I/O can be used alternately as a GPIO if not needed

1.1.4 Energy Information

- Fabricated in high-density CMOS with 3.3V, TTL-compatible digital inputs
- Wait and Stop modes available

1.2 56858 Description

The 56858 is a member of the 56800E core-based family of controllers. This device combines the processing power of a Digital Signal Processor (DSP) and the functionality of a microcontroller with a flexible set of peripherals on a single chip to create an extremely cost-effective solution. The low cost, flexibility, and compact program code make this device well-suited for many applications. The 56858 includes peripherals that are especially useful for teledatacom devices; Internet appliances; portable devices; TAD; voice recognition; hands-free devices; and general purpose applications.

The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The microprocessor-style programming model and optimized instruction set allow straightforward generation of efficient, compact DSP and control code. The instruction set is also highly efficient for C Compilers, enabling rapid development of optimized control applications.

The 56858 supports program execution from either internal or external memories. Two data operands can be accessed from the on-chip Data RAM per instruction cycle. The 56858 also provides two external dedicated interrupt lines, and up to 47 General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.

The 56858 controller includes 40K words of Program RAM, 24K words of Data RAM and 1K of Boot RAM. It also supports program execution from external memory.

This controller also provides a full set of standard programmable peripherals that include an 8-bit Parallel Host Interface, two Enhanced Synchronous Serial Interfaces (ESSI), one Serial Peripheral Interface (SPI), two Serial Communications Interfaces (SCI), and one Quad Timer. The Host Interface, Quad Timer, SSI, SPI, SCI I/O and four chip selects can be used as General Purpose Input/Outputs when its primary function is not required.

1.3 State of the Art Development Environment

- Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based software application creation with an expert knowledge system.
- The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.

56858 Technical Data, Rev. 6

1.4 Product Documentation

The four documents listed in **Table 1-1** are required for a complete description of and proper design with the 56858. Documentation is available from local Freescale distributors, Freescale Semiconductor sales offices, Freescale Literature Distribution Centers, or online at **www.freescale.com**.

Торіс	Description	Order Number
56800E Reference Manual	Detailed description of the 56800E architecture, 16-bit core processor and the instruction set	56800ERM
DSP56858 User's Manual	Detailed description of memory, peripherals, and interfaces of the 56858	DSP5685xUM
56858 Technical Data Sheet	Electrical and timing specifications, pin descriptions, and package descriptions (this document)	DSP56858
DSP56858 Errata	Details any chip issues that might be present	DSP56858E

Table 1-1 56858 Chip Documentation

1.5 Data Sheet Conventions

This data sheet uses the following conventions:

OVERBAR	This is used to indicate a signal that is active when pulled low. For example, the $\overline{\text{RESET}}$ pin is active when low.						
"asserted"	A high true (active high) sig	nal is high or a low t	rue (active low) signal is low	Ι.			
"deasserted"	A high true (active high) sig	inal is low or a low tr	ue (active low) signal is high	l.			
Examples:	Signal/Symbol	Logic State	Signal State	Voltage ¹			
	PIN	True	Asserted	V _{IL} /V _{OL}			
	PIN	False	Deasserted	V _{IH} /V _{OH}			
	PIN	True	Asserted	V _{IH} /V _{OH}			
	PIN	False	Deasserted	V _{IL} /V _{OL}			

1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.

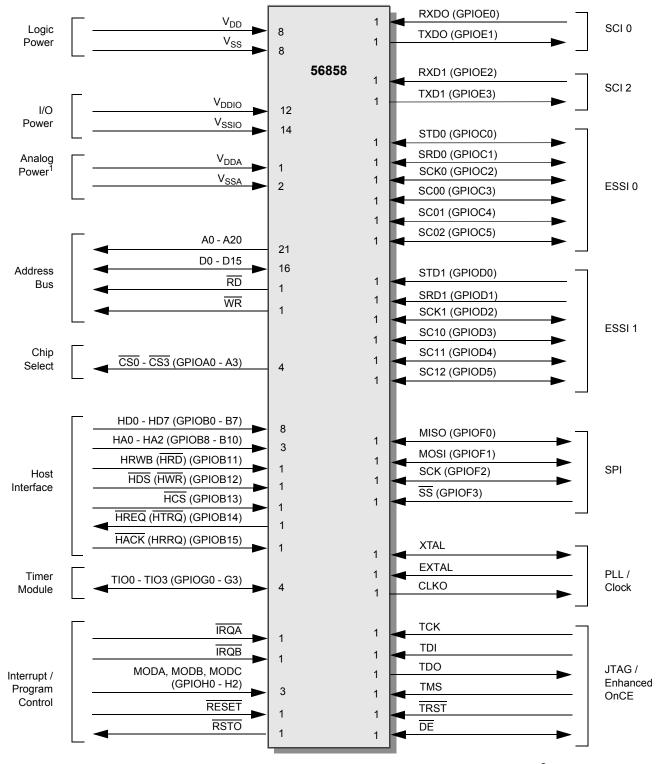
Part 2 Signal/Connection Descriptions

2.1 Introduction

The input and output signals of the 56858 are organized into functional groups, as shown in **Table 2-1** and as illustrated in **Figure 2-1**. In **Table 3-1** each table row describes the package pin and the signal or signals present.

Functional Group	Number of Pins
Power (V _{DD} , V _{DDIO} , or V _{DDA})	(8, 12, 1) ¹
Ground (V_{SS} , V_{SSIO} , or V_{SSA})	(8, 14, 2) ¹
PLL and Clock	3
External Bus Signals	39
External Chip Select*	4
Interrupt and Program Control	7 ²
Host Interface (HI)*	16 ³
Enhanced Synchronous Serial Interface (ESSI0) Port*	6
Enhanced Synchronous Serial Interface (ESSI1) Port*	6
Serial Communications Interface (SCI0) Ports*	2
Serial Communications Interface (SCI1) Ports*	2
Serial Peripheral Interface (SPI) Port*	4
Quad Timer Module Port*	4
JTAG/On-Chip Emulation (OnCE)	6

Table 2-1 56858 Functional Group Pin Allocations
--


*Alternately, GPIO pins

1. $V_{DD} = V_{DD \text{ CORE}}$, $V_{SS} = V_{SS \text{ CORE}}$, $V_{DDIO} = V_{DD \text{ IO}}$, $V_{SSIO} = V_{SS \text{ IO}}$, $V_{DDA} = V_{DD \text{ ANA}}$, $V_{SSA} = V_{SS \text{ ANA}}$

2. MODA, MODB and MODC can be used as GPIO after the bootstrap process has completed.

3. The following Host Interface signals are multiplexed: HRWB to HRD, HDS to HWR, HREQ to HTRQ and HACK to HRRQ.

Figure 2-1 56858 Signals Identified by Functional Group²

1. Specifically for PLL, OSC, and POR.

2. Alternate pin functions are shown in parentheses. Pin direction/type is represented as the preferred functionality. GPIO may provide bidirectional use of any pin.

56858 Technical Data, Rev. 6

Part 3 Signals and Package Information

All digital inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are enabled by default. Exceptions:

- 1. When a pin has GPIO functionality, the pull-up may be disabled under software control.
- 2. MODE A, MODE B and MODE C pins have no pull-up.
- 3. TCK has a weak pull-down circuit always active.
- 4. Bidirectional I/O pullups automatically disable when the output is enabled.

This table is presented consistently with the Signals Identified by Functional Group figure.

- 1. **BOLD** entries in the *Type* column represents the state of the pin just out of reset.
- 2. Output(Z) means an output in a High-Z condition.

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
V _{DD}	E1	14	V _{DD}	Logic Power (V _{DD})—These pins provide power to the internal
V _{DD}	M6	36		structures of the chip, and should all be attached to $V_{DD}.$
V _{DD}	F12	52		
V _{DD}	A9	72		
V _{DD}	M2	87		
V _{DD}	J12	88		
V _{DD}	E12	109		
V _{DD}	A12	125		
V _{SS}	G1	15	V _{SS}	Logic Power–Ground (V _{SS})—These pins provide grounding for the
V _{SS}	L6	16		internal structures of the chip and should all be attached to $V_{SS.}$
V _{SS}	D12	53		
V _{SS}	A7	54		
V _{SS}	F1	71		
V _{SS}	M7	89		
V _{SS}	K12	126		
V _{SS}	A8	127		

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
V _{DDIO}	B1	5	V _{DDIO}	I/O Power (V _{DDIO})—These pins provide power for all I/O and ESD
V _{DDIO}	H1	6		structures of the chip and should all be attached to $V_{\text{DDIO}}\left(3.3V\right)$
V _{DDIO}	M3	20		
V _{DDIO}	M8	45		
V _{DDIO}	M11	61		
V _{DDIO}	H12	67		
V _{DDIO}	C12	68		
V _{DDIO}	A11	80		
V _{DDIO}	A5	105		
V _{DDIO}	A3	113		
V _{DDIO}	C1	129		
V _{DDIO}	M10	139		
V _{SSIO}	D1	7	V _{SSIO}	I/O Power–Ground (V _{SSIO})—These pins provide grounding for all I/O
V _{SSIO}	J1	21		and ESD structures of the chip and should all be attached to $V_{SS.}$
V _{SSIO}	M5	46		
V _{SSIO}	M9	47		
V _{SSIO}	L12	62		
V _{SSIO}	G12	69		
V _{SSIO}	B12	70		
V _{SSIO}	A10	82		
V _{SSIO}	A4	106		
V _{SSIO}	A1	115		
V _{SSIO}	A2	128		
V _{SSIO}	M4	130		
V _{SSIO}	M12	140		
V _{SSIO}	A6	141		
V _{DDA}	K1	24	V _{DDA}	Analog Power (V _{DDA})—These pins supply an analog power source.
V_{SSA}	M1	25	Maria	Analog Ground (V _{SSA})—This pin supplies an analog ground.
V _{SSA}	L1	26	V _{SSA}	

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
A0	E5	10	Output(Z)	Address Bus (A0-A20)—These signals specify a word address for
A1	E4	11		external program or data memory access.
A2	E3	12		
A3	E2	13		
A4	J2	29		
A5	H3	30		
A6	G4	31		
A7	H4	32		
A8	G5	48		
A9	L5	49		
A10	J6	50		
A11	K6	51		
A12	J8	63		
A13	K8	64		
A14	L9	65		
A15	K9	66		
A16	K10	75		
A17	K11	76		
A18	J9	77		
A19	J10	78		
A20	J11	79		

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
D0	H7	81	Input/	Data Bus (D0-D15)—These pins provide the bidirectional data for
D1	G7	94	Output(Z) external program or data memory accesses.	external program or data memory accesses.
D2	F9	95		
D3	F10	96		
D4	F11	97		
D5	E10	98		
D6	D7	120		
D7	B7	121		
D8	E7	122		
D9	F8	123		
D10	F7	124		
D11	D5	137		
D12	B4	138		
D13	C4	142		
D14	F6	143		
D15	B3	144		
RD	D3	8	Output	Read Enable (RD) — is asserted during external memory read cycles.
				This signal is pulled high during reset.
WR	D4	9	Output	Write Enable (WR) — is asserted during external memory write cycles.
				This signal is pulled high during reset.
CS0	H8	83	Output	External Chip Select (CS0)—This pin is used as a dedicated GPIO.
GPIOA0			Input/Output	Port A GPIO (0) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
CS1	H9	84	Output	External Chip Select (CS1)—This pin is used as a dedicated GPIO.
GPIOA1			Input/Output	Port A GPIO (1) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
CS2	H11	85	Output	External Chip Select (CS2)—This pin is used as a dedicated GPIO.
GPIOA2			Input/Output	Port A GPIO (2) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
CS3	H10	86	Output	External Chip Select (CS3)—This pin is used as a dedicated GPIO.
GPIOA3			Input/Output	Port A GPIO (3) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
HD0	J3	33	Input	Host Address (HD0)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB0			Input/Output	Port B GPIO (0) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HD1	K2	34	Input	Host Address (HD1)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB1			Input/Output	Port B GPIO (1) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HD2	L2	35	Input	Host Address (HD2)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB2			Input/Output	Port B GPIO (2) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HD3	J4	40	Input	Host Address (HD3)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB3			Input/Output	Port B GPIO (3) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HD4	L4	41	Input	Host Address (HD4)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB4			Input/Output	Port B GPIO (4) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HD5	J5	42	Input	Host Address (HD5)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB5			Input/Output	Port B GPIO (5) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.

