NXP Semiconductors

Data Sheet: Technical Data

Document Number: IMX93AEC

Rev. 3, 12/2023

MIMX9352AVTXMAB
MIMX9332AVTXMAB

MIMX9351AVXMAB
MIMX9331AVTXMAB

i.MX 93 Application Processors Data Sheet for Automotive Products

Package Information

Plastic Package FCBGA 14 x 14 mm, 0.65 mm pitch

Ordering Information

See Table 2 on page 5

1 i.MX 93 introduction

The i.MX 93 family represents NXP's latest power-optimized processors for smart home, building control, contactless HMI, IoT edge, Automotive, and Industrial applications.

The i.MX 93 includes powerful dual Arm® Cortex®-A55 processors with speeds up to 1.7 GHz integrated with a NPU that accelerates machine learning inference. A general-purpose Arm® Cortex®-M33 running up to 250 MHz is for real-time and low-power processing. Robust control networks are possible via CAN-FD interface. Also, dual 1 Gbps Ethernet controllers, one supporting Time Sensitive Networking (TSN), drive gateway applications with low latency.

The i.MX 93 Automotive qualified part is particularly useful for applications such as:

- Driver monitoring system (DMS)
- Cost optimized gateway
- General purpose compute

1.	i.MX 93 introduction	. 1
	1.1. Ordering information	. 4
2.	Block diagram	. 7
3.	Modules list	
	3.1. Special signal considerations	13
	3.2. Unused input and output guidance	
4.	Electrical characteristics	
	4.1. Chip-level conditions	15
	4.2. Power modes	23
	4.3. Power supplies requirements and restrictions	26
	4.4. PLL electrical characteristics	27
	4.5. I/O DC parameters	28
	4.6. I/O AC parameters	30
	4.7. Differential I/O output buffer impedance	32
	4.8. System modules timing	32
	4.9. Display and graphics	37
	4.10. Audio	
	4.11. Analog	47
	4.12. External peripheral interface parameters	49
5.	Boot mode configuration	
	5.1. Boot mode configuration pins	85
	5.2. Boot device interface allocation	86
6.	Package information and contact assignments	90
	6.1. 14 x 14 mm package information	90
7.	Revision history	108

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

i.MX 93 introduction

Table 1. Features (Sheet 1 of 3)

Subsystem	Features
Cortex®-A55 MPCore platform	Two Cortex®-A55 processors operating up to 1.7 GHz • 32 KB L1 Instruction Cache • 32 KB L1 Data Cache • 64 KB per-core L2 cache • Media Processing Engine (MPE) with Arm® Neon TM technology supporting the Advanced Single Instruction Multiple Data architecture • Floating Point Unit (FPU) with support of the Arm® VFPv4-D16 architecture
	Support of 64-bit Arm® v8.2-A architecture
	256 KB cluster L3 cache
	Parity/ECC protection on L1 cache, L2 cache, and TLB RAMs
Cortex®-M33 core platform	Stand by monitoring with Cortex®-A55 and other high-power modules power gated
	Cortex®-M33 CPU operating up to 250 MHz • Support FPU • Support MPU • Support NVIC • Support FPB • Support DWT and ITM • Two-way set-associative 16 KB System Cache with parity support • Two-way set-associative 16 KB Code Cache with parity support • 256 KB tightly coupled memory (TCM)
Neural Processing Unit (NPU)	Neural Network performance (256 MACs operating up to 1.0 GHz and 2 OPS/MAC) • NPU targets 8-bit and 16-bit integer RNN • Handles 8-bit weights
Image Sensor Interface (ISI)	Standard pixel formats commonly used in many camera input protocols Programmable resolutions up to 2K Image processing for: Supports one source of up to 2K horizontal resolution Supports pixel rate up to 200 Mpixel/s Image down scaling via decimation and bi-phase filtering Color space conversion Interlaced to progressive conversions
On-chip memory	Boot ROM (256 KB) for Cortex®-A55
	Boot ROM (256 KB) for Cortex®-M33
	On-chip RAM (640 KB)

Table 1. Features (continued) (Sheet 2 of 3)

Subsystem	Features
External memory interface	16-bit DRAM interface: • LPDDR4X/LPDDR4 with inline ECC
	 Three Ultra Secure Digital Host Controller (uSDHC) interfaces: One eMMC 5.1 (8-bit) compliance with HS400 DDR signaling to support up to 400 MB/sec One SDXC (4-bit, no eMMC5.1, with extended capacity) One SDIO (4-bit, SD/SDIO 3.01 compliance with 200 MHz SDR signaling and up to 100 MB/sec)
	FlexSPI Flash with support for XIP (for Cortex®-A55 in low-power mode) and support for either one Octal SPI or Quad SPI FLASH device. It also supports both Serial NOR and Serial NAND flash using the FlexSPI.
Pixel Pipeline (PXP)	BitBlit Flexible image composition options—alpha, chroma key Porter-Duff operation Image rotation (90°, 180°, 270°) Image resize Color space conversion Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400) Standard 2D-DMA operation
LCDIF Display Controller	The LCDIF can drive any of three displays: • MIPI DSI: up to 1920x1200p60 • LVDS Tx: up to 1366x768p60 or 1280x800p60 • Parallel display: up to 1366x768p60 or 1280x800p60
MIPI CSI-2 Interface	One 2-lane MIPI CSI-2 camera input: Complaint with MIPI CSI-2 specification v1.3 and MIPI D-PHY specification v1.2 Support up to 2 Rx data lanes (plus 1 Rx clock lane) Support 80 Mbps – 1.5 Gbps per lane data rate in high speed operation Support 10 Mbps data rate in low power operation
MIPI DSI Interface	One 4-lane MIPI DSI display with data supplied by the LCDIF Compliant with MIPI DSI specification v1.2 and MIPI D-PHY specification v1.2 Capable of resolutions achievable with a 200 MHz pixel clock and active pixel rate of 140 Mpixel/s with 24-bit RGB. Support 80 Mbps—1.5 Gbps data rate per lane in high speed operation Support 10 Mbps data rate in low power operation
Audio	Three SAI interfaces:
GPIO and input/output multiplexing	General-purpose input/output (GPIO) modules with interrupt capability
	Input/output multiplexing controller (IOMUXC) to provide centralized pad control

i.MX 93 introduction

Table 1. Features (continued) (Sheet 3 of 3)

