Product data sheet

1 General description

The FXLS9xxx0 is a single channel DSI3, PSI5, SPI, and I²C compatible lateral (X-axis or Y-axis) or vertical (Z-axis) inertial sensor.

2 Features

- X-axis, Y-axis, or Z-axis
 - Medium g ranges from ± 15.5 g to ± 150 g nominal full-scale range
 - High g ranges from ± 50 g to ± 500 g nominal full-scale range
- -40 °C to 125 °C operating temperature range
- · DSI3 compatible
 - Discovery mode for physical location identification
 - High side bus switch output driver
 - Command and response mode support for device configuration
 - Periodic data collection mode support for sensor data transfers.
 - Background diagnostic mode support during periodic data collection mode
- PSI5 Version 2.1 compatible
 - Compatible modes:
 - P10P-500/3L
 - P10P-500/4H
 - A10P-228/1L
 - P10CRC-xxx/xx
 - P16CRC-xxx/xx
 - and many others
 - Programmable time slots with 1 µs resolution
 - Selectable baud rate: 125 kBd or 189 kBd
 - 10- and 16-bit data options
 - Selectable error detection: even parity, or 3-bit CRC
 - Optional daisy chain with external low side switch
 - Two-wire programming mode
- 32-bit SPI compatible serial interface
 - 3.3 V or 5 V single supply operation
 - Register read and write commands
 - Sensor data transmission commands
 - 12-bit data, left justified in a 16-bit data field
 - Command echo with 3-bit source identification
 - 2-bit basic status and 2-bit detailed status fields
 - 8-bit CRC

- I²C compatible serial interface (UM10204^[1])
 - Slave mode operation
 - Standard mode, fast mode, and fast mode plus support
- Programmable arming function
- DSP
 - Up to a fourth order low-pass filter with rolloff frequency options from 12.5 Hz to 1500
 Hz
 - Optional single pole high pass filter with fast startup and output rate
- Limiting
 - Optional moving average
 - Optional 16 to 1 output interpolation
- Pb-free 16-Pin QFN 4 mm x 4 mm x 1.45 mm package

3 Applications

3.1 Automotive

- · Airbag, Collision/Crash detection
- Active suspension vibration monitoring

3.2 Industrial

· Machine condition monitoring

4 Ordering information

Table 1. Ordering information

Type number Package			
Name Descript		Description	Version
FXLS9xxxxAESR2		Plastic, thermal enhanced low profile quad flat non-leaded package; 16 terminals; 0.8 mm pitch; 4 mm x 4 mm x 1.45 mm body	SOT1688-1(SC)
FXLS9xxxxAEBR2	HLQFN16	Plastic, thermal enhanced low profile quad flat non-leaded package, dimple wettable flank; 16 terminals; 0.8 mm pitch; 4 mm x 4 mm x 1.45 mm body	SOT1688-1(DD)

4.1 Ordering options

Table 2. Ordering options

Device	Channel 0		Protocol
	Axis	Range	
FXLS90220	X	M	SPI/DSI3
FXLS90230	X	Н	SPI/DSI3
FXLS90120	Z	М	SPI/DSI3
FXLS90130	Z	Н	SPI/DSI3
FXLS90620	Y	М	SPI/DSI3
FXLS90630	Y	Н	SPI/DSI3

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

Table 2. Ordering options...continued

Device	Channel 0	Protocol	
	Axis	Range	
FXLS93220	X	M	PSI5
FXLS93230	X	Н	PSI5
FXLS93120	Z	M	PSI5
FXLS93130	Z	Н	PSI5
FXLS93620	Υ	M	PSI5
FXLS93630	Υ	Н	PSI5

Marking 5

Data Code Legend:

F: ASECL assembly site
WL: 2 alpha character representation of the wafer lot
YW: 2 alpha character representation of the year and work week
Z: Assembly Split

Data Code Legend:

N: ATBK assembly site

WL: 2 alpha character representation of the wafer lot

YW: 2 alpha character representation of the year and work week

Z: Assembly Split

aaa-030573

Figure 1. Part marking

6 Application diagrams

6.1 DSI3 application diagrams

6.1.1 DSI3 discovery mode application diagram

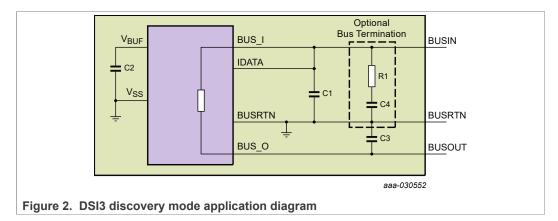


Table 3. DSI3 discovery mode external component recommendations

Ref Des	Туре	Typical value description	Component value selection and range	Comment	
R1	General purpose	330 Ω, 5 %, 200 PPM	The system level communication, EMC, and ESD testing determine the optimal value of this component.	Optional bus termination for high inductance bus wire connections. For optimal EMC performance, this component along with C4 are to be placed as close to the BUS_I and BUSRTN connector pins as possible.	
C1	Ceramic	220 pF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing.	For optimal EMC performance, this component along with R1 are to be placed as close to the BUS_I and BUSRTN connector pins as possible.	
C2	Ceramic	0.47 µF, 10 %, 10 V minimum, X7R	The optimal value of this component should be determined based on the system level micro-cut immunity requirement. To achieve the specified power supply rejection, the minimum value including all tolerances is 0.22 µF. The maximum specified value including all tolerances is 2 µF.	For optimal EMC performance, this component is to be placed as close to the VBUF and BUSRTN pins as possible.	
C3	10 %, 50 V		The optimal value of this component should be determined by the system level communication, EMC, and ESD testing.	For optimal EMC performance, this component is to be placed as close to the BUS_O and BUSRTN connector pins as possible.	
C4	10 %, 50 V		The optimal value of this component should be determined by the system level communication, EMC, and ESD testing.	Optional bus termination for high inductance bus wire connections. For optimal EMC performance, this component along with R1 are to be placed as close to the BUS_I and BUSRTN connector pins as possible.	
Note:	The total bus capacitance must not exceed the values specified in the DSI3 ^[2] standard. The external components are dependent on the bus master and bus impedance and may vary from application to application.				

6.2 PSI5 application diagrams

6.2.1 PSI5 parallel or universal mode application diagram

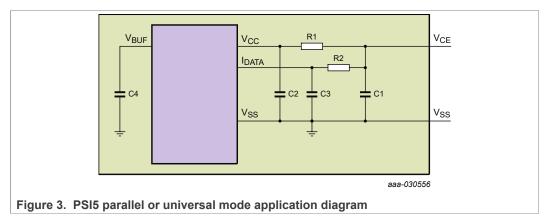


Table 4. PSI5 parallel or universal mode external component recommendations

Ref Des	Туре	Description	Component value selection and range	Purpose
R1	General purpose	82 Ω, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing. For proper device function, the minimum value can be 0 Ω . The maximum value is determined by the minimum bus voltage provided at the module pin and the minimum operating voltage of the device. To meet the minimum PSI5 operating voltage at the module pin, the maximum resistance including all tolerances is 89.0 Ω . [1]	V _{CC} filtering and signal damping
R2	General purpose	27 Ω, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing. For proper device function, the minimum value can be 0 Ω . The maximum value is determined by the minimum bus voltage provided at the module pin. To meet the minimum PSI5 operating voltage at the module pin, the maximum resistance including all tolerances is 66.6 Ω . If the low response current is used, the maximum resistance including all tolerances is 133 Ω .	I _{DATA} filtering and signal damping
C1	Ceramic	2.2 nF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	V _{CC} power supply decoupling and signal damping. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN connector pins as possible.
C2	Ceramic	15 nF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing ^[2]	V _{CC} power supply decoupling. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN pins as possible.
C3	Ceramic	470 pF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	I _{DATA} Filtering and Signal Damping

Table 4. PSI5 parallel or universal mode external component recommendations...continued

Ref Des	Туре	Description	Component value selection and range	Purpose	
C4	Ceramic	0.47 µF, 10 %, 10 V minimum, X7R	The optimal value of this component should be determined based on the system level micro-cut immunity requirement. To achieve the specified power supply rejection, the minimum value including all tolerances is 0.22 μ F. The maximum specified value including all tolerances is 2 μ F.	For optimal EMC performance, this component is to be placed as close to the VBUF and BUSRTN pins as possible.	
Note:	The total b	The total bus capacitance must not exceed the values specified in the PSI5 standard.			

^[1] R1 must be sized to handle both the programming current at the maximum rated temperature for programming and the operating current at the maximum rated temperature for operation.

6.2.2 PSI5 daisy chain mode application diagram

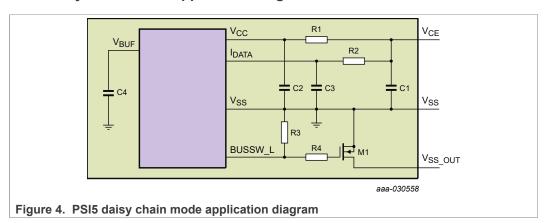


Table 5. PSI5 daisy chain mode external component recommendations

Ref Des	Туре	Description	Component value selection and range	Purpose
R1	General purpose	82 Ω, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing. For proper device function, the minimum value can be 0 Ohms. The maximum value is determined by the minimum bus voltage provided at the module pin and the minimum operating voltage of the device. To meet the minimum PSI5 operating voltage at the module pin, the maximum resistance including all tolerances is 89.0 Ohms.	V _{CC} filtering and signal damping
R2	General purpose	27 Ω, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing. For proper device function, the minimum value can be 0 Ohms. The maximum value is determined by the minimum bus voltage provided at the module pin. To meet the minimum PSI5 operating voltage at the module pin, the maximum resistance including all tolerances is 66.6 Ohms. If the low response current is used, the maximum resistance including all tolerances is 133 Ohms.	I _{DATA} filtering and signal damping

^[2] If the high baud rate is used, NXP recommends reducing the value of C2. The actual value depends on the bus configuration and number of slaves.

Table 5. PSI5 daisy chain mode external component recommendations...continued

Ref Des	Туре	Description	Component value selection and range	Purpose				
R3	General purpose			Gate resistor for external low side daisy chain FET				
C1	Ceramic	2.2 nF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing.	V _{CC} power supply decoupling and signal damping. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN connector pins as possible.				
C2	%, 50 V determined by the system level communication, performance as closes the system level communication, performance as closes the system level communication, performance as closes the system level communication, as closes the system level communication as closes the syste		V _{CC} power supply decoupling. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN pins as possible.					
C3	Ceramic 470 pF, 10 %, 50 V The optimal value of this component should be determined by the system level communication, EMC, and ESD testing.		I _{DATA} Filtering and Signal Damping					
C4	Ceramic	0.47 µF, 10 %, 10 V minimum, X7R	The optimal value of this component should be determined based on the system level micro-cut immunity requirement. To achieve the specified power supply rejection, the minimum value including all tolerances is 0.22 µF. The maximum specified value including all tolerances is 2 µF.	For optimal EMC performance, this component is to be placed as close to the VBUF and BUSRTN pins as possible.				
R4	General purpose	100 kΩ, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing.	Gate pulldown resistor for external low side daisy chain FET				
M1	N-Channel MOSFET	NTR4501NT1GThe optimal value of this component should be or similar determined by the system level communication, EMC, and ESD testing.		Low side daisy chain transistor				
Note:	R1 must be	sized to handle	must not exceed the values specified in the PSI5 state both the programming current at the maximum rate ted temperature for operation.	andard. ed temperature for programming and the operating				
		If the high baud rate is used, NXP recommends reducing the value of C2. The actual value depends on the bus configuration and number of slaves.						

6.3 SPI application diagram

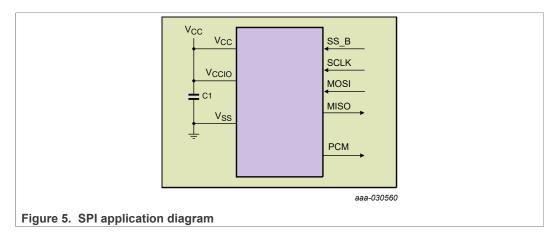


Table 6. SPI external component recommendations

Ref Des	Туре	Typical value description	Comment
C1	Ceramic	0.1 μF, 10 %, 10 V Minimum, X7R	$V_{\rm CC}$ power supply decoupling. For optimal EMC performance, this component is to be placed as close to the $V_{\rm CC}$ and $V_{\rm SS}$ pins as possible.

6.4 I²C application diagram

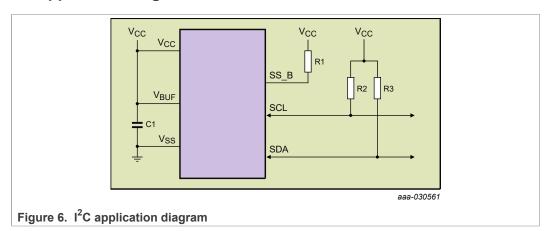
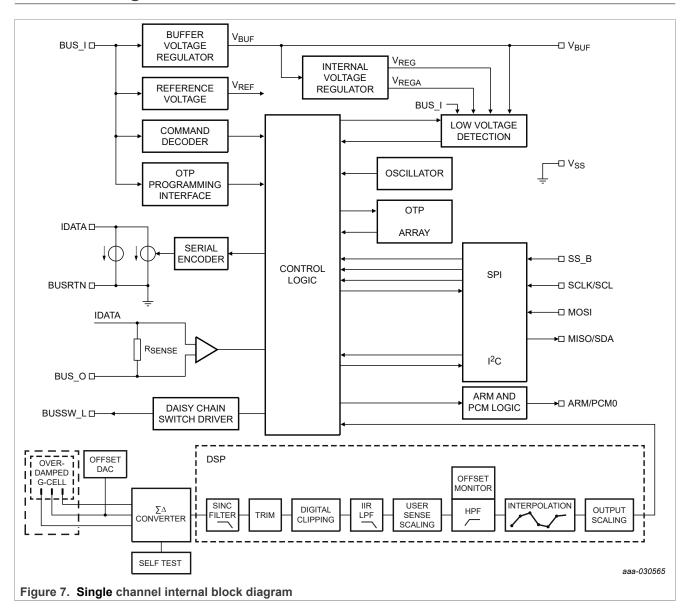



Table 7. I²C external component recommendations

Ref Des	Туре	Description	Purpose
R1	General purpose	1000 Ω, 5 %, 200 PPM	I ² C selection pin pull-up resistor
R2	General purpose	1000 Ω, 5 %, 200 PPM	Serial clock pull-up resistor
R3	General purpose	1000 Ω, 5 %, 200 PPM	Serial data pull-up resistor
C1	Ceramic	0.1 μF, 10 %, 10 V Minimum, X7R	V _{CC} power supply decoupling

7 Block diagram

8 Device orientation diagrams

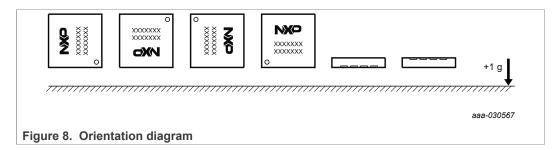



Table 8. Single axis device orientation

	Q2	3/N		NGO 2000000000000000000000000000000000000		
X	Ch0: 0 g	Ch0: +1 g	Ch0: 0 g	Ch0: –1 g	Ch0: 0 g	Ch0: 0 g
Υ	Ch0: -1 g	Ch0: 0 g	Ch0: +1 g	Ch0: 0 g	Ch0: 0 g	Ch0: 0 g
Z	Ch0: 0 g	Ch0: 0 g	Ch0: 0 g	Ch0: 0 g	Ch0: +1 g	Ch0: -1 g

9 Pinning information

9.1 Pinning: SPI or I²C mode

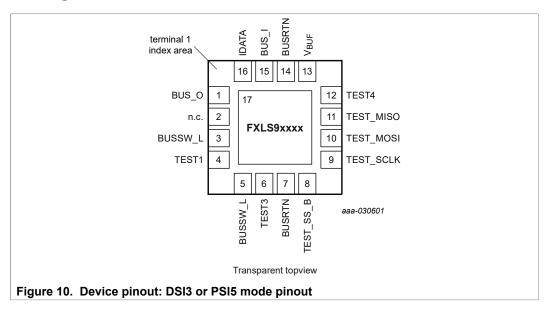
9.2 Pin description: SPI or I²C mode

Table 9. Device pinout: SPI or I²C mode

Pin	Pin Name	Definition	Description
1	V _{CC}	Supply	NXP recommends that this pin be connected to V_{CC} . Optionally, this pin can be unterminated.
2	n.c.	No connect	This pin is not connected internally. NXP recommends that these pins be unterminated. Optionally, this pin can be tied to $V_{\rm SS}$.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.


© NXP B.V. 2021. All rights reserved.

Single channel inertial sensor

Table 9. Device pinout: SPI or I²C mode...continued

Pin	Pin Name	Definition	Description
3, 4, 5, 6	TEST	Test Pin	NXP recommends that these pins be unterminated. Optionally, this pin can be tied to $\ensuremath{\text{V}_{\text{SS}}}.$
7, 14	V _{SS}	Supply Return	This pin is the supply return node.
8	SS_B	Slave select	In SPI mode, this input pin provides the slave select for the SPI port. An internal pull-up device is connected to this pin. In $\rm I^2C$ mode, this pin must be connected to $\rm V_{BUF}$ with an external pull-up resistor as shown in Figure 6.
9	SCLK/SCL	SPI Clock	In SPI mode, this input pin provides the serial clock. An internal pull-down device is connected to this pin. In $\rm I^2C$ mode, this input pin provides the serial clock. This pin must be connected to $\rm V_{BUF}$ with an external pull-up resistor as shown in Figure 6.
10	MOSI	SPI Data In	In SPI mode, this pin functions as the serial data input to the SPI port. An internal pull-down device is connected to this pin. In I 2 C mode, NXP recommends that this pin be unterminated. Optionally, this pin can be connected to V $_{\rm SS}$.
11	MISO/SDA	SPI Data Out	In SPI mode, this pin functions as the serial data output. In I^2C mode, this pin functions as the serial data input/output. This pin must be connected to V_{BUF} with an external pull-up resistor as shown in Figure 6.
12	PCM0 / ARM0	Channel 0 PCM Channel 0 Arm	 This pin has multiplexed functions: When the channel 0 arming output is selected, the pin can be configured as an open-drain, active low output with a pull-up current; or an open-drain, active high output with a pull-down current. When PCM mode is selected, this pin can be configured as a digital output with PCM signal proportional to the channel 0 sensor data. If unused, or in I²C mode, NXP recommends that this pin be unterminated.
13, 15, 16	V _{CC}	Supply	This pin is connected to the supply for the device. An external capacitor must be connected between this pin and $V_{\rm SS}$ as shown in Figure 5 and Figure 6.
17	PAD	Die Attach Pad	This pin is the die attach flag, and must be connected to V_{SS} . See Section 16 for die attach pad connection details.

9.3 Pinning: DSI3 or PSI5 mode

9.4 Pin description: DSI3 or PSI5 mode

Table 10. Device pinout: DSI3 or PSI5 mode pinout

Pin	Pin Name	Definition	Description
1	BUS_O	Supply Out	This pin is connected to the IDATA pin through an internal sense resistor and provides the supply connection to the next slave in a daisy chain configuration. In DSI3 mode, an external capacitor must be connected between this pin and V_{SS} as shown in Figure 2. In PSI5 mode, NXP recommends that this pin be unterminated. Optionally, this pin can be connected to IDATA.
2	NC	No Connect	This pin is not connected internally. NXP recommends that these pins be unterminated. Optionally, this pin can be tied to $V_{\rm SS}$.
4, 6, 12	TEST	Test Pin	NXP recommends that these pins be unterminated. Optionally, this pin can be tied to $V_{\text{SS}}.$
3, 5	BUSSW_L	Low Side Bus Switch Driver	In PSI5 daisy chain mode, these pins are connected to the gate of an N-channel FET which connects BUSRTN to the next slave in the daisy chain. An external pulldown resistor is required on the gate of the N-channel FET as shown in Figure 4. Note: both pins provide the identical function. It is necessary to connect only one pin is to the bus switch gate. If unused, or in DSI3 mode, NXP recommends that this pin be unterminated. Optionally, this pin can be tied to $V_{\rm SS}$.
7, 14	BUSRTN/V _{SS}	Supply Return	This pin is the supply return node.
8	TEST_SS_B	Slave select	NXP recommends that this pin be unterminated. Optionally, this pin can be connected to V_{BUF} .
9	TEST_SCLK	SPI Clock	NXP recommends that this pin be unterminated. Optionally, this pin can be connected to $V_{\rm SS}$.
10	TEST_MOSI	SPI Data In	NXP recommends that this pin be unterminated. Optionally, this pin can be connected to V_{SS} .

Table 10. Device pinout: DSI3 or PSI5 mode pinout...continued

Pin	Pin Name	Definition	Description
11	TEST_MISO	SPI Data Out	This pin must be left unconnected.
13	V _{BUF}	Power Supply	This pin is connected to a buffer regulator for the internal circuitry. The buffer regulator supplies the internal regulators to provide immunity from EMC and supply dropouts. An external capacitor must be connected between this pin and V_{SS} as shown in Figure 2, Figure 3, and Figure 4.
15	BUS_I	Supply and Communication Receiver	This pin is connected to the supply line and supplies power to the device. An external filter must be connected between this pin and BUSRTN as shown in Figure 2, Figure 3, and Figure 4.
16	IDATA	Communication Transmitter	This pin modulates the response current for DSI3 and PSI5 communication. An external filter must be connected between this pin and BUSRTN as shown in Figure 2, Figure 3, and Figure 4.
17	PAD	Die Attach Pad	This pin is the die attach flag, and must be connected to V_{SS} . See Section 16 for die attach pad connection details.

10 Electrical characteristics

<u>Section 10.1</u> through <u>Section 10.20</u> contain tables with "Test notes". The note identifiers cross reference to the identifiers and descriptions found in <u>Table 11</u>.

Table 11. Test notes legend

Identifier	Description
*	Indicates critical characteristic.
1	Parameter tested 100 % at final test. Temperature = -40 °C, 25 °C, and 105 °C, V_{BUS_I} = 7 V, Unless otherwise stated
2	Parameter tested 100 % at final test during safe launch
3	Parameter verified by pass/fail testing at final test
4	Parameter verified by pass/fail testing at final test during safe launch
5	Parameter verified by qualification testing
6	Parameter verified by characterization
7	Functionality verified by modeling, simulation and/or design verification.
8	Circuit integrity assured through IDDQ and scan testing. Timing is determined by internal system clock frequency.
9	Parameter verified by functional evaluation
10	Thermal resistance provided with device mounted to a 2 layer, 1.6 mm FR4 PCB as documented in AN1902 with 1 signal layer and 1 ground layer.
11	Digital low-pass filter characteristics are specified independently and do not include g-cell characteristics. Higher frequency filters will have lower system cut-off frequencies due to the g-cell damping.

10.1 Maximum ratings

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it.

Table 12. Maximum ratings

#	Rating	Symbol	Value	Unit	Test notes
Supply	Voltage (BUS_I/V _{CC} , IDATA, BUS_O)				
3381	Reverse Current externally limited to ≤ 160 mA, t ≤ 100 ms	BUS_I _{REV}	-0.7	V	<u>6</u>
3383	Continuous	BUS_I _{MAX}	+20.0	V	<u>6</u>
3384	V _{BUF}	VBUFMAX	-0.3 to +7.0	V	<u>6</u>
3385	SCLK, SS_B, MOSI, MISO (High Z), PCM0/ARM0	VIOMAX	-0.3 to V _{BUF} +0.3	V	6
3386	BUS_I/V _{CC} , IDATA, and BUS_O Continuous Current	I _{SUPMAX}	200	mA	<u>6</u>
3387	Powered Shock (six sides, 0.5 ms duration)	9 _{pms}	±2000	g	<u>5</u>
3390	Unpowered Shock (six sides, 0.5 ms duration)	g _{shock}	±2000	g	<u>5</u>
3389	Powered Shock (six sides, 0.5 ms duration)	9 _{pms}	±4000	g	9
3388	Unpowered Shock (six sides, 0.5 ms duration)	g _{shock}	±4000	g	9
3391	Drop Shock (to concrete, tile or steel surface, 10 drops, any orientation)	h _{DROP}	1.5	m	<u>5</u>
Electro	ostatic Discharge (per AEC-Q100 ^[4]), External Pins				
3392	BUS_I/ V_{CC} , IDATA, BUS_O, BUSRTN, HBM (100 pF, 1.5 k Ω)	V _{ESD}	±4000	V	<u>5</u>
Electro	ostatic Discharge (per AEC-Q100 ^[4])				
3393	HBM (100 pF, 1.5 kΩ)	V _{ESD}	±2000	V	<u>5</u>
3395	CDM (R = 0 Ω)	V _{ESD}	±750	V	<u>5</u>
Tempe	rature Range			l.	
3396	Storage	T _{stg}	-55 to +150	°C	<u>5</u>
3397	Junction	TJ	-55 to +150	°C	Z
3400	Thermal Resistance	θ_{JA}	47	°C/W	<u>7, 10</u>

10.2 Operating range - DSI / PSI5

Table 13. Operating range - DSI / PSI5

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
3398	DSI3 Supply Voltage (V _{HIGH}), Measured at BUS_I	V _{HIGH}	_		20.0	V	<u>5, 6, 7</u>
10468	DSI3 Supply Voltage (V _{LOW}) Measured at BUS_I	V _{LOW}	4.0	_	_	V	1
10467	PSI5 Supply Voltage (Excluding Sync Pulse)	V _{PSI5}	4.0	_	16.5	V	1
10466	Supply Voltage (Undervoltage)	V _{BUS_I_UV}	V _{BUS_I_UV_F}	_	V _{LOW_min}	V	<u>3, 6</u>
Progran	nming Voltage (I _{PP} ≤ 5 mA, 10 °C ≤ T _A ≤ 40 °C)	'			'		
10469	Applied to BUS_I	V _{PP}	9.0	10.0	11.0	V	<u>3</u> , <u>6</u>
ESD Op	erating Voltage (No Device Reset, C _{BUS_IN} = 220 pF)						
10470	Maximum ±15 kV Air Discharge, 330 pF, 2.0 kΩ	V _{BUS_I_ESD}	V	_	10.0	V	<u>7, 9</u>
			BUS_I_LOW_min				

Single channel inertial sensor

Table 13. Operating range - DSI / PSI5...continued

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Operatin	g Temperature Range		T _L		T _H		
10471	Production Tested Operating Temperature Range	T _A	-40	_	+105	°C	1
10490	Guaranteed Operating Temperature Range	T _A	-40	_	+125	°C	<u>5, 6, 7</u>
10472	Supply Power On Ramp Rate	V _{CC_RAMP_SAT}	0.00001	_	10	V / µs	<u>6</u>

10.3 Operating range - SPI / I²C

Table 14. Operating range - SPI / I²C

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
10501	Supply Voltage (V _{CC} = V _{BUF}) Measured at V _{BUF}	V _{CC_BUF}	_	_	5.25	V	<u>5, 6, 7</u>
10502	Supply Voltage (V _{CC} = V _{BUF}) Measured at V _{BUF}	V _{CC_BUF}	3.135	_	_	V	1
10504	Supply Voltage (Undervoltage)	V BUF_UV_OP	V _{BUF_UV_F}	_	V _{CC_BUF_min}	V	<u>3, 6</u>
Operatir	ng Temperature Range		TL		T _H		
10507	Production Tested Operating Temperature Range	T _A	-40	_	+105	°C	1
10508	Guaranteed Operating Temperature Range	T _A	-40	_	+125	°C	<u>5, 6, 7</u>
10509	Supply Power On Ramp Rate	V _{CC_RAMP_SPI}	0.00001	_	10	V/µs	<u>6</u>

10.4 Electrical characteristics - supply and I/O

Table 15. Electrical characteristics - supply and I/O

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic		Symbol	Min	Тур	Max	Units	Test notes
Quiesce	ent Supply Current							
10512	V _{BUS_I} = 4 V, DSI, PSI5	*	I _{q_4_1}	4.0	_	6.0	mA	1
10511	V _{BUS_I} = 20 V, DSI / PSI5	<u>*</u>	I _{q_20_1}	4.0	_	6.0	mA	1
10510	V _{BUS_I} = 3.135 V, SPI, I ² C	* -	I _{q_31_1}	_	_	6.0	mA	<u>3</u> , <u>6</u>
Respon	se Current					<u>I</u>		
10515	DSI Low	*	I _{R_DSI_1}	I _q + 10.5	I _q + 12.0	I _q + 13.5	mA	1
10519	DSI High	*	I _{R_DSI_2}	I _{R_DSI_1} + 10.5	I _{R_DSI_1} + 12.0	I _{R_DSI_1} + 13.5	mA	1
10518	PSI5 Normal	*	I _{R_PSI5}	I _q + 22.0	I _q + 26.0	I _q + 30.0	mA	1
10517	PSI5 Low	*	I _{R_PSI5_Low}	I _q + 11.0	I _q + 13.0	I _q + 15.0	mA	<u>6</u>
	In-Rush Current (No external Components)		t _{INRUSH}	_	_	40	mA	<u>6</u>
10522	Internally Regulated Voltage (V _{BUF} , V _{BUS_I} = 4 V, V _{BUS_I} = 20 V)		V _{BUF}	2.85	3.00	3.15	V	1
Low Vol	tage Detection Threshold				I.			
10523	BUS_I Falling, COMMTYPE = 2, 3, 4, 5, 6, 7	*	V _{BUS_I_UV_F}	3.85	3.95	4.00	V	<u>3, 6</u>
	BUS_I Falling, COMMTYPE = 0, 1		V _{BUS_I_UV_01}	3.31	3.50	3.67	V	<u>6</u>
10542	V _{BUF} Falling	*	V _{BUF_UV_F}	2.64	2.74	2.84	V	<u>3, 6</u>

Single channel inertial sensor

Table 15. Electrical characteristics - supply and I/O...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
V _{BUF} Ex	ternal Capacitor		J		I		
10525	Capacitance	CVBUF	100	1000	2000	nF	<u>7</u> , <u>9</u>
10543	ESR (including interconnect resistance)	ESR	0	_	200	mΩ	<u>7</u> , <u>9</u>
DSI3 V _L	Detection Threshold (Section 12.1.1)	l	ı		I	ı	
V _{LOW_mi}	$_{n} \le (V_{BUS_{.}I} - V_{SS}) \le V_{HIGH_{.}max}$						
10526	V _{LOW} Detection Threshold	*VDELTA_THRES	V _{HIGH} – 1.25	V _{HIGH} - 1.0	V _{HIGH} — 0.75	V	<u>3, 6</u>
DSI3 Dis	scovery Mode Current Sense (Section 12.2.3)	·					
10527	Sense Resistor	R _{SENSE}	1.0	1.3	3.0	Ω	<u>6</u>
10545	I _{RESP} Detection Threshold (I _{BUS_O_q} ≤ 24 mA)	I _{RESP_Offset}	6	12	18	mA	<u>3, 6</u>
PSI5 Sy	nchronization Pulse				,		
V _{PSI5_mir}	n ≤ (V _{BUS_I} - V _{SS}) ≤ BUS_I _{MAX}						
10528	DC Sync Pulse Detection Threshold	ΔV _{SYNC}	V _{PSI5} +1.0	V _{PSI5} +1.5	V _{PSI5} +2.0	V	<u>3</u> , <u>6</u>
10529	PSI5 Sync Pulse Pulldown Current	I _{SYNC_PD}	_	I _{R_PSI5}	_	mA	<u>Z</u>
10530	Bus Switch Output High Voltage (BUSSW_L, I _{Load} = -100 μA)	V _{BUSSW_L_OH}	V _{BUF} - 0.35	_	V _{BUF}	V	<u>3, 6</u>
10546	Bus Switch Output Low Voltage (BUSSW_L, I _{Load} = 100 μA)	V _{BUSSW_L_OL}	_	_	0.1	V	<u>3, 6</u>
10549	Open-Drain Output Pulldown Current (ARM0, V _{ARM} = 1.5 V)	I _{ODPD}	10	20	100	μA	<u>3, 6</u>
10536	Open-Drain Output Pullup Current (ARM0, V _{ARM} = 1.5 V)	I _{ODPU}	-100	-20	-10	μA	<u>3</u> , <u>6</u>
Output I	High Voltage (MISO/SDA, PCM0/ARM0, PCM1/ARM1		I		I	ı	
21205	V _{BUF} = VCC, I _{Load} = -1 mA	V _{OH}	V _{BUF} – 0.2	_	V _{BUF}	V	<u>3</u> , <u>6</u>
10547	V _{BUF} internally regulated, I _{Load} = –1 mA	V _{OH_SAT}	V _{BUF} – 0.2	_	V _{BUF}	V	<u>3, 6</u>
Output I	Low Voltage (MISO/SDA, PCM0/ARM0, PCM1/ARM1	'			1		
10547	I _{Load} = 2 mA	V _{OL}	_	_	0.4	V	<u>3, 6</u>
10537	Input High Voltage SS_B, SCLK/SCL, MOSI	V _{IH}	2.0	_	_	V	<u>3</u> , <u>7</u>
10560	Input Low Voltage SS_B, SCLK/SCL, MOSI	V _{IL}	_	_	1.0	V	<u>3</u> , <u>7</u>
10561	Input Voltage Hysteresis SS_B, SCLK, MOSI	V _{I_HYST}	_	0.250	_	V	<u>Z</u>
10562	Input Current High (at V _{IH}) (SCLK/SCL, MOSI)	I _{IH}	10	20	70	μA	<u>6</u>
10565	Input Current Low (at V _{IL}) (SS_B)	I _{IL}	-70	-20	-10	μA	<u>6</u>
10563	MISO Output Leakage	I _{MISO Lkg}	-10	_	10	μA	<u>6</u>

10.5 Electrical characteristics - temperature sensor signal chain

Table 16. Electrical characteristics - temperature sensor signal chain

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
10520	Temperature Measurement Range	T _{RANGE}	-50	_	+160	°C	<u>7, 9</u>
10559	Temperature Output at 25 °C	T ₂₅	83	93	103	LSB	<u>6, 7</u>

Table 16. Electrical characteristics - temperature sensor signal chain...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Range o	f Output (8 bit)						
10558	Unsigned Temperature	T _{RANGE}	0	_	255	LSB	<u>7, 8, 9</u>
10557	Temperature Output Sensitivity (8 bit)	T _{SENSE}		1.10		LSB/°C	<u>6, 7</u>
10556	Temperature Output Accuracy (8 bit)	T _{ACC}	-20		+20	°C	<u>6</u> , <u>7</u>
Tempera	ature Output Noise RMS (8 bit)						
10555	Standard Deviation of 50 readings, f _{Samp} = 8 kHz	T _{RMS}	_	_	+2	LSB	<u>6</u> , <u>7</u>

10.6 Electrical characteristics - inertial sensor signal chain: High g

Table 17. Electrical characteristics - inertial sensor signal chain: High g

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic		Symbol	Min	Тур	Max	Units	Test notes
Sensitiv	ity							
Total Se	nsitivity Error Including Linearity (From Trim Target, Output @ 0 Hz)							
10584	High g, lateral, or Z-Axis, verified with a 50 g Range	*	SENS _{ERRH}	- 5	_	+5	%	1
High g S	Standard Trim Range 12-bit Sensitivity Target, lateral, or Z-Axis				1	1		
10612	± 50 g Range (± 2047 LSB, U_SNS_SHIFT = 0x3, U_SNS_MULT = 0xDF)	-	SENS _{50H}	38.9157	40.9639	43.0121	LSB/g	1
Offset							1	
Digital (Offset Before Offset Cancellation 12 bit, lateral, or Z-Axis							
10626	High g (100 g Range, scales with user sensitivity scaling)	-	OFF _{High_1}	-100	_	+100	LSB	1
10583	Digital Offset After Offset Cancellation, lateral, or Z-Axis, All Ranges, 12 bit		OFFCANC _{12Bit}	-1	0	+1	LSB	6, 8, 9
	Digital Offset After Offset Cancellation with rate limiter, lateral, or Z-Axis, All Ranges, 12 bit		OFFCANCRL _{12Bit}	-2	0	+2	LSB	7, 8, 9
Continu	ous Offset Monitor Limit (U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00)							
10619	12 bit: Scales with user gain, High g = ~15 g		OFF _{MON}	-164	_	+164	LSB	<u>7, 8, 9</u>
Sensor								
Range o	of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)							
10635	Signed Sensor Data, 10 bit		RANGE _{Signed_10}	– 511	_	+511	LSB	<u>7, 8, 9</u>
10628	Signed Sensor Data, 12 bit		RANGE _{Signed_12}	-2047	_	+2047	LSB	<u>7, 8, 9</u>
10636	Signed Error Code, 10 bit		ERR _{Signed_10}	_	-512	_	LSB	<u>7, 8, 9</u>
10637	Signed Error Code, 12 bit		ERR _{Signed_12}	_	-2048	_	LSB	Z, 8, 9
Range o	of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)		ı					
10638	Unsigned Sensor Data, 10 bit		RANGE _{Unsigned_10}	1	_	1023	LSB	<u>7, 8, 9</u>
10639	Unsigned Sensor Data, 12 bit		RANGE _{Unsigned_12}	1	_	4095	LSB	<u>7, 8, 9</u>
10640	Unsigned Error Code, 10 bit, 12 bit		ERR _{Unsigned}	_	0	_	LSB	<u>7, 8, 9</u>
Range o	of Output (PSI5, lateral, or Z-Axis, All Ranges)		ı					
10634	Signed Sensor Data, 10 bit		RANGE _{Signed_10}	-480	_	+480	LSB	<u>7, 8, 9</u>
Cross-A	uxis Sensitivity, lateral, or Z-Axis, All Ranges				1	1	1	
10645	Z-axis to X-Axis, Y-axis to X-Axis, Z-axis to Y-Axis, X-axis to Y-Axis		$V_{ZX,}V_{YX}$	- 5	_	+5	%	<u>6</u>
10647	X-axis to Z-Axis, Y-axis to Z-Axis		V_{XZ}, V_{YZ}	-5	_	+5	%	<u>6</u>

Single channel inertial sensor

Table 17. Electrical characteristics - inertial sensor signal chain: High g...continued

 $V_{BUS_I_L_min} \le (V_{BUS_I} - V_{SS}) \le V_{BUS_I_H_max}, \ T_L \le T_A \le T_H, \ \Delta T \le 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic		Symbol	Min	Тур	Max	Units	Test notes
Non-Lin	earity (12 bit, lateral, or Z-Axis, All Ranges)	_			1			
10669	Differential Non-Linearity (No Missing Codes)	*	DNL	_	_	+1.0	LSB	<u>7</u>
10670	End Point Non-Linearity (Least Squares BFSL)	*	INL	_	_	+20.0	LSB	<u>6</u>
Supply	Coupling (C _{BUF} = 1 μf, 12 bit, DSI3, PSI5, lateral, or Z-Axis, All Ranges)			1				
10663	1 kHz \leq f _n \leq 10 kHz, BUS_I = 8.0 V \pm 2.0 V (Represents PSI5 Sync Pulse)	T	PSC _{PSI5}	_	_	1	LSB	<u>6</u>
10682	10 kHz ≤ f _n ≤ 100 kHz, BUS_I = 6.0 V ± 1.0 V (Represents DSI3 BRC)	\top	PSC _{DSI3C}	_	_	1	LSB	<u>6</u>
10681	100 kHz \leq f _n \leq 1 MHz, BUS_I = 6.0 V \pm 0.5 V (Represents DSI3/PSI5 Response)		PSC _{DSI3R}	_	_	1	LSB	6
10680	1 MHz \leq f _n \leq 20 MHz, BUS_I = 6.0 V \pm 0.1 V(Represents Response Harmonics)		PSC _{SATH}	_	_	1	LSB	6
Supply	Coupling (C _{BUF} = 0.1 μf, 12 bit, SPI, lateral, or Z-Axis, All Ranges)							
10675	1 kHz \leq f _n \leq 20 MHz, V _{BUF} = 5.0 V \pm 0.1 V		PSC _{SPI5}	_	_	2	LSB	<u>6</u>
10683	1 kHz \leq f _n \leq 20 MHz, V _{BUF} = 3.3 V \pm 0.1 V		PSC _{SPI3}	_	_	2	LSB	<u>6</u>
Noise: L	Lateral Sensor							
System	Output Noise Peak (12 bit), High g Range = 125 g, Lateral							
10653	Max. Deviation from Mean, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{PeakX_400C}	-4	_	+4	LSB	<u>6</u>
10655	Max. Deviation from Mean, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{PeakX_400T}	-4	_	+4	LSB	1
System	Output Noise Average (12 bit), High g Range = 125 g, Lateral			,	1	-		
10654	Standard Deviation, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{RMSX_400C}	_	_	+1.0	LSB	<u>6</u>
10656	Standard Deviation, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{RMSX_400T}	_	_	+1.0	LSB	1
Noise: 2	-Axis Sensor					'		
System	Output Noise Peak (12 bit), High g Range = 125 g, Z-Axis							
10659	Max. Deviation from Mean, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{PeakZ_400C}	-8	_	+8	LSB	<u>6</u>
10661	Max. Deviation from Mean, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{PeakZ_400T}	-8	_	+8	LSB	1
System	Output Noise Average (12 bit), High g Range = 125 g, Z-Axis				-			
10660	Standard Deviation, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{RMSZ_400C}	_	_	+2.0	LSB	<u>6</u>
10662	Standard Deviation, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	*	n _{RMSZ_400T}	_	_	+2.0	LSB	1

The offset before offset cancellation scales with the user gain. The higher the gain (lower range), the higher the offset. <u>Table 18</u> lists the adjusted offset specification limits for some SPI and DSI3 12-bit user gain settings.

Table 18. High q adjusted offset specification limits

User range (g)	Offset (LSB, 12 bit)
50	± 200
60	± 167
62	± 162
62.5	± 160

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 18. High g adjusted offset specification limits...continued

User range (g)	Offset (LSB, 12 bit)
100	± 100
105	± 96
112.5	± 89
125	± 80
128	± 79
150	± 67
187	± 54
250	± 40
312.5	± 32
375	± 27
500	± 20

<u>Table 19</u> lists the offset before offset cancellation limits for some PSI5 10-bit user gain settings.

Table 19. PSI5, High g offset cancellation limits

User range (g)	Offset (LSB, 10 bit)
Oser range (g)	Oliset (LOD, 10 bit)
60	± 40
120	± 20
240	± 10
480	± 5

The signal noise scales with the user gain and with signal bandwidth. The higher the gain (lower range), the higher the noise, the wider the bandwidth, the higher the noise. Table 20 and Table 21 lists the adjusted specification limits for some user gain settings and low-pass filter selections on the lateral, and Z-axis.

Note: Peak values indicate the maximum deviation from the mean.

Table 20. Lateral, High g, SPI/DSI3 12-bit noise specification

User	LPF 400 Hz, 4p		LPF 400 Hz, 3p		LPF 180 Hz, 2p		LPF 325 Hz, 3p		LPF 1500 Hz, 4p		LPF 800 Hz, 4p	
range (g)	Peak LSB 12 bit	RMS LSB 12 bit										
50	11	3	11	3	8	2	10	3	21	5	15	4
62.5	9	3	9	3	6	2	8	2	17	4	12	3
100	5	2	6	2	4	1	5	2	11	3	8	2
125	4	1	4	1	3	1	4	1	8	2	6	2
187	3	1	3	1	2	1	3	1	6	2	4	1
250	3	1	3	1	2	1	2	1	4	1	3	1
312.5	2	1	2	1	2	1	2	1	4	1	3	1

FXLS9xxx0

Table 20. Lateral, High g, SPI/DSI3 12-bit noise specification...continued

		0 0										
User range (g)	LPF 400 Hz, 4p		LPF 400 Hz, 3p		LPF 180 Hz, 2p		LPF 325 Hz, 3p		LPF 1500 Hz, 4p		LPF 800 Hz, 4p	
	Peak LSB 12 bit	RMS LSB 12 bit										
375	2	1	2	1	1	1	2	1	3	1	2	1
500	2	1	2	1	1	1	1	1	2	1	2	1

Table 21. Z-Axis, High g, SPI/DSI3 12-bit noise specification

User	LPF 400 Hz, 4p		LPF 400	Hz, 3p	LPF 180) Hz, 2p	LPF 32	5 Hz, 3p	LPF 150	0 Hz, 4p	LPF 800	Hz, 4p
range (g)	Peak LSB 12 bit	RMS LSB 12 bit										
50	21	6	22	6	15	4	20	5	41	11	30	8
62.5	17	5	18	5	12	3	16	4	33	9	24	6
100	11	3	11	3	8	2	10	3	21	6	15	4
125	8	2	9	2	6	2	8	2	16	4	12	3
187	6	2	6	2	4	1	6	2	11	3	8	2
250	5	2	5	2	3	1	4	1	9	2	6	2
312.5	4	1	3	1	3	1	3	1	7	2	5	2
375	3	1	3	1	2	1	2	1	6	2	4	1
500	3	1	3	1	2	1	2	1	5	1	3	1

<u>Table 22</u> and <u>Table 23</u> list the adjusted specification limits for some PSI5 10-bit user gain settings and low-pass filter selections on the lateral, and Z-axis.

Table 22. Lateral, High g, PSI5 10-bit noise specification

User	LPF 400	Hz, 4p	LPF 400) Hz, 3p	LPF 800 Hz, 4p			
range (g)	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit		
60, PSI5	3	0.6	3	0.7	4	0.9		
120, PSI5	2	0.5	2	0.6	2	0.8		
240 PSI5	1	0.5	2	0.6	2	0.8		
480 PSI5	1 0.5		2	0.6	2	0.8		

Table 23. Z-Axis, High g, PSI5 10-bit noise specification

User range (g)	LPF 400	Hz, 4p	LPF 400) Hz, 3p	LPF 800 Hz, 4p		
	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	
60, PSI5	5	1.1	5	1.2	6	1.6	
120, PSI5	3	0.6	3	0.7	4	0.9	

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 23. Z-Axis, High g, PSI5 10-bit noise specification...continued

User	LPF 400) Hz, 4p	LPF 400	Hz, 3p	LPF 800 Hz, 4p			
range (g)	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit		
240 PSI5	2	0.5	2	0.6	2	0.8		
480 PSI5	1	0.5	2	0.6	2	8.0		

10.7 Electrical characteristics - inertial sensor signal chain: Medium g

Table 24. Electrical characteristics - inertial sensor signal chain: Medium g

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Sensitiv	rity						
Total Se	ensitivity Error Including Linearity (From Trim Target, Output @ 0 Hz)						
10585	Medium g, lateral, or Z-Axis, Verified with a 15 g Range	* SENS _{ERRM}	- 5	_	+5	%	1
Medium	g Standard Trim Range 12-bit Sensitivity Target, lateral, or Z-Axis				1	1	
10602	± 16 g Range (±2047 LSB, U_SNS_SHIFT = 0x3, U_SNS_MULT = 0xF0)	* SENS _{016M}	121. 5406	127. 9375	134. 3344	LSB/g	1
Offset							
Digital (Offset Before Offset Cancellation 12 bit, lateral, or Z-Axis						
10627	Medium g (25 g Range, scales with user sensitivity scaling)	* OFF _{Med_1}	-100	_	+100	LSB	1
10583	Digital Offset After Offset Cancellation, lateral, or Z-Axis, All Ranges, 12 bit	OFFCANC _{12Bit}	-1	0	+1	LSB	6, 8, 9
	Digital Offset After Offset Cancellation with rate limiter, lateral, or Z-Axis, All Ranges, 12 bit	OFFCANCRL _{12Bit}	-2	0	+2	LSB	7, 8, 9
Continu	ious Offset Monitor Limit (U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00)						
10619	12 bit: Scales with user gain, Medium g = ~5 g	OFF _{MON}	-164	_	+164	LSB	Z, 8, 9
Sensor					1		
Range o	of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)						
10635	Signed Sensor Data, 10 bit	RANGE _{Signed_10}	-511	_	+511	LSB	<u>7, 8, 9</u>
10628	Signed Sensor Data, 12 bit	RANGE _{Signed_12}	-2047	_	+2047	LSB	<u>7, 8, 9</u>
10636	Signed Error Code, 10 bit	ERR _{Signed_10}	_	-512	_	LSB	<u>7, 8, 9</u>
10637	Signed Error Code, 12 bit	ERR _{Signed_12}	_	-2048	_	LSB	<u>7, 8, 9</u>
Range o	of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)				1		
10638	Unsigned Sensor Data, 10 bit	RANGE _{Unsigned_10}	1	_	1023	LSB	<u>7, 8, 9</u>
10639	Unsigned Sensor Data, 12 bit	RANGE _{Unsigned_12}	1	_	4095	LSB	<u>7, 8, 9</u>
10640	Unsigned Error Code, 10 bit, 12 bit	ERR _{Unsigned}	_	0	_	LSB	<u>7, 8, 9</u>
Range o	of Output (PSI5, lateral, or Z-Axis, All Ranges)				1	1	
10634	Signed Sensor Data, 10 bit	RANGE _{Signed_10}	-480	_	+480	LSB	<u>7, 8, 9</u>
Cross-A	Axis Sensitivity, lateral, or Z-Axis, All Ranges						
10645	Z-axis to X-Axis, Y-axis to X-Axis, Z-axis to Y-Axis, X-axis to Y-Axis	$V_{ZX,}V_{YX}$	-5	_	+5	%	<u>6</u>
10647	X-axis to Z-Axis, Y-axis to Z-Axis	V_{XZ} , V_{YZ}	– 5	_	+5	%	6
Non-Lin	learity (12 bit, lateral, or Z-Axis, All Ranges)			1	1	1	1
10669	Differential Non-Linearity (No Missing Codes)	± DNL	_	_	+1.0	LSB	<u>Z</u>
10670	End Point Non-Linearity (Least Squares BFSL)	. INL	_	_	+20.0	LSB	<u>6</u>

Single channel inertial sensor

Table 24. Electrical characteristics - inertial sensor signal chain: Medium g...continued

 $V_{BUS_I_L_min} \le (V_{BUS_I} - V_{SS}) \le V_{BUS_I_H_max}, \ T_L \le T_A \le T_H, \ \Delta T \le 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Supply	Coupling (C _{BUF} = 1 μf, 12 bit, DSI3, PSI5, lateral, or Z-Axis, All Ranges)						
10663	1 kHz ≤ f _n ≤ 10 kHz, BUS_I = 8.0 V ± 2.0 V (Represents PSI5 Sync Pulse)	PSC _{PSI5}	_	_	1	LSB	<u>6</u>
10682	10 kHz ≤ f _n ≤ 100 kHz, BUS_I = 6.0 V ± 1.0 V (Represents DSI3 BRC)	PSC _{DSI3C}	_	_	1	LSB	<u>6</u>
10681	100 kHz \leq f _n \leq 1 MHz, BUS_I = 6.0 V \pm 0.5 V (Represents DSI3/PSI5 Response)	PSC _{DSI3R}	_	_	1	LSB	<u>6</u>
10680	1 MHz \leq f _n \leq 20 MHz, BUS_I = 6.0 V \pm 0.1 V(Represents Response Harmonics)	PSC _{SATH}	_	_	1	LSB	<u>6</u>
Supply	Coupling (C _{BUF} = 0.1 μf, 12 bit, SPI, lateral, or Z-Axis, All Ranges)						
10675	1 kHz \leq f _n \leq 20 MHz, V _{BUF} = 5.0 V \pm 0.1 V	PSC _{SPI5}	_	_	2	LSB	<u>6</u>
10683	1 kHz \leq f _n \leq 20 MHz, V _{BUF} = 3.3 V \pm 0.1 V	PSC _{SPI3}	_	_	2	LSB	<u>6</u>
Noise: L	ateral Sensor	1	1	1			
System	Output Noise Peak (12 bit), Medium g Range = 50 g, Lateral						
10653	Max. Deviation from Mean, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	n _{PeakX_400C}	-4	_	+4	LSB	<u>6</u>
10655	Max. Deviation from Mean, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 ± Hz, 4-Pole	n _{PeakX_400T}	-4	_	+4	LSB	1
System	Output Noise Average (12 bit), Medium g Range = 50 g, Lateral						
10654	Standard Deviation, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	n _{RMSX_400C}	_	_	+1.0	LSB	<u>6</u>
10656	Standard Deviation, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-	n _{RMSX_400T}	_	_	+1.0	LSB	1
Noise: Z	-Axis Sensor	1			1		
System	Output Noise Peak (12 bit), Medium g Range = 50 g, Z-Axis						
10659	Max. Deviation from Mean, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	n _{PeakZ_400C}	-8	_	+8	LSB	<u>6</u>
10661	Max. Deviation from Mean, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 ± Hz, 4-Pole	n _{PeakZ_400T}	-8	_	+8	LSB	1
System	Output Noise Average (12 bit), Medium g Range = 50 g, Z-Axis	1	1				
10660	Standard Deviation, Min. 2000 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	n _{RMSZ_400C}	_	_	+2.0	LSB	6
10662	Standard Deviation, Min. 50 values, Min. f _{Samp} = 2 kHz, LPF = 400 Hz, 4-Pole	n _{RMSZ_400T}	-	_	+2.0	LSB	1

The offset before offset cancellation scales with the user gain. The higher the gain (lower range), the higher the offset. <u>Table 25</u> lists the adjusted offset specification limits for some SPI and DSI3 12-bit user gain settings.

Table 25. Medium g, SPI/DSI3 12-bit offset specification

User range (g)	Offset (LSB, 12 bit)
15.5	± 162
16	± 157
20	± 126
25	± 100
35	± 72
50	± 50
60	± 42

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Table 25. Medium g, SPI/DSI3 12-bit offset specification...continued

User range (g)	Offset (LSB, 12 bit)
62	± 41
62.5	± 41
75	± 34
85.3	± 30
100	± 25
105	± 24
112.5	± 23
125	± 21
128	± 20
150	± 17

<u>Table 26</u> lists the offset before offset cancellation limits for some PSI5 10-bit user gain settings.

Table 26. Medium g, PSI5 10-bit offset specification

User range (g)	Offset (LSB, 10 bit)
15	± 40
20	± 30
30	± 20
60	± 10
120	± 5

The signal noise scales with the user gain and with signal bandwidth. The higher the gain (lower range), the higher the noise, the wider the bandwidth, the higher the noise. Table 27 lists the adjusted specification limits for some user gain settings and low-pass filter selections.

Note: Peak values indicate the maximum deviation from the mean.

Table 27. Lateral, Medium g, SPI/DSI3 12-bit noise specification

User range	LPF 400 Hz, 4p		LPF 400 Hz, 3p		LPF 180 Hz, 2p		LPF 325 Hz, 3p		LPF 1500 Hz, 4p		LPF 800 Hz, 4p	
(g)	Peak LSB 12 bit	RMS LSB 12 bit										
15.5	14	4	14	4	10	3	13	4	26	7	20	5
25	9	3	9	3	6	2	8	2	17	4	12	3
50	4	1	5	1	3	1	4	1	8	2	6	2
62.5	4	1	4	1	3	1	4	1	7	2	5	2
100	3	1	3	1	2	1	2	1	4	1	3	1
125	2	1	2	1	2	1	2	1	4	1	3	1
150	2	1	2	1	1	1	2	1	3	1	2	1

Single channel inertial sensor

Table 28. Z-axis, Medium g, SPI/DSI3 12-bit noise specification

User range	LPF 400 Hz, 4p		LPF 400 Hz, 3p		LPF 180 Hz, 2p		LPF 325 Hz, 3p		LPF 1500 Hz, 4p		LPF 800 Hz, 4p	
(g)	Peak LSB 12 bit	RMS LSB 12 bit										
15.5	27	7	28	7	20	5	25	7	53	14	39	10
25	17	5	18	5	12	3	16	4	33	9	24	6
50	8	2	9	2	6	2	8	2	16	4	12	3
62.5	7	2	7	2	5	2	7	2	13	4	10	3
100	5	1	5	2	3	1	4	1	9	2	6	2
125	4	1	4	1	3	1	4	1	7	2	5	2
150	3	1	3	1	2	1	3	1	6	2	4	1

<u>Table 29</u> and <u>Table 30</u> list the adjusted specification limits for some PSI5 10-bit user gain settings and low-pass filter selections.

Table 29. Lateral, Medium g, PSI5 10-bit noise specifications

Hoor rongo	LPF 400) Hz, 4p	LPF 400) Hz, 3p	LPF 800 Hz, 4p		
User range (g)	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	
30, PSI5	2	0.5	3	0.6	3	0.8	
60, PSI5	1	0.5	2	0.6	2	0.8	
120, PSI5	1	0.5	2	0.6	2	0.8	

Table 30. Z-axis, Medium g, PSI5 10-bit noise specification

User range	LPF 400) Hz, 4p	LPF 400) Hz, 3p	LPF 800 Hz, 4p		
(g)	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	Peak LSB 10 bit	RMS LSB 10 bit	
30, PSI5	4	0.8	4	0.9	5	1.2	
60, PSI5	2	0.5	3	0.6	3	0.8	
120, PSI5	1	0.5	2	0.6	2	0.8	

10.8 Electrical characteristics - inertial sensor self-test

Table 31. Electrical characteristics - inertial sensor self-test

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic		Symbol	Min	Тур	Max	Units	Test notes
Med g L	ateral Self-test, 62 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00			ΔST _{MIN}	ΔST _{NOM}	ΔST _{MAX}		
	Low self-test, 14.80 g, 10-bit Signed Delta from Offset		ST _{ML_62X_10}	54	121	188	LSB	<u>Z</u>
	High self-test, 44.50 g, 10-bit Signed Delta from Offset		ST _{MH_62X_10}	220	367	511	LSB	<u>7</u>
	Low self-test, 14.80 g, 12-bit Signed Delta from Offset		ST _{ML_62X_12}	218	485	752	LSB	<u>Z</u>
	High self-test, 44.50 g, 12-bit Signed Delta from Offset		ST _{MH_62X_12}	881	1470	2047	LSB	<u>7</u>
	Low self-test, 14.80 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset		ST _{ML_62X_16}	3456	7744	12032	LSB	7
	High self-test, 44.50 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset		ST _{MH_62X_16}	14080	23488	32767	LSB	7
10687	Low self-test, 14.80 g, 16-bit Signed SNSDATAx Register Delta from Offset	*	ST _{ML_62X_13}	436	970	1504	LSB	1
10688	High self-test, 44.50 g, 16-bit Signed SNSDATAx Register Delta from Offset	*	ST _{MH_62X_13}	1763	2939	4115	LSB	1

Single channel inertial sensor

Table 31. Electrical characteristics - inertial sensor self-test...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_L_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Med g Z	-Axis Self-test, 62 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00		ΔST _{MIN}	ΔST _{NOM}	ΔST _{MAX}		
	Low self-test, 8.66 g, 10-bit Signed Delta from Offset	ST _{ML_62Z_10}	34	78	121	LSB	<u>Z</u>
	High self-test, 21.65 g, 10-bit Signed Delta from Offset	ST _{MH_62Z_10}	107	178	251	LSB	<u>7</u>
	Low self-test, 8.66 g, 12-bit Signed Delta from Offset	ST _{ML_62Z_12}	139	310	481	LSB	<u>7</u>
	High self-test, 21.65 g, 12-bit Signed Delta from Offset	ST _{MH_62Z_12}	428	715	1001	LSB	<u>7</u>
	Low self-test, 8.66 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset	ST _{ML_62Z_16}	2176	4928	7744	LSB	Z
	High self-test, 21.65 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset	ST _{MH_62Z_16}	6848	11392	16064	LSB	7
30134	Low self-test, 8.66 g, 16-bit Signed SNSDATAx Register Delta from Offset	ST _{ML_62Z_13}	278	620	962	LSB	1
30135	High self-test, 21.65 g, 16-bit Signed SNSDATAx Register Delta from Offset	ST _{MH_62Z_13}	857	1430	2002	LSB	1
High g l	ateral Self-test, 187 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00	_	ΔST _{MIN}	ΔST _{NOM}	ΔST _{MAX}		
	Low self-test, 18.33 g, 10-bit Signed Delta from Offset	ST _{HL_187X_10}	24	55	86	LSB	<u>7</u>
	High self-test, 55.00 g, 10-bit Signed Delta from Offset	ST _{HH_187X_10}	90	150	212	LSB	<u>7</u>
	Low self-test, 18.33 g, 12-bit Signed Delta from Offset	ST _{HL_187X_12}	99	220	341	LSB	<u>7</u>
	High self-test, 55.00 g, 12-bit Signed Delta from Offset	ST _{HH_187X_12}	361	603	845	LSB	<u>7</u>
	Low self-test, 18.33 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset	ST _{HL_187X_16}	1536	3520	5504	LSB	<u>Z</u>
	High self-test, 55.00 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset	ST _{HH_187X_16}	5760	9600	13568	LSB	7
10685	Low self-test, 18.33 g, 16-bit Signed SNSDATAx Register Delta from Offset	ST _{HL_187X_13}	198	1206	682	LSB	1
10686	High self-test, 55.00 g, 16-bit Signed SNSDATAx Register Delta from Offset	ST _{HH_187X_13}	723	440	1689	LSB	1
High g 2	Z-Axis Self-test, 187 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00		ΔST _{MIN}	ΔST _{NOM}	ΔST_{MAX}		
	Low self-test, 25.40 g, 10-bit Signed Delta from Offset	ST _{HL_187Z_10}	31	70	109	LSB	<u>Z</u>
	High self-test, 63.50 g, 10-bit Signed Delta from Offset	ST _{HH_187Z_10}	104	173	244	LSB	<u>7</u>
	Low self-test, 25.40 g, 12-bit Signed Delta from Offset	ST _{HL_187Z_12}	125	279	433	LSB	<u>7</u>
	High self-test, 63.50 g, 12-bit Signed Delta from Offset	ST _{HH_187Z_12}	417	695	974	LSB	<u>Z</u>
	Low self-test, 25.40 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset	ST _{HL_187Z_16}	1984	4416	6976	LSB	Z
	High self-test, 63.50 g, 16-bit SPI/PSI5 Extended Signed Delta from Offset	ST _{HH_187Z_16}	6656	11072	15616	LSB	7
30136	Low self-test, 25.40 g, 16-bit Signed SNSDATAx Register Delta from Offset	ST _{HL_187Z_13}	250	558	866	LSB	1
30137	High self-test, 63.50 g, 16-bit Signed SNSDATAx Register Delta from Offset	ST _{HH_187Z_13}	834	1390	1947	LSB	1
High se	f-test Accuracy: Δ from Stored Value, including Sensitivity Error						
(12 bit,	ateral, or Z-Axis, All Ranges)						
10678	25 °C, Post Pre-conditioning	ΔSTHACC_ 25P	-2	_	+2	%	<u>6</u>
10690	-40 °C ≤ T _A ≤ 125 °C	ΔSTHACC_T	-10	_	+10	%	1

Single channel inertial sensor

Table 31. Electrical characteristics - inertial sensor self-test...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_L_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Self-tes	t Delta Offset: Δ Offset from Pre-Self-test to Post Self-test			-			
(12 bit,	Lateral, or Z-Axis, All Ranges)						
10692	25 °C	ΔSTOFF_25	-2	_	+2	LSB	1
10692	-40 °C ≤ T _A ≤ 125 °C	ΔSTOFF_T	-4	_	+4	LSB	1
Digital S	Self-test						
44629	Digital Self-test 0xC, 16-bit Signed SNSDATAx Register Value	DST _{C0}	E77F	E780	E781	HEX	<u>7</u>
44630	Digital Self-test 0xD, 16-bit Signed SNSDATAx Register Value	DST _{D0}	0FA3	0FA4	0FA5	HEX	7
44631	Digital Self-test 0xE, 16-bit Signed SNSDATAx Register Value	DST _{E0}	EFA2	EFA3	EFA4	HEX	<u>7</u>
44632	Digital Self-test 0xF, 16-bit Signed SNSDATAx Register Value	DST _{F0}	07B7	07B8	07B9	HEX	<u>7</u>

10.9 Electrical characteristics - lateral inertial sensor overload

Table 32. Electrical characteristics - lateral inertial sensor overload

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Accelera	ation Range, Lateral Transducer						
10694	Medium g	gg-cell_ClipMedX	± 500	_	_	g	<u>7</u>
10693	High g	gg-cell_ClipHiX	± 2000	_	_	g	<u>Z</u>
21074	Digital Clipping Limit (Medium g Lateral, must clip before transducer and ADC)	9Dig_ClipMedXHi	± 400	_	_	g	<u>Z</u>
21082	Digital Clipping Limit (High g Lateral, must clip before transducer and ADC)	gDig_ClipHiXHi	± 1500	_	_	g	<u>Z</u>

10.10 Electrical characteristics - Z-axis inertial sensor overload

Table 33. Electrical characteristics - Z-axis inertial sensor overload

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Acceler	ation Range, Z-Axis Transducer						
10698	Medium g	gg-cell_ClipMedZ	± 500	_	_	g	<u>7</u>
10699	High g	gg-cell_ClipHiZ	± 2000	_	_	g	<u>Z</u>
21105	Digital Clipping Limit (Medium g Z-Axis, must clip before transducer and ADC)	9Dig_ClipMedZHi	± 400	_	_	g	7
21113	Digital Clipping Limit (High g Z-Axis, must clip before transducer and ADC)	9Dig_ClipHiZHi	± 1500	_	_	g	Z

10.11 Dynamic electrical characteristics - DSI3

Table 34. Dynamic electrical characteristics - DSI3

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Comman	nd Reception (General)				ı		
10709	V _{HIGH} low-pass filter time constant (<u>Section 12.1.1</u>)	t _{VHIGH_RC}	60	120	180	μs	<u>7, 9</u>
10722	V _{HIGH} Detection Analog Delay (<u>Section 12.1.1</u>)	t _{VHIGH_Delay}	_	_	600	ns	<u>7, 9</u>
10721	Command Valid time (Section 12.1.1)	t _{Cmd_Valid}	_	2	_	μs	<u>7, 9</u>
Respons	se Transmission (General, Slew Control Enabled, <u>Section 12.3.3</u>)				I		
10710	Response Slew Time: 2.0 mA to 10.0 mA, 10.0 mA to 2.0 mA	t _{SLEW1_RESP}	350	400	500	ns	<u>1, 7, 9</u>
10726	Response Slew Time: 4.0 mA to 20.0 mA, 20.0 mA to 4.0 mA	t _{SLEW2_RESP}	350	400	500	ns	<u>1, 7, 9</u>
10725	tslew1_resp = tslew2_resp	Δt_{SLEW}	-100	_	100	ns	<u>7, 9</u>
10724	tsLEW1_RESP_Rise = tsLEW2_RESP_Fall	Δt _{SLEW_rf}	-250	_	250	ns	Z, <u>9</u>
10723	Response Current Activation Time: Current Activated to 50 %	t _{ACT_RESP}	200	_	400	ns	<u>3, 7, 9</u>
Respons	se Transmission (General, Slew Control Disabled, Section 12.3.3)				I		
10727	Response Slew Time: 2.0 mA to 10.0 mA, 10.0 mA to 2.0 mA	t _{nSLEW1_RESP}	_	_	300	ns	<u>7, 9</u>
10728	Response Slew Time: 4.0 mA to 20.0 mA, 20.0 mA to 4.0 mA	t _{nSLEW2_RESP}	_	_	300	ns	<u>7, 9</u>
10729	tsLEW1_RESP = tsLEW2_RESP	Δt_{nSLEW}	-300	_	300	ns	<u>7, 9</u>
10730	tsLEW1_RESP_Rise = tsLEW2_RESP_Fall	Δt _{nSLEW_rf}	-300	_	300	ns	<u>7, 9</u>
10731	Response Current Activation Time: Current Activated to 50 %	t _{nACT_RESP}	_	_	300	ns	<u>7, 9</u>
Comman	nd Reception (Discovery Mode)				I		
10719	Command Start Time (Section 12.2)	t _{START_DISC}	t _{POR_DSI}	_	13.5	ms	<u>7, 8, 9</u>
10734	Command Bit Time (Section 12.2)	t _{DISC_BitTime}	14	16	18	μs	<u>7</u> , <u>8</u> , <u>9</u>
10733	Command Transmission Period (Section 12.2)	t _{PER_DISC}	125	_	_	μs	<u>7, 8, 9</u>
10732	Command Blocking Time, Discovery Mode (Section 12.1.1)	t _{CmdBlock_DISC}	_	80	_	μs	<u>7, 8, 9</u>
Respons	se Transmission (Discovery Mode)						
30078	Idle Current Sample Delay (Section 12.2)	t _{DISC_DLY}	_	48	_	μs	<u>7, 8, 9</u>
30079	Idle Current Sample Time (Section 12.2)	t _{DISC_ICCQ_SAMP}	_	15	_	μs	<u>7, 8, 9</u>
10718	Response Start Delay (Section 12.2)	t _{START_DISC_RSP}	_	64	_	μs	<u>7, 8, 9</u>
10738	Response Ramp Time (<u>Section 12.2</u>)	t _{DISC_Ramp_RSP}	_	16	_	μs	Z, 8, 9
10737	Response Ramp Rate (Section 12.2)	I _{DISC_Ramp}	_	1.5	_	mA/µs	<u>7, 8, 9</u>
10736	Response Idle Time (Section 12.2)	t _{DISC_Idle_RSP}	_	16	_	μs	<u>7, 8, 9</u>
10735	Response Peak Current (Section 12.2)	I _{DISC_Peak}	_	2*I _{RESP}	_	mA	<u>7, 8, 9</u>
30081	Response Current Sample Delay (Section 12.2)	t _{IDISC_Samp_Dly}	_	65	_	μs	<u>7, 8, 9</u>
30080	Response Current Sample Time (Section 12.2)	t _{IDISC_Samp}	_	31	_	μs	<u>7, 8, 9</u>
Comman	nd Reception (Command and Response Mode)						
10717	Command Bit Time (Section 12.3)	t _{Cmd_BitTime}	_	8	_	μs	<u>7, 8, 9</u>
10741	Command Transmission Period (Section 12.3)	t _{PER_CRM}	475	_	_	μs	<u>7, 8, 9</u>
	Command Blocking Time, CRM (Section 12.1.1)	t _{CmdBlock} CRM	_	455	_	μs	<u>7, 8, 9</u>
10740	Command Blocking Time, Ortivi (Section 12.1.1)	*CITIQBIOCK_CRIVI		400		μο	

FXLS9xxx0

Table 34. Dynamic electrical characteristics - DSI3...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Respon	se Transmission (Command and Response Mode)						
10716	Response Chip Time	t _{CHIP_CRM}	_	5	_	μs	<u>7, 8, 9</u>
10742	Response Start Time (Section 12.3)	tstart_crm	_	295	_	μs	<u>7, 8, 9</u>
Comma	nd Reception (Periodic Data Collection Mode)						-
10715	Command Bit Time (Section 12.4)	t _{Cmd_BitTime}	_	8	_	μs	<u>7, 8, 9</u>
10743	Command Transmission Period (Section 12.4)	t _{PER_PDCM}	50	_	_	μs	<u>7, 8, 9</u>
Respon	se Transmission (Periodic Data Collection Mode)						
10714	Response Chip Time Typical (Section 11.2.15.4)	t _{CHIP_PDCM}	1.0	_	5.0	μs	<u>7, 8, 9</u>
10746	Min Programmed Start Time: PDCM_RSPSTx < 0x0015	tstart_pdcm_min	_	20	_	μs	<u>7, 8, 9</u>
10745	Min Programmed Start Time: BDM Enabled	tstart_pdcmbdmmin	_	51	_	μs	<u>7, 8, 9</u>
10744	Max Programmed Start Time: PDCM_RSPSTx = 0x1FFF	t _{START_PDCM_Max}	_	8191	_	μs	<u>7, 8, 9</u>
Respon	se Transmission (Background Diagnostic Mode)						-
49314	Response Chip Time	t _{CHIP_BDM}	_	t _{CHIP_PDCM}	_	μs	<u>7, 8, 9</u>
10747	Response Start Time (Section 12.4)	t _{START_BDM}	_	20	_	μs	<u>7, 8, 9</u>
10712	DSI Data Latency	t _{lat_dsi}	0	_	2.00	μs	<u>7, 8</u>
OTP Pro	ogram Timing					1	
10711	Time to program an OTP User Region	t _{OTP_WRITE_MAX}	_	_	10	ms	<u>7, 8, 9</u>