[1			
Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
HD6	K5	43	Input	Host Address (HD6)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB6			Input/Output	Port B GPIO (6) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HD7	H5	44	Input	Host Address (HD7)—This input provides data selection for HI registers.
				This pin is disconnected internally during reset.
GPIOB7			Input/Output	Port B GPIO (7) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HA0	G10	90	Input	Host Address (HA0)—These inputs provide the address selection for HI registers.
				These pins are disconnected internally during reset.
GPIOB8			Input/Output	Port B GPIO (8) —These pins are General Purpose I/O (GPIO) pins when not configured for host port usage.
HA1	G11	91	Input	Host Address (HA0)—These inputs provide the address selection for HI registers.
				These pins are disconnected internally during reset.
GPIOB9			Input/Output	Port B GPIO (9) —These pins are General Purpose I/O (GPIO) pins when not configured for host port usage.
HA2	G9	92	Input	Host Address (HA0)—These inputs provide the address selection for HI registers.
				These pins are disconnected internally during reset.
GPIOB10			Input/Output	Port B GPIO (10) —These pins are General Purpose I/O (GPIO) pins when not configured for host port usage.
HRWB	G8	93	Input	Host Read/Write (HRWB) —When the HI08 is programmed to interface to a single-data-strobe <u>host</u> bus and the HI function is selected, this signal is the Read/Write input.
				These pins are disconnected internally during reset.
HRD			Input	Host Read Data (HRD) —This signal is the Read Data input when the HI08 is programmed to interface to a double-data-strobe host bus and the HI function is selected.
GPIOB11			Input/Output	Port B GPIO (11) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
HDS	C8	116	Input	Host Data Strobe (HDS) —When the HI08 is programmed to interface to a single-data-strobe host bus and the HI function is selected, this input enables a data transfer on the HI when HCS is asserted.
				These pins are disconnected internally during reset.
HWR			Input	Host Write Enable (HWR)—This signal is the Write Data input when the HI08 is programmed to interface to a double-data-strobe host bus and the HI function is selected.
GPIOB12			Input/Output	Port B GPIO (12) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HCS	D8	117	Input	Host Chip Select (HCS)—This input is the chip select input for the Host Interface.
				These pins are disconnected internally during reset.
GPIOB13			Input/Output	Port B GPIO (13) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
HREQ	B8	118	Open Drain Output	Host Request (HREQ) —When the HI08 is programmed for HRMS=0 functionality (typically used on a single-data-strobe bus), this open drain output is used by the HI to request service from the host processor. The HREQ may be connected to an interrupt request pin of a host processor, a transfer request of a DMA controller, or a control input of external circuitry.
				These pins are disconnected internally during reset.
HTRQ			Open Drain Output	Transmit Host Request (HTRQ) —This signal is the Transmit Host Request output when the HI08 is programmed for HRMS=1 functionality and is typically used on a double-data-strobe bus.
GPIOB14			Input/Output	Port B GPIO (14) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.

		1		
Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
HACK	C7	119	Input	Host Acknowledge (HACK) —When the HI08 is programmed for HRMS=0 functionality (typically used on a single-data-strobe bus), this input has two functions: (1) provide a Host Acknowledge signal for DMA transfers or (2) to control handshaking and provide a Host Interrupt Acknowledge compatible with the MC68000 family processors.
				These pins are disconnected internally during reset.
HRRQ			Open Drain Output	Receive Host Request (HRRQ) —This signal is the Receive Host Request output when the HI08 is programmed for HRMS=1 functionality and is typically used on a double-data-strobe bus.
GPIOB15			Input/Output	Port B GPIO (15) —This pin is a General Purpose I/O (GPIO) pin when not configured for host port usage.
TIO0	B9	114	Input/Output	Timer Input/Outputs (TIO0) —This pin can be independently configured to be either a timer input source or an output flag.
GPIOG0			Input/Output	Port G GPIOG0 —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as an input or output pin.
TIO1	C9	112	Input/Output	Timer Input/Outputs (TIO1) —This pin can be independently configured to be either a timer input source or an output flag.
GPIOG1			Input/Output	Port G GPIO (1) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as an input or output pin.
TIO2	D9	111	Input/Output	Timer Input/Outputs (TIO2) —This pin can be independently configured to be either a timer input source or an output flag.
GPIOG2			Input/Output	Port G GPIO (2) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as an input or output pin.
TIO3	B10	110	Input/Output	Timer Input/Outputs (TIO3) —This pin can be independently configured to be either a timer input source or an output flag.
GPIOG3			Input/Output	Port G GPIO (3) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as an input or output pin.
IRQA	G2	22	Input	External Interrupt Request A and B—The IRQA and IRQB inputs
IRQB	F5	23		are asynchronous external interrupt requests that indicate that an external device is requesting service. A Schmitt trigger input is used for noise immunity. They can be programmed to be level-sensitive or negative-edge-triggered. If level-sensitive triggering is selected, an external pull-up resistor is required for Wired-OR operation.
MODE A	F4	17	Input	Mode Select (MODE A) —During the bootstrap process MODE A selects one of the eight bootstrap modes.
GPIOH0			Input/Output	Port H GPIO (0) —This pin is a General Purpose I/O (GPIO) pin after the bootstrap process has completed.

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description		
MODE B	F3	18	Input	Mode Select (MODE B) —During the bootstrap process MODE A selects one of the eight bootstrap modes.		
GPIOH1			Input/Output	Port H GPIO (1) —This pin is a General Purpose I/O (GPIO) pin after the bootstrap process has completed.		
MODE C	F2	19	Input	Mode Select (MODE C) —During the bootstrap process MODE A selects one of the eight bootstrap modes.		
GPIOH2			Input/Output	Port H GPIO (2) —This pin is a General Purpose I/O (GPIO) pin after the bootstrap process has completed.		
RESET	К4	39	Input	Reset (RESET) —This input is a direct hardware reset on the processor. When RESET is asserted low, the device is initialized ar placed in the Reset state. A Schmitt trigger input is used for noise immunity. When the RESET pin is deasserted, the initial chip operation mode is latched from the MODE A, MODE B, and MODE C pins.		
				To ensure complete hardware reset, RESET and TRST should be asserted together. The only exception occurs in a debugging environment when a hardware reset is required and it is necessar to reset the JTAG/Enhanced OnCE module. In this case, assert RESET, but do not assert TRST.		
RSTO	K3	38	Output	Reset Output (RSTO) —This output is asserted on any reset condition (external reset, low voltage, software, or COP).		
RXD0	L10	73	Input	Serial Receive Data 0 (RXD0)—This input receives byte-oriented serial data and transfers it to the SCI 0 receive shift register.		
GPIOE0			Input/Output	Port E GPIO (0) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
TXD0	L11	74	Output(Z)	Serial Transmit Data 0 (TXD0)—This signal transmits data from the SCI 0 transmit data register.		
GPIOE1			Input/Output	Port E GPIO (1) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
RXD1	B11	107	Input	Serial Receive Data 1 (RXD1)—This input receives byte-oriented serial data and transfers it to the SCI 1 receive shift register.		
GPIOE2			Input/Output	Port E GPIO (2) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		
TXD1	C10	108	Output(Z)	Serial Transmit Data 1 (TXD1)—This signal transmits data from the SCI 1 transmit data register.		
GPIOE3			Input/Output	Port E GPIO (3) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.		

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description	
STD0	B6	131	Output	ESSI Transmit Data (STD0) —This output pin transmits serial data from the ESSI Transmitter Shift Register.	
GPIOC0			Input/Output	Port C GPIO (0) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SRD0	C6	132	Input	ESSI Receive Data (SRD0) —This input pin receives serial data and transfers the data to the ESSI Receive Shift Register.	
GPIOC1			Input/Output	Port C GPIO (1) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SCK0	C5	133	Input/Output	ESSI Serial Clock (SCK0) —This bidirectional pin provides the serial bit rate clock for the transmit section of the ESSI. The clock signal can be continuous or gated and can be used by both the transmitter and receiver in synchronous mode.	
GPIOC2			Input/Output	Port C GPIO (2) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SC00	D6	134	Input/Output	ESSI Serial Control Pin 0 (SC00) —The function of this pin is determined by the selection of either synchronous or asynchronous mode. For asynchronous mode, this pin will be used for the receive clock I/O. For synchronous mode, this pin is used either for transmitter1 output or for serial I/O flag 0.	
GPIOC3			Input/Output	Port C GPIO (3) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SC01	B5	135	Input/Output		
GPIOC4			Input/Output	Port C GPIO (4) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SC02	E6	136	Input/Output	ESSI Serial Control Pin 2 (SC02) —This pin is used for frame sync I/O. SC02 is the frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this pin is the internally generated frame sync signal. When configured as an input, this pin receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).	
GPIOC5			Input or Output	Port C GPIO (5) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description	
STD1	E8	99	Output	ESSI Transmit Data (STD1) —This output pin transmits serial data from the ESSI Transmitter Shift Register.	
GPIOD0			Input/Output	Port D GPIO (0) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SRD1	E11	100	Input	ESSI Receive Data (SRD1) —This input pin receives serial data and transfers the data to the ESSI Receive Shift Register.	
GPIOD1			Input/Output	Port D GPIO (1) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SCK1	E9	101	Input/Output	t ESSI Serial Clock (SCK1) —This bidirectional pin provides the serial bit rate clock for the transmit section of the ESSI. The clock signal can be continuous or gated and can be used by both the transmitter and receiver in synchronous mode.	
GPIOD2			Input/Output	ut Port D GPIO (2) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SC10	D10	102	Input/Output	ESSI Serial Control Pin 0 (SC10) —The function of this pin is determined by the selection of either synchronous or asynchronous mode. For asynchronous mode, this pin will be used for the receive clock I/O. For synchronous mode, this pin is used either for transmitter1 output or for serial I/O flag 0.	
GPIOD3			Input/Output	Port D GPIO (3) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SC11	D11	103	Input/Output		
GPIOD4			Input/Output	Port D GPIO (4) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	
SC12	C11	104	Input/Output	ESSI Serial Control Pin 2 (SC12) —This pin is used for frame sync I/O. SC02 is the frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this pin is the internally generated frame sync signal. When configured as an input, this pin receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).	
GPIOC5			Input/Output	Port D GPIO (5) —This pin is a General Purpose I/O (GPIO) pin when the ESSI is not in use.	

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description	
MISO	B2	1	Input/Output	t SPI Master In/Slave Out (MISO)—This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The driver on this pin can be configured as an open-drain driver by the SPI's Wired-OR mode (WOM) bit when this pin is configured for SPI operation.	
GPIOF0			Input/Output	Port F GPIO (0) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.	
MOSI	C3	2	Input/ Output (Z)	SPI Master Out/Slave In (MOSI) —This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge that the slave device uses to latch the data. The driver on this pin can be configured as an open-drain driver by the SPI's WOM bit when this pin is configured for SPI operation.	
GPIOF1			Input/Output	Port F GPIO (1) —This pin is a General Purpose I/O (GPIO) pin that can be individually programmed as input or output pin.	
SCK	C2	3	Input/Output	SPI Serial Clock (SCK) —This bidirectional pin provides a serial bit rate clock for the SPI. This gated clock signal is an input to a slave device and is generated as an output by a master device. Slave devices ignore the SCK signal unless the SS pin is active low. In both master and slave SPI devices, data is shifted on one edge of the SCK signal and is sampled on the opposite edge where data is stable. The driver on this pin can be configured as an open-drain driver by the SPI's WOM bit when this pin is configured for SPI operation. When using Wired-OR mode, the user must provide an external pull-up device.	
GPIOF2			Input/Output	Port F GPIO (2) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.	
SS	D2	4	Input	SPI Slave Select (SS) —This input pin selects a slave device before a master device can exchange data with the slave device. \overline{SS} must be low before data transactions and must stay low for the duration of the transaction. The \overline{SS} line of the master must be held high.	
GPIOF3			Input/Output	Port F GPIO (3) —This pin is a General Purpose I/O (GPIO) pin that can individually be programmed as input or output pin.	
XTAL	H2	27	Input/Output	Crystal Oscillator Output (XTAL) —This output connects the internal crystal oscillator output to an external crystal. If an external clock source other than a crystal oscillator is used, XTAL must be used as the input.	
EXTAL	G3	28	Input	External Crystal Oscillator Input (EXTAL) —This input should be connected to an external crystal. If an external clock source other than a crystal oscillator is used, EXTAL must be tied off. See Section 4.5.2	
CLKO	L3	37	Output	Clock Output (CLKO) —This pin outputs a buffered clock signal. When enabled, this signal is the system clock divided by four.	

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description			
ТСК	L8	60	Input	It Test Clock Input (TCK)—This input pin provides a gated clock to synchronize the test logic and to shift serial data to the JTAG/OnCE port. The pin is connected internally to a pull-down resistor. It Test Data Input (TDI)—This input pin provides a serial input data stream to the JTAG/OnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor. It(Z) Test Data Output (TDO)—This tri-statable output pin provides a serial output data stream from the JTAG/Enhanced OnCE port. It is driven in the Shift-IR and Shift-DR controller states, and changes on the falling edge of TCK. It Test Mode Select Input (TMS)—This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor. It Test Reset (TRST)—As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted whenever RESET is asserted. The only exception occurs in a debugging environment, since the Enhanced OnCE/JTAG module is under the control of the debugger. In this case it is not necessary to assert TRST when asserting RESET. Outside of a debugging environment RESET should be permanently			
TDI	К7	58	Input	stream to the JTAG/OnCE port. It is sampled on the rising edge of			
TDO	G6	57	Output(Z)	output data stream from the JTAG/Enhanced OnCE port. It is driven in the Shift-IR and Shift-DR controller states, and changes on the falling edge of TCK. Test Mode Select Input (TMS)—This input pin is used to sequence			
TMS	J7	59	Input	the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.			
TRST	L7	56	Input	reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted whenever RESET is asserted. The only exception occurs in a debugging environment, since the Enhanced OnCE/JTAG module is under the control of the debugger. In this case it is not necessary to assert TRST when asserting RESET.			