Subsystem	Features			
Power management	Temperature sensor with programmable trip points			
	Flexible power domain partitioning with internal power switches to support efficient power management			
Connectivity	Two USB 2.0 controllers and PHYs interfaces			
	Two Controller Area Network (FlexCAN) modules, each optionally supporting flexible data-rate (FD)			
	Two Improved Inter Integrated Circuit (I3C) modules			
	Two 32-pin FlexIO modules			
	Three Ultra Secure Digital Host Controller (uSDHC) interfaces			
	Two Ethernet controllers (capable of simultaneous operation) • One Gigabit Ethernet controller with support for Energy Efficient Ethernet (EEE), Ethernet AVB, and IEEE 1588 • One Gigabit Ethernet controller with support for TSN in addition to EEE, Ethernet AVB, and IEEE 1588			
	Eight Low Power SPI (LPSPI) modules			
	Eight Low Power I2C modules			
	Eight Low Power Universal Asynchronous Receiver/Transmitter (LPUART) modules			
Security	Trusted Resource Domain Controller (TRDC) • Supports 16 domains			
	Arm® TrustZone® (TZ) architecture, including both Trustzone-A and Trustzone-M			
	On-chip RAM (OCRAM) secure region protection using OCRAM controller			
	EdgeLock® secure enclave			
	Battery Backed Security Module (BBSM) • Secure real-time clock (RTC)			
System debug	Arm® CoreSight TM debug and trace technology			
	Embedded Trace FIFO (ETF) with 4 KB internal storage to provide trace buffering			
	Unified trace capability for dual core Cortex®-A55 and Cortex®-M33 CPUs			
	Cross Triggering Interface (CTI)			
	Support for 4-pin (JTAG) debug interface and SWD			

1.1 Ordering information

Table 2 provides examples of orderable part numbers covered by this Data Sheet.

Table 2. Ordering information

Part number	Part differe ntiator	Number of Cores (A55)	Max speed	NPU	Camera	Display	Connectivity	Audio	DDR
MIMX9352AVT XMAB	5	2	1.7 GHz	NPU	2-lane 1080p30 MIPI CSI Parallel camera	4-lane 1080p60 MIPI DSI 4-lane LVDS Parallel display	• 2x GbE • 2x USB 2.0	7x I2S TDM	3.7 GT/s
MIMX9351AVT XMAB	5	1	1.7 GHz	NPU	2-lane 1080p30 MIPI CSI Parallel camera	4-lane 1080p60 MIPI DSI 4-lane LVDS Parallel display	• 2x GbE • 2x USB 2.0	7x I2S TDM	3.7 GT/s
MIMX9332AVT XMAB	3	2	1.7 GHz	_	2-lane 1080p30 MIPI CSI Parallel camera	4-lane 1080p60 MIPI DSI 4-lane LVDS Parallel display	• 2x GbE • 2x USB 2.0	7x I2S TDM	3.7 GT/s
MIMX9331AVT XMAB	3	1	1.7 GHz	_	2-lane 1080p30 MIPI CSI Parallel camera	4-lane 1080p60 MIPI DSI 4-lane LVDS Parallel display	• 2x GbE • 2x USB 2.0	7x I2S TDM	3.7 GT/s

Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field.

- The i.MX 93 Processors for Commercial Products Data Sheet (IMX93CEC) covers parts listed with a "D (Commercial temp)"
- The i.MX 93 Processors for Industrial Products Data Sheet (IMX93IEC) covers parts listed with a "C (Industrial temp)"
- The i.MX 93 Processors for Extended Industrial Products Data Sheet (IMX93XEC) covers parts listed with a "X (Extended Industrial temp)"
- The i.MX 93 Processors for Automotive Products Data Sheet (IMX93AEC) covers parts listed with an "A (Automotive temp)"

Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMX or contact an NXP representative for details.

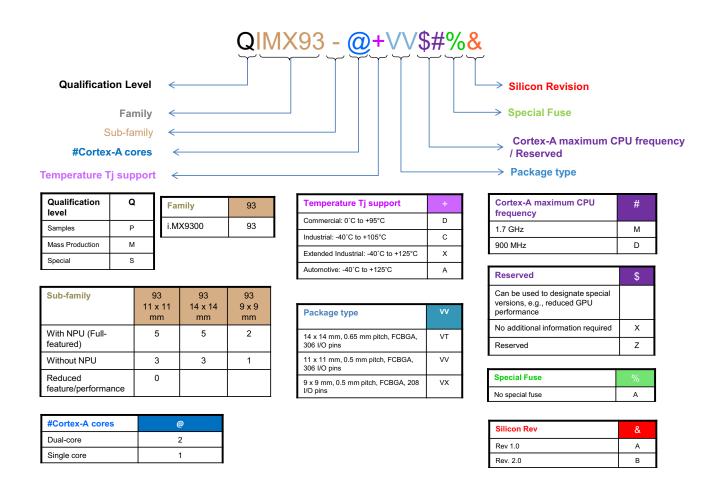


Figure 1. Part number nomenclature—i.MX 93

2 Block diagram

Figure 2 shows the functional modules in the i.MX 93 processor system¹.

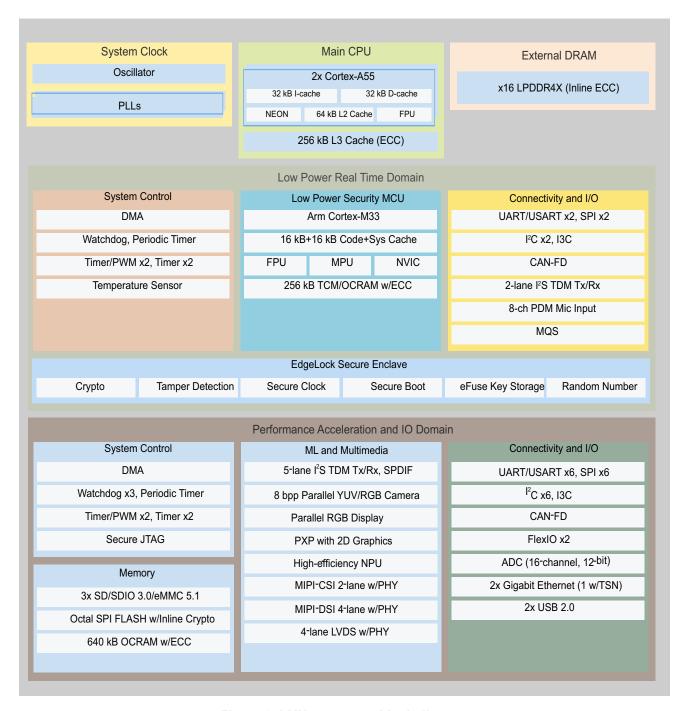


Figure 2. i.MX 93 system block diagram

1. Some modules shown in this block diagram are not offered on all derivatives. This block diagram may also show less modules than available in some derivatives. See Table 2 for details.