10.12 Dynamic electrical characteristics - PSI5

Table 35. Dynamic electrical characteristics - PSI5

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Initializa	ation Timing						
10748	Phase 1	t _{PSI5_INIT1}	_	133	_	ms	<u>7, 8, 9</u>
10758	Phase 2 (Synchronous Mode, k = 4, t _{S-S} = 500 μs)	t _{PSI5_INIT2_10s}	_	256 * t _{S-S}	_	S	<u>7, 8, 9</u>
10757	Phase 2 (Asynchronous Mode, k = 8)	t _{PSI5_INIT2_10a}	_	512 * t _{ASYNC}	_	S	<u>7, 8, 9</u>
10756	Phase 3 (Synchronous Mode, t _{S-S} = 500 μs)	t _{PSI5_INIT3_10s}	_	2 * t _{S-S}	_	s	<u>7, 8, 9</u>
10755	Phase 3 (Asynchronous Mode)	t _{PSI5_INIT3_10a}	_	2 * t _{ASYNC}	_	S	<u>7, 8, 9</u>
10754	PSI5 Self-test Start Time	t _{PSI5ST_START}	_	30	_	ms	<u>7, 8</u>
10753	PSI5 Self-test Time, including Post OC Startup Offset	t _{ST}	_	223	_	ms	<u>7, 8</u>
41756	Programming Mode Entry Window	t _{PME}	_	127	_	ms	<u>7, 8, 9</u>
Synchro	onization Pulse		1	1			
10759	Reset to first sync pulse (Program Mode Entry)	t _{RS_PM}	6	_	_	ms	<u>7, 8, 9</u>
10779	Reset to first sync pulse (Normal Mode)	t _{RS}	t _{PSI5_INIT1}	_	_	S	<u>7, 8, 9</u>
10778	Sync Pulse Period	t _{S-S}	175	_	_	μs	<u>7, 8, 9</u>
10777	Sync Pulse Width	tsync	9	_	_	μs	<u>7, 8, 9</u>
10776	Sync Pulse Reference LPF time constant	t _{SYNC_LPF}	120	280	_	μs	<u>7, 9</u>

FXLS9xxx0

Table 35. Dynamic electrical characteristics - PSI5...continued

 $V_{BUS\ I\ L\ min} \le (V_{BUS\ I} - V_{SS}) \le V_{BUS\ I\ H\ max}$, $T_L \le T_A \le T_H$, $\Delta T \le 25$ °C/min, unless otherwise specified

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
10775	Sync Pulse Reference Discharge Start Time	tsync_lpf_rst_st	_	9.0	_	μs	Z , <u>9</u>
10774	Sync Pulse Reference Discharge Activation Time	t _{SYNC_LPF_RST}	_	154	_	μs	<u>7, 9</u>
10773	Sync Pulse Detection Disable Time (PDCM_CMD_B = 0)	t _{SYNC_OFF_500}	_	450	_	μs	<u>7, 8, 9</u>
10772	Analog Delay of Sync Pulse Detection	t _{A_SYNC_DLY}	50	_	600	ns	<u>7, 9</u>
10771	Sync Pulse Pulldown Function Delay Time	t _{PD_DLY}		9.0	_	μs	<u>7, 9</u>
10770	Sync Pulse Pulldown Function Activate Time	t _{PD_ON}	_	16	_	μs	<u>7, 8</u>
10769	Sync Pulse Detection Jitter	t _{SYNC_JIT}	0	_	0.5	μs	<u>7, 8</u>
10768	Data Transmission Single Bit Time (PSI5 Standard Bit Rate)	t _{BIT_Standard}	_	8.00	_	μs	<u>7, 8, 9</u>
10767	Data Transmission Single Bit Time (PSI5 High Bit Rate)	t _{BIT_HI}	_	5.30	_	μs	<u>7, 8, 9</u>
Respon	se Current Transmission (No external Components)						
10766	Response Slew Time: 20 % to 80 % of I _{R_PSI5}	t _{SLEW1_RESP}	350	400	500	ns	<u>1</u> ,7, <u>9</u>
10765	Position of bit transition (All except 5.3 μs)	t _{Bittrans_LowBaud}	49	50	51	%	<u>8, 9</u>
10780	Position of bit transition (5.3 us)	t _{Bittrans_HighBaud}	49	_	51	%	<u>8, 9</u>
10764	Asynchronous Response Time	t _{ASYNC}	_	228	_	μs	<u>7, 8, 9</u>
Time SI	ots						
10763	Min Programmed Time Slot: PDCM_RSPSTx < 0x0014	t _{TIMESLOTx_MIN}	_	20	_	μs	<u>7, 8, 9</u>
10790	Max Programmed Time Slot: PDCM_RSPSTx = 0x1FFF	t _{TIMESLOTx_MAX}	_	8191	_	μs	<u>7, 8, 9</u>
10789	Default Time Slot (PDCM_RSPSTx = 0x0000)	t _{TIMESLOT_DFLT}	_	20	_	μs	<u>7, 8, 9</u>
10788	Time Slot Resolution	t _{TIMESLOTx_RES}	_	1.0	_	μs/LSB	<u>7, 8, 9</u>
10787	Sync pulse to Daisy Chain Default Time Slot 0	t _{TIMESLOT_DC0}	_	46.5	_	μs	<u>7, 8, 9</u>
10786	Sync pulse to Daisy Chain Default Time Slot 1 (Low)	t _{TIMESLOT_DC1_L}	_	192	_	μs	<u>7, 8, 9</u>
10785	Sync pulse to Daisy Chain Default Time Slot 2 (Low)	t _{TIMESLOT_DC2_L}	_	350	_	μs	<u>7, 8, 9</u>
10784	Sync pulse to Daisy Chain Default Time Slot 1 (High)	t _{TIMESLOT_DC1_H}	_	150	_	μs	<u>7, 8, 9</u>
10783	Sync pulse to Daisy Chain Default Time Slot 2 (High)	t _{TIMESLOT DC2 H}	_	260	_	μs	7, 8, 9
10782	Sync pulse to Daisy Chain Default Time Slot 3 (High)	t _{TIMESLOT_DC3_H}	_	380	_	μs	<u>7, 8, 9</u>
10781	Sync pulse to Daisy Chain Programming Time Slot	t _{TIMESLOT DCP}	_	46.5	_	μs	<u>7, 8, 9</u>
10762	PSI5 Data Latency	t _{LAT_PSI5}	0	_	1.00	μs	<u>7, 8</u>
Bus Sw	itch Output Activation Time (C = 50 pF)						
10761	From last bit of "SetAdr" Response to 80 % of V _{BUS_SW_OH}	t _{BUS_SW}	_	_	300	μs	<u>7</u>
PSI5 Pr	ogramming Mode Sync Pulse Period						
10760	The user must provide a sync pulse period within this range to guarantee Programming Mode communications	t _{S-S_PM}	245	250	255	μs	<u>7, 8, 9</u>
	PSI5 Programming Mode Command Blanking Time	t _{SYNC_OFF_250}	_	200	_	μs	<u>7, 8, 9</u>
Daisy C	hain Mode Sync Pulse Period			·			
39810	The user must provide a sync pulse period within this range to guarantee communications	t _{S-S_DC}	490	500	510	μs	<u>7, 8, 9</u>
OTP Pro	ogram Timing						
10793	Time to program one OTP User Region	t _{OTP_WRITE_MAX}	_		10	ms	<u>7, 8, 9</u>
_		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		

10.13 Dynamic electrical characteristics - SPI

Table 36. Dynamic electrical characteristics - SPI

 $V_{CC,BUE,min} \le (V_{BUS,I} - V_{SS}) \le V_{CC,BUE,max}$, $T_I \le T_A \le T_H$, $\Delta T \le 25$ °C/min, unless otherwise specified

#	Characteristic	Symbol	Min	Тур	Max	Units	Test
Serial Ir	terface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10794	Clock (SCLK) period (10 % of V _{CC} to 10 % of V _{CC})	t _{SCLK}	88	_	_	ns	<u>6</u>
Serial Ir	terface Timing (See <u>Figure 97,</u> C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10801	Clock (SCLK) high time (90 % of V_{CC} to 90 % of V_{CC})	t _{SCLKH}	30	_	_	ns	<u>6</u>
10802	Clock (SCLK) low time (10 % of V _{CC} to 10 % of V _{CC})	t _{SCLKL}	30	_	_	ns	<u>6</u>
Serial Ir	terface Timing (See <u>Figure 97,</u> C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10800	Clock (SCLK) rise time (10 % of V _{CC} to 90 % of V _{CC})	t _{SCLKR}	_	10	25	ns	<u>7</u>
10803	Clock (SCLK) fall time (90 % of V _{CC} to 10 % of V _{CC})	t _{SCLKF}	_	10	25	ns	<u>7</u>
Serial Ir	⊥ terface Timing (See <u>Figure 97,</u> C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10799	SS_B asserted to SCLK high (SS_B = 10 % of V_{CC} to SCLK = 10 % of V_{CC})	t _{LEAD}	50	_	_	ns	6
Serial Ir	terface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)			-	1		
10798	SS_B asserted to MISO valid (SS_B = 10 % of V $_{CC}$ to MISO = 10/90 % of V $_{CC}$)	t _{ACCESS}	_	_	50	ns	6
Serial Ir	terface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10797	Data setup time (MOSI = 10/90 % of V_{CC} to SCLK = 10 % of V_{CC})	t _{SETUP}	20	_	_	ns	<u>6</u>
Serial Ir	terface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10796	MOSI Data hold time (SCLK = 90 % of V_{CC} to MOSI = 10/90 % of V_{CC})	t _{HOLD_IN}	10	_	_	ns	<u>6</u>
10804	MISO Data hold time (SCLK = 90 % of V _{CC} to MISO = 10/90 % of V _{CC})	t _{HOLD_OUT}	0	_	_	ns	<u>6</u>
Serial Ir	terface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)			-			
10795	SCLK low to data valid (SCLK = 10 % of V_{CC} to MISO = 10/90 % of V_{CC})	t _{VALID}	_	_	30	ns	<u>6</u>
Serial Ir	terface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10807	SCLK low to SS_B high (SCLK = 10 % of V_{CC} to SS_B = 90 % of V_{CC})	t _{LAG}	60	_	_	ns	<u>6</u>
Serial Ir	tterface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10806	SS_B high to MISO disable (SS_B = 90 % of V _{CC} to MISO = High Z)	t _{DISABLE}	_	_	60	ns	<u>6</u>
Serial Ir	tterface Timing (See <u>Figure 97</u> , C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)			-	1		_
SS_B h	gh to SS_B low (SS_B = 90 % of V _{CC} to SS_B = 90 % of V _{CC})						
10805	Following Sensor Data Request Commands	t _{SSN_SENSE}	500	_	_	ns	<u>6</u>
10813	Following Register Reads/Writes Registers	t _{SSN_R}	500	_	_	ns	<u>6</u>
10812	Following Register Write to the UF_REGION_W Register	t _{SSN_UF01}	50	_	_	μs	<u>6</u>
10810	Time Between Sensor Data Requests (SPI Only, Arm Enabled)	t _{ACC_REQ_x}	15	_	_	μs	<u>6</u>
Arming	Output Activation Time (ARM0, ARM1, I _{ARM} = 200 μA)						
10809	Moving Average and Count Arming Modes	t _{ARM}	0	_	1.50	μs	<u>6</u>
10817	Unfiltered Mode Activation Delay	t _{ARM_UF_DLY}	0	_	1.50	μs	<u>6</u>
10816	Unfiltered Mode Arm Assertion Time	tarm_uf_assert	5.00	_	6.00	μs	<u>6</u>
Serial Ir	lterface Timing (See <u>Figure 97,</u> C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)						
10808	SCLK low to SS_B low (SCLK = 10 % of V _{CC} to SS_B = 90 % of V _{CC})	t _{CLKSS}	50	_	_	ns	<u>6</u>
Serial Ir	lterface Timing (See <u>Figure 97,</u> C _{MISO} ≤ 80 pF, R _{MISO} ≥ 10 kΩ)					<u> </u>	
10815	SS_B high to SCLK high (SS_B = 90 % of V _{CC} to SCLK = 90 % of V _{CC})	t _{SSCLK}	50	_	_	ns	7

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Single channel inertial sensor

Table 36. Dynamic electrical characteristics - SPI...continued

 $V_{\text{CC_BUF_min}} \leq (V_{\text{BUS_I}} - V_{\text{SS}}) \leq V_{\text{CC_BUF_max}}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min}, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
10818	SPI Data Latency	t _{LAT_SPI}	_	_	1	μs	Z, 8
	Pin Capacitance (MISO, MOSI, SCLK, SS_B to VSS)	C _{SPI_PIN}	_	_	10	pF	<u>7</u>

10.14 Dynamic electrical characteristics - I²C

Table 37. Dynamic electrical characteristics - I²C

 $V_{\text{CC_BUF_min}} \leq (V_{\text{BUS_I}} - V_{\text{SS}}) \leq V_{\text{CC_BUF_max}}, \ T_{L} \leq T_{A} \leq T_{H}, \ \Delta T \leq 25 \ ^{\circ}\text{C/min}, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Clock (S	SCL) Period (30 % of V _{CC} to 30 % of V _{CC})			J			
10819	100 kHz Mode	t _{SCLK_100}	9.50	_	_	μs	<u>6</u>
10820	400 kHz Mode	tsclk_400	2.37	_	_	μs	<u>6</u>
10821	1000 kHz Mode	t _{SCLK_1000}	1.00	_	_	μs	<u>6</u>
Clock (S	SCL) High Time (70 % of V _{CC} to 70 % of V _{CC})						
10823	100 kHz Mode	t _{SCLH_100}	4.00	_	_	μs	<u>6</u>
10837	400 kHz Mode	t _{SCLH_400}	0.60	_	_	μs	<u>6</u>
10836	1000 kHz Mode (note: not compliant with UM10204[1]	t _{SCLH_1000}	0.50	_	_	μs	<u>6</u>
Clock (S	SCL) Low Time (30 % of V _{CC} to 30 % of V _{CC})	-		J			
10835	100 kHz Mode	t _{SCLL_100}	4.70	_	_	μs	<u>6</u>
10839	400 kHz Mode	t _{SCLL_400}	1.30	_	_	μs	<u>6</u>
10838	1000 kHz Mode	t _{SCLL_1000}	0.50	_	_	μs	<u>6</u>
Clock (S	SCL) and Data (SDA) Rise Time (30 % of V _{CC} to 70 % of V _{CC})						
10834	100 kHz Mode	t _{SRISE_100}	_	_	1000	ns	<u>6</u>
10841	400 kHz Mode	t _{SRISE_400}	_	_	300	ns	<u>6</u>
10840	1000 kHz Mode	t _{SRISE_1000}	_	_	120	ns	<u>6</u>
Clock (S	SCL) and Data (SDA) Fall Time (70 % of V _{CC} to 30 % of V _{CC})	<u> </u>					
10833	100 kHz Mode	t _{SFALL_100}	_	_	300	ns	<u>6</u>
10844	400 kHz Mode	t _{SFALL_400}	_	_	300	ns	<u>6</u>
10843	1000 kHz Mode	t _{SFALL_1000}	_	_	120	ns	<u>6</u>
Data Inp	out Setup Time (SDA = 30/70 % of V _{CC} to SCL = 30 % of V _{CC})	<u> </u>					
10832	100 kHz Mode	t _{SETUP_100}	250	_	_	ns	<u>6</u>
10846	400 kHz Mode	t _{SETUP_400}	100	_	_	ns	<u>6</u>
10845	1000 kHz Mode	t _{SETUP_1000}	50	_	_	ns	<u>6</u>
Data Inp	out Hold Time (SCL = 70 % of V _{CC} to SDA = 30/70 % of V _{CC})		1	J.			
10831	100 kHz Mode	t _{HOLD_100}	0	_	900	ns	<u>6</u>
10848	400 kHz Mode	t _{HOLD_400}	0	_	900	ns	<u>6</u>
10847	1000 kHz Mode	t _{HOLD_1000}	0	_	300	ns	<u>6</u>

Table 37. Dynamic electrical characteristics - 1²C...continued

 $V_{\text{CC_BUF_min}} \leq (V_{BUS_I} - V_{SS}) \leq V_{\text{CC_BUF_max}}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Start Co	ondition Setup Time (SDA = 30/70 % of V _{CC} to SCL = 30 % of V _{CC})			'		_	
10830	100 kHz Mode	t _{STARTSETUP_100}	4.70	_	_	μs	<u>6</u>
10851	400 kHz Mode	tstartsetup_400	0.60	_	_	μs	<u>6</u>
10850	1000 kHz Mode	t _{STARTSETUP_1000}	0.26	_	_	μs	<u>6</u>
Start Co	ondition Hold Time (SCL = 70 % of V _{CC} to SDA = 30/70 % of V _{CC})			1			
10829	100 kHz Mode	t _{STARTHOLD_100}	4.00	_	_	μs	<u>6</u>
10853	400 kHz Mode	t _{STARTHOLD_400}	0.60	_	_	μs	<u>6</u>
10852	1000 kHz Mode	t _{STARTHOLD_1000}	0.26	_	_	μs	<u>6</u>
Stop Co	ondition Setup Time (SDA = 30/70 % of V _{CC} to SCL = 30 % of V _{CC})						
10828	100 kHz Mode	t _{STOPSETUP_100}	4.00	_	_	μs	<u>6</u>
10855	400 kHz Mode	tstopsetup_400	0.60	_	_	μs	<u>6</u>
10854	1000 kHz Mode	t _{STOPSETUP_1000}	0.26	_	_	μs	<u>6</u>
SCLK Id	ow to data valid (SCL = 30 % of V _{CC} to SDA = 30/70 % of V _{CC})			1			
10827	100 kHz Mode	t _{VALID_100}	_	_	3.45	μs	<u>6</u>
10857	400 kHz Mode	t _{VALID_400}	_	_	0.90	μs	<u>6</u>
10856	1000 kHz Mode	t _{VALID_1000}	_	_	0.45	μs	<u>6</u>
Bus Fre	e Time (SDA = 70 % of V _{CC} to SDA = 70 % of V _{CC})			1			
10826	100 kHz Mode	t _{FREE_100}	4.00	_	_	μs	<u>6</u>
10859	400 kHz Mode	t _{FREE_400}	1.30	_	_	μs	<u>6</u>
10859	1000 kHz Mode	t _{FREE_1000}	0.50	_	_	μs	<u>6</u>
10825	Bus Capacitive Load	C _{BUS}	_	_	400	pF	<u>7, 9</u>

10.15 Dynamic electrical characteristics - signal chain, low-pass filter

Table 38. Dynamic electrical characteristics - signal chain, low-pass filter

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic		Symbol	Min	Тур	Max	Units	Test notes
DSP Lo	w-Pass Filters Sample Times				'			,
10872	SAMPLERATE = 00, 01	*	t _{SigChain00} , t _{SigChain01}	_	16	_	μs	<u>7, 8, 9</u>
10872	SAMPLERATE = 10	*	t _{SigChain10}	_	32	_	μs	<u>7, 8, 9</u>
10871	SAMPLERATE = 11	<u>*</u>	t _{SigChain11}	_	64	_	μs	<u>7, 8, 9</u>
DSP Lo	w-Pass Filters (Signal Chain Sample Time = 16 μs)							,
21379	Cutoff Frequency, Filter Option #0, and #2, 4-Pole	*	f _{c0_16} , f _{c2_16}	_	400	_	Hz	<u>7, 8, 9, 11</u>
21380	Cutoff Frequency, Filter Option #1, and #3, 3-Pole	*	f _{c1_16} , f _{c3_16}	_	400	_	Hz	<u>7, 8, 9, 11</u>
21381	Cutoff Frequency, Filter Option #4, 3-Pole	*	f _{c4_16}	_	325	_	Hz	<u>7, 8, 9, 11</u>
21382	Cutoff Frequency, Filter Option #5, 2-Pole	*	f _{c5_16}	_	370	_	Hz	<u>7, 8, 9, 11</u>
21383	Cutoff Frequency, Filter Option #6, 2-Pole	* -	f _{c6_16}	_	180	_	Hz	<u>7, 8, 9, 11</u>
21384	Cutoff Frequency, Filter Option #7, 2-Pole	*	f _{c7_16}	_	100	_	Hz	<u>7, 8, 9, 11</u>
21385	Cutoff Frequency, Filter Option #8, 4-Pole	*	f _{c8_16}	_	1500	_	Hz	<u>7, 8, 9, 11</u>

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Single channel inertial sensor

Table 38. Dynamic electrical characteristics - signal chain, low-pass filter...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
26413	Cutoff Frequency, Filter Option #9, 4-Pole	f _{c9_16}	_	500	_	Hz	<u>7, 8, 9, 11</u>
10860	Cutoff Frequency, Filter Option #10, 4-Pole	f _{c10_16}	_	800	_	Hz	<u>7, 8, 9, 11</u>
10870	Cutoff Frequency, Filter Option #11, 3-Pole	f _{c11_16}	_	1200	_	Hz	<u>7, 8, 9, 11</u>
10869	Cutoff Frequency, Filter Option #12, 3-Pole	f _{c12_16}	_	120	_	Hz	<u>7, 8, 9, 11</u>
	Cutoff Frequency, Filter Option #13, 3-Pole	f _{c13_16}	_	20,000	_	Hz	<u>7, 8, 9, 11</u>
10868	Cutoff Frequency, Filter Option #14, 2-Pole	f _{c14_16}	_	120	_	Hz	<u>7, 8, 9, 11</u>
38364	Cutoff Frequency, Filter Option #15, 2-Pole	f _{c15_16}	_	50	_	Hz	<u>7, 8, 9, 11</u>
DSP Lo	w-Pass Filters (Signal Chain Sample Time = 32 μs)		I.				J
38378	Cutoff Frequency, Filter Option #0, and #2, 4-Pole	f _{c0_32} , f _{c2_32}	_	200	_	Hz	<u>7, 8, 9, 11</u>
38379	Cutoff Frequency, Filter Option #1, and #3, 3-Pole	f _{c1_32} , f _{c3_32}	_	200	_	Hz	<u>7, 8, 9, 11</u>
38380	Cutoff Frequency, Filter Option #4, 3-Pole	f _{c4_32}	_	162.5	_	Hz	<u>7, 8, 9, 11</u>
38381	Cutoff Frequency, Filter Option #5, 2-Pole	f _{c5_32}	_	185	_	Hz	<u>7, 8, 9, 11</u>
38382	Cutoff Frequency, Filter Option #6, 2-Pole	f _{c6_32}	_	90	_	Hz	7, 8, 9, 11
38383	Cutoff Frequency, Filter Option #7, 2-Pole	f _{c7_32}	_	50	_	Hz	<u>7, 8, 9, 11</u>
38384	Cutoff Frequency, Filter Option #8, 4-Pole	f _{c8_32}	_	750	_	Hz	<u>7, 8, 9, 11</u>
38385	Cutoff Frequency, Filter Option #9, 3-Pole	f _{c9_32}	_	250	_	Hz	<u>7, 8, 9, 11</u>
38386	Cutoff Frequency, Filter Option #10, 4-Pole	f _{c10_32}	_	400	_	Hz	<u>7, 8, 9, 11</u>
38387	Cutoff Frequency, Filter Option #11, 4-Pole	f _{c11_32}	_	600	_	Hz	<u>7, 8, 9, 11</u>
38388	Cutoff Frequency, Filter Option #12, 3-Pole	f _{c12_32}	_	60	_	Hz	<u>7, 8, 9, 11</u>
	Cutoff Frequency, Filter Option #13, 2-Pole	f _{c13_32}	_	10,000	_	Hz	<u>7, 8, 9, 11</u>
38389	Cutoff Frequency, Filter Option #14, 2-Pole	f _{c14_32}	_	60	_	Hz	<u>7, 8, 9, 11</u>
38390	Cutoff Frequency, Filter Option #15, 4-Pole	f _{c15_32}	_	25	_	Hz	Z, <u>8</u> , <u>9</u> , <u>11</u>
DSP Lo	w-Pass Filters (Signal Chain Sample Time = 64 μs)		<u>I</u>				J
38365	Cutoff Frequency, Filter Option #0, and #2, 4-Pole	f _{c0_64} , f _{c2_64}	_	100	_	Hz	<u>7, 8, 9, 11</u>
38366	Cutoff Frequency, Filter Option #1, and #3, 3-Pole	f _{c1_64} , f _{c3_64}	_	100	_	Hz	<u>7, 8, 9, 11</u>
38367	Cutoff Frequency, Filter Option #4, 3-Pole	f _{c4_64}	_	81.25	_	Hz	<u>7, 8, 9, 11</u>
38368	Cutoff Frequency, Filter Option #5, 2-Pole	f _{c5_64}	_	92.75	_	Hz	<u>7, 8, 9, 11</u>
38369	Cutoff Frequency, Filter Option #6, 2-Pole	f _{c6_64}	_	45	_	Hz	<u>7, 8, 9, 11</u>
38370	Cutoff Frequency, Filter Option #7, 2-Pole	f _{c7_64}	_	25	_	Hz	<u>7, 8, 9, 11</u>
38371	Cutoff Frequency, Filter Option #8, 4-Pole	f _{c8_64}	_	375	_	Hz	<u>7, 8, 9, 11</u>
38372	Cutoff Frequency, Filter Option #9, 3-Pole	f _{c9_64}	_	125	_	Hz	<u>7, 8, 9, 11</u>
38373	Cutoff Frequency, Filter Option #10, 4-Pole	f _{c10_64}	_	200	_	Hz	<u>7, 8, 9, 11</u>
38374	Cutoff Frequency, Filter Option #11, 4-Pole	f _{c11_64}	_	300	_	Hz	<u>7, 8, 9, 11</u>
38375	Cutoff Frequency, Filter Option #12, 3-Pole	f _{c12_64}	_	30	_	Hz	<u>7, 8, 9, 11</u>
	Cutoff Frequency, Filter Option #13, 2-Pole	f _{c13_64}	_	5,000	_	Hz	<u>7, 8, 9, 11</u>
38376	Cutoff Frequency, Filter Option #14, 2-Pole	f _{c14_64}	_	30	_	Hz	<u>7, 8, 9, 11</u>
38377	Cutoff Frequency, Filter Option #15, 4-Pole	f _{c15 64}	_	12.5	_	Hz	<u>7, 8, 9, 11</u>

10.16 Dynamic electrical characteristics - signal chain

Table 39. Dynamic electrical characteristics - signal chain

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Offset C	ancellation Low-Pass Filter						
10863	Sample Time, Phase 0	t _{0CSAMP0}	_	256	_	μs	<u>7, 8</u>
10874	Cutoff Frequency, Phase 0, 1-Pole	f _{OC0}	_	163.8	_	Hz	<u>7, 8</u>
10875	Time in Phase 0	t _{OC0}	_	4.096	_	ms	<u>7, 8</u>
Offset C	ancellation Low-Pass Filter		1				
10888	Sample Time, Phase 1	t _{0CSAMP1}	_	256	_	μs	<u>7, 8</u>
10889	Cutoff Frequency, Phase 1, 1-Pole	f _{OC1}	_	40.96	_	Hz	<u>7, 8</u>
10890	Time in Phase 1	t _{OC1}	_	4.096	_	ms	<u>7, 8</u>
Offset C	ancellation Low-Pass Filter		1				
10885	Sample Time, Phase 2	t _{0CSAMP2}	_	256	_	μs	<u>7, 8</u>
10886	Cutoff Frequency, Phase 2, 1-Pole	f _{OC2}	_	10.24	_	Hz	<u>7, 8</u>
10887	Time in Phase 2	t _{OC2}	_	16.388	_	ms	<u>7, 8</u>
Offset C	ancellation Low-Pass Filter						
10900	Sample Time, Phase 3	t _{0CSAMP3}	_	256	_	μs	<u>7, 8</u>
10901	Cutoff Frequency, Phase 3, 1-Pole	f _{OC3}	_	2.560	_	Hz	<u>7, 8</u>
10902	Time in Phase 3	t _{OC3}	_	65.53	_	ms	<u>7, 8</u>
Offset C	ancellation Low-Pass Filter						
10897	Sample Time, Phase 4	t _{0CSAMP4}	_	256	_	μs	<u>7, 8</u>
10898	Cutoff Frequency, Phase 4, 1-Pole	f _{OC4}	_	0.6400	_	Hz	<u>7, 8</u>
10899	Time in Phase 4	t _{OC4}	_	262.19	_	ms	<u>7, 8</u>
Offset C	ancellation Low-Pass Filter						
10894	Sample Time, Phase 5	t _{0CSAMP5}	_	256	_	μs	<u>7, 8</u>
10895	Cutoff Frequency, Phase 5, 1-Pole	f _{OC5}	_	0.1600	_	Hz	<u>7, 8</u>
10896	Time in Phase 5	t _{OC5}	_	1049	_	ms	<u>7, 8</u>
Offset C	ancellation Low-Pass Filter						
39811	Sample Time, Phase 6a	t _{0CSAMP6a}	_	256	_	μs	<u>7, 8</u>
39812	Cutoff Frequency, Phase 6a, 1-Pole	f _{OC6a}	_	0.0400	_	Hz	<u>7, 8</u>
Offset C	ancellation Low-Pass Filter		1				
39813	Sample Time, Phase 6b	t _{0CSAMP6b}	_	1024	_	μs	<u>7, 8</u>
39814	Cutoff Frequency, Phase 6b, 1-Pole	f _{OC6b}	_	0.005	_	Hz	<u>7, 8</u>
Offset C	ancellation Output Rate Limiting (0.04 Hz Offset LPF only)	<u> </u>	1				
10882	Rate Limiting Output Update Time	t _{RL_Rate}	_	2	_	S	7, 8, 9
10903	Rate Limiting Output Step Size (10 bit)	OFF _{Step10}	_	0.5	_	LSB	<u>7, 8, 9</u>
	Rate Limiting Output Step Size (16 bit, PSI5, SPI)	OFF _{Step16}	_	32	_	LSB	Z, <u>8</u>

Single channel inertial sensor

Table 39. Dynamic electrical characteristics - signal chain...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Offset N	onitor						
10883	Update Rate	OFFMON _{OSC}	_	0.5	_	ms	<u>7, 8</u>
10905	Count Limit	OFFMONCNTLIMIT	_	4096	_	1	<u>7, 8</u>
10904	Counter Size	OFFMON _{CNTSIZE}	_	8192	_	1	<u>7, 8</u>
10881	Signal Delay (Sinc Filter to Output Delay, excluding LPF)	t _{SigDelay}	_	_	128	μs	<u>7, 8</u>
Interpola	ation						
20923	tsigChain = tsigChain00, tsigChain01	t _{INTERP_00, 01}	_	1	_	μs	<u>7, 8</u>
20922	tsigChain = tsigChain02	t _{INTERP_02}	_	2	_	μs	<u>7, 8</u>
20921	tsigChain = tsigChain03	t _{INTERP_03}	_	4	_	μs	<u>7, 8</u>
10877	Interpolation Latency	t _{LAT_INTERP}	_	t _{SigChainxx}	_	s	<u>7, 8</u>

10.17 Dynamic electrical characteristics - analog self-test response time

Table 40. Dynamic electrical characteristics - analog self-test response time

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Mediun	g, Lateral						
Self-tes	t Response Time: Self-test Activation/Deactivation to 99 %/1	% g _{ST}					
10878	Medium g Lateral, LPF = 800 Hz, 4-Pole	t _{ST_Resp_MedX_800_4}	750	795	1020	μs	<u>7, 8</u>
44634	Medium g Lateral, LPF = 1500 Hz, 4-Pole	tST_Resp_MedX_1500_4	395	415	725	μs	<u>7, 8</u>
Self-tes	t Response Time: Self-test Activation/Deactivation to 99 % /	1 % g _{ST}			1		
38147	Medium g Lateral, LPF = 400 Hz, 4-Pole	t _{ST_Resp_MedX_400_4}	1510	1590	1810	μs	<u>7, 8</u>
38151	Medium g Lateral, LPF = 400 Hz, 3-Pole	t _{ST_Resp_MedX_400_3}	1420	1490	1710	μs	<u>7, 8</u>
38150	Medium g Lateral, LPF = 180 Hz, 2-Pole	t _{ST_Resp_MedX_180_2}	3030	3190	3470	μs	<u>7, 8</u>
Self-tes	t Response Time: Self-test Activation/Deactivation to 99 % /	1 % g _{ST}		'			
38149	Medium g Lateral, LPF = 300 Hz, 4-Pole	t _{ST_Resp_MedX_300_4}	2010	2120	2360	μs	<u>7, 8</u>
Self-tes	t Response Time: Self-test Activation/Deactivation to 99 % /	1 % g _{ST}		'			
38148	Medium g Lateral, LPF = 188 Hz, 4-Pole	t _{ST_Resp_MedX_188_4}	3210	3380	3680	μs	<u>7, 8</u>
High g,	Lateral						
Self-tes	t Response Time: Self-test Activation/Deactivation to 99 % /	1 % g _{ST}					
38152	High g Lateral, LPF = 800 Hz, 4-Pole	t _{ST_Resp_HiX_800_4}	750	795	892	μs	<u>7, 8</u>
44636	High g Lateral, LPF = 1500 Hz, 4-Pole	t _{ST_Resp_HiX_1500_4}	395	415	490	μs	<u>7, 8</u>
Self-tes	t Response Time: Self-test Activation/Deactivation to 99 % /	1 % g _{ST}		'			
38153	High g Lateral, LPF = 400 Hz, 4-Pole	t _{ST_Resp_HiX_400_4}	1510	1590	1720	μs	<u>7, 8</u>
38154	High g Lateral, LPF = 400 Hz, 3-Pole	t _{ST_Resp_HiX_400_3}	1420	1490	1620	μs	<u>7, 8</u>
38155	High g Lateral, LPF = 180 Hz, 2-Pole	t _{ST_Resp_HiX_180_2}	3030	3190	3400	μs	<u>7, 8</u>
Self-tes	t Response Time: Self-test Activation/Deactivation to 99 % /	1 % g _{ST}		1			
38156	High g Lateral, LPF = 300 Hz, 4-Pole	t _{ST_Resp_HiX_300_4}	2010	2120	2280	μs	<u>7, 8</u>

Single channel inertial sensor

Table 40. Dynamic electrical characteristics - analog self-test response time...continued

 $V_{BUS_I_L_min} \le (V_{BUS_I} - V_{SS}) \le V_{BUS_I_H_min}, \ T_L \le T_A \le T_H, \ \Delta T \le 25 \ ^{\circ}\text{C/min}, \ unless otherwise specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}						
38157	High g Lateral, LPF = 188 Hz, 4-Pole	t _{ST_Resp_HiX_188_4}	3210	3380	3600	μs	<u>7, 8</u>
Medium	g, Z-Axis						
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}						_
38158	Medium g Z-Axis, LPF = 800 Hz, 4-Pole	t _{ST_Resp_MedZ_800_4}	750	795	1010	μs	<u>7, 8</u>
44637	Medium g Z-Axis, LPF = 1500 Hz, 4-Pole	t _{ST_Resp_MedZ_1500_4}	395	415	710	μs	<u>7, 8</u>
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % $\rm g_{ST}$			Į.			
38159	Medium g Z-Axis, LPF = 400 Hz, 4-Pole	t _{ST_Resp_MedZ_400_4}	1510	1590	1810	μs	<u>7, 8</u>
38160	Medium g Z-Axis, LPF = 400 Hz, 3-Pole	t _{ST_Resp_MedZ_400_3}	1420	1490	1700	μs	<u>7, 8</u>
38161	Medium g Z-Axis, LPF = 180 Hz, 2-Pole	t _{ST_Resp_MedZ_180_2}	3030	3190	3470	μs	<u>7, 8</u>
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}						
38162	Medium g Z-Axis, LPF = 300 Hz, 4-Pole	t _{ST_Resp_MedZ_300_4}	2010	2120	2360	μs	<u>7, 8</u>
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}			I			
38163	Medium g Z-Axis, LPF = 188 Hz, 4-Pole	t _{ST_Resp_MedZ_188_4}	3210	3380	3680	μs	<u>7, 8</u>
High g, 2	Z-Axis			1			
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}						
38164	High g Z-Axis, LPF = 800 Hz, 4-Pole	t _{ST_Resp_HiZ_800_4}	750	795	994	μs	<u>7, 8</u>
44638	High g Z-Axis, LPF = 1500 Hz, 4-Pole	t _{ST_Resp_HiZ_1500_4}	395	415	675	μs	<u>7, 8</u>
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}			I.			
38165	High g Z-Axis, LPF = 400 Hz, 4-Pole	t _{ST_Resp_HiZ_400_4}	1510	1590	1800	μs	<u>7, 8</u>
38166	High g Z-Axis, LPF = 400 Hz, 3-Pole	t _{ST_Resp_HiZ_400_3}	1420	1490	1690	μs	<u>7, 8</u>
38167	High g Z-Axis, LPF = 180 Hz, 2-Pole	t _{ST_Resp_HiZ_180_2}	3030	3190	3470	μs	<u>7, 8</u>
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}			1		1	
38168	High g Z-Axis, LPF = 300 Hz, 4-Pole	t _{ST_Resp_HiZ_300_4}	2010	2120	2360	μs	<u>7, 8</u>
Self-test	Response Time: Self-test Activation/Deactivation to 99 % / 1 % g _{ST}						
38169	High g Z-Axis, LPF = 188 Hz, 4-Pole	t _{ST_Resp_HiZ_188_4}	3210	3380	3680	μs	<u>7, 8</u>
						1	

10.18 Dynamic electrical characteristics - digital self-test response time

Table 41. Dynamic electrical characteristics - digital self-test response time

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min}, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Self-tes	Response Time: Self-test Activation/Deactivation to Final Value						,
44639	LPF ≤ 60 Hz	t _{DST_Resp_50}	_	_	50	ms	<u>7, 8</u>
Self-tes	Response Time: Self-test Activation/Deactivation to Final Value						
44641	60 Hz ≤ LPF ≤ 200 Hz	t _{DST_Resp_100}	_	_	25	ms	<u>7, 8</u>
Self-tes	t Response Time: Self-test Activation/Deactivation to Final Value						
44640	300 Hz ≤ LPF ≤ 1500 Hz	t _{DST_Resp_400}	_	_	12	ms	<u>7, 8</u>
38176	Fixed Pattern Response Time: Self-test Activation/Deactivation	t _{ST_FP_Resp}	_	_	100	μs	<u>7, 8</u>

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

10.19 Dynamic electrical characteristics - transducer

Table 42. Dynamic electrical characteristics - transducer

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Lateral ⁻	Fransducer Rolloff Frequency (–3 db)						
10917	Medium g	f _{gcell_3dB_mid}	1500	2500	4500	Hz	<u>7</u>
10915	High g	f _{gcell_3dB_hi}	4000	7000	13000	Hz	<u>Z</u>
Lateral ⁻	Fransducer Delay (@100 Hz)						
10921	Medium g	fgcell_delay100_mid	_	_	250	μs	<u>7</u>
10919	High g	f _{gcell_delay100_hi}	_	_	250	μs	<u>Z</u>
Z-Axis T	ransducer Rolloff Frequency (–3 db)						
10923	Medium g	f _{gcell_3dB_mid}	1500	2500	4500	Hz	<u>Z</u>
10925	High g	f _{gcell_3dB_hi}	1500	2500	7500	Hz	<u>Z</u>
Z-Axis T	ransducer Delay (@100 Hz)				I.		
10927	Medium g	f _{gcell_delay100_mid}	_	_	250	μs	<u>Z</u>
10929	High g	f _{gcell_delay100_hi}	_	_	250	μs	<u>7</u>
10912	Package Resonance Frequency	f _{Package}	100	_	_	kHz	<u>7</u>

10.20 Dynamic electrical characteristics - supply and support circuitry

Table 43. Dynamic electrical characteristics - supply and support circuitry

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Reset R	ecovery (All Modes, excluding V _{BUS_I} voltage ramp time)		I			-	
10930	VCC = VCCMIN to POR Release	t _{VCC_POR}	_	_	1	ms	<u>7, 8, 9</u>
10939	POR to first DSI Command (Section 12.1)	t _{POR_DSI}	_	_	6	ms	<u>7, 8, 9</u>
10938	POR to PSI5 Initialization Phase 1 Start (Section 13.4)	t _{POR_PSI5}	_	_	6	ms	<u>7, 8</u>
10937	POR to first SPI Command	t _{POR_SPI}	0.400	_	0.700	ms	<u>7, 8, 9</u>
10936	POR to Sensor Data Valid	t _{POR_DataValid}	_	_	30	ms	<u>7, 8, 9</u>
10935	DSP Setting Change to Sensor Data Valid: DS3, SPI, I ² C	t _{RANGE_DataValid}	_	_	6	ms	<u>7, 8, 9</u>
Soft Re	set Activation Time		I				1
10934	SPI: SS_B high to Reset	tsoft_reset_spi	_	_	700	ns	<u>7, 8</u>
30152	I ² C: Command Complete to Reset (No ACK follows)	t _{SOFT_RESET_I2C}	_	_	700	ns	<u>7, 8</u>
30151	DSI3: Command/Response Complete to Reset	tsoft_reset_dsi	_	_	11	μs	<u>7, 8</u>
41495	PSI5: Command/Response Complete to Reset	t _{SOFT_RESET_PSI}	_	_	120	μs	<u>7, 8</u>
Internal	Oscillator Period		I	ı			
10933	Untrained	± f _{osc}	9.560	10.000	10.440	MHz	<u>1, 7, 8, 9</u>
10940	With Oscillator Training	f _{OSC_TRAIN}	9.900	10.000	10.100	MHz	<u>7, 8, 9</u>

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Table 43. Dynamic electrical characteristics - supply and support circuitry...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_min}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

#	Characteristic	Symbol	Min	Тур	Max	Units	Test notes
Oscillat	or Training (Section 11.5.1)			'			
10932	Oscillator Training Time	t _{OscTrain}	_	4	_	ms	<u>7, 8</u>
10942	Oscillator Cycles in Training Time	n _{OSC_4ms_TYP}	_	40000	_	1/f _{OSC}	<u>7, 8</u>
10944	Oscillator Training Window	OscTrain _{WIN}	38000	_	42000	1/f _{OSC}	<u>7, 8</u>
10943	Oscillator Training Adjustment Threshold	OscTrain _{ADJ}	-400	_	400	1/f _{OSC}	<u>7, 8</u>
10941	Oscillator Training Step Size	OscTrain _{RES}		250		1/f _{OSC}	<u>7, 8</u>
10946	Quiescent Current Settling Time (Power Applied to Iq = I _{IDLE} ± 2 mA)	t _{SET}	_	_	4	ms	<u>7, 9</u>
BUS_I	/licro-cut			1	I.		
10931	Survival Time (BUS_I disconnect without Reset, C _{BUF} =1 µF, Bus with 1 slave)	t _{BUS_I_MICROCUT}	30	_	_	μs	<u>7, 9</u>
10952	Reset Time (BUS_I disconnect time to Reset, C _{BUF} =1 µF, Bus with 1 slave)	t _{BUS_I_RESET}	_	_	1000	μs	<u>7, 9</u>
10953	Survival Time (BUS_I disconnect without Reset, C _{BUF} =470 nF, Bus with 1 slave)	t _{BUS_I_MICROCUT}	15	_	_	μs	<u>7, 9</u>
10954	Reset Time (BUS_I disconnect time to Reset, C _{BUF} =470 nF, Bus with 1 slave)	t _{BUS_I_RESET}	_	_	1000	μs	<u>7, 9</u>
BUS_I	Indervoltage Detection Delay			'			
10947	BUS_I < V _{BUS_I_UV_F} to I _{RESP} Deactivation	t _{BUS_I_POR}	_	_	5	μs	<u>7</u>
V _{BUF} Ur	ndervoltage Detection Delay			-			
10958	V _{BUF} < V _{BUF_UV_F} to I _{RESP} Deactivation	t _{VBUF_POR}	_	_	5	μs	<u>7</u>
10957	Undervoltage/Overvoltage Recovery Delay	t _{UVOV_RCV}	_	100	_	μs	<u>Z</u>
V _{BUF} Ca	pacitor Monitor						
36817	DSI Command Start to Capacitor Test	t _{D_CAPTEST}	_	3.0	_	μs	<u>Z</u>
36821	PSI5 Synchronous Command Start to Capacitor Test	t _{P_CAPTEST}	_	9.2	_	μs	Z
36823	PSI5 Asynchronous Response Start to Capacitor Test	t _{A_CAPTEST}	_	179.2	_	μs	<u>Z</u>
36822	Capacitor Test Disconnect Time	t _{CAPTST_TIME}	_	1	_	μs	<u>Z</u>

11 Functional description

11.1 User accessible data array

A user accessible data array allows for each device to be customized. The array consists of an OTP factory programmable block, an OTP user programmable block, and read-only registers for data and device status. The OTP blocks incorporate independent data verification.

11.1.1 User accessible data - general device information

Table 44. User accessible data - general device information

				Bit									
Туре	Address	Register	7	6	5	4	3	2	1	0			
R	\$00	COUNT		COUNT[7:0]									
R	\$01	DEVSTAT	CH0_ERR	RESERVED	COMM_ERR	MEMTEMP_ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT			
R	\$02	DEVSTAT1	VBUFUV_ERR	BUSINUV_ERR	VBUFOV_ERR	RESERVED	INTREGA_ERR	INTREG_ERR	INTREGF_ERR	CONT_ERR			
R	\$03	DEVSTAT2	F_OTP_ERR	U_OTP_ERR	U_RW_ERR	U_W_ACTIVE	RESERVED	TEMP0_ERR	RESERVED	RESERVED			

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 44. User accessible data - general device information...continued

						В	it					
Туре	Address	Register	7	6	5	4	3	2	1	0		
R	\$04	DEVSTAT3	MISO_ERR	OSCTRAIN_ERR	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED		
R	\$05	COMMREV	0	0	0	0		REV[3:0]				
R	\$06	MREAD_STAT	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	MARGIN_RD_ACT	MARGIN_RD_ERR		
R	\$07 - \$0D	RESERVED				RESE	RVED		,			
R	\$0E	TEMPERATURE		TEMP[7:0]								
R	\$0F	RESERVED		RESERVED								

11.1.2 User accessible data - communication information

Table 45. User accessible data - communication information

						E	Bit					
Гуре ^[1]	Address	Register	7	6	5	4	3	2	1	0		
R/W	\$10	DEVLOCK_WR	ENDINIT	RESERVED	RESERVED	RESERVED	SUP_ERR_DIS	RESERVED	RESE	T[1:0]		
R/W	\$11	WRITE_OTP_ EN	UOTP_ WR_INIT	MARGIN_ RD_EN	RESERVED	RESERVED	EX_ COMMTYPE	EX_PADDR	UOTP_RE	:GION[1:0]		
R/W	\$12	BUSSW_CTRL	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	BUSSW_	CTRL[1:0]		
R/W	\$13	PSI5_TEST	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	PSI5_TEST		
R/W	\$14	UF_REGION_W		REGION_	LOAD[3:0]		0	0	0	0		
R	\$15	UF_REGION_R		REGION_A	CTIVE[3:0]	-	0	0	0	0		
UF2	\$16	COMMTYPE	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED		COMMTYPE[2:0]			
UF2	\$17	RESERVED				RESE	RVED					
UF2	\$18	PHYSADDR	0	0	0	0		PADD	PR[3:0]			
UF2	\$19	RESERVED				RESE	ERVED					
UF2	\$1A	SOURCEID_0	SID0_EN	F	PDCMFORMAT[2:0	D]		SOURCE	EID_0[3:0]			
UF2	\$1B	SOURCEID_1	SID1_EN	RESERVED	RESERVED	RESERVED		SOURCE	EID_1[3:0]			
UF2	\$1E - \$21	RESERVED		I.		RESE	ERVED					
UF2	\$22	TIMING_CFG		PDCM_PER[2:0]	-	OSCTRAIN_ SEL	CK_CAL_RST	CRM_F	PER[1:0]	CK_CAL_EN		
UF2	\$23	CHIPTIME	ST_RI	PT[1:0]	PSI5_ ERRLATCH	SS_EN		CHIPTI	ı			
UF2	\$24	TIMING_CFG2	PSI5_ INIT2_D19	OSC	CTRAIN_ERRCNT	[2:0]	CAPTEST_OFF	RESERVED	BDM_ FRAGSIZE	BDM_EN		
UF2	\$25	PSI5_CFG	SYNC_PD	DAISY_CHAIN	PSI5_ILOW	DUALTRANS	EMSG_EXT	P_CRC	INIT2_EXT	ASYNC		
UF2	\$26	PDCM_ RSPST0_L				PDCM_R	SPST0[7:0]					
UF2	\$27	PDCM_ RSPST0_H	BRC_R	SP0[1:0]	RESERVED		PI	DCM_RSPST0[12	:8]			
UF2	\$28	PDCM_ RSPST1_L			1	PDCM_R	SPST1[7:0]					
UF2	\$29	PDCM_ RSPST1_H	BRC_R	SP1[1:0]	RESERVED		PI	DCM_RSPST1[12	:8]			
UF2	\$2A - \$37	RESERVED				RESE	ERVED					
UF2	\$38	PDCM_CMD_ B_L				PDCM_C	MD_B[7:0]					
UF2	\$39	PDCM_CMD_ B_H	RESERVED	RESERVED	RESERVED		PDCM_CMD_B[12:8]					
UF2	\$3A - \$3C	RESERVED				RESERVED						
UF2	\$3D	SPI_CFG	SPI_STATUS	DATASIZE	SPI_CRC	SPI_CRC_LEN[1:0] SPICRCSEED[3:0]						
UF2	\$3E	WHO_AM_I				WHO_A	AM_I[7:0]					
UF2	\$3F	I2C_ADDRESS				I2C_ADD	RESS[7:0]					

[1] Memory Type Codes

R - Readable Register with No OTP

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

F – User Readable Register with OTP

UF0 – One Time User Programmable OTP Location Region 0

UF1 – One Time User Programmable OTP Location Region 1

UF2 – One Time User Programmable OTP Location Region 2

R/W – User Writable Register

11.1.3 User accessible data - sensor specific information

Table 46. User accessible data - sensor specific information

						E	Bit				
ype ^[1]	Address	Register	7	6	5	4	3	2	1	0	
UF2	\$40	CH0_CFG_U1		LPF	[3:0]	,	SAMPLER	RATE[1:0]	USER_SNS	_SHIFT[1:0]	
UF2	\$41	CH0_CFG_U2				U_SNS_	MULT[7:0]				
UF2	\$42	CH0_CFG_U3	UNSIGN EDDATA	DATATY	/PE0[1:0]		DATATYPE1[2:0]		MOVEA	AVG[1:0]	
UF2	\$43	CH0_CFG_U4	RESET_OC	INVERT	OC_FI	LT[1:0]	PCM		ARM_CFG[2:0]		
UF2	\$44	CH0_CFG_U5		ST_CT	RL[3:0]			OC_LIMIT[2:0]		DSP_DIS	
UF2	\$45	CH0_ARM_ CFG	ARM_C	OS[1:0]	ARM_I	PS[1:0]	ARM_W	S_N[1:0]	ARM_W	S_P[1:0]	
UF2	\$46	CH0_ARM_T_P				ARM_	T_P[7:0]				
UF2	\$47	CH0_ARM_T_N				ARM_	Γ_N[7:0]				
UF2	\$48-\$4F	RESERVED				RESE	RVED				
UF2	\$50	OC_PHASE_ CFG	CH0_OCFINAL	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	
UF2	\$51-\$54	RESERVED				RESE	RVED				
UF2	\$55	CH0_U_ OFFSET_L				CH0_U_O	FFSET[7:0]				
UF2	\$56	CH0_U_ OFFSET_H				CH0_U_OI	FSET[15:8]				
UF2	\$57-\$5E	RESERVED				RESE	RVED				
F	\$5F	CRC_UF2	LOCK_UF2	0	0	0		CRC_I	JF2[3:0]		
R	\$60	CH0_STAT	SIGNALCLIP		OCPHASE[2:0]		ST_INCMPLT	ST_ACTIVE	OFFSET_ERR	ST_ERROR	
R	\$61	DEVSTAT_ COPY	CH0_ERR	RESERVED	COMM_ERR	MEMTEMP_ ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT	
R	\$62	CH0_ SNSDATA0_L				CH0_SNS	DATA0[7:0]				
R	\$63	CH0_ SNSDATA0_H		CH0_SNSDATA0[15:8]							
R	\$64	CH0_ SNSDATA1_L				CH0_SNS	DATA1[7:0]				
R	\$65	CH0_ SNSDATA1_H				CH0_SNSI	DATA1[15:8]				
R	\$66 - \$9F	RESERVED		RESERVED							

[1] Memory Type Codes

R - Readable Register with No OTP

F – User Readable Register with OTP

UF0 - One Time User Programmable OTP Location Region 0

UF1 – One Time User Programmable OTP Location Region 1

UF2 – One Time User Programmable OTP Location Region 2

R/W - User Writable Register

11.1.4 User accessible data - sensor specific information

Table 47. User accessible data - sensor specific information

						В	Bit						
Type ^[1]	Address	Register	7	6	5	4	3	2	1	0			
F	\$A0	CH0_CFG_F		DEV_RA	/_RANGE[3:0] RESERVED RESERVED AXIS[1:								
F	\$A1	RESERVED			RESERVED								
F	\$A2	CH0_STL_P_L				CH0_ST	L_P[7:0]						
F	\$A3	CH0_STL_P_H				CH0_STI	L_P[15:8]						
F	\$A4	CH0_STH_P_L			CH0_STH_P[7:0]								

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 47. User accessible data - sensor specific information...continued

						Е	Bit					
Type ^[1]	Address	Register	7	6	5	4	3	2	1	0		
F	\$A5	CH0_STH_P_H				CH0_ST	H_P[15:8]					
F	\$A6	CH0_STL_N_L				CH0_ST	TL_N[7:0]					
F	\$A7	CH0_STL_N_H		CH0_STL_N[15:8]								
F	\$A8	CH0_STH_N_L				CH0_ST	H_N[7:0]					
F	\$A9	CH0_STH_N_H				CH0_STI	H_N[15:8]					
F	\$AA-\$AE	RESERVED				RESE	RVED					
F	\$AF	CRC_F_A	LOCK_F_A	R	EGA_BLOCKID[2	:0]		CRC_F	A[3:0]			
F	\$B0-\$BE	RESERVED			RESERVED							
F	\$BF	CRC_F_B	LOCK_F_B	REGB_BLOCKID[2:0] CRC_F_B[3:0]								

[1] Memory Type Codes

R - Readable Register with No OTP

F – User Readable Register with OTP

UF0 - One Time User Programmable OTP Location Region 0

UF1 – One Time User Programmable OTP Location Region 1

UF2 – One Time User Programmable OTP Location Region 2

R/W – User Writable Register

11.1.5 User accessible data - traceability information

Table 48. User accessible data - traceability information

			Bit											
Type ^[1]	Address	Register	7	6	5	4	3	2	1	0				
F	\$C0	ICTYPEID				ICTYPE	ID[7:0]							
F	\$C1	ICREVID				ICREV	ID[7:0]							
F	\$C2	ICMFGID				ICMFG	ID[7:0]							
F	\$C3	RESERVED				RESE	RVED							
F	\$C4	PN0				PN0	[7:0]							
F	\$C5	PN1				PN1	[7:0]							
F	\$C6	SN0				SN[7:0]							
F	\$C7	SN1				SN[1	5:8]							
F	\$C8	SN2				SN[2	3:16]							
F	\$C9	SN3			SN[31:24]									
F	\$CA	SN4		SN[39:36] = DI	9:36] = DEVICE_REV[3:0] SN[35:32]									
F	\$CB	ASICWFR#				ASICWE	R#[7:0]							
F	\$CC	ASICWFR_X				ASICWF	R_X[7:0]							
F	\$CD	ASICWFR_Y				ASICWF	R_Y[7:0]							
F	\$CE	RESERVED				RESE	RVED							
F	\$CF	CRC_F_C	LOCK_F_C	F	REGC_BLOCKID[2:	:0]		CRC_F	_C[3:0]					
F	\$D0	ASICWLOT_L				ASICWLO	DT_L[7:0]							
F	\$D1	ASICWLOT_H				ASICWLO	T_H[7:0]							
F	\$D2	TRNS1WFR_X				TRNS1WI	FR_X[7:0]							
F	\$D3	TRNS1WFR_Y				TRNS1WI	FR_Y[7:0]							
F	\$D4	TRNS1LOT_L				TRNS1L0	DT_L[7:0]							
F	\$D5	TRNS1LOT_H				TRNS1L0	T_H[7:0]							
F	\$D6-\$D9	RESERVED				RESE	RVED							
F	\$DA	TRNS1WFR#	TR	NS_ASSY_REV[2:0]		-	TRNS1WFR#[4:0]						
F	\$DB-\$DE	RESERVED		RESERVED										
F	\$DF	CRC_F_D	LOCK_F_D	F	REGD_BLOCKID[2:	:0]		CRC_F	_D[3:0]					
UF0	\$E0	USERDATA_0				USERDA	TA_0[7:0]							
UF0	\$E1	USERDATA_1				USERDA	TA_1[7:0]							
UF0	\$E2	USERDATA_2		USERDATA_2[7:0]										

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Table 48. User accessible data - traceability information...continued

						E	Bit				
ype ^[1]	Address	Register	7	6	5	4	3	2	1	0	
UF0	\$E3	USERDATA_3				USERDA	ATA_3[7:0]				
UF0	\$E4	USERDATA_4				USERDA	ATA_4[7:0]				
UF0	\$E5	USERDATA_5				USERDA	ATA_5[7:0]				
UF0	\$E6	USERDATA_6				USERDA	ATA_6[7:0]				
UF0	\$E7	USERDATA_7				USERDA	ATA_7[7:0]				
UF0	\$E8	USERDATA_8				USERDA	ATA_8[7:0]				
UF0	\$E9	USERDATA_9				USERDA	ATA_9[7:0]				
UF0	\$EA	USERDATA_A				USERDA	ATA_A[7:0]				
UF0	\$EB	USERDATA_B				USERDA	ATA_B[7:0]				
UF0	\$EC	USERDATA_C				USERDA	ATA_C[7:0]			_	
UF0	\$ED	USERDATA_D				USERDA	ATA_D[7:0]				
UF0	\$EE	USERDATA_E				USERDA	ATA_E[7:0]				
F	\$EF	CRC_UF0	LOCK_UF0		REGE_BLOCKID[2:	:0]		CRC_I	UF0[3:0]	_	
UF1	\$F0	USERDATA_10				USERDA	TA_10[7:0]				
UF1	\$F1	USERDATA_11				USERDA	TA_11[7:0]				
UF1	\$F2	USERDATA_12				USERDA	TA_12[7:0]				
UF1	\$F3	USERDATA_13				USERDA	TA_13[7:0]				
UF1	\$F4	USERDATA_14				USERDA	TA_14[7:0]				
UF1	\$F5	USERDATA_15				USERDA	TA_15[7:0]				
UF1	\$F6	USERDATA_16				USERDA	TA_16[7:0]				
UF1	\$F7	USERDATA_17				USERDA	TA_17[7:0]				
UF1	\$F8	USERDATA_18				USERDA	TA_18[7:0]				
UF1	\$F9	USERDATA_19				USERDA	TA_19[7:0]				
UF1	\$FA	USERDATA_1A				USERDA	TA_1A[7:0]				
UF1	\$FB	USERDATA_1B		USERDATA_1B[7:0]							
UF1	\$FC	USERDATA_1C				USERDA	TA_1C[7:0]				
UF1	\$FD	USERDATA_1D				USERDA	TA_1D[7:0]				
UF1	\$FE	USERDATA_1E				USERDA	TA_1E[7:0]				
F	\$FF	CRC_UF1	LOCK_UF1		REGF_BLOCKID[2:	:0]		CRC_I	UF1[3:0]		

[1] Memory Type Codes

R - Readable Register with No OTP

F – User Readable Register with OTP

UF0 – One Time User Programmable OTP Location Region 0

UF1 – One Time User Programmable OTP Location Region 1

UF2 – One Time User Programmable OTP Location Region 2

R/W – User Writable Register

11.2 Register definitions

11.2.1 Rolling counter register (COUNT)

The count register is a read-only register which provides the current value of a free-running 8-bit counter derived from the primary oscillator. A 10-bit prescaler divides the primary oscillator frequency by 1000. Thus, the value in the register increases by one count every 100 μ s and the counter rolls over every 25.6 ms.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 49. Rolling counter register (COUNT)

Loca	ation				В	it					
Address	Register	7	7 6 5 4 3 2 1								
\$00	COUNT				COUN	T[7:0]					
Reset	Value	0	0 0 0 0 0 0								

11.2.2 Device status registers (DEVSTATx)

The device status registers are read-only registers which contain device status information.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 50. Device status registers (DEVSTATx)

Location		Bit							
Address	Register	7	6	5	4	3	2	1	0
\$01	DEVSTAT	CH0_ERR	RESERVED	COMM_ERR	MEMTEMP_ ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT
Rese	t Value	1	0	0	0	x	0	1	1
\$02	DEVSTAT1	VBUFUV_ERR	BUSINUV_ERR	VBUFOV_ERR	RESERVED	INTREGA_ERR	INTREG_ERR	INTREGF_ERR	CONT_ERR
Rese	t Value	x	x	x	x	x	x	x	0
\$03	DEVSTAT2	F_OTP_ERR	U_OTP_ERR	U_RW_ERR	U_W_ACTIVE	RESERVED	TEMP0_ERR	RESERVED	RESERVED
Rese	t Value	0	0	0	0	0	0	x	x
\$04	DEVSTAT3	MISO_ERR	OSCTRAIN_ ERR	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED
Rese	Reset Value		0	х	х	х	х	х	х

11.2.2.1 Channel 0 error flag (CH0_ERR)

The channel 0 error flag is set if a channel 0 specific error is present in the channel 0 DSP:

CH0_ERR = CH0_STAT[SIGNALCLIP] | CH0_STAT[ST_INCMPLT] | CH0_STAT[OFFSET_ERR] | CH0_STAT[ST_ERROR]

11.2.2.2 Communication error flag (COMM_ERR)

The communication error flag is set if any bit in DEVSTAT3 is set:

COMM_ERR = MISO_ERR | OSCTRAIN_ERR

11.2.2.3 Memory or temperature error flag (MEMTEMP_ERR)

The memory error flag is set if any bit in DEVSTAT2 is set:

 $MEMTEMP_ERR = F_OTP_ERR \mid U_OTP_ERR \mid U_RW_ERR \mid U_W_ACTIVE \mid TEMP0_ERR$

11.2.2.4 Supply error flag (SUPPLY_ERR)

The supply error flag is set if any bit in DEVSTAT1 is set:

SUPPLY_ERR = VBUFUV_ERR | BUSINUV_ERR | VBUFOV_ERR | INTREG_ERR | INTREGA_ERR | CONT_ERR

A common timer is used for all error bits in the DEVSTAT1 register. If any bit in DEVSTAT1 is set, the timer is reset to t_{UVOV_RCV} . When no supply errors are present, the timer is decremented until it reaches zero. This error is cleared based on the state of the SUP ERR DIS bit in the DEVLOCK WR register as shown in <u>Table 51</u>.

Table 51. Supply error flag (SUPPLY ERR)

SUP_ ERR_DIS	DSI3 and SPI operating modes (COMMTYPE =0, 2, 3 and 4)	PSI5 operating modes (COMMTYPE =1 and 5)	I ² C operating modes (COMMTYPE =6, 7)
0	No Response until the supply monitor timer expires. The Sensor Data Field Error Code is transmitted for one response after the supply monitor timer expires. A read of the DEVSTAT1 register clears all supply errors, using any communication interface or on a data transmission that includes the error in the status field, if and only if the timer has reached zero.	No transmissions occur if the timer is non-zero. The error is cleared when the timer reaches zero and normal transmissions resume.	No response until the supply monitor timer expires. A read of the DEVSTAT1 register clears all supply errors.
1	No transmissions occur if the timer is non-zero. The error is cleared when the timer reaches zero and normal transmissions resume.		

11.2.2.5 Test mode (TESTMODE)

The test mode bit is set if the device is in test mode. The TESTMODE bit can be cleared by a test mode operation or by a power cycle.

Table 52. Test mode (TESTMODE)

TESTMODE	Operating mode
0	Test mode is not active
1	Test mode is active

11.2.2.6 Device reset (DEVRES)

The device reset bit is set following a device reset. This error is cleared by a read of the DEVSTAT register through any communication interface or on a data transmission that includes the error in the status field.

Table 53. Device reset (DEVRES)

DEVRES	Error condition
0	Normal operation
1	Device reset occurred

11.2.2.7 Device initialization (DEVINIT)

The device initialization bit is set following either a device reset or a change to any of the following bits: CHx_CFG_U1[7:2] or CHx_CFG_U3[1:0]. The bit is cleared once sensor data is valid for read through one of the device communication inter-faces (t_{POR_DataValid}).

Note: Some LPF selections have a step response time longer than the t_{POR_DataValid} delay. If any of these filters are used, the filter may not have achieved the final value once DEVINIT is cleared.

Table 54. Device initialization (DEVINIT)

DEVINIT	Condition	
0	Normal operation	
1	Device Initialization in Process	

11.2.2.8 V_{BUF} under-voltage error (VBUFUV_ERR)

The V_{BUF} under-voltage error bit is set if the VBUF voltage falls below the voltage specified in <u>Section 10.4</u>. See <u>Section 11.4</u> for details on the V_{BUF} under-voltage monitor. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} . This bit is cleared based on the state of the SUP ERR DIS bit in the DEVLOCK WR register as shown in <u>Section 11.2.2.4</u>.

Table 55. V_{BUF} under-voltage error (VBUFUV_ERR)

VBUFUV_ERR	Error condition
0	No error detected
1	VBUF Voltage Low

11.2.2.9 BUS IN under-voltage error (BUSINUV_ERR)

The BUS IN under-voltage error bit is set if the BUS_IN voltage falls below the voltage specified in <u>Section 10.4</u>. See <u>Section 11.4</u> for details on the BUS IN under-voltage monitor. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV}. This bit is cleared based on the state of the SUP_ER-R_DIS bit in the DEVLOCK_WR register as shown in <u>Section 11.2.2.4</u>.

Table 56. BUS IN under-voltage error (BUSINUV ERR)

BUSINUV_ERR	Error condition
0	No error detected
1	BUS_IN Voltage Low

11.2.2.10 V_{BUF} over-voltage error (VBUFOV_ERR)

The V_{BUF} over-voltage error bit is set if the VBUF voltage rises above the voltage specified in <u>Section 10.4</u>. See <u>Section 11.4</u> for details on the V_{BUF} over-voltage monitor. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} . This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in <u>Section 11.2.2.4</u>.

Table 57. V_{BUF} over-voltage error (VBUFOV_ERR)

VBUFUV_ERR	Error condition
0	No error detected
1	VBUF Voltage High

11.2.2.11 Internal analog regulator voltage out of range error (INTREGA_ERR)

The internal analog regulator voltage out of range error bit is set if the internal analog regulator voltage falls outside expected limits. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} . This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in Section 11.2.2.4.

Table 58. Internal analog regulator voltage out of range error (INTREGA_ERR)

INTREGA_ERR	Error condition
0	No error detected
1	Internal Analog Regulator Voltage Out of Range

11.2.2.12 Internal digital regulator voltage out of range error (INTREG_ERR)

The internal digital regulator voltage out of range error bit is set if the internal digital regulator voltage falls outside expected limits. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} . This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in Section 11.2.2.4.

Table 59. Internal digital regulator voltage out of range error (INTREG_ERR)

INTREG_ERR	Error condition
0	No error detected
1	Internal Digital Regulator Voltage Out of Range

11.2.2.13 Internal OTP regulator voltage out of range error (INTREGF ERR)

The internal OTP regulator voltage out of range error bit is set if the internal OTP regulator voltage falls outside expected limits. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} . This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in Section 11.2.2.4.

Table 60. Internal OTP regulator voltage out of range error (INTREGF_ERR)

INTREGF_ERR	Error condition
0	No error detected
1	Internal OTP Regulator Voltage Out of Range

11.2.2.14 Continuity monitor error (CONT_ERR)

The continuity monitor passes a low current through a connection around the perimeter of the device and monitors the continuity of the connection. The error bit is set if a discontinuity is detected in the connection. A common timer is used for all error bits in the DEVSTAT1 register. If the CONT_ERR bit is set, the timer is reset to t_{UVOV_RCV}. This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in Section 11.2.2.4.

Table 61. Continuity monitor error (CONT_ERR)

CONT_ERR	Error condition
0	No error detected
1	Error detected in the continuity of the monitor circuit

11.2.2.15 NXP OTP array error (F_OTP_ERR)

The factory OTP array error bit is set if a fault is detected in the factory OTP array. This error is cleared by a device reset. See <u>Section 11.2.15.2</u> for details on a method to disable the automatic clearing of this error in PSI5 mode.

Table 62. NXP OTP array error (F OTP ERR)

F_OTP_ERR	Error condition					
0	No error detected					
1	Error Detected in the Factory OTP Array					

11.2.2.16 User OTP array error (U_OTP_ERR)

The user OTP array error bit is set if a fault is detected in the user OTP array. This error is cleared by a device reset. See <u>Section 11.2.15.2</u> for details on a method to disable the automatic clearing of this error in PSI5 mode.

Table 63. User OTP array error (U OTP ERR)

U_OTP_ERR	Error condition					
0	No error detected					
1	Error Detected in the User OTP Array					

11.2.2.17 User read/write array error (U_RW_ERR)

When ENDINIT is set, an error detection is enabled for all user writable registers. The error detection code is continuously calculated on the user writable registers and verified against a previously calculated error detection code. If a mismatch is detected in the error detection, the U_RW_ERR bit is set. This error is cleared by a read of the DEVSTAT2 register through any communication interface or on a data transmission that includes the error in the status field. See Section 11.2.15.2 for details on a method to disable the automatic clearing of this error in PSI5 mode.

Table 64. User read/write array error (U_RW_ERR)

U_RW_ERR	Error condition					
0	o error detected					
1	Error Detected in the User Read/Write Array					

11.2.2.18 User OTP write in process status bit (U_W_ACTIVE)

The user OTP write in process status bit is set if a user initiated write to OTP is currently in process. The U_W_ACTIVE bit is automatically cleared once the write to OTP is complete.