Table 3-1 56858 Signal and Package Information for the 1	44-pin LQFP and MAPBGA
--	------------------------

Signal Name	BGA Pin No.	LQFP Pin No.	Туре	Description
DE	H6	55	Input/Output	Debug Event (DE) —This is an open-drain, bidirectional, active low signal. As an input, it is a means of entering debug mode of operation from an external command controller. As an output, it is a means of acknowledging that the chip has entered debug mode. This pin is connected internally to a weak pull-up resistor.

Part 4 Specifications

4.1 General Characteristics

The 56858 is fabricated in high-density CMOS with 5-volt tolerant TTL-compatible digital inputs. The term "5-volt tolerant" refers to the capability of an I/O pin, built on a 3.3V compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of $3.3V \pm 10\%$ during normal operation without causing damage). This 5V tolerant capability therefore offers the power savings of 3.3V I/O levels while being able to receive 5V levels without being damaged.

Absolute maximum ratings given in **Table 4-1** are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device.

The 56858 DC/AC electrical specifications are preliminary and are from design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after complete characterization and device qualifications have been completed.

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Characteristic	Symbol	Min	Мах	Unit
Supply voltage, core	V _{DD} ¹	V _{SS} – 0.3	V _{SS} + 2.0	V
Supply voltage, IO Supply voltage, analog	V _{DDIO} ² V _{DDIO} ²	V _{SSIO} – 0.3 V _{SSA} – 0.3	V _{SSIO} + 4.0 V _{DDA} + 4.0	V
Digital input voltages Analog input voltages (XTAL, EXTAL)	V _{IN} V _{INA}	$V_{SSIO} - 0.3$ $V_{SSA} - 0.3$	V _{SSIO} + 5.5 V _{DDA} + 0.3	V
Current drain per pin excluding V_{DD} , GND	I	—	8	mA
Junction temperature	Τ _J	-40	120	°C
Storage temperature range	T _{STG}	-55	150	°C

Table 4-1 Absolute Maximum Ratings

1. V_{DD} must not exceed V_{DDIO}

2. V_{DDIO} and V_{DDA} must not differ by more that 0.5V

Characteristic	Symbol	Min	Max	Unit
Supply voltage for Logic Power	V _{DD}	1.62	1.98	V
Supply voltage for I/O Power	V _{DDIO}	3.0	3.6	V
Supply voltage for Analog Power	V _{DDA}	3.0	3.6	V
Ambient operating temperature	T _A	-40	85	°C
PLL clock frequency ¹	f _{pll}	—	240	MHz
Operating Frequency ²	f _{op}	_	120	MHz
Frequency of peripheral bus	f _{ipb}	_	60	MHz

Table 4-2 Recommended Operating Conditions

Characteristic	Symbol	Min	Max	Unit
Frequency of external clock	f _{clk}	—	240	MHz
Frequency of oscillator	f _{osc}	2	4	MHz
Frequency of clock via XTAL	f _{xtal}	_	240	MHz
Frequency of clock via EXTAL	f _{extal}	2	4	MHz

Table 4-2 Recommended Operating Conditions (Continued)

1. Assumes clock source is direct clock to EXTAL or crystal oscillator running 2-4MHz. PLL must be enabled, locked, and selected. The actual frequency depends on the source clock frequency and programming of the CGM module.

2. Master clock is derived from on of the following four sources:

 $f_{clk} = f_{xtal}$ when the source clock is the direct clock to EXTAL

 $f_{clk} = f_{pll}$ when PLL is selected

 f_{clk} = f_{osc} when the source clock is the crystal oscillator and PLL is not selected

 f_{clk} = f_{extal} when the source clock is the direct clock to EXTAL and PLL is not selected

Characteristic	Symbol	Va	Unit	
Characteristic	Gymbol	144-pin LQFP	144 MAPBGA	
Thermal resistance junction-to-ambient (estimated)	θ_{JA}	42.9	36.1	°C/W
I/O pin power dissipation	P _{I/O}	User Determined		W
Power dissipation	PD	$P_D = (I_DD \times V_DD) + P_I/O$		W
Maximum allowed P _D	P _{DMAX}	(T _J - T _A)	$/R\theta_{JA}^2$	W

Table 4-3 Thermal Characteristics¹

1. See Section 6.1 for more detail.

2. TJ = Junction Temperature

TA = Ambient Temperature

4.2 DC Electrical Characteristics

Table 4-4 DC Electrical Characteristics

Operating Conditions: $V_{SS} = V_{SSIO} = V_{SSA} = 0 V$, $V_{DD} = 1.62 - 1.98V$, $V_{DDIO} = V_{DDA} = 3.0 - 3.6V$, $T_A = -40^{\circ}$ to $+120^{\circ}$ C, $C_L \le 50$ pF, $f_{op} = 120$ MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Input high voltage (XTAL/EXTAL)	V _{IHC}	V _{DDA} – 0.8	V _{DDA}	V _{DDA} + 0.3	V
Input low voltage (XTAL/EXTAL)	V _{ILC}	-0.3	_	0.5	V
Input high voltage	V _{IH}	2.0	_	5.5	V
Input low voltage	V _{IL}	-0.3	—	0.8	V

Characteristic	Symbol	Min	Тур	Max	Unit
Input current low (pullups disabled)	Ι _{ΙL}	-1	—	1	μA
Input current high (pullups disabled)	I _{IH}	-1	—	1	μA
Output tri-state current low	I _{OZL}	-10	—	10	μA
Output tri-state current high	I _{OZH}	-10	—	10	μA
Output High Voltage	V _{OH}	V _{DDIO} – 0.7	—		V
Output Low Voltage	V _{OL}	—	—	0.4	V
Output High Current	I _{OH}	8	—	16	mA
Output Low Current	I _{OL}	8	—	16	mA
Input capacitance	C _{IN}	_	8		pF
Output capacitance	C _{OUT}	_	12		pF
V _{DD} supply current (Core logic, memories, peripherals) Run ¹ Deep Stop ² Light Stop ³	I _{DD} ⁴		70 0.05 5	110 10 14	mA mA mA
V _{DDIO} supply current (I/O circuity) Run ⁵ Deep Stop ²	I _{DDIO}		40 0	50 1.5	mA mA
V _{DDA} supply current (analog circuity) Deep Stop ²	I _{DDA}		60	120	μA
Low Voltage Interrupt ⁶	V _{EI}	—	2.5	2.85	V
Low Voltage Interrupt Recovery Hysteresis	V _{EIH}		50		mV
Power on Reset ⁷	POR	_	1.5	2.0	V

Table 4-4 DC Electrical Characteristics (Continued)

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to + 120^{\circ} C, \ C_L \leq 50 pF, \ f_{op} = 120 MHz$

Note: Run (operating) I_{DD} measured using external square wave clock source ($f_{osc} = 4MHz$) into XTAL. All inputs 0.2V from rail; no DC loads; outputs unloaded. All ports configured as inputs; measured with all modules enabled. PLL set to 240MHz out.

- 1. Running Core, performing 50% NOP and 50% FIR. Clock at 120 MHz.
- 2. Deep Stop Mode Operation frequency = 4 MHz, PLL set to 4 MHz, crystal oscillator and time of day module operating.
- 3. Light Stop Mode Operation frequency = 120 MHz, PLL set to 240 MHz, crystal oscillator and time of day module operating.
- 4. I_{DD} includes current for core logic, internal memories, and all internal peripheral logic circuitry.
- 5. Running core and performing external memory access. Clock at 120 MHz.
- 6. When V_{DD} drops below V_{EI} max value, an interrupt is generated.
- Power-on reset occurs whenever the digital supply drops below 1.8V. While power is ramping up, this signal remains active for as long as the internal 2.5V is below 1.8V no matter how long the ramp up rate is. The internally regulated voltage is typically 100 mV less than V_{DD} during ramp up until 2.5V is reached, at which time it self-regulates.

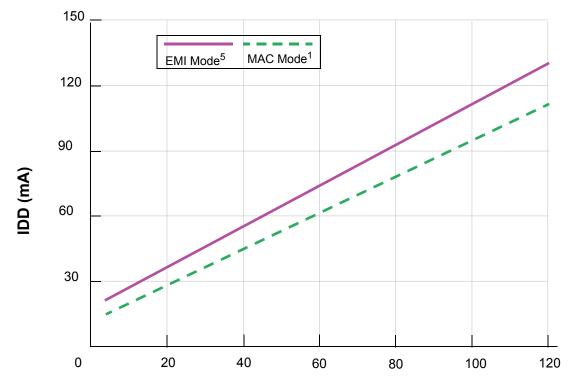
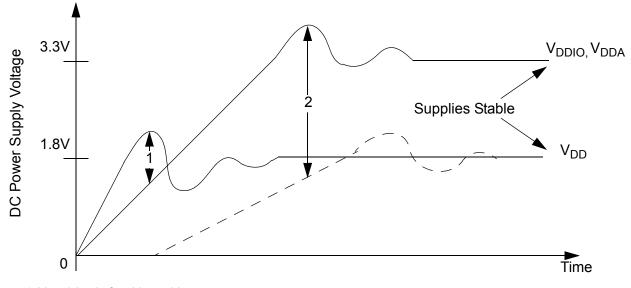
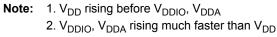




Figure 4-1 Maximum Run I_{DDTOTAL} vs. Frequency (see Notes 1. and 5. in Table 4-4)

4.3 Supply Voltage Sequencing and Separation Cautions

Figure 4-2 shows two situations to avoid in sequencing the V_{DD} and V_{DDIO} , V_{DDA} supplies.

Figure 4-2 Supply Voltage Sequencing and Separation Cautions

56858 Technical Data, Rev. 6

 V_{DD} should not be allowed to rise early (1). This is usually avoided by running the regulator for the V_{DD} supply (1.8V) from the voltage generated by the 3.3V V_{DDIO} supply, see Figure 4-3. This keeps V_{DD} from rising faster than V_{DDIO} .

 V_{DD} should not rise so late that a large voltage difference is allowed between the two supplies (2). Typically this situation is avoided by using external discrete diodes in series between supplies, as shown in **Figure 4-3**. The series diodes forward bias when the difference between V_{DDIO} and V_{DD} reaches approximately 2.1, causing V_{DD} to rise as V_{DDIO} ramps up. When the V_{DD} regulator begins proper operation, the difference between supplies will typically be 0.8V and conduction through the diode chain reduces to essentially leakage current. During supply sequencing, the following general relationship should be adhered to:

 $V_{DDIO} \ge V_{DD} \ge (V_{DDIO} - 2.1V)$

In practice, V_{DDA} is typically connected directly to V_{DDIO} with some filtering.

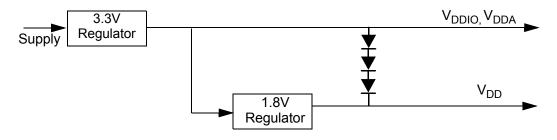
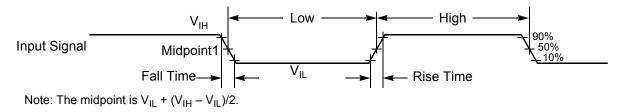



Figure 4-3 Example Circuit to Control Supply Sequencing

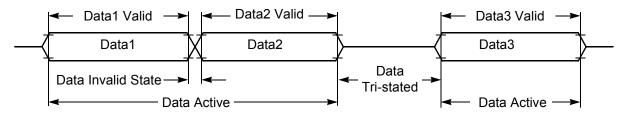
4.4 AC Electrical Characteristics

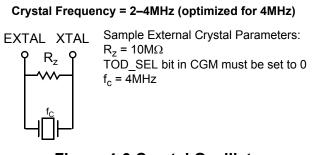
Timing waveforms in Section 4.3 are tested with a V_{IL} maximum of 0.8V and a V_{IH} minimum of 2.0V for all pins except XTAL, which is tested using the input levels in Section 4.2. In Figure 4-4 the levels of V_{IH} and V_{IL} for an input signal are shown.

Figure 4-4 Input Signal Measurement References

Figure 4-5 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached $V_{\rm OL}$ or $V_{\rm OH}$
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}



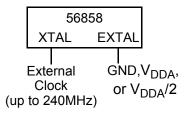

Figure 4-5 Signal States

4.5 External Clock Operation

The 56858 system clock can be derived from a crystal or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal must be connected between the EXTAL and XTAL pins.

4.5.1 Crystal Oscillator

The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in **Table 4-6.** In **Figure 4-6** a typical crystal oscillator circuit is shown. Follow the crystal supplier's recommendations when selecting a crystal, because crystal parameters determine the component values required to provide maximum stability and reliable start-up. The crystal and associated components should be mounted as close as possible to the EXTAL and XTAL pins to minimize output distortion and start-up stabilization time.