3 Modules list

The i.MX 93 processors contain a variety of digital and analog modules. Table 3 describes these modules in alphabetical order.

Table 3. i.MX 93 modules list

Block mnemonic	Block name	Brief description
ADC Analog to Digital Converter		The ADC is a 12-bit 4-channel with 1 MS/s ADC.
Arm	Arm Platform	The Arm Core Platform includes a dual Cortex®-A55 core and a Cortex®-M33 core. The Cortex®-A55 core includes associated sub-blocks, such as the 32 KB L1 I-cache, 32 KB L1-D-cache, 64 KB per core L2 cache, Media Processing Engine (MPE) with Neon™ technology, Floating Point Unit (FPU) with support of the VFPv4-D16 architecture and 256 KB cluster L3 cache. The Cortex®-M33 core is used for standing by monitoring with Cortex®-A55 and other high-power modules power gated, IoT device control and ML applications.
BBSM	Battery Backed Security Module	The BBSM is in the low power section in the battery backed by the VBAT (or RTC) power domain. This enables it to keep this data valid and continue to increment the time counter when the power goes down in the rest of device. The always-powered up part of the module is isolated from the rest of the logic to ensure that it is not corrupted when the device is powered down.
BBNSM	Battery Backed non-Secure Module	BBNSM works with BBSM to keep this data valid and continue to increment the time counter when the power goes down in the rest of the device.
CAN-FD	Flexible Controller Area Network	The CAN with Flexible Data rate (CAN-FD) module is a communication controller implementing the CAN protocol according to the ISO11898-1 and CAN 2.0B protocol specification.
CCM Clock Control Module, GPC General Power Controller, SRC System Reset Controller		These modules are responsible for clock and reset distribution in the system, and also for the system power management.
СТІ	Cross Trigger Interface	Cross Trigger Interface (CTI) allows cross-triggering based on inputs. The CTI module is internal to the Cortex®-A55 core platform and Cortex®-M33.
DAP	Debug Access Port	The DAP provides real-time access for the debugger without halting the core to access: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex®-A55 core platform.
DDRC	Double Data Rate Controller	The DDR Controller has the following features: • Supports 16-bit LPDDR4/LPDDR4X • Supports up to 2 Gbyte DDR memory space
EdgeLock® Secure Enclave	EdgeLock® Secure Enclave	The EdgeLock® secure enclave is preconfigured to help ease the complexity of implementing robust, system-wide intelligent security and avoid costly errors. This fully integrated built-in security subsystem is a standard feature.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 3. i.MX 93 modules list (continued)

Block mnemonic	Block name	Brief description
eDMA	Enhanced Direct Memory Access	EDMA3 (AHB) is integrated with AHB bus into AONMIX. EDMA4 (AXI) is integrated with AXI bus into WAKEUPMIX, also SoC-specific DMA requests from the SoC-specific audio peripherals (2x SAI, Audio Transceiver and additional I2C, SPI, and LPUART modules).
ENET	Ethernet Controller	The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver (PHY) is required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard.
ENET_QOS	Ethernet QoS Controller	The ENET_QOS is compliant with the IEEE 802.3–2015 specification and can be used in applications, such as AV bridges, AV nodes, switches, data center bridges and nodes, and network interface cards. It enables a host to transmit and receive data over Ethernet in compliance with the IEEE 802.3–2015. The Ethernet QoS with TSN also supports following features: • 802.1Qbv Enhancements to Scheduling Traffic • 802.1Qbu Frame preemption • Time Based Scheduling
FlexIO1 FlexIO2	Flexible Input/Output	FlexIO is capable of supporting a wide range of protocols, including but not limited to UART, I2C, SPI, I2S, camera interface, display interface, PWM waveform generation, etc. The module can remain functional when the chip is in a low power mode provided the clock it is using remain active.
FlexSPI1	Flexible Serial Peripheral Interface	The FlexSPI module acts as an interface to one external Octal serial flash devices, or up to two external Quad SPI serial flash devices by two chip select signals, but sharing same CLK/DQS/DATA signals. Both Serial NOR flash and Serial NAND flash are supported.
GIC	Generic Interrupt Controller	The GIC handles all interrupts from the various subsystems and is ready for virtualization.
GPIO1 GPIO2 GPIO3 GPIO4	General Purpose I/O Modules	Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O.
I3C1 I3C2	Improved Inter Integrated Circuit	I3C is a serial interface for connecting peripherals to an application processor.
IOMUXC	IOMUX Control	This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable.
ISI	Image Sensor Interface	The ISI is a simple camera interface that supports image processing and transfer via a bus master interface. The one-camera input can be connected to either of: • MIPI CSI-2 camera • Parallel camera input
JTAG	Joint Test Action Group	The i.MX 93 processor supports a 4-pin (JTAG) debug interface.