Table 65. User OTP write in process status bit (U_W_ACTIVE)

U_W_ACTIVE	Status condition
0	No OTP Write in Process
1	OTP Write in Process

11.2.2.19 Channel 0 temperature sensor error (TEMP0_ERR)

The channel 0 temperature error bit is set if an over or under temperature condition exists on channel 0. This error is cleared by a read of the DEVSTAT2 register through any communication interface or on a data transmission that includes the error in the status field. See Section 11.2.15.2 for details on a method to disable the automatic clearing of this error in PSI5 mode.

Table 66. Channel 0 temperature sensor error (TEMP0_ERR)

TEMP0_ERR	Error condition					
0	No error detected					
1	Over- or Under-Temperature error condition detected					

11.2.2.20 SPI MISO data mismatch error flag (MISO_ERROR)

In SPI mode, the MISO data mismatch flag is set when a MISO Data mismatch fault occurs as specified in <u>Section 14.5.7</u>. The MISO_ERROR bit is cleared by a read of the DEVSTAT3 register through any communication interface, or by a status transmission including the error status through the SPI.

Table 67. SPI MISO data mismatch error flag (MISO_ERROR)

MISO_ERROR	Error condition					
0	Normal operation					
1	MISO Data Mismatch					

11.2.2.21 Oscillator training error (OSCTRAIN_ERR)

The oscillator training error bit is set if an error detected in either the oscillator training settings, or the master communication timing. See <u>Section 11.5.2</u>. Once the error condition is corrected, the OSCTRAIN_ERR bit is cleared after a read of the OSCTRAIN_ERR bit through any communication interface, or by a status transmission including the error status through any communication interface.

Table 68. Oscillator training error (OSCTRAIN_ERR)

OSCTRAIN_ERR	Error condition
0	No error detected
1	Oscillator Training Error. See <u>Section 11.5.2</u>

11.2.3 Communication protocol revision register (COMMREV)

The communication protocol revision register is a read-only register which contains the revision for the communication protocol used.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 69. Communication protocol revision register (COMMREV)

					,				
Location					В	it			
Address	Register	7	6	5	4	3	2	1	0
\$05	COMMREV	0	0	0	0		COMM	REV[3:0]	
Reset \	Value for DSI3	0	0	0	0	0	0	0	1
Reset \	Value for PSI5	0	0	0	0	0	1	1	0
Reset	Value for SPI	0	0	0	0	0	0	0	0
Reset	Value for I ² C	0	0	0	0	0	1	0	1

Note: The response to a register write of the COMMREV register is a valid response with the register contents equal to 0x00.

11.2.4 Margin read status register (MREAD_STAT)

The Margin Read Status register is a read-only register which contains the status for the user enabled OTP margin read test.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 70. Margin read status register (MREAD_STAT)

Location Bit									
Address	Register	7	6	5	4	3	2	1	0
\$06	MREAD_ STAT	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	MARGIN_ RD_ACT	MARGIN_ RD_ERR
Re	set Value	0	0	0	0	0	0	0	0

Note: The user enabled OTP margin read test is not intended for use in normal operation. It is intended for use only after user OTP programming during manufacturing.

11.2.4.1 Margin read active status (MARGIN_RD_ACT)

The margin read active status bit is set if a user enabled OTP margin read test is in process. The status bit is automatically cleared when the OTP margin read test is complete. See <u>Section 11.2.7.1</u> for details regarding the user enabled OTP margin read test.

Table 71. Margin read active status (MARGIN_RD_ACT)

MARGIN_RD_ACT	Condition				
0	No Margin Read Test is in Process				
1	Margin Read Test is in Process				

11.2.4.2 Margin read error status (MARGIN_RD_ERR)

The margin read error status bit is set if a user enabled OTP margin read test has failed. The margin read error status bit is cleared on a read of the MREAD_STAT register. The margin read error status bit has no impact on device operation or performance. See Section 11.2.7.1 for details regarding the user enabled OTP margin read test.

Table 72. Margin read error status (MARGIN_RD_ERR)

MARGIN_RD_ERR	Condition					
0	o Margin Read Test Failure					
1	Margin Read Test Failure					

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

11.2.5 Temperature register (TEMPERATURE)

The temperature register is a read-only register which provides a temperature value from the internal temperature sensor. The temperature value is specified in <u>Section 10.5</u>.

Note, the device is only guaranteed to operate within the temperature limits specified in <u>Section 10</u>. This includes the performance of the temperature register values.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 73. Temperature register (TEMPERATURE)

1	ocation		<u> </u>	<u> </u>	Bit				
Location									
Address	Register	7	7 6 5 4 3 2 1 0						
\$0E	TEMPE RATURE		TEMP[7:0]						
Reset Value		0	0	0	0	0	0	0	0

11.2.6 Device lock register (DEVLOCK_WR)

The device lock register is a user programmed read/write register which contains the ENDINIT bit and reset control bits.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 74. Device lock register (DEVLOCK_WR)

Location			Bit								
Address	Register	7	6	5	4	3	2	1	0		
\$10	DEVLOCK_WR	ENDINIT	RESERVED	RESERVED	RESERVED	SUP_ERR_DIS	RESERVED	RESET[1:0]			
Reset Value		0	0	0	0	0	0	0	0		

11.2.6.1 End initialization bit (ENDINIT)

The ENDINIT bit is a control bit used to indicate that the user has completed all device and system level initialization tests. Once the ENDINIT bit is set, writes to all writable register bits are inhibited except for the DEVLOCK_WR register. Once set, the ENDINIT bit can only be cleared by a device reset.

When ENDINIT is set, the following occurs:

- An error detection is enabled for all user writable registers. The error detection code is continuously calculated on the user writable registers and verified against a previously calculated error detection code.
- The offset cancellation filter is forced to its final stage.
- · Self-test is disabled and inhibited.
- Register Writes are inhibited with the exception of the RESET[1:0] bits in the DEVLOCK_WR register.

In DSI3 mode, when the ENDINIT bit is set, the device is forced to PDCM according to the device settings and no longer responds to CRM commands.

In PSI5 mode, the ENDINIT bit is automatically set when the device exits Initialization Phase 3.

11.2.6.2 Supply error reporting disable bit (SUP_ERR_DIS)

The supply error disable bit allows the user to disable reporting of the supply errors in the DSI3 PDCM and SPI status fields. See Section 11.2.2.4.

11.2.6.3 Reset control bits (RESET[1:0])

In DSI3 mode, SPI mode, I²C mode or PSI5 mode, a series of three consecutive register write operations to the reset control bits results in a device reset. To reset the device, the following register write operations must be performed in consecutive commands and in the order shown in Table 75 or the device will reset.

Table 75. Reset control bits (RESET[1:0])

Register write to DEVLOCK_WR	RES_1	RES_0	Effect
Register Write 1	0	0	No Effect
Register Write 2	1	1	No Effect
Register Write 3	0	1	Device RESET

The response to a register write returns the new register value, including the values written to the RESET[1:0] bits. After the third Register Write command, the device initiates a reset and therefore does not transmit a response to this command or an Acknowledge in I²C mode. The response to a register read returns '00' for RESET[1:0] and terminates the reset sequence. The reset control bits are not included in the read/ write array error detection.

11.2.7 Write OTP enable register

The write OTP enable register is a user programmed read/write register that allows the user to write the contents of the user programmed OTP array mirror registers to the OTP registers. This register is included in the user read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 76. Write OTP enable register

Location		Bit										
Address	Register	7	6	5	4	3	2	1	0			
\$11	WRITE_OTP_EN	UOTP_WR_ INIT	MARGIN_RD_ EN	RESERVED	RESERVED	EX_ COMMTYPE	EX_PADDR	UOTP_REGION[1:0]				
Reset Value		0	0	0	0	0	0	0	0			

11.2.7.1 Margin read enable bit (MARGIN RD EN)

The margin read enable bit initiates an OTP margin read test for all user programmable OTP regions: UF2, UF0, and UF1. The user enabled OTP margin read test is not intended for use in normal operation. It is intended for use only after user OTP programming during manufacturing.

The procedure for completing an OTP margin read test is shown in step 1 through step 7:

 Read the MREAD_STAT register to confirm that the MARGIN_RD_ACT and MARGIN RD ERR bits are both cleared.

- 2. Write 0x40 to the WRITE_OTP_EN register to set the MARGIN_RD_EN bit. This initiates the OTP margin read test which completes the sequence listed in steps <u>a</u> through <u>i</u>.
 - a. The UF2 block is read. The ECC is checked for double bit errors and the CRC is verified. If an ECC error or CRC error exists or if UF2 block is unlocked, the MARGIN RD ERR bit is set and the test is terminated.
 - b. A margin read low test is run with the read threshold reduced by 25 %. The data is checked against the expected values in the mirror registers. If a double bit ECC error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test is terminated.
 - c. A margin read high test is run with the read threshold increased by 25 %. The data is checked against the expected values in the mirror registers. If a double bit error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test is terminated.
 - d. The UF0 block is read. The ECC is checked for double bit errors and the CRC is verified. If an ECC error or CRC error exists or if UF0 block is unlocked, the MARGIN RD ERR bit is set and the test is terminated.
 - e. A margin read low test is run with the read threshold reduced by 25 %. The data is checked against the expected values in the mirror registers. If a double bit ECC error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test is terminated.
 - f. A margin read high test is run with the read threshold increased by 25 %. The data is checked against the expected values in the mirror registers. If a double bit error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test is terminated.
 - g. The UF1 block is read. The ECC is checked for double bit errors and the CRC is verified. If an ECC error or CRC error exists or if UF1 block is unlocked, the MARGIN RD ERR bit is set and the test is terminated.
 - h. A margin read low test is run with the read threshold reduced by 25 %. The data is checked against the expected values in the mirror registers. If a double bit ECC error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test is terminated.
 - A margin read high test is run with the read threshold increased by 25 %. The data is checked against the expected values in the mirror registers. If a double bit error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test is terminated.
- 3. Read the MREAD_STAT register to confirm that the MARGIN_RD_ACT bit is set and the MARGIN_RD_ERR bit is cleared.
- 4. Delay 1.5 ms minimum.
- 5. Read the MREAD_STAT register to confirm that the MARGIN_RD_ACT bit is cleared. Check the state of the MARGIN_RD_ERR bit.
 - If the MARGIN_RD_ERR bit is cleared, the margin read test passed.
 - If the MARGIN_RD_ERR bit is set, the margin read test failed.
- 6. When the test is complete, the MARGIN_RD_EN bit is cleared.
- 7. When the test is complete and the MREAD_STAT register has been read, the MARGIN_RD_ACT and the MARGIN_RD_ERR bit are cleared.

The user enabled OTP margin read test can only be enabled when the ENDINIT bit is not set.

11.2.7.2 Write OTP enable and programming bits

Register writes executed by the user to the user programmed OTP array only update the mirror register contents for the OTP array, not the actual OTP registers. To copy the values to the actual OTP registers, a write must be executed to the WRITE_OTP_EN register with the UOTP_WR_INIT bit set. The state of the UOTP_REGION[1:0], the EX_COMMTYPE, and the EX_PADDR bits in the command determine which region of OTP are written as shown in Table 77.

Table 77. Write OTP enable and programming bits

EX_ COMMTYPE	EX_PADDR	UOTP_ REGION[1]	UOTP_ REGION[0]	OTP write operation	Special conditions
X	X	0	0	Write the current contents of the UF0 registers to OTP	
X	X	0	1	Write the current contents of the UF1 registers to OTP	
0	0	1	0	Write the current contents of the UF2 registers to OTP, including the COMMTYPE register and the PHYSADDR register	
0	1	1	0	Write the current contents of the UF2 registers to OTP, including COMMTYPE and excluding PHYSADDR.	PHYSADDR = 0x00 after OTP Write
1	0	1	0	Write the current contents of the UF2 registers to OTP, excluding COMMTYPE and including PHYSADDR.	User must not overwrite COMMTYPE
1	1	1	0	Write the current contents of the UF2 registers to OTP, excluding COMMTYPE and excluding PHYSADDR.	User must not overwrite COMMTYPE PHYSADDR = 0x00 after OTP Write
х	х	1	1	Reserved for Future Use	

The UF0 and UF1 user OTP regions as well as the NXP programmed F OTP regions share common mirror registers. For this reason, writes to the OTP for each region must be completed independently according to the procedure below.

Depending upon the operating mode used, the user needs to write the UF2 values to OTP either with or without the PHYSADDR register and the COMMTYPE register being written. If Discovery Mode or switch connected daisy chain mode is used, the PHYSADDR register must remain un-programmed (0x0000). If a pre-programmed bus mode is used, the PHYSADDR register must be programmed to a non-zero value. To support these two user modes, the EX_PADDR bit is used as described in Table 77.

Once a region is written using the OTP Write sequence, the LOCK_Uxx bit in the appropriate CRC_xxx register is automatically set, locking the array from future writes. Once a region is locked, an error detection is activated to detect changes to the register values. Register values in the UF2 region can be over-written using register write commands, but no new values can be written to the OTP.

The procedure for writing to the user OTP array UF0 and UF1 regions is:

1. Read the appropriate CRC_UFx register and confirm the LOCK_Uxx bit is not set.

- 2. Write the desired values to the user array registers for only the region to be written using the procedures in <u>Section 11.2.10</u>.
 - The user must take care to ensure that the proper data is written to each region. If a register write is executed to a new region, the base address changes to the new region. The previous data written to the register block remains in the shared registers and is written to OTP if the Write OTP sequence is completed.
- 3. Execute a write to the WRITE_OTP_EN register with the appropriate bits set for the desired region to program.
 - Once the WRITE_OTP_EN register write is completed, a CRC is calculated for the data to be written to the region, the register values are written to OTP and the region is locked from future writes. The UOTP WR INIT bit remains set.
- 4. Delay $t_{\text{OTP WRITE MAX}}$ to allow the device to complete the writes to OTP.
- 5. Verify that the OTP write successfully completed by reading back all of the OTP registers using Register Read commands as defined in <u>Section 11.2.10</u>.
- 6. Repeat steps 1 through 4 for all regions to be programmed.

The procedure for writing to the user OTP array UF2 region is:

- 1. Read the CRC UF2 register and confirm the LOCK UF2 bit is not set.
- 2. Write the desired values to the user array registers.
- 3. Execute a write to the WRITE_OTP_EN register with region 2 selected and the EX_COMMTYPE and EX_PADDR bit set as desired.
 - Once the WRITE_OTP_EN register write is completed, a CRC is calculated for the data to be written to the region, the register values are written to OTP and the region is locked from future writes. The UOTP_WR_INIT bit remains set.
- 4. Delay t_{OTP_WRITE_MAX} to allow the device to complete the writes to OTP and an automatic read of the UF2 registers from OTP.
- 5. Verify that the OTP write successfully completed by reading back all of the OTP registers using Register Read commands.

11.2.8 Bus switch control register (BUSSW_CTRL)

The bus switch control register is a user programmed read/write register which controls the state of the bus switch output driver. This register is included in the user read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 78. Bus switch control register (BUSSW CTRL)

Location			Bit								
Address	Register	7	6	5	4	3	2	1	0		
\$12	BUSSW_CTRL	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	BUSSW_CTRL[1:0]			
Reset Value		0	0	0	0	0	0	0	0		

The BUSSW_CTRL bit controls the state of the BUSSW_L pin.

Table 79. BUSSW_L pin state

table 10. Boodin_E pin otate										
BUSSW_CTRL[1]	BUSSW_CTRL[0]	BUSSW_L Pin State								
0	0	High Impedance. An external pullup or pulldown resistor is required if an external switch is connected								
0	1	High Impedance. An external pullup or pulldown resistor is required if an external switch is connected								

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 79. BUSSW_L pin state...continued

BUSSW_CTRL[1]	BUSSW_CTRL[0]	BUSSW_L Pin State
1	0	Active Low.
1	1	Active High.

Note: In DSI3 and PSI5 DPM modes, the bus switch is activated upon receipt of the register write command. The bus switch activation may impact the current on the bus and cause corruption of the register write response.

11.2.9 PSI5 test register (PSI5_TEST)

The PSI5 test register is a user read/write register that contains the PSI5 test control. This register is included in the user read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 80. PSI5 test register (PSI5 TEST)

Location		Bit								
Address	Register	7	6	5	4	3	2	1	0	
\$13	PSI5_TEST	RESERVED	PSI5_TEST							
Reset Value		0	0	0	0	0	0	0	0	

11.2.9.1 PSI5 test bit (PSI5_TEST)

If PSI5 mode is not enabled in the COMMTYPE, the PSI5 test bit enables a single PSI5 command receive and response transmission to allow for the PSI5 transceiver to be tested in other modes.

When the PSI5_TEST bit is set, the device and system proceed through following process.

- 1. The device switches the BUS_I transceiver to PSI5 mode.
- 2. The system holds the BUS_I node constant for 2 ms minimum to allow the BUS_I command receiver to capture the average voltage.
- 3. The system must transmit a sync pulse meeting the specifications in Section 10.
- 4. The device transmits a response to the sync pulse with the following configuration:
 - a. The sync pulse is pulled down as configured by the SYNC_PD bit in the PSI5_CFG register.
 - b. The response starts in the time slot selected in the PDCM RSPST0 register.
 - c. The response bit time is configured in the CHIPTIME register.
 - d. The response current is configured by the PSI5_ILOW bit in the PSI5_CFG register.
 - e. Two start bits are transmitted as specified in Section 13.3.2.
 - f. 10-bits of data equal to 0x2AA are transmitted.
 - g. Error checking bits are transmitted as configured by the P_CRC bit in the PSI5_CFG register.
- 5. Once the transmission is complete, the PSI5_TEST bit is cleared and the device returns to the communication mode as defined in the COMMTYPE register.

If the bit is set from DSI3 mode, this process occurs once the device has replied to the write message, regardless of whether or not the reply attempted was successful.

If the bit is set from SPI mode, the process occurs once the PSI5_TEST bit is set with no SPI reply necessary.

If the bit is set from I²C mode, the process occurs once the PSI5_TEST bit is set with no I²C reply necessary.

If PSI5 mode is enabled in the COMMTYPE register, this bit has no impact on device operation or performance.

11.2.10 UF region selection registers (UF_REGION_x)

The UF region load register is a user read/write register that contains the control bits for the UF0 and UF1 regions to be accessed. This register is included in the user read/write array error detection. The UF region active register is a read-only register that contains the status bits for the UF0 and UF1 regions to be accessed.

The UF_REGION_W register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode. The UF_REGION_R register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 81. UF region selection registers (UF_REGION_x)

Loc	ation	Bit									
Address	Register	7	6	5	4	3	2	1	0		
\$14	UF_ REGION_W		REGION_	LOAD[3:0]		0	0	0	0		
\$15	UF_REGION_R		REGION_A	CTIVE[3:0]		0	0	0	0		
Rese	t Value	1	1	1	0	0	0	0	0		

The user OTP regions UF0, UF1, and F share a block of 16 registers. Prior to reading the registers via any communication interface, the user must ensure that the desired OTP registers are loaded into the readable registers. To ensure proper reading of the UF0, UF1 and F registers, follow this procedure:

 Write the desired address range to be read to the REGION_LOAD[3:0] bits in the UF_REGION_W register using one of the communication interfaces available via the COMMTYPE register.

Table 82. Region load bits

R	REGION_LOAD[3:0]			OTP register addresses loaded into the readable registers			
0	0	0	0	Not Applicable			
0	0	0 1		Not Applicable			
	0010 through 1001			RESERVED			
1	0	1	0	Address Range \$A0 through \$AF			
1	0	1	1	Address Range \$B0 through \$BF			
1	1	0	0	Address Range \$C0 through \$CF			
1	1	0	1	Address Range \$D0 through \$DF			
1	1	1	0	Address Range \$E0 through \$EF			
1	1	1	1	Address Range \$F0 through \$FF			

2. $\overline{\text{Delay}}$ a minimum of t_{SSN_UF01} .

3. Optional: Execute a register read of the UF_REGION_R register and confirm the REGION_ACTIVE[3:0] bits match the values written to the REGION_LOAD[3:0] bits in the UF_REGION_W register.

Table 83. Region active bits

RE	GION_A	CTIVE[3	3:0]	OTP register addresses loaded into the readable registers					
0	0	0	0	Load of OTP registers is in process					
0	0 0 0 1		1	The contents of the shared registers has been over-written by the user					
0	0010 through 1001			Not Applicable					
1	0	1	0	Address Range \$A0 through \$AF					
1	0	1	1	Address Range \$B0 through \$BF					
1	1	0	0	Address Range \$C0 through \$CF					
1	1	0	1	Address Range \$D0 through \$DF					
1	1	1	0	Address Range \$E0 through \$EF					
1	1 1 1 1			Address Range \$F0 through \$FF					

- 4. Execute a Register Read of the desired registers from the UF0, UF1, or F register section. Complete all desired Register Reads of the selected UF Region.
- 5. Repeat steps 1 through 4 for the next desired UF region to read.

Notes:

- The user must take care to ensure that the desired registers are addressed. For
 example, if the REGION_LOAD bits are set to 0xA and the user executes a read
 of address \$C2, the contents of registers \$A2 are transmitted. No error detection is
 included other than a read of the REGION_ACTIVE bits.
- For COMMTYPE options with multiple protocol options (COMMTYPE = '000' or '001'), no error detection is included other than a read of the REGION_ACTIVE bits. The user must take care to ensure that the REGION_LOAD, bits are not inadvertently changed by an alternative protocol while executing register reads.
- In DSI3, BDM, writes to registers are inhibited. For this reason, reads of the UF0, UF1, and F registers will only be possible for the region selected by the REGION_ACTIVE bits at the time ENDINIT is set.
- In SPI and I²C mode, once the ENDINIT bit is set, writes to registers other than the RESET[1:0] bits are inhibited. For this reason, reads of the UF0, UF1, and F registers will only be possible for the region selected by the REGION_ACTIVE bits at the time ENDINIT is set.

11.2.11 Communication type register (COMMTYPE)

The communication type register is a user programmed read/write register which contains user-specific configuration information for communication type. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, and I²C mode. In PSI5 Programming Mode, the value of this register must not be changed or a U_OTP Memory occurs.

Table 84. Communication type register (COMMTYPE)

Loc	ation		Bit						
Address	Register	7	6	5	4	3	2	1	0
\$16	COMMTYPE	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	COMMTYPE[2:0]		
	Unprogrammed OTP Value: FXLS90xxx		0	0	0	0	0	0	0
Programmed OTP Value: FXLS93xxx		0	0	0	0	0	0	0	1

11.2.11.1 Communication type (COMMTYPE[2:0])

The communication type bits select the available protocols for the device as shown in Table 85.

Table 85. Communication type (COMMTYPE[2:0])

СО	MMTY	'PΕ	Avai	lable commu	inication proto	cols	Arming function availability	BUS_I	
	[2:0]		DSI3 ^[1]	PSI5 ^[2]	32-bit SPI ^[3]	I ² C ^[4]		undervoltage detection	
0	0	0	Х		Х		Enabled based on ARM_CFG[2:0]	Disabled	
0	0	1		X	Х		Enabled based on ARM_CFG[2:0]	Disabled	
0	1	0			Х		Enabled based on ARM_CFG[2:0]	Disabled	
0	1	1	Х				Disabled	Enabled	
1	0	0			Х		Enabled based on ARM_CFG[2:0]	Disabled	
1	0	1		Х			Disabled	Enabled	
1	1	0				Х	Disabled	Disabled	
1	1	1				Х	Disabled	Disabled	

- [1] See Section 12 "DSI3 protocol"
- [2] See Section 13 "PSI5 protocol"
- [3] See Section 14 "Standard 32-bit SPI protocol"
- [4] See Section 15 "Inter-integrated circuit (I2C) interface"

When writing to this register, care must be taken to prevent from inadvertently disabling the desired communication mode. Communication mode register value changes which disable a protocol, including writes to OTP, will not take effect until a device reset to prevent from disabling a necessary communication method. <u>Table 86</u> describes how communication mode register changes are handled.

Table 86. COMMTYPEs and effect on device

Original COMMTYPE	New COMMTYPE	Device effect			
0 (DSI3 / SPI)	1 (PSI5 / SPI)	A protocol change does not occur until a device reset (assuming the OTP is programmed).			
		A protocol change does not occur until a device reset (assuming the OTP is programmed).			
0 (DSI3 / SPI)	6, 7 (I ² C)	A protocol change does not occur until a device reset (assuming the OTP is programmed).			
1 (PSI5 / SPI)	5 (PSI5)	A protocol change does not occur until a device reset (assuming the OTP is programmed).			
2, 3, 4, 5 (SPI)	Any	No protocol change occurs.			
6, 7 (I ² C)	Any	No protocol change occurs.			

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Notes:

- In PSI5 / SPI mode (COMMTYPE = 1), SPI transactions are ignored by the device until PSI5 initialization 3 is complete. SPI Test Mode Entry is not restricted.
- In PSI5 / SPI mode (COMMTYPE = 1), only SPI read register transactions are available.
- In DSI3 / SPI mode (COMMTYPE = 0) and PSI5 / SPI mode (COMMTYPE = 1), registers accesses by protocol are completed in the order received. Care must be taken to prevent from incorrect addressing of the F, UF0, and UF1 registers.
- In SPI only mode and in I²C only mode, the BUS_I undervoltage detection is disabled to allow for 3.3 V system operation. the V_{BUF} undervoltage detection replaces the BUS_I undervoltage detection.
- If the COMMTYPE register is pre-programmed in OTP to a specific communication type, the user must prevent writes to this register when writing the UF2 register to OTP. If a pre-programmed COMMTYPE register is over-written and then written to OTP, the UF2 CRC verification will fail.

11.2.12 Physical address register (PHYSADDR)

The physical address register is a user programmed OTP register which contains the physical address of the slave for use in DSI3. This register is included in the read/write array error detection. If the physical address stored in the OTP array is zero, the address is assigned either during Discovery Mode or during Command and Response Mode.

If the physical address stored in the OTP array is non-zero, the device ignores Discovery Mode and uses the programmed physical address for Command and Response Mode. The physical address register value can be changed by a Command and Response Mode register write command. However, if the UF2 region is locked, the value will always be reset to the OTP array value after a reset.

In SPI mode, I²C mode and PSI5 mode, the PHYSADDR register is readable and writable, but has no impact on device operation or performance.

Table 87. Physical address register (PHYSADDR)

Location					В	it			
Address	Register	7	6	5	4	3	2	1	0
\$18	PHYS ADDR	0	0	0	0		PADD	R[3:0]	
Unprogrammed OTP Value		0	0	0	0	0	0	0	0

11.2.13 Source identification registers (SOURCEID x)

The source identification registers are user programmed read/write registers which contain the source identification information used for DSI3 PDCM, PSI5 mode, and SPI Mode. These registers are included in the read/write array error detection.

These registers are readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 88. Source identification registers (SOURCEID x)

	3.000.00								
Location					В	it			
Address	Register	7	6	5	4	3	2	1	0
\$1A	SOURCEID_0	SID0_EN	PDCMFORMAT[2:0]			SOURCEID_0[3:0]			

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 88. Source identification registers (SOURCEID_x)...continued

Loca	Location				В	Bit			
Address	Register	7	6	5	4	3	2	1	0
Unprogramme	Unprogrammed OTP Value		0	0	0	0	0	0	0
Unprogr	FXLS93xxx Unprogrammed Default PSI5 Mode		1	0	0	0	0	0	0
\$1B	\$1B SOURCEID_1		RESERVED	RESERVED	RESERVED		SOURCE	ID_1[3:0]	
Unprogramme	ed OTP Value	0	0	0	0	0	0	0	0

11.2.13.1 Data source enable bits (SIDx_EN)

The SIDx_EN bits enable the data source for the associated source identification as described in <u>Section 11.2.13.3</u>.

11.2.13.2 PDCM format control bits (PDCMFORMAT[2:0])

In DSI3 mode, the PDCM format control bits set the PDCM field sizes as shown in Table 89. See Section 12.4.2 for PDCM response format details.

Table 89. PDCM format control bits (PDCMFORMAT[2:0])

PDCM	PDCMFORMAT[2:0]		Source ID field size (Bits)	Keep alive counter field size (Bits)	Status field size (Bits)	Data field size (Bits)	Total including CRC (Bits)
0	0	0	0	2	4	10	24
0	0	1	4	2	4	10	28
0	1	0	0	0	4	12	24
0	1	1	4	0	4	12	28
1	0	0	0	2	0	10	20
1	0	1	0	0	0	16	24
1	1	0	0	0	4	16	28
1	1	1	4	0	4	16	32

In PSI5 mode, the PDCM format control bits set the PSI5 response format as shown in <u>Table 90</u>. See <u>Section 13.3.2</u> for PSI5 response format details. Note: the data field size applies to all modes except Programming Mode which has a fixed size of 10 bits. The user must take care to prevent from combining incompatible data field sizes and transmission times.

Table 90. PDCM format control bits

P	DCMFORMAT[2:	0]	Data field size (Bits)
0	x	x	10
1	x	x	16

In SPI and I²C mode, the PDCMFORMAT bits are readable and writable, but have no impact on device operation or performance.

11.2.13.3 Source identification (SOURCEID x)

In SPI mode, the SOURCEID field in the SPI command is compared against the values in the SOURCEID x registers. If the SOURCEID field matches one of the values in the

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

SOURCEID_x registers and the SIDx_EN bit is set for that register, the sensor data for that SOURCEID is transmitted as shown in Table 91. If more than one enabled SOURCEID_x register value matches the SOURCEID field in the SPI command a SPI sensor data request error response is transmitted. If no enabled SOURCEID_X register value matches the SOURCEID field in the SPI command a SPI sensor data request error response is transmitted.

Table 91. SPI source identification (SOURCEID x)

Source ID	Source ID enable (SIDx_EN)	Transmitted data
SOURCEID_0	0	SPI Error Response
	1	CH0_SNSDATA0
SOURCEID_1	0	SPI Error Response
	1	CH0_SNSDATA1

In DSI3 mode, if the SIDx_EN bit in the SOURCEID_x register is set, the associated SOURCEID value is transmitted in the SOURCEID field of PDCM mode using the associated transmission time shown in <u>Table 92</u>.

Table 92. DSI3 source identification (SOURCEID x)

		(
Source ID Source ID enable (SIDx_EN)		Transmission time ^[1]	Transmitted data ^[2]
SOURCEID_0	0	NA	NA
	1	PDCM_RSPST0	CH0_SNSDATA0
SOURCEID_1	0	NA	NA
	1	PDCM_RSPST1	CH0_SNSDATA1

^[1] See Section 11.2.18.1 "Periodic data collection mode response start time (PDCM_RSPSTx[12:0])"

In PSI5 mode, the SOURCEID_x register SIDx_EN bit values control data transmissions as shown in <u>Table 93</u>. The SOURCEID_x bits have no effect in PSI5 mode.

Table 93. PSI5 source identification (SOURCEID_x)

Source ID	Source	Asynchronous mode		Synchron	ous mode	Daisy chain mode		
	ID enable (SIDx_EN)	Transmission time	Transmission data	Transmission time ^[1]	Transmitted data ^[2]	Transmission time	Transmitted data	
SOURCEID_0	CEID_0 0 t _{ASYNC} CH0_SNSDATA0		NA	NA	See	CH0_SNSDATA0		
	1			PDCM_RSPST0	CH0_SNSDATA0	Section 13.7		
SOURCEID_1	0	NA	NA	NA	NA	NA	NA	
	1			PDCM_RSPST1	CH0_SNSDATA1			

^[1] See <u>Section 11.2.18.1 "Periodic data collection mode response start time (PDCM_RSPSTx[12:0])"</u>

In I²C mode, the SOURCEID_x registers are readable and writable. See <u>Section 15.6.3</u>, for details regarding the effect of the SIDx_EN bits.

11.2.14 Communication timing register (TIMING_CFG)

The communication timing configuration register is a user programmed read/write register which contains user-specific con-figuration information for protocol timing. This register is included in the read/write array error detection.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

^[2] See Section 11.2.25.2 "Channel 0 data type 0 selection bits (CHxDATATYPE0)" and See Section 11.2.25.3 "Channel 0 data type 1 selection bits (CHxDATATYPE1)"

^[2] See Section 11.2.25.2 "Channel 0 data type 0 selection bits (CHxDATATYPE0)" and Section 11.2.25.3 "Channel 0 data type 1 selection bits (CHxDATATYPE1)"

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 94. Communication timing register (TIMING_CFG)

Location		Bit							
Address	Register	7	6 5			3	2	1	0
\$22	TIMING_CFG	PDCM_PER[2:0]			OSCTRAIN_ SEL	CK_CAL_RST	CRM_PER[1:0]		CK_CAL_EN
Unprogrammed OTP Value		0	0	0	0	0	0	0	0

11.2.14.1 Periodic data collection mode period (PDCM_PER[3:0])

The periodic data collection mode period selection bits set the data collection mode period to be used by the DSI3, SPI, PSI5, or I²C master as shown in <u>Table 95</u>. This value is only necessary for oscillator training and is only used if the CK_CAL_EN bit is set in the TIMING_CFG register.

Table 95. Periodic data collection mode period (PDCM PER[3:0])

PDCM_PER[2]	PDCM_PER[1]	PDCM_PER[0]	Periodic data collection mode period
0	0	0	100 µs
0	0	1	125 µs
0	1	0	250 μs
0	1	1	333 µs
1	0	0	500 μs
1	0	1	800 µs
1	1	0	1000 µs
1	1	1	2000 μs

In DSI3 mode, PDCM, and BDM commands are decoded and responded to regardless of the value of this register as long as the general PDCM timing parameters specified in Section 10.11 are met. See Section 11.5.1 for details regarding oscillator training.

In PSI5 synchronous mode, sync pulses are decoded and responded to regardless of the value of this register as long as the general timing parameters specified in <u>Section 10.12</u> are met. See <u>Section 11.5.1</u> for details regarding oscillator training.

In PSI5 asynchronous mode, oscillator training is not applicable.

In PSI5 Programming Mode, oscillator training is not applicable.

In PSI5 Daisy Chain command phase, oscillator training is not applicable.

In SPI mode, sensor data requests are decoded and responded to regardless of the value of this register as long as the general timing parameters specified in <u>Section 10.13</u> are met. See <u>Section 11.5.1</u> for details regarding oscillator training.

In I 2 C mode, sensor data register reads are decoded and responded to regardless of the value of this register as long as the general timing parameters specified in Section 10.14 are met. See Section 11.5.1 for details regarding oscillator training.

11.2.14.2 Oscillator training protocol selection bit (OSCTRAIN_SEL)

The oscillator training selection bit selects the protocol to use for oscillator training for the COMMTYPE values that enable multiple protocols as shown in <u>Table 96</u>.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Table 96. Oscillator training protocol selection bit (OSCTRAIN_SEL)

COMMTYPE	OSCTRAIN_SEL	Protocol to use for oscillator training
0	0	DSI3
	1	SPI
1	0	PSI5
	1	SPI
2	x	SPI
3	х	DSI3
4	x	SPI
5	x	PSI5
6	x	I ² C
7	x	I ² C

11.2.14.3 Clock calibration value reset (CK_CAL_RST)

The clock calibration reset bit controls the state of the oscillator training when the CK_CAL_EN bit is cleared as described in the table in <u>Section 11.2.14.5</u>. See <u>Section 11.5.1</u> for details regarding oscillator training.

11.2.14.4 Command and response mode period (CRM PER[1:0])

In DSI3 mode, the command and response mode period bits set the period for command and response mode commands in increments of the periodic data collection mode period (PDCM_PER). This value is only necessary for DSI3 oscillator training and is only used if the CK_CAL_EN bit is set in the TIMING_CFG register. command and response mode commands will be decoded and responded to regardless of the value of this register as long as the general command and response mode timing parameters specified in Section 10.11 are met. See Section 11.5.1 for details regarding oscillator training.

In SPI and I²C mode, the CRM_PER[1:0] bits are readable and writable, but have no impact on device operation or performance.

In PSI5 mode, the CRM_PER[1:0] bits are readable and writable, but have no impact on device operation or performance.

Table 97. Command and response mode period (CRM_PER[1:0])

CRM_PER[1]	CRM_PER[0]	Command and response mode period (Multiples of the periodic data collection mode period)
0	0	1
0	1	2
1	0	4
1	1	8

11.2.14.5 Clock calibration enable (CK_CAL_EN)

The clock calibration enable bit enables oscillator training over the DSI3, PSI5, SPI, or I²C communication interface. See Section 11.5.1 for details regarding oscillator training.

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Table 98. Clock calibration enable (CK_CAL_EN)

CK_CAL_EN	CK_CAL_RST	Oscillator training
0	0	The oscillator value is maintained at the last trained value prior to clearing the CK_CAL_RST bit.
0	1	The oscillator value is reset to the untrained value with a tolerance specified in Section 10.20.
1	х	Oscillator is trained as specified in Section 11.5.1

11.2.15 Chip time and bit time register (CHIPTIME)

The chip time and bit time register is a user programmed read/write register which contains user-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 99. Chip time and bit time register (CHIPTIME)

Loc	ation				В	Bit			
Address	Register	7	6	5	4	3	2	1	0
\$23	CHIPTIME	ST_RF	PT[1:0]	PSI5_ ERRLATCH	SS_EN		CHIPTI	ME[3:0]	,
Unprogramn	ned OTP Value	0	0	0	0	0	0	0	0
Unprog	S93xxx grammed PSI5 Mode	0	0	0	0	1	0	0	0

11.2.15.1 PSI5 self-test repetition bits (ST_RPT[1:0])

In PSI5 mode, the PSI5 self-test repetition bits set the maximum number of PSI5 self-test repetitions that the device will run before setting the ST_ERROR bit. See <u>Section 6.6.2.5</u> for details regarding the PSI5 startup self-test.

Table 100. PSI5 self-test repetition bits (ST_RPT[1:0])

ST_RPT[1]	ST_RPT[0]	Maximum PSI5 self-test repetitions
0	0	8
0	1	1
1	0	4
1	1	2

11.2.15.2 PSI5 error latching enable bit (PSI5_ERRLATCH)

In PSI5 mode, the PSI5 error latching enable bit allows for users to disable the automatic error clearing mechanism for internal faults. When this bit is set, internal errors are latched until reset. See Section 13.8.4 and Section 13.8.5 for details regarding internal error handling.

Table 101. PSI5 error latching enable bit (PSI5 ERRLATCH)

	9
PSI5_ ERRLATCH	PSI5 error handling
0	Error handling is as specified in <u>Section 11.2.2</u> and <u>Section 13.8.4</u>
1	Automatic error clearing is disabled and internal errors are latched until reset as specified in Section 13.8.5

11.2.15.3 Simultaneous sampling enable (SS_EN)

In DSI3 mode, the simultaneous sampling enable bit selects between one of two data latency methods. See Section 12.4.7 for details regarding sample timing.

Table 102. DSI3 simultaneous sampling enable (SS EN)

SS_EN	Data latency
0	Synchronous Sampling Mode: Latency relative to transmission start time (PDCM_RSPST)
1	Simultaneous Sampling Mode: Latency relative to the start of the Periodic Data Collection Mode command (falling edge)

In PSI5 mode, the simultaneous sampling enable bit selects between one of two data latency methods to accommodate synchronized sampling or simultaneous sampling.

Table 103. PSI5 simultaneous sampling enable (SS_EN)

SS_EN	Data latency				
0	Synchronous Sampling Mode (Latency relative to Time Slot)				
1	Simultaneous Sampling Mode (Latency relative to sync pulse)				

In SPI mode, the simultaneous sampling enable bit selects between one of two data latency methods.

Table 104. SPI simultaneous sampling enable (SS_EN)

SS_EN	Data latency
0	Synchronous sampling mode: The data for all sources is latent relative to the falling edge of slave select for the response to the Sensor Data Request for the corresponding SOURCEID.
1	Simultaneous sampling mode: The data for all sources is latent relative to the falling edge of slave select for the response to the Sensor Data Request for SOURCEID_0. If SOURCEID_0 is disabled, then the data for all SOURCEIDs is latent relative to the falling edge of slave select for the response to the Sensor Data Request for lowest enabled SOURCEID register address.
	Note: If multiple SOURCEIDs are enabled, sensor data for the higher SOURCEID register addresses only changes on a sensor data request for the lowest enabled SOURCEID register address. If continuous sensor data requests occur without sensor data requests for the lowest SOURCEID register address, sensor data will not be updated. Care must be taken by the user to ensure proper data transmissions.

In I²C mode, the simultaneous sampling enable bit is readable and writable but has no impact on device operation or performance.

11.2.15.4 Chip time (CHIPTIME)

In DSI3 mode, the CHIPTIME bits set the chip time for Periodic Data Collection Mode as described in <u>Table 105</u>. The chip time for Command and Response Mode and Background Diagnostic Mode is always set to 5 µs with slew control enabled.

In PSI5 mode, the CHIPTIME bits set the bit time for the PSI5 response data as described in Table 105.

Table 105. Chip time (CHIPTIME)

CHIPTIME[3]	CHIPTIME[2]	CHIPTIME[1]	CHIPTIME[0]		PSI5			DSI3			
				Period time	Baud rate	Slew control	Chip time	Chip rate	Slew control		
0	0	0	0	5.3 µs	189 kHz	Enabled	1.0 µs	1000 kHz	Disabled		
0	0	0	1	5.3 µs	189 kHz	Enabled	2.0 µs	500.0 kHz	Disabled		
0	0	1	0	5.3 µs	189 kHz	Enabled	2.5 µs	400.0 kHz	Enabled		
0	0	1	1	5.3 µs	189 kHz	Enabled	2.6 µs	384.6 kHz	Enabled		
0	1	0	0	5.3 µs	189 kHz	Enabled	2.6 µs	384.6 kHz	Enabled		
0	1	0	1	5.3 µs	189 kHz	Enabled	2.7 µs	370.3 kHz	Enabled		
0	1	1	0	5.3 µs	189 kHz	Enabled	2.8 µs	357.1 kHz	Enabled		
0	1	1	1	5.3 µs	189 kHz	Enabled	2.9 µs	344.8 kHz	Enabled		
1	0	0	0	8.0 µs	125 kHz	Enabled	3.0 µs	333.3 kHz	Enabled		
1	0	0	1	8.0 µs	125 kHz	Enabled	3.1 µs	322.6 kHz	Enabled		
1	0	1	0	8.0 µs	125 kHz	Enabled	3.2 µs	312.5 kHz	Enabled		
1	0	1	1	8.0 µs	125 kHz	Enabled	3.3 µs	303.0 kHz	Enabled		
1	1	0	0	8.0 µs	125 kHz	Enabled	3.5 µs	294.1 kHz	Enabled		
1	1	0	1	8.0 µs	125 kHz	Enabled	4.0 µs	250.0 kHz	Enabled		
1	1	1	0	8.0 µs	125 kHz	Enabled	4.5 µs	222.2 kHz	Enabled		
1	1	1	1	8.0 µs	125 kHz	Enabled	5.0 µs	200.0 kHz	Enabled		

In SPI and I²C mode, the CHIPTIME bits are readable and writable but have no impact on device operation or performance.

11.2.16 Timing configuration #2 register (TIMING_CFG2)

The timing configuration #2 register is a user programmed read/write register which contains user-specific timing configuration information. This register is included in the read/write array error detection. See <u>Section 12.4</u> for details regarding Background Diagnostic Mode.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 106. Timing configuration #2 register (TIMING CFG2)

	3	3	- 3 (,				
Loca	Location Bit								
Address	Register	7	6	5	4	3	2	1	0
\$24	TIMING_CFG2	PSI5_ INIT2_D19	oso	OSCTRAIN_ERRCNT[2:0]			RESERVED	BDM_ FRAGSIZE	BDM_EN
Unprogramm	ed OTP Value	0	0	0 0 0			0	0	0

11.2.16.1 PSI5 initialization phase 2 D19 and D20 change bit (PSI5 INIT2 D19)

The PSI5 initialization phase 2 D19 and D20 change bit provides the option to change the data transmitted in PSI5 Initialization Phase 2 nibbles D19 and D20 as shown in Table 107.

Table 107. PSI5 initialization phase 2 D19 and D20 change bit (PSI5_INIT2_D19)

PSI5_INIT2_	Initialization phase	2 data	Reference			
D19	D19	D20				
0	SN4[7:4]	SN4[3:0]	Section 11.2.42, Section 13.4.2.1			
1	USERDATA_6[7:4]	USERDATA_E[7:4]	Section 11.2.45.1, Section 13.4.2.1			

In DSI3 mode, SPI mode, and I²C mode, the PSI5_INIT2_D19 bit is readable and writable, but has no impact on device operation or performance.

11.2.16.2 Oscillator training error counter (OSCTRAIN_ERRCNT[2:0])

The oscillator training error counter bits use the number of 4 ms periods used to determine the error detection time for oscillator training as shown in <u>Table 108</u>. See <u>Section 11.5.2</u> for details regarding oscillator training error detection.

Table 108. Oscillator training error counter (OSCTRAIN ERRCNT[2:0])

оѕст	RAIN_ERRCN	T[2:0]	4 ms periods counted before the OSCTRAIN error flag is set	Minimum time for error detection (ms)
0	0	0	64	256
0	0	1	1	4
0	1	0	2	8
0	1	1	4	16
1	0	0	8	32
1	0	1	16	64
1	1	0	32	128
1	1	1	64	256

11.2.16.3 Capacitor test disable bit (CAPTEST_OFF)

The capacitor test disable bit provides the option to disable the VBUF capacitor test in DSI3 mode as shown in <u>Table 109</u>.

Table 109. Capacitor test disable bit (CAPTEST_OFF)

CAPTEST_OFF	Capacitor test status
0	Capacitor test is operational as specified in Section 11.4.1
1	Capacitor test will not run

If a capacitor error is present, the VBUFUV_ERR bit is set in the DEVSTAT1 register as specified in <u>Section 11.4.1</u>. The presence of the VBUFUV_ERR will prevent the user from writing to the TIMING_CFG2 register to disable the capacitor test unless and until the capacitor error recovers.

In SPI and I²C mode, the CAPTEST_OFF bit is readable and writable, but has no impact on device operation or performance.

In PSI5 mode, the CAPTEST_OFF bit is readable and writable, but has no impact on device operation or performance.

11.2.16.4 Background diagnostic mode fragment size (BDM_FRAGSIZE)

The background diagnostic mode fragment size bit sets the number of background diagnostic command bits and response chips to be sent per Periodic Data Collection Mode sampling period.

Table 110. Background diagnostic mode fragment size (BDM FRAGSIZE)

	0 0	, _ ,
BDM_ FRAGSIZE	BDM command fragment size (Bits)	BDM response fragment size (Chips)
0	2	3
1	4	6

In SPI and I²C mode, the BDM_FRAGSIZE bit is readable and writable, but has no impact on device operation or performance.

In PSI5 mode, the BDM_FRAGSIZE bit is readable and writable, but has no impact on device operation or performance.

11.2.16.5 Background diagnostic mode enable (BDM_EN)

The background diagnostic mode enable bit enables background diagnostic mode as described in <u>Table 111</u>. See <u>Section 12.4</u> for details regarding background diagnostic mode.

Table 111. Background diagnostic mode enable (BDM EN)

BDM_EN	Background diagnostic mode			
0	Disabled			
1	Enabled			

In SPI and I²C mode, the BDM_EN bit is readable and writable, but has no impact on device operation or performance.

In PSI5 mode, the BDM_EN bit is readable and writable, but has no impact on device operation or performance.

11.2.17 PSI5 configuration register (PSI5_CFG)

The PSI5 configuration register is a user programmable OTP register that contains PSI5 specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode.

Table 112. PSI5 configuration register (PSI5_CFG)

Location		Bit							
Address	Register	7	6	5	4	3	2	1	0
\$25	PSI5_CFG	SYNC_PD	DAISY_CHAIN	PSI5_ILOW	RESERVED	EMSG_EXT	P_CRC	INIT2_EXT	ASYNC
Unprogramm	Unprogrammed OTP Value		0	0	0	0	0	0	0
FXLS93xxx Unprogrammed Default PSI5 Mode		0	0	0	0	0	1	0	0

11.2.17.1 Sync pulse pull-down enable bit (SYNC_PD)

In PSI5 mode, the sync pulse pull-down enable bit selects if the Sync pulse pull-down is enabled once a sync pulse is detected. See <u>Section 11.2.18.1</u> for more information regarding the sync pulse pulldown.

Table 113. Sync pulse pull-down enable bit (SYNC_PD)

SYNC_PD	Sync pulse pull-down
0	Disabled
1	Enabled for all PSI5 operating modes

In DSI3 mode, the SYNC_PD bit is readable and writable, but has no impact on device operation or performance.

In SPI and I²C mode, the SYNC_PD bit is readable and writable, but has no impact on device operation or performance.

11.2.17.2 PSI5 daisy chain selection bit (DAISY_CHAIN)

In PSI5 mode, the transmission mode selection bits select the PSI5 transmission mode as shown in Table 114.

Table 114. PSI5 daisy chain selection bit (DAISY CHAIN)

DAISY_ CHAIN	Operating mode	Response (PDCM_ RSTST0)	Reference
0	Normal Mode (Asynchronous or Parallel, Synchronous)	SNSDATA0	Section 13.5
1	Daisy Chain Mode	SNSDATA0	Section 13.7

In DSI3 mode, the DAISY_CHAIN bit is readable and writable, but has no impact on device operation or performance.

In SPI and I²C mode, the DAISY_CHAIN bit is readable and writable, but has no impact on device operation or performance.

11.2.17.3 PSI5 low response current selection bit (PSI5_ILOW)

In PSI5 mode, the PSI5 low response current selection bit selects the low PSI5 response current specified in <u>Section 10.4</u> as shown in <u>Table 115</u>.

Table 115. PSI5 low response current selection bit (PSI5_ILOW)

PSI5_ILOW	PSI5 response current
0	Normal Response Current
1	Low Response Current

In DSI3 mode, the PSI5_ILOW bit is readable and writable, but has no impact on device operation or performance.

In SPI and I²C mode, the PSI5_ILOW bit is readable and writable, but has no impact on device operation or performance.

11.2.17.4 Error message information extension bit (EMSG_EXT)

In PSI5 mode, the error message information extension bit enables or disables additional PSI5 error message information as shown in <u>Table 116</u>.

Table 116. Error message information extension bit (EMSG EXT)

	<u> </u>
EMSG_EXT	Description
0	All internal Errors map to 0x1F4 (See Section 13.3.4)
1	Additional PSI5 reserved codes are used for internal error distinction (See Section 13.3.4)

In DSI3 mode, the EMSG_EXT bit is readable and writable, but has no impact on device operation or performance.

In SPI and I²C mode, the EMSG_EXT bit is readable and writable, but has no impact on device operation or performance.

11.2.17.5 PSI5 response message error detection selection bit (P CRC)

In PSI5 mode, the response message error detection selection bit selects either even parity, or a 3-bit CRC for error detection of the PSI5 response message. See <u>Section 11.2.18.1</u> for details regarding response message error detection.

Table 117. PSI5 response message error detection selection bit (P_CRC)

P_CRC	Parity or CRC
0	Parity
1	CRC

In DSI3 mode, the P_CRC bit is readable and writable, but has no impact on device operation or performance.

In SPI and I²C mode, the P_CRC bit is readable and writable, but has no impact on device operation or performance.

11.2.17.6 Initialization phase 2 data extension bit (INIT2_EXT)

In PSI5 mode, the initialization phase 2 data extension bit enables or disables data transmission in data fields D33 through D48 of PSI5 initialization phase 2 as shown in Table 118.

Table 118. Initialization phase 2 data extension bit (INIT2_EXT)

INIT2_EXT	Description
0	D33 through D48 are not transmitted
1	D33 through D48 are transmitted as defined in Section 13.4.2.1

In DSI3 mode, the INIT2_EXT bit is readable and writable, but has no impact on device operation or performance.

In SPI and I²C mode, the INIT2_EXT bit is readable and writable, but has no impact on device operation or performance.

11.2.17.7 Asynchronous mode bit (ASYNC)

In PSI5 mode, the asynchronous mode bit enables asynchronous data transmission as described in <u>Section 11.2.18.1</u> only if the DAISY_CHAIN bit is not set.

In DSI3 mode, the ASYNC bit is readable and writable, but has no impact on device operation or performance.

In SPI and I²C mode, the ASYNC bit is readable and writable, but has no impact on device operation or performance.

11.2.18 DSI3 and PSI5 start time registers (PDCM_RSPSTx_x)

The DSI3 and PSI5 start time registers are user programmed read/write registers which contain user-specific configuration information for DSI3 periodic data collection mode and PSI5 synchronous mode. These registers are included in the read/write array error detection.

These registers are readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 119. DSI3 and PSI5 start time registers (PDCM_RSPSTx_x)

Loc	ation		Bit							
Address	Register	7	6	5	4	3	2	1	0	
\$26	PDCM_ RSPST0_L				PDCM_R	SPST0[7:0]				
Jnprogramm	ned OTP Value	0	0	0	0	0	0	0	0	
FXLS93xxx Unprogrammed Default PSI5 Mode		0	0	1	0	1	1	1	1	
\$27 PDCM_ RSPST0_H		BRC_R	SP0[1:0]	RESERVED	PDCM_RSPST0[12:8]					
Unprogrammed OTP Value		0	0	0	0	0	0	0	0	
FXLS93xxx Unprogrammed Default PSI5 Mode		0	0	0	0	0	0	0	0	
\$28	PDCM_ RSPST1_L	PDCM_RSPST1[7:0]								
Unprogramm	ned OTP Value	0	0	0	0	0	0	0	0	
Unprog	S93xxx grammed PSI5 Mode	0	0	0	0	0	0	0	0	
\$29 PDCM_ RSPST1_H		BRC_R	SP1[1:0]	RESERVED	PDCM_RSPST1[12:8]					
Unprogrammed OTP Value		0	0	0	0	0	0	0	0	
FXLS93xxx Unprogrammed Default PSI5 Mode		0	0	0	0	0	0	0	0	

11.2.18.1 Periodic data collection mode response start time (PDCM_RSPSTx[12:0])

The periodic data collection mode response start time registers set the DSI3 periodic data collection mode or PSI5 synchronous mode response start time for the associated data and SOURCEID. The value is stored in 1.0 µs increments.

Table 120. Periodic data collection mode response start time (PDCM_RSPSTx[12:0])

PDCM_RSPSTx[12:0]	Periodic data collection mode response start time
0	See <u>Table 121</u>

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 120. Periodic data collection mode response start time (PDCM RSPSTx[12:0])...continued

PDCM_RSPSTx[12:0]	Periodic data collection mode response start time
0 < PDCM_RSPSTx[12:0] < 20	20.0 μs
20 < PDCM_RSPSTx[12:0]	PDCM response start = PDCM_RSPST x 1.0 μs

<u>Table 121</u> shows the relationship of the SOURCEID, the transmitted data, the response start times, and the default states for each set of registers in DSI3 periodic data collection mode. Care must be taken to prevent from programming response start times which cause data contention in the system.

Table 121. Synchronous mode: Source ID response start time

SOURCEID register	Transmitted data	Start time registers	Default start (PDCM_RSPSTx[12:0] = 0x00)
SOURCEID_0	CH0_SNSDATA0	PDCM_RSPST0[12:0]	Transmit Data with a start time of 20 μs
SOURCEID_1	CH0_SNSDATA1	PDCM_RSPST1[12:0]	Transmit Data with a start time of 20 μs

<u>Table 122</u> shows the PSI5 data transmission start times based on the values in the PDCM_RSPSTx registers and the value of the ASYNC bit. Care must be taken to prevent from programming time slots which violate the PSI5 Version 1.3 specification, or time slots which will cause data contention.

Table 122. Asynchronous mode: Source ID response start time

		•		
ASYNC bit	SOURCEID register	Transmitted data	Time slot start time	Default start (PDCM_ RSPSTx[12:0] = 0x00)
1	SOURCEID_0	CH0_SNSDATA0	Asynchronous Mode	t _{ASYNC}
0	0 SOURCEID_0	CH0_SNSDATA0	PDCM_ RSPST0[12:0]	Transmit Data with a start time of 20 μs
	SOURCEID_1	CH0_SNSDATA1	PDCM_ RSPST1[12:0]	Transmit Data with a start time of 20 μs

In SPI and I²C mode, the PDCM_RSPSTx registers are readable and writable, but have no impact on device operation or performance.

11.2.18.2 Broadcast read command type selection bits (BRC_RSP[1:0])

The broadcast read command type selection bits select the broadcast read command types that the device responds to for each Source ID as shown in <u>Table 123</u>:

Table 123. Broadcast read command type selection bits (BRC_RSP[1:0])

BRC_RSP[1]	BRC_RSP[0]	Response
0	0	Respond to all Broadcast Read Commands
0	1	Respond to Broadcast Read Command 0 only
1	0	Respond to Broadcast Read Command 1 only
1	1	Respond to all Broadcast Read Commands

If a device is programmed to respond only to BRC0 or BRC1 commands, it will synchronize to alternate responses when BDM commands are received.

- If the last command prior to a BDM command is a BRC0, a device programmed to respond only to BRC0 commands will not respond to the first BDM command and will then respond to every other BDM command until the next BRC command is received.
- If the last command prior to a BDM command is a BRC0, a device programmed to respond only to BRC1 commands will respond to the first BDM command, and will then response to every other BDM command until the next BRC command is received.
- If the last command prior to a BDM command is a BRC1, a device programmed to respond only to BRC0 commands will respond to the first BDM command, and will then response to every other BDM command until the next BRC command is received.
- If the last command prior to a BDM command is a BRC1, a device programmed to respond only to BRC1 commands will not respond to the first BDM command and will then respond to every other BDM command until the next BRC command is received.

In PSI5 mode, the BRC_RSP[1:0] bits are readable and writable, but have no impact on device operation or performance.

In SPI and I²C mode, the BRC_RSP[1:0] bits are readable and writable, but have no impact on device operation or performance.

11.2.19 DSI3 and PSI5 command blocking time registers (PDCM CMD B x)

The DSI3 and PSI5 command blocking registers are user programmed read/write registers which contain user-specific con-figuration information for DSI3 mode and PSI5 mode. These registers are included in the read/write array error detection.

These registers are readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode.

Table 124. DSI3 and PSI5 command blocking time registers (PDCM CMD B x)

Loc	ation		Bit								
Address	Register	7	7 6 5 4 3 2 1 0								
\$38	PDCM_ CMD_B_L		PDCM_CMD_B[7:0]								
\$39	PDCM_ CMD_B_H	RESERVED	RESERVED	RESERVED	PDCM_CMD_B[12:8]						
Unprogrammed OTP Value		0	0	0	0	0	0	0	0		

In DSI3 mode, the DSI3 periodic data collection mode command blocking time bits set the periodic data collection mode command blocking time in 1.0 μ s increments, with zero as the default value of 450 μ s. For proper communication, the command blocking time must exceed the completion of the last source response transmission. See Section 12.1.1 for details regarding the command receiver and command blocking.

Care must be taken to prevent from programming command blocking times which prevent proper command decoding in the system and to ensure proper sampling of the VHIGH voltage. As shown in <u>Section 12.1.1</u>, <u>Figure 63</u>, the VHIGH voltage is initially captured at the end of the command blocking time and then filtered. The user must ensure that the command blocking end time is set for a time when no command or response transmissions are occurring to provide the most stable BUS_I voltage.

Table 125. DSI3 mode: Command blocking time bits

PDCM_CMD_B[12:0] Sync pulse blocking time					
0	450 µs				
Non-Zero	Sync Pulse Blocking Time = PDCM_CMD_B x 1 μs				

In PSI5 mode, the command blocking time bits set the PSI5 sync pulse blocking time in 1.0 µs increments, with zero as the default value of 450 µs. See <u>Section 13.2.1</u> for details regarding the PSI5 sync pulse receiver and command blocking.

Care must be taken to prevent from programming command blocking times which prevent proper sync pulse decoding in the system and to ensure proper sampling of the PSI5 voltage.

Table 126. PSI5 mode: Command blocking time bits

PDCM_CMD_B[12:0]	Sync pulse blocking time
0, 1, 2, 3, 4, 5, 6, 7, 8, 9	450 μs
10 - 8191	Sync Pulse Blocking Time = PDCM_CMD_B x 1 μs

In SPI and I²C mode, the PDCM_CMD_B bits are readable and writable, but have no impact on device operation or performance.

11.2.20 SPI configuration control register

In SPI mode, the SPI configuration control register is a user programmed read/write register which contains the SPI protocol configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode.

Table 127. SPI configuration control register

Location		Bit								
Address	Register	7	6	5	4	3 2 1 0			0	
\$3D	SPI_CFG	SPI_STATUS	DATASIZE	SPI_CRC	_LEN[1:0]	SPICRCSEED[3:0]				
Unprogrammed OTP Value		0	0	0	0	0	0	0	0	

11.2.20.1 SPI status reporting selection bit (SPI STATUS)

The SPI status reporting bit controls the reporting of the SPI basic status as shown in Table 128. See Section 14.5.

Table 128. SPI status reporting selection bit (SPI_STATUS)

SPI_STATUS	SPI basic status reporting				
0	As documented in Section 14.5.1				
1	As documented in Section 14.5.2				

In DSI3 mode, the SPI_STATUS bit is readable and writable, but has no impact on device operation or performance.

In PSI5 mode, the SPI_STATUS bit is readable and writable, but has no impact on device operation or performance.

In I²C mode, the SPI_STATUS bit is readable and writable, but has no impact on device operation or performance.

11.2.20.2 SPI data field size bit (DATASIZE)

The SPI data field size bit controls the size of the SPI data field as shown in <u>Table 129</u>. See Section 11.6.4.9.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 129. SPI data field size bit (DATASIZE)

DATASIZE	SPI data field size
0	12-bits
1	16-bits

In DSI3 mode, the DATASIZE bit is readable and writable, but has no impact on device operation or performance.

In PSI5 mode, the DATASIZE bit is readable and writable, but has no impact on device operation or performance.

In I²C mode, the DATASIZE bit is readable and writable, but has no impact on device operation or performance.

11.2.20.3 SPI CRC length and seed bits (SPI CRC LEN[1:0], SPICRCSEED[3:0])

The SPI_CRC_LEN[1:0] bits select the CRC length for SPI mode as shown in <u>Table 130</u>. The SPI CRC seed bits contain the seed used for the SPI Mode. The default SPI CRC is an 8-bit. When the SPI_CRC_LEN[1:0] bits are set to a non-zero value using a register write command, the SPI CRC changes as defined in the table. The new polynomial value is enabled for both MISO and MOSI on the next SPI mode command.

The default seed (SPICRCSEED[3:0] = 0x0) is 0xFF for an 8-bit CRC. When the value is changed to a non-zero value using a register write command, the SPI CRC seed changes to the value programmed as shown in the table. The new seed value is enabled for both MISO and MOSI on the next SPI mode command.

Table 130. SPI CRC length and seed bits (SPI_CRC_LEN[1:0], SPICRCSEED[3:0])

_	CRC_ [1:0]	SPICR CSEED	CRC polynomial	CRC seed		
0	0	0	$x^8 + x^5 + x^3 + x^2 + x + 1$	1111, 1111		
		Non-Zero		1111, SPICRCSEED[3:0]		
0	1	0	x ⁴ + 1	1010		
		Non-Zero		SPICRCSEED[3:0]		
1	0	0	x ³ + x + 1	111		
		Non-Zero		SPICRCSEED[2:0]		
1	1	0	x ³ + x + 1	111		
	Non-Zero			SPICRCSEED[2:0]		

In PSI5 mode, the SPI CRC bits are readable and writable, but have no impact on device operation or performance.

In DSI3 mode, the SPI CRC bits are readable and writable, but have no impact on device operation or performance.

In I²C mode, the SPI CRC bits are readable and writable, but have no impact on device operation or performance.

11.2.21 Who Am I register

The Who Am I register is a user programmed read/write register which contains the unique product identifier for I²C mode. The register is readable in all modes. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 131. Who Am I register

Location		Bit									
Address	Register	7	7 6 5 4 3 2 1 0								
\$3E	WHO_ AM_I		WHO_AM_I[7:0]								
Unprogrammed OTP Value		0	0	0	0	0	0	0	0		
Unprogrammed Read Value		1	1	0	0	0	1	0	0		

The default register value is 0x00. If the register value is 0x00, a value of 0xC4 is transmitted in response to a read command. For all other register values, the actual register value is transmitted in response to a read command.

Table 132. WHO_AM_I bits

WHO_AM_I Register Value (HEX)	Response to a register read command				
0X00	0xC4				
0X01 Through 0xFF	Actual register value				

11.2.22 I²C slave address register

The I²C slave address register is a user programmed read/write register which contains the unique I²C slave address. The register is readable in all modes. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 133. I²C slave address register

Location		Bit									
Address	Register	7	7 6 5 4 3 2 1								
\$3F	I2C_ADDRESS		I2C_ADDRESS[7:0]								
Unprogrammed OTP Value		0	0	0	0	0	0	0	0		
Unprogrammed Read Value		0	1	1	0	0	0	0	0		

The default register value is 0x00. If the register value is 0x00, the I²C slave address is 0x60 and a value of 0x60 is transmitted in response to a read command. For all other register values, the I²C slave address is the lower 7 bits of the actual register value and the actual register value is transmitted in response to a read command.

Table 134. I2C_ADDRESS bits

I2C_ADDRESS register value (HEX)	Response to a register read command	I ² C slave address		
0x00, 0x80	0x60	0x60		
0x01 Through 0x7F, 0x81 Through 0xFF	Actual Register Value	I2C_ADDRESS[6:0]		

11.2.23 Channel 0 user configuration #1 register (CH0_CFG_U1)

The Channel 0 user configuration #1 register is a user programmable read/write register which contains channel-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode.

Table 135. Channel 0 user configuration #1 register (CH0_CFG_U1)

Location		Bit									
Address	Register	7	7 6 5 4				2	1	0		
\$40	CH0_CFG_U1		LPF[3:0]				RATE[1:0]	USER_SNS_SHIFT[1:0]			
Unprogrammed OTP Value		0	0	0	0	0	0	0	0		

11.2.23.1 Low-pass filter and sample rate selection bits (LPF[3:0], SAMPLERATE[1:0])

The low-pass filter selection bits and sample rate bits select the low-pass filter. See Section 11.6.4.4 for details regarding the low-pass filter.

Table 136. Low-pass filter and sample rate selection bits (LPF[3:0], SAMPLERATE[1:0])

LPF[3]	LPF[2]	LPF[1]	LPF[0]		Low-pass filter type	
				SAMPLERATE = 00, 01	SAMPLERATE = 10	SAMPLERATE = 11
				16 µs	32 µs	64 µs
0	0	0	0	400 Hz, 4-Pole	200 Hz, 4-Pole	100 Hz, 4-Pole
0	0	0	1	400 Hz, 3-Pole	200 Hz, 3-Pole	100 Hz, 3-Pole
0	0	1	0	400 Hz, 4-Pole	200 Hz, 4-Pole	100 Hz, 4-Pole
0	0	1	1	400 Hz, 3-Pole	200 Hz, 3-Pole	100 Hz, 3-Pole
0	1	0	0	325 Hz, 3-Pole	162.5 Hz, 3-Pole	81.25 Hz, 3-Pole
0	1	0	1	370 Hz, 2-Pole	185 Hz, 2-Pole	92.5 Hz, 2-Pole
0	1	1	0	180 Hz, 2-Pole	90 Hz, 2-Pole	45 Hz, 2-Pole
0	1	1	1	100 Hz, 2-Pole	50 Hz, 2-Pole	25 Hz, 2-Pole
1	0	0	0	1500 Hz, 4-Pole	750 Hz, 4-Pole	375 Hz, 4-Pole
1	0	0	1	500 Hz, 3-Pole	250 Hz, 3-Pole	125 Hz, 3-Pole
1	0	1	0	800 Hz, 4-Pole	400 Hz, 4-Pole	200 Hz, 4-Pole
1	0	1	1	1200 Hz, 4-Pole	600 Hz, 4-Pole	300 Hz, 4-Pole
1	1	0	0	120 Hz, 3-Pole	60 Hz, 3-Pole	30 Hz, 3-Pole
1	1	0	1	20 kHz, 2-Pole	10 kHz, 2-Pole	5 kHz, 2-Pole

Table 136. Low-pass filter and sample rate selection bits (LPF[3:0], SAMPLERATE[1:0])...continued

LPF[3]	LPF[2]	LPF[1]	LPF[0]	Low-pass filter type				
				SAMPLERATE = 00, 01	SAMPLERATE = 10	SAMPLERATE = 11		
				16 µs	32 µs	64 µs		
1	1	1	0	120 Hz, 2-Pole	60 Hz, 2-Pole	30 Hz, 2-Pole		
1	1	1	1	50 Hz, 4-Pole	25 Hz, 4-Pole	12.5 Hz, 4-Pole		

Changes to these register bits reset the DSP data path. The contents of the SNSDATA_x registers are not guaranteed until the DSP has completed initialization as specified in Section 10.20. Reads of the SNSDATA_x registers and Sensor Data requests should be prevented during this time.

11.2.23.2 User sensitivity shift selection bits (U_SNS_SHIFT[1:0])

The user sensitivity selection bits are used along with the user sensitivity multiplier bits to scale the output sensitivity of the device. See <u>Section 11.2.24.1</u> for details.

11.2.24 Channel 0 user configuration #2 register (CH0_CFG_U2)

The Channel 0 user configuration #2 register is a user programmable read/write register which contains channel-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode.