4.5.2 High Speed External Clock Source (> 4MHz)

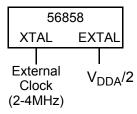

The recommended method of connecting an external clock is given in Figure 4-7. The external clock source is connected to XTAL and the EXTAL pin is held at ground, V_{DDA} , or $V_{DDA}/2$. The TOD_SEL bit in CGM must be set to 0.

Figure 4-7 Connecting a High Speed External Clock Signal using XTAL

4.5.3 Low Speed External Clock Source (2-4MHz)

The recommended method of connecting an external clock is given in Figure 4-8. The external clock source is connected to XTAL and the EXTAL pin is held at $V_{DDA}/2$. The TOD_SEL bit in CGM must be set to 0.

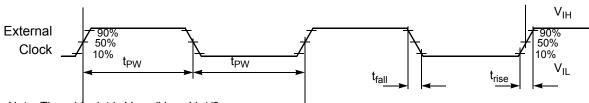
Figure 4-8 Connecting a Low Speed External Clock Signal using XTAL

Table 4-5 External Clock Operation Timing Requirements⁴

Operating Conditions: $V_{SS} = V_{SSIO} = V_{SSA} = 0$ V, $V_{DD} = 1.62 - 1.98$ V, $V_{DDIO} = V_{DDA} = 3.0 - 3.6$ V, $T_A = -40^{\circ}$ to +120°C, $C_L \le 50$ pF, $f_{op} = 120$ MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency of operation (external clock driver) ¹	f _{osc}	0	_	240	MHz
Clock Pulse Width ⁴	t _{PW}	6.25	—	—	ns
External clock input rise time ^{2, 4}	t _{rise}	_	—	TBD	ns
External clock input fall time ^{3, 4}	t _{fall}	—	—	TBD	ns

1. See Figure 4-7 for details on using the recommended connection of an external clock driver.


2. External clock input rise time is measured from 10% to 90%.

3. External clock input fall time is measured from 90% to 10%.

4. Parameters listed are guaranteed by design.

56858 Technical Data, Rev. 6

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 4-9 External Clock Timing

Table 4-6 PLL Timing

Operating Conditions: $V_{SS} = V_{SSIO} = V_{SSA} = 0 V$, $V_{DD} = 1.62 - 1.98V$, $V_{DDIO} = V_{DDA} = 3.0 - 3.6V$, $T_A = -40^{\circ}$ to $+120^{\circ}$ C, $C_L \le 50$ pF, $f_{op} = 120$ MHz

Characteristic	Symbol	Min	Тур	Мах	Unit
External reference crystal frequency for the PLL ¹	f _{osc}	2	4	4	MHz
PLL output frequency	f _{clk}	40		240	MHz
PLL stabilization time ²	t _{plls}	-	1	10	ms

1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 4MHz input crystal.

2. This is the minimum time required after the PLL setup is changed to ensure reliable operation.

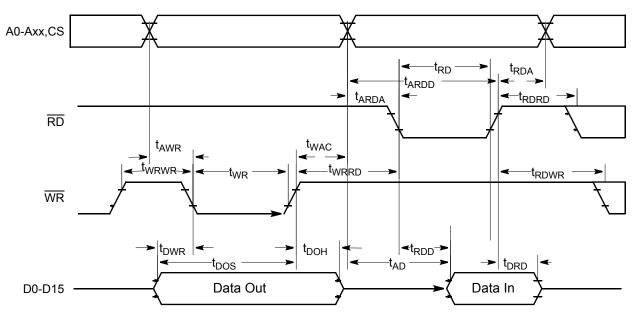
4.6 External Memory Interface Timing

The External Memory Interface is designed to access static memory and peripheral devices. Figure 4-10 shows sample timing and parameters that are detailed in Table 4-7.

The timing of each parameter consists of both a fixed delay portion and a clock related portion; as well as user controlled wait states. The equation:

t = D + P * (M + W)

should be used to determine the actual time of each parameter. The terms in the above equation are defined as:


- t parameter delay time
- D fixed portion of the delay, due to on-chip path delays.
- P the period of the system clock, which determines the execution rate of the part (i.e. when the device is operating at 120 MHz, P = 8.33 ns).

- M Fixed portion of a clock period inherent in the design. This number is adjusted to account for possible clock duty cycle derating.
- W the sum of the applicable wait state controls. See the "Wait State Controls" column of **Table 4-7** for the applicable controls for each parameter. See the EMI chapter of the 83x Peripheral Manual for details of what each wait state field controls.

Some of the parameters contain two sets of numbers. These parameters have two different paths and clock edges that must be considered. Check both sets of numbers and use the smaller result. The appropriate entry may change if the operating frequency of the part changes.

The timing of write cycles is different when WWS = 0 than when WWS > 0. Therefore, some parameters contain two sets of numbers to account for this difference. The "Wait States Configuration" column of Table 4-7 should be used to make the appropriate selection.

Note: During read-modify-write instructions and internal instructions, the address lines do not change state.

Figure 4-10 External Memory Interface Timing

Characteristic	Symbol	Wait States Configuration	D	М	Wait States Controls	Unit
Address Valid to WR Asserted	t _{AWR}	WWS=0	-0.79	0.50	WWSS	ns
	AWR	WWS>0	-1.98	0.69		113
WR Width Asserted to WR	t _{WR}	WWS=0	-0.86	0.19	WWS	ns
Deasserted	-00K	WWS>0	-0.01	0.00		110
Data Out Valid to WR Asserted		WWS=0	-1.52	0.00	_	
	t _{DWR}	WWS=0	- 5.69	0.25	wwss	ns
	DVVIX	WWS>0	-2.10	0.19		
		WWS>0	-4.66	0.50		
Valid Data Out Hold Time after \overline{WR} Deasserted	t _{DOH}		-1.47	0.25	WWSH	ns
Valid Data Out Set Up Time to \overline{WR}	t _{DOS}		-2.36	0.19	wws,wwss	ns
Deasserted	1 005		-4.67	0.50		
Valid Address after WR Deasserted	t _{WAC}		-1.60	0.25	WWSH	
RD Deasserted to Address Invalid	t _{RDA}		- 0.44	0.00	RWSH	ns
Address Valid to RD Deasserted	t _{ARDD}		-2.07	1.00	RWSS,RWS	ns
Valid Input Data Hold after RD Deasserted	t _{DRD}		0.00	N/A ¹	_	ns
RD Assertion Width	t _{RD}		-1.34	1.00	RWS	ns
Address Valid to Input Data Valid	t		-10.27	1.00		200
	t _{AD}		-13.5	1.19	RWSS,RWS	ns
Address Valid to RD Asserted	t _{ARDA}		- 0.94	0.00	RWSS	ns
RD Asserted to Input Data Valid	+		-9.53	1.00		ne
·	t _{RDD}		-12.64	1.19	RWSS,RWS	ns
WR Deasserted to RD Asserted	t _{WRRD}		-0.75	0.25	WWSH,RWSS	ns
RD Deasserted to RD Asserted	t _{RDRD}		-0.16 ²	0.00	RWSS,RWSH	ns
WR Deasserted to WR Asserted	twowo	WWS=0	-0.44	0.75	WWSS, WWSH	ne
	t _{WRWR}	WWS>0	-0.11	1.00		ns
RD Deasserted to WR Asserted	topurp		0.14	0.50	MDAR, BMDAR,	ns
	t _{RDWR}		-0.57	0.69	RWSH, WWSS	115

1. N/A since device captures data before it deasserts RD

2. If RWSS = RWSH = 0, RD does not deassert during back-to-back reads and D=0.00 should be used.

4.7 Reset, Stop, Wait, Mode Select, and Interrupt Timing

Table 4-8 Reset, Stop, Wait, Mode Select, and Interrupt Timing^{1, 2}

Operating Conditions: $V_{SS} = V_{SSIO} = V_{SSA} = 0$ V, $V_{DD} = 1.62 - 1.98$ V, $V_{DDIO} = V_{DDA} = 3.0 - 3.6$ V, $T_A = -40^{\circ}$ to $+120^{\circ}$ C, $C_L \le 50$ pF, $f_{op} = 120$ MHz

			- r		
Characteristic	Symbol	Min	Max	Unit	See Figure
RESET Assertion to Address, Data and Control Signals High Impedance	t _{RAZ}		11	ns	Figure 4-11
Minimum RESET Assertion Duration ³	t _{RA}	30	_	ns	Figure 4-11
RESET Deassertion to First External Address Output	t _{RDA}	_	120T	ns	Figure 4-11
Edge-sensitive Interrupt Request Width	t _{IRW}	1T + 3	_	ns	Figure 4-12
IRQA, IRQB Assertion to External Data Memory Access Out Valid, caused by first instruction execution	t _{IDM}	18T	_	ns	Figure 4-13
in the interrupt service routine	t _{IDM -FAST}	14T	_		
IRQA, IRQB Assertion to General Purpose Output Valid, caused by first instruction execution in the	t _{IG}	18T	_	ns	Figure 4-13
interrupt service routine	t _{IG -FAST}	14T	_		
IRQA Low to First Valid Interrupt Vector Address Out recovery from Wait State ⁴	t _{IRI}	22T	_	ns	Figure 4-14
	t _{IRI -FAST}	18T	_		
Delay from $\overline{\text{IRQA}}$ Assertion (exiting Stop) to External Data Memory ⁵	t _{IW}	1.5T	_	ns	Figure 4-15
Delay from IRQA Assertion (exiting Wait) to External Data Memory Fast ⁶ Normal ⁷	t _{IF}	18T 22ET		ns ns	Figure 4-15
RSTO pulse width ⁸ normal operation internal reset mode	t _{RSTO}	128ET 8ET			Figure 4-16

1. In the formulas, T = clock cycle. For f_{op} = 120MHz operation and f_{ipb} = 60MHz, T = 8.33ns.

2. Parameters listed are guaranteed by design.

3. At reset, the PLL is disabled and bypassed. The part is then put into Run mode and t_{clk} assumes the period of the source clock, t_{xtal} , t_{extal} or t_{osc} .

4. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is not the minimum required so that the IRQA interrupt is accepted.

- 5. The interrupt instruction fetch is visible on the pins only in Mode 3.
- 6. Fast stop mode:

Fast stop recovery applies when external clocking is in use (direct clocking to XTAL) or when fast stop mode recovery is requested (OMR bit 6 is set to 1). In both cases the PLL and the master clock are unaffected by stop mode entry. Recovery takes one less cycle and t_{clk} will continue same value it had before stop mode was entered.

7. Normal stop mode:

As a power saving feature, normal stop mode disables and bypasses the PLL. Stop mode will then shut down the master clock, recovery will take an extra cycle (to restart the clock), and t_{clk} will resume at the input clock source rate.

8. ET = External Clock period, For an external crystal frequency of 8MHz, ET=125 ns.

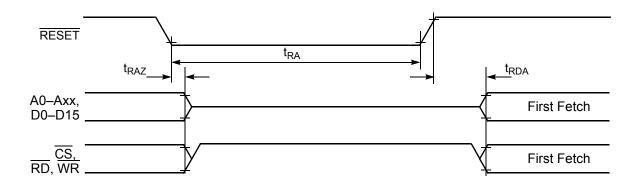


Figure 4-11 Asynchronous Reset Timing

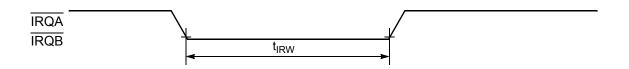
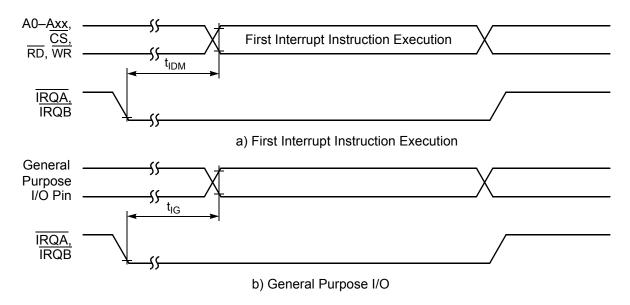
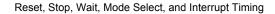




Figure 4-12 External Interrupt Timing (Negative-Edge-Sensitive)

56858 Technical Data, Rev. 6

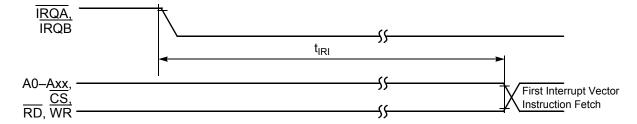
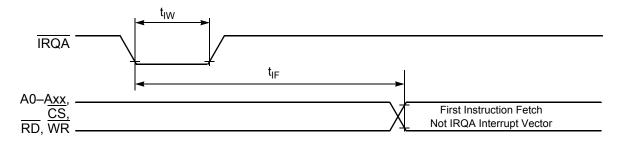



Figure 4-14 Interrupt from Wait State Timing

Figure 4-15 Recovery from Stop State Using Asynchronous Interrupt Timing



Figure 4-16 Reset Output Timing

4.8 Host Interface Port

 $\label{eq:constraint} \begin{array}{c} \textbf{Table 4-9 Host Interface Port Timing^1} \\ \textbf{Operating Conditions: } V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 \\ V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 \\ V, \ T_A = -40^\circ \ \text{to} + 120^\circ \\ C, \ C_L \leq 50 \\ \text{pF}, \ f_{op} = 120 \\ \text{MHz} \\ \textbf{MHz} \\$