Modules list

Table 3. i.MX 93 modules list (continued)

Block mnemonic	Block name	Brief description
LCDIF	LCD Interface	The LCD Interface (LCDIF) is, a general purpose display controller, used to drive a wide range of display devices varying in size and capability.
LDB	LVDS Display Bridge	 LVDS Display Bridge provides the following functionalities: Connectivity to relevant devices - Displays with LVDS receivers. Arranging the data as required by the external display receiver and by LVDS display standards. Synchronization and control capabilities.
LPI2C1 LPI2C2 LPI2C3 LPI2C4 LPI2C5 LPI2C6 LPI2C7 LPI2C8	Low Power Inter-integrated Circuit	The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as a controller and/or as a target. The I2C provides a method of communication between a number of external devices. More detailed information, see Section 4.12.5, LPI2C timing parameters.
LPSPI1 LPSPI2 LPSPI3 LPSPI4 LPSPI5 LPSPI6 LPSPI7 LPSPI8	Low Power Serial Peripheral Interface	The LPSPI is a low power Serial Peripheral Interface (SPI) module that support an efficient interface to an SPI bus as a master and/or a slave. • It can continue operating while the chip is in stop modes, if an appropriate clock is available • Designed for low CPU overhead, with DMA off loading of FIFO register access
LPUART1 LPUART2 LPUART3 LPUART4 LPUART5 LPUART6 LPUART7 LPUART8	Low Power UART Interface	Each of the LPUART modules support the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) • Programmable baud rates up to 5 Mbps.
MIPI CSI-2	MIPI CSI-2 Interface	 Key features of MIPI CSI-2 controller are listed as following: Complaint with MIPI CSI-2 specification v1.3 and MIPI D-PHY specification v1.2 Support up to 2 Rx data lanes (plus 1 Rx clock lane) MIPI CSI-2 supports: Pixel clock up to 200 MHz (at both nominal and overdrive voltage) Up to approximately 150 Mpixel/s supported 80 Mbps to 1.5 Gbps per lane data rate in high speed operation Support 10 Mbps data rate in low power operation

Table 3. i.MX 93 modules list (continued)

Block mnemonic	Block name	Brief description		
MIPI DSI	MIPI DSI Interface	 Key features of MIPI DSI controller are listed as following: Support one 4-lane MIPI DSI display with pixels from the LCDIF Compliant to MIPI DSI specification v1.2 and MIPI D-PHY specification v1.2 The maximum pixel clock is 200 MHz and active pixel rate of 140 Mpixel/s with 24-bit RGB. This includes resolutions such as 1080p60 or 1920x1200p60. The maximum data rate per lane is 1.5 Gbps. 		
MQS	Medium Quality Sound	MQS is used to generate medium quality audio via standard GPIO in the pinmux, allow the user to connect stereo speakers or headphones to a power amplifier without an additional DAC chip.		
NPU (ML)	Neural-network Processing Unit (Machine Learning)	A machine learning acceleration module with capable of 0.5 TOP/s performance.		
OCOTP_CTRL	OTP Controller	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility.		
OCRAM	On-Chip Memory controller	The On-Chip Memory controller (OCRAM) module is designed as an interface between the system's AXI bus and the internal (on-chip) SRAM memory module. In i.MX 93 processors, 640 KB OCRAM is used for • 256 KB for resident Cortex-A Trusted Execution Environment • 384 Kbytes for ML NPU • All 640 Kbytes can be accessed by software when the NPU ML Accelerator is not used.		
PDM	Pulse Density Modulation	It is a 24-bit PDM module with linear phase response to support high AOP microphones for audio quality applications.		
PXP	Pixel Processing Pipeline	The i.MX 93 supports a high efficiency 2D graphics engine PXP for simple composition and acceleration for use by operating systems, such as Linux. • BitBlit • Flexible image composition options—alpha, chroma key • Porter—Duff operation • Image rotation (90°, 180°, 270°) • Image resize • Color space conversion • Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400)		

Modules list

Table 3. i.MX 93 modules list (continued)

Block mnemonic	Block name	Brief description	
SAI1 SAI2 SAI3	Synchronous Audio Interface	The SAI module provides a synchronous audio interface (SAI):	
SPDIF	Sony Philips Digital Interconnect Format	The i.MX 93 SPDIF module supports raw capture mode that can save all the incoming bits into audio buffer.	
TEMPSENSOR	Temperature Sensor	Temperature sensor is used to monitor die temperature.	
TPM1 TPM2 TPM3 TPM4 TPM5 TPM6	Timer/Pulse Width Modulation	The TPM (Timer/PWM Module) is a 4-channel timer that supports input capture, output compare, and the generation of PWM signals to control electrical motor and power management applications. The counter, compare, and capture registers are clocked by an asynchronous clock that can remain enabled in low power modes.	
TRDC Trusted Resource Domain Controller		TRDC is an integrated, scalable architectural framework for access control, fully compatible with Arm® Trustzone-M architectural definition, which provides full access protection of Cortex®-A55 and Cortex®-M33 as well as Apps domain SoC non-processor masters.	
uSDHC1 uSDHC2 uSDHC3	SD/MMC Enhanced Multi-Media Card / Secure Digital Host Controller	The i.MX 93 supports three uSDHC interfaces: • uSDHC1 optimized for 8-bit eMMC 5.1 • uSDHC2 optimized for 4-bit SD card 3.0 • uSDHC3 optimized for 4-bit SDIO3.0	
USB1 USB2	Universal Serial Bus 2.0	The i.MX 93 supports two USB 2.0 controllers and PHYs. They can be configured as either a USB host or a USB device.	
WDOG1 WDOG2 WDOG3 WDOG4 WDOG5	Watchdog	The watchdog (WDOG) timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line.	

3.1 Special signal considerations

Table 4 lists special signal considerations for the i.MX 93 processors. The signal names are listed in alphabetical order.

The package contact assignments can be found in Section 6, Package information and contact assignments." Signal descriptions are provided in the *i.MX 93 Reference Manual* (IMX93RM).