Table 137. Channel 0 user configuration #2 register (CH0 CFG U2)

Loc	Location				В	Bit			
Address	Register	7	6	5	4	3	2	1	0
\$41	CH0_CFG_U2	U_SNS_ MULT[7]	U_SNS_ MULT[6]	U_SNS_ MULT[5]	U_SNS_ MULT[4]	U_SNS_ MULT[3]	U_SNS_ MULT[2]	U_SNS_ MULT[1]	U_SNS_ MULT[0]
Unprogramm	ed OTP Value	0	0	0	0	0	0	0	0

11.2.24.1 User sensitivity multiplier bits (U_SNS_MULT[7:0])

The user sensitivity multiplier bits are used along with the user sensitivity shift bits to scale the output sensitivity of the device. Equation 1 describes the scaling:

$$OutputSensitivity = TrimSensitivity \times SensitivityShiftFactor \times \frac{256 + SensitivityMultiplier}{256} \tag{1}$$

Where:

TrimSensitivity = The default trimmed sensitivity of the device, as specified in

Section 10.6

SensitivityMultiplier = The unsigned multiplier value contained in the U SNS MULT[7:0] bits

 $SensitivityShiftFactor \hspace{0.2in} = \hspace{0.2in} The \hspace{0.1in} Shift \hspace{0.1in} Factor \hspace{0.1in} selected \hspace{0.1in} by \hspace{0.1in} the \hspace{0.1in} U_SNS_SHIFT \hspace{0.1in} [1:0] \hspace{0.1in} bits \hspace{0.1in} as \hspace{0.1in} described \hspace{0.1in} described$

in Table 138

Table 138. Sensitivity shift factors

Table 100. Containing chilic factors									
Device Type	U_SNS_SHIFT[1]	U_SNS_SHIFT[0]	Sensitivity shift factor						
Normal Range	0	0	0.25						
Normal Range	0	1	0.50						
Normal Range	1	0	1						
Normal Range	1	1	2						

<u>Table 139</u> shows some example user shift and multiplier values for typical full scale ranges (± 2047, 12 bit):

Table 139. Example user shift and multiplier configuration for typical scale range

Device type	Desired range	Desired sensitivity	NXP trim (12 bit,	User sens shift fac		User multip	plier value	Actual sensitivity	Actual sensitivity	Actual sensitivity	Actual sensitivity
	(g)	(12 bit, LSB/g)	LSB/g)	U_SNS_ SHIFT (HEX)	Shift Factor	U_SNS MULT (HEX)	Multiplier value (Dec)	16 bit register Chx_SNS- DATAx LSB/g)	10 bit Sensor data request, LSB/g	•	16 bit Sensor data request, LSB/g
Medium	15.5	131.7246	33.0161	0x3	2	0xFF	255	263.6130	32.9516	131.8065	2108.904
g	16	127.9375	33.0161	0x3	2	0xF0	240	255.8748	31.9844	127.9374	2046.998
	20	102.3500	33.0161	0x3	2	0x8D	141	204.8030	25.6004	102.4015	1638.424
	25	81.8800	33.0161	0x3	2	0x3D	61	163.5328	20.4416	81.7664	1308.262
	35	58.4857	33.0161	0x2	1	0xC5	197	116.8460	14.6058	58.4230	934.7680
	50	40.9400	33.0161	0x2	1	0x3D	61	81.7664	10.2208	40.8832	654.1312
	60	34.1167	33.0161	0x2	1	0x09	9	68.3536	8.5442	34.1768	546.8288
	62	33.0161	33.0161	0x2	1	0x00	0	66.0322	8.2540	33.0161	528.2576
	62.5	32.7520	33.0161	0x1	0.5	0xFC	252	65.5164	8.1896	32.7582	524.1312
	75	27.2933	33.0161	0x1	0.5	0xA7	167	54.5540	6.8193	27.2770	436.4320
	85.3	24.0000	33.0161	0x1	0.5	0x74	116	47.9766	5.9971	23.9883	383.8128
	100	20.4700	33.0161	0x1	0.5	0x3D	61	40.8832	5.1104	20.4416	327.0656
	105	19.5000	33.0161	0x1	0.5	0x2E	46	38.9486	4.8686	19.4743	311.5888
	112.5	18.2000	33.0161	0x1	0.5	0x1A	26	36.3692	4.5462	18.1846	290.9536
	125	16.3760	33.0161	0x0	0.25	0xFC	252	32.7582	4.0948	16.3791	262.0656
	128	16.0000	33.0161	0x0	0.25	0xF0	240	31.9844	3.998	15.9922	255.8752
	150	13.6467	33.0161	0x0	0.25	0xA7	167	27.2770	3.4096	13.6385	218.2160
High g	50	40.9400	10.9465	0x3	2	0xDF	223	81.9278	10.2410	40.9639	655.4224
	60	34.1167	10.9465	0x3	2	0x8F	143	68.2446	8.5306	34.1223	545.9568
	62	33.0161	10.9465	0x3	2	0x82	130	66.0210	8.2526	33.0105	528.1680
	62.5	32.7520	10.9465	0x3	2	0x7F	127	65.5080	8.1885	32.7540	524.0640
	100	20.4700	10.9465	0x2	1	0xDF	223	40.9638	5.1205	20.4819	327.7104
	105	19.5000	10.9465	0x2	1	0xC8	200	38.9970	4.8746	19.4985	311.9760
	112.5	18.2000	10.9465	0x2	1	0xAA	170	36.4314	4.5539	18.2157	291.4512
	125	16.3760	10.9465	0x2	1	0x7F	127	32.7540	4.0943	16.3770	262.0320
	128	16.0000	10.9465	0x2	1	0x76	118	31.9844	3.9981	15.9922	255.8752
	150	13.6467	10.9465	0x2	1	0x3F	63	27.2808	3.4101	13.6404	218.2464
	187	10.9465	10.9465	0x2	1	0x00	0	21.8930	2.7366	10.9465	175.1440
	250	8.1880	10.9465	0x1	0.5	0x7F	127	16.3770	2.0471	8.1885	131.0160
	312.5	6.5504	10.9465	0x1	0.5	0x32	50	13.0844	1.6356	6.5422	104.6752
	375	5.4587	10.9465	0x0	0.25	0xFF	255	10.9252	1.3657	5.4626	87.4016
	500	4.0940	10.9465	0x0	0.25	0x7F	127	8.1884	1.0236	4.0942	65.5072
Note:	Table 139	includes some ty	pical device ran	ges. Other ranges	are possible	with the user-se	lected shift and	multiplier values.			

<u>Table 140</u> shows some example user shift and multiplier values for typical PSI5 full scale ranges (± 480, 10 bit):

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Table 140. Example user shift and multiplier configuration for typical psi5 scale range

Device	Desired	Desired	NXP trim	NXP trim	User sensitiv	ity shift factor	User multi	plier value	Actual	Actual
type range (g)	range (g)	sensitivity (10 bit, LSB/g)	(10 bit, LSB/g)	(16 bit, LSB/g)	U_SNS_ SHIFT (HEX)	Shift Factor	U_SNS_ MULT (HEX)	Multiplier value (Dec)	sensitivity (PSI5 10 bit, LSB/g)	sensitivity (PSI5 16 bit, LSB/g)
Medium g	15	32.0000	8.2540	528.256	0x3	2	0xF0	240	31.9844	2047.00
	20	24.0000	8.2540	528.256	0x3	2	0x74	116	23.9883	1535.25
	30	16.0000	8.2540	528.256	0x2	1	0xF0	240	15.9922	1023.50
	60	8.0000	8.2540	528.256	0x1	0.5	0xF0	240	7.9961	511.500
	120	4.0000	8.2540	528.256	0x0	0.25	0xF0	240	3.9980	255.875
High g	60	8.0000	2.7366	175.142	0x3	2	0x76	118	7.9961	511.749
	120	4.0000	2.7366	175.142	0x2	1	0x76	118	3.9980	255.874
	240	2.0000	2.7366	175.142	0x1	0.5	0x76	118	1.9990	127.937
	480	1.0000	2.7366	175.142	0x0	0.25	0x76	118	0.9995	63.9686
Note:	Table 140 ir	ncludes some typica	l device ranges. Ot	ther ranges are po	ssible with the use	er-selected shift a	nd multiplier values	5.		

11.2.25 Channel 0 user configuration #3 register (CH0_CFG_U3)

The Channel 0 user configuration #3 register is a user programmable read/write register which contains channel-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 141. Channel 0 user configuration #3 register (CH0 CFG U3)

Loca	ation		Bit						
Address	Register	7	6	5	4	3	2	1	0
\$42	CH0_CFG_U3	UNSIGN EDDATA	DATATY	PE0[1:0]	DATATYPE1[2:0]		MOVEAVG[1:0]		
Unprogramm	ed OTP Value	0	0	0	0	0	0	0	0

11.2.25.1 Unsigned data select bit (UNSIGNEDDATA)

The unsigned data selection bit selects signed or unsigned data for the register and sensor data transmissions as shown in Table 142.

Table 142. Unsigned data select bit (UNSIGNEDDATA)

UNSIGN	Registe	r values	DATATYPE transmissions			
EDDATA	CHx_SNSDATA0	CHx_SNSDATA1	Sensor data (DSI, SPI)	Sensor data (PSI5)		
		Channel	Sensor Data			
0	Signed Data	Signed Data	Signed Data	Signed Data		
1	Unsigned Data	Unsigned Data	Unsigned Data			
		Temperatur	e Sensor Data			
0		As s	pecified in Section 11.7.2			
1						

11.2.25.2 Channel 0 data type 0 selection bits (CHxDATATYPE0)

The Channel Data Type 0 selection bits select the type of data to be included in the SNSDATA0_L and SNSDATA0_H registers.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 143. Channel 0data type 0 selection bits (CHxDATATYPE0)

CHxDATA	CHxDATA	Data transmitted						
TYPE0[1]	TYPE0[0]	Data transmitted	Offset canceled?	Moving average?	Interpo lation?			
0	0	CHx Sensor Data	Selected by OCFILT[1:0]	Selected by MOVEA	Selected by MOVEA			
0	1	CHx Sensor Data	No	VG[1:0]	VG[1:0]			
1	0	Temperature Sensor Data (As specified in Section 11.7.2)						
1	1							

11.2.25.3 Channel 0 data type 1 selection bits (CHxDATATYPE1)

The Channel data type 1 selection bits select the type of data to be included in the SNSDATA1_L and SNSDATA1_H registers.

Table 144. Channel 0data type 1 selection bits (CHxDATATYPE1)

CHxDATA	CHxDATA	CHxDATA		Data trans	mitted	
TYPE1[2]	TYPE1[1]	TYPE1[0]	Data transmitted	Offset canceled?	Moving average?	Interpolation?
0	0	0	CHx Sensor Data	Selected by OCFILT[1:0]	Selected by MOVEA VG[1:0]	No
0	0	1	CHx Sensor Data	No	Selected by MOVEA VG[1:0]	No
0	1	0	Temperature	Sensor Data (As	specified in <u>Sect</u>	ion 11.7.2)
0	1	1				
1	0	0	CHx Sensor Data	Selected by OCFILT[1:0]	No	No
1	0	1	CHx Sensor Data	No	Selected by MOVEA VG[1:0]	No
1	1	0	Temperature	Sensor Data (As s	specified in Sect	ion 11.7.2)
1	1	1				

11.2.25.4 Signal chain moving average selection bits (MOVEAVG[1:0])

The signal chain moving average selection bits determine the input sample period to be used for the signal chain moving average filter.

Table 145. Signal chain moving average selection bits (MOVEAVG[1:0])

MOVEAVG[1]	MOVEAVG[0]	Typical signal sampling period (Dependent on oscillator) (µs)	Signal chain moving average	Interpolation						
0	0	Determined by LPF	Bypassed	Enabled						
0	1	32	8 Sample Moving Average	Disabled						

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 145. Signal chain moving average selection bits (MOVEAVG[1:0])...continued

MOVEAVG[1]	MOVEAVG[0]	Typical signal sampling period (Dependent on oscillator) (µs)	Signal chain moving average	Interpolation
1	0	64	8 Sample Moving Average	Disabled
1	1	128	8 Sample Moving Average	Disabled

Changes to these register bits reset the DSP data path. The contents of the SNSDATA_x registers are not guaranteed until the DSP has completed initialization as specified in Section 10.20. Reads of the SNSDATA_x registers and Sensor Data requests should be prevented during this time.

11.2.26 Channel 0 user configuration #4 register (CH0_CFG_U4)

The Channel 0 user configuration #4 register is a user programmable read/write register which contains channel-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 146. Channel 0 user configuration #4 register (CH0 CFG U4)

Lo	Location		Bit									
Address	Register	7	6	5	4	3	2	1	0			
\$43	\$43 CH0_CFG_U4		INVERT	OC_FI	LT[1:0]	PCM		ARM_CFG[2:0]				
Unprogrammed OTP Value		0	0	0	0	0	0	0	0			

11.2.26.1 Reset offset cancellation startup bit (RESET_OC)

When the reset offset cancellation startup bit is written to logic 1, the offset cancellation startup is forced to phase 0 and follows the phase advancement as documented in Section 11.6.4.6. The RESET_OC bit is cleared when the offset cancellation phase reaches phase 1.

11.2.26.2 Signal inversion bit (INVERT)

The signal inversion bit provides the option to invert the polarity of the sensor signals as shown in Table 147.

Table 147. Signal inversion bit (INVERT)

INVEF	Acceleration sensor data	•	Digital self-test	Analog self-test		Temperature
0	As shown in Section 8.	As specified in Section 11.2.27.1	Digital Self-Test Activation results in	Positive Self-Test:	Delta from Offset as specified in Section 10	As specified in Section 11.7.2
			the values specified in Section 10.8.	Negative Self-Test:	Delta from Offset inverted from the specified values in <u>Section 10.8</u> (Negative Values)	

Table 147. Signal inversion bit (INVERT)...continued

INVERT	Acceleration sensor data	Fixed pattern self-test	Digital self-test	Analog self-test		Temperature
1	Inverted polarity from that shown in Section 8		Digital Self- Test Activation results in the two's complement of the	Positive Self-Test:	Delta from Offset inverted from the specified values in Section 10.8 (Negative Values)	
			values specified in Section 10.8.	Negative Self-Test:	Delta from Offset as specified in Section 10	

11.2.26.3 Offset cancellation filter selection bits (OC_FILT[1:0])

The offset cancellation filter selection bits provide the option to bypass the offset cancellation filter and the rate limiting. See <u>Section 11.6.4.6</u> for details regarding offset cancellation.

Table 148. Offset cancellation filter selection bits (OC FILT[1:0])

OC_FILT[1]	OC_FILT[0]	Offset cancellation IIR filter	Offset cancellation rate limiting
0	0	0.04 Hz	Enabled
0	1	0.04 Hz	Bypassed
1	0	0.005 Hz	Bypassed
1	1	Bypassed	Bypassed

11.2.26.4 Arming pin configuration bits (ARM_CFG[2:0]) and PCM range selection bit (PCM)

The ARM configuration bits (ARM_CFG[2:0]) select the mode of operation for the arming pins.

Table 149. Arming pin configuration bits (ARM_CFG[2:0]) and PCM range selection bit (PCM)

ARM_ CFG[2]	ARM_ CFG[1]	ARM_ CFG[0]	PCM	Operating mode	Output type	Reference
0	0	0	х	Arm/PCM Output Disabled	High Impedance	
0	0	1	0	Arm/PCM Output Disabled	Driven Low	
0	0	1	1	PCM Output	Digital Output	Section 11.8
0	1	0	х	Moving Average Mode	Open-Drain, Active High with Pull-down Current	<u>Section 11.9.1</u>
0	1	1	х	Moving Average Mode	Open-Drain, Active Low with Pull-up Current	<u>Section 11.9.1</u>
1	0	0	х	Count Mode	Open-Drain, Active High with Pull-down Current	Section 11.9.2
1	0	1	х	Count Mode	Open-Drain, Active Low with Pull-up Current	Section 11.9.2

Table 149. Arming pin configuration bits (ARM_CFG[2:0]) and PCM range selection bit (PCM)...continued

ARM_ CFG[2]	ARM_ CFG[1]	ARM_ CFG[0]	PCM	Operating mode	Output type	Reference
1	1	0	x	Unfiltered Mode	Open-Drain, Active High with Pull-down Current	Section 11.9.3
1	1	1	х	Unfiltered Mode	Open-Drain, Active Low with Pull-up Current	Section 11.9.3

Note: The arming function is reset on a change to the ARM_CFG bits. This includes the downsampling state and all history registers.

When the PCM output is enabled, a Pulse Code Modulated signal proportional to the data selected by the DATATYPE0 selection bits is output on the ARM/PCM pin. See Section 11.8 for more information regarding the PCM output.

11.2.27 Channel 0 user configuration #5 register (CH0_CFG_U5)

The Channel 0 user configuration #5 register is a user programmable read/write register which contains channel-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 150. Channel 0 user configuration #5 register (CH0_CFG_U5)

Loca	ation		Bit								
Address	Register	7	6	5	4	3	2	1	0		
\$44	CH0_CFG_U5		ST_CT	RL[3:0]	,		OC_LIMIT[2:0]	,	DSP_DIS		
Unprogrammed OTP Value		0	0	0	0	0	0	0	0		

11.2.27.1 Self-test control bits (ST CTRL[3:0])

The self-test control bits select one of the various analog and digital self-test features of the device as shown in Table 151.

The self-test control bits are writable in DSI3 command and response mode.

The self-test control bits are writable in SPI Mode.

The self-test control bits are writable in I²C Mode.

The self-test control bits are writable in PSI5 programming mode.

Table 151. Self-test control bits (ST_CTRL[3:0])

ST_ CTRL[3]	ST_ CTRL[2]	ST_ CTRL[1]	ST_ CTRL[0]	Function	16-bit SNSDATAx Register value signed	Effect on ST_ INCMPLT bit in Chx_ STAT	Effect on ST_ACTIVE bit in Chx_ STAT
0	0	0	0	DSP writes to the SNS_DATAx_ X registers as configured in the	Sensor Data	No Effect	Clear when Active
0	0	0	1	ChxDATATYPEx registers.		Clear on Activation	Set When Active
0	0	1	0			Clear on Activation	Set When Active

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Table 151. Self-test control bits (ST_CTRL[3:0])...continued

ST_	ST_	ST_	ST_	Function	16-bit	Effect on	Effect on
CTRL[3]	CTRL[2]	CTRL[1]	CTRL[0]		SNSDATAx Register value signed	ST_ INCMPLT bit in Chx_ STAT	ST_ACTIVE bit in Chx_ STAT
0	0	1	1			Clear on Activation	Set When Active
0	1	0	0	DSP write to registers inhibited.	0x0000	Clear on Activation	Set When Active
0	1	0	1		0xAAAA	Clear on Activation	Set When Active
0	1	1	0		0x5555	Clear on Activation	Set When Active
0	1	1	1		0xFFFF	Clear on Activation	Set When Active
1	0	0	0	Positive Analog Self-test - Low	Sensor Data	Clear on Activation	Set When Active
1	0	0	1	Negative Analog Self-test - Low		Clear on Activation	Set When Active
1	0	1	0	Positive Analog Self-test - High		Clear on Activation	Set When Active
1	0	1	1	Negative Analog Self-test - High		Clear on Activation	Set When Active
1	1	0	0	Digital Self-test	Reference Section 10.8	Clear on Activation	Set When Active
1	1	0	1			Clear on Activation	Set When Active
1	1	1	0			Clear on Activation	Set When Active
1	1	1	1			Clear on Activation	Set When Active

11.2.27.2 Offset cancellation test limit bits (OC_LIMIT[2:0])

The offset cancellation test limit bits set the offset limits for the offset test at the end of the PSI5 self-test documented in <u>Section 11.6.2.5</u>. The test limits are set as shown in <u>Table 152</u>.

Table 152. Offset cancellation test limit bits (OC_LIMIT[2:0])

OC_LIMIT[2:0]	Post PSI5 self-test offset limits
0x0	The post PSI5 self-test offset test is disabled.
0x1	± 2 LSB, 10-bit
0x2	± 4 LSB, 10-bit
0x3	± 6 LSB, 10-bit
0x4	± 8 LSB, 10-bit
0x5	± 10 LSB, 10-bit

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 152. Offset cancellation test limit bits (OC LIMIT[2:0])...continued

OC_LIMIT[2:0]	Post PSI5 self-test offset limits
0x6	± 12 LSB, 10-bit
0x7	± 14 LSB, 10-bit

11.2.27.3 DSP disable bit (DSP_DIS)

The DSP disable bit provides the option for the user to disable the clocking to the DSP if sensor data from the associated channel is not used.

Table 153. DSP disable bit (DSP DIS)

DSP_DIS	DSP status
0	DSP operational as specified
1	DSP clocking disabled. Sensor data is readable but will not be updated by the DSP even when self-test is enabled

Care must be taken to ensure the DSP is not disabled for sources that are enabled.

11.2.28 Channel 0 arming configuration register (CH0_ARM_CFG)

The arming configuration register contains configuration information for the arming function. The values in this register are only relevant if the arming function is operating in moving average mode, or count mode.

Note: The arming function is reset on a change to the CHx_ARM_CFG bits. This includes the downsampling state and all history registers.

This register can be written during initialization but is locked once the ENDINIT bit is set. Refer to <u>Section 11.2.6</u>. The register is included in the read/write array error detection.

Table 154. Channel 0 arming configuration register (CH0 ARM CFG)

			•	•	,	/				
Location					В	Bit				
Address Register			7	6	5	4	3	2	1	0
\$45 CH0_ARM_CFG		ARM_I	DS[1:0]	ARM_I	PS[1:0]	ARM_W	S_N[1:0]	ARM_W	S_P[1:0]	
	Unprogrammed OTP Value		0	0	0	0	0	0	0	0

11.2.28.1 Arming function down sampling selection bits (ARM_DS[1:0])

The arming function down sampling selection bits select the down sample rate for the arming function. See Section 11.9.4.

Table 155. Arming function down sampling selection bits (ARM_DS[1:0])

ARM_ DS[1]	ARM_ DS[0]	Down sampling
0	0	Provide every Sensor Data Request sample to the arming function.
0	1	Provide every other Sensor Data Request sample to the arming function.
1	0	Provide every fourth Sensor Data Request sample to the arming function.
1	1	Provide every eighth Sensor Data Request sample to the arming function.

11.2.28.2 Arming pulse stretch (ARM_PS[1:0])

The ARM_PS[1:0] bits set the programmable pulse stretch time for the arming outputs. See <u>Section 11.9</u> for more details regarding the arming function. Pulse stretch times are derived from the internal oscillator, so the tolerance on this oscillator applies.

Table 156. Arming pulse stretch (ARM_PS[1:0])

ARM_PS[1]	ARM_PS[0]	Pulse stretch time (typical oscillator)
0	0	0 ms
0	1	128.000 ms - 130.048 ms
1	0	512.000 ms - 514.048 ms
1	1	2048.000 ms - 2050.048 ms

11.2.28.3 Arming window size (ARM_WS_N[1:0], A_WS_P[1:0])

The ARM_WS_N[1:0] and ARM_WS_P[1:0] bits have a different function depending on the state of the ARM_CFG bits in the CHx_CFG_U3 registers. See <u>Section 11.9</u> for more details regarding the arming function. If the arming function is set to moving average mode, the ARM_WS bits set the number of sensor samples used for the arming function moving average. The number of samples is set independently for each polarity. If the arming function is set to count mode, the ARM_WS bits set the sample count limit for the arming function.

Table 157. Positive arming window size definitions (moving average mode)

ARM_WS_P[1]	ARM_WS_P[0]	Positive window size
0	0	2
0	1	4
1	0	8
1	1	16

Table 158. Negative arming window size definitions (moving average mode)

ARM_WS_N[1]	ARM_WS_N[0]	Negative window size
0	0	2
0	1	4
1	0	8
1	1	16

Table 159. Arming count limit definitions (count mode)

ARM_WS_N[1]	ARM_WS_N[0]	ARM_WS_P[1]	ARM_WS_P[0]	Sample count limit
Don't Care	Don't Care	0	0	1
Don't Care	Don't Care	0	1	3
Don't Care	Don't Care	1	0	7
Don't Care	Don't Care	1	1	15

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

11.2.29 Arming threshold registers (CH0_ARM_T_P, CH0_ARM_T_N)

The arming threshold registers contain the positive and negative thresholds to be used by the arming function. Refer to <u>Section 11.9</u> for more details regarding the arming function.

These registers can be written during initialization but are locked once the ENDINIT bit is set. Refer to <u>Section 11.2.6</u>. The registers are included in the read/write array error detection.

Table 160. Arming threshold registers (CH0_ARM_T_P, CH0_ARM_T_N)

Location			Bit								
Address	Register	7	6	5	4	3	2	1	0		
\$46	CH0_ARM_T_P				ARM_T	_P[7:0]					
\$47	CH0_ARM_T_N				ARM_T	_N[7:0]					
Unprogrammed OTP Value		0	0	0	0	0	0	0	0		

The values programmed into the threshold registers are the threshold values used for the arming function as described in <u>Section 11.9</u>. The threshold registers hold independent unsigned 8-bit values for each polarity. Each threshold increment is equivalent to 1 output LSB, 10-bit. <u>Table 161</u> shows examples of some threshold register values and the corresponding threshold.

Table 161. Example threshold register values and corresponding threshold

Device	Sensitivity	Arming	Range	Programmed thresholds							
Range (g)	(12 bit, LSB/g)	thresh-old resolution (10 bit, LSB/g)	of arm threshold (g)	Positive (Decimal)	Negative (Decimal)	Positive threshold (g)	Negative threshold (g)				
125	16.3760	4.0940	62.2863	40	12	10	-3				
62	33.0161	8.2540	30.8940	123	24	15	-3				
50	40.9400	10.2350	24.9145	245	61	24	-6				
25	81.8800	20.4700	12.4573	245	61	12	-3				
16	127.9375	31.9844	7.9726	223	95	7	-3				

If either the positive or negative threshold is programmed to 0x00, comparisons are disabled for only that polarity. The arming function still operates for the opposite polarity. If both the positive and negative arming thresholds are programmed to 0x00, the arming function is disabled and the output pin is set to high impedance, regardless of the value of the ARM CFG bits in the CH0 CFG U4 register.

11.2.30 Offset cancellation user configuration register (OC_PHASE_CFG)

The offset cancellation user configuration register is a user programmable read/write register which contains offset cancellation configuration information. The register is included in the read/write array error detection.

This register is readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode.

Table 162. Offset cancellation user configuration register (OC_PHASE_CFG)

Location					В	it			
Address	Register	7	6	5	4	3	2	1	0
\$50	OC_PHASE_CFG	CH0_OCFINAL	RESERVED						
Unprogrammed OTP Value		0	0	0	0	0	0	0	0

11.2.30.1 Channel 0 offset cancellation final phase control bit (CH0_OCFINAL)

The channel 0 offset cancellation final phase control bit provides the option for the user to control the final offset cancellation phase for normal mode as shown in <u>Table 163</u>.

Table 163. Channel 0 offset cancellation final phase control bit (CH0 OCFINAL)

ĺ		
	CH0_ OCFINAL	Channel 0 offset cancellation final phase for normal mode
	0	Phase 6 (a or b) as specified in the table in Section 11.6.4.6
	1	Phase 5 as specified in the table in <u>Section 11.6.4.6</u> (Rate Limiting is always bypassed)

11.2.31 User offset calibration registers (Chx_U_OFFSET_L, Chx_U_OFFSET_H)

The user offset calibration registers contain a user programmable 16-bit signed offset correction value for the sensor data.

These registers can be written during initialization but are locked once the ENDINIT bit is set. Refer to <u>Section 11.2.6</u>. The registers are included in the read/write array error detection.

Table 164. User offset calibration registers (Chx_U_OFFSET_L, Chx_U_OFFSET_H)

Location			Bit						
Address	Register	7	6	5	4	3	2	1	0
\$55 CH0_U_OFFSET_L CH0_U_OFFSET[7:0]									
\$56	\$56 CH0_U_OFFSET_H CH0_U_OFFSET[15:8]								
Unprogrammed OTP Value		0	0	0	0	0	0	0	0

The value programmed into the user offset calibration register is directly added to the sensor data after the user sensitivity scaling but before the offset cancellation. See Section 11.6.4.9 for scaling of the CHx_U_OFFSET value. The CHx_U_OFFSET register has the same resolution as the sensor value in the SNSDATAx registers. A 1 LSB change in the CHx_U_OFFSET register will result in a 1 LSB change to the value in the SNSDATAx registers.

Note: The user offset calibration register range is larger than the full scale range of the output. The user must take care to ensure that the value stored in this register does not result in a compressed output range or a railed output.

11.2.32 Channel-specific status register (CH0_STAT)

The channel-specific status register is a read-only register which contains sensor dataspecific status information.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode.

Table 165. Channel-specific status register (CH0_STAT)

Loca	ition		Bit								
Address Register		7	6	5	4	3	2	1	0		
\$60 CH0_STAT		SIGNALCLIP		OCPHASE[2:0]		ST_INCMPLT	ST_ACTIVE	OFFSET_ERR	ST_ERROR		
Reset Value		0	0	0	0	1	0	0	0		

11.2.32.1 Signal clipped status bit (SIGNALCLIP)

In DSI3 mode, SPI mode, and I²C mode, the signal clipped status bit is set if the output of the sinc filter reaches either the maximum or minimum value. The SIGNALCLIP bit is cleared on a read of the CHx_STAT register through any communication interface or on a data transmission that includes the error in the status field.

In PSI5 mode, the SIGNALCLIP bit has no impact on device operation or performance.

11.2.32.2 Offset cancellation phase status (OCPHASE[2:0])

The offset cancellation phase status bits indicate the current phase of the offset cancellation filter as described in Section 11.6.4.6.

Table 166. Offset cancellation phase status (OCPHASE[2:0])

OCPHA SE[2:0]	Offset cancellation startup phase	Offset low-pass filter frequency (Hz)				
000	Phase 0	163.8				
001	Phase 1	40.96				
010	Phase 2	10.24				
011	Phase 3	2.560				
100	Phase 4	0.640				
101	Phase 5	0.160				
110	Phase 6 / Normal Mode	0.04				
111	Not Ap	plicable				

11.2.32.3 Self-test incomplete (ST_INCMPLT)

The self-test incomplete bit is set after a device reset and is cleared when one of the analog or digital self-tests modes are enabled in the ST_CTRL register (ST_CTRL[3] = logic 1 | ST_CTRL[2] = logic 1 | ST_CTRL[1] = logic 1 | ST_CTRL[0] = logic 1) or the PSI5 internal self-test procedure has started.

Table 167. Self-test incomplete (ST_INCMPLT)

ST_ INCMPLT	Condition
0	An Analog or Digital Self-test has been activated since the last reset
1	No Analog or Digital Self-test has not been activated since the last reset AND the PSI5 internal self-test procedure has not completed

11.2.32.4 Self-test active flag (ST_ACTIVE)

The self-test active bit is set if any self-test mode is currently active, including the PSI5 internal self-test or a self-test voltage is applied to the transducer. The self-test active

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

bit is cleared when no self-test mode is active and no self-test voltage is applied to the transducer.

ST_ACTIVE = ST_CTRL[3] | ST_CTRL[2] | ST_CTRL[1] | ST_CTRL[0] | (self-test voltage applied to transducer)

11.2.32.5 Offset error flag (OFFSET_ERR)

The offset error flag is set if the sensor signal reaches the offset limit specified in <u>Section 10.6</u>. The OFFSET_ERR bit is cleared on a read of the CHx_STAT register through any communication interface or on a data transmission that includes the error in the status field. See <u>Section 11.2.15.2</u> for details on a method to disable the automatic clearing of this error in PSI5 mode.

Table 168. Offset error flag (OFFSET ERR)

OFFSET_ERR	Error condition
0	No error detected
1	Offset error detected

11.2.32.6 Self-test error flag (ST_ERROR)

The self-test error flag is set if the PSI5 startup self-test fails as described in <u>Section</u> 6.6.2.5. This bit can only be cleared by a device reset.

11.2.33 Device status copy register (DEVSTAT_COPY)

The device status copy register is a read-only register which contains a copy of the device status information contained in the DEVSTAT register. See <u>Section 11.2.2</u> for details regarding the DEVSTAT register contents.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode. A read of the DEVSTAT_COPY register has the same effect as a read of the DEVSTAT register.

Table 169. Device status copy register (DEVSTAT COPY)

Location			Bit							
Address	Register	7	6	5	4	3	2	1	0	
\$61	DEVSTAT_COPY	CH0_ERR	RESERVED	COMM_ERR	MEMTEMP_ ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT	

11.2.34 Sensor data #0 registers (CHx_SNSDATA0_L, CHx_SNSDATA0_H)

The sensor data #0 registers are read-only registers which contain the 16-bit sensor data. The data type for the sensor data #0 registers is selected by the DATATYPE0 bits in the CHx_CFG_U3 register. See <u>Section 11.2.25.2</u>. See <u>Section 11.6.4.9</u> for details regarding the 16-bit sensor data.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode. In I²C mode, the SNSDA-TA0_H register value is latched on a read of the SNSDATA0_L register value until the SNSDATA0_H register is read. To avoid data mismatch, it is required that the user always read the registers in sequence, SNSDATA0_L register first, followed by the SNSDATA0_H register.

NXP Semiconductors

Single channel inertial sensor

Table 170. Sensor data #0 registers (CHx_SNSDATA0_L, CHx_SNSDATA0_H)

	Location		Bit						
Address	Register	7	7 6 5 4 3 2 1 0						0
\$62	CH0_SNSDATA0_L		CH0_SNSDATA0[7:0]						
\$63	CH0_SNSDATA0_H		CH0_SNSDATA0[15:8]						
F	Reset Value	0 0 0 0 0 0 0					0		

11.2.35 Sensor data #1 registers (CHx_SNSDATA1_L, CHx_SNSDATA1_H)

The sensor data #1 registers are read-only registers which contain the 16-bit sensor data. The data type for the sensor data #1 registers is selected by the DATATYPE1 bits in the CHx_CFG_U3 register. See <u>Section 11.2.25.3</u>. See <u>Section 11.6.4.9</u> for details regarding the 16-bit sensor data.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode. In I²C mode, the SNSDA-TA1_H register value is latched on a read of the SNSDATA1_L register value until the SNSDATA1_H register is read. To avoid data mismatch, it is required that the user always read the registers in sequence, SNSDATA1_L register first, followed by the SNSDATA1_H register.

Table 171. Sensor data #1 registers (CHx_SNSDATA1_L, CHx_SNSDATA1_H)

	Location		Bit						
Address	Register	7	6 5 4 3 2 1 0						
\$64	CH0_SNSDATA1_L		CH0_SNSDATA1[7:0]						
\$65	CH0_SNSDATA1_H		CH0_SNSDATA1[15:8]						
Reset Value 0 0 0 0 0 0 0				0	0				

11.2.36 Channel-specific factory configuration register (CHx_CFG_F)

The channel-specific configuration register is factory programmable OTP register which contains channel specific configuration information. This register is included in the factory programmed OTP array error detection.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for this register.

Table 172. Channel-specific factory configuration register (CHx CFG F)

Loca	ation		Bit								
Address	Register	7	7 6 5 4 3 2 1 0								
\$A0	CH0_ CFG_F		DEV_RA	NGE[3:0]		RESE RVED	RESE RVED	AXIS	B[1:0]		

11.2.36.1 Range indication bits (RANGE[3:0])

The range indication bits indicate the full scale range of the channel as shown in Table 173.

Table 173. Range indication bits (RANGE[3:01)

			4/	
RANGE[3]	RANGE[2]	RANGE[1]	RANGE[0]	Acceleration range
0	0	0	0	RESERVED
0	0	0	1	RESERVED
0	0	1	0	Medium

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 173. Range indication bits (RANGE[3:0])...continued

RANGE[3]	RANGE[2]	RANGE[1]	RANGE[0]	Acceleration range
0	0	1	1	RESERVED
0	1	0	0	High
0	1	0	1	RESERVED
0	1	1	0	RESERVED
0	1	1	1	RESERVED
1	0	0	0	RESERVED
1	0	0	1	RESERVED
1	0	1	0	RESERVED
1	0	1	1	RESERVED
1	1	0	0	RESERVED
1	1	0	1	RESERVED
1	1	1	0	RESERVED
1	1	1	1	RESERVED

11.2.36.2 Axis indication bits (AXIS[1:0])

The axis indication bits indicate the axes of sensitivity for the channel as shown in Table 174.

Table 174. Axis indication bits (AXIS[1:0])

AXIS[1]	AXIS[0]	Axis of sensitivity
0	0	X
0	1	Y
1	0	Z
1	1	RESERVED

11.2.37 Self-test deflection storage registers

The self-test deflection registers are factory programmable OTP registers which contain the nominal self-test values for the various self-tests at 25 °C. These registers are included in the factory programmed OTP array error detection.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for these registers.

Table 175. Self-test deflection storage registers

L	ocation	Bit									
Address	Register	7	6	6 5 4 3 2 1							
\$A2	CH0_STL_P_L				CH0_ST	L_P[7:0]					
\$A3	CH0_STL_P_H		CH0_STL_P[15:8]								
\$A4	CH0_STH_P_L				CH0_ST	H_P[7:0]					
\$A5	CH0_STH_P_H				CH0_STI	H_P[15:8]					
\$A6	CH0_STL_N_L		CH0_STL_N[7:0]								
\$A7	CH0_STL_N_H				CH0_ST	L_N[15:8]					

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 175. Self-test deflection storage registers...continued

Le	ocation		Bit							
Address	Register	7	7 6 5 4 3 2 1							
\$A8	CH0_STH_N_L		CH0_STH_N[7:0]							
\$A9	CH0_STH_N_H		CH0_STH_N[15:8]							

The self-test values are positive and negative deflection values, measured at the factory, and factory programmed for each device. The stored value is equal to one half of the absolute value of the difference be tween the factory measured Chx-SNSDATA0 register value with the analog self-test active and the factory measured CHx_SNSDATA0 register value for off-set at nominal temperature (Data is aligned to the 12-bit sensor data). Both the self-test and offset values are measured with the user scaling set to 1: U SNS SHIFT[1:0] = 0x2 and U SNS MULT[7:0] = 0x00.

$$\label{eq:cho_stl_p} \text{CH0_SNSDATA0}_{\text{ST_CTRL}=0x8} \text{ - CH0_SNSDATA0}_{\text{ST_CTRL}=0x0}]$$

$$CH0_STL_N = 0.5 * [CH0_SNSDATA0_{ST_CTRL=0x0} - CH0_SNSDATA0_{ST_CTRL=0x9}]$$

Two self-test values are stored and available for comparison: a high self-test value and a low self-test value. The self-test value is controlled by the user via the ST_CTRL[3:0] bits in the CHx_CFG_U5 registers as described in Section 11.2.27.1.

When self-test is activated, the sensor data can be compared to the values in the appropriate registers. The difference from the measured deflection value, and the nominal deflection value stored in the register shall not fall outside the self-test accuracy limits specified in Section 10.7 (Δ ST_{ACC}). See Section 11.6.2 for more details on calculating the self-test limits.

11.2.38 IC type register

The IC type register is a factory programmable OTP register which contains the IC type as defined in <u>Table 176</u>. This register is included in the factory programmed OTP array error detection.

Table 176. IC type register

	<u> </u>											
Loca	ation		Bit									
Address	Register	7	6 5 4 3 2 1									
\$C0	ICTYPEID	0	0	0	0	0	0	0	1			

11.2.39 IC revision register

The IC revision register is a factory programmable OTP register which contains the IC revision. The upper nibble contains the main IC revision. The lower nibble contains the sub IC revision. This register is included in the factory programmed OTP array error detection.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for this register.

Table 177. IC revision register

Loca	ition	Bit											
Address	Register	7	7 6 5 4 3 2 1 0										
\$C1	ICREVID		ICREVID[7:0]										

11.2.40 IC manufacturer identification register

The IC manufacturer identification register is a factory programmable OTP register which identifies NXP as the IC manufacturer. This register is included in the factory programmed OTP array error detection.

This register is readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for this register.

Table 178. IC manufacturer identification register

Loca	ation	Bit											
Address	Register	7	6	6 5 4 3 2 1									
\$C2	ICMFGID	0	0	0	0	0	0	1	0				

11.2.41 Part number register

The part number registers are factory programmed OTP registers which include the numeric portion of the device part number. These registers are included in the factory programmed OTP array error detection.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for these registers.

Table 179. Part number register

Loca	ntion		Bit										
Address	Register	7	6 5 4 3 2 1										
\$C4	PN0		PN0[7:0]										
\$C5	PN1		PN1[7:0]										

Table 180. Part number: Protocol type

PN1[7:4]	Pinout	Protocol type
0	Standard	User Selectable
1		SPI32
2		DSI3
3		PSI5
4		I ² C
5 - 7		RESERVED
8	Alternative	User Selectable
9		SPI32
10		DSI3
11		PSI5
12		I ² C

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 180. Part number: Protocol type...continued

PN1[7:4]	Pinout	Protocol type
13 - 15		RESERVED

Table 181. Part number: Axis

PN1[3:0]	Axis
0	RESERVED
1	Z
2	X
3	RESERVED
4	RESERVED
5	RESERVED
6	Y
7	RESERVED
8 - 15	RESERVED

Table 182. Part number: Range

PN0[7:4]	Range
0	RESERVED
1	RESERVED
2	Medium g
3	High g
4 - 15	RESERVED

Table 183. Part number: Unused

PN0[3:0]	N/A
0	0

11.2.42 Device serial number registers

The serial number registers are factory programmed OTP registers which include the unique serial number of the device. Serial numbers begin at 1 for all produced devices in each lot and are sequentially assigned. Lot numbers begin at 1 and are sequentially assigned. No lot will contain more devices than can be uniquely identified by the 14-bit serial number. Depending on lot size and quantities, all possible lot numbers and serial numbers may not be assigned. These registers are included in the factory programmed OTP array error detection.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for these registers.

Table 184. Device serial number registers

Loc	ation		Bit											
Address	Register	7	6	6 5 4 3 2 1										
\$C6	SN0		SN[7:0]											
\$C7	SN1		SN[15:8]											
\$C8	SN2				SN[2	3:16]								
\$C9	SN3		SN[31:24]											
\$CA	SN4		SN[39:36] = DEVICE_REV[3:0] SN[35:32]											

Table 185 shows an example serial number decoding:

Table 185. Example serial number decoding

Serial number		Full serial number																		
Stored Data Format		SI	N4		SN3					SN2				SI	N 1		SN0			
Serial Number Mapping	Tes	t ID			Lot Number									S	erial Nu	ımber w	ithin a l	ot		
Example SN (Hex)	1 0)	0 0)	5		2		0		0		5		0			
Example SN (Binary)	00	01	00	00	00	00	00	00	01	01	00	10	00	00	00	00	01	01	00	00
Example Device Rev									4'	00000 =	0x0 = 0	Od								
Example Lot Number		4'b00 00 00 00 00 00 01 01 00 10 00 = 0x000148 = 328d																		
Example Serial Number								14'b0	0 00 00	01 01 0	00 00 = 0	0x0050	= 80d							

11.2.43 ASIC wafer ID registers

The ASIC wafer ID registers are factory programmed OTP registers which include the wafer number, wafer X, and Y coordinates and the wafer lot number for the device ASIC. These registers are included in the factory programmed OTP array error detection.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for these registers.

Table 186. ASIC wafer ID registers

			<u> </u>												
Loc	ation			Bit											
Address	Register	7	6	6 5 4 3 2 1											
\$CB	ASICWFR#			ASICWFR#[7:0]											
\$CC	ASICWFR_X			ASICWFR_X[7:0]											
\$CD	ASICWFR_Y				ASICWF	R_Y[7:0]									
\$D0	ASICWLOT_L			ASICWLOT_L[7:0]											
\$D1	ASICWLOT_H				ASICWLO	OT_H[7:0]									

11.2.44 Transducer wafer ID registers

The transducer wafer ID registers are factory programmed OTP registers which include the wafer number, wafer X, and Y coordinates and the wafer lot number for the device transducers. The upper 3 bits of the TRNSWFR# register include a transducer and assembly revision counter. These registers are included in the factory programmed OTP array error detection.

These registers are readable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for these registers.

Table 187. Transducer wafer ID registers

Location		Bit									
Address	Register	7	6	6 5 4 3 2 1 0							
\$D2	TRNS1WFR_X		TRNS1WFR_X[7:0]								
\$D3	TRNS1WFR_Y		TRNS1WFR_Y[7:0]								
\$D4	TRNS1LOT_L				TRNS1L0	DT_L[7:0]					
\$D5	TRNS1LOT_H		TRNS1LOT_H[7:0]								
\$DA	TRNS1WFR#	TF	TRNS_ASSY_REV[2:0] TRNS1WFR#[4:0]								

11.2.45 User data registers (USERDATA_0 - USERDATA_E)

User data registers are user programmable OTP registers which contain user-specific information. These registers are included in the user programmed OTP array error detection.

These registers are readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 Programming Mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for these registers.

Table 188. User data registers (USERDATA_0 - USERDATA_E)

					_ /				
Location					В	it			
Address	Register	7	6	5	4	3	2	1	0
\$E0	USERDATA_0		USERDATA_0[7:0]						
\$E1	USERDATA_1		USERDATA_1[7:0]						
\$E2	USERDATA_2				USERDA	TA_2[7:0]			
\$E3	USERDATA_3				USERDA	TA_3[7:0]			
\$E4	USERDATA_4				USERDA	TA_4[7:0]			
\$E5	USERDATA_5				USERDA	TA_5[7:0]			
\$E6	USERDATA_6				USERDA	TA_6[7:0]			
\$E7	USERDATA_7				USERDA	TA_7[7:0]			
\$E8	USERDATA_8				USERDA	TA_8[7:0]			
\$E9	USERDATA_9				USERDA	TA_9[7:0]			
\$EA	USERDATA_A				USERDA	TA_A[7:0]			
\$EB	USERDATA_B		USERDATA_B[7:0]						
\$EC	USERDATA_C	USERDATA_C[7:0]							
\$ED	USERDATA_D	USERDATA_D[7:0]							
\$EE	USERDATA_E	USERDATA_E[7:0]							
Unprogramme	ed OTP Value	0	0	0	0	0	0	0	0

11.2.45.1 PSI5 initialization phase 2 data transmissions of user data

In PSI5 Mode, the values of the user data registers are transmitted in Initialization phase 2 as shown in <u>Table 189</u>. See <u>Section 13.4.2.1</u> for details on the PSI5 Initialization Phase 2 Transmissions.

Table 189. PSI5 initialization phase 2 data transmissions of user data

Loc	ation	Bit								
Address	Register	7	7 6 5 4 3 2					1	0	
\$E0	USERDATA_0		RESERVED				Channel 0 F1: D1			
\$E1	USERDATA_1		Channel 0 F3: D5			Channel 0 F3: D4				
\$E2	USERDATA_2		Channel	0 F4: D7			Channel	0 F4: D6		
\$E3	USERDATA_3		Channel 0 F5: D9				Channel	0 F5: D8		
\$E4	USERDATA_4	Channel 0 F6: D11					Channel (0 F6: D10		
\$E5	USERDATA_5		Channel 0 F7: D13				Channel (0 F7: D12		

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 189. PSI5 initialization phase 2 data transmissions of user data...continued

Loc	cation		Bit									
Address	Register	7	7 6 5			3	2	1	0			
\$E6	USERDATA_6			0, Channel 0 F9: D0 32 = Ch 0 F9: D19			Channel	0 F7: D14				
\$E7	USERDATA_7		Channel	0 F8: D16			Channel	0 F8: D15				
\$E8	USERDATA_8		Channel 0 F8: D18				Channel	0 F8: D17				
\$E9	USERDATA_9		RESE	RVED			RESERVED					
\$EA	USERDATA_A		RESE	RVED			RESERVED					
\$EB	USERDATA_B		RESE	RVED			RESE	RVED				
\$EC	USERDATA_C		RESE	RVED			RESE	RVED				
\$ED	USERDATA_D		RESE	RVED			RESE	RVED				
\$EE	USERDATA_E	RESERVED					RESE	RVED				
Unprogrammed OTP Value 0			0	0	0	0	0	0	0			

11.2.46 User data registers (USERDATA_10 - USERDATA_1E)

User data registers are user programmable OTP registers which contain user-specific information. These registers are included in the user programmed OTP array error detection.

These registers are readable and writable in DSI3 mode, SPI mode, I²C mode or PSI5 programming mode when ENDINIT is not set. See <u>Section 11.2.10</u> for details on the register read process for these registers.

Table 190. User data registers (USERDATA_10 - USERDATA_1E)

Lo	Location				В	it			
Address	Register	7	6	5	4	3	2	1	0
\$F0	USERDATA_10				USERDAT	ΓA_10[7:0]			
\$F1	USERDATA_11				USERDA	TA_11[7:0]			
\$F2	USERDATA_12				USERDAT	ΓA_12[7:0]			
\$F3	USERDATA_13				USERDAT	ΓA_13[7:0]			
\$F4	USERDATA_14				USERDAT	ΓA_14[7:0]			
\$F5	USERDATA_15				USERDAT	ΓA_15[7:0]			
\$F6	USERDATA_16				USERDAT	ΓA_16[7:0]			
\$F7	USERDATA_17				USERDAT	ΓA_17[7:0]			
\$F8	USERDATA_18				USERDAT	ΓA_18[7:0]			
\$F9	USERDATA_19				USERDAT	ΓA_19[7:0]			
\$FA	USERDATA_1A				USERDAT	ΓA_1A[7:0]			
\$FB	USERDATA_1B		USERDATA_1B[7:0]						
\$FC	USERDATA_1C		USERDATA_1C[7:0]						
\$FD	USERDATA_1D	USERDATA_1D[7:0]							
\$FE	USERDATA_1E	USERDATA_1E[7:0]							
Unprogramr	ned OTP Value	0	0	0	0	0	0	0	0

11.2.47 Lock and CRC registers

The lock and CRC registers are automatically programmed OTP registers which include the lock bit, the block identifier, and the block OTP array CRC use for error detection.

These registers are automatically programmed when the corresponding data array is programmed to OTP using the Write OTP Enable register as documented in Section 11.2.7.

Table 191. Lock and CRC registers

Loc	ation		Bit								
Address	Register	7	6	6 5 4 3 2 1							
\$5F	CRC_UF2	LOCK_UF2	0	0	0	CRC_UF2[3:0]					
Unprogramm	ed OTP Value	0	0	0	0	0	0	0	0		
\$AF	CRC_F_A	LOCK_F_A		REGA_BLOCKID[2:0	0]		CRC_F	_A[3:0]			
Rese	t Value	1	0	0	1	Varies					
\$BF	CRC_F_B	LOCK_F_B	REGB_BLOCKID[2:0]			CRC_F_B[3:0]					
Rese	t Value	1	0	1	0 Varies						
\$CF	CRC_F_C	LOCK_F_C		REGC_BLOCKID[2:	0]		CRC_F	_C[3:0]			
Rese	t Value	1	0	1	1		Var	ies			
\$DF	CRC_F_D	LOCK_F_D		REGD_BLOCKID[2:	0]		CRC_F	_D[3:0]			
Rese	t Value	1	1	0	0	Varies					
\$EF	CRC_F_E	LOCK_F_E		REGE_BLOCKID[2:0	0]	CRC_F_E[3:0]					
Unprogramm	ed OTP Value	0	0	0	0	0 0 0					
\$FF	CRC_F_F	LOCK_F_F	REGF_BLOCKID[2:0]			CRC_F_F[3:0]					
Unprogrammed OTP Value 0		0	0	0	0	0	0	0			

<u>Table 192</u> shows the state of the lock bits, the block identifiers, and the CRC for each register block before and after programming.

Table 192. Lock bit, block identifier, and CRC states

Register block address	Loc bit	k bit [7]		dentifier [6:4]	CRC bits[3:0]		
	Before programming	After programming	Before programming	After programming	Before programming	After programming	
UF2	0	1	000	000	0000	Varies	
\$Ax	0	1	N/A	001	N/A	Varies	
\$Bx	0	1	N/A	010	N/A	Varies	
\$Cx	0	1	N/A	011	N/A	Varies	
\$Dx	0	1	N/A	100	N/A	Varies	
\$Ex	0	1	000	101	0000	Varies	
\$Fx	0	1	000	110	0000	Varies	

11.2.48 Reserved registers

A register read command to a reserved register or a register with reserved bits will result in a valid response. The data for reserved bits may be logic 0 or logic 1.

A register write command to a reserved register or a register with reserved bits will execute and result in a valid response. The data for the reserved bits may be logic 0 or logic 1. A write to the reserved bits must always be '0' for normal device operation and performance.

11.2.49 Invalid register addresses

A register read command to a register address outside the addresses listed in Section 11.1 will result in a valid response. The data for the registers will be '0x00'.

A register write command to a register address outside the addresses listed in Section 11.1 will not execute, but will result in a valid response. The data for the registers will be '0x00'.

A register write command to a read-only register will not execute, but will result in a valid response. The data for the registers will be the current contents of the register.

11.3 OTP and read/write register array CRC verification

11.3.1 NXP OTP registers

The following registers are internal OTP registers. These registers are verified by the OTP ECC as well as an independent 4-bit CRC for each 16 byte block.

Table 193. Memory type code: NXP OTP register

	y type codes
F	User readable register with OTP

11.3.2 User OTP only registers

The following registers are user OTP registers. These registers are verified by the OTP ECC as well as an independent 4-bit CRC for each 16 byte block. The CRC verification uses a generator polynomial of $g(x) = X^4 + X^3 + 1$, with a seed value = '0000'. The bits are fed into the CRC calculation from right to left (MSB first) and from top to bottom (lowest address first) in the register map.

Table 194. Memory type code: User OTP register

Memor	Memory type codes					
UF0	One time user programmable OTP region 0					
UF1	UF1 One time user programmable OTP region 1					

11.3.3 OTP modifiable registers

The following registers are user read/write registers as well as OTP registers with writable mirror registers. The OTP registers are verified by the OTP ECC as well as an independent 4-bit CRC stored in the CRC_UF2 register.

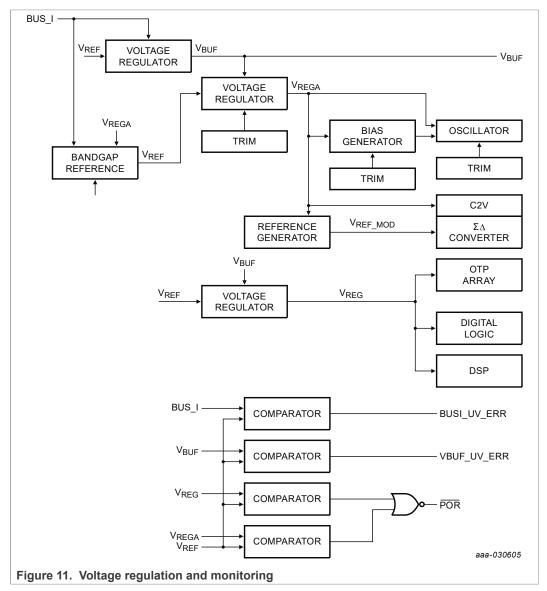
The values read from OTP can be over-written while ENDINIT is not set. Once ENDINIT is set, the writable registers (all registers in the R/W and UF2 regions with the exception of the DEVLOCK_WR register) are verified by an additional continuous 4-bit CRC that is calculated on the entire array. The CRC verification uses a generator polynomial of $g(x) = X^4 + X^3 + 1$, with a seed value = '0000'. The bits are fed into the CRC calculation from right to left (MSB first) and from top to bottom (lowest address first) in the register map.

Registers verified by the OTP CRC:

Table 195. Memory type code: CRC verified OTP registers

Memoi	ry type codes
UF2	One time user programmable OTP region 3 with modifiable mirror registers

Registers verified by the ENDINIT calculated CRC:


Table 196. Memory type code: ENDINIT CRC verified OTP registers

Memoi	Memory type codes					
UF2	One time user programmable OTP region 3 with modifiable mirror registers					
R/W	R/W User writable register, with the exception of the DEVLOCK_WR register					

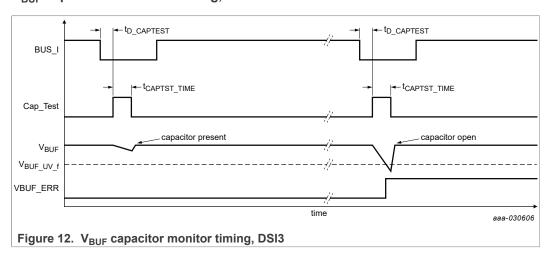
11.4 Voltage regulators

The device derives its internal supply voltage from the V_{CC}/BUS_{L} and V_{SS} pins. The internal regulators are supplied by a buffer regulator (V_{BUF}) to provide immunity from EMC and supply dropouts on BUS_I. An external filter capacitor is required for V_{BUF} , as shown in Section 6.

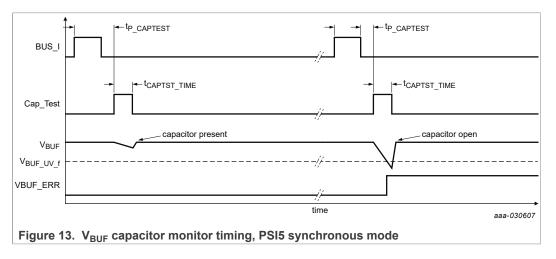
The voltage regulator module includes voltage monitoring circuitry which holds the device in reset following power-on until the internal voltages have increased above the under-voltage detection thresholds. The voltage monitor asserts internal reset when the external supply or internally regulated voltages fall below the under-voltage detection thresholds. A reference generator provides a reference voltage for the $\Sigma\Delta$ converter.

11.4.1 V_{BUF} regulator capacitor and capacitor monitor

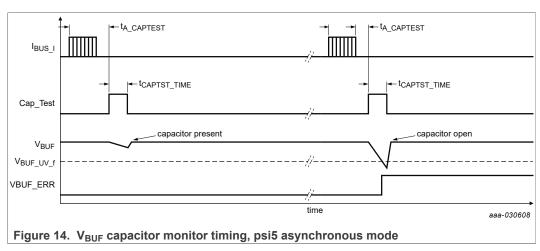
In DSI3 and PSI5 modes, the buffer regulator requires an external capacitor between the V_{BIF} pin and the V_{SS} pin. Section 6 shows the recommended types and values for each


FXLS9xxx0

All information provided in this document is subject to legal disclaimers.


of these capacitors. A monitor circuit is incorporated to ensure predict-able operation if the connection to the external V_{BUF} capacitor becomes open. If the external capacitor is not present, the regulator voltage will fall below the threshold specified in <u>Section 10.4</u> causing the VBUF_ERR bit to be set in the DEVSTAT1 register.

The V_{BUF} capacitor is tested synchronous to the protocol transmissions as shown in the diagrams in Figure 12, Figure 13, and Figure 14.


11.4.1.1 V_{BUF} capacitance monitor timing, DSI3

11.4.1.2 V_{BUF} capacitance monitor timing, PSI5

11.4.1.3 V_{BUF} capacitance monitor timing, PSI5 asynchronous mode

11.4.2 BUS_I, V_{BUF}, V_{REG}, V_{REGA}, undervoltage monitor

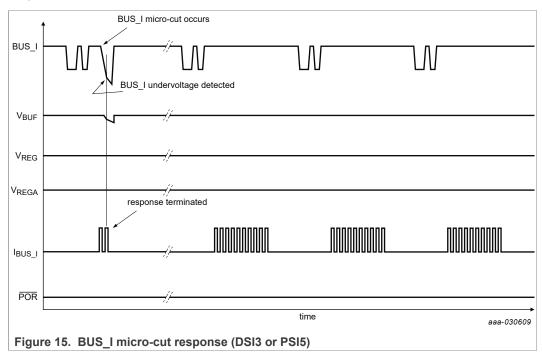
A circuit is incorporated to monitor the BUS_I supply voltage and the internally regulated voltages, V_{BUF} , V_{REG} , and V_{REGA} . If any of the voltages fall below the specified undervoltage thresholds in Section 10.4, the device reacts as described:

DSI3

- If any supply falls below the specified threshold during a command transmission in Command and Response Mode, the command is ignored, and no DSI3 response transmission occurs. Once the supply returns above the threshold, the device will resume decoding commands as specified in Section 11.2.2.4.
- If any supply falls below the specified threshold during a response transmission in Command and Response Mode, the response is terminated. No attempt is made to resend the response. Once the supply returns above the threshold, the device will resume decoding commands as specified in <u>Section 11.2.2.4</u>.
- If any supply falls below the specified threshold during a command transmission in Periodic Data Collection Mode, the command is ignored and no periodic response occurs during that period. Once the supply returns above the threshold, the device will resume periodic transmissions in response to commands as specified in <u>Section 11.2.2.4</u>. Any partially received Background Diagnostic Mode command is flushed and the device will begin decoding a new Background Diagnostic Mode command.
- If any supply falls below the specified threshold during a periodic response transmission in Periodic Data Collection Mode, the response is terminated. No attempt is made to resend the response. Once the supply returns above the threshold, the device will resume periodic transmissions in response to commands as specified in Section 11.2.2.4. Any partially received Background Diagnostic Mode command is flushed and the device will begin decoding a new Background Diagnostic Mode command.
- If any supply falls below the specified threshold during a Background Diagnostic Mode response transmission in Periodic Data Collection Mode, the response is terminated. No attempt is made to resend the response. Once the supply returns above the threshold, the device will resume periodic transmissions in response to commands as specified in Section 11.2.2.4. Any partially received Background Diagnostic Mode command is flushed and the device will begin decoding a new Background Diagnostic Mode command.

• PSI5

 If any supply falls below the specified threshold, all PSI5 transmissions are terminated for the present sync pulse or asynchronous transmission cycle. Once the supply returns above the threshold, the device will resume responses as specified in Section 11.2.2.4.


• SPI

If any supply falls below the specified threshold, SPI responses are terminated. Once the supply returns above the threshold, the device will resume command decode and response transmissions as specified in <u>Section 11.2.2.4</u>.

• I²C

If any supply falls below the specified threshold, I²C transactions are terminated.
 Once the supply returns above the threshold, the device will resume responses as specified in Section 11.2.2.4.

See <u>Figure 15</u> for an example of a supply line interruption during a DSI3 or PSI5 response.

11.5 Internal oscillator

The device includes a factory trimmed oscillator as specified in Section 10.20.

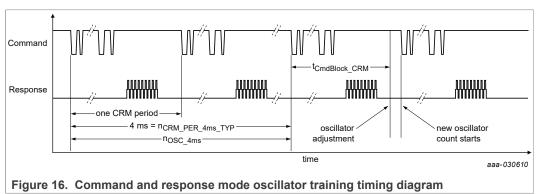
11.5.1 Oscillator training

The device includes a feature to train the oscillator to a tighter accuracy than the factory trimmed capability assuming the system master has a tighter oscillator accuracy than the slave factory trimmed capability. This feature can be enabled for all modes: DSI3, PSI5, SPI, and I²C.

Note: Do not use oscillator training in systems that employ spread spectrum communication methods to reduce emissions.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers


11.5.1.1 DSI3 oscillator training

Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register and is accomplished by verifying the timing of periodic transmissions from the master against the values stored in the CRM_PER[1:0] and PDCM_PER[2:0] bits of the user read/write register array. The master programs the intended Periodic Data Collection Mode command period into the PDCM_PER[2:0] bits and the intended Command and Response Mode command period into the CRM_PER[1:0] bits. The device then calculates the number of transmission periods for every 4 ms (n_{CRM_PER_4ms_TYP} and n_{PDCM_PER_4ms_TYP}).

In Command and Response Mode, oscillator training is completed over 4 ms periods if and only if the CK_CAL_EN bit is set and the Command and Response Mode period is between 500 μ s and 4 ms, inclusive. The following procedure is used to train the oscillator (See Figure 16):

- The device counts the number of oscillator cycles in n_{CRM_PER_4ms_TYP} periods (n_{OSC 4ms}).
- n_{OSC_4ms} is compared to n_{OSC_4ms_TYP}. If the value is within the acceptable training window (OscTrain_{WIN}) specified in <u>Section 10.20</u>, an oscillator adjustment is made. Otherwise, no adjustment is made.
 - If n_{OSC_4ms} is greater than n_{OSC_4ms_TYP} + OscTrain_{ADJ}, the oscillator frequency target is decreased by OscTrain_{RES}.
 - b. If n_{OSC_4ms} is less than n_{OSC_4ms_TYP} OscTrain_{ADJ}, the oscillator frequency target is increased by OscTrain_{RES}.
 - c. The oscillator frequency target value is changed at the end of the command blocking time for the command ending the n_{CRM PER OSC} calculation.

If the CK_CAL_EN bit is cleared after oscillator training has already been initiated, the state of the oscillator is determined by the state of the CK_CAL_RST bit in the TIMING_CFG register. If the CK_CAL_RST bit is cleared, the last adjustment value for the oscillator is maintained. If the CK_CAL_RST bit is set, the oscillator is reset to its untrained value with the untrained tolerance specified in Section 10.20.

In Periodic Data Collection Mode, oscillator training is completed over 4 ms periods if the CK_CAL_EN bit is set. The following procedure is used to train the oscillator (See <u>Figure 17</u>):

1. The device counts the number of oscillator cycles in $n_{PDCM_PER_4ms_TYP}$ periods $(n_{OSC\ 4ms})$.

- 2. $n_{OSC\ 4ms}$ is compared to $n_{OSC\ 4ms\ TYP}$. If the value is within the acceptable training window (OscTrain_{WIN}) specified in <u>Section 10.20</u>, an oscillator adjustment is made. Otherwise, no adjustment is made.
 - a. If $n_{OSC\ 4ms}$ is greater than $n_{OSC\ 4ms\ TYP}$ + OscTrain_{ADJ}, the oscillator frequency target is decreased by OscTrainRES.
 - b. If $n_{OSC\ 4ms}$ is less than $n_{OSC\ 4ms\ TYP}$ OscTrain_{ADJ}, the oscillator frequency target is increased by OscTrain_{RFS}.
 - c. The oscillator frequency target value is changed at the end of the command blocking time for the command ending the n_{PDCM_PER_OSC} calculation.

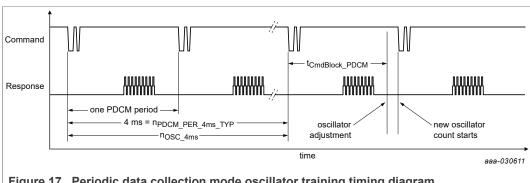
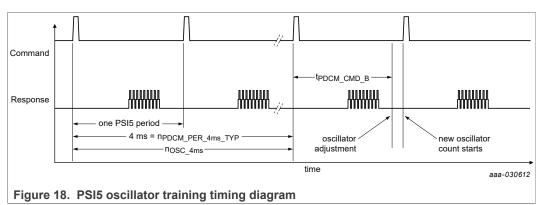


Figure 17. Periodic data collection mode oscillator training timing diagram

11.5.1.2 PSI5 oscillator training


Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register and is accomplished by verifying the timing of periodic transmissions from the master against the values stored in the PDCM PER[2:0] bits of the user read/write register array. The sync pulse period is pre-programmed into the PDCM PER[2:0] bits. The device then calculates the number of transmission periods for every 4 ms (n_{PSI5} PER 4ms TYP).

Oscillator training is completed over 4 ms periods if the CK CAL EN bit is set. The following procedure is used to train the oscillator (see Figure 18):

- 1. The device counts the number of oscillator cycles in n_{PSI5} PER 4_{MS} TYP periods $(n_{OSC\ 4ms})$.
- 2. n_{OSC_4ms} is compared to $n_{OSC_4ms_TYP}$. If the value is within the acceptable training window (OscTrain_{WIN}) specified in Section 10.20, an oscillator adjustment is made. Otherwise, no adjustment is made.
 - a. If n_{OSC_4ms} is greater than $n_{OSC_4ms_TYP}$ + OscTrain_{ADJ}, the oscillator frequency target is decreased by OscTrainRES.
 - b. If $n_{OSC\ 4ms}$ is less than $n_{OSC\ 4ms\ TYP}$ OscTrain_{ADJ}, the oscillator frequency target is increased by OscTrain_{RES}.
 - c. The oscillator frequency target value is changed at the end of the command blocking time for the command ending the $n_{PDCM\ PER_OSC}$ calculation.

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Notes:

In order to benefit from the PSI5 oscillator training accuracy improvements, the
oscillator must be trained prior to data transmissions in Initialization phase 2. For this
reason, if oscillator training is enabled in PSI5 mode, the device will not respond to
sync pulses during initialization phase 1, but oscillator training will be enabled t_{RS_PM}
after reset.

11.5.1.3 SPI oscillator training

Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register and is accomplished by verifying the timing of periodic SOURCEID_0 sensor data request SPI commands from the master against the value stored in the PDC-M_PER[2:0] bits of the user read/write register array. The master programs the intended command period into the PDC-M_PER[2:0] bits. The device then calculates the number of transmission periods for every 4 ms (n_{SPI PER 4ms TYP}).

In SPI Mode, oscillator training is completed over 4 ms periods if the CK_CAL_EN bit is set. The following procedure is used to train the oscillator:

- 1. The device counts the number of oscillator cycles in $n_{SPI_PER_4ms_TYP}$ periods (n_{OSC_4ms}) .
- n_{OSC_4ms} is compared to n_{OSC_4ms_TYP}. If the value is within the acceptable training window (OscTrain_{WIN}) specified in <u>Section 10.20</u>, an oscillator adjustment is made.
 Otherwise, no adjustment is made.
 - a. If n_{OSC_4ms} is greater than $n_{OSC_4ms_TYP}$ + OscTrain_{ADJ}, the oscillator frequency target is decreased by OscTrain_{RES}.
 - b. If n_{OSC_4ms} is less than $n_{OSC_4ms_TYP}$ OscTrain_{ADJ}, the oscillator frequency target is increased by OscTrain_{RES}.
 - c. The oscillator frequency target value is changed.

11.5.1.4 I²C oscillator training

Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register and is accomplished by verifying the timing of periodic I²C reads of the SNSDATA0_L register from the master against the value stored in the PDCM_PER[2:0] bits of the user read/write register array. The master programs the intended command period into the PDCM_PER[2:0] bits. The device then calculates the number of transmission periods for every 4 ms (n_{SPI_PER_4ms_TYP}).

In I²C mode, oscillator training is completed over 4 ms periods if the CK_CAL_EN bit is set. The following procedure is used to train the oscillator:

- The device counts the number of oscillator cycles in n_{I2C_PER_4ms_TYP} periods (n_{OSC_4ms}).
- n_{OSC_4ms} is compared to n_{OSC_4ms_TYP}. If the value is within the acceptable training window (OscTrain_{WIN}) specified in <u>Section 10.20</u>, an oscillator adjustment is made. Otherwise, no adjustment is made.
 - a. If n_{OSC_4ms} is greater than n_{OSC_4ms_TYP} + OscTrain_{ADJ}, the oscillator frequency target is decreased by OscTrain_{RES}.
 - b. If n_{OSC_4ms} is less than $n_{OSC_4ms_TYP}$ OscTrain_{ADJ}, the oscillator frequency target is increased by OscTrain_{RES}.
 - c. The oscillator frequency target value is changed.

11.5.2 Oscillator training error handling

If oscillator training is enabled by the user, but the conditions are not correct to complete oscillator training, the OSC-TRAIN_ERR bit is set in the DEVSTAT register. The following conditions will result in the OSCTRAIN_ERR bit being set.

- The CLK_CAL_EN bit in the TIMING_CFG register is set and the measured period (n_{OSC 4ms}) for any mode is outside the Oscillator Training Window (OscTrain_{WIN}).
- The result of the comparison is filtered with an up and down counter.
- If n_{OSC 4ms} is outside the oscillator training window, the counter is incremented.
- If n_{OSC} 4ms is inside the oscillator training window, the counter is decremented.
- If the counter reaches the OSCTRAIN_ERRCNT setting in the TIMING_CFG2 register, the OSCTRAIN_ERR bit is set.
- The up and down counter has a maximum value of 127 and a minimum value of 0.
- The Command and Response Mode period established by the PDCM_PER and CRM_PER settings does not fall within the 500 µs to 4 ms window.
- The Command and Response Mode period established by the PDCM_PER and CRM_PER settings is not a whole number divisor of 4 ms.

11.6 Inertial sensor signal path

11.6.1 Inertial sensor transducer

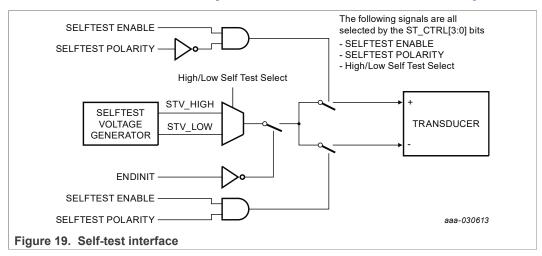
The device transducer is an overdamped mass-spring-damper system defined by the following transfer function:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\xi \cdot \omega_n s + \omega_n^2} \tag{2}$$

Where:

 ζ = Damping Ratio

 $ω_n$ = Natural Frequency = $2*Π*f_n$


See Section 10.19 for transducer parameters.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

11.6.2 Inertial sensor self-test interface

The analog self-test interface applies a voltage to the g-cell, causing deflection of the proof mass. The resulting sensor data can be compared against the values stored in the Self-test Deflection Registers (See Section 11.2.37). The self-test interface is controlled through register write operations to the ST_CTRL[3:0] bits in the CHx_CFG_U5 register described in Section 11.2.27. A diagram of the self-test interface is shown in Figure 19.