Characteristic	Symbol	Min	Мах	Unit	See Figure
Access time	TACKDV		13	ns	4-17
Disable time	TACKDZ	3		ns	4-17
Time to disassert	TACKREQH	3.5	9	ns	4-17 4-20
Lead time	TREQACKL	0	—	ns	4-17 4-20
Access time	TRADV	_	13	ns	4-18 4-19
Disable time	TRADX	5	—	ns	4-18 4-19
Disable time	TRADZ	3	_	ns	4-18 4-19
Setup time	TDACKS	3		ns	4-20
Hold time	TACKDH	1	_	ns	4-20
Setup time	TADSS	3	_	ns	4-21 4-22
Hold time	TDSAH	1	_	ns	4-21 4-22
Pulse width	TWDS	5	_	ns	4-21 4-22
Time to re-assert 1. After second write in 16-bit mode 2. After first write in 16-bit mode or after write in 8-bit mode	TACKREQL	4T + 5 5	5T + 9 13	ns ns	4-19 4-20

1. The formulas: T = clock cycle. f ipb = 60MHz, T = 16.7ns.

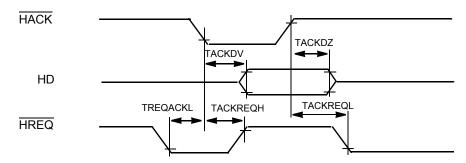


Figure 4-17 Controller-to-Host DMA Read Mode

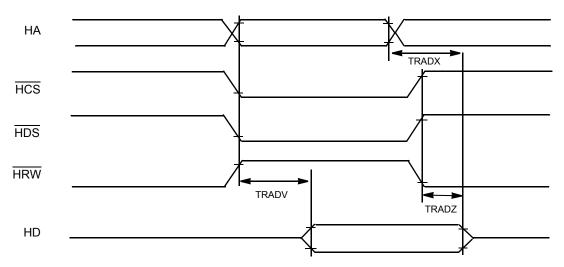


Figure 4-18 Single Strobe Read Mode

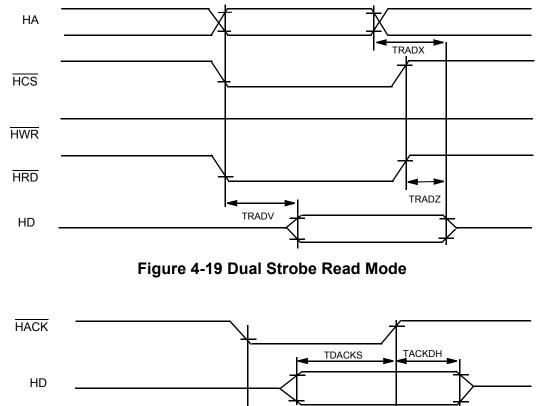
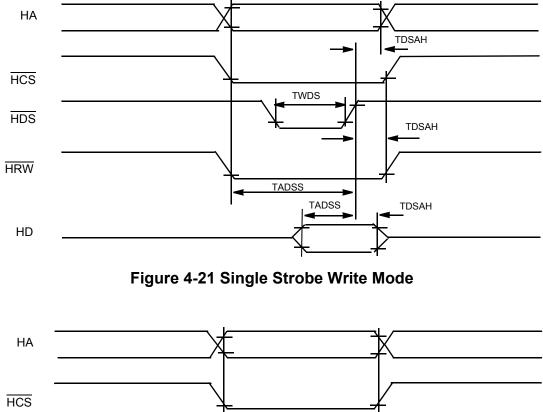



Figure 4-20 Host-to-Controller DMA Write Mode

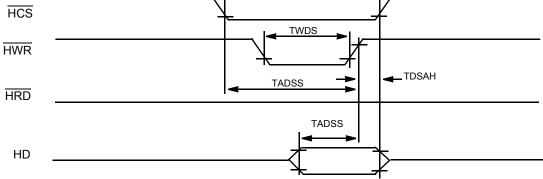
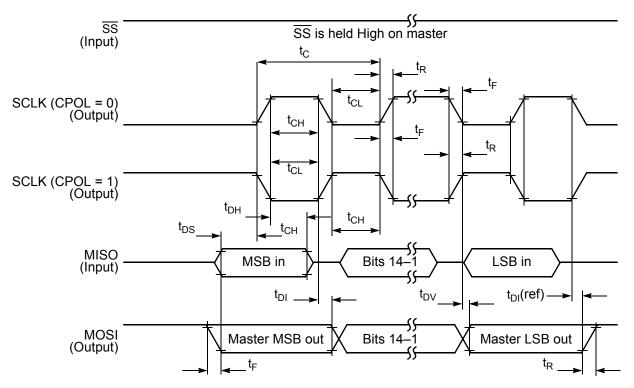


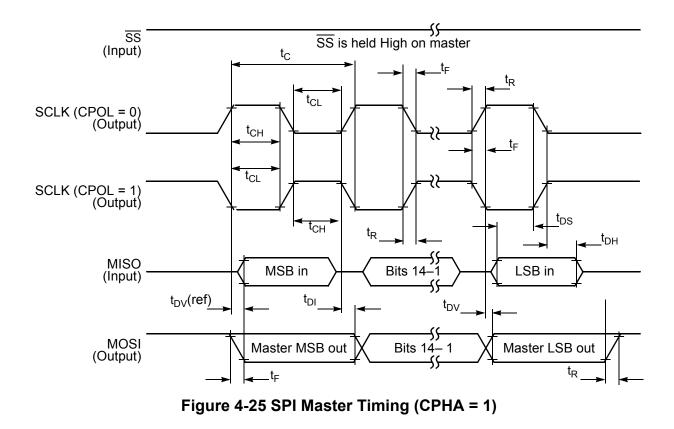
Figure 4-22 Dual Strobe Write Mode

4.9 Serial Peripheral Interface (SPI) Timing

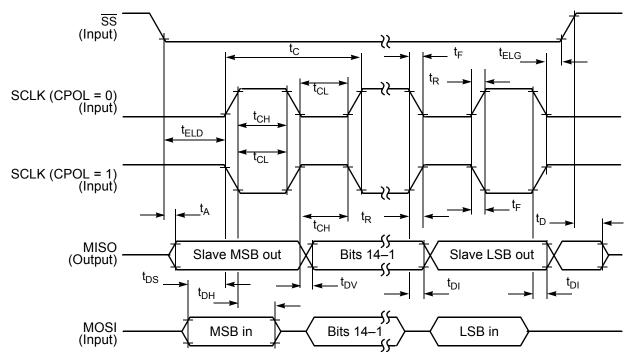
 Figure 4-23 SPI Timing ¹


 Operating Conditions: $V_{SS} = V_{SSIO} = V_{SSA} = 0 V$, $V_{DD} = 1.62-1.98V$, $V_{DDIO} = V_{DDA} = 3.0-3.6V$, $T_A = -40^{\circ}$ to +120°C, $C_L \le 50$ pF, $f_{op} = 120$ MHz

Characteristic	Symbol	Min	Мах	Unit	See Figure
Cycle time Master Slave	t _C	25 25	_	ns ns	4-24, 4-25, 4-26, 4-27
Enable lead time Master Slave	t _{ELD}	 12.5	_	ns ns	4-27
Enable lag time Master Slave	t _{ELG}	 12.5	_	ns ns	4-27
Clock (SCLK) high time Master Slave	t _{CH}	9 12.5	_	ns ns	4-24, 4-25, 4-26, 4-27
Clock (SCLK) low time Master Slave	t _{CL}	12 12.5		ns ns	4-27
Data set-up time required for inputs Master Slave	t _{DS}	10 2		ns ns	4-24, 4-25, 4-26, 4-27
Data hold time required for inputs Master Slave	t _{DH}	0 2	_	ns ns	4-24, 4-25, 4-26, 4-27
Access time (time to data active from high-impedance state) Slave	t _A	5	15	ns ns	4-27
Disable time (hold time to high-impedance state) Slave	t _D	2	9	ns ns	4-27
Data valid for outputs Master Slave (after enable edge)	t _{DV}	_	2 14	ns ns	4-24, 4-25, 4-26, 4-27
Data invalid Master Slave	t _{DI}	0 0	_	ns ns	4-24, 4-25, 4-26, 4-27
Rise time Master Slave	t _R		11.5 10.0	ns ns	4-24, 4-25, 4-26, 4-27
Fall time Master Slave	t _F	_	9.7 9.0	ns ns	4-24, 4-25, 4-26, 4-27


1. Parameters listed are guaranteed by design.

56858 Technical Data, Rev. 6



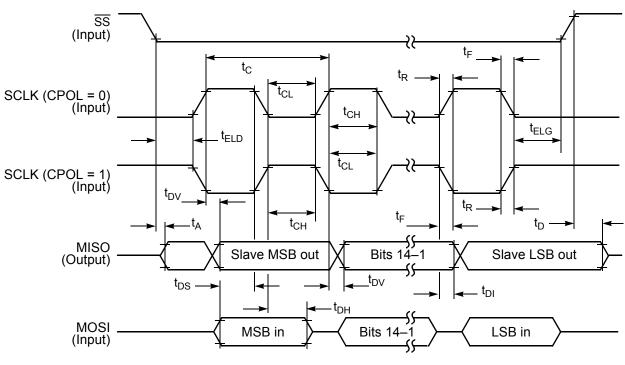
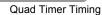



Figure 4-27 SPI Slave Timing (CPHA = 1)

4.10 Quad Timer Timing

Table 4-10 Quad Timer Timing^{1, 2}

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to + 120^{\circ} C, \ C_L \leq 50 pF, \ f_{op} = 120 MHz$

Characteristic	Symbol	Min	Max	Unit
Timer input period	P _{IN}	2T + 3	_	ns
Timer input high/low period	P _{INHL}	1T + 3	—	ns
Timer output period	P _{OUT}	2T - 3	—	ns
Timer output high/low period	P _{OUTHL}	1T - 3	_	ns

1. In the formulas listed, T = clock cycle. For f_{op} = 120MHz operation and fipb = 60MHz, T = 8.33ns.

2. Parameters listed are guaranteed by design.

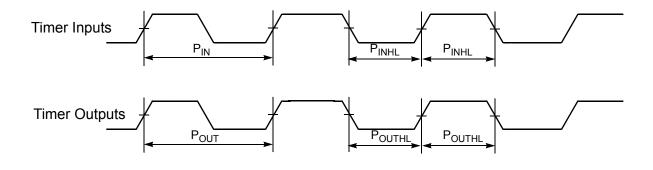


Figure 4-28 Timer Timing

4.11 Enhanced Synchronous Serial Interface (ESSI) Timing

Table 4-11 ESSI Master Mode¹ Switching Characteristics

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 \\ V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 \\ V, \ T_A = -40^\circ \ to \ +120^\circ \\ C, \ C_L \leq 50 \\ pF, \ f_{op} = 120 \\ MHz = 1.00 \\ MH$

Parameter	Symbol	Min	Тур	Max	Units
SCK frequency	fs	_	_	15 ²	MHz
SCK period ³	t _{scкw}	66.7	_	_	ns
SCK high time	t _{scкн}	33.4 ⁴	_	_	ns
SCK low time	t _{SCKL}	33.4 ⁴	_	_	ns
Output clock rise/fall time	_	_	4	_	ns
Delay from SCK high to SC2 (bl) high - Master ⁵	t _{TFSBHM}	-1.0	_	1.0	ns

Table 4-11 ESSI Master Mode¹ Switching Characteristics (Continued)

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to \ +120^{\circ} C, \ C_L \leq 50 pF, \ f_{op} = 120 MHz$

Parameter	Symbol	Min	Тур	Мах	Units
Delay from SCK high to SC2 (wl) high - Master ⁵	t _{TFSWHM}	-1.0	—	1.0	ns
Delay from SC0 high to SC1 (bl) high - Master ⁵	t _{RFSBHM}	-1.0	_	1.0	ns
Delay from SC0 high to SC1 (wl) high - Master ⁵	t _{RFSWHM}	-1.0	_	1.0	ns
Delay from SCK high to SC2 (bl) low - Master ⁵	t _{TFSBLM}	-1.0	—	1.0	ns
Delay from SCK high to SC2 (wl) low - Master ⁵	t _{TFSWLM}	-1.0	—	1.0	ns
Delay from SC0 high to SC1 (bl) low - Master ⁵	t _{RFSBLM}	-1.0	—	1.0	ns
Delay from SC0 high to SC1 (wl) low - Master ⁵	t _{RFSWLM}	-1.0	—	1.0	ns
SCK high to STD enable from high impedance - Master	t _{TXEM}	-0.1	—	2	ns
SCK high to STD valid - Master	t _{TXVM}	-0.1	—	2	ns
SCK high to STD not valid - Master	t _{TXNVM}	-0.1	_	_	ns
SCK high to STD high impedance - Master	t _{TXHIM}	-4	_	0	ns
SRD Setup time before SC0 low - Master	t _{SM}	4	_	_	ns
SRD Hold time after SC0 low - Master	t _{HM}	4	_	_	ns
Synchronous Operation (in addition to stand	ard internal cl	ock para	meters)		
SRD Setup time before SCK low - Master	t _{TSM}	4	_	_	ns
SRD Hold time after SCK low - Master	t _{THM}	4	—	_	ns