Table 4. Special signal considerations

Signal Name	Remarks		
CLKIN1/CLKIN2	CLKIN1 and CLKIN2 are input pins without internal pull-up and pull-down. An external 10K pull-down resistor is recommended if they are not used.		
NC	These signals are No Connect (NC) and should be unconnected in the application.		
ONOFF	A brief connection to GND in the OFF mode causes the internal power management state machine to change the state to ON. In the ON mode, a brief connection to GND generates an interrupt (intended to be a software-controllable power-down). Approximately five seconds (or more) to GND causes a forced OFF.		
POR_B	POR_B has no internal pull-up/down resistor, and requires external pull-up resistor to NVCC_BBSM_1P8. It is recommended that POR_B is properly handled during power up/down. Please see the EVK design for details.		
RTC_XTALI/RTC_XTALO	To hit the exact oscillation frequency, the board capacitors must be reduced to account for the board and chip parasitics. The integrated oscillation amplifier is self-biasing, but relatively weak. Care must be taken to limit the parasitic leakage from RTC_XTALI and RTC_XTALO to either the power or the ground (> $100~\text{M}\Omega$). This de-biases the amplifier and reduces the start-up margin. If you want to feed an external low-frequency clock into RTC_XTALI, the RTC_XTALO pin must remain unconnected or driven by a complementary signal. The logic level of this forcing clock must not exceed the NVCC_BBSM_1P8 level and the frequency shall be < $50~\text{kHz}$ under the typical conditions.		
XTALI_24M/XTALO_24M	The system requires 24 MHz on XTALI/XTALO. The crystal cannot be eliminated by the external 24 MHz oscillator. The logic level of this forcing clock must not exceed the VDD_ANA0_1P8 level. If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter requirements. See Section 4.1.6, Clock sources and relevant interface specifications chapters for details.		

3.2 Unused input and output guidance

If a function of the i.MX 93 is not used, the I/Os and power rails of that function can be terminated to reduce overall board power. Table 5 is recommended connectivities for LVDS and other digital I/Os. Table 6 is recommended connectivities for USB.

Table 5. Unused function strapping recommendations

Function	Ball name	Recommendations if unused
ADC	ADC_IN0, ADC_IN1, ADC_IN2, ADC_IN3	Tie to ground
TAMPER	TAMPER0, TAMPER1	Tie to ground

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Modules list

Table 5. Unused function strapping recommendations (continued)

Function	Ball name	Recommendations if unused
LVDS	VDD_LVDS_1P8, LVDS_CLK_P, LVDS_CLK_N, LVDS_Dx_P, LVDS_Dx_N,	Tie to ground through 10 K Ω resistors
Digital I/O supplies	NVCC_GPIO, NVCC_WAKEUP, NVCC_AON, NVCC_SD2	Tie to ground through 10 $K\Omega$ resistors if entire bank is not used

Table 6. MIPI strapping recommendations

Function	Ball name	Recommendations
Only	VDD_MIPI_0P8, VDD_MIPI_1P8	Supply
MIPI_CSI used	MIPI_DSI1_CLK_P, MIPI_DSI1_CLK_N, MIPI_DSI1_Dx_P, MIPI_DSI1_Dx_N	Not connected
Only	VDD_MIPI_0P8, VDD_MIPI_1P8	Supply
MIPI_DSI used	MIPI_CSI1_CLK_P, MIPI_CSI1_CLK_N, MIPI_CSI1_Dx_P, MIPI_CSI1_Dx_N	Not connected
Neither	VDD_MIPI_0P8, VDD_MIPI_1P8	Tie to ground
MIPI_CSI nor	MIPI_CSI1_CLK_P, MIPI_CSI1_CLK_N, MIPI_CSI1_Dx_P, MIPI_CSI1_Dx_N	Not connected
MIPI_DSI used	MIPI_DSI1_CLK_P, MIPI_DSI1_CLK_N, MIPI_DSI1_Dx_P, MIPI_DSI1_Dx_N	Not connected
GOOG	MIPI_REXT	Tie to ground

Table 7. USB strapping recommendations

Function	Ball name	Recommendations
Only	VDD_USB_3P3, VDD_USB_1P8, VDD_USB_0P8	Supply
USB1 used	USB2_VBUS, USB2_D_P, USB2_D_N, USB2_ID, USB2_TXRTUNE	Not connected
Only	VDD_USB_3P3, VDD_USB_1P8, VDD_USB_0P8	Supply
USB2 used	USB1_VBUS, USB1_D_P, USB1_D_N, USB1_ID, USB1_TXRTUNE	Not connected
Neither	VDD_USB_3P3, VDD_USB_1P8, VDD_USB_0P8	Tie to ground
USB1 nor USB2	USB1_VBUS, USB1_D_P, USB1_D_N, USB1_ID, USB1_TXRTUNE	Not connected
used	USB2_VBUS, USB2_D_P, USB2_D_N, USB2_ID, USB2_TXRTUNE	Not connected

4 Electrical characteristics

This section provides the device and module-level electrical characteristics for the i.MX 93 family of processors.

4.1 Chip-level conditions

This section provides the device-level electrical characteristics for the IC. See Table 8 for a quick reference to the individual tables and sections.

Table 8. i.MX 93 chip-level conditions

For these characteristics,	Topic appears
Absolute maximum ratings	on page 15
Thermal resistance	on page 16
Operating ranges	on page 19
Clock sources	on page 20
Maximum supply currents	on page 22
Power modes	on page 23
Power supplies requirements and restrictions	on page 26

4.1.1 Absolute maximum ratings

CAUTION

Stresses beyond those listed in the following table may reduce the operating lifetime or cause immediate permanent damage to the device. The table below does not imply functional operation beyond those indicated in the operating ranges and parameters table.

Table 9. Absolute maximum ratings

Parameter description	Symbol	Min	Max	Unit	Notes
Core supplies input voltages	VDD_SOC	-0.3	1.15	V	_
GPIO supply voltage	NVCC_GPIO, NVCC_WAKEUP, NVCC_AON	-0.3	3.8	V	_
IO supply for SD2	NVCC_SD2	-0.3	3.8	V	_
DDR PHY supply voltage	VDD2_DDR	-0.3	1.575	V	_
DDR I/O supply voltage	VDDQ_DDR	-0.3	1.575	V	_
IO supply and IO Pre-driver supply for BBSM bank	NVCC_BBSM_1P8	-0.3	2.15	V	_

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Electrical characteristics

Table 9. Absolute maximum ratings (continued)

Parameter description	Symbol	Min	Max	Unit	Notes
USB VBUS input detected	USB1_VBUS, USB2_VBUS	-0.3	3.95	V	_
Power for USB OTG PHY	VDD_USB_0P8	-0.3	1.15	V	_
	VDD_USB_1P8	-0.3	2.15	V	_
	VDD_USB_3P3	-0.3	3.95	V	_
MIPI PHY supply voltage	VDD_MIPI_0P8	-0.3	1.15	V	_
	VDD_MIPI_1P8	-0.3	2.15	V	_
LVDS PHY supply voltage	VDD_LVDS_1P8	-0.3	2.15	V	_
Analog core supply voltage	VDD_ANA_0P8	-0.3	1.15	V	_
	VDD_ANAx_1P8	-0.3	2.15	V	1
Input/output voltage range	V _{in} /V _{out}	-0.3	OVDD ² + 0.3	V	_
Storage temperature range	T _{STORAGE}	-40	150	°C	_

¹ VDD_ANAx_1P8 refers to VDD_ANA0_1P8, VDD_ANA1_1P8, and VDD_ANAVDET_1P8.