Two self-test voltages are available for each device range. The self-test voltage is selected via the ST CTRL[3:0] bits.

Self-test can be verified via the following methods:

11.6.2.1 Raw self-test deflection verification

In DSI3 mode, SPI mode or I²C mode, the raw self-test deflection can be verified against raw self-test limits in Section 10.7.

11.6.2.2 Delta self-test deflection verification

In DSI3 mode, SPI mode or I²C mode, the raw self-test deflection can be verified against the nominal temperature self-test deflection value recorded at the time the device was produced. The production self-test deflection is stored in the CHx-_STy_z register as defined in Section 11.2.37. The Delta Self-test Deflection limits can then be determined by Equation 3 and Equation 4:

$$\Delta ST_{ACCMINLIMIT} = STDATA \times (1 - \Delta ST_{ACC})$$
 (3)

Note: This value is truncated.

$$\Delta ST_{ACCMAXLIMIT} = STDATA \times (1 + \Delta ST_{ACC}) \tag{4}$$

Note: This value is rounded up.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Single channel inertial sensor

Where:

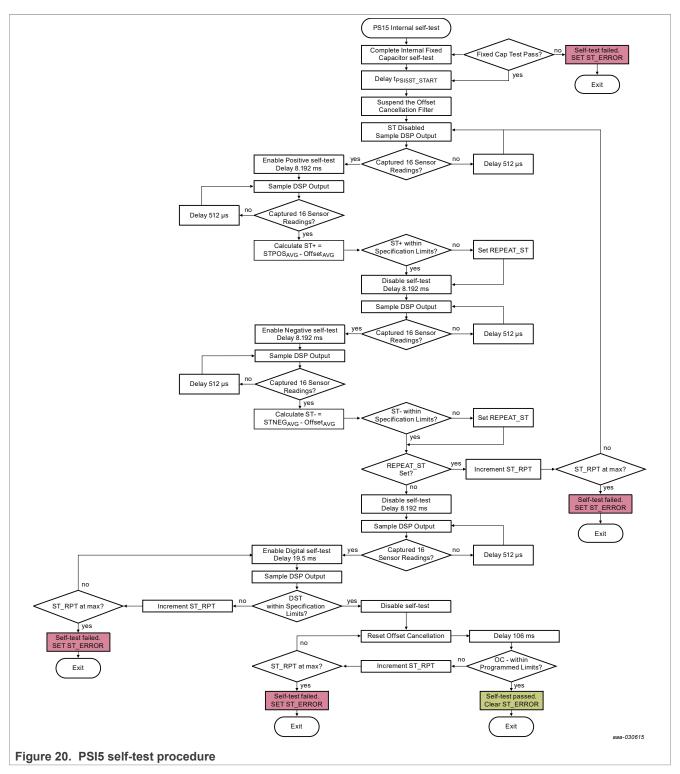
 ΔST_{ACC} = The accuracy of the self-test deflection relative to the stored deflection as

specified in Section 10.8.

STDATA = The value stored in the appropriate CHx_STy_z register as defined in

Section 11.2.37.

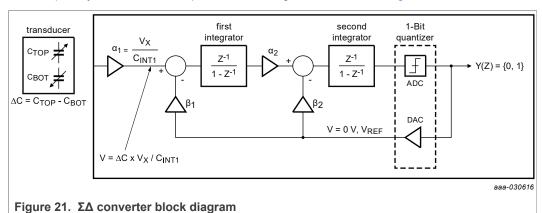
11.6.2.3 Startup digital self-test


In DSI3 mode, SPI mode or I²C mode, during device initialization (ENDINIT not set), the user can activate a digital self-test by writing to the ST_CTRL[3:0] bits in the CHx_CFG_U5 register. The digital self-test inputs a known signal stream into the front end of the DSP. After a delay defined by the low-pass filter selected, the output sensor data reaches a fixed value which can be verified by the user. The digital self-test values are listed in Section 11.2.27.1.

11.6.2.4 Fixed pattern self-test

In DSI3 mode, SPI mode or I²C mode, during device initialization (ENDINIT not set), the user can activate a fixed pattern self-test by writing to the ST_CTRL[3:0] bits in the CHx_CFG_U5 register. Fixed pattern self-tests force the DSP output to a set of known values, enabling the user to verify each bit of the sensor data. The fixed pattern self-test values are listed in Section 11.2.27.1.

11.6.2.5 PSI5 automatic startup self-test procedure


<u>Figure 20</u> shows the PSI5 self-test procedure which is run automatically at startup on each channel if the device is a PSI5 device. The minimum gain settings are used for this procedure: U_SNS_SHIFT = '00', U_SNS_MULT = 0x00.

If the ST_ERROR flag in the CHx_STAT register is set once this test is complete, the device will exit PSI5 initialization phase 2 with a self-test error and the self-test error message are transmitted instead of sensor data. In this case, the ST_ER-ROR bit can only be cleared by a device reset.

11.6.3 Inertial sensor ΣΔ converter

A second order sigma delta modulator converts the differential capacitance of the transducer to a data stream that is input to the DSP. The sigma delta modulator operates at a frequency of 1 MHz. A simplified block diagram is shown in Figure 6.

11.6.4 Inertial sensor digital signal processor

A digital signal processor (DSP) is used to perform signal filtering and compensation. A diagram illustrating the signal processing flow within the DSP is shown in <u>Figure 22</u>.

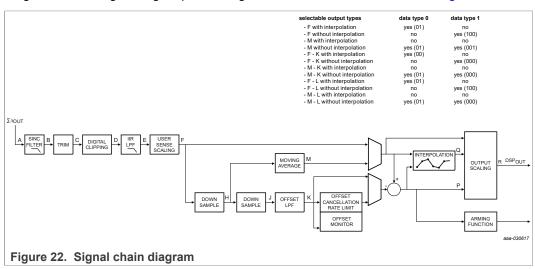
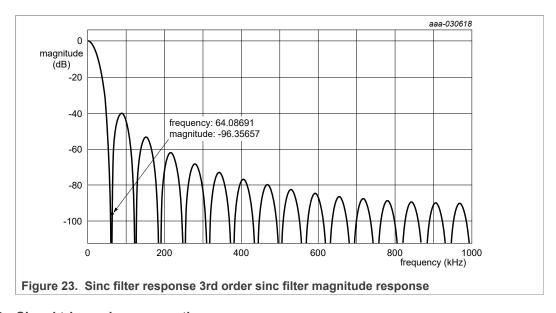


Table 197. Signal chain diagram legend

	Description	Sample Time (µs)	Data width (Bits)	Sign (Bits)	Over range (Bits)	Signal width (Bits)	Signal margin (Bits)	Typical block latency	Reference
Α	ΣΔ	1	1	1	NA	1	NA	2.5 µs	<u>Section 11.6.3</u>
В	SINC Filter	16, 32, 64	23	1	NA	21	NA	22.5 µs	Section 11.6.4.1
С	Trim	16, 32, 64	32	1	2	18	11	N/A	Section 11.6.4.2
D	Digital Clipping	16, 32, 64	32	1	2	18	11	N/A	Section 11.6.4.3
Е	Low-pass filter	16, 32, 64	32	1	2	18	11	Filter Dependent	Section 11.6.4.4

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.


Table 197. Signal chain diagram legend...continued

	Description	Sample Time (µs)	Data width (Bits)	Sign (Bits)	Over range (Bits)	Signal width (Bits)	Signal margin (Bits)	Typical block latency	Reference
F	User Scaling	16, 32, 64	32	1	2	18	11	N/A	<u>Section 11.6.4.5</u>
Н	Down Sample	32, 64, 128	32	1	NA	31	NA	N/A	Section 11.6.4.7
J	Secondary Down Sample	256	32	1	NA	31	NA	N/A	Section 11.6.4.6
K	Offset low-pass filter	256	16	1	2	11	2	N/A	<u>Section 11.6.4.6</u>
L	Offset Rate Limiting	256	16	1	2	11	2	N/A	Section 11.6.4.6
М	Moving Average Filter	32, 64, 128	24	1	2	18	3	Filter Dependent	Section 11.6.4.7
Р	Offset Subtraction	32, 64, 128	24	1	2	18	3	N/A	Section 11.6.4.6
Q	Interpolation	1, 2, 4	24	1	2	18	3	t _{SigChainXX}	<u>Section 11.6.4.8</u>
R	Output Range Selection	1, 2, 4	18		User Se	electable		N/A	Section 11.6.4.9

11.6.4.1 Decimation sinc filter

The output of the $\Sigma\Delta$ modulator is decimated and converted to a parallel value by a third order Sinc Filter with a decimation ratio of 16.

$$H(Z) = \left(\frac{1}{16^3}\right) \times \left(\frac{1 - Z^{-16}}{1 - Z^{-1}}\right)^3 \tag{5}$$

11.6.4.2 Signal trim and compensation

The device includes digital trim to compensate for sensor offset, sensitivity, and non-linearity over temperature. <u>Equation 6</u>, <u>Equation 7</u>, <u>Equation 8</u>, and <u>Equation 9</u> are used for the trim compensation.

$$Offset_{Trim} = A_0 + B_2 \times (T - T_{25}) + C_{22} \times (T - T_{25})^2$$
(6)

Sensitivity_{Trim} =
$$B_1 + (T - T_{25}) \times C_{12}$$
 (7)

$$Linearity_{Trim} = C_{11}$$
 (8)

$$Trim_{OUT} = Trim_{In} \times \left[Sensitivity_{Trim} + Trim_{In} \times Linearity_{Trim} \right] + Offset_{Trim}$$
(9)

Table 198. Signal trim and compensation variable descriptions

Variable name	Description	Range (Real)	Variable size (Bits)	Resolution (Real)
A_0	Offset Compensation	-1.0 to +1.0	12	4.8852e-04
B ₂	Offset Compensation with First Order Temperature Compensation	-1.0 to +1.0	12	4.8852e-04
C ₂₂	Offset Compensation with Second Order Temperature Compensation	-1.0 to +1.0	12	4.8852e-04
B ₁	Sensitivity Compensation	-1.0 to +1.0	12	4.8852e-04
C ₁₂	Sensitivity Compensation with First Order Temperature Compensation	-1.0 to +1.0	12	4.8852e-04
C ₁₁	Linearity Compensation	-1.0 to +1.0	12	4.8852e-04
T	Temperature Sensor Digital Output Value	-1.0 to +1.0	12	4.8852e-04
T ₂₅	Temperature Sensor Output Value stored at the Ambient Test Insertion	-1.0 to +1.0	12	4.8852e-04
<i>Trim</i> _{In}	Output of the Sinc Filter			
<i>Trim</i> _{Out}	Output of the Trim Block			

11.6.4.3 Digital clipping

The device includes a digital clipping block to maximize the symmetry between the positive and negative electrical dynamic range of the device. Digital clipping values are specified in <u>Section 10.9</u> and <u>Section 10.10</u>.

11.6.4.4 Low-pass filter

Data from the Sinc filter is processed by an infinite impulse response (IIR) low-pass filter.

$$H(z) = a_0 \cdot \frac{(n_{11}z^0)(n_{12}z^{-1})(n_{13}z^{-2})}{(d_{11}z^0)(d_{12}z^{-1})(d_{13}z^{-2})} \cdot \frac{(n_{21}z^0)(n_{22}z^{-1})(n_{23}z^{-2})}{(d_{21}z^0)(d_{22}z^{-1})(d_{23}z^{-2})}$$
(10)

The device provides the option for one of several low-pass filters. The filter coefficients are selected with the LPF[3:0] bits in the CHx_CFG_U1 registers.

The filter selection options are listed in <u>Section 11.2.23.1</u>. Response parameters for the low-pass filter are specified in <u>Section 10.18</u>. Filter characteristics for the highest sample rate are illustrated in <u>Figure 24</u> through <u>Figure 49</u>.

Table 199. LPF #0 and LPF #2

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter coe	efficie	ents
0, 2	0000	00 or 01	400	16	4	839	-19.5	1.59	a ₀	0.003143225986084408		
	or 0010								n ₁₁	0.0009951105668343345	d ₁₁	1
	0010	10	200	32		1678	-42.3	3.18	n ₁₂	0.002003487780064749	d ₁₂	-1.892328151433503
									n ₁₃	0.001008466113720278	d ₁₃	0.8954713774195870
									n ₂₁	0.2516720624825626	d ₂₁	1
		11	100	64		3356	-66.0	6.36	n ₂₂	0.4999888752940916	d ₂₂	-1.918978239761011
									n ₂₃	0.2483390622233452	d ₂₃	0.9229853042218408

Table 200. LPF #1 and LPF #3

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
1, 3	0001	00 or 01	400	16	3	697	-16.6	1.49	a ₀	0.05189235225042199		
	or 0011								n ₁₁	0.001629077582099646	d ₁₁	1
	0011	10	200	32		1394	-33.5	2.98	n ₁₂	0.001630351547919014	d ₁₂	-0.9481076477495780
									n ₁₃	0	d ₁₃	0
									n ₂₁	0.2500977520825902	d ₂₁	1
		11	100	64		2788	-51.5	5.96	n ₂₂	0.4999999235890745	d ₂₂	-1.915847097557409
									n ₂₃	0.2499023243303036	d ₂₃	0.9191065266874253

Table 201. LPF #4

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (μs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter cod	efficie	nts
4	0100	00 or 01	325	16	4	856	-21.4	1.84	a ₀	0.0424754749983549118		
									n ₁₁	0.0010903775691986084	d ₁₁	1
		10	162.5	32		1712	-38.7	3.68	n ₁₂	0.001089394 09255981445	d ₁₂	-0.957524538 04016113281
									n ₁₃	0	d ₁₃	0
									n ₂₁	0.249887526 03530883789	d ₂₁	1
		11	81.25 5	64		3424	-56.8	7.36	n ₂₂	0.499999895 69187164307	d ₂₂	-1.931408762 93182373047
			n ₂₃	0.2501125633716583252	d ₂₃	0.933588504 79125976562						

Table 202. LPF #5

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter coe	efficie	ents
5	0101	00 or 01	370	16	2	586	-14.1	1.55	a ₀	0.002209828 58445495367		
									n ₁₁	0.25	d ₁₁	1

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 202. LPF #5...continued

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
		10	185	32		1172	-25.2	3.10	n ₁₂	0.499999985 09883880615	d ₁₂	-1.918031513 69094848633
								n ₁₃	n ₁₃	0.25	d ₁₃	0.920241355 89599609375
									n ₂₁	1	d ₂₁	1
		11	92.5	64		2344	-37.2		n ₂₂	0	d ₂₂	0
									n ₂₃	0	d ₂₃	0

Table 203. LPF #6

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
6	0110	00 or 01	180	16	2	1187	-25.6	3.19	a ₀	0.000534069 20051202178		
									n ₁₁	0.25	d ₁₁	1
		10	90	32		2374	-37.5	6.38	n ₁₂	0.50	d ₁₂	-1.959839582 44323730469
									n ₁₃	0.25	d ₁₃	0.960373640 06042480469
									n ₂₁	1	d ₂₁	1
		11	45	64		4748	-49.7	12.8	n ₂₂	0	d ₂₂	0
									n ₂₃	0	d ₂₃	0

Table 204. LPF #7

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
7	0111	00 or 01	100	16	2	2167	-35.7	4 5.75	a ₀	0.000166309 83736831695		
									n ₁₁	0.25	d ₁₁	1
		10	50	32		4334	-47.7	11.5	n ₁₂	0.5	d ₁₂	-1.977621793 74694824219
									n ₁₃	0.25	d ₁₃	0.977788090 70587158203
									n ₂₁	1	d ₂₁	1
		11	25	64		8668	-60.0	23.0	n ₂₂	0	d ₂₂	0
							5		n ₂₃	0	d ₂₃	0

Table 205. LPF #8

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
8	1000	00 or 01	1500	16	4	223	-1.26	0.420	a ₀	0.038343372 95612844088		
									n ₁₁	0.012602858 55167835381	d ₁₁	1
		10	750	32		446	-5.70	0.840	n ₁₂	0.025205812 95635351826	d ₁₂	-1.621822061 87479138748
									n ₁₃	0.012602841 71453899225	d ₁₃	0.660165434 83091971734

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 205. LPF #8...continued

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter coe	efficie	ents
									n ₂₁	0.250000391 85483757809	d ₂₁	1
		11	375	64		892	-21.7	1.68	n ₂₂	0.499998882 29656874739	d ₂₂	-1.691365664 38039781524
									n ₂₃	0.250000725 84865173919	d ₂₃	0.741777177 60299266558

Table 206. LPF #9

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (HZ)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)	Filter coefficients a ₀ 0.064615703 92887561187 n ₁₁ 0.002532283 d ₁₁ 1 n ₁₂ 0.002532824 d ₁₂ -0.935384296 55746249506 d ₁₃ 0.0 n ₁₃ 0.0 d ₁₃ 0.0						
9	1001	00 or 01	500	16	3	558	-12.0	1.18	ns) a ₀ 0.064615703 92887561187 n ₁₁ 0.002532283 d ₁₁ 1 58602412005						
									n ₁₁		d ₁₁	1			
		10	250	32		1116	-27.9	2.36	n ₁₂						
									n ₁₃	0.0	d ₁₃	0.0			
									n ₂₁	0.250076066 29379214302	d ₂₁	1			
		11	125	64		2232	-45.8	4.72	n ₂₂	0.499999953 72560029905	d ₂₂	-1.894618878 39771225828			
									n ₂₃	0.249923979 97755622097	d ₂₃	0.899684986 54120099278			

Table 207. LPF #A

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter o	oefficie	ents
Α	1010	00 or 01	800	16	4	419	-4.92	0.795	a ₀	0.011904109 84205714229		
							19 -4.92		n ₁₁	0.003841581 86528944052	d ₁₁	1
		10	400	32		838 –19.5	1.59	n ₁₂	0.007683254 14507123675	d ₁₂	-1.790004627 19285069468	
									n ₁₃	0.003841554 98534484614	d ₁₃	0.801908737 03490794799
									n ₂₁	0.250001033 66513437564	d ₂₁	1
		11	200	64		1676	-42.3	3.18	n ₂₂	0.499996183 39874751793	d ₂₂	-1.836849434 91757790568
				64 1676 -42.3 3.18				n ₂₃	0.250002782 93126343421	d ₂₃	0.852215825 91330946599	

Table 208. LPF #B

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
В	1011	00 or 01	1200	16	4	279	-2.00	0.530	a ₀	0.025461958 27091324651 0.008307694 58672901175	d ₁₁	1

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 208. LPF #B...continued

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter c	oefficie	nts
		10	600	32		558	-9.30	1.06	n ₁₂	0.016615493 41945577768	d ₁₂	-1.692260733 94381204551
									n ₁₃	0.008307673 73784346147	d ₁₃	0.717722692 21472528855
									n ₂₁	0.250000627 40839573694	d ₂₁	1
		11	300	64		1116	-28.8	2.12	n ₂₂	0.499998117 78583796995	d ₂₂	-1.753850626 39799738093
									n ₂₃	0.250001254 80314383530	d ₂₃	0.787081488 14205258770

Table 209. LPF #C

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter c	oefficie	nts
С	1100 or	00 or 01	120	16	3	2325	-46.5	5.00	a ₀	0.015895001 45947964072		
	1101						25 -46.5 5.		n ₁₁	0.000151619 88544501960	d ₁₁	1
		10	60	32		4650	-64.5	10.0	n ₁₂	0.000152009 54845361584	d ₁₂	-0.984104998 54052035928
									n ₁₃	0.0	d ₁₃	0.0
									n ₂₁	0.250321249 94306603760	d ₂₁	1
		11	30	64		9300	-82.8	20.0	n ₂₂	0.499999175 53953604488	d ₂₂	-1.974640453 92631648568
									n ₂₃	0.249679574 70143059551	d ₂₃	0.974944083 36020621508

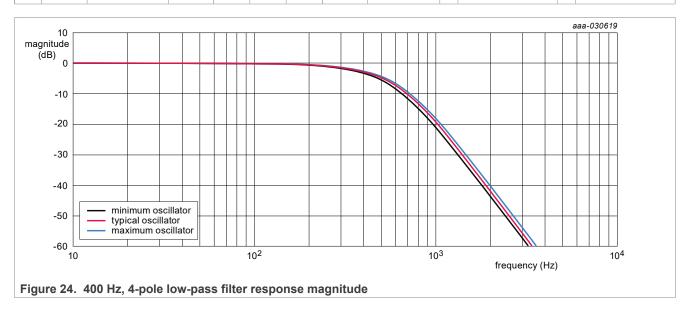
Table 210. LPF #D

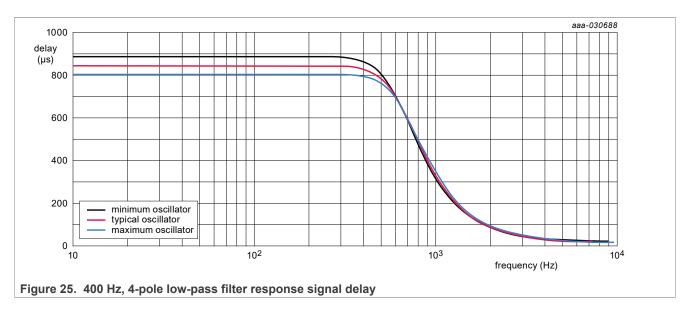
Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (kHz)	Sample time (µs)	Filter order	Group delay (μs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
D	1100 or	00 or 01	20	16	2	< 50	0	< 0.100	a ₀	0.462284907 69863128662		
	1101								n ₁₁	1.032979726 79138183594	d ₁₁	1
		10	10	32		< 100	-0.01	< 0.200	n ₁₂	2.065959453 58276367188	d ₁₂	0.723919987 67852783203
									n ₁₃	1.032979726 79138183594	d ₁₃	0.186203718 18542480469
									n ₂₁	1	d ₂₁	1
		11	5	64		< 200	-0.04	< 0.400	n ₂₂	0	d ₂₂	0
									n ₂₃	0	d ₂₃	0

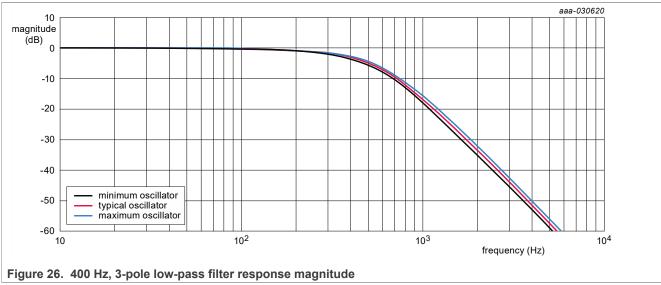
Table 211. LPF #E

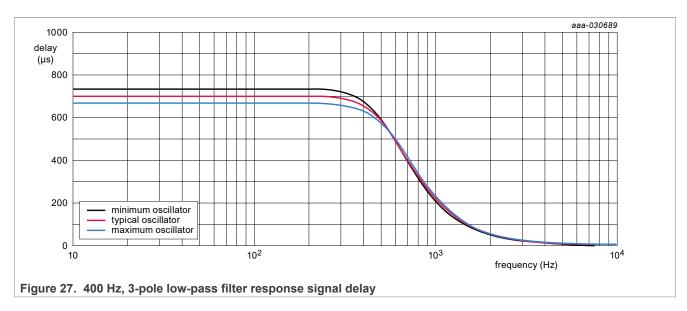
Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter coef	fficients
Е	1110	00 or 01	120	16	2	1804	-32.8	4.85	a ₀	0.000238952 80210650682	

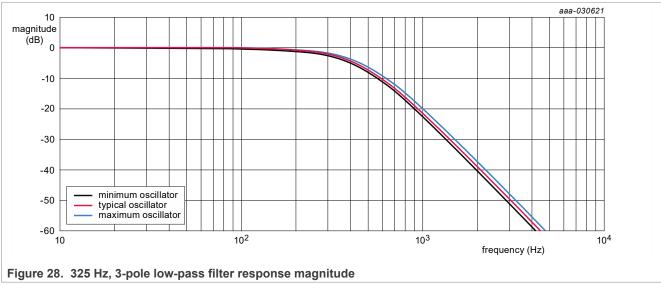
FXLS9xxx0

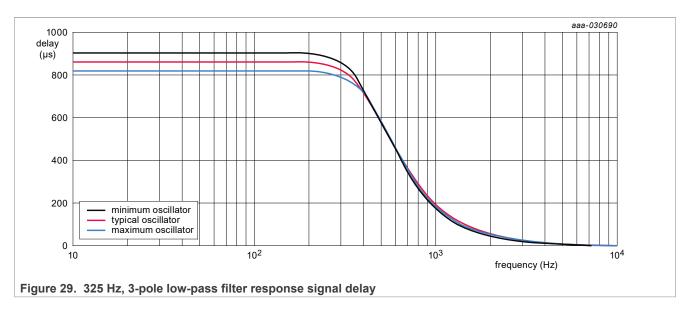

All information provided in this document is subject to legal disclaimers.

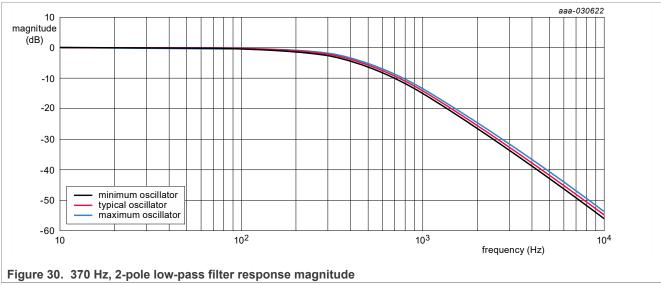

Table 211. LPF #E...continued

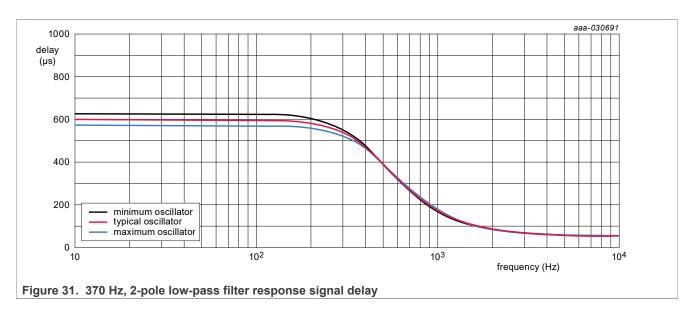

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter co	efficie	ents
									n ₁₁	0.25	d ₁₁	1
		10	60	32		3608	-44.7	9.70	n ₁₂	0.50	d ₁₂	-1.973166250 13962188007
									n ₁₃	0.25	d ₁₃	0.973405202 94172827587
									n ₂₁	1	d ₂₁	1
		11	30	64		7216	-57.0	19.4	n ₂₂	0	d ₂₂	0
									n ₂₃	0	d ₂₃	0

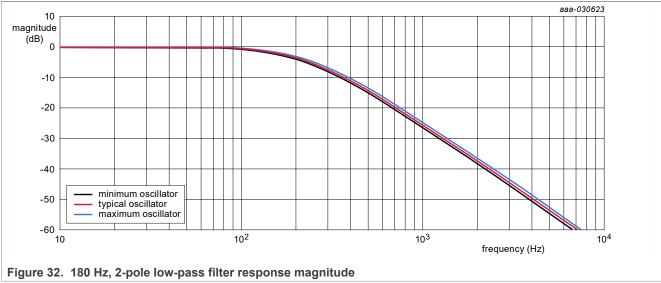

Table 212. LPF #F

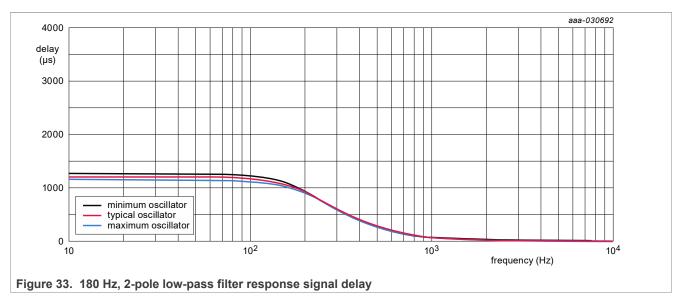

Filter #	LPF[3:0]	SAMPLERATE[1:0]	Typical -3 dB Frequency (Hz)	Sample time (µs)	Filter order	Group delay (µs)	1000 Hz Atten uation (dB)	Step response Activation to 99 % (ms)		Filter c	oefficie	ents
F	1111	00 or 01	50	16	4	4 6726 -89.7		12.8	a ₀	0.000051373 22664827693		
								n ₁₁	0.000015041 24143177110	d ₁₁	1	
		10	25	32			25.6	n ₁₂	0.000032261 11162087577	d ₁₂	-1.986263192 05697576820	
									n ₁₃	0.000017387 20648386979	d ₁₃	0.986314565 28362415614
									n ₂₁	0.268800639 11477075633	d ₂₁	1
		11	12.5	64		26,904	-138	51.2	n ₂₂	0.498663181 55607519680	d ₂₂	-1.989975680 35769623052
		11 12.5 64 26,904 -138			n ₂₃	0.232535878 66496652770	d ₂₃	0.990040369 88244481510				

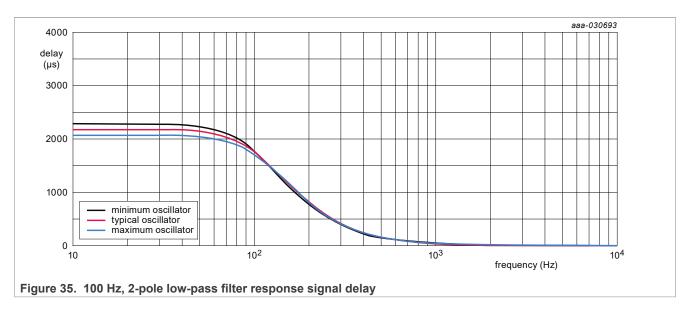


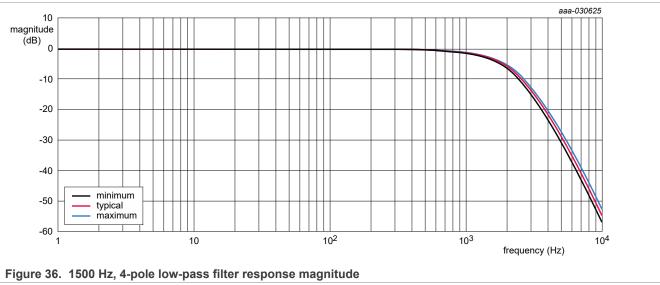


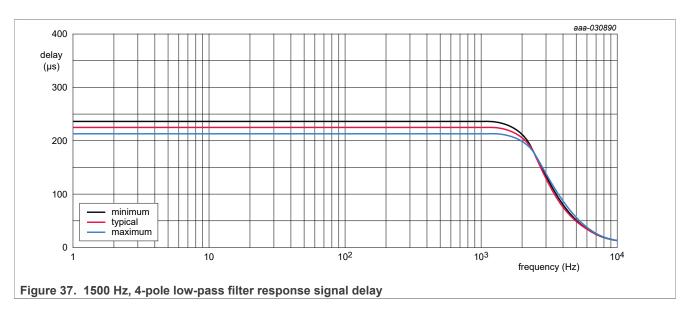


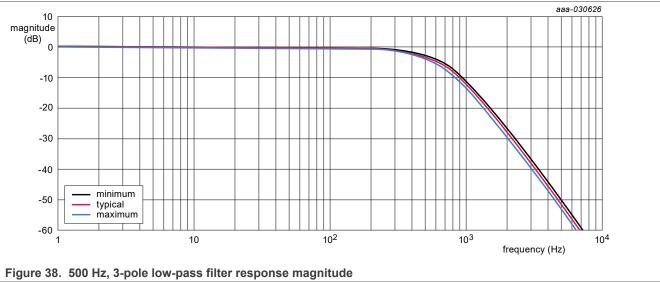


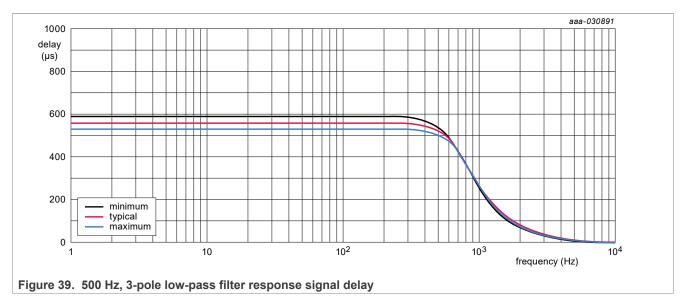


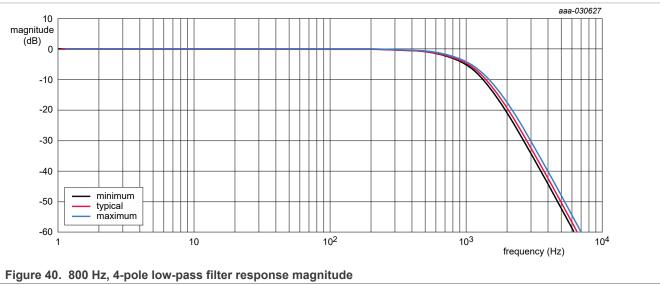




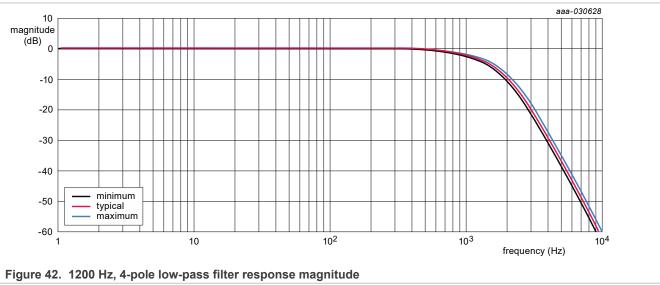


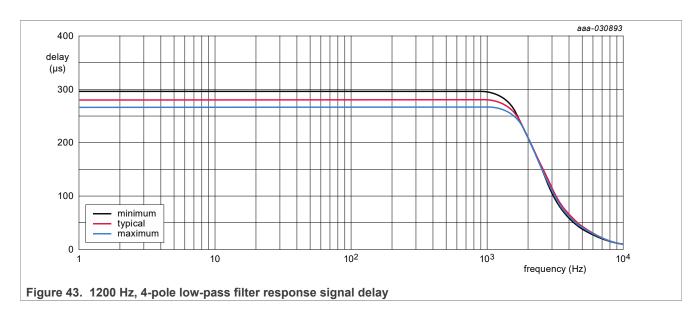


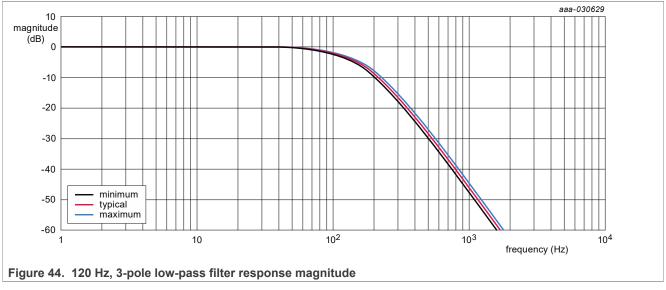


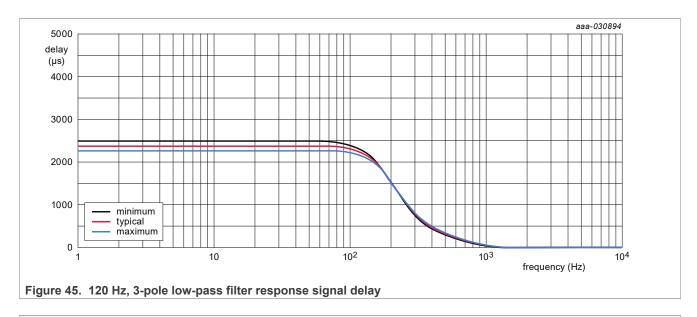


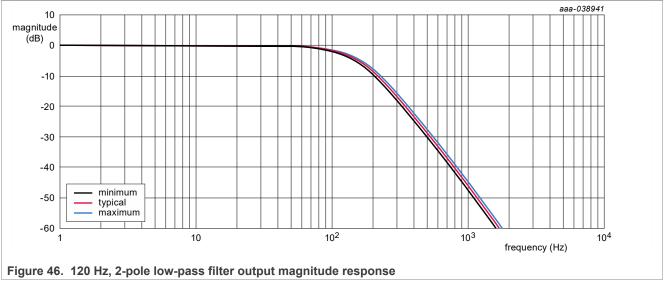


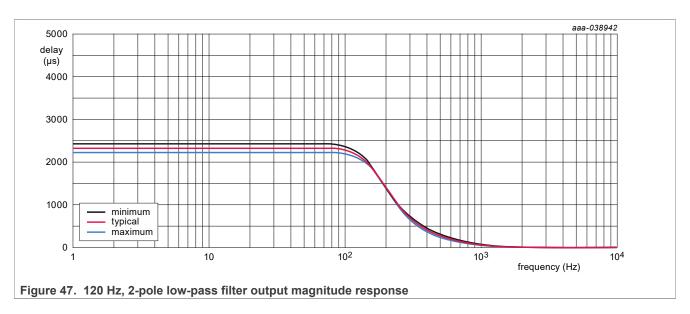


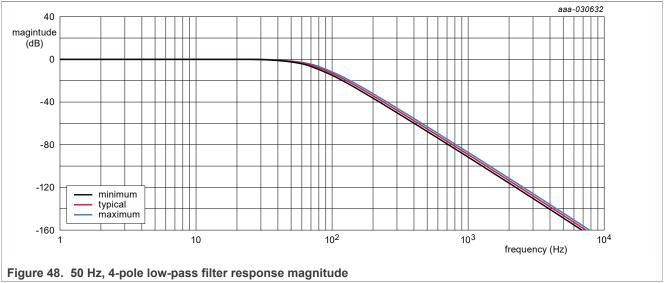


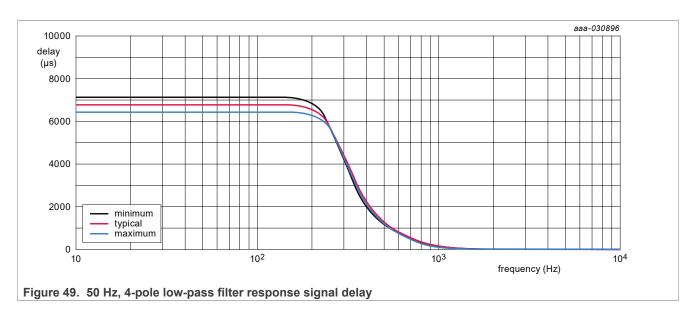


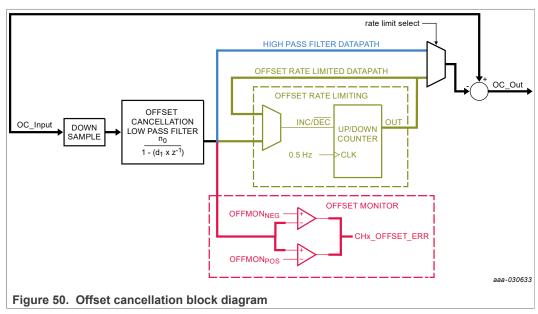












11.6.4.5 User sensitivity scaling

The device includes a user controlled sensitivity scaling as described in Section 11.2.24.1.

11.6.4.6 Offset cancellation

The device provides an optional offset cancellation circuit to remove internal offset error. A simplified block diagram of the offset cancellation is shown in <u>Figure 50</u>.

The transfer function for the offset low-pass filter is:

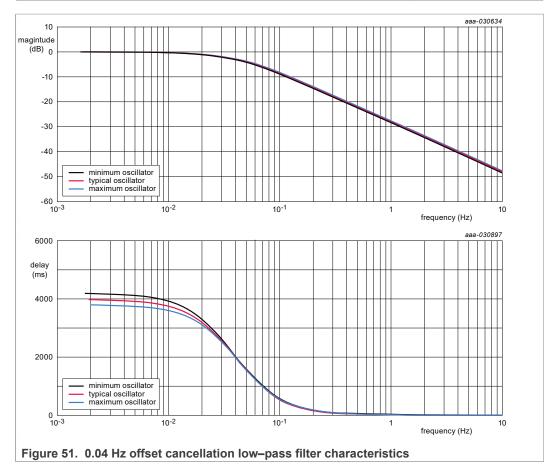
$$H(z) = a_0 \times \frac{n_0(n_1 z^{-1})}{d_0(d_1 z^{-1})}$$
(11)

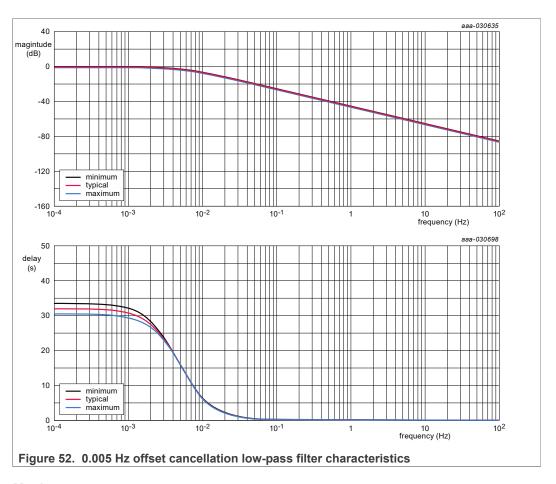
Single channel inertial sensor

Response parameters are specified in <u>Section 10</u> and the offset low-pass filter coefficients are specified in <u>Table 213</u>.

During startup, multiple phases of the offset low-pass filter are used to allow for fast convergence of the internal offset error during initialization. The offset rate limiting is also bypassed regardless of the state of the OC_FILT bits in the CHx_CFG_U4 register. The low-pass filter details and timing for the startup phases is shown in <u>Table 213</u>.

In normal mode, the offset low-pass filter frequency can be selected and output rate limiting can be applied to the output of the offset low-pass filter via the OC_FILT bits in the CHx_CFG_U4 register. Rate limiting can only be enabled if the 0.04 Hz offset LPF is selected. If rate limiting is enabled, the offset cancellation output is updated by OFF_Step LSB every $t_{RL\ Rate}$ seconds.


The offset cancellation circuit output value is frozen when analog or digital self-test is active (ST_CTRL = 0x8 - 0xF) regard-less of the offset cancellation phase. When analog or digital self-test is deactivated, the offset cancellation output value freeze is extended for 15 ms before continuing updates.


Table 213. Offset cancellation phases and times: DSI3, SPI, and I²C modes

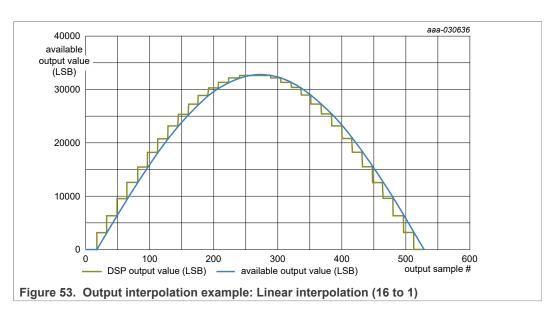
Offset LPF startup phase	Time from reset to start of phase (ms)	Sample Time (us)		Coefficier	nts (24	bit)	LPF corner frequency (-3 dB) (Hz)	Time constant (τ) (ms)	Rate limiting
0	0	256	a0	0.234051465988159			163.8	0.9714	Bypassed
		n0 0.49999988079071 d0 1.0 4.096 256 a0 0.063805103302002 n0 0.49999988079071	n1	0.49999988079071					
			d0	1.0	d1	-0.765948414802551			
1	4.096	256	a0	0.063805103302002			40.96	3.886	Bypassed
			n0	0.49999988079071	n1	0.49999988079071			
			d0	1.0	d1	-0.936194777488708			
2	8.192	256	a0	0.0163367986679077			10.24	15.54	Bypassed
	n0 0.4999988079071 n1 0.49	0.49999988079071							
			d0	1.0	d1	-0.983663082122802			
3	24.58	d0 1.0 d 58 256 a0 0.00410926342010498 n0 0.49999988079071 n			2.560	62.17	Bypassed		
			n0 0.49999988079071 n1 d0 1.0 d1	0.49999988079071					
		24.58	-0.995890617370605						
4	90.11	256	a0	0.00102889537811279			0.6400	248.7	Bypassed
			n0	0.49999988079071	n1	0.49999988079071			
			d0	1.0	d1	-0.998970985412597			
5	352.3	256	a0	0.000257253646850586			0.1600	994.7	Bypassed
			n0	0.49999988079071	n1	0.49999988079071			
			d0	1.0	d1	-0.999742627143859			
6a	1401	256	a0	0.0000643377478321934			0.0400	3979	Controlled by
			n0	0.49999988079071	n1	0.49999988079071			OC_FILT[1:0]
			d0	1.0	d1	-0.9999356623			
6b	1401	1024	a1	0.000032169 39131789331			0.005	32000	Bypassed
		n0 0.49999988079071 n1 0.49999988079070 d0 1.0 d1 -0.9997426271438 256 a0 0.0000643377478321934 -0.999938079071 n1 0.49999988079071 d0 1.0 d1 -0.9999356623 1024 a1 0.000032169 39131789331 n10 0.5 n11 0.5	0.5						
			d10	1	d11	-0.999967830 25562763214			
Self-test Active	Output Frozen								

Table 214. Offset cancellation phases and times: PSI5 modes

Offset LPF startup phase	Time from reset to start of phase (ms)	LPF corner frequency (-3 dB) (Hz)	Time constant (τ) (ms)	Rate limiting
0	0	163.8	0.9714	Bypassed
1	4.096	40.96	3.886	Bypassed
2	8.192	10.24	15.54	Bypassed
3	24.58	2.560	62.17	Bypassed
4	90.11	0.6400	248.7	Bypassed
6a	End of Initialization Phase 3	0.0400	3979	Controlled by OC_FILT[1:0]
6b	End of Initialization Phase 3	0.005	32000	Bypassed

11.6.4.7 Moving average

The device includes an optional moving average function. See <u>Section 11.2.25.4</u> for details regarding the moving average function. If the moving average function is enabled, interpolation is disabled.


11.6.4.8 Data interpolation

The device includes 16 to 1 linear data interpolation to minimize the system sample jitter. Each result produced by the digital signal processing chain is delayed one sample time. Transmitted data is interpolated from the 2 previous samples, resulting in a latency of one sample time, and a maximum signal jitter of 1/16 of the sample time. The device uses the following functions for calculating the interpolation:

$$DataInterpOut_{i} = DataInterpOut_{i-1} + \frac{DSPOut_{Current} - DataInterpOut_{i-1}}{16 - (i-1)}$$
 (12)

$$DataInterpOut_0 = DSPOut_{Previous}$$
 (13)

An example of the output interpolation is shown in Figure 53.

11.6.4.9 Output scaling

Table 215 shows the output scaling for each output data type and protocol.

Table 215. Output scaling

Data Type	PCM	SPI	DSI	PSI5	I ² C	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
16-bit Register Read		х	х	х	х																								
16-bit			х																										
16-bit		х		х																									
12-bit		х	х																										
10-bit	х		х	х																									
CHx_U_OFFSET	х	х	х	х	х																								
	Reada	ble Data	a																										
	Noise I	Bits																											
	Clippe	d Bits																											

<u>Equation 14</u> is used to convert sensor data readings to acceleration using the variables specified in <u>Table 216</u>.

Note: The values listed apply for a user gain of 1x (U_SNS_SHIFT = '10' and U_SNS_MULT = 0x00).

$$Acceleration_{g} = \frac{SensorData_{LSB} - SensorDataOFF_{LSB}}{SENSE_{ACCEL}}$$
(14)

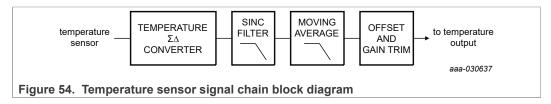
Where:

Acceleration g = The acceleration output in g

SensorData_{LSB} = The acceleration output in LSB

 $SensorDataOFF_{LSB}$ = The acceleration output value at 0 g in LSB

 $SENSE_{ACCEL}$ = The expected sensitivity in LSB/g


Table 216. Sensor data variables

g Range type	Data reading	Typical SensorDa taOFF _{LSB} (LSB)	SENSE _{ACCEL} (LSB/g)	Minimum sensor data value (Signed LSB)	Maximum sensor data value (Signed LSB)
Medium g	16-bit Register Read	0	66.0322	0x8000 (-32768)	0x7FFF (+32767)
	16-bit DSI3 PDCM Sensor Data	0	66.0322	0x8001 (-32767)	0x7FFF (+32767)
	16-bit SPI Sensor Data	0	528.258	0x8010 (-32752)	0x7FFF (+32767)
	16-bit PSI5 Sensor Data	0	528.258	0x8800 (-30720)	0x7800 (+30720)
	12-bit DSI3 PDCM Sensor Data	0	33.0161	0x801 (-2047)	0x7FF (+2047)
	12-bit SPI Sensor Data	0	33.0161	0x801 (-2047)	0x7FF (+2047)
	10-bit DSI3 PDCM Sensor Data	0	8.25403	0x201 (-511)	0x1FF (+511)
	10-bit PSI5 Sensor Data	0	8.25403	0x220 (-480)	0x1E0 (+480)
High g	16-bit Register Read	0	21.8930	0x8000 (-32768)	0x7FFF (+32767)
	16-bit DSI3 PDCM Sensor Data	0	21.8930	0x8001 (-32767)	0x7FFF (+32767)
	16-bit SPI Sensor Data	0	175.144	0x8010 (-32752)	0x7FFF (+32767)
	16-bit PSI5 Sensor Data	0	175.144	0x8800 (-30720)	0x7800 (+30720)
	12-bit DSI3 PDCM Sensor Data	0	10.9465	0x801 (-2047)	0x7FF (+2047)
	12-bit SPI Sensor Data	0	10.9465	0x801 (-2047)	0x7FF (+2047)
	10-bit DSI3 PDCM Sensor Data	0	2.73663	0x201 (-511)	0x1FF (+511)
	10-bit PSI5 Sensor Data	0	2.73663	0x220 (-480)	0x1E0 (+480)

11.7 Temperature sensor

11.7.1 Temperature sensor signal chain

The device includes a temperature sensor for signal compensation. The output of the temperature sensor is provided for user readability. A simplified block diagram is shown in <u>Figure 54</u>. Temperature sensor parameters are specified in <u>Section 10.5</u> and <u>Section 10.18</u>.

11.7.2 Temperature sensor output scaling equations

Equation 15 is used to convert temperature readings with the variables as specified.

$$T_{DEGC} = \frac{T_{LSB} - T_{0_{LSB}}}{T_{SENSE}} \tag{15}$$

FXLS9xxx0

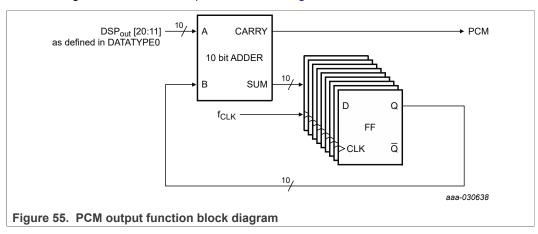
All information provided in this document is subject to legal disclaimers.

Where:

 T_{DEGC} = The temperature output in degrees C T_{LSB} = The temperature output in LSB

 TO_{LSB} = The expected temperature output in LSB at 0 C T_{SENSE} = The expected temperature sensitivity in LSB/C

Table 217. Temperature sensor output scaling equation variables


Data reading	T0 _{LSB} (LSB)	T _{SENSE} (LSB/C)
8-bit Register Read	68	T _{SENSE}
16-bit Register Read	17408	T _{SENSE} * 256
16-bit DSI3 PDCM Sensor Data	17408	T _{SENSE} * 256
16-bit SPI Sensor Data	17408	T _{SENSE *} 256
16-bit PSI5 Sensor Data	-1728	T _{SENSE *} 64
12-bit DSI3 PDCM Sensor Data	1100	T _{SENSE *} 16
12-bit SPI Sensor Data	1100	T _{SENSE *} 16
10-bit DSI3 PDCM Sensor Data	276	T _{SENSE} * 4
10-bit PSI5 Sensor Data	-27	T _{SENSE}

11.8 PCM output function

The device provides the option for a PCM output function. The PCM output is enabled if the ARM_CFG bits in the CHx_CF-G_U4 registers are configured for PCM output. Selecting the PCM output enables the following functions:

- The non-interpolated sensor data output as defined in the DATATYPE0 bits in the Chx_CFG_U3 register is saturated to 10-bits as shown in <u>Section 11.6.4.9</u> and converted to an unsigned value.
- The 10-bit sensor value is input into a summer clocked at 10 MHz.
- The carry from the summer circuit is output to the PCM pin.

A block diagram of the PCM output is shown in Figure 55.

FXLS9xxx0

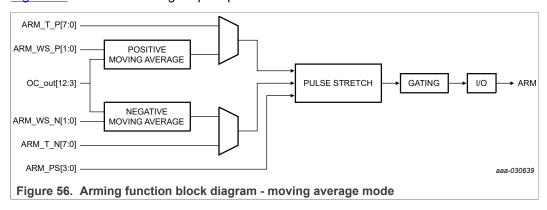
11.9 Arming function

When SPI mode is enabled via the COMMTYPE register, the device provides the option for an arming function with 3 modes of operation. The operation of the arming function is selected by the state of the ARM_CFG bits in the CHx_CFG_U4 registers.

See <u>Section 14.5</u> for the operation of the Arming function with exception conditions. Error conditions do not impact prior arming function responses. If an error occurs after an arming activation, the corresponding pulse stretch for the existing arming condition will continue. However, new sensor reads will not update the arming function regardless of the sensor value.

11.9.1 Arming function: moving average mode

In moving average mode, the arming function runs a moving average on the offset canceled output of DATATYPE0. The number of samples used for the moving average (k) is programmable via the ARM_WS[1:0] bits in the CHx_ARM_CFG registers. See Section 11.2.28.3 for register details.


$$ARM_{-}MA_{n} = \frac{\left(oC_{n} + oC_{n-1} + \dots + oC_{n+1-k}\right)}{k}$$
(16)

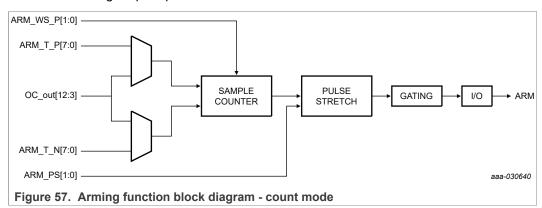
Where n is the current sample.

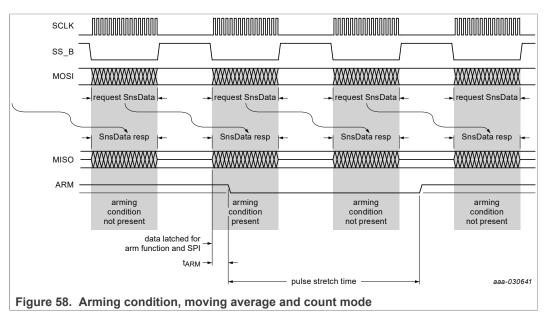
The sample rate is determined by the rate of the SPI sensor data requests. At the falling edge of SS_B for a sensor data SPI response for SOURCEID_0, the moving average for the associated channel is updated with a new sample. See <u>Figure 56</u>. The arming function input data rate can be down sampled as described in <u>Section 11.9.4</u>. The SPI sensor data sample rate must meet the minimum time between requests (t_{ACC_REQ_x}) specified in <u>Section 10.13</u>.

The moving average output is compared against positive and negative thresholds that are individually programmed via the CHx_ARMT_x registers. See <u>Section 11.2.29</u> for register details. If the moving average equals or exceeds either threshold, an arming condition is indicated, the arming pin output is asserted, and the pulse stretch counter is set as described in <u>Section 11.9.5</u>.

The arming pin output is deasserted only when the pulse stretch counter expires. Figure 56 shows the arming output operation for different SPI conditions.

FXLS9xxx0

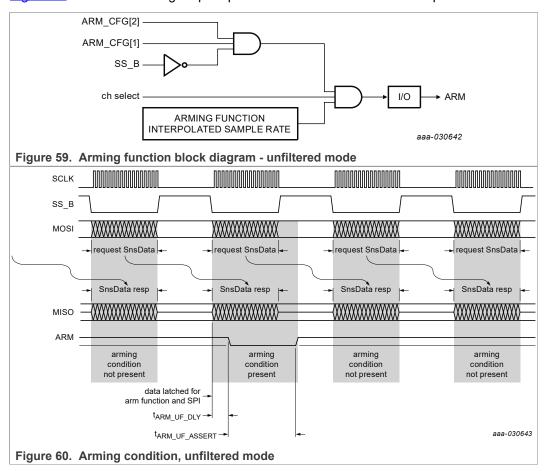

11.9.2 Arming function: count mode


In count mode, the arming function compares each offset canceled sample against positive and negative thresholds that are individually programmed via the CHx_ARMT_x_x and CHx_ARMT_x_x registers. See <u>Section 11.2.29</u> for register details. If the sample equals or exceeds either threshold, a sample counter is incremented. If the sample does not exceed either threshold, the sample counter is reset to zero.

The sample rate is determined by the SPI sensor data sample rate. At the falling edge of SS_B for a sensor data SPI response for SOURCEID_0, a new sample is compared against the thresholds. See <u>Figure 57</u>. The arming function input data rate can be down sampled as described in <u>Section 11.9.4</u>. The SPI sensor data sample rate must meet the minimum time between requests (t_{ACC REQ x}) specified in <u>Section 10.13</u>.

A sample count limit is programmable via the ARM_WS[1:0] bits in the CHx_ARM_CFG registers. If the sample count reaches the programmable sample count limit, an arming condition is indicated, the arm pin output is asserted, and the pulse stretch counter is set as described in Section 11.9.5.

The arm pin output is deasserted only when the pulse stretch counter expires. <u>Figure 58</u> shows the arming output operation for different SPI conditions.



11.9.3 Arming function: unfiltered mode

At the falling edge of SS_B for a sensor data SPI response for SOURCEID_0, the most recent available offset canceled sample is compared against positive and negative thresholds that are individually programmed via the CHx_ARM_T_x and CHx_ARM_T_x registers. See Section 11.2.29 for register details. If the sample equals or exceeds either threshold, an arming condition is indicated.

Once an arming condition is indicated, the arm pin output is asserted when SS_B̄is asserted and the MISO data includes a sensor data response. The pulse stretch function is not applied in Unfiltered mode.

<u>Figure 59</u> contains a block diagram of the Arming Function operation in Unfiltered Mode. Figure 60 shows the Arming output operation under the different SPI request conditions.

11.9.4 Arming function down sampling

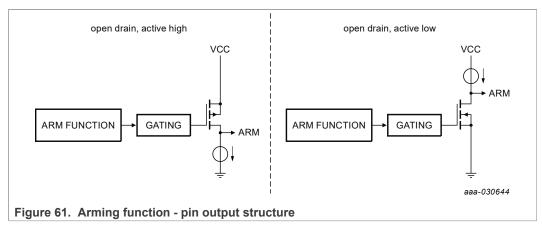
The data provided to the arming function can be down sampled using the ARM_DS[1:0] bits in the CHx_ARM_CFG registers.

The initial value of the counter is zero. At the falling edge of SS_B for a sensor data SPI response, if the counter value is equal to '00', the arming function is updated with the new sample as described in <u>Section 11.9.1</u> or <u>Section 11.9.2</u>. The counter is then incremented by one. The counter rolls over to '00' after the maximum value specified in the ARM_DS[1:0] bits is reached.

FXLS9xxx0

11.9.5 Arming pulse stretch function

A pulse stretch function can be applied to the arming outputs in moving average mode, or count mode.


If the pulse stretch function is not used (ARM_PS[1:0] = '00'), the arming output is asserted if and only if an arming condition exists after the most recent evaluated sample. The arming output is deasserted if and only if an arming condition does not existafter the most recent evaluated sample.

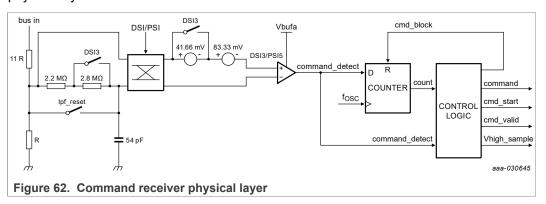
If the pulse stretch function is used (ARM_PS[1:0] not equal '00'), the arming output is controlled only by the value of the pulse stretch timer value. If the pulse stretch timer value is non-zero, the arming output is asserted. If the pulse stretch timer is zero, the arming output is deasserted. The pulse stretch counter continuously decrements until it reaches zero. The pulse stretch counter is reset to the programmed pulse stretch value if and only if an arming condition exists after the most recent evaluated sample. See Figure 58.

Exception conditions listed in <u>Section 14.5</u> do not impact prior arming function responses. If an exception occurs after an arming activation, the corresponding pulse stretch for the existing arming condition will continue. However, new sensor reads will not reset the pulse stretch counter regardless of the sensor value.

11.9.6 Arming pin output structure

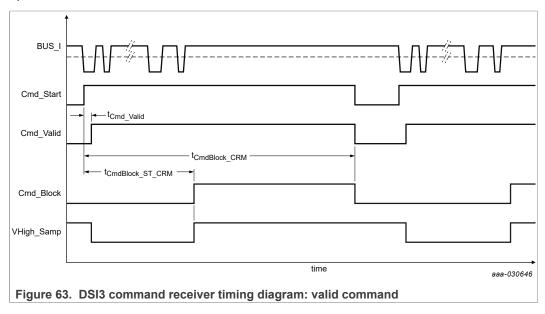
The arming output pin structure can be set to active high, or active low with the ARM_CFG bits in the CHx_CFG_U4 registers as described in <u>Section 11.2.26.4</u>. The active high and active low pin output structures are shown in <u>Figure 61</u>.

12 DSI3 protocol

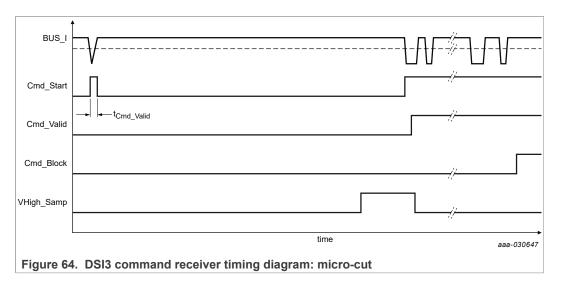

The DSI3^[2] standard describes two function classes: Signal Function Class and Power Function Class. The device is a slave conforming to the Signal Function Class requirements. The device does not support Power Function Class. The following sections describe the DSI3 Signal Function Class features supported by the device.

12.1 DSI3 physical layer

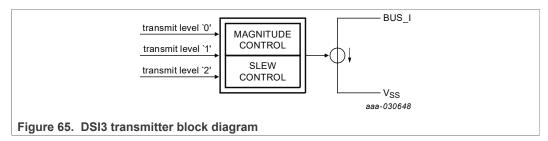
12.1.1 Command receiver


The command receive block converts voltage transitions on the BUS_I pin to a digital pulse train for decoding by the DSI data link layer.

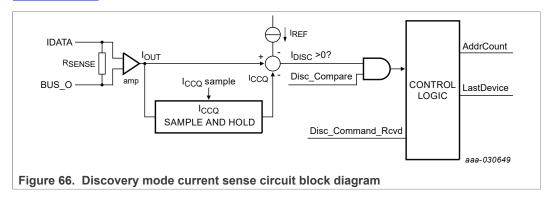
The supply voltage can vary throughout the specified range, so the communication high voltage (V_{HIGH}) must be sampled and averaged with a low-pass filter. The communication low voltage is then determined by comparing the supply voltage to the sampled and averaged V_{HIGH} voltage. Figure 62 shows a block diagram of the command receiver physical layer.


The start of a command is detected when the comparator output (Command_Detect) is low. The comparator output is input to a counter that is updated at the internal oscillator frequency. Control logic monitors the counter output and generates the necessary internal signals for the logic.

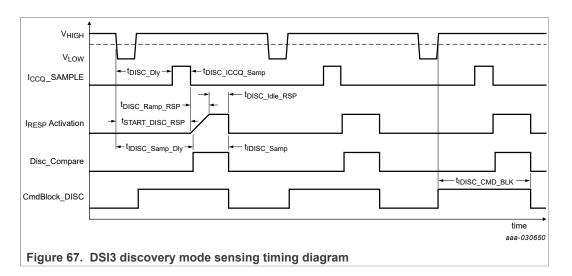
<u>Figure 63</u> shows a timing diagram of the command receiver when a valid command is received, and <u>Figure 64</u> shows a timing diagram of the command receiver when a microcut is received during the command window. Voltage values and timing parameters are specified in <u>Section 10.4</u> and <u>Section 10.20</u>.


FXLS9xxx0

Single channel inertial sensor


12.1.2 Response transmitter

The response transmitter block converts two digital signals into two supply modulation current. The response currents are generated such that the rise and fall times are the same whether the I_{RESP} current is being transmitted or the 2 x I_{RESP} current is being transmitted. A diagram of the response transmitter is shown in Figure 63. Current values and timing parameters are specified in Section 10.4 and Section 10.11.



12.1.3 Discovery mode current sense

The current sense circuit is used during discovery mode to determine if any additional slaves are connected to the BUS_O pin of the device. A diagram of the current sense circuit is shown in <u>Figure 66</u>. Current values and timing parameters are specified in <u>Section 10.4</u> and <u>Section 10.11</u>. Details regarding discovery mode are included in <u>Section 12.2.3</u>.

FXLS9xxx0

12.2 Address assignment

The device supports all three address assignment methods described in the DSI3^[2] standard as described in Section 12.2.1, Section 12.2.2, and Section 12.2.3.

12.2.1 Address assignment method for parallel connected slaves

Devices connected in parallel must have pre-programmed addresses by storing a non-zero value into the PADDR[3:0] bits of the PHYSADDR OTP register. If a non-zero value is stored in this OTP register, The device does not participate in any other address assignment method and waits for Command and Response Mode for further configuration. See <u>Section 12.3</u> for details regarding Command and Response Mode.

12.2.2 Address assignment method for bus switch connected daisy chain devices

A device connected in daisy chain by a bus switch may have either a pre-programmed address as described in <u>Section 12.2.1</u>, or an un-programmed address.

If the address is pre-programmed, the device does not participate in any other address assignment method and waits for Command and Response Mode for further configuration information, including activating the bus switch to connect the next device on the bus. See <u>Section 12.3</u> for details regarding Command and Response Mode.

If the address is un-programmed, once power is applied, the device is the only device on the segment which requires an address assignment. The device will accept a Command and Response Mode register write command addressed to Address \$0 (global command), which writes the PADDR[3:0] bits to a non-zero value. Once a physical address is assigned to the device, Command and Response Mode is used with the assigned physical address for further configuration.

On power up, the device bus switch output defaults to deactivated.

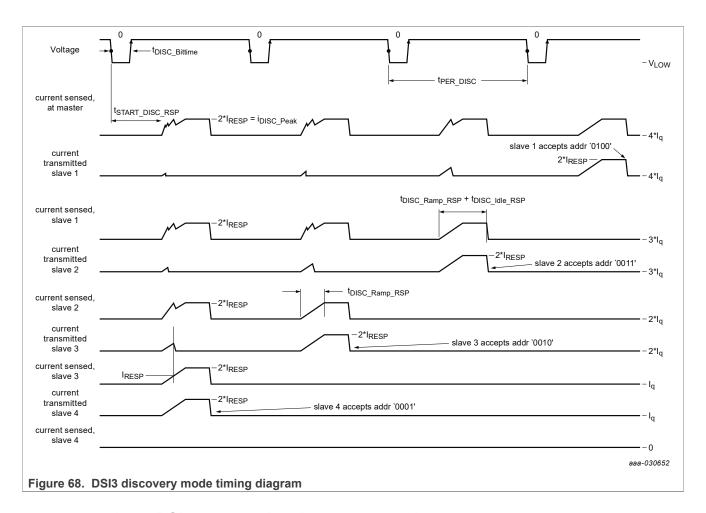
12.2.3 DSI3 discovery mode: Address assignment method for resistor connected daisy chain devices

A device connected in daisy chain via a resistor has an un-programmed address and uses Discovery Mode to obtain its physical address (PADDR[3:0]).

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Single channel inertial sensor


The master device must initiate Discovery Mode automatically after power is applied to the bus segment by sending a sequence of Discovery Commands. Discovery mode timing is defined in Section 10.11. If the ENDINIT bit is not set and the PADDR[3:0] field is set to '0000', the device will detect a Discovery Command t_{START_DISC} after a power-on reset and for intervals of t_{PER_Disc} until Discovery Mode has ended (the maximum value of t_{START_DISC}).

Discovery Mode follows the sequence listed here. <u>Figure 68</u> shows a timing diagram of the Discover Protocol for a 4 device segment.

- 1. The master powers up the bus segment to a known state.
- 2. The master transmits the Discovery Command.
- 3. After a predetermined delay (t_{START_DISC_RSP}), all devices without a physical address activate a current ramp to the 2x response current at a ramp rate of i_{DISC_RAMP}.
- 4. Each device monitors the current through its sense resistor (Δi_{SENSE}).
 - a. If the current is above i_{RESP}, the device disables its response current, increments its physical address counter, and waits for the next Discovery Command.
 - b. If the current is low (Δi_{SENSE} less than i_{RESP}), the device continues to ramp its response current to $2^* i_{RESP}$ in time $t_{DISC_RAMP_RSP}$ and maintains the current at $2^* i_{RESP}$ for time $t_{DISC_IDLE_RSP}$.
 - c. After time t_{DISC_IDLE_RSP}, if a device has not detected a current through its current sense resistor of iRESP, the device accepts physical address '1' and disables its response current.
- 5. After a pre-defined period (t_{PER_DISC}), the master transmits another Discovery Command.
- 6. Steps <u>3</u> and <u>4</u> are repeated, with the device accepting the address in its address assignment counter if the sense current is low.
- 7. The master repeats step 5 until it has transmitted Discovery Commands for all the devices it expects on the bus.
- 8. Device initialization can now begin using Command and Response Mode.

Once the Discovery Mode is complete, a physical address is assigned to the device, and Command and Response Mode is used with the assigned physical address for further configuration.

Single channel inertial sensor

12.3 DSI3 command and response mode

DSI3 command and response mode is the main communication method used for initialization of the device.

12.3.1 DSI3 command and response mode command reception

Command and response mode data packets are exchanged between a single master and a single slave. The primary purpose of command and response transactions are to read from and write to registers within the device memory structure.

An example command and response mode command is shown in <u>Figure 69</u>. The command consists of 32 bits of data broken up into multiple fields as described in <u>Section 12.3.1.2</u>.