1. Master mode is internally generated clocks and frame syncs

- 2. Max clock frequency is IP_clk/4 = 60MHz / 4 = 15MHz for an 120MHz part.
- 3. All the timings for the ESSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR) and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal SCK/SC0 and/or the frame sync SC2/SC1 in the tables and in the figures.
- 4. 50 percent duty cycle
- 5. bl = bit length; wl = word length

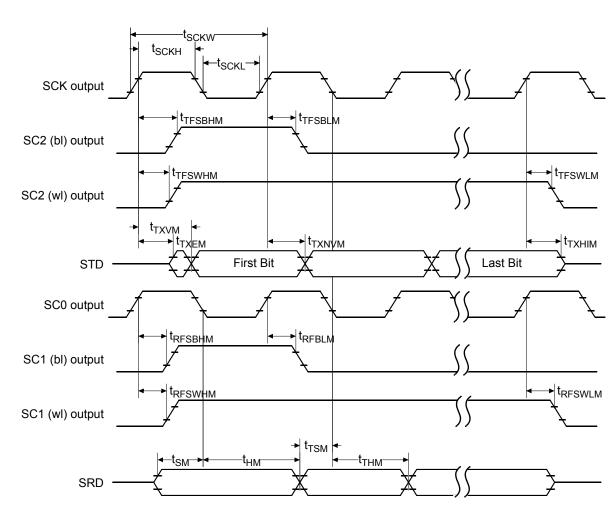


Figure 4-29 Master Mode Timing Diagram

Table 4-12 ESSI Slave Mode¹ Switching Characteristics

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to \ +120^{\circ} C, \ C_L \leq 50 p F, \ f_{op} = 120 M Hz$

Parameter	Symbol	Min	Тур	Max	Units
SCK frequency	fs	_		15 ²	MHz
SCK period ³	t _{scкw}	66.7		_	ns
SCK high time	t _{SCKH}	33.4 ⁴		_	ns
SCK low time	t _{SCKL}	33.4 ⁴		_	ns
Output clock rise/fall time	—	—	4		ns

Table 4-12 ESSI Slave Mode¹ Switching Characteristics (Continued)

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to \ +120^{\circ} C, \ C_L \leq 50 pF, \ f_{op} = 120 MHz$

ParameterSymbolMinTypMaxUnitsDelay from SCK high to SC2 (bl) high - Slave ⁵ t_{TFSBHS} -1 $ 29$ nsDelay from SCK high to SC2 (wl) high - Slave ⁵ t_{TFSWHS} -1 $ 29$ nsDelay from SC0 high to SC1 (bl) high - Slave ⁵ t_{RFSBHS} -1 $ 29$ nsDelay from SC0 high to SC1 (wl) high - Slave ⁵ t_{RFSWHS} -1 $ 29$ nsDelay from SC0 high to SC1 (wl) high - Slave ⁵ t_{RFSWHS} -1 $ 29$ nsDelay from SC0 high to SC1 (wl) low - Slave ⁵ t_{TFSWLS} -29 $ 29$ nsDelay from SCK high to SC2 (bl) low - Slave ⁵ t_{RFSBLS} -29 $ 29$ nsDelay from SC0 high to SC1 (bl) low - Slave ⁵ t_{RFSBLS} -29 $ 29$ nsDelay from SC0 high to SC1 (bl) low - Slave ⁵ t_{RFSBLS} -29 $ 29$ nsSCK high to STD enable from high impedance - Slave t_{TXSS} 4 $ 15$ nsSC2 high to STD valid (first bit) - Slave t_{TXNS} 4 $ 15$ nsSCK high to STD not valid - Slave t_{TXHS} 4 $ 15$ nsSCK high to STD not valid - Slave t_{TXHS} 4 $ 15$ nsSRD Setup time before SCO low - Slave t_{RS} 4 $ -$ SRD Hold time after SCO low - Slave t_{TSS} 4 $ -$ <th></th> <th></th> <th></th> <th></th> <th>. op</th> <th></th>					. op	
Delay from SCK high to SC2 (b) high - SlaveIt results-1-29nsDelay from SCK high to SC2 (wl) high - Slave t_{RFSBHS} -1-29nsDelay from SC0 high to SC1 (bl) high - Slave t_{RFSBHS} -1-29nsDelay from SC0 high to SC1 (wl) high - Slave t_{RFSWHS} -1-29nsDelay from SCK high to SC2 (bl) low - Slave t_{RFSBLS} -29-29nsDelay from SCK high to SC2 (wl) low - Slave t_{TFSBLS} -29-29nsDelay from SC0 high to SC1 (bl) low - Slave t_{RFSBLS} -29-29nsDelay from SC0 high to SC1 (wl) low - Slave t_{RFSBLS} -29-29nsDelay from SC0 high to SC1 (wl) low - Slave t_{RFSBLS} -29-29nsSCK high to STD enable from high impedance - Slave t_{TXES} 15nsSCC high to STD valid - Slave t_{TXVS} 4-15nsSC2 high to STD valid (first bit) - Slave t_{FTXS} 4-15nsSC2 high to STD valid (first bit) - Slave t_{TXNVS} 4-15nsSCK high to STD valid - Slave t_{TXNVS} 4-15nsSCK high to STD valid (first bit) - Slave t_{TXNVS} 4-15nsSCK high to STD not valid - Slave t_{TXHIS} 4-15nsSRD Setup time before SC0 low - Slave t_{RSS} 4- </th <th>Parameter</th> <th>Symbol</th> <th>Min</th> <th>Тур</th> <th>Мах</th> <th>Units</th>	Parameter	Symbol	Min	Тур	Мах	Units
Delay from SC0 high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC2 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high - SlaveItem of the Sec (m) high to SC1 (bl) high mediance - SlaveItem of the Sec (m) high to SEC h	Delay from SCK high to SC2 (bl) high - Slave ⁵	t _{TFSBHS}	-1	_	29	ns
Delay from SCO high to SC1 (u) high - SlaveIt RESULTIt RESULTSIt IItItItDelay from SC0 high to SC1 (u) high - Slave t_{RFSWHS} -1 $-$ 29nsDelay from SCK high to SC2 (b) low - Slave t_{TFSBLS} -29 $-$ 29nsDelay from SCK high to SC2 (u) low - Slave t_{TFSWLS} -29 $-$ 29nsDelay from SC0 high to SC1 (b) low - Slave t_{TFSWLS} -29 $-$ 29nsDelay from SC0 high to SC1 (b) low - Slave t_{RFSWLS} -29 $-$ 29nsSCK high to STD enable from high impedance - Slave t_{TXVS} 4 $-$ 15nsSC2 high to STD valid - Slave t_{TXVS} 4 $-$ 15nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 4 $-$ 15nsSCK high to STD not valid - Slave t_{TXNVS} 4 $-$ 15nsSCK high to STD not valid - Slave t_{TXNVS} 4 $-$ 15nsSCK high to STD not valid - Slave t_{TXNVS} 4 $-$ 15nsSRD Setup time before SC0 low - Slave t_{HS} 4 $ -$ nsSRD Hold time after SC0 low - Slave t_{HS} 4 $ -$ nsSRD Setup time before SCK low - Slave t_{TSS} 4 $ -$ nsSRD Setup time before SCK low - Slave t_{RS} 4 $ -$ nsSRD Setup time before SCK low -	Delay from SCK high to SC2 (wl) high - Slave ⁵	t _{TFSWHS}	-1	_	29	ns
Delay from SCK high to SC1 (W) high = dataHi SWLS -29 $-$ 29nsDelay from SCK high to SC2 (bl) low - Slave ⁵ t_{TFSBLS} -29 $-$ 29nsDelay from SCK high to SC2 (wl) low - Slave ⁵ t_{RFSBLS} -29 $-$ 29nsDelay from SC0 high to SC1 (bl) low - Slave ⁵ t_{RFSBLS} -29 $-$ 29nsDelay from SC0 high to SC1 (wl) low - Slave ⁵ t_{RFSWLS} -29 $-$ 29nsSCK high to STD enable from high impedance - Slave t_{TXES} $ -$ 15nsSCC high to STD valid - Slave t_{TXVS} 4 $-$ 15nsSC2 high to STD enable from high impedance (first bit) - Slave t_{FTXES} 4 $-$ 15nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 4 $-$ 15nsSC2 high to STD not valid - Slave t_{TXNVS} 4 $-$ 15nsSCK high to STD not valid - Slave t_{TXNVS} 4 $-$ 15nsSCK high to STD not valid - Slave t_{TXNVS} 4 $-$ 15nsSRD Setup time before SC0 low - Slave t_{SS} 4 $ -$ nsSRD Hold time after SC0 low - Slave t_{TSS} 4 $ -$ nsSRD Setup time before SCK low - Slave t_{TSS} 4 $ -$ ns	Delay from SC0 high to SC1 (bl) high - Slave ⁵	t _{RFSBHS}	-1	_	29	ns
Delay from SCK high to SC2 (w) four orderIn solarIn solar-29-29nsDelay from SC0 high to SC1 (bl) low - Slave ⁵ t_{RFSBLS} -29-29nsDelay from SC0 high to SC1 (wl) low - Slave ⁵ t_{RFSBLS} -29-29nsDelay from SC0 high to SC1 (wl) low - Slave ⁵ t_{RFSBLS} -29-29nsSCK high to STD enable from high impedance - Slave t_{TXES} 15nsSCK high to STD valid - Slave t_{TXVS} 4-15nsSC2 high to STD enable from high impedance (first bit) - Slave t_{FTXES} 4-15nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 4-15nsSCK high to STD valid (first bit) - Slave t_{TXHVS} 4-15nsSCK high to STD not valid - Slave t_{TXHVS} 4-15nsSCK high to STD high impedance - Slave t_{TXHIS} 4-15nsSRD Setup time before SC0 low - Slave t_{SS} 4-nsnsSRD Hold time after SC0 low - Slave t_{HS} 4-nsnsSRD Setup time before SCK low - Slave t_{TSS} 4-nsSRD Setup time before SCK low - Slave t_{TSS} 4-ns	Delay from SC0 high to SC1 (wl) high - Slave ⁵	t _{RFSWHS}	-1	_	29	ns
Delay from SC0 high to SC1 (bl) low - SlaveIterationIterationIterationDelay from SC0 high to SC1 (bl) low - Slave t_{RFSBLS} -29 29nsDelay from SC0 high to SC1 (wl) low - Slave t_{RFSWLS} -29 29nsSCK high to STD enable from high impedance - Slave t_{TXES} 15nsSCK high to STD valid - Slave t_{TXVS} 415nsSC2 high to STD enable from high impedance (first bit) - Slave t_{FTXES} 415nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 415nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 415nsSCK high to STD not valid - Slave t_{TXNVS} 415nsSRD Setup time before SC0 low - Slave t_{RS} 4nsSRD Hold time after SC0 low - Slave t_{HS} 4nsSRD Setup time before SCK low - Slave t_{TSS} 4nsSRD Setup time before SCK low - Slave t_{RS} 4ns	Delay from SCK high to SC2 (bl) low - Slave ⁵	t _{TFSBLS}	-29	—	29	ns
Delay from Goot high to Got (bi) for endireInt GoodInt GoodInt GoodDelay from SC0 high to SC1 (wl) low - Slave ⁵ t_{RFSWLS} -29 $-$ 29nsSCK high to STD enable from high impedance - Slave t_{TXES} $ -$ 15nsSCK high to STD valid - Slave t_{TXVS} 4 $-$ 15nsSC2 high to STD enable from high impedance (first bit) - Slave t_{FTXES} 4 $-$ 15nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 4 $-$ 15nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 4 $-$ 15nsSCK high to STD not valid - Slave t_{TXNVS} 4 $-$ 15nsSCK high to STD not valid - Slave t_{TXHIS} 4 $-$ 15nsSRD Setup time before SC0 low - Slave t_{SS} 4 $ -$ nsSRD Hold time after SC0 low - Slave t_{HS} 4 $ -$ nsSRD Setup time before SCK low - Slave t_{TSS} 4 $ -$ nsSRD Setup time before SCK low - Slave t_{TSS} 4 $ -$ nsSRD Setup time before SCK low - Slave t_{TSS} 4 $ -$ ns	Delay from SCK high to SC2 (wl) low - Slave ⁵	t _{TFSWLS}	-29	—	29	ns
Seck high to STD enable from high impedance - Slave t_{TXES} $ 15$ nsSCK high to STD valid - Slave t_{TXVS} 4 $ 15$ nsSC2 high to STD enable from high impedance (first bit) - Slave t_{FTXES} 4 $ 15$ nsSC2 high to STD valid (first bit) - Slave t_{FTXES} 4 $ 15$ nsSC2 high to STD valid (first bit) - Slave t_{FTXES} 4 $ 15$ nsSC2 high to STD valid (first bit) - Slave t_{FTXVS} 4 $ 15$ nsSCK high to STD not valid - Slave t_{TXNVS} 4 $ 15$ nsSCK high to STD high impedance - Slave t_{TXHIS} 4 $ 15$ nsSRD Setup time before SC0 low - Slave t_{SS} 4 $ -$ nsSRD Hold time after SC0 low - Slave t_{HS} 4 $ -$ nsSRD Setup time before SCK low - Slave t_{TSS} 4 $ -$ ns	Delay from SC0 high to SC1 (bl) low - Slave ⁵	t _{RFSBLS}	-29	_	29	ns
SCK high to STD valid - Slave trace trace trace trace SCK high to STD valid - Slave trace trace 4 15 ns SC2 high to STD enable from high impedance (first bit) - Slave traces 4 15 ns SC2 high to STD valid (first bit) - Slave traces 4 15 ns SC2 high to STD valid (first bit) - Slave traces 4 15 ns SCK high to STD not valid - Slave traces 4 15 ns SCK high to STD not valid - Slave traces 4 15 ns SCK high to STD high impedance - Slave traces 4 15 ns SRD Setup time before SC0 low - Slave tss 4 ns SRD Hold time after SC0 low - Slave the standard external clock parameters ms SRD Setup time before SCK low - Slave traces 4 ns SRD Setup time before SCK low - Slave traces 4 ns	Delay from SC0 high to SC1 (wl) low - Slave ⁵	t _{RFSWLS}	-29	_	29	ns
SC2 high to STD enable from high impedance (first bit) - Slave t _{FTXES} 4 — 15 ns SC2 high to STD valid (first bit) - Slave t _{FTXVS} 4 — 15 ns SC2 high to STD valid (first bit) - Slave t _{FTXVS} 4 — 15 ns SCK high to STD not valid - Slave t _{TXNVS} 4 — 15 ns SCK high to STD high impedance - Slave t _{TXHIS} 4 — 15 ns SRD Setup time before SC0 low - Slave t _{SS} 4 — — ns SRD Hold time after SC0 low - Slave t _{HS} 4 — — ns SRD Setup time before SCK low - Slave t _{HS} 4 — — ns SRD Setup time before SCK low - Slave t _{TSS} 4 — — ns	SCK high to STD enable from high impedance - Slave	t _{TXES}	_	_	15	ns
SC2 high to STD valid (first bit) - Slave transmitter transmitter <thtransmitter< th=""> <thtransmitter< th=""></thtransmitter<></thtransmitter<>	SCK high to STD valid - Slave	t _{TXVS}	4	_	15	ns
SCK high to STD not valid - Slave t_TXNVS 4 — 15 ns SCK high to STD high impedance - Slave t_TXHIS 4 — 15 ns SRD Setup time before SC0 low - Slave t_SS 4 — — ns SRD Hold time after SC0 low - Slave t_HS 4 — — ns SRD Hold time after SC0 low - Slave t_HS 4 — — ns SRD Setup time before SCK low - Slave t_HS 4 — — ns	SC2 high to STD enable from high impedance (first bit) - Slave	t _{FTXES}	4	_	15	ns
SCK high to STD high impedance - Slave t_TXHIS 4 — 15 ns SRD Setup time before SC0 low - Slave t _{SS} 4 — — ns SRD Hold time after SC0 low - Slave t _{HS} 4 — — ns SRD Hold time after SC0 low - Slave t _{HS} 4 — — ns SRD Hold time after SC0 low - Slave t _{HS} 4 — — ns SRD Setup time before SCK low - Slave t _{TSS} 4 — — ns	SC2 high to STD valid (first bit) - Slave	t _{FTXVS}	4	—	15	ns
SRD Setup time before SC0 low - Slave t _{SS} 4 ns SRD Hold time after SC0 low - Slave t _{HS} 4 ns SRD Hold time after SC0 low - Slave t _{HS} 4 ns Synchronous Operation (in addition to standard external clock parameters) standard standard standard SRD Setup time before SCK low - Slave t _{TSS} 4 ns	SCK high to STD not valid - Slave	t _{TXNVS}	4	_	15	ns
SRD Hold time after SC0 low - Slave t _{HS} 4 ns Synchronous Operation (in addition to standard external clock parameters) standard external clock parameters SRD Setup time before SCK low - Slave t _{TSS} 4 ns	SCK high to STD high impedance - Slave	t _{TXHIS}	4	_	15	ns
Synchronous Operation (in addition to standard external clock parameters) SRD Setup time before SCK low - Slave t _{TSS} 4 — ns	SRD Setup time before SC0 low - Slave	t _{SS}	4	—	_	ns
SRD Setup time before SCK low - Slave t _{TSS} 4 — ns	SRD Hold time after SC0 low - Slave	t _{HS}	4	_	—	ns
	Synchronous Operation (in addition to standard external clock parameters)					
SRD Hold time after SCK low - Slave t _{THS} 4 — ns	SRD Setup time before SCK low - Slave	t _{TSS}	4	_		ns
	SRD Hold time after SCK low - Slave	t _{THS}	4	_		ns