Table 10. Electrostatic discharge and latch up ratings

Parameter description		Rating	Reference	Comment
Electrostatic Discharge	Human Body Model (HBM)	±1000 V	JS-001	_
(ESD)	Charged Device Model (CDM)	±250 V	JS-002	_
Latch UP (LU)	Immunity level: • Class I @ 25 °C ambient temperature • Class II @ 125 °C ambient temperature	A A	JESD78	_

4.1.2 Thermal resistance

4.1.2.1 14 x 14 mm FCBGA package thermal characteristics

Table 11 displays the 14 x 14 mm FCBGA package thermal resistance data.

Table 11. 14 x 14 mm FCPBGA thermal resistance data

Rating	Board Type ¹	Symbol	Values	Unit
Junction to Ambient Thermal Resistance ²	JESD51-9, 2s2p	$R_{ hetaJA}$	21.7	°C/W
Junction-to-Top of Package Thermal Characterization parameter ³	JESD51-9, 2s2p	Ψ_{JT}	0.1	°C/W
Junction to Case Thermal Resistance ³	JESD51-9, 1s	$R_{ heta JC}$	5.4	°C/W

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² OVDD is the I/O supply voltage.

- Thermal test board meets JEDEC specification for this package (JESD51-9). Test board has 40 vias under die shadow mapped according to BGA layout under die. Each via is 0.2 mm in diameter and connects top layer with the first buried plane layer.
- Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment.
- Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the package top side surface temperature.

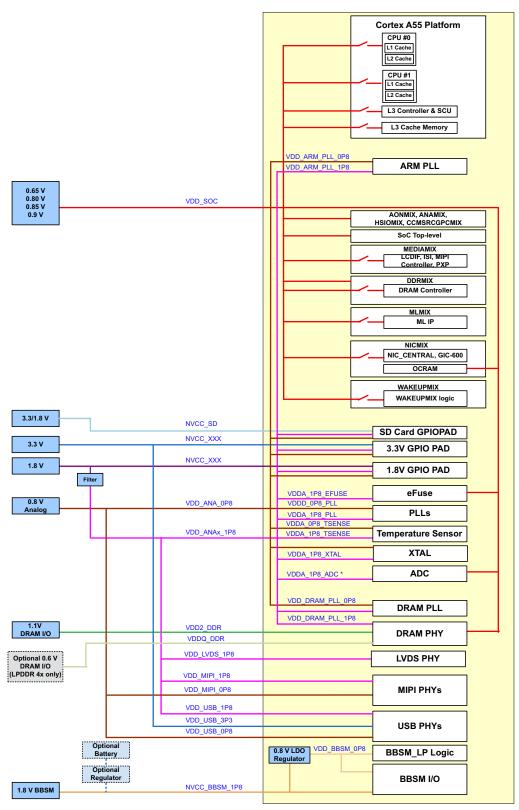
4.1.3 Power architecture

The power architecture of i.MX 93 is defined based on the assumption that systems are constructed for the case where the PMIC is used to supply all the power rails to the processor. The SoC may be powered from discrete parts rather than a PMIC, but a discrete-based solution is not necessarily BOM cost-optimized.

NVCC_BBSM_1P8 must be powered first and stay until the last.

The digital logic inside chip will be supplied with VDD_SOC, which can be nominal or overdrive voltage or a "low drive" voltage.

The DRAM controller and PHY have multiple external power supplies: VDD_SOC supplies SoC synthesized DRAM controller digital logic, VDD_ANA_0P8 for PLL and PHY digital logic, VDD_ANAx_1P8 for DRAM PLL and PHY analog circuitry, VDD2_DDR for 1.1 V DRAM PHY I/O supply, and VDDQ_DDR for DRAM PHY I/O supply.


For all the integrated analog modules, their 1.8 V analog power will be supplied externally through power pads. These supplies are separated with other power pads on the package to keep them clean, but they can be directly shared with other power rails on the board to reduce the number of power supplies from the PMIC.

For the integrated LVDS PHY, MIPI PHY, and USB PHYs, their 3.3 V (where supported), 1.8 V, and digital power will be supplied externally through power pads. The powers to those PHYs are separated with other power pads on the package to keep them clean, but they can be directly shared with other power rails on the board to reduce the number of power supplies from the PMIC.

For BBSM/RTC, the 1.8 V I/O pre-driver supply and 1.8 V I/O pad supply will also be supplied externally. The BBSM LP core digital domain logic is supplied by an internal LDO.

Figure 3 is the power architecture diagram for the whole chip. Note that it only shows power supplies, and does not show capacitors that may be required for internal LDO regulators.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

^{*} If ADC used, external voltage reference is recommended for VDD_ANAx_1P8 to improve the ADC ENOB.

Figure 3. Power architecture of i.MX 93 family of processors

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

4.1.4 Operating ranges

Table 12 provides the operating ranges of the i.MX 93 processors. For details on the chip's power structure, see the "Clock and Power Overview" chapter of the *i.MX 93 Reference Manual* (IMX93RM).