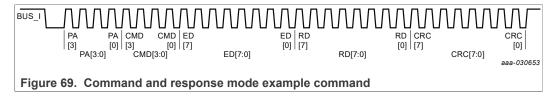
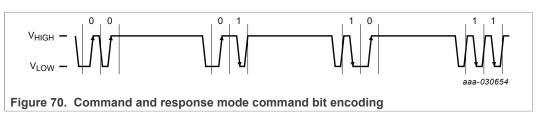



Table 218. Command and response mode example command descriptions

P	Physical address Command					Extended data							Register data								Error checking										
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	E7	E6	E5	E4	E3	E2	E1	E0
0	0	0	1	1	0	0	0	1	0	1	0	1	0	1	0	0	0	1	0	1	1	0	0	0	0	1	1	0	1	1	0

12.3.1.1 Bit encoding

<u>Figure 70</u> shows the bit encoding used for Command and Response Mode Commands from the Master device.

12.3.1.2 Command message format

The command and response mode command format is shown in <u>Table 219</u>.

Table 219. Command and response mode - command format

Physical address	Command	Extended data	Register data	CRC
PA[3:0]	CMD[3:0]	ED[7:0]	RD[7:0]	CRC[7:0]

Table 220. Command and response mode - field definitions

Field	Length (Bits)	Definition
PA[3:0]	4	Physical Address. The physical address must match the value in the PADDR[3:0] of the PHYSADDR register
CMD[3:0]	4	Command (see Section 12.3.4)
ED[7:0]	8	Extended Data (see Section 12.3.4)
RD[7:0]	8	Register Data (see Section 12.3.4)
CRC[7:0]	8	Error Checking (see Section 12.3.1.3)

12.3.1.3 Error checking

The device calculates an 8-bit CRC on the entire 32-bits of each command. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message. If the calculated CRC does not match the transmitted CRC, the command is ignored and the device does not respond.

The CRC decoding procedure is:

- 1. A seed value is preset into the least significant bits of the shift register.
- 2. Using a serial CRC calculation method, the receiver rotates the received message and CRC into the least significant bits of the shift register in the order received (MSB first).
- 3. When the calculation on the last bit of the CRC is rotated into the shift register, the shift register contains the CRC check result.
- 4. If the shift register contains all zeros, the CRC is correct.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

5. If the shift register contains a value other than zero, the CRC is incorrect.

The CRC polynomial and seed for Command and Response Mode are shown in Table 221.

Table 221. Command and response mode command CRC

Mode	Default polynomial	Non-direct seed
Command and Response Mode	$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111

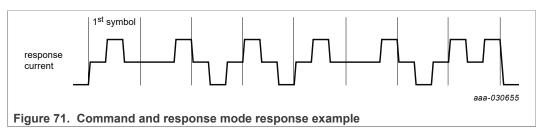
Some example CRC calculations are shown in Table 222.

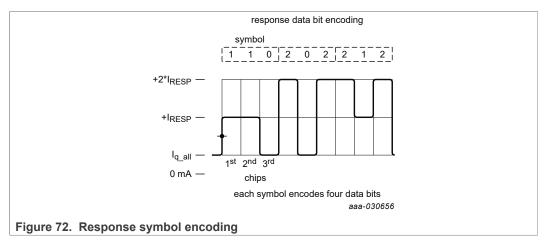
Table 222. Command and response mode - CRC calculation examples

Physical address	Command	Extended data	Register data	Non-direct seed	8-bit CRC
0x01	0x08	0x11	0x86	0xFF	0xB0
0x02	0x01	0x25	0xFF	0xFF	0x38
0x03	0x0F	0x1A	0x41	0xFF	0x2C
0x04	0x01	0x01	0x01	0xFF	0xD4

12.3.2 DSI3 command and response mode response transmission

An example command and response mode response is shown in <u>Figure 71</u>. The response consists of 32 bits of data broken up into multiple fields as described in <u>Section 12.3.2.2</u>.




Table 223. Command and response mode response example

Phy	Physical address Command					Extended data							Register data						Error checking												
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	E7	E6	E5	E4	E3	E2	E1	E0
0	0	0	1	1	0	0	0	1	0	1	0	1	0	1	0	0	0	1	0	1	1	0	0	0	0	1	1	0	1	1	0

12.3.2.1 Symbol encoding

The device response to a Command and Response Mode Command uses multi-level source coding where data nibbles are first encoded into symbols and then the symbols are encoded into current levels. The symbols are assembled from three consecutive three-level current pulses called chips. Within a symbol there are 3 consecutive chips that can assume one of three discrete current levels as described in Section 10.5: i_q , i_q + i_{RESP} , and i_q + 2 x i_{RESP} . Figure 72 shows the chip trans-missions and an example of a 3 symbol (9 chip), 12-bit data packet.

Single channel inertial sensor

Of the 27 possible combinations for three consecutive tri-level chips, the combinations that begin with the null current level (i_q) are discarded. Of the remaining 18 symbols, the two symbols that contain the same value for all three chips are also dis-carded. The remaining 16 symbols all begin with a non-null current level and have at least one transition. These characteristics guarantee that any response packet has a transition at the beginning of a packet and at least one transition in every symbol. Each 3-chip symbol encodes the information of 4-bits. Table 224 shows the symbol encoding used by the device.

Table 224. Symbol mapping

Encoded d	ata (4 Bits)		Symbol transmitte	d
Binary	HEX	1st Chip	2nd Chip	3rd Chip
0000	0	1	1	0
0001	1	2	1	1
0010	2	1	0	2
0011	3	2	0	2
0100	4	1	0	0
0101	5	2	1	2
0110	6	1	1	2
0111	7	2	0	1
1000	8	2	2	0
1001	9	2	1	0
1010	Α	1	2	2
1011	В	2	2	1
1100	С	1	2	0
1101	D	2	0	0
1110	E	1	0	1

Table 224. Symbol mapping...continued

Encoded d	ata (4 Bits)	5	Symbol transmitted								
Binary	HEX	1st Chip	2nd Chip	3rd Chip							
1111	F	1	2	1							
Where: 0 = iq 1 = i _{RESP} 2 = 2 x i _{RESP}											

12.3.2.2 Response message format

The command and response mode response format is shown in <u>Table 225</u>.

Table 225. Command and response mode - response format

Physical address	Command	Register + 1 data	Register data	CRC
PA[3:0]	CMD[3:0]	RD1[7:0]	RD[7:0]	CRC[7:0]

Table 226. Command and response mode - field definitions

Field	Length (Bits)	Definition
PA[3:0]	4	Physical Address Matches the value in the PADDR[3:0] of the PHYSADDR register
CMD[3:0]	4	An echo of the received command
ED[7:0]	8	The data contained in the register addressed by RA[7:1] + 1 (High Byte, see Section 12.3.4)
RD[7:0]	8	The data contained in the register addressed by RA[7:1] + 0 (Low Byte, see Section 12.3.4)
CRC[7:0]	8	Error Checking (see Section 12.3.2.3)

12.3.2.3 Error checking

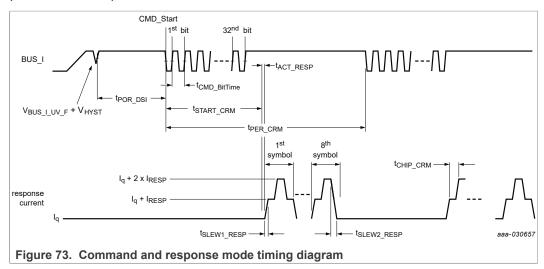
The device calculates a CRC on the entire 32-bits of each response. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message.

The CRC Encoding procedure is:

- 1. A seed value is preset into the least significant bits of the shift register.
- 2. Using a serial CRC calculation method, the transmitter rotates the transmitted message into the least significant bits of the shift register, MSB first.
- 3. Following the transmitted message, the transmitter feeds eight zeros into the shift register, to match the length of the CRC.
- 4. When the last zero is fed into the input adder, the shift register contains the CRC.
- 5. The CRC is transmitted.

The CRC polynomial and seed for Command and Response Mode are shown in Table 227.

FXLS9xxx0


Table 227. Command and response mode response CRC

Mode	Default polynomial	Non-direct seed
Command and Response Mode	$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111

Some example CRC calculations are shown in Table 222.

12.3.3 DSI3 command and response mode timing

A timing diagram for command and response mode is shown in <u>Figure 73</u>. Timing parameters are specified in <u>Section 10.11</u>.

12.3.4 DSI3 command and response mode command summary

Table 228. DSI3 command and response mode command summary

Com	mand					Data															
СЗ	C2	C1	C0	Hex	Description	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	\$0	Register Read	RA[7]	RA[6]	RA[5]	RA[4]	RA[3]	RA[2]	RA[1]	х	x	x	x	x	x	х	х	х
0	0	0	1	\$1	Reserved	х	x	х	х	x	х	x	х	х	x	x	x	x	х	х	х
0	0	1	0	\$2	Reserved	х	x	х	х	x	х	x	х	х	x	x	x	x	х	х	х
0	0	1	1	\$3	Reserved	х	x	х	х	x	х	x	х	х	x	x	x	x	х	х	х
0	1	0	0	\$4	Reserved	х	x	x	x	x	х	x	х	x	x	x	x	x	х	х	x
0	1	0	1	\$5	Reserved	x	x	x	x	x	х	x	х	x	x	x	x	x	х	х	x
0	1	1	0	\$6	Reserved	х	x	x	x	x	x	x	х	x	x	x	x	x	х	x	x
0	1	1	1	\$7	Reserved	х	x	x	x	x	x	x	х	x	x	x	x	x	х	х	x
1	0	0	0	\$8	Register Write	RA[7]	RA[6]	RA[5]	RA[4]	RA[3]	RA[2]	RA[1]	RA[0]	RD[7]	RD[6]	RD[5]	RD[4]	RD[3]	RD[2]	RD[1]	RD[0]
1	0	0	1	\$9	Reserved	x	x	x	x	x	x	x	x	x	x	x	x	x	х	х	x
1	0	1	0	\$A	Reserved	х	x	x	x	x	x	x	х	x	x	x	x	x	х	х	x
1	0	1	1	\$B	Enter PDCM	x	x	x	x	x	x	x	х	x	x	x	x	x	х	х	x
1	1	0	0	\$C	Reserved	х	x	x	x	x	x	x	х	x	x	x	x	x	х	х	x
1	1	0	1	\$D	Reserved	х	x	x	x	x	x	x	х	x	x	x	x	x	х	х	x
1	1	1	0	\$E	Reserved	х	x	x	x	x	x	x	x	x	x	x	x	x	х	х	x
1	1	1	1	\$F	Reserved	х	х	х	х	x	х	х	х	х	x	х	x	х	х	х	х

12.3.4.1 Register read command

The device supports the Register Read command as a device address specific command only. If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

the PHYSADDR register and a valid CRC is calculated, the device responds to the command.

The device ignores the Register Read command if the command is sent to any other physical address, including the DSI Global Device Address of '0000'.

The Register Read command uses the byte address definitions shown in <u>Section 11.1</u>. The Register Read response includes the register contents at the time the Register Read command decode is complete. Readable registers along with their byte addresses are shown in <u>Section 11.1</u>. If an attempt is made to read a register that is not readable, the device will respond with all zero data.

Table 229. Register read command format

			_																					
	Add	ress			Com	mand					Da	ıta												CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	0	0	0	0	RA[7]	RA[6]	RA[5]	RA[4]	RA[3]	RA[2]	RA[1]	х	0	0	0	0	0	0	0	0	8 bits

Table 230. Register read command format description

	9 - - -
Bit field	Definition
PA[3:0]	DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits in the PHYSADDR register. Otherwise, the command is ignored.
C[3:0]	Register Read Command = '0000'
RA[7:1]	RA[7:1] contains the upper 7 bits of the byte address for the register to be read.

Table 231. Register read command: response format

	Add	ress			Comi	mand					Da	ıta												CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	0	0	0	0	RD[15]	RD[14]	RD[13]	RD[12]	RD[11]	RD[10]	RD[9]	RD[8]	RD[7]	RD[6]	RD[5]	RD[4]	RD[3]	RD[2]	RD[1]	RD[0]	8 bits

Table 232. Register read command: response format description

Bit field	Definition
PA[3:0]	DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.
C[3:0]	Register Read Command = '0000'
RD[15:8]	The data contained in the register addressed by RA[7:1] + 1 (High Byte)
RD[7:0]	The data contained in the register addressed by RA[7:1] + 0 (Low Byte)

A register read command to a register address outside the addresses listed in Section 11.1 will result in a valid response. The data for the registers will be '0x0000'.

12.3.4.2 Register write command

The device supports the Register Write command as a device address specific command. If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of the PHYSADDR register, the device will execute the register write and respond to the command.

FXLS9xxx0

The device ignores the Register Write command if the command is sent to any other physical address, including the DSI Global Device Address of '0000', with one exception as explained in <u>Section 12.3.4.3</u>.

The Register Write command uses the byte address definitions shown in <u>Section 11.1</u>. Writable registers along with their Byte addresses are shown in <u>Section 11.1</u>.

Table 233. Register write command format

	Add	ress			Com	mand									Da	ta								CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	1	0	0	0	RA[7]	RA[6]	RA[5]	RA[4]	RA[3]	RA[2]	RA[1]	RA[0]	RD[7]	RD[6]	RD[5]	RD[4]	RD[3]	RD[2]	RD[1]	RD[0]	8 bits

Table 234. Register write command format description

Bit field	Definition
PA[3:0]	DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits in the PHYSADDR register. Otherwise, the command is ignored.
C[3:0]	Register Write Command = 1000'
RA[7:0]	RA[7:0] contains the byte address of the register to be read.
RD[7:0]	RD[7:0] contains the data to be written to the register addressed by RA[7:0].

Table 235. Register write command: response format

	Add	ress			Com	mand									Da	ıta								CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	1	0	0	0	RD[15]	RD[14]	RD[13]	RD[12]	RD[11]	RD[10]	RD[9]	RD[8]	RD[7]	RD[6]	RD[5]	RD[4]	RD[3]	RD[2]	RD[1]	RD[0]	8 bits

Table 236. Register write command: response format description

Bit field	Definition
PA[3:0]	DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.
C[3:0]	Register Write Command = '1000'
RD[15:8]	The data contained in the register addressed by RA[7:1] + 1 (High Byte) (after the register write is executed)
RD[7:0]	The data contained in the register addressed by RA[7:1] + 0 (Low Byte) (after the register write is executed)

A register write command to a register address outside the addresses listed in Section 11.1 will not execute, but will result in a valid response. The data for the registers will be '0x0000'.

A register write command to a read-only register will not execute, but will result in a valid response. The data for the registers will be the current contents of the register.

12.3.4.3 Global register write command to the PHYSADDR register

The device supports the Register Write command as a global address under the following conditions:

1. The Register Write command is written to the PHYSADDR register.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

2. The PADDR[3:0] bits of the PHYSADDR register are equal to '0000' prior to the register write being executed.

If these conditions are met, the device will execute the register write and respond to the command.

Table 237. Global register write command format

	Add	ress			Com	mand					Da	ıta												CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	RD[3]	RD[2]	RD[1]	RD[0]	8 bits

Table 238. Global register write command format description

Bit field	Definition
PA[3:0]	The DSI Global address of '0000'.
C[3:0]	Register Write Command = '1000'
RA[7:0]	RA[7:0] must be set to the PHYSADDR register address.
RD[3:0]	RD[3:0] contains the new physical address for the device.

Table 239. Global register write command: response format

	Add	ress			Comi	mand									Da	ta								CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	1	0	0	0	RD[15]	RD[14]	RD[13]	RD[12]	RD[11]	RD[10]	RD[9]	RD[8]	RD[7]	RD[6]	RD[5]	RD[4]	RD[3]	RD[2]	RD[1]	RD[0]	8 bits

Table 240. Global register write command: response format description

Bit field	Definition
PA[3:0]	The new DSI physical address programmed to the PADDR[3:0] bits in the PHYSADDR register.
C[3:0]	Register Write Command = '1000'
RD[15:8]	The data contained in register after PHYSADDR
RD[7:0]	The data contained in the PHYSADDR register after the register write is executed.

12.3.4.4 Enter periodic data collection mode command

The device supports an Enter PDCM command as a device address specific command and as a Global Command.

If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of the PHYSADDR register, the device will set the ENDINIT bit in the DEVLOCK_WR register, enter Periodic Data Collection Mode, and respond to the command as shown in Table 244. If the PA[3:0] field in the command matches the Global address of '0000', the device will set the ENDINIT bit in the DEVLOCK_RW register and enter Periodic Data Collection Mode regardless of the value of the PADDR[3:0] bits in the PHYSADDR register (this includes PADDR = 0x0). No response is transmitted for a global command. The device ignores the Enter PDCM command if the command is sent to any other physical address.

The various DSI3 communication modes are controlled by the PDCM enable command and the BDM_EN bit in the TIMING_CFG2 register as shown in <u>Table 241</u>.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 241. PDCM enable command and BDM_EN bit status

PDCM Enabled?	BDM_EN	Command and Response Mode	Periodic Data Collection Mode	Background Diagnostic Mode
No	0	Enabled	Disabled	Disabled
No	1	Enabled	Disabled	Disabled
Yes	0	Disabled	Enabled	Disabled
Yes	1	Disabled	Enabled	Enabled

Once the ENDINIT bit is set, the registers listed in <u>Section 11.3.3</u> are locked and the user array read/write register array verification is enabled. The ENDINIT bit can only be cleared by a device reset.

Table 242. Enter periodic data collection mode command format

	Address Command								Da	ıta												CRC		
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8 bits

Table 243. Enter periodic data collection mode command format description

Bit field	Definition
PA[3:0]	DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits in the PHYSADDR register or the Global Address of '0000'. Otherwise, the command is ignored.
C[3:0]	Enter PDCM Command = '1011'

Table 244. Enter periodic data collection mode command: response format

	Add	ress			Com	mand									Da	ta								CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0																
PA[3]	PA[2]	PA[1]	PA[0]	1	0	1	1	0	0	0	0	Ch[3]	Ch[2]	Ch[1]	Ch[0]	0	0	0	0	0	0	0	0	8 bits

Table 245. Enter periodic data collection mode command: response format description

Bit field	Definition
PA[3:0]	DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.
Ch[3:0]	CHIPTIME[3:0] in the CHIPTIME register
C[3:0]	Enter Periodic Data Collection Mode Command = '1011'

12.3.4.5 Reserved commands

If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of the PHYSADDR register and a valid CRC is calculated, the device will respond to reserved commands. The physical address and command will be echoed and the correct CRC are transmitted. The data included in the response is undefined.

Table 246. Reserved commands

	Addı	ress			Com	mand					Da	ta												CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	0	0	0	1	х	х	х	х	x	х	х	х	х	x	х	х	х	х	x	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	0	0	1	0	х	х	х	х	х	х	х	х	х	х	х	х	х	x	x	х	8 bits

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 246. Reserved commands...continued

	Add	ress			Com	mand					Da	ata												CRC
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	0	0	1	1	х	x	х	х	х	х	х	х	х	х	х	x	х	х	х	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	0	1	0	0	х	x	х	х	х	х	х	х	х	х	x	х	х	х	х	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	0	1	0	1	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	0	1	1	0	х	x	x	х	х	х	х	х	х	х	x	x	х	х	x	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	0	1	1	1	х	x	х	х	х	х	х	х	х	х	x	х	х	х	х	x	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	1	0	0	1	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	1	0	1	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	1	1	0	0	х	x	x	х	х	х	х	х	х	х	x	х	х	х	x	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	1	1	0	1	х	x	х	х	х	х	х	х	х	х	х	x	х	х	х	x	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	1	1	1	0	х	x	x	х	х	х	х	х	х	х	х	х	х	х	х	х	8 bits
PA[3]	PA[2]	PA[1]	PA[0]	1	1	1	1	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	8 bits

Table 247. Reserved commands description

Bit field	Definition
PA[3:0]	DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits in the PHYSADDR register. Otherwise, the command is ignored.
C[3:0]	Invalid Commands
x	Don't Care

Table 248. Reserved command response format

	Address Command								Da	ıta												CRC		
PA3	PA2	PA1	PA0	C3	C2	C1	C0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
PA[3]	PA[2]	PA[1]	PA[0]	C[3]	C[2]	C[1]	C[0]	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	8 bits

Table 249. Reserved command response format description

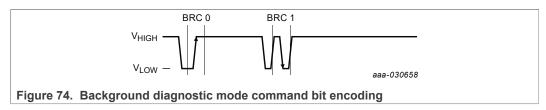
Bit field	Definition
PA[3:0]	DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.
C[3:0]	Reserved Command Echo

12.4 DSI3 periodic data collection mode and background diagnostic mode

When the ENDINIT bit in the DEVLOCK_WR register is set, periodic data collection mode is enabled and the optional background diagnostic mode is enabled.

12.4.1 DSI3 periodic data collection mode and background diagnostic mode command reception

When periodic data collection mode is enabled, the device will decode the DSI3 broadcast read command as well as background diagnostic mode command fragments as described below.


12.4.1.1 Bit encoding

The Command Bit encoding for Periodic Data Collection Mode and Background Diagnostic Mode is the same as the bit encoding for Command and Response Mode, as described in <u>Section 12.3.1.1</u>.

12.4.1.2 Command message format

The command message format for Periodic Data Collection Mode and Background Diagnostic Mode is the same as the command message format for Command and Response Mode, as described in Section 12.3.1.2.

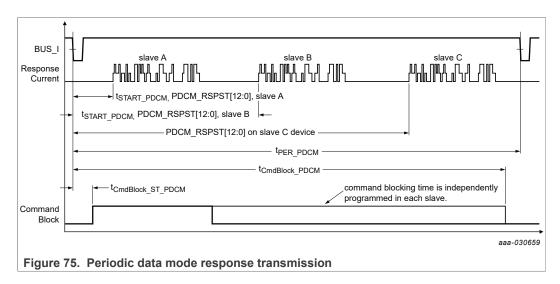
If Background Diagnostic Mode is disabled, then the device responds with the Periodic Data Collection Mode response only if the command is the single bit Broadcast Read Command. A Broadcast Read Command may be either a '1' or a '0'. Figure 74 shows the Broadcast Read Commands supported by the device.

If Background Diagnostic Mode is enabled:

- Background Diagnostic Mode commands are transmitted and decoded in 2- or 4-bit fragments depending on the state of the BDM_FRAGSIZE bit in the TIMING_CFG2 register.
- The device responds with the Periodic Data Collection Mode response if and only if the command is a Broadcast Read Command or a command fragment.
- A Broadcast Read Command or any command length other than 2 or 4 bits resets the Background Diagnostic Mode command decode.
- The device responds with a Background Diagnostic Mode response only when a full 32-bit command is received and the decoded command is a valid Command and Response Mode command.

See <u>Section 12.4.4</u> for additional details on Background Diagnostic Mode timing.

12.4.1.3 Error checking


The error checking for Background Diagnostic Mode commands is the same as the error checking for Command and Response Mode, and described in <u>Section 12.3.1.3</u>.

No error checking is employed for the Broadcast Read Commands.

12.4.2 DSI3 periodic data collection mode response transmission

When periodic data collection mode is enabled and the device receives either a broadcast read or background diagnostic command, the device will respond with periodic data as shown in Figure 75 and described in the following sections.

Single channel inertial sensor

12.4.2.1 Symbol encoding

The symbol encoding used for Periodic Data Collection Mode Responses is the same as for Command and Response Mode responses, and described in <u>Section 12.3.2.1</u>.

12.4.2.2 Response message format

The Periodic Data Collection Mode response format is shown in <u>Table 250</u> and <u>Table 251</u>. Field sizes are defined by the PDCMFORMAT[2:0] bits in the SOURCEID_x register in <u>Section 11.2.13</u>.

Table 250. Periodic data collection mode response format

Source ID	Keep alive counter	Status	Sensor data	CRC
SOURCEID	KAC	S	D	CRC[7:0]

- If enabled in the PDCMFORMAT[2:0] bits, the SOURCEID field includes the value stored in the SOURCEID_x[3:0] bits of the SOURCEID_x register.
- If enabled in the PDCMFORMAT[2:0] bits, the Keep Alive Counter field is a 2-bit rolling message counter that is independently incremented for each SOURCEID. The initial value of the counter is '00'.
- If enabled, the status field is transmitted as listed in <u>Table 251</u>. See <u>Section 12.7</u> for details on exception handling.
- The Sensor Data field includes the sensor data as selected by the DATATYPEx bits for the SOURCEID.
- The CRC field includes an 8-bit CRC as defined in Section 12.4.2.3.

Table 251. Periodic data collection mode status field definition

	s[3	3:0]		Description	DEVSTAT state	SUP_ER-R_DIS state	Error	Sensor data field value					
							priority	STATUS field size = 4	STATUS field size = 0				
0	0	0	0	Normal Mode	N/A	N/A	16	Sensor Data					
0	0	0	1	Normal Mode, User Array Not Locked (UF2 region has not been locked)	N/A	N/A	15	Sensor Data	The Sensor Data Field Error Code is transmitted for a minimum of one transmission				
0	0	1	0	Self-test Incomplete or Self-test Active or Self- test Error Present	Bit set in CHx_STAT: ST_INCMPLT or ST_ACTIVE or ST_ERROR	N/A	14	Sensor Data	The Sensor Data Field Error Code is transmitted for a minimum of one transmission				

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 251. Periodic data collection mode status field definition...continued

	s[3	:0]		Description	DEVSTAT state	SUP_ER-R_DIS state	Error	Sensor data field value					
							priority	STATUS field size = 4	STATUS field size = 0				
0	0	1	1	Oscillator Training Error	Bit set in DEVSTAT3	N/A	13	Sensor Data	The Sensor Data Field Error Code is transmitted for a minimum of one transmission				
0	1	0	0	Offset Error	Bit set in CHx_STAT: SIGNALCLIP or OFFSET_ERR	N/A	12	Sensor Data	The Sensor Data Field Error Code is transmitted for a minimum of one transmission				
0	1	0	1	Temperature Error	Bit set in DEVSTAT2	N/A	11	Sensor Data	The Sensor Data Field Error Code is transmitted for a minimum of one transmission				
01	10 to	0 01	111	RESERVED	N/A	N/A	9.10	Sensor Data	The Sensor Data Field Error Code is transmitted for a minimum of one transmission				
1	0	0	0	User OTP Memory Error (UF2)	U_OTP_ERR set in DEVSTAT2	N/A	8	The Sensor Data Field Error Code is transmitted for a minimum of one transmission					
1	0	0	1	User R/W Memory Error (UF2)	U_RW_ERR set in DEVSTAT2	N/A	7	The Sensor Data Field Errotransmission	or Code is transmitted for a minimum of one				
1	0	1	0	NXP OTP Memory Error	F_OTP_ERR set in DEVSTAT2	N/A	6	The Sensor Data Field Errotransmission	or Code is transmitted for a minimum of one				
1	0	1	1	Test Mode Active	TESTMODE bit set in DEVSTAT	N/A	5	The Sensor Data Field Errotransmission	or Code is transmitted for a minimum of one				
1	1	0	0	Supply Error	Bit set in DEVSTAT1	0	4	No Response until the sup The Sensor Data Field Erro transmission (See Section 11.2.2.4)	ply monitor timer expires or Code is transmitted for a minimum of one				
						1		No Response until the sup (See Section 11.2.2.4)	ply monitor timer expires				
1	1	0	1	Reset Error	DEVRES Set	N/A	3	The Sensor Data Field Error Code is transmitted for a minimum of one transmission					
11	1110 to 1111 RESERVED N/A N/A						1, 2	The Sensor Data Field Error Code is transmitted for a minimum of one transmission					

12.4.2.3 Error checking

The device calculates a CRC on the entire response. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message.

The CRC Encoding procedure is:

- 1. A seed value is preset into the least significant bits of the shift register.
- 2. Using a serial CRC calculation method, the transmitter rotates the transmitted message into the least significant bits of the shift register, MSB first.
- 3. Following the transmitted message, the transmitter feeds eight zeros into the shift register, to match the length of the CRC.
- 4. When the last zero is fed into the input adder, the shift register contains the CRC.
- 5. The CRC is transmitted.

The CRC polynomial and seed for periodic data collection mode are shown in Table 252.

Table 252. Periodic data collection mode response CRC

Mode	Default polynomial	Non-direct seed
Periodic Data Collection Mode	$x^8 + x^5 + x^3 + x^2 + x + 1$	0000, SOURCEID_x[3:0]

Some example CRC calculations are shown in Table 253.

Table 253. Periodic data collection mode - CRC calculation examples

=					
Source identification (4 Bits)	Keep alive counter (2 Bits)	Status (4 Bits)	Sensor data (10 Bits)	Non-direct seed	8-bit CRC
0x1	0x3	0x0	0x1FF	0x01	0xD6

FXLS9xxx0

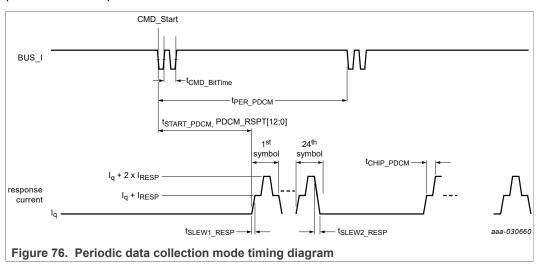

All information provided in this document is subject to legal disclaimers.

Table 253. Periodic data collection mode	 CRC calculation ex 	camplescontinued
--	--	------------------

Source identification (4 Bits)	Keep alive counter (2 Bits)	Status (4 Bits)	Sensor data (10 Bits)	Non-direct seed	8-bit CRC
0x2	0x2	0x0	0x1FE	0x02	0x70
0x3	0x1	0x0	0x20D	0x03	0xB0
0x4	0x0	0x0	0x1EA	0x04	0x5F

12.4.3 DSI3 periodic data collection mode timing

A timing diagram for periodic data collection mode is shown in <u>Figure 76</u>. Timing parameters are specified in <u>Section 10.11</u>.

12.4.4 Background diagnostic mode response transmission

12.4.4.1 Symbol encoding

The Background Diagnostic Mode response symbol encoding is the same as the symbol encoding used for Command and Response Mode responses and is described in Section 12.3.2.1.

12.4.4.2 Response message format

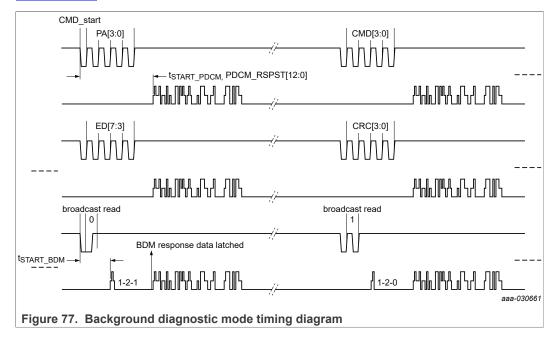
The Background Diagnostic Mode response message format is the same as the format used for Command and Response Mode responses and is described in <u>Section 12.3.2.2</u>.

- If a complete 32-bit command is received and decoded to a valid Command and Response Mode command, the device provides a Background Diagnostic Mode response.
- Responses are initiated by the master transmitting 1-bit Broadcast Read Commands following a completed Background Diagnostic Mode command transmission.
- Responses are transmitted in one or two symbol fragments (depending on the state
 of the BDM_FRAGSIZE bit) following the 1-bit Broadcast Read Command, using the
 same timing window within the frame that the Background Diagnostic Mode Command
 used.
- Responses are transmitted if and only if Broadcast Read Commands are received.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

- Four or eight consecutive Broadcast Read Commands are required following a valid Background Diagnostic Mode command to complete a response transmission (depending on the state of the BDM_FRAGSIZE bit).
- If any command other than the Broadcast Read Command is received, no response is transmitted and the remainder of the Broadcast Read Command response is terminated.
- The data to be transmitted in the response is latched just before the first symbol of the background diagnostic mode response.

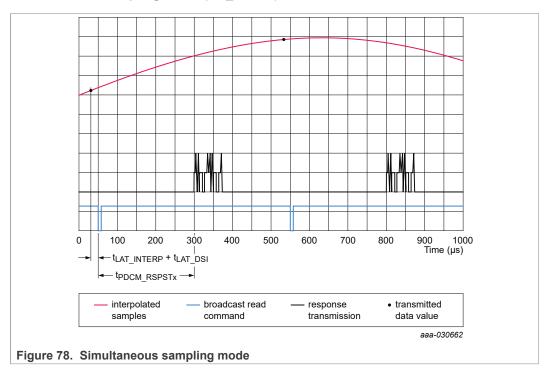

See Figure 77 for Background Diagnostic Mode timing.

12.4.4.3 Error checking

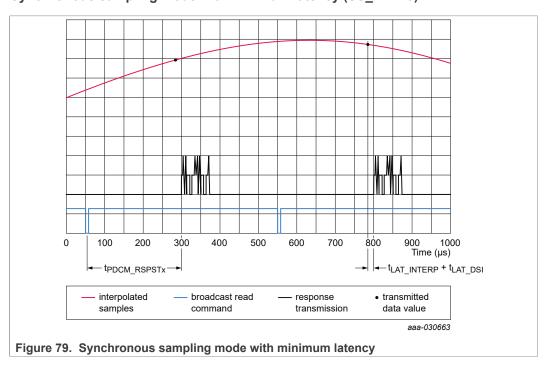
The error checking for Background Diagnostic Mode responses is the same as used for Command and Response Mode, and described in <u>Section 12.3.1.3</u>.

12.4.5 DSI3 background diagnostic mode timing

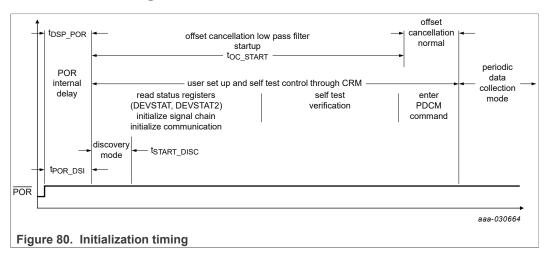
An example timing diagram for background diagnostic mode is shown in <u>Figure 77</u>. In this example, BDM_FRAGSIZE is set to '1' (4 bits). Timing parameters are specified in <u>Section 10.11</u>.



12.4.6 DSI3 periodic data collection mode and background diagnostic mode command summary


When periodic data collection mode is enabled, the background diagnostic mode supports the register read command as described in the command and response mode command summary, <u>Section 12.3.4.1</u>. The register write command is not supported in background diagnostic mode.

12.4.7 DSI3 PDCM data transmission modes


12.4.7.1 Simultaneous sampling mode (SS_EN = 1)

12.4.7.2 Synchronous sampling mode with minimum latency (SS_EN = 0)

12.5 Initialization timing

12.6 Maximum number of devices on a network

The theoretical maximum number of devices on a DSI3 network is 16: 1 master and 15 slaves. The practical limit for the number of devices on a bus is dependent on the minimum common capability of the devices on the bus. The capability of the device is different depending on the bus configuration and operating mode. The impact of the device capability on the practical limit for the number of devices on the network is described in this section.

12.6.1 Pre-configured, parallel connected network

The number of devices in a pre-configured, parallel connected network is not directly limited by the capability of the device. The practical limit is determined by a combination of the following:

- The capability of the master device, including, but not limited to:
 - The bus operating voltage
 - The bus supply current
 - The bus current limit
 - The bit rate
 - The response current detection capability (distinguishing response current from quiescent current)
- The total quiescent current of all slaves on the network.

12.6.2 Bus switch connected daisy chain network

The number of devices in a bus switch connected daisy chain network is not directly limited by the capability of the device. The practical limit is determined by a combination of the following:

- The capability of the master device, including, but not limited to:
 - The bus operating voltage
 - The bus supply current
 - The bus current limit
 - The bit rate
 - The response current detection capability (distinguishing response current from quiescent current)
- The total quiescent current of all slaves on the network.
- The current handling capability and resulting voltage drop of the external bus switches in the network.

12.6.3 Resistor connected daisy chain network using discovery mode

The number of devices in a resistor connected daisy chain network is limited by the capability of the device. The maximum number of equivalent devices connected to the BUS_O pin of a device is 3. This is limited by the total quiescent current drawn from the BUS_O pin during Discovery Mode ($I_{BUS_O g}$).

The practical limit is determined by a combination of the above restriction and the following:

- The capability of the master device, including, but not limited to:
 - The bus operating voltage
 - The bus supply current
 - The bus current limit
 - The bit rate
 - The response current detection capability (distinguishing response current from quiescent current)
- The total guiescent current of all slaves on the network.
- The maximum allowed quiescent current drawn from the BUS_O pin of other slaves in the system.
- The resulting voltage drop of the Discovery Mode resistors in all slaves in the network.

12.7 DSI3 exception handling

<u>Table 254</u> summarizes the exception conditions detected by the device and the response for each exception.

Table 254. Exception conditions and response

Condition		Description	Device response						
exception	PDCM enabled?								
Power-On Reset	N/A	Power Applied	See <u>Section 12.5</u> ST_INCMPLT set, PDCM disabled. The device must be reinitialized						
V _{BUS_I} Error	N/A	V _{BUS_I} < V _{BUS_I_UV_F}	 Response Current Deactivated BUSIN_UV_ERR set, PDCM Status set as specified in Section 12.4.2.2 The device ignores commands in CRM 						

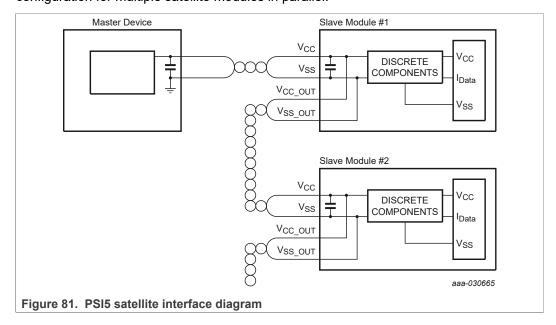
FXLS9xxx0

Table 254. Exception conditions and response...continued

Condition		Description	Device response					
exception	PDCM enabled?							
V _{BUF} Error	N/A	V _{BUF} < V _{BUF_UV_F}	Response Current Deactivated VBUFUV_ERR set, PDCM Status set as specified in Section 12.4.2.2 The device ignores commands in CRM					
Internal Regulator Error	N/A	Internal regulator under- voltage condition	 The device is held in Reset No response to DSI commands If activated, BUSSW_L is deactivated The device must be reinitialized when the internal regulator returns above the threshold 					
OTP Error Detection Fault (Factory Array)	N/A	Error detected in factory programmed OTP array.	 Periodic Data Collection Mode response data set to error response F_OTP_ERR set, PDCM Status set as specified in Section 12.4.2.2 					
OTP Error Detection Fault (User Array)	N/A	Error detected in User programmed OTP array and the LOCK_U bit is set.	 Periodic Data Collection Mode response data set to error response U_OTP_ERR set, PDCM Status set as specified in Section 12.4.2.2 					
User R/W Array	No	N/A	N/A					
Error Detection Fault	Yes	Error detected in user read write registers and the ENDINIT bit is set.	 Periodic Data Collection Mode response data set to error response U_RW_ERR set, PDCM Status set as specified in Section 12.4.2.2 					
Self-test Activated	No	ST activated during initialization	 Internal self-test circuitry enabled Self-test Activation Incomplete status cleared Sensor Data Registers (SNSDATAx_x) contain self-test active data ST_ACTIVE set 					
	Yes	ST activated in Periodic Data Collection Mode	 Periodic Data Collection Mode sensor response data normal Self-test Activation ignored 					
Self-test Never Activated after	No	In initialization, before Self-test	Normal Responses to Command and Response Mode					
Reset	Yes	In PDCM, Self-test incomplete	 Periodic Data Collection Mode sensor response data normal ST_INCMPLT set, PDCM Status set as specified in Section 12.4.2.2 					

12.7.1 Daisy chain and discovery mode error handling

<u>Table 255</u> shows the effect of internal failure modes on the discovery and daisy chain initialization procedures.


Table 255. DSI3 error handling - discovery mode and daisy chain mode

Error condition	Effect on discovery mode	Effect on daisy chain
Supply Error	Discovery Commands Ignored. The device does not participate in Discovery Mode	Daisy Chain Commands Ignored. The device will not participate in Daisy Chain
Memory Error	No Effect. The device attempts to participate in Discovery Mode as programmed.	No Effect. The device will attempt to participate in Daisy Chain as programmed.
Temperature Error	No Effect. The device will attempt to participate in Discovery Mode as programmed.	No Effect. The device will attempt to participate in Daisy Chain as programmed.
Communication Error (Internal)	No Effect. The device participates in Discovery Mode as programmed.	No Effect. The device will participate in Daisy Chain as programmed.
Offset Error	No Effect. The device will participate in Discovery Mode as programmed.	No Effect. The device will participate in Daisy Chain as programmed.
Self-test Incomplete or Self-test Active	Not Applicable.	Not Applicable.
Device Not Locked	No Effect. The device will participate in Discovery Mode as programmed.	No Effect. The device will participate in Daisy Chain as programmed.

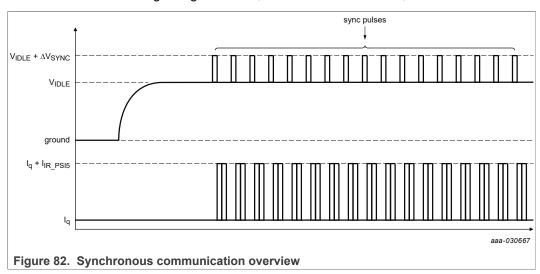
13 PSI5 protocol

13.1 Communication interface overview

The communication interface between a master device and this slave device in PSI5 mode is established via a PSI5 compatible 2-wire interface, with parallel or serial (daisychain) connections to the satellite modules. Figure 81 shows one possible system configuration for multiple satellite modules in parallel.

13.2 Data transmission physical layer

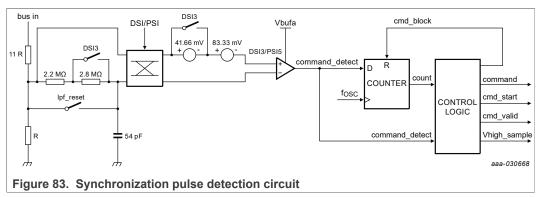
This device uses a two wire interface for both its power supply (V_{CC}), and data transmission (IDATA). The PSI5 master sup-plies a pre-regulated voltage to this device. Data transmissions and synchronization control from the PSI5 master to this device are


FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

accomplished via modulation of the supply voltage. Data transmissions from this device to the PSI5 master are accomplished via modulation of the current on the power supply line.

13.2.1 Synchronization pulse


The PSI5 master modulates the supply voltage in the positive direction to provide synchronization of the satellite sensor data. Upon reception of a synchronization pulse, this device delays a specified period of time, called a time slot, before transmitting sensor data. For more details regarding time slots, refer to Section 11.2.18, and Section 10.12.

13.2.1.1 Synchronization pulse detection

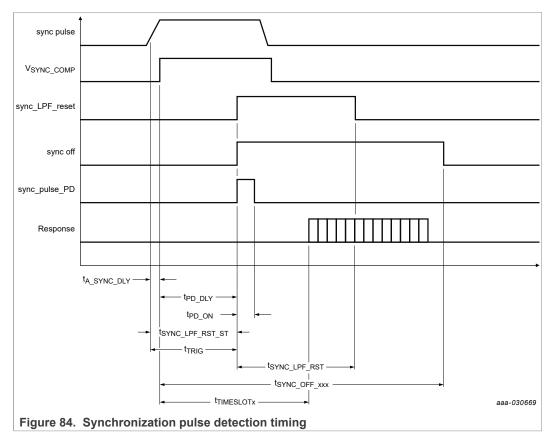
The Synchronization (Sync) pulse detection block generates a valid synchronization pulse signal following the detection of an externally generated Sync pulse. This signal resets the Sync pulse time reference (t_{TRIG}), and initiates the timers associated with response messages.

The supply voltage can vary throughout the specified range, so the external Sync pulses may have different absolute volt-age levels. Thus, the Sync pulse detection threshold (V_{CC_SYNC}) is dependent not only on the Sync pulse absolute voltage, but also on the supply voltage. Figure 83 shows a block diagram of the Sync pulse detection circuit.

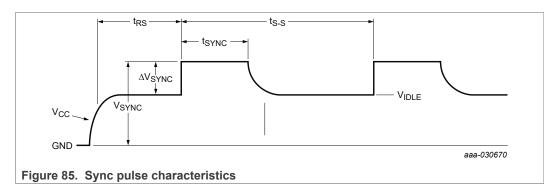
The start of a Sync pulse is detected when the comparator output is set. The comparator output is input into a counter, and the counter is updated at a fixed frequency. At a fixed

FXLS9xxx0

All information provided in this document is subject to legal disclaimers


time after the initial sync pulse detection, the counter is compared against a limit (the minimum value of t_{SYNC}). If the counter is above the limit, a valid sync pulse is detected.

If the Sync pulse is valid, the following occur:

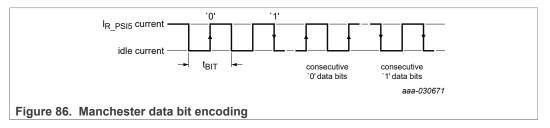

- 1. The valid Sync pulse detection signal is set.
- 2. The detection counter is reset and disabled for t_{SYNC_OFF} (referenced from t_{TRIG}). t_{SYNC_OFF} can be programmed by the user via the PDCM_CMD_B_x registers. See Section 11.2.19 for details on the programmable option, and Section 10.12 for timing specifications for each option.
- 3. The Sync pulse detection low-pass filter is reset for a specified time (t_{SYNC LPF RESET)}.

If the Sync pulse is invalid, all timers are reset, and the detector becomes sensitive within 2 µs.

The output of the comparator is monitored at the SampCLK frequency. Once the comparator output goes high, all of the internal timers are started, so that the t_{TRIG} jitter is minimized.

Single channel inertial sensor

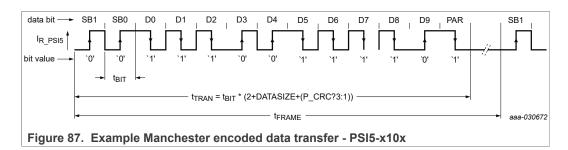
13.2.1.2 Synchronization pulse pulldown function


The device includes an optional Sync pulse pulldown function for systems in which the master device does not include an active pull-down function. The device uses the modulation current pulldown circuit, which sinks I_{R_PSI5} additional current from the BUS_I pin. The pulldown current is activated after t_{PD_DLY} (referenced to t_{TRIG}), and is activated for t_{PD_ON} .

The Sync pulse pulldown function is disabled in Programming Mode, in Initialization Phase 1, and in Daisy Chain Mode until the Run Command is received.

13.3 Data transmission data link layer

13.3.1 Bit encoding


The device outputs data by modulation of the V_{CC} current using Manchester Encoding. Data is stored in a transition occur-ring in the middle of the bit time. The signal idles at the normal quiescent supply current. A logic low is defined as an increase in current at the middle of a bit time. A logic high is defined as a decrease in current at the middle of a bit time. There is always a transition in the middle of the bit time. If consecutive "1" or "0" data are transmitted, a transition occurs at the start of a bit time.

13.3.2 PSI5 data transmission

PSI5 data transmission frames are composed of two start bits, a 10-bit data word, and error detection bit(s). Data words are transmitted least significant bit (LSB) first. A typical Manchester-encoded transmission frame is illustrated in <u>Figure 87</u>.

Single channel inertial sensor

13.3.2.1 PSI5-x10P transmission mode

The device can be configured to transmit 10-bit data with parity by setting the PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG register.

Table 256. PSI5-x10P transmission mode

Start	Bits	Sensor data (See Section 11.6.4.9)											
S2	S1	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	Р	

13.3.2.2 PSI5-x10C transmission mode

The device can be configured to transmit 10-bit data with 3-bit CRC by setting the PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG register.

Table 257. PSI5-x10C transmission mode

Start	bits				CRC									
S2	S1	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	C2	C1	C0

13.3.2.3 PSI5-x16P transmission mode

The device can be configured to transmit 16-bit data with parity by setting the PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG register. In 16-bit mode, the 10-bit initialization and status data are transmitted in the upper 10-bits of the data packet and the lower 6-bits are filled-up with D6 bit value.

Table 258. PSI5-x16P transmission mode

Star	t bits						Sens	or dat	a (See	Section 1	on 11.6	6.4. <u>9</u>)						Parity
S2	S1	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15								Р								
Init I	Data	D6	D6	D6	D6	D6	D6	10-bit Initialization Data as specified in Section 13.4.2.1								Р		
	Status Data		D6	D6	D6	D6	D6		10-bit Status Data as specified <u>Section 13.3.4</u>								Р	

13.3.2.4 PSI5-x16C transmission mode

The device can be configured to transmit 16-bit data with 3-bit CRC by setting the PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG register. In 16-bit mode, the 10-bit initialization and status data are transmitted in the upper 10-bits of the data packet and the lower 6-bits are filled-up with D6 bit value.

Single channel inertial sensor

Table 259. PSI5-x16C transmission mode

Start bits Sensor data (See Section 11.6.4.9)													CRC							
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15									C2	C1	C0									
Init [Data	D6	D6	D6	D6	D6	D6	10-b	10-bit Initialization Data as specified in <u>Section 13.4.2.1</u>								.2.1	C2	C1	C0
Sta Da	itus ata	D6	D6	D6	D6	D6	D6		10-bi	t Statı	ıs Dat	a as s	pecifi	ed <u>Se</u>	ction 1	3.3.4		C2	C1	C0

13.3.3 Error detection

Error detection of the transmitted data is accomplished via either a parity bit, or a 3-bit CRC. The type of error detection used is selected by the P_CRC bit in the PSI5_CFG register.

13.3.3.1 Parity error detection

When parity error detection is selected, even parity is employed. The number of logic '1' bits in the transmitted message must be an even number.

13.3.3.2 3-bit CRC error detection

When CRC error detection is selected, a 3-bit CRC is appended to each response message. The 3-bit CRC uses a generator polynomial of $g(x) = X^3 + X + 1$, with a non-direct seed value = '111'. Message data from the transmitted message is read into the CRC calculator LSB first, and the data is augmented with '000'. Start bits are not used in the CRC calculation. Table 260 shows some example CRC calculation values for 10-bit data transmissions.

Table 260. PSI5 3-bit CRC calculation examples

	Data transmitted											CRC		
HEX	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	C2	C1	C0	
0x000	0	0	0	0	0	0	0	0	0	0	1	1	0	
0x0CC	0	0	1	1	0	0	1	1	0	0	0	1	1	
0x151	0	1	0	1	0	1	0	0	0	1	0	0	0	
0x1E0	0	1	1	1	1	0	0	0	0	0	0	1	1	
0x1F4	0	1	1	1	1	1	0	1	0	0	0	1	0	
0x220	1	0	0	0	1	0	0	0	0	0	1	0	0	
0x275	1	0	0	1	1	1	0	1	0	1	1	1	1	
0x333	1	1	0	0	1	1	0	0	1	1	0	0	1	
0x3FF	1	1	1	1	1	1	1	1	1	1	1	0	0	

13.3.4 PSI5 data field and data range values

Table 261 shows the details for each data range. The PSI5 data field size is defined by the PDCMFORMAT bits in the SOURCEID_x registers as described in Section 11.2.13.2.

Table 261. PSI5 data values

16-bit d	ata values	10	-bit data valı	ıe	Description	Description		
Dec	Hex	Dec	Binary	Hex	(EMSG_EXT = 1 in PSI5_CFG)	(EMSG_EXT = 0 in PSI5_CFG)		
+32704	7FFF	+511		1FF	Reserved	Reserved		
+32640	7F80	+510		1FE				
+32576	7F7F	+509		1FD				
+32512	7F00	+508		1FC				
+32448	7EFF	+507		1FB				
+32384	7E80	+506		1FA				
+32320	7E7F	+505		1F9				
+32256	7E00	+504		1F8				
+32192	7DFF	+503		1F7				
+32128	7D80	+502		1F6				
+32064	7D7F	+501		1F5				
+32000	7D00	+500		1F4	Reserved	Sensor Defect Error		
+31936	7CFF	+499		1F3	Reserved	Reserved		
+31872	7C80	+498		1F2				
+31808	7C7F	+497		1F1				
+31744	7C00	+496		1F0				
+31680	7BFF	+495		1EF	Communication Error (OSCTRAIN_ERR bit)	Reserved (Error Mapped to 0x1F4)		
+31616	7B80	+494		1EE	Test Mode Enabled (TESTMODE bit set)			
+31552	7B40	+493		1ED	Offset Error (CH0 or CH1 OFFSET_ ERR bit set)			
+31488	7B00	+492		1EC	Temperature Error (TEMP0_ERR or TEMP1_ERR bit set)			
+31424	7AFF	+491		1EB	Memory Error (F_OTP_ERR, U_OTP_ ERR or U_RW_ERR set)			
+31360	7A80	+490		1EA	Sensor Self-test Error (CH0 or CH1 ST_ ERROR bit set)	Sensor Self-test Error		
+31296	7A7F	+489		1E9	Reserved	Reserved		
+31232	7A00	+488		1E8	Sensor Busy	Sensor Busy		
+31168	79FF	+487		1E7	Sensor Ready	Sensor Ready		
+31104	7980	+486		1E6	Sensor Ready, but Unlocked	Sensor Ready, but Unlocked		
+31040	797F	+485		1E5	Reserved	Reserved		
+30976	7900	+484		1E4				
+30912	78FF	+483		1E3				

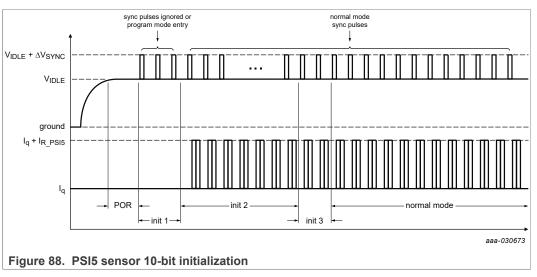
Table 261. PSI5 data values...continued

16-bit da	ata values	1	0-bit data valu	e	Description	Description				
Dec	Hex	Dec	Binary	Hex	(EMSG_EXT = 1 in PSI5_CFG)	(EMSG_EXT = 0 in PSI5_CFG)				
NA	NA	+482		1E2	Bidirectional Communication: RC "Error"	Bidirectional Communication: RC "Error"				
NA	NA	+481		1E1	Bidirectional Communication: RC "OK"	Bidirectional Communication: RC "OK"				
+30720	7800	+480		1E0	Maximum positive sensor value	Maximum positive sensor value				
					Positive sensor values	Positive sensor values				
+129 to +192	0081 to 00C0	+3		003						
+65 to +128	0041 to 0080	+2		002						
+1 to +64	0001 to 0040	+1		001						
0	0000	0		000	Zero	Zero				
-1 to -64	FFFF to FFC0	-1		3FF	Negative sensor values	Negative sensor				
-65 to -128	FFBF to FF80	-2		3FE		values				
-129 to -192	FF7F to FF40	-3		3FD						
-30720	8800	-480		220	Maximum negative sensor value	Maximum negative sensor value				
-30784	87FF	-481	1000011111	21F	Initialization Data Codes	1				
	•		•		10-bit Status Data Nibble 1 - 16 (0000 - 1	111) (Dx)				
	•									
21744		406	1000010000	240						
-31744 24808	8400	-496	1000010000	210	Initialization Data ID-					
-31808	83FF	-497	1000001111	20F	Initialization Data IDs Block ID 1 - 16 (10-bit Mode) (IDx)					
					Block ID 1 - 10 (10-bit Mode) (IDX)					
-32767	8000	-512	1000000000	200	-					

13.4 Initialization

Following power-up, the device proceeds through an initialization process which is divided into 3 phases:

- Initialization Phase 1: No Data transmissions occur
- Initialization Phase 2: Sensor self-test and transmission of configuration information

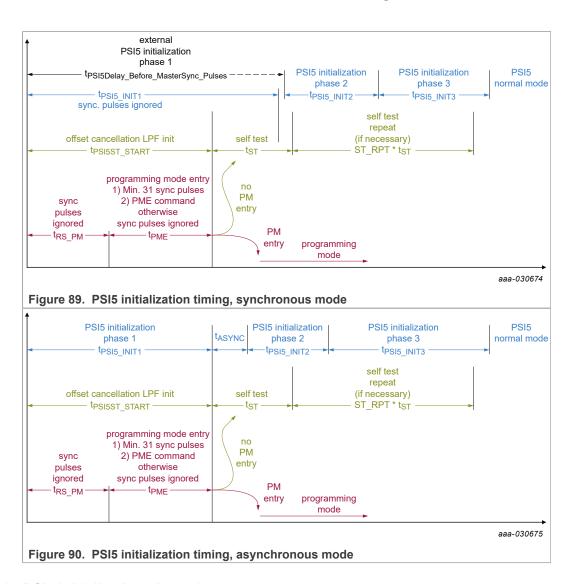

 Initialization Phase 3: Transmission of the "Sensor Busy" and / or "Sensor Ready" / "Sensor Defect" messages

Once initialization is completed the device begins normal mode operation, which continues as long as the supply voltage remains within the specified limits.

In asynchronous mode, initialization data is transmitted for Source ID 0 only.

In synchronous mode, the same initialization data is transmitted for each enabled Source ID.

In daisy chain mode, initialization data is transmitted in the Source ID 0 time slot as defined by the sensor address as documented in <u>Section 13.7</u>.



During PSI5 initialization, the device completes an internal initialization process consisting of the following:

- · Power-on reset
- · Device Initialization
- Program mode entry verification
- · Offset cancellation low-pass filter initialization
- Self-test

<u>Figure 89</u> shows the timing for internal and external initialization in synchronous mode. <u>Figure 90</u> shows the timing for internal and external initialization in asynchronous mode. <u>Timing parameters are specified in Section 10.12</u>.

Single channel inertial sensor

13.4.1 PSI5 initialization phase 1

During PSI5 initialization phase 1, the device begins internal initialization and self-checks, but transmits no data. Initialization begins with this sequence, shown in <u>Figure 89</u>:

- 1. Internal delay to ensure analog circuitry has stabilized (t_{POR_PSI5})
- 2. Offset cancellation low-pass filter initialization begins (t_{PSI5ST START})
- 3. Monitor for the Programming Mode Entry Sequence (t_{PME})
- 4. If the Programming Mode Entry Sequence is not detected, the device enters Initialization Phase 2 ($t_{PSI5\ INIT2}$)

13.4.2 PSI5 initialization phase 2

During PSI5 initialization phase 2, the device continues its internal selfchecks and transmits the PSI5 initialization phase 2 data. Initialization data is transmitted using the initialization data codes and IDs specified in <u>Table 261</u>, and in the order shown in <u>Table 262</u>.

Single channel inertial sensor

Table 262. PSI5 initialization phase 2 data transmission order

		Rep	eat k tin	nes				Repeat k times					 Repeat k times							
ID1 ₁	D1 ₁	ID1 ₂	D1 ₂		ID1 _k	D1 _k	ID2 ₁	D2 ₁	ID2 ₂	D2 ₂		ID2 _k	D2 _k	 ID32 ₁	D32 ₁	ID32 ₂	D32 ₂		ID32 _k	D32 _k
D1					D2						 D32									

The Initialization phase 2 time is calculated using Equation 17.

$$t_{Phase2} = Trans_{Nihhle} \times k \times (DataFields) \times t_{S-S}$$
 (17)

Where:

 $Trans_{Nibble}$ = # of Transmissions per Data Nibble

2: 1 for ID, and 1 for Data

k = The repetition rate for the data fields

Data Fields = 32 data fields or 48 data fields (if INIT2 EXT is set)

 t_{S-S} = Sync Pulse Period

13.4.2.1 PSI5 initialization phase 2 data transmissions

In PSI5 initialization phase 2, the device transmits a sequence of sensor specific configuration and serial number information. The transmission data is in conformance with the PSI5^[5] specification, and AKLV27^[3]. The data content and transmission format is shown in <u>Table 264</u>. <u>Table 263</u> shows the phase 2 timing for different operating modes. Times are calculated using the equation in <u>Section 13.4.2</u>.

Table 263. Initialization phase 2 time

Operating mode	Repetition rate (k)	# of transmissions	Nominal phase 2 time
Asynchronous Mode (228 µs)	8	512	116.7 ms
Synchronous Mode (500 µs)	4	256	128.0 ms

Table 264. Channel 0 PSI5 initialization phase 2 data

PSI5 field ID#	PSI5 nibble ID #	Page address	PSI5 nibble address	Register address	PSI5 description	Value																	
F1	D1	0	0000	USERDATA_0[3:0]	User Specific Data	User																	
F2	D2, D3		0001, 0010	NA	Number of Data Blocks: 32: INIT2_EXT = 0, 48: INIT2_EXT = 1	0010 0000 or 0011 0000																	
F3	D4, D5		0011, 0100	USERDATA_1[3:0], USERDATA_1[7:4]	User Specific Data	User																	
F4	D6, D7		0101, 0110	USERDATA_2[3:0], USERDATA_2[7:4]	User Specific Data	User																	
F5	D8		0111	USERDATA_3[3:0]	User Specific Data	User																	
	D9				1000	USERDATA_3[7:4]	User Specific Data	User															
F6	D10									1001	USERDATA_4[3:0]	User Specific Data	User										
	D11																			1010	USERDATA_4[7:4]	User Specific Data	User
F7	D12																		1011	USERDATA_5[3:0]	User Specific Data	User	
	D13																			1100	USERDATA_5[7:4]	User Specific Data	User
	D14		1101	USERDATA_6[3:0]	User Specific Data	User																	
F8	D15		1110	USERDATA_7[3:0]	User Specific Data	User																	
	D16		1111	USERDATA_7[7:4]	User Specific Data	User																	
	D17	1	0000	USERDATA_8[3:0]	User Specific Data	User																	
	D18		0001	USERDATA_8[7:4]	User Specific Data	User																	

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 264. Channel 0 PSI5 initialization phase 2 data...continued

PSI5 field ID#	PSI5 nibble ID #	Page address	PSI5 nibble address	Register address	PSI5 description	Value		
F9	D19		0010	SN4[7:4] or USERDATA_6[7:4]	Data determined by PSI5_INIT2_D19 in TIMING_CFG2 register	User		
	D20		0011	SN4[3:0] or USERDATA_E[7:4]	Data determined by PSI5_INIT2_D19 in TIMING_CFG2 register	User		
	D21		0100	SN3[7:4]	Device Serial Number	Factory		
	D22		0101	SN3[3:0]	Device Serial Number	Factory		
	D23		0110	SN2[7:4]	Device Serial Number	Factory		
	D24		0111	SN2[3:0]	Device Serial Number	Factory		
	D25		1000	SN1[7:4]	Device Serial Number	Factory		
	D26		1001	SN1[3:0]	Device Serial Number	Factory		
	D27		1010	SN0[7:4]	Device Serial Number	Factory		
	D28		1011	SN0[3:0]	Device Serial Number	Factory		
	D29		1100	PN1[3:0]	Device Part Number	Factory		
	D30		1101	PN0[7:4]	Device Part Number	Factory		
	D31		1110	PN0[3:0]	Device Part Number	Factory		
	D32		1111	USERDATA_6[7:4]	User Specific Data	User		
F10	F10 D33	2	0000	CH0_STAVG_P[7:4]	Channel 0 Positive Self-test, High Nibble	Varies		
	D34		0001	CH0_STAVG_P[3:0]	Channel 0 Positive Self-test, Low Nibble	Varies		
	D35				0010	CH0_STOFFSET_P[7:4]	Channel 0 Post Positive Self-test Offset, High Nibble	Varies
	D36		0011	CH0_STOFFSET_P[3:0]	Channel 0 Post Positive Self-test Offset, Low Nibble	Varies		
	D37		0100	CH0_STAVG_N[7:4]	Channel 0 Negative Self-test, High Nibble	Varies		
	D38		0101	CH0_STAVG_N[3:0]	Channel 0 Negative Self-test, Low Nibble	Varies		
	D39		0110	CH0_STOFFSET_N[7:4]	Channel 0 Post Negative Self-test Offset, High Nibble	Varies		
	D40		0111	CH0_STOFFSET_N[3:0]	Channel 0 Post Negative Self-test Offset, Low Nibble	Varies		
	D41		1000	I	RESERVED	RESERVED		
	D42		1001	ļ	RESERVED	RESERVED		
	D43		1010	!	RESERVED	RESERVED		
	D44		1011	!	RESERVED	RESERVED		
	D45		1100	!	RESERVED	RESERVED		
	D46		1101	!	RESERVED	RESERVED		
	D47		1110	!	RESERVED	RESERVED		
	D48		1111	1	RESERVED	RESERVED		

Note: Offset and self-test data in Field ID #10 is only transmitted if the internal self-test for the associated channel has completed and has passed before F10, D33 is to be transmitted. This can only occur if the internal self-test sequence passes the first time. If F10, D33 is to be transmitted before the internal self-test has completed for a specific channel, the latest self-test, and offset values are transmitted.

Note: If self-test has completed all retries and has failed before F10, D33 is to be transmitted, F10, D33 - D48 will include self-test data from the last failed attempt.

Note: In PSI5 asynchronous mode, self-test will not be complete prior to the transmission of the F10. Setting the INIT2_EXT bit will result in invalid self-test data in D33 and D34 (0x0 values).

Note: Constant values are transmitted for all fields marked as "RESERVED"

13.4.3 Internal self-test

Once Initialization Phase 1 completes, the device begins its internal self-test as described in <u>Section 11.6.2.5</u>. If self-test fails, the device repeats self-test up to ST_RPT times.

13.4.4 Initialization phase 3

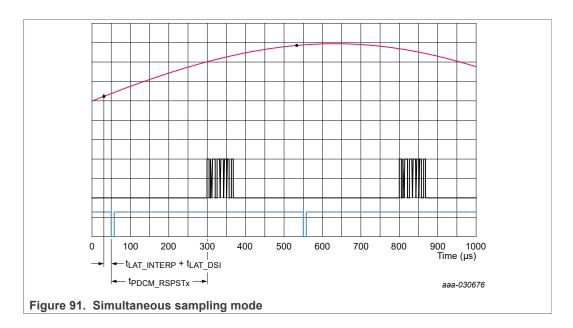
During PSI5 initialization phase 3, the device completes its internal self-checks, and transmits a combination of "Sensor Busy" or "Sensor Ready" messages as defined in Table 261. The number of "Sensor Busy" messages transmitted in initialization phase 3 varies depending on the mode of operation, and the number of self-test repetitions. Self-test is repeated on failure up to ST_RPT times to provide immunity to misuse inputs during initialization. Self-test terminates successfully after one successful self-test sequence.

Once internal self-test is completed, the device transmits 2 "Sensor Ready" commands.

The ENDINIT bit is automatically set when the device exits Initialization Phase 3.

13.5 Normal mode

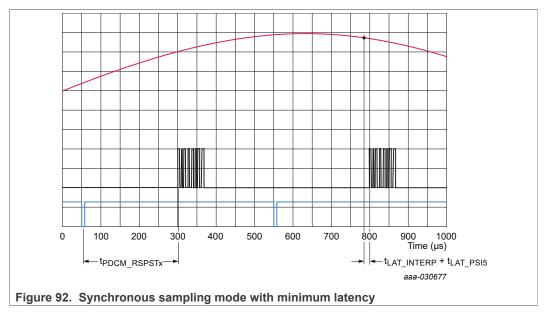
13.5.1 Asynchronous mode


The device can be programmed to respond in asynchronous mode as specified in Section 11.2.18.1.

In asynchronous mode, the device transmits data at a fixed rate (t_{ASYNC}) and will not respond to normal sync pulses. However, during initialization phase 1, the device will monitor sync pulses to decode the programming mode entry command and allow entry into programming mode.

13.5.2 Simultaneous sampling mode

The device can be programmed to respond in simultaneous sampling mode by programming the SS EN bit to "Simultaneous Sampling Mode".


In simultaneous sampling mode, the most recent interpolated sensor data sample is latched at t_{TRIG} (rising edge of Sync Pulse) and transmitted starting at the time programmed in the PDCM RSPSTx registers, relative to t_{TRIG} .

13.5.3 Synchronous sampling mode with minimum latency

The device can be programmed to respond in synchronous sampling mode with minimum latency by programming the SS EN bit to "Synchronous Sampling Mode".

In synchronous sampling mode, the most recent interpolated sensor data sample is latched at the time programmed in the PDCM_RSPSTx registers, relative to t_{TRIG} (rising edge of Sync pulse). The data is transmitted starting at the time programmed in the PDCM_RSPSTx registers, relative to t_{TRIG} .

13.6 PSI5 default mode (un-programmed PSI5 device)

Un-programmed FXLS93xxx PSI5 devices include a default PSI5 transmission mode. The devices will respond to PSI5 sync pulses and transmit data in PSI5-P16C-500/2L mode with the minimum user gain and the default 400 Hz, 4-Pole low-pass filter.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

<u>Table 265</u> shows the default PSI5 response transmission, <u>Table 266</u> shows the PSI5 timing parameters, and <u>Table 267</u> and <u>Table 268</u> show the sensor data configuration details for each channel.

The default settings apply until the UF2 user OTP memory is written and the UF2 block is locked.

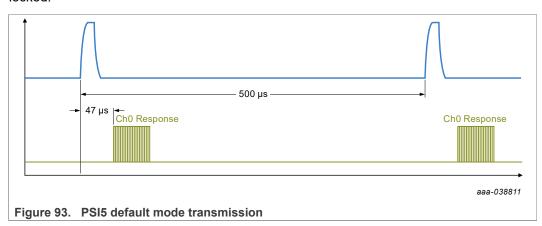


Table 265. Default PSI5-P16C transmission mode

Star	Start bits Sensor data (See Section 11.6.4.9)									CRC										
S2	S1	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	C2	C1	C0
Init I	Data	0	0	0	0	0	0	10-k	10-bit Initialization Data as specified in Section 13.4.2.1				C2	C1	C0					

Table 266. Default PSI5-P16C transmission mode timing parameters

Parameter	Default typical value	Default register bit values
Ch0 Time Slot	47 µs	\$27, \$26: \$PDCM_RSPST0 = 0x002F
Data Size	16-bit	\$1A: SOURCEID_0[6:4] = 3'b100
Error Checking	3-bit CRC	\$25: PSI5_CFG[2] = 1'b1
Baud Rate	Low Baud Rate: 125 kB/s, Bit Time = 8.0 µs	\$23: CHIPTIME[3:0] = 3'b1000

Table 267. Default PSI5-P16C transmission mode, High g sensor data configuration

Parameter	Value	Default register bit values
Sensor Data Range	702.6 g	\$40, : CH0_CFG_U1[1:0] = 2'b00
Sensor Data Sensitivity	43.79 LSB/g	\$41, : CH0_CFG_U2[7:0] = 0x00
Sensor data low-pass filter	400 Hz, 4-Pole LPF	\$40, : CH0_CFG_U1[7:4] = 4'b0000
Sensor data offset cancellation	0.04 Hz, 1-Pole HPF with Rate Limiting Enabled	\$43, : CH0_CFG_U4[5:4] = 2'b00

Table 268. Default PSI5-P16C transmission mode, Medium g sensor data configuration

Parameter	Value	Default register bit values
Sensor data range	232.6 g	\$40, : CH0_CFG_U1[1:0] = 2'b00

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 268. Default PSI5-P16C transmission mode, Medium g sensor data configuration...continued

Parameter	Value	Default register bit values
Sensor data sensitivity	132.06 LSB/g	\$41, : CH0_CFG_U2[7:0] = 0x00
Sensor data low-pass filter	400 Hz, 4-Pole LPF	\$40, : CH0_CFG_U1[7:4] = 4'b0000
Sensor data offset cancellation	0.04 Hz, 1-Pole HPF with Rate Limiting Enabled	\$43, : CH0_CFG_U4[5:4] = 2'b00

13.7 Daisy chain mode

The device can be programmed to operate in daisy chain mode by setting the DAISY_CHAIN bit in the PSI5_CFG register. Daisy chain mode can be programmed to operate in either "Simultaneous Sampling Mode", or "Synchronous Sampling Mode" by setting the SS_EN bit to the desired operating mode. In simultaneous sampling mode, the most recent interpolated sensor data sample is latched at t_{TRIG} (rising edge of Sync Pulse). In synchronous sampling mode, the most recent interpolated sensor data sample is latched at the transmission time associated with the programmed sensor address, relative to t_{TRIG} (rising edge of Sync pulse).