1. Slave mode is externally generated clocks and frame syncs

2. Max clock frequency is IP_clk/4 = 60MHz / 4 = 15MHz for a 120MHz part.

3. All the timings for the ESSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR) and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal SCK/SC0 and/or the frame sync SC2/SC1 in the tables and in the figures.

4. 50 percent duty cycle

5. bl = bit length; wl = word length

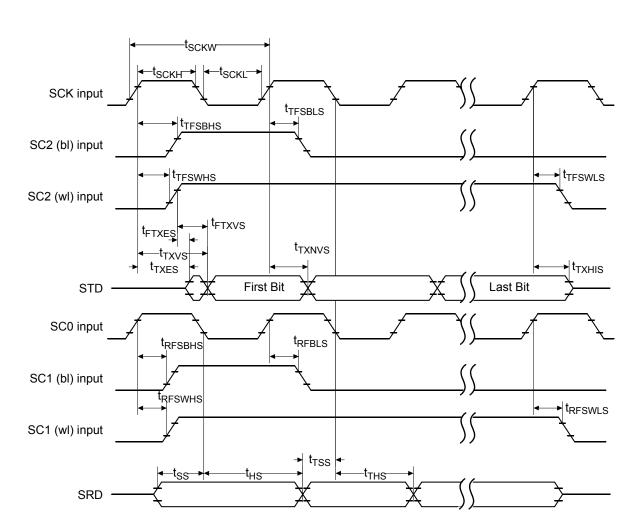


Figure 4-30 Slave Mode Clock Timing

4.12 Serial Communication Interface (SCI) Timing

Table 4-13 SCI Timing⁴

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to + 120^{\circ} C, \ C_L \le 50 pF, \ f_{op} = 120 MHz$

Characteristic	Symbol	Min	Мах	Unit
Baud Rate ¹	BR	_	(f _{MAX})/(32)	Mbps
RXD ² Pulse Width	RXD _{PW}	0.965/BR	1.04/BR	ns
TXD ³ Pulse Width	TXD _{PW}	0.965/BR	1.04/BR	ns

1. f_{MAX} is the frequency of operation of the system clock in MHz.

2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.

3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.

4. Parameters listed are guaranteed by design.

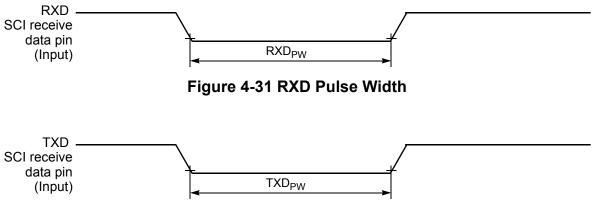


Figure 4-32 TXD Pulse Width

4.13 JTAG Timing

Table 4-14 JTAG Timing^{1, 3}

 $Operating \ Conditions: V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to + 120^{\circ} C, \ C_L \leq 50 p F, \ f_{op} = 120 M Hz$

Characteristic	Symbol	Min	Мах	Unit
TCK frequency of operation ²	f _{OP}	DC	30	MHz
TCK cycle time	t _{CY}	33.3	_	ns
TCK clock pulse width	t _{PW}	16.6	—	ns
TMS, TDI data setup time	t _{DS}	3	—	ns
TMS, TDI data hold time	t _{DH}	3	—	ns
TCK low to TDO data valid	t _{DV}	—	12	ns
TCK low to TDO tri-state	t _{TS}	—	10	ns
TRST assertion time	t _{TRST}	35	—	ns
DE assertion time	t _{DE}	4T	—	ns

1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 120MHz operation, T = 8.33ns.

2. TCK frequency of operation must be less than 1/4 the processor rate.

3. Parameters listed are guaranteed by design.

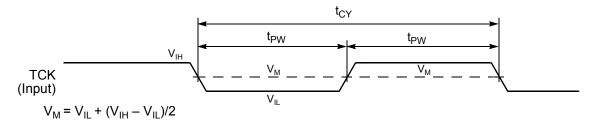
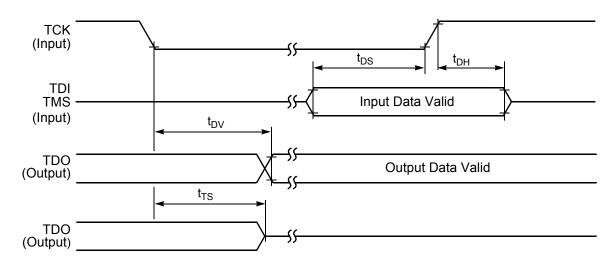



Figure 4-33 Test Clock Input Timing Diagram

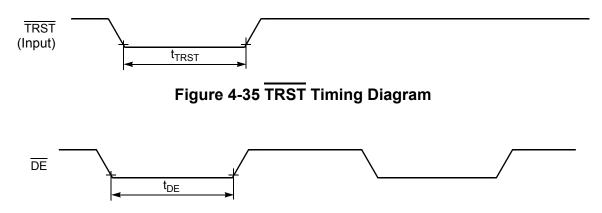
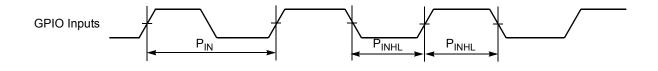


Figure 4-36 Enhanced OnCE—Debug Event

4.14 GPIO Timing


Table 4-15 GPIO Timing^{1, 2}

 $Operating \ Conditions: V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 V, \ T_A = -40^{\circ} \ to + 120^{\circ} C, \ C_L \leq 50 p F, \ f_{op} = 120 M Hz$

Characteristic	Symbol	Min	Max	Unit
GPIO input period	P _{IN}	2T + 3		ns
GPIO input high/low period	P _{INHL}	1T + 3	—	ns
GPIO output period	P _{OUT}	2T - 3	—	ns
GPIO output high/low period	P _{OUTHL}	1T - 3	—	ns

1. In the formulas listed, T = clock cycle. For f_{op} = 120MHz operation and fipb = 60MHz, T = 8.33ns

2. Parameters listed are guaranteed by design.

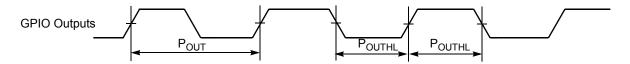


Figure 4-37 GPIO Timing

Part 5 Packaging

5.1 Package and Pin-Out Information 56853

This section contains package and pin-out information for the 144-pin LQFP configuration of the 56858.