Table 12. Operating ranges

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment
Power supply for SoC logic and Arm core	VDD_SOC	0.85	0.90	0.95	V	Power supply for SoC, overdrive mode
		0.80	0.85	0.90	V	Power supply for SoC, nominal mode
		0.76	0.80	0.84	V	Power supply for SoC, low drive mode
		0.61	0.65	0.70	V	Power supply for SoC, suspend mode
Digital supply for PLLs,	VDD_ANA_0P8					
temperature sensor, LVCMOS I/O, MIPI,	VDD_MIPI_0P8	0.76	0.80	0.84	V	_
and USB PHYs	VDD_USB_0P8					
1.8 V supply for PLLs,	VDD_ANAx_1P8					
eFuse, Temperature sensor, LVCMOS	VDD_LVDS_1P8				V	
voltage detect reference, ADC, 24	VDD_MIPI_1P8	1.71	1.80	1.89		2
MHz XTAL, LVDS, MIPI, and USB PHYs	VDD_USB_1P8					
3.3 V supply for USB PHY	VDD_USB_3P3	3.069	3.30	3.45	V	_
Voltage supply for DRAM PHY	VDD2_DDR	1.06	1.10	1.14	V	_
Voltage supply for	VDDQ_DDR	1.06	1.10	1.14	V	LPDDR4
DRAM PHY I/O		0.57	0.60	0.67	V	LPDDR4X
I/O supply and I/O pre-driver supply for GPIO in BBSM bank	NVCC_BBSM_1P8	1.62	1.80	1.98	V	_
Power supply for GPIO when it is in 1.8 V mode	NVCC_AON NVCC_SD2	1.62	1.80	1.98	V	_
Power supply for GPIO when it is in 3.3 V mode	NVCC_GPIO NVCC_WAKEUP	3.00	3.30	3.465	V	_
		Tempera	ture Rang	jes	I	I .
Junction temperature— Automotive	Tj ³	-40	_	+125	°C	See the application note, i.MX 93 Product Lifetime Usage Estimates for information on product lifetime
Ambient temperature— Automotive	ent temperature— Ta		_	+85		(power-on hours) for this processor.

Electrical characteristics

4.1.5 Maximum frequency of main modules

Table 13 provides the maximum frequency of main modules in the i.MX 93 of processors.

Table 13. Maximum frequency of main modules¹

Main modules	Frequency (Low Drive mode)	Frequency (Nominal mode)	Frequency (Overdrive mode)
EdgeLock® Secure Enclave	133 MHz	200 MHz	250 MHz
Cortex®-M33 core	133 MHz	200 MHz	250 MHz
Cortex®-A55 cores	0.9 GHz	1.4 GHz	1.7 GHz
DRAM	933 MHz	1400 MHz	1866 MHz
NPU	500 MHz	800 MHz	1000 MHz

¹ For more detailed information about clock, see Chapter Clock Controller Module (CCM) of *i.MX* 93 Applications Processor Reference Manual.

4.1.6 Clock sources

4.1.6.1 External clock sources

The i.MX 93 processor is designed to function with quartz crystals to generate the frequencies necessary for operation. 24 MHz for the main clock source and 32.768 kHz for the real time clock. It is possible to inject frequencies into the input pins of the oscillators (XTALI and RTC_XTALI) if the frequency precision and jitter precision is sufficient.

The XTAL input is used to synthesize all of the clocks in the system with the RTC_XTAL input contribution to time keeping and low frequency operations.

Table 14 shows the interface frequency requirements.

Table 14. External input clock frequency

Parameter Description	Symbol	Min	Тур	Max	Unit
RTC_XTALI Oscillator ^{1,2}	f _{ckil}	_	32.768 ³	_	kHz
XTALI Oscillator ²	f _{xtal}	_	24	_	MHz

¹ External oscillator or a crystal with internal oscillator amplifier.

Table 15 shows the maximum frequency of external clock.

Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set point = $(V_{min} + \text{the supply tolerance})$. This result in an optimized power/speed ratio.

² VDD ANAx_1P8 refers to VDD_ANA0_1P8, VDD_ANA1_1P8, and VDD_ANAVDET_1P8.

³ Tj minimum temperature supported at startup where Tj = Ta.

² The required frequency stability of this clock source is application dependent.

³ Recommended nominal frequency is 32.768 kHz.

Table 15. External clock frequency

Parameter Description	Symbol	Low drive mode	Nominal mode	Overdrive mode	Unit
EXT_CLK maximum frequency	f _{ext_clk}	133	200	200	MHz

The typical values shown in Table 16 are required for use with NXP software to ensure precise time keeping and USB operation. When connecting external input clock to OSC32K, following connections are recommended:

- 1.8 V square waveform to RTC_XTALI
- RTC XTALO is disconnected.

Table 16 shows the external input clock for OSC32K.

Table 16. External input clock for OSC32K

	Symbol	Min	Тур	Мах	Unit
Frequency	f	_	32.768	_	kHz
RTC_XTALI	V _{IH}	1.62	_	1.98	V
	V _{IL}	0	_	0.18	V
	I _{IH}	-12	_	12	μА
	I _{IL}	-12	_	12	μА

4.1.6.2 On-chip oscillators

A 24 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU, BUS, and high-speed interfaces. For fractional PLLs, the 24 MHz clock from the oscillator can be used as the PLL reference clock directly.

Table 17. 24M oscillator specifications¹

Parameter Description	Min	Тур	Max	Unit
Frequency	_	24	_	MHz
Cload	_	12	_	pF
Drive level	_	_	100	μW
ESR	_	_	120	Ω
Duty cycle	40	_	60	%

Actual working drive level is dependent on real design. Please contact crystal vendor for selecting drive level of crystal. Single-ended oscillator to XTAL 24 MHz is not supported.

Table 18 shows 32K oscillator specifications.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 18. 32K oscillator specifications¹

Parameter Description	Min	Тур	Max	Unit
Frequency	_	32.768	_	kHz
Cload	_	12.5	_	pF
Drive level	_	_	0.5	μW
ESR	_	_	90	ΚΩ
Rs (Series resistance)	0	_	300	ΚΩ
Duty cycle	40	_	60	%

Actual working drive level is dependent on real design. Please contact crystal vendor for selecting drive level of crystal.

4.1.7 Maximum supply currents

Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use cases that requires maximum supply current is not a realistic use cases.

To help illustrate the effect of the application on power consumption, data was collected while running commercial standard benchmarks that are designed to be compute and graphic intensive. The results provided are intended to be used as guidelines for power supply design.