When programmed to operate in daisy chain mode, the device follows the procedure:

- After a power on delay of t_{RS_PM}, the device waits for a PSI5 "Set Address" command defined in Table 270 and Table 271.
 - a. The Set Address command must be preceded by at least 31 and no more than 60 consecutive sync pulses. All other commands must be preceded by either 31 consecutive sync pulses or 5 consecutive missing sync pulses.
 - b. The Daisy Chain Programming command and response formats are defined in <u>Section 13.9.2</u> using a sync pulse period of t_{s-s_DC}. The response settings are defined in <u>Table 284</u>, with the exception of the time slot.
 - c. The response to the PSI5 Set Address command and all other valid commands uses the Source ID 0, address-based time slot specified in <u>Table 272</u>.
 - d. If a framing error or CRC error is detected on a received command, the device does not respond.
- 2. After receiving a valid address and completing the response, the device will decode and respond to all <u>Table 270</u> commands sent to the sensor address it is set to. All responses are transmitted in the address-based time slot specified in <u>Table 272</u>.
- 3. When the "Run Mode" command is received, the device responds to the command using the address-based time slot(s) specified in Table 272. The device then ignores all commands and proceeds through Initialization Phase 2 and Initialization Phase 3 in response to sync pulses. The following response format is used, regardless of the state of the relevant bits in the Device Configuration Registers:

Table 269. Daisy chain: Run mode configuration

Parameter	Reference	Value
Time Slot	Section 11.2.18.1	Address-based time slot(s) specified in <u>Table 272</u>
Data Size	Section 11.2.13.2	Data size controlled by the PDCMFORMAT bits
Error Checking	Section 11.2.17.5	Even Parity
Baud Rate	Section 11.2.15.4	Baud Rate controlled by the CHIPTIME bits

 Upon completion of Initialization Phase 3, the ENDINIT bit is set, the device enters normal mode and responds to all sync pulses with sensor data according to Table 270, Table 271, and Table 272.

Table 270. Daisy chain programming commands and responses

CMD		SAdr			FC		Command	Response (OK)		
type	A2	A1	A0	F2	F1	F0		RC	RD1	
Short	0	0	0	A2	A1	A0	Set Sensor Address (Daisy Chain)	OK	SAdr	
Short	1	1	1	0	0	0	Broadcast Message - "Run Mode"	OK	0x000	
Short	SAdr	= 1, 2, 3,	4, 5, 6	0	0	0	Activate Low Side Bus Switch	OK	0x000	
Short	SAdr	= 1, 2, 3,	4, 5, 6	1	1	1	Deactivate Low Side Bus Switch	OK	0x111	
Short	SAdr	= 1, 2, 3,	4, 5, 6	A2	A1	A0	Set Sensor Address (Daisy Chain)	OK	SAdr	

Table 271. Daisy chain programming response code definitions

Response code	Definition	Value
RC = OK	Command Message Received Properly.	0x1E1
RC = Error	Error during transmission of Command Message.	0x1E2
SAdr	Programmed Sensor Address, prepended with logic zeros.	Varies

Table 272. Valid daisy chain addresses

Sens	or address	(SAdr)	Description	Time slot		
A2	A 1	A0		Source ID 0		
0	0	0	Un-programmed sensor	N/A		
0	0	1	Sensor Address 1	t _{TIMESLOT_DC0}		
0	1	0	Sensor Address 2	t _{TIMESLOT_DC1_L}		
0	1	1	Sensor Address 3	t _{TIMESLOT_DC2_L}		
1	0	0	Sensor Address 4	t _{TIMESLOT_DC1_H}		
1	0	1	Sensor Address 5	t _{TIMESLOT_DC2_H}		
1	1	0	Sensor Address 6	t _{TIMESLOT_DC3_H}		
1	1	1	N/A	N/A		

Note: Writes to Sensor Address 7 are ignored.

Note: If a successful programming mode entry command is received prior to a set address, daisy chain mode is disabled.

13.8 Error handling

13.8.1 Daisy chain error handling

<u>Table 273</u> shows the effect of internal failure modes on the daisy chain initialization procedure.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 273. Daisy chain error handling

adolo 210. Baloy olidin offor handing					
Error condition	Effect on daisy chain				
Supply Error	Daisy chain commands ignored. The device will not participate in daisy chain.				
Communication Error	No effect. The device will participate in Daisy Chain as programmed.				
Test Mode Enabled	Daisy chain commands ignored. The device will not participate in daisy chain.				
Offset Error	No effect. The device will participate in daisy chain as programmed.				
Temperature Error	No effect. The device will participate in daisy chain as programmed.				
Memory Error	No effect. The device will participate in daisy chain as programmed.				
Self-test Error	No effect. The device will participate in daisy chain as programmed.				
Device Not Locked	No effect. The device will participate in daisy chain as programmed.				

13.8.2 Initialization phase 2 error handling

Table 274 shows the effect of internal failure modes on the initialization phase 2 transmissions. Some errors occurring in initialization phase 2 will prevent entry into initialization phase 3. Once the error is no longer present, the device will complete initialization phase 2 as necessary and then transition to initialization phase 3.

Table 274. Initialization phase 2 error handling

Error condition	Effect on initialization phase 2				
Supply Error	Temporary, Sync Pulses Ignored				
Communication Error	No Effect				
Test Mode Enabled	No Effect				
Offset Error	No Effect				
Temperature Error	No Effect. The device will attempt to transmit Initialization Phase 2 data.				
Memory Error	No Effect. The device will attempt to transmit Initialization Phase 2 data.				
Self-test Error	No Effect				
Device Not Locked	No Effect				

13.8.3 Initialization phase 3 error handling

<u>Table 275</u> shows the effect of internal failure modes on the initialization phase 3 procedures. Some errors occurring in initialization phase 3 will prevent entry into run mode until the error is no longer present. Once the error is no longer present, one or more Sensor Ready commands are transmitted before entering Run Mode.

Table 275. Initialization phase 3 error handling

Error condition	Effect on initialization phase 3
Supply Error	Temporary, Sync Pulses Ignored
Communication Error	No Effect
Test Mode Enabled	No Effect
Offset Error	No Effect
Temperature Error	No Effect. The device will attempt to transmit Initialization Phase 3 data.
Memory Error	No Effect. The device will attempt to transmit Initialization Phase 3 data.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 275. Initialization phase 3 error handling...continued

Error condition	Effect on initialization phase 3
Self-test Error	No Effect
Device Not Locked	Sensor Ready replaced with Sensor Ready, but Not Locked Transmission (UF2 Region is un-programmed)

13.8.4 Normal mode error handling with internal error automatic clearing

<u>Section 13.8.4.1</u> and <u>Section 13.8.4.2</u> summarize the error reporting if the PSI5_ERRLATCH bit is not set. A single error transmission clears the device status allowing for temporary error conditions to be cleared once the error condition is removed.

13.8.4.1 Standard error reporting

<u>Table 276</u> summarizes the error reporting in normal mode if the PSI5 error extension option is disabled.

Table 276. Standard error reporting

Error condition	Error code	Error response
Supply Error	NA	Temporary (Normal transmissions continue once condition is removed)
Communication Error		Temporary (Normal transmissions continue once condition is removed)
Test Mode Enabled		Temporary (Normal transmissions continue once condition is removed)
Offset Error	0x1F4	Temporary (Normal transmissions continue once condition is removed)
Temperature Error		Temporary (Normal transmissions continue once condition is removed)
Memory Error		Latched until reset
Self-test Error	0x1EA	Latched until reset
Device Not Locked	NA	NA

13.8.4.2 PSI5 error extension option

If the PSI5 error extension option is enabled, additional error reporting is available as shown in <u>Table 277</u>.

Table 277. PSI5 error extension option

Error condition	Error code	Error response
Supply Error	NA	Temporary (Normal transmissions continue once condition is removed)
Communication Error	0x1EF	Temporary (Normal transmissions continue once condition is removed)
Test Mode Enabled	0x1EE	Temporary (Normal transmissions continue once condition is removed)
Offset Error	0x1ED	Temporary (Normal transmissions continue once condition is removed)
Temperature Error	0x1EC	Temporary (Normal transmissions continue once condition is removed)
Memory Error	0x1EB	Latched until reset
Self-test Error	0x1EA	Latched until reset
Device Not Locked	NA	NA

13.8.5 Normal mode error handling with internal error latching

Section 13.8.5.1 and Section 13.8.5.2 summarize the error reporting if the PSI5_ERRLATCH bit is set. Internal errors are latched until reset.

13.8.5.1 Standard error reporting

<u>Table 278</u> summarizes the error reporting in normal mode if the PSI5 Error Extension option is disabled.

Table 278. Standard error reporting

Error condition	Error code	Error response
Supply Error	NA	Temporary (Normal transmissions continue once condition is removed)
Communication Error		Temporary (Normal transmissions continue once condition is removed)
Test Mode Enabled		Latched until reset
Offset Error	0x1F4	Latched until reset.
Temperature Error		Latched until reset
Memory Error		Latched until reset
Self-test Error	0x1EA	Latched until reset.
Device Not Locked	NA	NA

13.8.5.2 PSI5 error extension option

If the PSI5 error extension option is enabled, additional error reporting is available as shown in <u>Table 279</u>.

Table 279. PSI5 error extension option

Error condition	Error code	Error response
Supply Error	NA	Temporary (Normal transmissions continue once condition is removed)
Communication Error	0x1EF	Temporary (Normal transmissions continue once condition is removed)
Test Mode Enabled	0x1EE	Latched until reset
Offset Error	0x1ED	Latched until reset.
Temperature Error	0x1EC	Latched until reset
Memory Error	0x1EB	Latched until reset
Self-test Error	0x1EA	Latched until reset.
Device Not Locked	NA	NA

13.9 PSI5 programming mode

PSI5 Programming mode is a synchronous communication mode that allows for bidirectional communication with the device. Programming mode is intended for factory programming of the OTP array and reading of diagnostic information. It is not intended for use in normal operation.

13.9.1 PSI5 programming mode entry

The device enters programming mode if and only if the following sequence occurs:

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

- 1. At least 31 sync pulses are detected, directly preceding the Programming Mode Entry Short Command during the Programming Mode Entry Window shown in Figure 89.
 - The window timing is defined in Section 10.12 (t_{PME}).
 - The Sync pulses and Programming Mode Entry command must be received with a sync pulse period of t_{S-S-PM}

If the Programming Mode entry requirement is not met:

- 1. Programming Mode Entry is blocked until the device is reset.
- 2. The device proceeds with PSI5 Initialization Phase 2, and PSI5 Initialization Phase 3.
- 3. The device enters normal mode, and responds as programmed to normal sync pulses.

If the Programming Mode entry requirement is met:

- 1. Normal transmissions to sync pulses are terminated.
- 2. The device will detect commands if the start condition is met as described in Section 13.9.2.2.
- 3. The device responds only to valid PSI5 Short and XLong Commands addressed to Sensor Address '001', as defined in <u>Section 13.9.3</u>.

13.9.2 PSI5 programming mode - data link layer

13.9.2.1 PSI5 programming mode - command bit encoding

Commands messages are transmitted via the modulation of the supply voltage. The presence of a sync pulse is a logic '1' and the absence of a sync pulse is a logic '0'. Sync pulses are expected at a rate of t_{S-S-PM} .

13.9.2.2 PSI5 programming mode - command message format

Once programming mode is enabled, command message data frames consist of a start condition, 3 Start Bits (S[2:0]), a 3-bit sensor address (SAdr[2:0]), a 3-bit function code (FC[2:0]), an optional register address (RAdr[7:0]), an optional data field (D[7:0]), and a 3-bit CRC (C[2:0]. The start condition consists of one of the following:

- 1. A minimum of 5 consecutive logic '0's (with no sync bits)
- 2. A minimum of 31 consecutive logic '1's (this includes logic '1's transmitted for the previous response)

The command message format is shown in <u>Table 281</u>.

Table 280. Programming mode via PSI5 command data format

S	tart bit	ts	Se	nsor A	ddr	Fun	nction c	ode		Register address												Da	ita			CRC	
S2	S1	S0	SA0	SA1	SA2	FC0	FC1	FC2	RA0	RA1	RA2	RA3	RA4	RA5	RA6	RA7	D0	D1	D2	D3	D4	D5	D6	D7	C2	C1	C0
0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0
										CRC																	
		,								Data to be written to register (optional)																	
									Registe	er Addre	ss (opti	onal)															
						Function	on Code	s (See	Section 1	13.9.3)																	
	Sensor Address - Fixed at 001																										
Start Bi	Start Bit Sequence = 010																										

FXLS9xxx0

Table 281. Programming mode via PSI5 command data format - response

	Response											
RC	RD1	RD0										
\$3FF	\$3FF	\$3FF										

Bit stuffing is necessary to maintain a synchronized timebase between the command master and the device. A logic '1' Sync bit is added every fourth bit in the command message to ensure that there will never be more than 3 logic '0' bits in a row.

Table 282. Programming mode via PSI5 XLONG command data format with sync bits

St	art bi	its			Senso ddres				unctio code				Register address				Data									CRC										
S2	S1	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	RA0	RA1	RA2	Sy	RA3	RA4	RA5	Sy	RA6	RA7	D0	Sy	D1	D2	D3	Sy	D4	D5	D6	Sy	D7	C2	C1	Sy	C0
0	1	0	1	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0

Table 283. Programming mode via PSI5 XLONG command data format with sync bits - response

	Response									
RC	RD1	RD0								
\$1E2	\$3FF	\$3FF								

Once a command is received and verified, the device expects 2 to 3 consecutive sync pulses (depending upon the command message lengths described in <u>Table 284</u>). There is no delay restriction between the command and the first sync pulse for the response. Once the first sync pulse for the response is received, each successive response sync pulse must be received within the programming mode sync pulse period specified (t_{S-S-PM}) or a framing error may occur.

For each of these sync pulses, The device will respond with the following settings:

Table 284. Programming mode via PSI5 response message settings

Parameter	Value
Time Slot	t _{TIMESLOT_DC0}
Data Size	10-bit data
Error Checking	Even Parity
Baud Rate	125 kBd
Sync Pulse Pulldown	Disabled

13.9.2.3 Short frame command and response format

Short frames are the simplest type of command message. No data is transmitted in a short frame command. Only specific instructions are performed in response to short frame commands. The short frame format is shown in <u>Table 285</u>. Short frame commands and responses are defined in <u>Section 13.9.3</u>.

The device only supports a short command for programming mode entry.

Table 285. Programming mode via PSI5 short command

5	Start bit	s		Sen	sor addı	ress		Fui	nction co	ode				
S2	S1	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	C2	C1	C0
0	1	0	1	1	0	0	1	0	0	1	1	0	0	0

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 286. Response format

Resp	Response										
RC	RD1										
\$1E2	\$3FF										

13.9.2.4 Long frame command and response format

Long frames allow for the transmission of data nibbles for register writes. The device can provide register data in response to a read or write request. the long frame format is shown in <u>Table 287</u>. The device does not support the long frame command.

Table 287. Programming mode via PSI5 long command

S	tart B	its		Sens	or Add	Iress		Fun	ction C	ode				Regist	er Ac	ldress						Data				CF	C	
S2	S1	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	RA0	RA1	RA2	Sy	RA3	RA4	RA5	Sy	D0	D1	D2	Sy	D3	C2	C1	Sy	C0
0	1	0	1	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	0	0	1	0

Table 288. Response format

	Response	
RC	RD1	RD0
\$1E2	\$3FF	\$3FF

13.9.2.5 Extra long frame command and response format

Extra long frames allow for the transmission of address and data bytes for register reads and writes. The device can provide register data in response to a read or write request. The extra long frame format is shown in <u>Table 289</u>. Extra long frame commands and responses are defined in <u>Section 13.9.3</u>.

The device supports register read and register write extra long commands.

Table 289. Programming mode via PSI5 long command

Si	art B	its			Senso			F	unctio Code						Reg	ister	Addr	ess								I	Data	I						CR	С	
S2	S1	S0	Sy	SAO	SA1	SA2	Sy	FC0	FC1	FC2	Sy	RA0	RA1	RA2	Sy	RA3	RA4	RA5	Sy	RA6	RA7 D0 Sy D1 D2 D3 Sy D4 D5 D6 Sy					D7	C2	C1	Sy	C0						
0	1	0	1	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0

Table 290. Response format

	Response	
RC	RD1	RD0
\$1E2	\$3FF	\$3FF

13.9.2.6 Command message CRC

Programming mode command error checking is accomplished by a 3-bit CRC. The 3-bit CRC is calculated using all message bits except start bits and sync bits. The CRC verification uses a generator polynomial of $g(x) = X^3 + X + 1$, with a non-direct seed value = '111'. The message data is provided to the CRC calculator in the order received (LSB first, SAdr, FC, RAdr, Data), and then augmented with '000'. <u>Table 260</u> shows some example CRC calculation values for 10-bit data transmissions.

The calculated CRC is then compared against the received 3-bit CRC (received MSB first). If a CRC mismatch is detected, the device responds with a CRC Error response as defined in Section 13.9.4.

13.9.2.7 Command sync pulse blanking time

In programming mode and programming mode entry, the device employs a fixed sync pulse blanking time of $t_{SYNC_OFF_250}$ regardless of the state of the PDCM_CMD_B register value.

13.9.2.8 Command timeout

In the event that the device does not detect a sync pulse within a 4-bit window time, the command reception will be terminated and the device will respond to the next sync pulse with a Short Frame Framing Error response as defined in <u>Section 13.9.4</u>.

13.9.3 PSI5 programming mode command and response summary

Table 291. Programming mode via PSI5 commands and responses

CMD type	SAdr	FC	Command	Register	Data field		Response (C	K)	Res	ponse (E	rror)
		FC[2:0]		address		RC	RD1	RD0	RC	RD1	RD0
Short	001	100	Invalid Command	N/A	N/A		No Respons	e	N	o Respon	se
Short		101	Invalid Command	N/A	N/A		No Respons	e	N	o Respon	se
Short		110	Invalid Command	N/A	N/A		No Respons	e	N	o Respon	se
Short		111	Enter Programming Mode	N/A	N/A	OK	0x0CA	N/A	N	o Respon	se
Long		010	Invalid Command	N/A	N/A		No Respons	e	N	o Respon	se
Long		011	Invalid Command	N/A	N/A		No Respons	e	N	o Respon	se
XLong		000	Read register located at address RA7:RA0	Varies	Varies	OK	RData	RData+1	Error	ErrN	0x000
XLong		001	Write WData to register RA7:RA0	Varies	Varies	ОК	WData	RA7:RA0	Error	ErrN	0x000

Table 292. Programming mode via PSI5 response code definitions

	· · · · · · · · · · · · · · · · · · ·	
Response code	Definition	Value
RC = OK	Command Message Received Properly	0x1E1
RC = Error	Error during transmission of Command Message	0x1E2
RData	Byte Contents of Register located at address RA7:RA1 with RA0 = 0 (Low Byte)	Varies
RData + 1	Byte Contents of Register located at address RA7:RA1 with RA0 = 1 (High Byte)	Varies
WData	Byte Contents of Register located at address RA7:RA0	Varies

13.9.4 Programming mode via PSI5 error response summary

Table 293. Error response summary

ErrN	Mnemon ic	Description	Supported
0000	General	General Error	No
0001	Framing	Framing Error (4 consecutive zeros)	Yes
0010	CRC	CRC Error on Received Message	Yes
0011	Address	Sensor Address Not Supported	No (Invalid Address is ignored)
0100	FC	Function Code Not Supported	No (N/A)

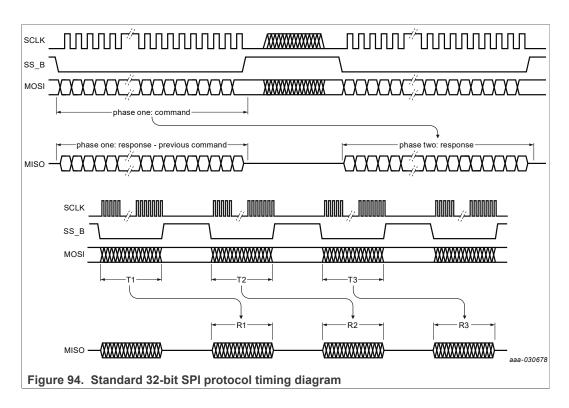
FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 293. Error response summary...continued

ErrN	Mnemon ic	Description	Supported
0101			
0110	Reserved	Reserved	No
0111			
1000			
1001			
1010			
1011	Reserved	Reserved	No
1100	Reserved	Reserved	INO
1101			
1110			
1111			

ErrN is transmitted in the 4 LSBs of RD1. All other bits in the response data field are set to '0'.


13.10 PSI5 OTP programming procedure

- 1. Enter programming mode.
- 2. Set $V_{CC} = V_{PP}$
- 3. Load desired data into the desired registers using PSI5 Write commands.
- 4. Write the necessary OTP program sequence to the WRITE_OTP_EN register for the desired OTP region to be written.
- 5. Delay t_{PROG_TIME} after the completion of the Write OTP program to allow for completion of the OTP writes.
- 6. Read the DEVSTAT and DEVSTAT2 registers to confirm that no errors occurred during the OTP writes.
- 7. Read back the register values that were written and compare to the desired values to confirm successful OTP writes.

Refer to the PSI5 OTP Programming Procedure Application Note for further details on OTP programming.

14 Standard 32-bit SPI protocol

The device includes a standard SPI protocol requiring 32-bit data packets. The device is a slave device requires that the base clock value be low (CPOL = 0) with data captured on the rising edge of the clock and data propagated on the falling edge of the clock (CPHA = 0). The most significant bit is transferred first (MSB first). SPI transfers are completed through a sequence of two phases. During the first phase, the command is transmitted from the SPI master to the device. During the second phase, response data is transmitted from the slave device. MOSI and SCLK transitions are ignored when SS_B is not asserted.

14.1 SPI command format

Table 294. SPI command format

140																															
MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													R	egiste	r Acce	ss Co	mmai	nd													
Command Fixed Bits: Register Address Must = 0x0												F	Registe	er Dat	а						8-bit	CRC									
	C[3:0] 0 0 0 0							F	RA[7:1]			RA[0]				RD	7:0]							CRC	[7:0]					
														Senso	or Data	Com	nmand	l													
Command Fixed Bits: Must										ust = ()x000x	00											8-bit	CRC							
	C[3:0] 0 0 0 0 0 0 0 0 0									0	0	0	0	0	0	0	0	0	0	0				CRC	[7:0]						

14.2 SPI response format

Table 295. SPI response format

Iab	ie z	95.	3P	res	poi	ıse	1011	IIal																							
MSB																															LS
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													F	Respons	e to R	egister	Reque	st				-					-				
	Com	mand			sic tus		sed = 0x0	R	egister	Data: (Content	ts of R/	A[7:1] H	ligh By	te	F	Register	Data:	Conten	nts of R	A[7:1] l	ow By	e				8-bit	CRC			
C[0]	C[3]														CRC	[7:0]															
													Res	sponse	to Ser	sor Da	ta Requ	uest													
	Com	mand		Ba Sta	sic tus								Senso	or Data									tail itus				8-bit	CRC			
C[0]	C[3]	C[2]	C[1]	ST[1:0]						SD[1	11:0]						Opt	ional SI	D resol	ution	SF	1:0]				CRC	[7:0]			
													Erro	r Resp	onse to	Regis	ter Rec	uest													
	Command Basic Unused Register Data: Contents of RA[7:1] High Byte Register Data: Contents of RA[7:1] Low Byte Status Data = 0x0										e				8-bit	CRC															
0	0	0 0 1 1 0 0 RD[15:8] RD[7:0]															CRC	[7:0]													
											Е	rror Re	sponse	e to Ser	sor Da	ata Red	quest W	ith Ser	sor Da	ta											
	Com	mand			sic tus								Senso	or Data									tail itus				8-bit	CRC			

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 295. SPI response format...continued

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C[0]	C[3]	C[2]	C[1]	1	1			SD[11:0] Optional SD resolution SF[1:0] CRC[7:0]																							
											Erro	or Resp	oonse t	o Sens	or Data	Reque	est With	nout Se	nsor Da	ata											
	Comn	mand		Ba Sta		х						U	Inused	Data =	0x0000)						De: Sta	tail tus				8-bit	CRC			
0	0	0	0	1	1	х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SF[1:0]				CRC	[7:0]			

14.3 Command summary

Table 296. Command summary

	C[3	3:0]		Command type	Data source SOURCEID[2:0] = C[3:1]	Reference
0	0	0	0	Unused Command (Reserved for Error Response)	Not Applicable	Not Applicable
0	0	0	1	Sensor Data Request	SOURCEID[3:0] = 0x0	Section 14.3.3
0	0	1	0	Reserved Command	Not Applicable	Not Applicable
0	0	1	1	Sensor Data Request	SOURCEID[3:0] = 0x1	Section 14.3.3
0	1	0	0	Reserved Command	Not Applicable	Not Applicable
0	1	0	1	Sensor Data Request	SOURCEID[3:0] = 0x2	Section 14.3.3
0	1	1	0	Reserved Command	Not Applicable	Not Applicable
0	1	1	1	Sensor Data Request	SOURCEID[3:0] = 0x3	Section 14.3.3
1	0	0	0	Register Write Request	Not Applicable	<u>Section 14.3.2</u>
1	0	0	1	Sensor Data Request	SOURCEID[3:0] = 0x4	Section 14.3.3
1	0	1	0	Reserved Command	Not Applicable	Not Applicable
1	0	1	1	Sensor Data Request	SOURCEID[3:0] = 0x5	Section 14.3.3
1	1	0	0	Register Read Request	Not Applicable	<u>Section 14.3.1</u>
1	1	0	1	Sensor Data Request	SOURCEID[3:0] = 0x6	Section 14.3.3
1	1	1	0	Reserved Command	Not Applicable	Not Applicable
1	1	1	1	Sensor Data Request	SOURCEID[3:0] = 0x7	Section 14.3.3

14.3.1 Register read command

The device supports a Register Read command. The Register Read command uses the upper 7 bits of the addresses defined in Section 11.1 to address two 8-bit registers in the register map. The response to the command includes the con-tents of RA[7:1] high byte (RA[0] = 1) in the upper byte and the contents of RA[7:1] low byte (RA[0] = 0) in the lower byte.

The response to a register read command is shown in <u>Section 14.3.1.2</u>. The response is transmitted on the next SPI message if and only if all of the following conditions are met:

- No SPI Error is detected (See Section 14.5.6)
- No MISO Error is detected (See Section 14.5.7)

If the conditions are met, the device responds to the register read request as shown in Section 14.3.1.2. Otherwise, the device responds with the Error Response as defined in

FXLS9xxx0

<u>Section 14.5.4</u>. The Register Read response includes the register contents at the rising edge of SS_B for the Register Read command.

14.3.1.1 Register read command message format

Table 297. Register read command message format

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Со	mmar	nd C[3	:0]		Fixed Must					Reg	gister	Addre	ess					F	Registe	er Data	а						8-bit	CRC			
1	1	0	0	0	0	0	0			R	A[7:1]			RA[0]	0	0	0	0	0	0	0	0				CRC	[7:0]			

Table 298. Register read command message format description

Bit field	Definition
C[3:0]	Register Read Command = '1100'
RA[7:1]	RA[7:1] contains the word address of the register to be read.
CRC[7:0]	CRC. See Section 14.4

14.3.1.2 Register read response message format

Table 299. Register read response message format

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Com	mand	C[0],	[3:1]	Bas		Unu Da = 0	ıta					ta: Co High I		•			F			ta: Co Low I		3					8-bit	CRC			
0	1	1	0			0	0				RD[1	15:8]							RD[7:0]							CRC	[7:0]			

Table 300. Register read response message format description

Bit field	Definition
C[0], [3:1]	Register Read Command = '0110'
ST[1:0]	Status. See Section 14.5.1
RD[15:8]	The contents of the register addressed by RA[7:1] High Byte (RA[0] = 1)
RD[7:0]	The contents of the register addressed by RA[7:1] Low Byte (RA[0] = 0)
CRC[7:0]	CRC. See Section 14.4

14.3.2 Register write command

The device supports a Register Write command. The Register Write command writes the value specified in RD[7:0] to the register addressed by RA[7:0]. The response to the command includes the new contents of RA[7:1] high byte (RA[0] = 1) in the upper byte and the contents of RA[7:1] low byte (RA[0] = 0) in the lower byte.

The response to a register write command is shown in <u>Section 14.3.2.2</u>. The register write is executed and a response is transmitted on the next SPI message if and only if all of the following conditions are met:

• No SPI Error is detected (See Section 14.5.6)

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

- The ENDINIT bit is cleared
 - This applies to all registers with the exception of the RESET[1:0] bits in the DEVLOCK_WR register

If the conditions are met, the register write is executed and the device responds to the register write request as shown in <u>Section 14.3.2.2</u>. Otherwise, no register is written and the device responds with the Error Response as defined in <u>Section 14.2</u>. The register is not written until the transfer during which the register write was requested has been completed.

A register write command to a read-only register will not execute, but will result in a valid response.

14.3.2.1 Register write command message format

Table 301. Register write command message format

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Со	mmar	nd C[3	:0]		Fixed Must					Reg	gister	Addre	ess					F	Registe	er Data	а						8-bit	CRC			
1	0	0	0	0	0	0	0			R	RA[7:1]			RA[0]				RD[7:0]							CRC	[7:0]			

Table 302. Register write command message format description

	1
Bit field	Definition
C[3:0]	Register Write Command = '1000'
RA[7:0]	RA[7:1] contains the byte address of the register to be written.
RD[7:0]	RD[7:0] contains the data byte to be written to address RA[7:0]
CRC[7:0]	CRC. See Section 14.4

14.3.2.2 Register write response message format

Table 303. Register write response message format

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Com	mand	C[0],	[3:1]	Bas		Unu Da = 0	ıta		F			ta: Co High		3			F			ta: Co Low I		•					8-bit	CRC			
0	1	0	0	ST[1	1:0]	0	0				RD[15:8]							RD[7:0]							CRC	[7:0]			

Table 304. Register write response message format description

Bit field	Definition
C[0], [3:1]	Register Write Command = '0100'
ST[1:0]	Status. See Section 14.5.1
RD[15:8]	The contents of the register addressed by RA[7:1] High Byte (RA[0] = 1)
RD[7:0]	The contents of the register addressed by RA[7:1] Low Byte (RA[0] = 0)
CRC[7:0]	CRC. See Section 14.4

FXLS9xxx0

14.3.3 Sensor data request commands

The device supports standard sensor data request commands. The sensor data request command format is described in <u>Section 14.3.3.1</u>. The response to a sensor data request is shown in <u>Section 14.3.3.2</u>. The response is transmitted on the next SPI message subject to the error handling conditions specified in <u>Section 14.5</u>. The sensor data included in the response is the sensor data at the falling edge of SS_B for the Sensor Data Request response.

14.3.3.1 Sensor data request command message format

Table 305. Sensor data request command message format

MSE	3																														LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Com	mand			Fixe	d Bits:	Must	= 0x0	0000																8-bit	CRC						
C[3:0	0]			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CRC	[7:0]						

Table 306. Sensor data request command message format description

Bit field	Definition
C[0]	Sensor Data Request Command = '1'
C[3:1] = SOURCEID[2:0]	Source Identification code for the requested sensor data. See Section 11.2.13.
CRC[7:0]	CRC. See Section 14.4

14.3.3.2 Sensor data request response message format

Table 307. Sensor data request response message format

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Com	mand	C[0],	[3:1]	Bas								5	Senso	r Data	ı							Det Sta					8-bit	CRC			
1	C[3]	C[2]	C[1]	ST[1	:0]						SD[1	1:0]							Optior resol	nal SD ution		SF[1:0]				CRC	[7:0]			

Table 308. Sensor data request response message format description

Bit field	Definition
C[0]	Sensor Data Request Command = '1'
C[3:1] = SOURCEID[2:0]	Source Identification code for the requested sensor data. See Section 11.2.13.
ST[1:0]	Basic Status. See Section 14.5.1
SD[11:0]	Sensor Data. See Section 11.6.4.9
Optional SD Resolution	Optional for 16-bit Sensor Data. See Section 11.6.4.9
SF[1:0]	Detailed Status. See Section 14.5.3
CRC[7:0]	CRC. See Section 14.4

14.3.4 Reserved commands

The device responds to reserved commands on the next SPI message subject to the error handling conditions specified in Section 14.5.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

14.3.4.1 Reserved command message format

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Comr	nand		х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				8-bit	CRC			
0	0	0	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				CRC	[7:0]			
0	0	1	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				CRC	[7:0]			
0	1	0	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				CRC	[7:0]			
0	1	1	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				CRC	[7:0]			
1	0	1	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				CRC	[7:0]			
1	1	1	0	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				CRC	[7:0]			

Bit field	Definition
C[3:0]	Reserved Command
CRC[7:0]	CRC. See Section 14.4

14.3.4.2 Reserved command response message format

Table 309. Reserved command response message format

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
С	comma	nd Echo)										Da	ıta													8-bit	CRC			
х	х	х	х	х	x	x	х	x	х	x	х	х	х	x	x	x	x	x	х	x	х	x	x				CRC	[7:0]			

Table 310. Reserved command response message format description

Bit field	Definition
Command Echo	Reserved Command Echo - Undefined
Data	Response Data - Undefined
CRC[7:0]	CRC. See Section 14.4

14.4 Error checking

14.4.1 Default 8-bit CRC

14.4.1.1 Command error checking

The device calculates an 8-bit CRC on the entire 32-bits of each command. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message. If the calculated CRC does not match the transmitted CRC, the command is ignored and the device responds with the SPI Error response.

The CRC decoding procedure is:

- 1. A seed value is preset into the least significant bits of the shift register.
- Using a serial CRC calculation method, the receiver rotates the received message and CRC into the least significant bits of the shift register in the order received (MSB first).
- 3. When the calculation on the last bit of the CRC is rotated into the shift register, the shift register contains the CRC check result.

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

- 4. If the shift register contains all zeros, the CRC is correct.
- 5. If the shift register contains a value other than zero, the CRC is incorrect.

The CRC polynomial and seed are shown in <u>Table 311</u>.

Table 311. SPI command message CRC

SPICRCSEED[3:0]	Default polynomial	Default non-direct seed
0000	$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111
Non-Zero	$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 SPICRCSEED[3:0]

Some example CRC calculations are shown in Table 313.

14.4.1.2 Response error checking

The device calculates a CRC on the entire 32-bits of each response. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message.

The CRC Encoding procedure is:

- 1. A seed value is preset into the least significant bits of the shift register.
- 2. Using a serial CRC calculation method, the transmitter rotates the transmitted message into the least significant bits of the shift register, MSB first.
- 3. Following the transmitted message, the transmitter feeds eight zeros into the shift register, to match the length of the CRC.
- 4. When the last zero is fed into the input adder, the shift register contains the CRC.
- 5. The CRC is transmitted.

The CRC polynomial and seed are shown in <u>Table 312</u>.

Table 312. SPI CRC polynomial and seed

SPICRCSEED[3:0]	Default polynomial	Default non-direct seed
0000	$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111
Non-Zero	$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 SPICRCSEED[3:0]

Some example CRC calculations are shown in Table 313.

Table 313. SPI 8-bit CRC calculation examples

Polynomial	Seed	Bits[31:28]	Bits[27:24]	Bits[23:16]	Bits[15:8]	Bits[7:0]
		Command	0x0	Register address	Register data	8-bit CRC
$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111	0x8	0x0	22	C1	0xBD
$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111	0x4	0x0	1F	C1	0x57
$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111	0xC	0x0	22	00	0x66
$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111	0x6	0x0	1F	C1	0xB8
$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111	0x4	0x0	FF	5A	0xE5
$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111	0xC	0x0	3E	00	0x13
$x^8 + x^5 + x^3 + x^2 + x + 1$	1111 1111	0x6	0x0	FF	5A	0x0A

FXLS9xxx0

14.4.2 Selectable 4-bit CRC

The user can select a 4-bit CRC instead of the default 8-bit CRC for the SPI by programming the SPI_CFG register as described in <u>Section 11.2.20</u>.

14.4.2.1 SPI command format with 4-bit CRC

Table 314. SPI command format with 4-bit CRC

			•				101																								
MSB																															LSE
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													R	egiste	r Acce	ss Co	mmai	nd													
	Comr	mand				d Bits: = 0x0				Re	gister	Addre	ess					F	Regist	er Dat	а					Bits: = 0x0			4-bit	CRC	
	C[3	3:0]		0	0	0	0			F	RA[7:1]			RA[0]				RD	[7:0]				0	0	0	0		CRC	[3:0]	
														Senso	r Data	Com	mand	I													
	Comr	mand									Fi	xed B	its: Mu	ust = 0)x000x	00										Bits: = 0x0			4-bit	CRC	
	C[3	3:0]		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		CRC	[3:0]	

14.4.2.2 SPI response format with 4-bit CRC

Table 315. SPI response format with 4-bit CRC

MSB					COPO																										LSB
31	30	29	28	2	27 26	25	24	23	3 22	21	20	19	18	17	1	16 15	14	13	1:	2 11	10	9	8	7	6	5	4	3	2	1	0
													Res	spons	e to	o Registe	r Req	uest													
	Comr	mand			Basic Status	Da	ised ata 0x0				ter Da A[7:1]		ontents Byte	6						Data: Co 7:1] Low		5		Unu	used [)ata :	= 0x0		4-bit	CRC	
C[0]	C[3]	C[2]	C[1]	;	ST[1:0]	0	0				RD[[5:8]							R	RD[7:0]				0	0	0	0		CRC	[3:0]	
													Resp	onse t	to S	Sensor D	ata Re	equest	t												
	Comr	mand			Basic Status								Senso	or Data	а							De Sta	tail tus		K	AC			4-bit	CRC	
C[0]	C[3]	C[2]	C[1]	;	ST[1:0]						SD[1	1:0]								tional SE solution)	SF[1:0]		KAC	[3:0]			CRO	[3:0]	
													Error F	Respo	ns	e to Reg	ster R	eques	st												_
	Comr	mand			Basic Status	Da	ised ata 0x0				ter Da A[7:1]		ontents Byte	5						Data: Co ':1] Low		5		Unu	used [)ata :	= 0x0		4-bit	CRC	
0	0	0	0		1 1	0	0				RD[5:8]							R	RD[7:0]				0	0	0	0		CRC	[3:0]	
											Error f	Resp	onse to	Sen:	sor	Data Re	quest	With:	Sen	sor Data	ı										
	Comr	mand			Basic Status								Senso	or Data	а							De Sta			K	AC			4-bit	CRC	
C[0]	C[3]	C[2]	C[1]		1 1						SD[1	1:0]								tional SE solution)	SF[1:0]		KAC	[3:0]			CRC	[3:0]	
					'					E	rror Re	espor	nse to	Senso	or E	Data Req	uest V	Vithou	t Se	ensor Da	ta										
	Comr	mand			Basic Status	х						Uı	nused	Data :	= 0)x0000						De Sta		Unu	used [)ata :	= 0x0		4-bit	CRC	
0	0	0	0		1 1	х	0	0	0	0	0	0	0	0		0 0	0	0	0	0	0	SF[1:0]	0	0	0	0		CRC	[3:0]	

14.4.2.3 Command error checking with 4-bit CRC

The device calculates a 4-bit CRC on the entire 32-bits of each command. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message. If the calculated CRC does not match the transmitted CRC, the command is ignored and the device responds with the SPI Error response.

The CRC decoding procedure is:

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

- 1. A seed value determined by the SPICRCSEED[3:0] value in the SPI_CFG register is preset into the least significant bits of the shift register.
- Using a serial CRC calculation method, the receiver rotates the received message and CRC into the least significant bits of the shift register in the order received (MSB first).
- 3. When the calculation on the last bit of the CRC is rotated into the shift register, the shift register contains the CRC check result.
- 4. If the shift register contains all zeros, the CRC is correct.
- 5. If the shift register contains a value other than zero, the CRC is incorrect.

The CRC polynomial and seed are shown in Table 316.

Table 316. SPI command message CRC, 4 bit

Default polynomial	Non-direct seed
$x^4 + 1$	SPICRCSEED[3:0]

14.4.2.4 Response error checking with 4-bit CRC

The device calculates a CRC on the entire 32-bits of each response. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message.

The CRC Encoding procedure is:

- 1. A seed value determined by the SPICRCSEED[3:0] value is preset into the least significant bits of the shift register.
- 2. Using a serial CRC calculation method, the transmitter rotates the transmitted message into the least significant bits of the shift register, MSB first.
- 3. Following the transmitted message, the transmitter feeds four zeros into the shift register, to match the length of the CRC.
- 4. When the last zero is fed into the input adder, the shift register contains the CRC.
- 5. The CRC is transmitted.

The CRC polynomial and seed are shown in Table 317.

Table 317. SPI response message CRC, 4-bit

Default polynomial	Non-direct seed
$x^4 + 1$	SPICRCSEED[3:0]

14.4.2.5 Message counter (KAC) with 4-bit CRC

If the 4-bit CRC is enabled, a 4-bit message counter field (KAC) is added to the Sensor Data Request Response. The message counter field is a 4-bit rolling message counter that is independently incremented for each SOURCEID. The initial value of the counter is '0001'.

14.4.2.6 Example 4-bit CRC calculations

Some example CRC calculations for 32-bit SPI commands are shown in <u>Table 318</u>.

FXLS9xxx0

Table 318. SPI 4-bit CRC calculation examples

Polynomial	Seed	Bits[31:28]	Bits[27:24]	Bits[23:16]	Bits[15:8]	Bits[7:4]	Bits[3:0]
		Command	0x0	Register address	Register data	0x0	4-bit CRC
x ⁴ + 1	1010	0x8	0x0	22	C1	0x0	0xF
x ⁴ + 1	1010	0x4	0x0	1F	C1	0x0	0xD
x ⁴ + 1	1010	0xC	0x0	22	00	0x0	0x6
x ⁴ + 1	1010	0x6	0x0	1F	C1	0x0	0xF
x ⁴ + 1	1010	0x4	0x0	FF	5A	0x0	0x1
x ⁴ + 1	1010	0xC	0x0	3E	00	0x0	0xB
x ⁴ + 1	1010	0x6	0x0	FF	5A	0x0	0x3

14.4.3 Selectable 3-bit CRC

The user can select a 3-bit CRC instead of the default 8-bit CRC for the SPI by programming the SPI_CFG register as described in <u>Section 11.2.20</u>.

14.4.3.1 SPI command format with 3-bit CRC

Table 319. SPI command format with 3-bit CRC

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													R	egiste	r Acce	ss Co	mmai	nd													
	Comr	mand				Bits: = 0x0				Re	gister	Addre	ess					F	Regist	er Dat	а			Fix	ed Bit	s: Mu	st = 0	x00	3-1	it CR	C
	C[3	3:0]		0	0	0	0			F	RA[7:1]			RA[0]				RD	[7:0]				0	0	0	0	0	CF	RC[2:0	0]
														Senso	r Data	Com	mand														
	Comr	mand									Fi	xed Bi	ts: M	ust = 0)x000x	00								Fix	ed Bit	s: Mu	st = 0:	x00	3-l	it CR	C
	C[3	3:0]		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CF	RC[2:0	0]

14.4.3.2 SPI response format with 3-bit CRC

Table 320. SPI response format with 3-bit CRC

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1	16 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													Res	sponse	e to	o Regist	er Re	quest		-											
	Comi	mand			asic atus	Da	used ata 0x0		F		ter Dat A[7:1]			6						Data: C :1] Low		ts		L	Jnuse	d Data	a = 0x(00	3-	bit CF	₹C
C[0]	C[3]	C[2]	C[1]	ST	[1:0]	0	0				RD[1	15:8]							R	D[7:0]				0	0	0	0	0	С	RC[2:	:0]
													Resp	onse t	0 5	Sensor I	ata F	leques	st												
	Comi	mand			asic atus								Senso	or Data	а								etail atus		K	AC		1	3-	bit CF	₹C
C[0]	C[3]	C[2]	C[1]	ST	[1:0]						SD[1	1:0]								onal S		SF	[1:0]		KAC	[3:0]		1	С	RC[2:	0]
													Error F	Respo	ns	e to Re	jister	Reque	st												
	Comi	mand			asic atus	Da	used ata 0x0		F		ter Dat A[7:1]			6						Data: C :1] Low		ts		L	Jnuse	d Data	a = 0x(00	3-	bit CF	₹C
0	0	0	0	1	1	0	0				RD[1	5:8]							R	D[7:0]				0	0	0	0	0	С	RC[2:	.0]
										ı	Error F	Respo	onse to	Sens	sor	Data R	eques	t With	Sen	sor Dat	а										
	Comi	mand			asic atus								Senso	or Data	а								etail atus		K	AC		1	3-	bit CF	₹C
C[0]	C[3]	C[2]	C[1]	1	1						SD[1	1:0]								onal S colution		SF	[1:0]		KAC	[3:0]		1	С	RC[2:	0]

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

Table 320. SPI response format with 3-bit CRC...continued

MSB																															LSB
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										Eı	ror Re	espon	se to	Senso	r Data	Requ	uest W	/ithout	Sens	or Da	ta										
	Comr	mand		Ba: Sta		х						Un	used	Data =	0x00	00						Deta Statu		U	nused	l Data	= 0x0	0	3-bi	it CR	С
0	0	0	0	1	1	х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SF[1:	0]	0	0	0	0	0	CR	C[2:0)]

14.4.3.3 Command error checking with 3-bit CRC

The device calculates a 3-bit CRC on the entire 32-bits of each command. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message. If the calculated CRC does not match the transmitted CRC, the command is ignored and the device responds with the SPI Error response.

The CRC decoding procedure is:

- 1. A seed value determined by the SPICRCSEED[2:0] value in the SPI_CFG register is preset into the least significant bits of the shift register.
- 2. Using a serial CRC calculation method, the receiver rotates the received message and CRC into the least significant bits of the shift register in the order received (MSB first).
- 3. When the calculation on the last bit of the CRC is rotated into the shift register, the shift register contains the CRC check result.
- 4. If the shift register contains all zeros, the CRC is correct.
- 5. If the shift register contains a value other than zero, the CRC is incorrect.

The CRC polynomial and seed are shown in Table 321.

Table 321. SPI command message CRC, 3 bit

Default polynomial	Non-direct seed
$x^3 + x + 1$	SPICRCSEED[2:0]

Some example CRC calculations are shown in Table 260.

14.4.3.4 Response error checking with 3-bit CRC

The device calculates a CRC on the entire 32-bits of each response. Message data is entered into the CRC calculator MSB first, consistent with the transmission order of the message.

The CRC encoding procedure is:

- 1. A seed value determined by the SPICRCSEED[2:0] value is preset into the least significant bits of the shift register.
- 2. Using a serial CRC calculation method, the transmitter rotates the transmitted message into the least significant bits of the shift register, MSB first.
- 3. Following the transmitted message, the transmitter feeds three zeros into the shift register, to match the length of the CRC.
- 4. When the last zero is fed into the input adder, the shift register contains the CRC.
- 5. The CRC is transmitted.

The CRC polynomial and seed are shown in Table 322.

FXLS9xxx0

Table 322. SPI response message CRC, 3-bit

Default polynomial	Non-direct seed
$x^3 + x + 1$	SPICRCSEED[2:0]

14.4.3.5 Message (KAC) with 3-bit CRC

If the 3-bit CRC is enabled, a 4-bit message counter field (KAC) is added to the Sensor Data Request Response. The message counter field is a 4-bit rolling message counter that is independently incremented for each SOURCEID. The initial value of the counter is '0001'.

14.4.3.6 Example 3-bit CRC calculations

Some example CRC calculations for 32-bit SPI commands are shown in Table 323.

Table 323. SPI 3-bit CRC calculation examples

Polynomial	Seed	Bits[31:28]	Bits[27:24]	Bits[23:16]	Bits[15:8]	Bits[7:3]	Bits[2:0]
		Command (Hex)	0x0 (Hex)	Register address (Hex)	Register data (Hex)	0b00000 (Binary)	3-bit CRC (Binary)
$x^3 + x + 1$	111	0x8	0x0	22	C1	0b00000	0b100
$x^3 + x + 1$	111	0x4	0x0	1F	C1	0b00000	0b010
$x^3 + x + 1$	111	0xC	0x0	22	00	0b00000	0b001
$x^3 + x + 1$	111	0x6	0x0	1F	C1	0b00000	0b000
$x^3 + x + 1$	111	0x4	0x0	FF	5A	0b00000	0b000
$x^3 + x + 1$	111	0xC	0x0	3E	00	0b00000	0b101
$x^3 + x + 1$	111	0x6	0x0	FF	5A	0b00000	0b010

14.5 Exception handling

14.5.1 Standard basic status reporting field

All responses include a basic status field (ST[1:0]) that includes the general status of the device and transmitted data as described in <u>Table 324</u> and <u>Table 325</u>. The contents of the basic status field is a representation of the device status at the rising edge of SS_B for the previous SPI command.

14.5.1.1 Basic status field for responses to register commands

Table 324. Basic status field for responses to register commands

ST	[1:0]	Status	Description	Priority
0	0	Device in Initialization	ENDINIT Not Set	3
0	1	Normal Mode	ENDINIT Set	4
1	0	Self-test	ST_CTRL[3:0] not equal to '0000' for any channel	2
1	1	Internal Error Present	See Figure 95	1

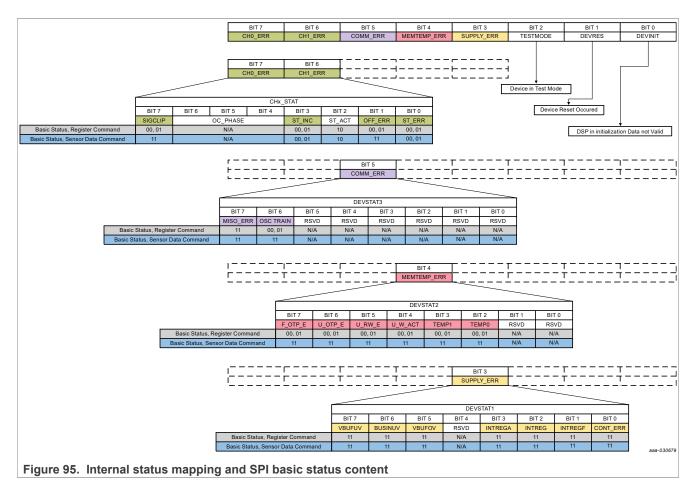
14.5.1.2 Basic status field for responses to sensor data request commands

Table 325. Basic status field for responses to sensor data request commands

ST[1:0]	Status	Description	SF[1:0]	Sensor data field	Priority
0	0	Device in Initialization	ENDINIT Not Set	0	0	Sensor Data	3
0	1	Normal Mode	ENDINIT Set	0	0	Sensor Data	4
1	0	Self-test	ST_CTRL[3:0] not equal to '0000'	0	0	Sensor Data	2
1	1	Internal Error Present	See Section 14.5.3	See Secti	on 14.5.3	See Section 14.5.3	1

14.5.2 Alternative basic status reporting field

If the SPI_STATUS bit is set in the SPI_CFG register, the basic status reporting is as shown in <u>Table 326</u>.


Table 326. Alternative basic status reporting field

ST[1:0]	Status	Description	SF[1:0]	Sensor data field	Priority
0	0	Device in Initialization	ENDINIT Not Set	0	0	Sensor Data	3
0	1	Normal Mode	ENDINIT Set	0	0	Sensor Data	4
1	0	Self-test	ST_CTRL[3:0] not equal to '0000' for the associated channel for dual axis	0	0	Sensor Data	2
1	1	Internal Error Present	See Section 14.5.4	See <u>Secti</u>	on 14.5.4	See Section 14.5.4	1

<u>Figure 95</u> shows the internal device status mapping by register and the basic status field contents by response type.

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

14.5.3 Standard detailed status field reporting

The response to sensor data requests includes a detailed status field (SF[1:0]). If the Basic Status indicates an internal error, the contents of the detailed status field provide additional information regarding the error status. The contents of the detailed status field is a representation of the device status at the rising edge of SS_B for the previous SPI command.

Table 327. SPI error response status field definition

ST[1:0]	SF[1:0]	Status sources	DEVSTAT state	SUPERR_ DIS state	Error priority	Command echo field (Source ID)	Sensor data request commands Sensor data field value	PCM
				Oscillator Training Error	Bit set in DEVSTAT3	N/A	11	C[0], C[3:1]	Sensor Data	No Effect
1	1	0	0	Offset Error	Bit set in CHx_STAT: SIGNALCLIP or OFF- SET_ERR	N/A	10	C[0], C[3:1]	Sensor Data	No Effect
				Temperature Error	Bit set in DEVSTAT2	N/A	9	C[0], C[3:1]	Sensor Data	No Effect
				User OTP Memory Error (UF0 or UF1)	U_OTP_ERR set in DEVSTAT2	N/A	8	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
1	1	0	1	User R/W Memory Error (UF2)	U_RW_ERR set in DEVSTAT2	N/A	7	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
				NXP OTP Memory Error	F_OTP_ERR set in DEVSTAT2	N/A	6	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

Table 327. SPI error response status field definition...continued

ST[1:0]	SF[1:0]	Status sources	DEVSTAT state	SUPERR_ DIS state	Error priority	Command echo field (Source ID)	Sensor data request commands Sensor data field value	PCM
				Test Mode Active	TESTMODE bit set in DEVSTAT	N/A	5	0x0	All zero response	No Effect
1	1	1	0	Supply Error	Bit set in DEVSTAT1	0	4	0x0	All zero response until the supply monitor timer expires An Error Code is transmitted for a minimum of one transmission (See Section 11.2.2.4)	Disabled
						1	4	0x0	All zero response until the supply monitor timer expires (See Section 11.2.2.4)	
				Reset Error	DEVRES set	N/A	3	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
4	4	4	1	MISO Error	Bit set in DEVSTAT3	N/A	2	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
'	1 1	'		SPI Error	N/A	N/A	1	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect

14.5.4 Alternative detailed status field reporting

The response to sensor data requests includes a detailed status field (SF[1:0]). If the Basic Status indicates an internal error, the contents of the detailed status field provide additional information regarding the error status. The contents of the detailed status field is a representation of the device status at the rising edge of SS_B for the previous SPI command.

If the SPI_STATUS bit is set in the SPI_CFG register, the basic status reporting is shown in <u>Table 328</u>.

Table 328. Alternate SPI error response status field definition

ST[1:0]	SF[1:0]	Status sources	DEVSTAT state	SUPERR_ DIS state	Error priority	Command echo field (Source ID)	Sensor data request commands Sensor data field value	PCM
				Oscillator Training Error	Bit set in DEVSTAT3	N/A	11	C[0], C[3:1]	Sensor Data	No Effect
1	1	0	0	Offset Error	Bit set in CHx_STAT: OFFSET_ERR	N/A	10	C[0], C[3:1]	Sensor Data	No Effect
				Temperature Error	Bit set in DEVSTAT2	N/A	9	C[0], C[3:1]	Sensor Data	No Effect
				User OTP Memory Error (UF0 or UF1)	U_OTP_ERR set in DEVSTAT2	N/A	8	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
1	1	0	1	User R/W Memory Error (UF2)	U_RW_ERR set in DEVSTAT2	N/A	7	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
				NXP OTP Memory Error	F_OTP_ERR set in DEVSTAT2	N/A	6	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
				Test Mode Active	TESTMODE bit set in DEVSTAT	N/A	5	0x0	All zero response	No Effect
1	1	1	0	Supply Error	Bit set in DEVSTAT1	0	4	0x0	All zero response until the supply monitor timer expires An Error Code is transmitted for a minimum of one transmission (See Section 11.2.2.4)	Disabled
	1 1					1	4	0x0	All zero response until the supply monitor timer expires (See Section 11.2.2.4)	
				Reset Error	DEVRES set	N/A	3	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect

Table 328. Alternate SPI error response status field definition...continued

ST[ST[1:0]		1:0]	Status sources	DEVSTAT state	SUPERR_ DIS state	Error priority	Command echo field (Source ID)	Sensor data request commands Sensor data field value	PCM
1	1	1	1	MISO Error	Bit set in DEVSTAT3	N/A	2	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect
1				SPI Error	N/A	N/A	1	0x0	The Sensor Data Field Error Code is transmitted for a minimum of one transmission	No Effect

14.5.5 Error responses

Table 329. Error responses

IUD	10 0	23.		01 1	cop.	0113	03																									
MSB																															LSB	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
												E	Error F	Respo	nse to	Regi	ster R	eques	t													
	Comr	mand		Ba Sta		Da	used ata 0x0		-		er Da A[7:1]			S					ter Da A[7:1		ontents Byte	8					8-bit	CRC				
0	0	0	0	1	1	0	0				RD[5:8]							RD	[7:0]					CRC[7:0]							
										ı	Error F	Respo	nse to	o Sen	sor Da	ta Re	quest	With	Senso	r Data	a											
Command Basic Sensor Data											Detail 8-bit CRC Status																					
C[0]	C[3]	C[2]	C[1]	1	1		SD[11:0] Optional SD resolution SF[1:0]								[1:0]	CRC[7:0]																
										Er	ror Re	espon	se to	Senso	or Dat	a Req	uest V	Vithou	t Sens	sor Da	ıta											
	Command				sic tus	x Unused Data = 0x0000											Detail 8-bit CRC Status															
0	0	0	0	1	1	х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SF	[1:0]				CRC	[7:0]				

Table 330. Error response description

Bit field	Definition
C[3:0]	Command bits: all 0s or a command echo
SD[11:0]	Sensor Data or the Sensor Data Field Error Code. • For unsigned data, the Sensor Data Field Error Code is 0x000 • For signed data, the Sensor Data Field Error Code is 0x800 See Section 14.5.3 for Sensor Data Request commands. For all other commands, all bits are '0'.
SF[3:0]	Status. See Section 14.5.3

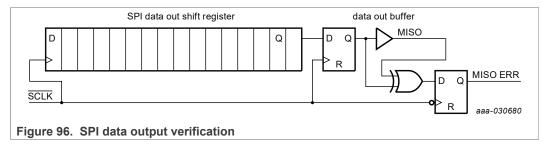
14.5.6 SPI error

The following external SPI conditions result in a SPI error:

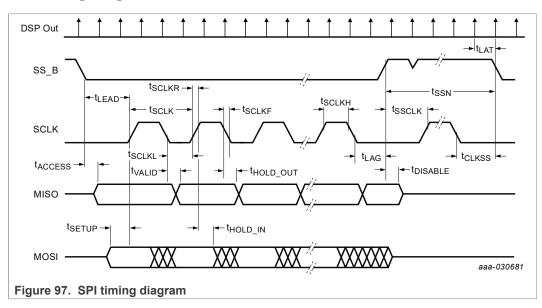
- SCLK is high when SS_B is asserted
- The number of SCLK rising edges detected while SS_B is asserted is not equal to 0 or 32
- SCLK is high when SS_B is deasserted
- A command message CRC error is detected (MOSI)
- A Sensor Data Request is received for a SOURCEID that is not enabled
- A Register Write command to any register other than the DEVLOCK_WR register is received while ENDINIT is set.

FXLS9xxx0

If a SPI error is detected, the device responds with the Error Response as described in <u>Section 14.5.4</u> with the Detailed Status Field set to "SPI Error" as defined in <u>Section 14.5.3</u>.


14.5.7 SPI data output verification error

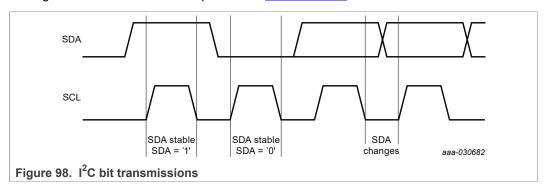
The device includes a function to verify the integrity of the data output to the MISO pin. The function compares the data transmitted on the MISO pin to the data intended to be transmitted. If any one bit doesn't match, a SPI MISO Mismatch Fault is detected and the MISO_ERR flag in the DEVSTAT3 register is set.


If a valid sensor data request message is received during the SPI transfer with the MISO mismatch failure, the request is ignored and the device responds with the Error Response as described in <u>Section 14.5.4</u> with the Detailed Status Field set to "SPI Error" as defined in <u>Section 14.5.3</u>. during the subsequent SPI message.

If a valid register write request message is received during the SPI transfer with the MISO mismatch failure, the register write is completed as requested, but the device responds with the Error Response as described in <u>Section 14.5.4</u> with the Detailed Status Field set to "SPI Error" as defined in <u>Section 14.5.3</u>. during the subsequent SPI message.

If a valid register read request message is received during the SPI transfer with the MISO mismatch failure, the register read is ignored and the device responds with the Error Response as described in <u>Section 14.5.4</u> with the Detailed Status Field set to "SPI Error" as defined in <u>Section 14.5.3</u>. during the subsequent SPI message.

14.6 SPI timing diagram



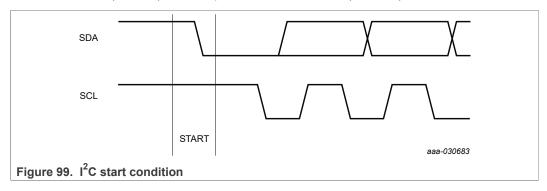
15 Inter-integrated circuit (I²C) interface

The device includes an interface compliant to the NXP I²C bus specification UM10204^[1]. The device operates in slave mode and includes support for Standard Mode, Fast Mode, and Fast Mode Plus although the maximum practical operating frequency for I²C in a given system implementation depends on several factors including the pull-up resistor values and the total bus capacitance.

15.1 I²C bit transmissions

The state of SDA when SCL is high determines the bit value being transmitted. SDA must be stable when SCL is high and change when SCL is low as shown in <u>Figure 99</u>. After the START signal has been transmitted by the master, the bus is considered busy. Timing for the start condition is specified in <u>Section 10.14</u>.

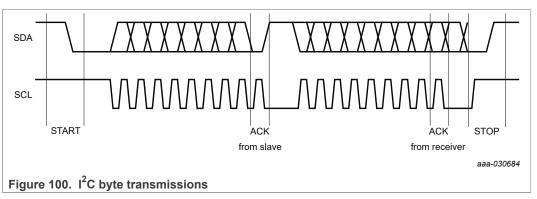
15.2 I²C start condition


A bus operation is always started with a start condition (START) from the master. A START is defined as a high to low transition on SDA while SCL is high as shown

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

in <u>Figure 99</u>. After the START signal has been transmitted by the master, the bus is considered busy. Timing for the start condition is specified in <u>Section 10.14</u>.


A start condition (START) and a repeat START condition (rSTART) are identical.

15.3 I²C byte transmissions

Data transfers are completed in byte increments. The number of bytes that can be transmitted per transfer is unrestricted. Each byte must be followed by an Acknowledge bit (Section 15.4) from the receiver. Data is transferred with the Most Significant Bit (MSB) first (Figure 100). The master generates all clock pulses, including the ninth clock for the Acknowledge bit. Timing for the byte transmissions is specified in Section 10.14.

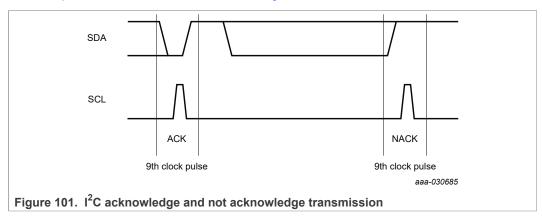
All functions for this device are completed within the Acknowledge clock pulse. Clock Stretching is not used.

15.4 I²C acknowledge and not acknowledge transmissions

Each byte must be followed by an Acknowledge bit (ACK) from the receiver. For an ACK, the transmitter releases SDA during the acknowledge clock pulse and the receiver pulls SDA low during the high portion of the clock pulse. Set-up and hold times as specified in Section 10.14 must also be taken into account.

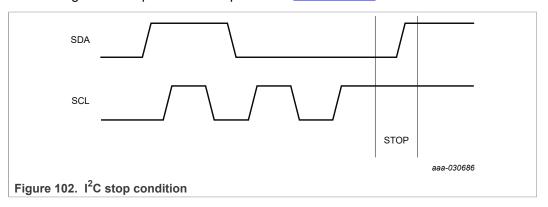
For a Not Acknowledge bit (NACK), SDA remains high during the entire acknowledge clock pulse. Five conditions lead to a NACK:

- 1. No receiver is present on the bus with the transmitted address.
- 2. The addressed receiver is unable to receive or transmit because it is performing some real-time function and is not ready to start communication with the master.
- 3. The receiver receives unrecognized data or commands.
- 4. The receiver cannot receive any more data bytes.


FXLS9xxx0

All information provided in this document is subject to legal disclaimers

5. The master-receiver signals the end of the transfer to the slave transmitter.


Following a Not Acknowledge bit, the master can transmit either a STOP to terminate the transfer, or a repeated START to initiate a new transfer.

An example ACK and NACK are shown in Figure 101.

15.5 I²C stop condition

A bus operation is always terminated with a stop condition (STOP) from the master. A STOP is defined as a Low to high transition on SDA while SCL is high as shown in <u>Figure 102</u>. After the STOP has been transmitted by the master, the bus is considered free. Timing for the stop condition is specified in <u>Section 10.14</u>.

15.6 I²C register transfers

15.6.1 Register write transfers

The device supports I²C register write data transfers. Register write data transfers are constructed as follows:

- 1. The master transmits a START condition
- 2. The master transmits the 7-bit slave address
- 3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation
- 4. The slave transmits an ACK
- 5. The master transmits the register address to be written
- 6. The slave transmits an ACK
- 7. The master transmits the data byte to be written to the register address

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

- 8. The slave transmits an ACK
- 9. The master transmits a STOP condition

The device automatically increments the register address allowing for multiple register writes to be completed in one trans-action. In this case, the register write data transfers are constructed as follows:

- 1. The master transmits a START condition
- 2. The master transmits the 7-bit slave address
- 3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation
- 4. The slave transmits an ACK
- 5. The master transmits the register address to be written
- 6. The slave transmits an ACK
- 7. The master transmits the data byte to be written to the register address
- 8. The slave transmits an ACK
- 9. The master transmits the data byte to be written to the register address +1
- 10. The slave transmits an ACK
- 11. Repeat step 9 and step 10 until all registers are written
- 12. The master transmits a STOP condition

15.6.2 Register read transfers

The device supports I²C register read data transfers. Register read data transfers are constructed as follows:

- 1. The master transmits a START condition
- 2. The master transmits the 7-bit slave address
- 3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation
- 4. The slave transmits an ACK
- 5. The master transmits the register address to be read
- 6. The slave transmits an ACK
- 7. The master transmits a repeat START condition
- 8. The master transmits the 7-bit slave address
- 9. The master transmits a '1' for the Read/Write Bit to indicate a Read operation
- 10. The slave transmits an ACK
- 11. The slave transmits the data from the register addressed
- 12. The master transmits a NACK
- 13. The master transmits a STOP condition

The device automatically increments the register address allowing for multiple register reads to be completed in one trans-action. In this case, the register read data transfers are constructed as follows:

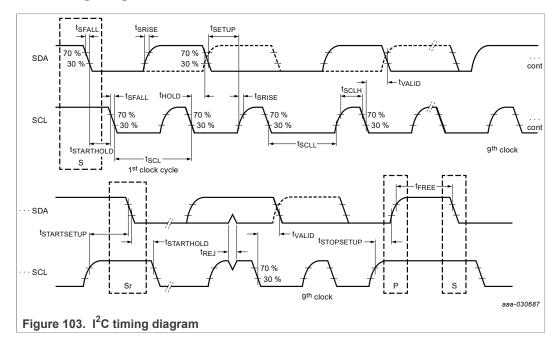
FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

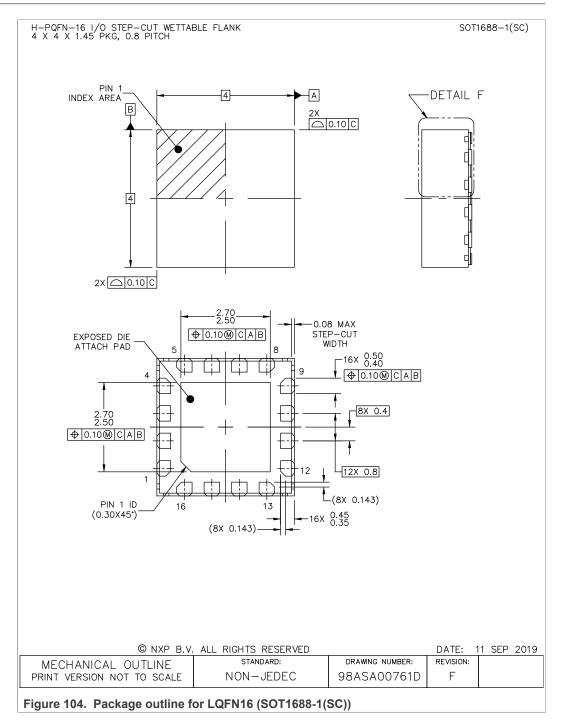
- 1. The master transmits a START condition
- 2. The master transmits the 7-bit slave address
- 3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation
- 4. The slave transmits an ACK
- 5. The master transmits the register address to be read
- 6. The slave transmits an ACK
- 7. The master transmits a repeat START condition
- 8. The master transmits the 7-bit slave address
- 9. The master transmits a '1' for the Read/Write Bit to indicate a Read operation
- 10. The slave transmits an ACK
- 11. The slave transmits the data from the register addressed
- 12. The master transmits an ACK
- 13. The slave transmits the data byte from register address +1
- 14. Repeat step 12 and step 13 until all registers are read
- 15. The master transmits a NACK
- 16. The master transmits a STOP condition

15.6.3 Sensor data register read wrap around options

The device includes automatic sensor data register read wrap around features to optimize the number of I²C transactions necessary for continuous reads of sensor data.


15.6.3.1 Single channel register read wrap around

Depending on the state of the SIDx_EN bits in the channel 0 and channel 1 SOURCEID_0 registers, the register address automatically wraps back to the DEVSTAT_COPY register as shown in .


Table 331. Single channel register read wrap around


Ch0 SID1_EN	Ch0 SID0_EN	Address increment and wrap around effect	Optimized register read sequence				
0	0	Address wraps around from \$FF to \$00	None				
0	1	Address wraps from \$63 (CH0_SNSDATA0_H) to \$61 (DEVSTAT_COPY)	DEVSTAT_COPY, CH0_SNSDATA0_L, CH0_SNSDATA0_H				
1	X	Address wraps from \$65 (CH0_SNSDATA1_H) to \$61 (DEVSTAT_COPY)	DEVSTAT_COPY, CH0_SNSDATA0_L, CH0_SNSDATA0_H, CH0_SNSDATA1_L, CH0_SNSDATA1_H				

15.7 I²C timing diagram

16 Package outline

H-PQFN-16 I/O STEP-CUT WETTABLE FLANK 4 X 4 X 1.45 PKG, 0.8 PITCH

SOT1688-1(SC)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. THIS IS A NON-JEDEC REGISTERED PACKAGE.