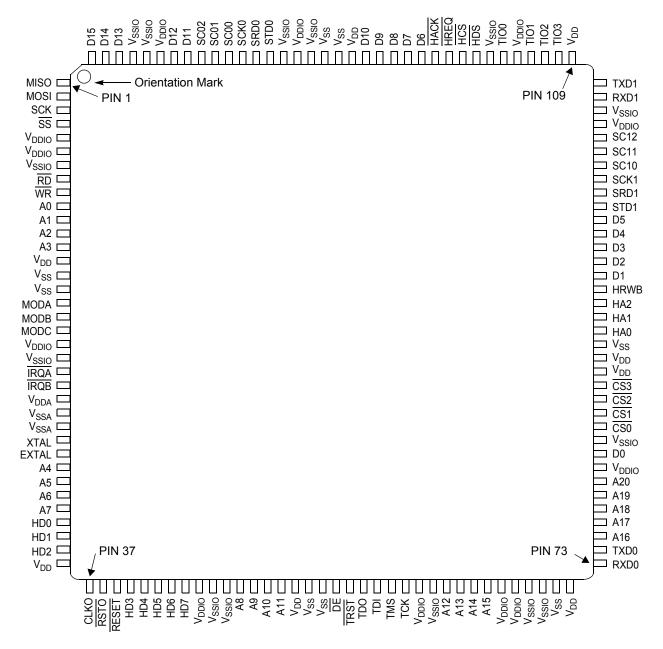


Figure 5-1 Top View, 56858 144-pin LQFP Package

56858 Technical Data, Rev. 6

Pin No.	Signal Name						
1	MISO	37	CLKO	73	RXD0	109	V _{DD}
2	MOSI	38	RSTO	74	TXD0	110	TIO3
3	SCK	39	RESET	75	A16	111	TIO2
4	SS	40	HD3	76	A17	112	TIO1
5	V _{DDIO}	41	HD4	77	A18	113	V _{DDIO}
6	V _{DDIO}	42	HD5	78	A19	114	TIO0
7	V _{SSIO}	43	HD6	79	A20	115	V _{SSIO}
8	RD	44	HD7	80	V _{DDIO}	116	HDS
9	WR	45	V _{DDIO}	81	D0	117	HCS
10	A0	46	V _{SSIO}	82	V _{SSIO}	118	HREQ
11	A1	47	V _{SSIO}	83	CS0	119	HACK
12	A2	48	A8	84	CS1	120	D6
13	A3	49	A9	85	CS2	121	D7
14	V _{DD}	50	A10	86	CS3	122	D8
15	V _{SS}	51	A11	87	V _{DD}	123	D9
16	V _{SS}	52	V _{DD}	88	V _{DD}	124	D10
17	MODA	53	V _{SS}	89	V _{SS}	125	V _{DD}
18	MODB	54	V _{SS}	90	HA0	126	V _{SS}
19	MODC	55	DE	91	HA1	127	V _{SS}
20	V _{DDIO}	56	TRST	92	HA2	128	V _{SSIO}
21	V _{SSIO}	57	TDO	93	HRWB	129	V _{DDIO}
22	IRQA	58	TDI	94	D1	130	V _{SSIO}
23	IRQB	59	TMS	95	D2	131	STD0

Table 5-1 56858 Pin Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
24	V _{DDA}	60	ТСК	96	D3	132	SRD0
25	V _{SSA}	61	V _{DDIO}	97	D4	133	SCK0
26	V _{SSA}	62	V _{SSIO}	98	D5	134	SC00
27	XTAL	63	A12	99	STD1	135	SC01
28	EXTAL	64	A13	100	SRD1	136	SC02
29	A4	65	A14	101	SCK1	137	D11
30	A5	66	A15	102	SC10	138	D12
31	A6	67	V _{DDIO}	103	SC11	139	V _{DDIO}
32	A7	68	V _{DDIO}	104	SC12	140	V _{SSIO}
33	HD0	69	V _{SSIO}	105	V _{DDIO}	141	V _{SSIO}
34	HD1	70	V _{SSIO}	106	V _{SSIO}	142	D13
35	HD2	71	V _{SS}	107	RXD1	143	D14
36	V _{DD}	72	V _{DD}	108	TXD1	144	D15

 Table 5-1 56858 Pin Identification by Pin Number (Continued)

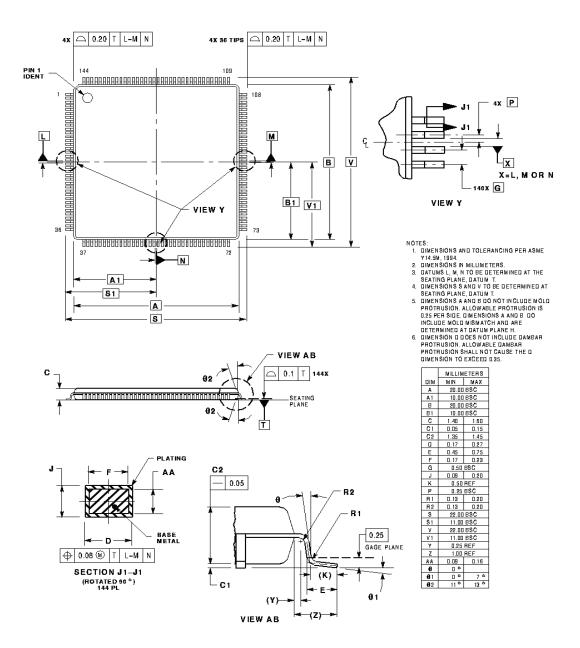


Figure 5-2 144-pin LQFP Mechanical Information

Please see www.freescale.com for the most current case outline.

This section contains package and pin-out information for the 144-pin MAPBGA configuration of the 56858.

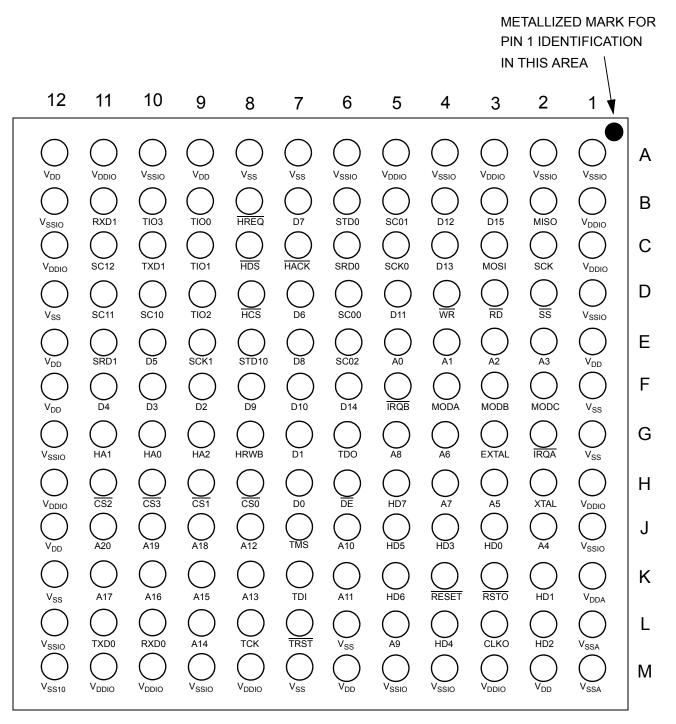
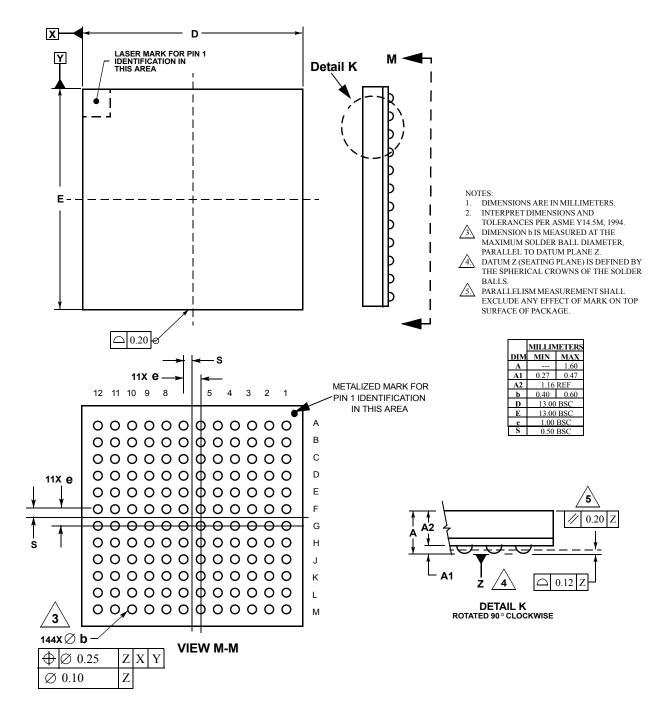


Figure 5-3 Bottom-View, 56858 144-pin MAPBGA Package

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
E5	A0	F7	D10	D8	HCS	A5	V _{DDIO}
E4	A1	D5	D11	J3	HD0	A3	V _{DDIO}
E3	A2	B4	D12	K2	HD1	C1	V _{DDIO}
E2	A3	C4	D13	L2	HD2	M10	V _{DDIO}
J2	A4	F6	D14	J4	HD3	D3	RD
H3	A5	B3	D15	L4	HD4	K4	RESET
G4	A6	H6	DE	J5	HD5	K3	RSTO
H4	A7	G3	EXTAL	K5	HD6	L10	RXD0
G5	A8	M1	V _{SSA}	H5	HD7	B11	RXD1
L5	A9	L1	V _{SSA}	C8	HDS	D6	SC00
J6	A10	G1	V _{SS}	B8	HREQ	B5	SC01
K6	A11	L6	V _{SS}	G8	HRWB	E6	SC02
J8	A12	D12	V _{SS}	G2	ĪRQĀ	D10	SC10
K8	A13	A7	V _{SS}	F5	IRQB	D11	SC11
L9	A14	F1	V _{SS}	B2	MISO	C11	SC12
K9	A15	M7	V _{SS}	F4	MODA	C5	SCK0
K10	A16	K12	V _{SS}	F3	MODB	E9	SCK1
K11	A17	A8	V _{SS}	F2	MODC	C2	SCK
J9	A18	D1	V _{SSIO}	C3	MOSI	C6	SRD0
J10	A19	J1	V _{SSIO}	K1	V _{DDA}	E11	SRD1
J11	A20	M5	V _{SSIO}	E1	V _{DD}	D2	SS
L3	CLKO	M9	V _{SSIO}	M6	V _{DD}	B6	STD0
H8	CS0	L12	V _{SSIO}	F12	V _{DD}	E8	STD1
H9	CS1	G12	V _{SSIO}	A9	V _{DD}	L8	ТСК


Table 5-2 56858 Pin Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
H11	CS2	B12	V _{SSIO}	M2	V _{DD}	K7	TDI
H10	CS3	A10	V _{SSIO}	J12	V _{DD}	G6	TDO
H7	D0	A4	V _{SSIO}	E12	V _{DD}	B9	TIO0
G7	D1	A1	V _{SSIO}	A12	V _{DD}	C9	TIO1
F9	D2	A2	V _{SSIO}	B1	V _{DDIO}	D9	TIO2
F10	D3	M4	V _{SSIO}	H1	V _{DDIO}	B10	TIO3
F11	D4	M12	V _{SSIO}	M3	V _{DDIO}	J7	TMS
E10	D5	A6	V _{SSIO}	M8	V _{DDIO}	L7	TRST
D7	D6	G10	HA0	M11	V _{DDIO}	L11	TXD0
B7	D7	G11	HA1	H12	V _{DDIO}	C10	TXD1
E7	D8	G9	HA2	C12	V _{DDIO}	D4	WR
F8	D9	C7	HACK	A11	V _{DDIO}	H2	XTAL

Table 5-2 56858 Pin Identification by Pin Number (Continued)

Figure 5-4 144-pin MAPBGA Mechanical Information

Please see www.freescale.com for the most current case outline.

56858 Technical Data, Rev. 6

Part 6 Design Considerations

6.1 Thermal Design Considerations

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

Equation 1:
$$T_J = T_A + (P_D \times R_{\theta JA})$$

Where:

 T_A = ambient temperature °C

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance °C/W

 P_D = power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

Equation 2:
$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Where:

$$\begin{split} R_{\theta JA} &= \text{package junction-to-ambient thermal resistance °C/W} \\ R_{\theta JC} &= \text{package junction-to-case thermal resistance °C/W} \\ R_{\theta CA} &= \text{package case-to-ambient thermal resistance °C/W} \end{split}$$

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimations obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate.

A complicating factor is the existence of three common definitions for determining the junction-to-case thermal resistance in plastic packages:

- Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation across the surface.
- Measure the thermal resistance from the junction to where the leads are attached to the case. This definition is approximately equal to a junction to board thermal resistance.
- Use the value obtained by the equation $(T_J T_T)/P_D$ where T_T is the temperature of the package case determined by a thermocouple.

As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual. Hence, the new thermal metric, Thermal Characterization Parameter, or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

6.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct operation:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the controller, and from the board ground to each V_{SS} (GND) pin.
- The minimum bypass requirement is to place six 0.01–0.1 μ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the ten V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA} .
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and V_{SS} (GND) pins are less than 0.5 inch per capacitor lead.
- Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V_{DD} and GND.
- Bypass the V_{DD} and GND layers of the PCB with approximately 100 μ F, preferably with a high-grade capacitor such as a tantalum capacitor.
- Because the device's output signals have fast rise and fall times, PCB trace lengths should be minimal.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and GND circuits.

56858 Technical Data, Rev. 6

- All inputs must be terminated (i.e., not allowed to float) using CMOS levels.
- Take special care to minimize noise levels on the V_{DDA} and V_{SSA} pins.
- When using Wired-OR mode on the SPI or the \overline{IRQx} pins, the user must provide an external pull-up device.
- Designs that utilize the TRST pin for JTAG port or Enhance OnCE module functionality (such as development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means to assert TRST independently of RESET. Designs that do not require debugging functionality, such as consumer products, should tie these pins together.
- The internal <u>POR (Power on Reset</u>) will reset the part at power on with reset asserted or pulled high but requires that <u>TRST</u> be asserted at power on.

Electrical Design Considerations

Part 7 Ordering Information

Table 7-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales office or authorized distributor to determine availability and to order parts.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Order Number
DSP56858	1.8V, 3.3V	Low-Profile Quad Flat Pack (LQFP)	144	120	DSP56858FV120
DSP56858	1.8V, 3.3V	MAP Ball Grid Array (MAPBGA)	144	120	DSP56858VF120
DSP56858	1.8V, 3.3V	Low-Profile Quad Flat Pack (LQFP)	144	120	DSP56858FVE *

Table 7-1 56858 Ordering Information

*This package is RoHS compliant.

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc. 2005. All rights reserved.

DSP56858 Rev. 6 01/2007