4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.

- 5. MINIMUM METAL GAP SHOULD BE 0.15 MM.
- 6. RECOMMENDED STENCIL AND SOLDER PASTED AREA ARE IN SHEET 3 TO 5.


© NXP B.V. ALL RIGHTS RESERVED

DATE: 11 SEP 2019

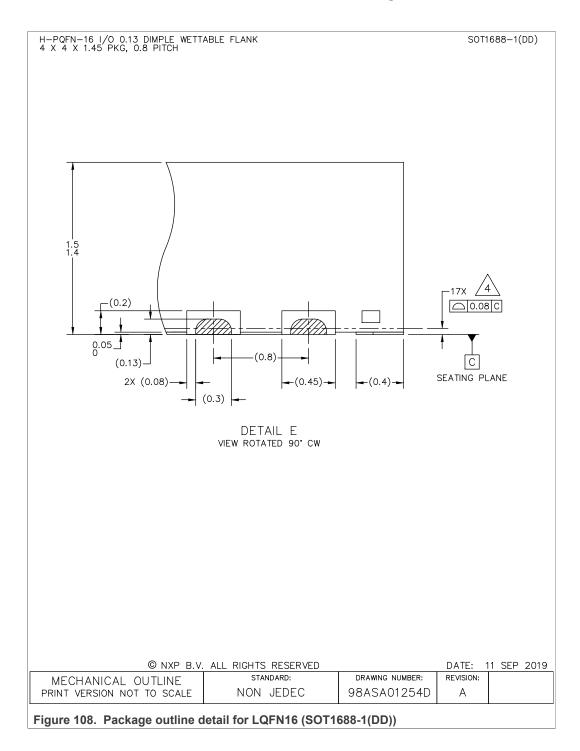

MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVISION: PRINT VERSION NOT TO SCALE NON-JEDEC 98ASA00761D F

Figure 106. Package outline notes for LQFN16 (SOT1688-1(SC))

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

FXLS9xxx0

H-PQFN-16 I/O 0.13 DIMPLE WETTABLE FLANK 4 X 4 X 1.45 PKG, 0.8 PITCH

SOT1688-1(DD)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.
4. COPLANARITY APPLIES TO LEADS, DIE ATTACH FLAG.

- 5. MIN. METAL GAP SHOULD BE 0.25 MM.
- 6. RECOMMENDED STENCIL AND SOLDER PASTED AREA ARE IN SHEET 3 TO 5.

© NXP B.V. ALL RIGHTS RESERVED

DATE: 11 SEP 2019

DRAWING NUMBER: REVISION:

MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE

NON JEDEC

98ASA01254D

A A

Figure 109. Package outline notes for LQFN16 (SOT1688-1(DD))

17 Soldering

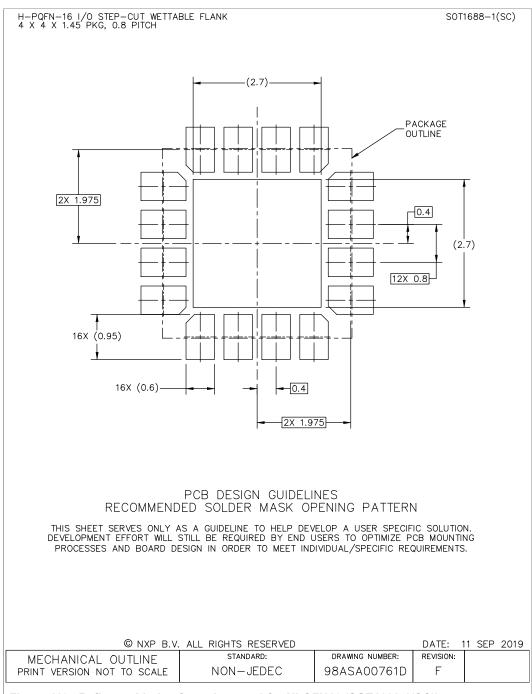


Figure 110. Reflow soldering footprint part 1 for HLQFN16 (SOT1688-1(SC))

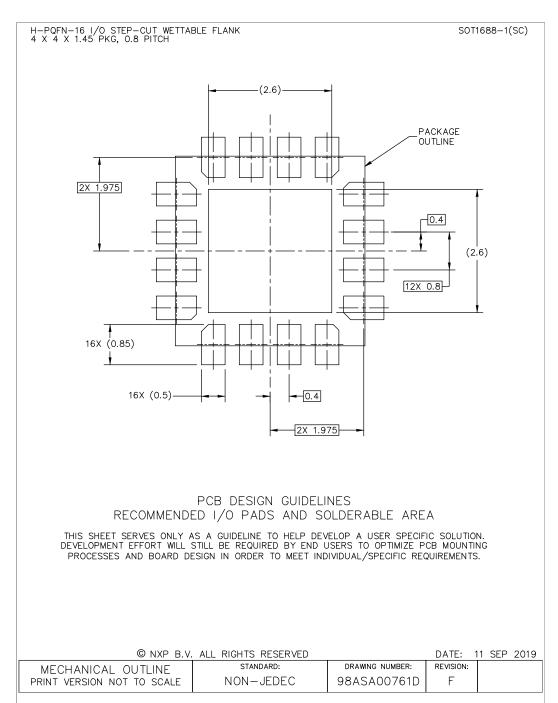


Figure 111. Reflow soldering footprint part 2 for HLQFN16 (SOT1688-1(SC))

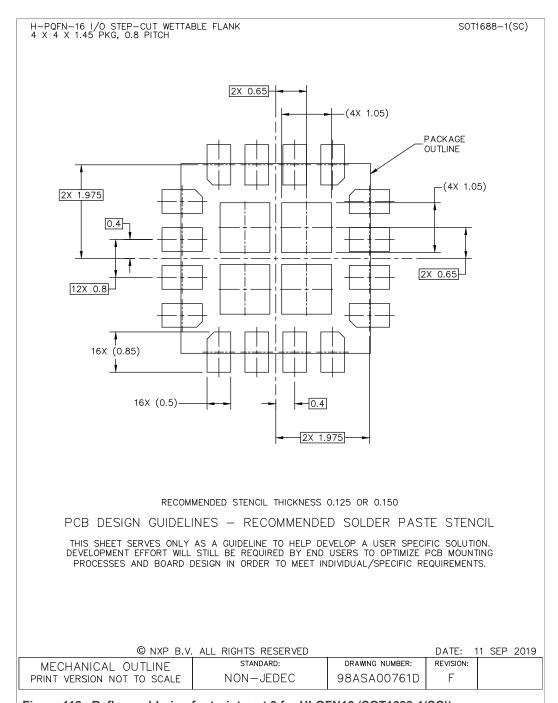


Figure 112. Reflow soldering footprint part 3 for HLQFN16 (SOT1688-1(SC))

NXP Semiconductors FXLS9xxx0

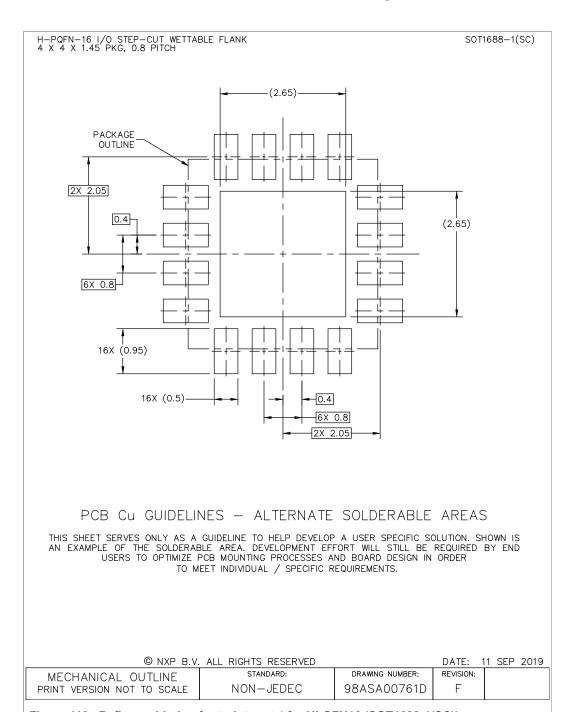


Figure 113. Reflow soldering footprint part 4 for HLQFN16 (SOT1688-1(SC))

NXP Semiconductors FXLS9xxx0

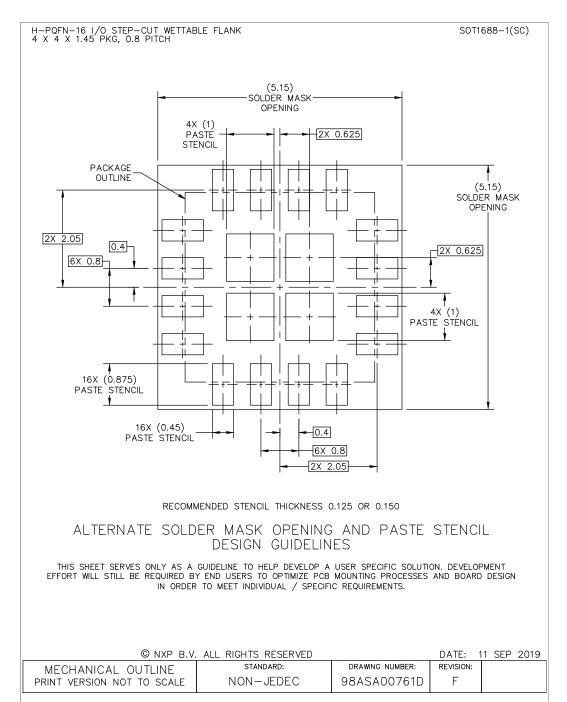


Figure 114. Reflow soldering footprint part 5 for HLQFN16 (SOT1688-1(SC))

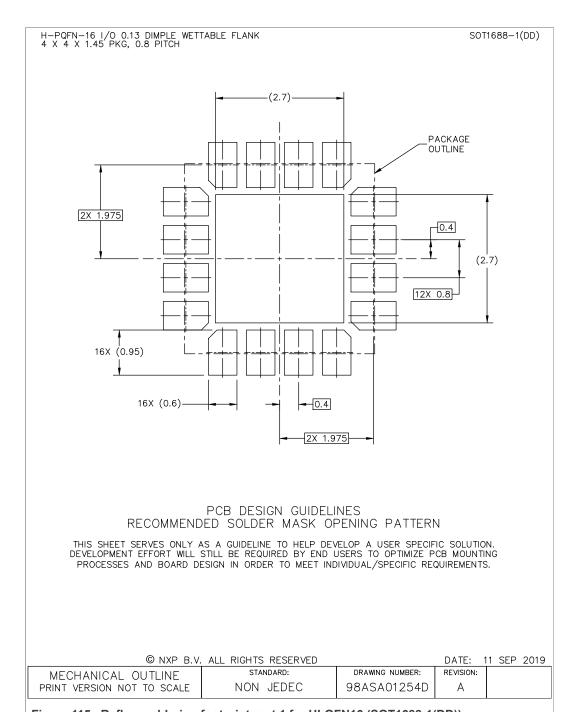


Figure 115. Reflow soldering footprint part 1 for HLQFN16 (SOT1688-1(DD))

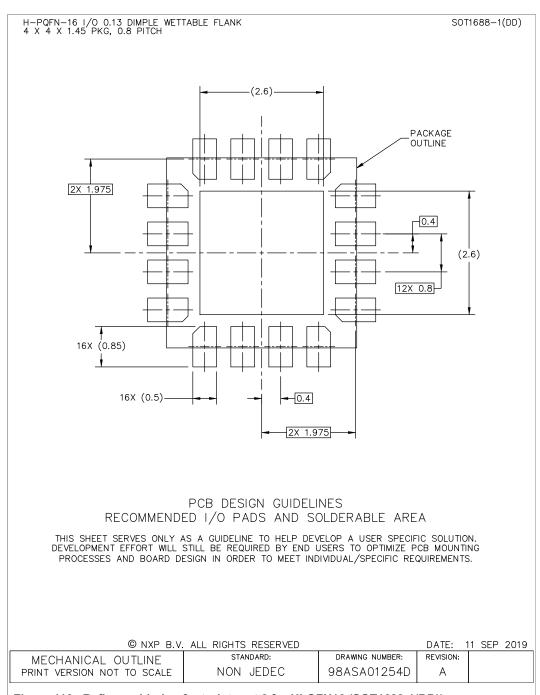


Figure 116. Reflow soldering footprint part 2 for HLQFN16 (SOT1688-1(DD))

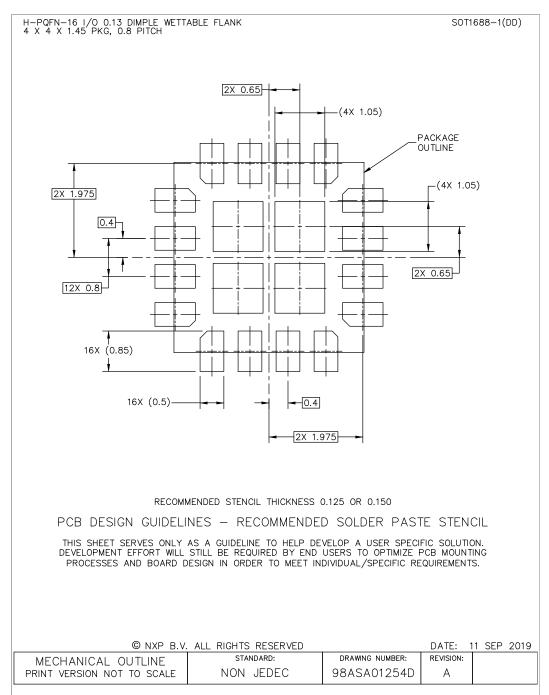


Figure 117. Reflow soldering footprint part 3 for HLQFN16 (SOT1688-1(DD))

NXP Semiconductors FXLS9xxx0

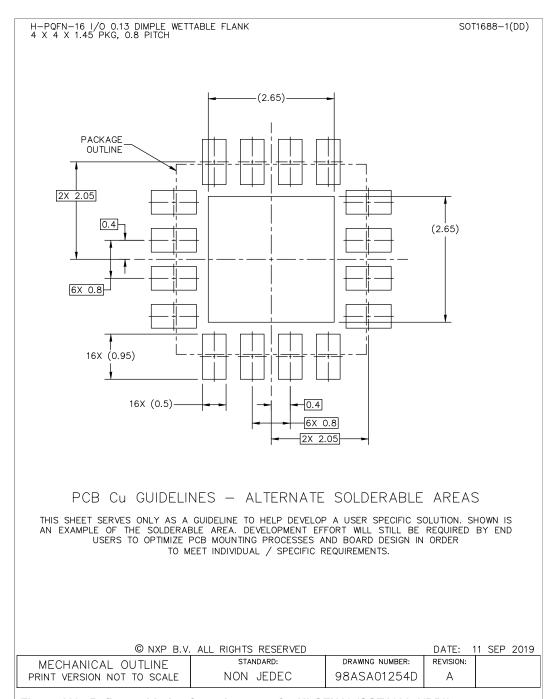
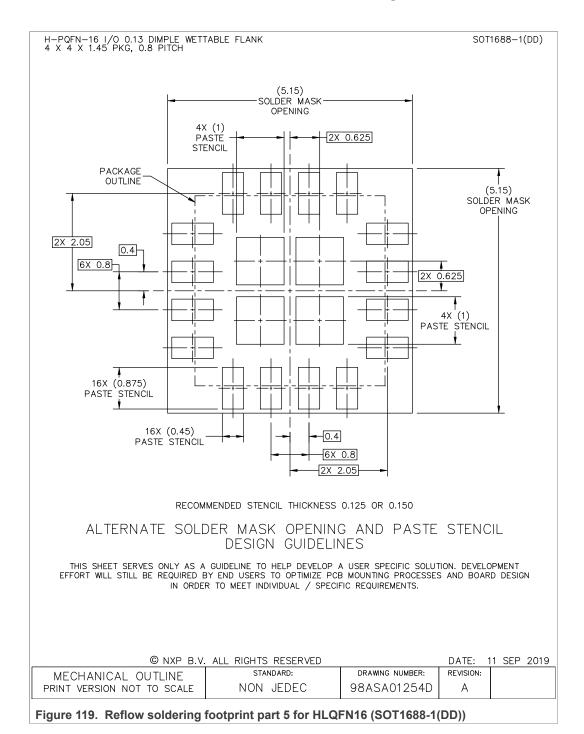



Figure 118. Reflow soldering footprint part 4 for HLQFN16 (SOT1688-1(DD))

NXP Semiconductors FXLS9xxx0

Single channel inertial sensor

18 References

- UM10204 I²C-bus specification and user manual, Revision 6 https://www.nxp.com/docs/en/user-guide/UM10204.pdf
- [2] DSI3 Standard Revision 1.0, Dated February 16, 2011 https://www.dsiconsortium.org/downloads/DSI3 %20Bus Standard r1.00.pdf
- [3]p AKLV27 V1.40, Revision 1.20

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

- [4] AEC Q100 Rev-H, September 11, 2014 Failure Mechanism Based Stress Test Qualification for Integrated Circuits http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf
 http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf
- [5] PSI5 Technical Specification Version 2.1, Dated October 8, 2012

19 Revision history

Table 332. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
FXLS9xxx0 v.6	20210208	Product data sheet	_	FXLS9xxxx v.5.15
Modifications	N.V. • FXLS9xxx0, v.6, Single Channel Ir • Global changes: — Performed min	as been formatted to comply wi Single Channel Inertial Sensor, nertial Sensor. or grammatical and typographic ages to comply with NXP image	supercedes and rep	laces FXLS9xxxx, v.5.15,
FXLS9xxxx v.5.15	20201208	Product data sheet	_	FXLS9xxxx v.5.14

20 Legal information

20.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

20.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected

FXLS9xxx0

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Single channel inertial sensor

to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team

(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Tables

Tab. 1.	Ordering information2	Tab. 38.	Dynamic electrical characteristics - signal	
Tab. 2.	Ordering options2		chain, low-pass filter	32
Tab. 3.	DSI3 discovery mode external component	Tab. 39.	Dynamic electrical characteristics - signal	0.4
T	recommendations4	T 1 40	chain	34
Tab. 4.	PSI5 parallel or universal mode external	Tab. 40.	Dynamic electrical characteristics - analog	٥.
	component recommendations5		self-test response time	35
Tab. 5.	PSI5 daisy chain mode external component	Tab. 41.	Dynamic electrical characteristics - digital	
	recommendations6		self-test response time	36
Tab. 6.	SPI external component recommendations8	Tab. 42.	Dynamic electrical characteristics -	
Tab. 7.	I2C external component recommendations8		transducer	37
Tab. 8.	Single axis device orientation10	Tab. 43.	Dynamic electrical characteristics - supply	
Tab. 9.	Device pinout: SPI or I2C mode10		and support circuitry	37
Tab. 10.	Device pinout: DSI3 or PSI5 mode pinout 12	Tab. 44.	User accessible data - general device	
Tab. 11.	Test notes legend13		information	38
Tab. 12.	Maximum ratings14	Tab. 45.	User accessible data - communication	
Tab. 13.	Operating range - DSI / PSI514		information	39
Tab. 14.	Operating range - SPI / I2C15	Tab. 46.	User accessible data - sensor specific	
Tab. 15.	Electrical characteristics - supply and I/O15		information	40
Tab. 16.	Electrical characteristics - temperature	Tab. 47.	User accessible data - sensor specific	
	sensor signal chain16		information	40
Tab. 17.	Electrical characteristics - inertial sensor	Tab. 48.	User accessible data - traceability	
	signal chain: High g17	_	information	41
Tab. 18.	High g adjusted offset specification limits 18	Tab. 49.	Rolling counter register (COUNT)	
Tab. 19.	PSI5, High g offset cancellation limits	Tab. 50.	Device status registers (DEVSTATx)	
Tab. 20.	Lateral, High g, SPI/DSI3 12-bit noise	Tab. 51.	Supply error flag (SUPPLY_ERR)	
145. 20.	specification19	Tab. 52.	Test mode (TESTMODE)	
Tab. 21.	Z-Axis, High g, SPI/DSI3 12-bit noise	Tab. 53.	Device reset (DEVRES)	
10D. Z 1.	specification	Tab. 54.	Device initialization (DEVINIT)	
Tab. 22.	Lateral, High g, PSI5 10-bit noise	Tab. 55.	VBUF under-voltage error (VBUFUV_ERR)	
1ab. ZZ.	specification20	Tab. 56.	BUS IN under-voltage error (BUSINUV_	43
Tab. 23.	Z-Axis, High g, PSI5 10-bit noise	1ab. 50.	ERR)	15
1ab. 25.		Tob 57		
Tab 24	specification	Tab. 57.	VBUF over-voltage error (VBUFOV_ERR)	45
Tab. 24.	Electrical characteristics - inertial sensor	Tab. 58.	Internal analog regulator voltage out of	46
Tab 25	signal chain: Medium g	Tab EO	range error (INTREGA_ERR)	40
Tab. 25.	Medium g, SPI/DSI3 12-bit offset	Tab. 59.	Internal digital regulator voltage out of	40
T-1- 00	specification	T-1- 00	range error (INTREG_ERR)	40
Tab. 26.	Medium g, PSI5 10-bit offset specification23	Tab. 60.	Internal OTP regulator voltage out of range	4.0
Tab. 27.	Lateral, Medium g, SPI/DSI3 12-bit noise	T 1 04	error (INTREGF_ERR)	
	specification	Tab. 61.	Continuity monitor error (CONT_ERR)	
Tab. 28.	Z-axis, Medium g, SPI/DSI3 12-bit noise	Tab. 62.	NXP OTP array error (F_OTP_ERR)	
	specification24	Tab. 63.	User OTP array error (U_OTP_ERR)	
Tab. 29.	Lateral, Medium g, PSI5 10-bit noise	Tab. 64.	User read/write array error (U_RW_ERR)	47
	specifications24	Tab. 65.	User OTP write in process status bit (U_	
Tab. 30.	Z-axis, Medium g, PSI5 10-bit noise		W_ACTIVE)	48
	specification24	Tab. 66.	Channel 0 temperature sensor error	
Tab. 31.	Electrical characteristics - inertial sensor		(TEMP0_ERR)	48
	self-test24	Tab. 67.	SPI MISO data mismatch error flag (MISO_	
Tab. 32.	Electrical characteristics - lateral inertial		ERROR)	
	sensor overload26	Tab. 68.	Oscillator training error (OSCTRAIN_ERR)	48
Tab. 33.	Electrical characteristics - Z-axis inertial	Tab. 69.	Communication protocol revision register	
	sensor overload26		(COMMREV)	49
Tab. 34.	Dynamic electrical characteristics - DSI3 27	Tab. 70.	Margin read status register (MREAD_	
Tab. 35.	Dynamic electrical characteristics - PSI5 28		STAT)	49
Tab. 36.	Dynamic electrical characteristics - SPI 30	Tab. 71.	Margin read active status (MARGIN_RD_	
Tab. 37.	Dynamic electrical characteristics - I2C31		ACT)	49

FXLS9xxx0

Tab. 72.	Margin read error status (MARGIN_RD_			PSI5 configuration register (PSI5_CFG)	68
	ERR)		Tab. 113.	Sync pulse pull-down enable bit (SYNC_	
Tab. 73.	Temperature register (TEMPERATURE)	50		PD)	69
Tab. 74.	Device lock register (DEVLOCK_WR)	50	Tab. 114.	PSI5 daisy chain selection bit (DAISY_	
Tab. 75.	Reset control bits (RESET[1:0])	51		CHAIN)	69
Tab. 76.	Write OTP enable register	51	Tab. 115.	PSI5 low response current selection bit	
Tab. 77.	Write OTP enable and programming bits	53		(PSI5_ILOW)	69
Tab. 78.	Bus switch control register (BUSSW_		Tab. 116.	Error message information extension bit	
	CTRL)	54		(EMSG_EXT)	70
Tab. 79.	BUSSW_L pin state		Tab. 117.	PSI5 response message error detection	
Tab. 80.	PSI5 test register (PSI5_TEST)			selection bit (P_CRC)	70
Tab. 81.	UF region selection registers (UF_		Tab. 118.	Initialization phase 2 data extension bit	
	REGION_x)	. 56		(INIT2_EXT)	70
Tab. 82.	Region load bits		Tab. 119.	DSI3 and PSI5 start time registers (PDCM_	•
Tab. 83.	Region active bits			RSPSTx_x)	71
Tab. 84.	Communication type register		Tab 120	Periodic data collection mode response	
145. 01.	(COMMTYPE)	58	145. 120.	start time (PDCM_RSPSTx[12:0])	71
Tab. 85.	Communication type (COMMTYPE[2:0])		Tah 121	Synchronous mode: Source ID response	,
Tab. 86.	COMMTYPEs and effect on device		140. 121.	start time	72
Tab. 87.	Physical address register (PHYSADDR)		Tab 122	Asynchronous mode: Source ID response	12
Tab. 88.	Source identification registers	59	140. 122.	start time	72
1ab. 00.	•	50	Tob 122	Broadcast read command type selection	12
Tab 00	(SOURCEID_x)	59	1ab. 125.		70
Tab. 89.	PDCM format control bits	60	Tob 101	bits (BRC_RSP[1:0])	12
T-1- 00	(PDCMFORMAT[2:0])		1ab. 124.	DSI3 and PSI5 command blocking time	70
Tab. 90.	PDCM format control bits		T-1- 405	registers (PDCM_CMD_B_x)	
Tab. 91.	SPI source identification (SOURCEID_x)			DSI3 mode: Command blocking time bits	
Tab. 92.	DSI3 source identification (SOURCEID_x)			PSI5 mode: Command blocking time bits	
Tab. 93.	PSI5 source identification (SOURCEID_x)	61		SPI configuration control register	/4
Tab. 94.	Communication timing register (TIMING_		lab. 128.	SPI status reporting selection bit (SPI_	
	CFG)	62		STATUS)	
Tab. 95.	Periodic data collection mode period			SPI data field size bit (DATASIZE)	75
	(PDCM_PER[3:0])	62	lab. 130.	SPI CRC length and seed bits (SPI_CRC_	
Tab. 96.	Oscillator training protocol selection bit			LEN[1:0], SPICRCSEED[3:0])	75
	(OSCTRAIN_SEL)	63	Tab. 131.	Who Am I register	76
Tab. 97.	Command and response mode period			WHO_AM_I bits	
	(CRM_PER[1:0])			I2C slave address register	
Tab. 98.	Clock calibration enable (CK_CAL_EN)			I2C_ADDRESS bits	77
Tab. 99.	Chip time and bit time register (CHIPTIME)		Tab. 135.	Channel 0 user configuration #1 register	
	PSI5 self-test repetition bits (ST_RPT[1:0])	64		(CH0_CFG_U1)	77
Tab. 101.	PSI5 error latching enable bit (PSI5_		Tab. 136.	Low-pass filter and sample rate selection	
	ERRLATCH)	65		bits (LPF[3:0], SAMPLERATE[1:0])	77
Tab. 102.	DSI3 simultaneous sampling enable (SS_		Tab. 137.	Channel 0 user configuration #2 register	
	EN)	65		(CH0_CFG_U2)	78
Tab. 103.	PSI5 simultaneous sampling enable (SS_		Tab. 138.	Sensitivity shift factors	79
	EN)	65	Tab. 139.	Example user shift and multiplier	
Tab. 104.	SPI simultaneous sampling enable (SS_			configuration for typical scale range	79
	EN)	65	Tab. 140.	Example user shift and multiplier	
Tab. 105.	Chip time (CHIPTIME)	66		configuration for typical psi5 scale range	80
	Timing configuration #2 register (TIMING_		Tab. 141.	Channel 0 user configuration #3 register	
	CFG2)	66		(CH0 CFG U3)	80
Tab. 107.	PSI5 initialization phase 2 D19 and D20		Tab. 142.	Unsigned data select bit	
	change bit (PSI5_INIT2_D19)	67		(UNSIGNEDDATA)	80
Tab. 108.	Oscillator training error counter		Tab. 143.	Channel 0 data type 0 selection bits	
	(OSCTRAIN_ERRCNT[2:0])	.67		(CHxDATATYPE0)	81
Tab. 109	Capacitor test disable bit (CAPTEST_OFF)		Tab. 144	Channel 0 data type 1 selection bits	
	Background diagnostic mode fragment size	••		(CHxDATATYPE1)	81
	(BDM_FRAGSIZE)	68	Tab. 145	Signal chain moving average selection bits	
Tab. 111	Background diagnostic mode enable			(MOVEAVG[1:0])	81
	(BDM_EN)	68		(o[])	0 1
	(55.11_5.14)	00			

Tab. 146	. Channel 0 user configuration #4 register		Tab. 184.	Device serial number registers	97
	(CH0_CFG_U4)	82	Tab. 185.	Example serial number decoding	97
Tab. 147	. Signal inversion bit (INVERT)	82	Tab. 186.	ASIC wafer ID registers	97
Tab. 148	. Offset cancellation filter selection bits (OC_		Tab. 187.	Transducer wafer ID registers	98
	FILT[1:0])	83	Tab. 188.	User data registers (USERDATA_0 -	
Tab. 149	. Arming pin configuration bits (ARM_			USERDATA_E)	98
	CFG[2:0]) and PCM range selection bit		Tab. 189.	PSI5 initialization phase 2 data	
	(PCM)	83		transmissions of user data	98
Tab. 150	. Channel 0 user configuration #5 register		Tab. 190.	User data registers (USERDATA_10 -	
	(CH0_CFG_U5)	84		USERDATA_1E)	99
Tab. 151	. Self-test control bits (ST_CTRL[3:0])	84	Tab. 191.	Lock and CRC registers	.100
Tab. 152	. Offset cancellation test limit bits (OC_		Tab. 192.	Lock bit, block identifier, and CRC states	. 100
	LIMIT[2:0])	85	Tab. 193.	Memory type code: NXP OTP register	. 101
Tab. 153	. DSP disable bit (DSP_DIS)	86	Tab. 194.	Memory type code: User OTP register	. 101
Tab. 154	. Channel 0 arming configuration register		Tab. 195.	Memory type code: CRC verified OTP	
	(CH0_ARM_CFG)	86		registers	.101
Tab. 155	. Arming function down sampling selection		Tab. 196.	Memory type code: ENDINIT CRC verified	
	bits (ARM_DS[1:0])	86		OTP registers	. 101
Tab. 156	. Arming pulse stretch (ARM_PS[1:0])		Tab. 197.	Signal chain diagram legend	
	. Positive arming window size definitions			Signal trim and compensation variable	
	(moving average mode)	87		descriptions	. 115
Tab. 158	. Negative arming window size definitions		Tab. 199.	LPF #0 and LPF #2	
	(moving average mode)	87		LPF #1 and LPF #3	
Tab. 159	. Arming count limit definitions (count mode)			LPF #4	
	. Arming threshold registers (CH0_ARM_T_			LPF #5	
	P, CH0_ARM_T_N)	88		LPF #6	
Tab 161	Example threshold register values and	00		LPF #7	
145. 101	corresponding threshold	88		LPF #8	
Tah 162	. Offset cancellation user configuration			LPF #9	
100. 102	register (OC_PHASE_CFG)	89		LPF #A	
Tah 163	. Channel 0 offset cancellation final phase	00		LPF #B	
100. 100	control bit (CH0_OCFINAL)	80		LPF #C	
Tab 164	. User offset calibration registers (Chx_U_	03		LPF #D	
1ab. 10 4	OFFSET_L, Chx_U_OFFSET_H)	80		LPF #E	
Tab 165	. Channel-specific status register (CH0_	09		LPF #F	
1ab. 105	STAT)	00			120
Tob 166		90	1ab. 213.	Offset cancellation phases and times:	121
1ab. 166	Offset cancellation phase status	00	T-5 011	DSI3, SPI, and I2C modes	. 134
T-1- 407	(OCPHASE[2:0])		1ab. 214.	Offset cancellation phases and times: PSI5	405
	Self-test incomplete (ST_INCMPLT)		Tob 215	modes	
	Offset error flag (OFFSET_ERR)	91		Output scaling	
1ab. 169	Device status copy register (DEVSTAT_	04		Sensor data variables	138
T 1 470	COPY)	91	1ab. 217.	Temperature sensor output scaling	400
1ab. 170	Sensor data #0 registers (CHx_	00	T 040	equation variables	. 139
T	SNSDATA0_L, CHx_SNSDATA0_H)	92	Tab. 218.	Command and response mode example	
1ab. 1/1	. Sensor data #1 registers (CHx_	00	T 040	command descriptions	149
T	SNSDATA1_L, CHx_SNSDATA1_H)	92	Tab. 219.	Command and response mode - command	
lab. 172	. Channel-specific factory configuration			format	149
	register (CHx_CFG_F)		lab. 220.	Command and response mode - field	
	. Range indication bits (RANGE[3:0])			definitions	149
	. Axis indication bits (AXIS[1:0])		Tab. 221.	Command and response mode command	
	. Self-test deflection storage registers			CRC	.150
	. IC type register		Tab. 222.	Command and response mode - CRC	
	. IC revision register			calculation examples	. 150
	. IC manufacturer identification register		Tab. 223.	Command and response mode response	
	. Part number register			example	
	. Part number: Protocol type			Symbol mapping	151
Tab. 181	. Part number: Axis	96	Tab. 225.	Command and response mode - response	
Tab. 182	. Part number: Range	96		format	. 152
Tab. 183	. Part number: Unused	96			

FXLS9xxx0

Tab. 226.	Command and response mode - field		Tab. 265.	Default PSI5-P16C transmission mode	. 182
	definitions	152	Tab. 266.	Default PSI5-P16C transmission mode	
Tab. 227.	Command and response mode response			timing parameters	182
	CRC	.153	Tab. 267.	Default PSI5-P16C transmission mode,	
Tab. 228.	DSI3 command and response mode			High g sensor data configuration	. 182
	command summary	. 153	Tab. 268.	Default PSI5-P16C transmission mode,	
	Register read command format			Medium g sensor data configuration	. 182
	Register read command format description		Tab. 269.	Daisy chain: Run mode configuration	183
	Register read command: response format	154	Tab. 270.	Daisy chain programming commands and	
Tab. 232.	Register read command: response format			responses	184
	description	154	Tab. 271.	Daisy chain programming response code	
	Register write command format			definitions	
	Register write command format description			Valid daisy chain addresses	
	Register write command: response format	155		Daisy chain error handling	
Tab. 236.	Register write command: response format			Initialization phase 2 error handling	
	description			Initialization phase 3 error handling	
	Global register write command format	.156		Standard error reporting	
Tab. 238.	Global register write command format			PSI5 error extension option	
	description	156		Standard error reporting	
Tab. 239.	Global register write command: response			PSI5 error extension option	187
	format	156	Tab. 280.	Programming mode via PSI5 command	
Tab. 240.	Global register write command: response			data format	. 188
	format description	.156	Tab. 281.	Programming mode via PSI5 command	
Tab. 241.	PDCM enable command and BDM_EN bit			data format - response	189
	status	. 157	Tab. 282.	Programming mode via PSI5 XLONG	
Tab. 242.	Enter periodic data collection mode			command data format with sync bits	. 189
	command format	157	Tab. 283.	Programming mode via PSI5 XLONG	
Tab. 243.	Enter periodic data collection mode			command data format with sync bits -	
	command format description	. 157		response	189
Tab. 244.	Enter periodic data collection mode		Tab. 284.	Programming mode via PSI5 response	
	command: response format	.157		message settings	. 189
Tab. 245.	Enter periodic data collection mode		Tab. 285.	Programming mode via PSI5 short	
	command: response format description	157		command	
	Reserved commands		Tab. 286.	Response format	190
	Reserved commands description		Tab. 287.	Programming mode via PSI5 long	
	Reserved command response format	158		command	
Tab. 249.	Reserved command response format			Response format	190
	description	158	Tab. 289.	Programming mode via PSI5 long	
Tab. 250.	Periodic data collection mode response			command	
	format	160		Response format	190
Tab. 251.	Periodic data collection mode status field		Tab. 291.	Programming mode via PSI5 commands	
	definition	160		and responses	191
Tab. 252.	Periodic data collection mode response		Tab. 292.	Programming mode via PSI5 response	
	CRC	.161		code definitions	
Tab. 253.	Periodic data collection mode - CRC			Error response summary	
	calculation examples			SPI command format	
	Exception conditions and response	.166		SPI response format	
Tab. 255.	DSI3 error handling - discovery mode and			Command summary	
	daisy chain mode			Register read command message format	195
	PSI5-x10P transmission mode		Tab. 298.	Register read command message format	
	PSI5-x10C transmission mode			description	
	PSI5-x16P transmission mode			Register read response message format	195
	PSI5-x16C transmission mode		Tab. 300.	Register read response message format	
	PSI5 3-bit CRC calculation examples			description	
	PSI5 data values	.174		Register write command message format	. 196
Tab. 262.	PSI5 initialization phase 2 data		Tab. 302.	Register write command message format	
	transmission order			description	
	Initialization phase 2 time		Tab. 303.	Register write response message format	. 196
ıab. 264.	Channel 0 PSI5 initialization phase 2 data	178			

FXLS9xxx0

Single channel inertial sensor

Tab. 304	Register write response message format	Tab. 317.	SPI response message CRC, 4-bit	201
	description196		SPI 4-bit CRC calculation examples	
Tab. 305	Sensor data request command message	Tab. 319.	SPI command format with 3-bit CRC	202
	format197	Tab. 320.	SPI response format with 3-bit CRC	202
Tab. 306	Sensor data request command message	Tab. 321.	SPI command message CRC, 3 bit	203
	format description197		SPI response message CRC, 3-bit	
Tab. 307	Sensor data request response message		SPI 3-bit CRC calculation examples	
	format197		Basic status field for responses to register	
Tab. 308.	Sensor data request response message		commands	204
	format description197	Tab. 325.	Basic status field for responses to sensor	
Tab. 309.	Reserved command response message		data request commands	205
	format	Tab. 326.	Alternative basic status reporting field	
Tab 310	Reserved command response message		SPI error response status field definition	
145. 010	format description198		Alternate SPI error response status field	
Tab 311	SPI command message CRC	145. 020.	definition	207
	SPI CRC polynomial and seed199	Tah 329	Error responses	
	SPI 8-bit CRC calculation examples		Error response description	
	SPI command format with 4-bit CRC 200		Single channel register read wrap around	
	SPI response format with 4-bit CRC		Revision history	
	SPI command message CRC, 4 bit201	185. 552.	revision history	200
1ab. 510	Of Footimand message one, 4 bit201			
Eigur	25			
Figur	5 5			
Fig. 1.	Part marking3	Fig. 27.	400 Hz, 3-pole low-pass filter response	
Fig. 2.	DSI3 discovery mode application diagram 4	1 19. 27.	signal delay	122
Fig. 3.	PSI5 parallel or universal mode application	Fig. 28.	325 Hz, 3-pole low-pass filter response	122
i ig. 5.	diagram5	1 ig. 20.	magnitude	122
Fig. 4.	PSI5 daisy chain mode application diagram6	Fig. 29.	325 Hz, 3-pole low-pass filter response	122
Fig. 5.	SPI application diagram8	1 lg. 23.	signal delay	123
Fig. 6.	I2C application diagram8	Fig. 30.	370 Hz, 2-pole low-pass filter response	120
Fig. 7.	Single channel internal block diagram9	1 19. 00.	magnitude	123
Fig. 8.	Orientation diagram10	Fig. 31.	370 Hz, 2-pole low-pass filter response	120
Fig. 9.	Device pinout: SPI or I2C mode10	1 19. 51.	signal delay	12/
Fig. 10.	Device pinout: DSI3 or PSI5 mode pinout 12	Fig. 32.	180 Hz, 2-pole low-pass filter response	124
Fig. 11.	Voltage regulation and monitoring102	1 19. 02.	magnitude	12/
Fig. 12.	VBUF capacitor monitor timing, DSI3103	Fig. 33.	180 Hz, 2-pole low-pass filter response	124
Fig. 13.	VBUF capacitor monitor timing, PSI5	1 ig. 55.	signal delay	125
1 lg. 13.	synchronous mode103	Fig. 34	100 Hz, 2-pole low-pass filter response	123
Fig. 14.	VBUF capacitor monitor timing, psi5	Fig. 34.	magnitude	125
1 lg. 1 4 .		Fig. 35	100 Hz, 2-pole low-pass filter response	123
Fig. 15.	asynchronous mode104 BUS_I micro-cut response (DSI3 or PSI5) 105	Fig. 35.	signal delay	126
~	Command and response mode oscillator	Eig 26		120
Fig. 16.	•	Fig. 36.	1500 Hz, 4-pole low-pass filter response	126
Eig 17	training timing diagram	Eig 27	magnitude	120
Fig. 17.	Periodic data collection mode oscillator	Fig. 37.	1500 Hz, 4-pole low-pass filter response	107
Fi∝ 10	training timing diagram	Fig. 20	signal delay	121
Fig. 18.	PSI5 oscillator training timing diagram 108	Fig. 38.	500 Hz, 3-pole low-pass filter response	107
Fig. 19.	Self-test interface	Eig 20	magnitude	12/
Fig. 20.	PSI5 self-test procedure	Fig. 39.	500 Hz, 3-pole low-pass filter response	400
Fig. 21.	ΣΔ converter block diagram	Eig 40	signal delay filter response	1∠ŏ
Fig. 22.	Signal chain diagram113	Fig. 40.	800 Hz, 4-pole low-pass filter response	100
Fig. 23.	Sinc filter response 3rd order sinc filter	Fig. 44	magnitude	ı∠ŏ
Fig. 04	magnitude response	Fig. 41.	800 Hz, 4-pole low-pass filter response	400
Fig. 24.	400 Hz, 4-pole low-pass filter response	F:-: 40	signal delay	129
Fig. OF	magnitude	Fig. 42.	1200 Hz, 4-pole low-pass filter response	400
Fig. 25.	400 Hz, 4-pole low-pass filter response	F:-: 40	magnitude	129
F: 00	signal delay	Fig. 43.	1200 Hz, 4-pole low-pass filter response	400
Fig. 26.	400 Hz, 3-pole low-pass filter response		signal delay	130
	magnitude121			

FXLS9xxx0

FXLS9xxx0

Fig. 44.	120 Hz, 3-pole low-pass filter response		Fig. 78.	Simultaneous sampling mode	. 164
	magnitude	.130	Fig. 79.	Synchronous sampling mode with minimum	
Fig. 45.	120 Hz, 3-pole low-pass filter response			latency	
	signal delay	. 131	Fig. 80.	Initialization timing	
Fig. 46.	120 Hz, 2-pole low-pass filter output		Fig. 81.	PSI5 satellite interface diagram	
	magnitude response	.131	Fig. 82.	Synchronous communication overview	
Fig. 47.	120 Hz, 2-pole low-pass filter output		Fig. 83.	Synchronization pulse detection circuit	
	magnitude response	.132	Fig. 84.	Synchronization pulse detection timing	
Fig. 48.	50 Hz, 4-pole low-pass filter response		Fig. 85.	Sync pulse characteristics	
	magnitude	.132	Fig. 86.	Manchester data bit encoding	. 171
Fig. 49.	50 Hz, 4-pole low-pass filter response		Fig. 87.	Example Manchester encoded data	
	signal delay			transfer - PSI5-x10x	. 172
Fig. 50.	Offset cancellation block diagram	. 133	Fig. 88.	PSI5 sensor 10-bit initialization	. 176
Fig. 51.	0.04 Hz offset cancellation low–pass filter		Fig. 89.	PSI5 initialization timing, synchronous	
	characteristics	135		mode	177
Fig. 52.	0.005 Hz offset cancellation low-pass filter		Fig. 90.	PSI5 initialization timing, asynchronous	
	characteristics	136		mode	177
Fig. 53.	Output interpolation example: Linear		Fig. 91.	Simultaneous sampling mode	. 181
_	interpolation (16 to 1)	. 137	Fig. 92.	Synchronous sampling mode with minimum	
Fig. 54.	Temperature sensor signal chain block		· ·	latency	. 181
Ū	diagram	138	Fig. 93.	PSI5 default mode transmission	
Fig. 55.	PCM output function block diagram		Fig. 94.	Standard 32-bit SPI protocol timing	
Fig. 56.	Arming function block diagram - moving		3	diagram	193
	average mode	. 140	Fig. 95.	Internal status mapping and SPI basic	
Fig. 57.	Arming function block diagram - count		9	status content	.206
g	mode	141	Fig. 96.	SPI data output verification	
Fig. 58.	Arming condition, moving average and		Fig. 97.	SPI timing diagram	
g. 00.	count mode	141	Fig. 98.	I2C bit transmissions	
Fig. 59.	Arming function block diagram - unfiltered		Fig. 99.	I2C start condition	
i ig. 00.	mode	142	Fig. 100.	I2C byte transmissions	
Fig. 60.	Arming condition, unfiltered mode		Fig. 101.	I2C acknowledge and not acknowledge	
Fig. 61.	Arming condition, drimtered mode		1 ig. 101.	transmission	212
Fig. 62.	Command receiver physical layer		Fig. 102	I2C stop condition	
-	DSI3 command receiver timing diagram:	. 144	Fig. 102.		
Fig. 63.	valid command	111	Fig. 103.		213
Eig 64	DSI3 command receiver timing diagram:	. 144	1 lg. 104.		216
Fig. 64.		115	Eig. 105	(SOT1688-1(SC))	. 210
Eia 65	micro-cut		Fig. 105.	•	217
Fig. 65.	DSI3 transmitter block diagram	. 145	Fir. 100	(SOT1688-1(SC))	. 211
Fig. 66.	Discovery mode current sense circuit block	115	Fig. 106.	Package outline notes for LQFN16	240
Cia 67	diagram	143	Fig. 107	(SOT1688-1(SC))	. 210
Fig. 67.	DSI3 discovery mode sensing timing	110	Fig. 107.	Package outline for LQFN16	240
T: 00	diagram	146	F: 400	(SOT1688-1(DD))	.219
Fig. 68.	DSI3 discovery mode timing diagram	. 148	Fig. 108.	S .	000
Fig. 69.	Command and response mode example	4.40	F: 400	(SOT1688-1(DD))	. 220
F: 70	command	.148	Fig. 109.	Package outline notes for LQFN16	004
Fig. 70.	Command and response mode command	4.40	E: 440	(SOT1688-1(DD))	. 221
	bit encoding	.149	Fig. 110.		
Fig. 71.	Command and response mode response			HLQFN16 (SOT1688-1(SC))	. 222
	example		Fig. 111.	Reflow soldering footprint part 2 for	
Fig. 72.	Response symbol encoding	. 151		HLQFN16 (SOT1688-1(SC))	. 223
Fig. 73.	Command and response mode timing		Fig. 112.	Reflow soldering footprint part 3 for	
	diagram	153		HLQFN16 (SOT1688-1(SC))	. 224
Fig. 74.	Background diagnostic mode command bit		Fig. 113.	Reflow soldering footprint part 4 for	
	encoding	. 159		HLQFN16 (SOT1688-1(SC))	. 225
Fig. 75.	Periodic data mode response transmission	.160	Fig. 114.	Reflow soldering footprint part 5 for	
			-	HLQFN16 (SOT1688-1(SC))	. 226
Fig. 76.	Periodic data collection mode timing				
-	diagram	162	Fig. 115.	Reflow soldering footprint part 1 for	
-		162	Fig. 115.		

FXLS9xxx0

Fig. 116.	Reflow soldering footprint part 2 for	Fig. 118.	Reflow soldering footprint part 4 for	
	HLQFN16 (SOT1688-1(DD))228		HLQFN16 (SOT1688-1(DD))	230
Fig. 117.	Reflow soldering footprint part 3 for	Fig. 119.	Reflow soldering footprint part 5 for	
	HLQFN16 (SOT1688-1(DD))229		HLQFN16 (SOT1688-1(DD))	231

Contents

1	General description		10.20	Dynamic electrical characteristics - supply	07
2	Features		44 -	and support circuitry	
3	Applications			unctional description	
3.1	Automotive		11.1	User accessible data array	.38
3.2	Industrial		11.1.1	User accessible data - general device	
4	Ordering information			information	. 38
4.1	Ordering options		11.1.2	User accessible data - communication	
5	Marking			information	. 39
6	Application diagrams	4	11.1.3	User accessible data - sensor specific	
6.1	DSI3 application diagrams	4		information	. 40
6.1.1	DSI3 discovery mode application diagram	4	11.1.4	User accessible data - sensor specific	
6.2	PSI5 application diagrams			information	. 40
6.2.1	PSI5 parallel or universal mode application		11.1.5	User accessible data - traceability	
	diagram	5	-	information	. 41
6.2.2	PSI5 daisy chain mode application diagram .		11.2	Register definitions	
6.3	SPI application diagram		11.2.1	Rolling counter register (COUNT)	
6.4	I2C application diagram		11.2.2	Device status registers (DEVSTATx)	
7	Block diagram		11.2.2.1	Channel 0 error flag (CH0_ERR)	
8			11.2.2.1	Communication error flag (COMM ERR)	
	Device orientation diagrams			• • • • • • • • • • • • • • • • • • • •	. 43
9	Pinning information		11.2.2.3	Memory or temperature error flag	40
9.1	Pinning: SPI or I2C mode		44.0.0.4	(MEMTEMP_ERR)	
9.2	Pin description: SPI or I2C mode		11.2.2.4	Supply error flag (SUPPLY_ERR)	
9.3	Pinning: DSI3 or PSI5 mode		11.2.2.5	Test mode (TESTMODE)	
9.4	Pin description: DSI3 or PSI5 mode		11.2.2.6	Device reset (DEVRES)	
10	Electrical characteristics		11.2.2.7	Device initialization (DEVINIT)	
10.1	Maximum ratings		11.2.2.8	VBUF under-voltage error (VBUFUV_ERR)	. 45
10.2	Operating range - DSI / PSI5	14	11.2.2.9	BUS IN under-voltage error (BUSINUV_	
10.3	Operating range - SPI / I2C	15		ERR)	. 45
10.4	Electrical characteristics - supply and I/O	15	11.2.2.10	VBUF over-voltage error (VBUFOV_ERR)	. 45
10.5	Electrical characteristics - temperature		11.2.2.11	Internal analog regulator voltage out of	
	sensor signal chain	16		range error (INTREGA_ERR)	.46
10.6	Electrical characteristics - inertial sensor		11.2.2.12	Internal digital regulator voltage out of	
	signal chain: High g	17		range error (INTREG_ERR)	46
10.7	Electrical characteristics - inertial sensor		11 2 2 13	Internal OTP regulator voltage out of range	
10.7	signal chain: Medium g	21	11.2.2.10	error (INTREGF_ERR)	46
10.8	Electrical characteristics - inertial sensor		11 2 2 14	Continuity monitor error (CONT_ERR)	
10.0	self-test	24		NXP OTP array error (F_OTP_ERR)	
10.9	Electrical characteristics - lateral inertial	47		User OTP array error (U_OTP_ERR)	
10.9	sensor overload	26		User read/write array error (U RW ERR)	
10.10	Electrical characteristics - Z-axis inertial	20			. 41
10.10		200	11.2.2.10	User OTP write in process status bit (U_W_	47
10.44	sensor overload		44.0.0.40	ACTIVE)	.47
10.11	Dynamic electrical characteristics - DSI3		11.2.2.19	Channel 0 temperature sensor error	40
10.12	Dynamic electrical characteristics - PSI5			(TEMP0_ERR)	.48
10.13	Dynamic electrical characteristics - SPI		11.2.2.20	SPI MISO data mismatch error flag (MISO_	
10.14	Dynamic electrical characteristics - I2C	31		ERROR)	
10.15	Dynamic electrical characteristics - signal			Oscillator training error (OSCTRAIN_ERR)	. 48
	chain, low-pass filter	32	11.2.3	Communication protocol revision register	
10.16	Dynamic electrical characteristics - signal			(COMMREV)	48
	chain	34	11.2.4	Margin read status register (MREAD_STAT)	. 49
10.17	Dynamic electrical characteristics - analog		11.2.4.1	Margin read active status (MARGIN_RD_	
	self-test response time	35		ACT)	49
10.18	Dynamic electrical characteristics - digital		11.2.4.2	Margin read error status (MARGIN_RD_	
-	self-test response time	36		ERR)	. 49
10.19	Dynamic electrical characteristics -	-	11.2.5	Temperature register (TEMPERATURE)	
. 5. 10	transducer	37	11.2.6	Device lock register (DEVLOCK_WR)	
	a an outdoor	01	11.2.6.1	End initialization bit (ENDINIT)	
			11.2.0.1	LIG IIIIGIIZGGOTI DIL (LIVDIIVIT)	. 50

FXLS9xxx0

11.2.6.2	Supply error reporting disable bit (SUP_		11.2.17.5	PSI5 response message error detection	
	ERR_DIS)	51		selection bit (P_CRC)	70
11.2.6.3	Reset control bits (RESET[1:0])	51	11.2.17.6	Initialization phase 2 data extension bit	
11.2.7	Write OTP enable register	51		(INIT2_EXT)	70
11.2.7.1	Margin read enable bit (MARGIN_RD_EN)	. 51	11.2.17.7	Asynchronous mode bit (ASYNC)	. 71
11.2.7.2	Write OTP enable and programming bits		11.2.18	DSI3 and PSI5 start time registers (PDCM_	
11.2.8	Bus switch control register (BUSSW_			RSPSTx_x)	71
11.2.0	CTRL)	54	11 2 18 1	Periodic data collection mode response	
11.2.9	PSI5 test register (PSI5_TEST)		11.2.10.1		71
			44 0 40 0	start time (PDCM_RSPSTx[12:0])	. / 1
11.2.9.1	PSI5 test bit (PSI5_TEST)	55	11.2.18.2	Broadcast read command type selection	
11.2.10	UF region selection registers (UF_			bits (BRC_RSP[1:0])	/2
	REGION_x)	56	11.2.19	DSI3 and PSI5 command blocking time	
11.2.11	Communication type register			registers (PDCM_CMD_B_x)	
	(COMMTYPE)		11.2.20	SPI configuration control register	74
11.2.11.1	Communication type (COMMTYPE[2:0])	58	11.2.20.1	SPI status reporting selection bit (SPI_	
11.2.12	Physical address register (PHYSADDR)	. 59		STATUS)	. 74
11.2.13	Source identification registers		11.2.20.2	SPI data field size bit (DATASIZE)	
	(SOURCEID_x)	59		SPI CRC length and seed bits (SPI_CRC_	
11 2 13 1	Data source enable bits (SIDx_EN)			LEN[1:0], SPICRCSEED[3:0])	75
	PDCM format control bits		11.2.21	Who Am I register	
11.2.10.2	(PDCMFORMAT[2:0])	60	11.2.22	I2C slave address register	
11 2 12 2				•	/ 0
	Source identification (SOURCEID_x)	. 60	11.2.23	Channel 0 user configuration #1 register	77
11.2.14	Communication timing register (TIMING_	0.4	44.0.00.4	(CH0_CFG_U1)	. / /
	CFG)	61	11.2.23.1	Low-pass filter and sample rate selection	
11.2.14.1	Periodic data collection mode period			bits (LPF[3:0], SAMPLERATE[1:0])	. 77
	(PDCM_PER[3:0])	62	11.2.23.2	User sensitivity shift selection bits (U_SNS_	
11.2.14.2	Oscillator training protocol selection bit			SHIFT[1:0])	. 78
	(OSCTRAIN_SEL)	62	11.2.24	Channel 0 user configuration #2 register	
11.2.14.3	Clock calibration value reset (CK_CAL_			(CH0_CFG_U2)	. 78
	RST)	63	11.2.24.1	User sensitivity multiplier bits (U_SNS_	
11.2.14.4	Command and response mode period			MULT[7:0])	. 78
	(CRM_PER[1:0])	63	11.2.25	Channel 0 user configuration #3 register	
11.2.14.5	Clock calibration enable (CK_CAL_EN)			(CH0_CFG_U3)	. 80
11.2.15	Chip time and bit time register (CHIPTIME)		11 2 25 1	Unsigned data select bit (UNSIGNEDDATA)	
	PSI5 self-test repetition bits (ST_RPT[1:0])			Channel 0 data type 0 selection bits	. 00
	PSI5 error latching enable bit (PSI5_	• 1	11.2.20.2	(CHxDATATYPE0)	80
11.2.10.2	ERRLATCH)	64	11 2 25 2	Channel 0 data type 1 selection bits	. 00
44 0 45 0			11.2.23.3		0.4
	Simultaneous sampling enable (SS_EN)		44 0 05 4	(CHxDATATYPE1)	. 0 1
	Chip time (CHIPTIME)	00	11.2.25.4	Signal chain moving average selection bits	0.4
11.2.16	Timing configuration #2 register (TIMING_			(MOVEAVG[1:0])	81
	CFG2)	66	11.2.26	Channel 0 user configuration #4 register	
11.2.16.1	PSI5 initialization phase 2 D19 and D20			(CH0_CFG_U4)	. 82
	change bit (PSI5_INIT2_D19)	66	11.2.26.1	Reset offset cancellation startup bit	
11.2.16.2	Oscillator training error counter			(RESET_OC)	. 82
	(OSCTRAIN ERRCNT[2:0])	67	11.2.26.2	Signal inversion bit (INVERT)	82
11.2.16.3	Capacitor test disable bit (CAPTEST_OFF)	67	11.2.26.3	Offset cancellation filter selection bits (OC_	
	Background diagnostic mode fragment size			FILT[1:0])	83
	(BDM_FRAGSIZE)	68	11.2.26.4	Arming pin configuration bits (ARM_	
11 2 16 5	Background diagnostic mode enable			CFG[2:0]) and PCM range selection bit	
11.2.10.0	(BDM EN)	68		(PCM)	23
11.2.17	PSI5 configuration register (PSI5 CFG)		11.2.27	Channel 0 user configuration #5 register	00
		00	11.2.21		0.4
11.2.11.1	Sync pulse pull-down enable bit (SYNC_	00	44.0.07.4	(CH0_CFG_U5)	
	PD)	69		Self-test control bits (ST_CTRL[3:0])	. 84
11.2.17.2	PSI5 daisy chain selection bit (DAISY_		11.2.27.2	Offset cancellation test limit bits (OC_	_
	CHAIN)	69		LIMIT[2:0])	
11.2.17.3	PSI5 low response current selection bit			DSP disable bit (DSP_DIS)	. 86
	(PSI5_ILOW)	69	11.2.28	Channel 0 arming configuration register	
11.2.17.4	Error message information extension bit			(CH0_ARM_CFG)	86
	(EMSG_EXT)	70			

FXLS9xxx0

11.2.28.1	Arming function down sampling selection		11.4.1.3	VBUF capacitance monitor timing, PSI5	
	bits (ARM_DS[1:0])			asynchronous mode	. 104
	Arming pulse stretch (ARM_PS[1:0])	87	11.4.2	BUS_I, VBUF, VREG, VREGA,	
11.2.28.3	Arming window size (ARM_WS_N[1:0], A_	07	44.5	undervoltage monitor	
44.0.00	WS_P[1:0])	87	11.5	Internal oscillator	
11.2.29	Arming threshold registers (CH0_ARM_T_	00	11.5.1	Oscillator training	
44.0.00	P, CH0_ARM_T_N)	88	11.5.1.1	DSI3 oscillator training	
11.2.30	Offset cancellation user configuration	00	11.5.1.2	PSI5 oscillator training	
44 0 00 4	register (OC_PHASE_CFG)	. 88	11.5.1.3	SPI oscillator training	
11.2.30.1	Channel 0 offset cancellation final phase	00	11.5.1.4	I2C oscillator training	
44.0.04	control bit (CH0_OCFINAL)	89	11.5.2	Oscillator training error handling	
11.2.31	User offset calibration registers (Chx_U_	00	11.6	Inertial sensor signal path	
44.0.00	OFFSET_L, Chx_U_OFFSET_H)	89	11.6.1	Inertial sensor transducer	
11.2.32	Channel-specific status register (CH0_	00	11.6.2	Inertial sensor self-test interface	
	STAT)		11.6.2.1	Raw self-test deflection verification	
	Signal clipped status bit (SIGNALCLIP)	90	11.6.2.2	Delta self-test deflection verification	
11.2.32.2	Offset cancellation phase status		11.6.2.3	Startup digital self-test	
	(OCPHASE[2:0])		11.6.2.4	Fixed pattern self-test	
	Self-test incomplete (ST_INCMPLT)		11.6.2.5	PSI5 automatic startup self-test procedure	
	Self-test active flag (ST_ACTIVE)		11.6.3	Inertial sensor ΣΔ converter	
	Offset error flag (OFFSET_ERR)		11.6.4	Inertial sensor digital signal processor	
	Self-test error flag (ST_ERROR)	. 91	11.6.4.1	Decimation sinc filter	
11.2.33	Device status copy register (DEVSTAT_		11.6.4.2	Signal trim and compensation	
	COPY)	91	11.6.4.3	Digital clipping	
11.2.34	Sensor data #0 registers (CHx_		11.6.4.4	Low-pass filter	
	SNSDATAO_L, CHx_SNSDATAO_H)	. 91	11.6.4.5	User sensitivity scaling	
11.2.35	Sensor data #1 registers (CHx_		11.6.4.6	Offset cancellation	
	SNSDATA1_L, CHx_SNSDATA1_H)	. 92	11.6.4.7	Moving average	
11.2.36	Channel-specific factory configuration		11.6.4.8	Data interpolation	
	register (CHx_CFG_F)		11.6.4.9	Output scaling	
	Range indication bits (RANGE[3:0])		11.7	Temperature sensor	
	Axis indication bits (AXIS[1:0])		11.7.1	Temperature sensor signal chain	.138
11.2.37	Self-test deflection storage registers		11.7.2	Temperature sensor output scaling	
11.2.38	IC type register			equations	
11.2.39	IC revision register		11.8	PCM output function	
11.2.40	IC manufacturer identification register		11.9	Arming function	
11.2.41	Part number register		11.9.1	Arming function: moving average mode	
11.2.42	Device serial number registers		11.9.2	Arming function: count mode	
11.2.43	ASIC wafer ID registers		11.9.3	Arming function: unfiltered mode	
11.2.44	Transducer wafer ID registers	. 97	11.9.4	Arming function down sampling	
11.2.45	User data registers (USERDATA_0 -		11.9.5	Arming pulse stretch function	
	USERDATA_E)	. 98	11.9.6	Arming pin output structure	
11.2.45.1	PSI5 initialization phase 2 data			OSI3 protocol	
	transmissions of user data	. 98	12.1	DSI3 physical layer	
11.2.46	User data registers (USERDATA_10 -		12.1.1	Command receiver	
	USERDATA_1E)		12.1.2	Response transmitter	
11.2.47	Lock and CRC registers		12.1.3	Discovery mode current sense	
11.2.48	Reserved registers		12.2	Address assignment	. 146
11.2.49	Invalid register addresses	100	12.2.1	Address assignment method for parallel	
11.3	OTP and read/write register array CRC			connected slaves	. 146
	verification		12.2.2	Address assignment method for bus switch	
11.3.1	NXP OTP registers			connected daisy chain devices	. 146
11.3.2	User OTP only registers		12.2.3	DSI3 discovery mode: Address assignment	
11.3.3	OTP modifiable registers	101		method for resistor connected daisy chain	
11.4	Voltage regulators	102		devices	
44 4 4	VBUF regulator capacitor and capacitor		12.3	DSI3 command and response mode	. 148
11.4.1	1201 regulator supusitor and supusitor				
	monitor		12.3.1	DSI3 command and response mode	
11.4.1 11.4.1.1	- · · · · · · · · · · · · · · · · · · ·		12.3.1	DSI3 command and response mode command reception	. 148

FXLS9xxx0

12.3.1.2	Command message format	149	13.3	Data transmission data link layer	171
12.3.1.3	Error checking	149	13.3.1	Bit encoding	171
12.3.2	DSI3 command and response mode		13.3.2	PSI5 data transmission	.171
	response transmission	150	13.3.2.1	PSI5-x10P transmission mode	172
12.3.2.1	Symbol encoding	150	13.3.2.2	PSI5-x10C transmission mode	172
12.3.2.2	Response message format	152	13.3.2.3	PSI5-x16P transmission mode	172
12.3.2.3	Error checking	152	13.3.2.4	PSI5-x16C transmission mode	172
12.3.3	DSI3 command and response mode timing	153	13.3.3	Error detection	173
12.3.4	DSI3 command and response mode		13.3.3.1	Parity error detection	173
	command summary	153	13.3.3.2	3-bit CRC error detection	
12.3.4.1	Register read command		13.3.4	PSI5 data field and data range values	173
12.3.4.2	Register write command		13.4	Initialization	
12.3.4.3	Global register write command to the		13.4.1	PSI5 initialization phase 1	
	PHYSADDR register	155	13.4.2	PSI5 initialization phase 2	
12.3.4.4	Enter periodic data collection mode		13.4.2.1	PSI5 initialization phase 2 data	
	command	156		transmissions	178
12.3.4.5	Reserved commands		13.4.3	Internal self-test	
12.4	DSI3 periodic data collection mode and	-	13.4.4	Initialization phase 3	
	background diagnostic mode	158	13.5	Normal mode	
12.4.1	DSI3 periodic data collection mode and		13.5.1	Asynchronous mode	
	background diagnostic mode command		13.5.2	Simultaneous sampling mode	180
	reception	158	13.5.3	Synchronous sampling mode with minimum	
12.4.1.1	Bit encoding			latency	181
12.4.1.2	Command message format		13.6	PSI5 default mode (un-programmed PSI5	
12.4.1.3	Error checking		10.0	device)	181
12.4.2	DSI3 periodic data collection mode	.00	13.7	Daisy chain mode	
12.1.2	response transmission	159	13.8	Error handling	
12.4.2.1	Symbol encoding		13.8.1	Daisy chain error handling	
12.4.2.2	Response message format		13.8.2	Initialization phase 2 error handling	
12.4.2.3	Error checking		13.8.3	Initialization phase 3 error handling	
12.4.3	DSI3 periodic data collection mode timing		13.8.4	Normal mode error handling with internal	100
12.4.4	Background diagnostic mode response	102	10.0.7	error automatic clearing	186
12.7.7	transmission	162	13.8.4.1	Standard error reporting	
12.4.4.1	Symbol encoding		13.8.4.2	PSI5 error extension option	
12.4.4.2	Response message format		13.8.5	Normal mode error handling with internal	100
12.4.4.3	Error checking		13.0.3	error latching	187
12.4.5	DSI3 background diagnostic mode timing		13.8.5.1	Standard error reporting	
12.4.6	DSI3 periodic data collection mode and	100	13.8.5.2	PSI5 error extension option	
12.4.0	background diagnostic mode command		13.0.3.2	PSI5 programming mode	
		163	13.9.1	PSI5 programming mode entry	
12.4.7	summary DSI3 PDCM data transmission modes		13.9.2	PSI5 programming mode - data link layer	
12.4.7 12.4.7.1	Simultaneous sampling mode (SS_EN = 1)		13.9.2.1	PSI5 programming mode - command bit	100
12.4.7.1		104	13.9.2.1		100
12.4.7.2	Synchronous sampling mode with minimum	164	12022	encoding PSI5 programming mode - command	100
10 E	latency (SS_EN = 0)		13.9.2.2		100
12.5	Initialization timing		12022	message format	
12.6	Maximum number of devices on a network		13.9.2.3	Short frame command and response format	
12.6.1	Pre-configured, parallel connected network		13.9.2.4	Long frame command and response format	190
12.6.2	Bus switch connected daisy chain network	105	13.9.2.5	Extra long frame command and response	400
12.6.3	Resistor connected daisy chain network	400	40000	format	
40.7	using discovery mode		13.9.2.6	Command message CRC	190
12.7	DSI3 exception handling	100	13.9.2.7	Command sync pulse blanking time	
12.7.1	Daisy chain and discovery mode error	407	13.9.2.8	Command timeout	191
	handling		13.9.3	PSI5 programming mode command and	404
	PSI5 protocol		40.0.4	response summary	191
13.1	Communication interface overview		13.9.4	Programming mode via PSI5 error	40.
13.2	Data transmission physical layer		40.40	response summary	
13.2.1	Synchronization pulse		13.10	PSI5 OTP programming procedure	
13.2.1.1	Synchronization pulse detection			Standard 32-bit SPI protocol	
13.2.1.2	Synchronization pulse pulldown function	171	14.1	SPI command format	193

FXLS9xxx0

Single channel inertial sensor

14.2	SPI response format193
14.3	Command summary 194
14.3.1	Register read command
14.3.1.1	Register read command message format 195
14.3.1.2	Register read response message format 195
14.3.2	Register write command
14.3.2.1	Register write command message format196
14.3.2.2	Register write response message format196
14.3.3	Sensor data request commands197
14.3.3.1	Sensor data request command message
14.3.3.1	format197
44222	
14.3.3.2	Sensor data request response message
4404	format
14.3.4	Reserved commands
14.3.4.1	Reserved command message format198
14.3.4.2	Reserved command response message
	format198
14.4	Error checking
14.4.1	Default 8-bit CRC
14.4.1.1	Command error checking 198
14.4.1.2	Response error checking199
14.4.2	Selectable 4-bit CRC200
14.4.2.1	SPI command format with 4-bit CRC200
14.4.2.2	SPI response format with 4-bit CRC200
14.4.2.3	Command error checking with 4-bit CRC200
14.4.2.4	Response error checking with 4-bit CRC201
14.4.2.5	Message counter (KAC) with 4-bit CRC 201
14.4.2.6	Example 4-bit CRC calculations
14.4.3	Selectable 3-bit CRC202
14.4.3.1	SPI command format with 3-bit CRC202
14.4.3.2	SPI response format with 3-bit CRC202
14.4.3.3	Command error checking with 3-bit CRC203
14.4.3.4	Response error checking with 3-bit CRC 203
14.4.3.5	Message (KAC) with 3-bit CRC204
14.4.3.6	Example 3-bit CRC calculations
14.5	Exception handling
14.5.1	Standard basic status reporting field
14.5.1	Basic status field for responses to register
14.5.1.1	·
14.5.1.2	commands
14.5.1.2	data request commands205
4450	Alternative basis status remarking field
14.5.2	Alternative basic status reporting field
14.5.3	Standard detailed status field reporting 206
14.5.4	Alternative detailed status field reporting 207
14.5.5	Error responses
14.5.6	SPI error
14.5.7	SPI data output verification error209
14.6	SPI timing diagram210
	nter-integrated circuit (I2C) interface 210
15.1	I2C bit transmissions210
15.2	I2C start condition
15.3	I2C byte transmissions211
15.4	I2C acknowledge and not acknowledge
	transmissions211
15.5	I2C stop condition212
15.6	I2C register transfers212

15.6.1	Register write transfers	212
15.6.2	Register read transfers	213
15.6.3	Sensor data register read wrap around	
	options	214
15.6.3.1	Single channel register read wrap around .	214
15.7	I2C timing diagram	215
16	Package outline	216
17	Soldering	222
18	References	
19	Revision history	233
20	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.