Table 19. Maximum supply currents (Sheet 1 of 2)

Power rail	Max current Uni		
VDD_SOC	2700 mA		
VDD_ANA_0P8	50 mA		
VDD_ANAx_1P8 ¹	250	mA	
NVCC_BBSM_1P8	2	mA	
NVCC_GPIO, NVCC_WAKEUP, NVCC_AON	I _{max} = N x C x V x (0.5 x F) Where: N—Number of IO pins supplied by the power line C—Equivalent external capacitive load V—IO voltage (0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F). In this equation, I _{max} is in Amps, C in Farads, V in Volts, and F in Hertz.		
VDDQ_DDR	160	mA	
VDD2_DDR	525	mA	
VDD_MIPI_0P8 (for MIPI CSI-2 2-lane Rx PHY)	18 mA		
VDD_MIPI_0P8 (for MIPI-DSI 4-lane Tx PHY)	33 mA		
VDD_MIPI_1P8 (for MIPI CSI-2 2-lane Rx PHY)	2.5 mA		
VDD_MIPI_1P8 (for MIPI-DSI 4-lane Tx PHY)	9.5	mA	

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 19. Maximum supply currents (continued) (Sheet 2 of 2)

Power rail	Max current	Unit
VDD_USB_3P3 (for USB PHY)	25.2	mA
VDD_USB_1P8 (for USB PHY)	36.2	mA
VDD_USB_0P8 (for USB PHY)	22.2	mA
VDD_LVDS_1P8	Max dynamic current 45	mA

¹ VDD_ANAx_1P8 refers to VDD_ANA0_1P8, VDD_ANA1_1P8, and VDD_ANAVDET_1P8.

4.2 Power modes

This section introduces the power modes used in the i.MX 93.

4.2.1 Power mode definition

The i.MX 93 supports the following power modes:

- RUN Mode: All external power rails are on, the Cortex®-A55 is active and running; other internal modules can be on/off based on application.
- Low Power RUN Mode: This mode is defined as a very low power run mode with all external power rails are on. In this mode, all the unnecessary power domain (MIX) can be off, except AONMIX and the internal modules required, such as OSC24M/PLL. Cortex-M33 CPU in AONMIX handles all the computing and data processing. Cortex-A55 is power down and DRAM can be in self-refresh/retention mode. All the modules in the AONMIX, such as SAI/CAN/LPUART, can be used directly. To use modules in other power domain, such as WAKEUPMIX, the user can turn on additional peripherals and related power by Cortex-M33 as needed. Additional low power modes are also supported, but do not have power characterized in the Data Sheet. See the Reference Manual for a full set of power management capabilities.
- IDLE Mode: This mode is defined as a mode, which the Cortex®-A55 can automatically enter when there is no thread running and all high-speed devices are not active. The Cortex®-A55 can be put into power gated state but with L3 data retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated, but still remains powered. Compared with RUN mode, all the external power rails from the PMIC remain the same and most of the modules still remain in their state, so the interrupt response in this mode is very small.
- SUSPEND Mode: This mode is defined as the most power saving mode where all the clocks are off (including the Cortex®-M33 CPU), all the unnecessary power supplies are off and all power gateable portions of the SoC are power gated. The Cortex®-A55 CPU are fully power gated, all internal digital logic and analog circuit that can be powered down will be off, and all PHYs are power gated. DRAM is set at self-refresh/retention mode. VDD_SOC (and related digital supply) voltage is reduced to the "Suspend mode" voltage. The exit time from this mode will be much longer than IDLE, but the power consumption will also be much lower.
- BBSM Mode: This mode is also called RTC mode. Only the power for the BBSM domain remains on to keep RTC and BBSM logic alive.
- OFF Mode: All power rails are off.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

NOTE

Beyond the modes defined here, additional options can be configured in software, such as to adjust clock frequencies or gate clocks through the CCM programming model, or to adjust on-die power-gating through the SRC or GPC programming model, or to adjust the voltage supplied to the VDD_SOC supply as per Table 12. Operating ranges in the Data Sheet.

Table 20 summarizes the external power supply states in all the power modes.

SUSPEND Power rail **OFF BBSM IDLE RUN/LP RUN** (Analog on) NVCC_BBSM_1P8 ON ON ON ON OFF VDD SOC OFF **OFF** ON ON ON VDD2 DDR OFF OFF ON ON ON VDDQ_DDR NVCC_<XXX> OFF OFF ON ON ON ON VDD ANA 0P8 OFF OFF ON ON VDD MIPI 0P8 VDD USB 0P8 VDD ANAx 1P8 OFF OFF ON ON ON VDD LVDS 1P8 VDD MIPI 1P8 VDD USB 1P8 VDD_USB_3P3

Table 20. The power supply states

4.2.2 Low power modes

The state of each module in the IDLE, SUSPEND, and BBSM mode are defined in the Table 21.

	IDLE	SUSPEND	ввѕм
CCM LPM mode	WAIT	STOP	N/A
Arm Cortex®-A55 CPU0	OFF	OFF	OFF
Arm Cortex®-A55 CPU1	OFF	OFF	OFF
Shared L3 cache	ON	OFF	OFF
Display	OFF	OFF	OFF
DRAM controller and PHY	ON	OFF	OFF
ARM_PLL	OFF	OFF	OFF
DRAM_PLL	OFF	OFF	OFF

Table 21. Low power mode definition

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 21. Low power mode definition (continued)

	IDLE	SUSPEND	ввѕм
SYSTEM_PLL 1/2/3	ON	OFF	OFF
XTAL	ON	OFF	OFF
RTC	ON	ON	ON
External DRAM device	Self-Refresh	Self-Refresh	OFF
USB PHY	In Low Power State	OFF	OFF
DRAM clock	266 MHz	OFF	OFF
NOC clock	133 MHz	OFF	OFF
AXI clock	133 MHz	OFF	OFF
Module clocks	ON as needed	OFF	OFF
EdgeLock® Secure Enclave	ON	ON	ON
GPIO Wakeup	Yes	Yes	OFF
RTC Wakeup	Yes	Yes	Yes
USB remote wakeup	Yes	No ¹	No
Other wakeup source	Yes	No ²	No
WAKEUPMIX	ON	OFF ³	OFF
MLMIX	ON	OFF	OFF
NICMIX	ON as needed	OFF	OFF

¹ USB remote wakeup can be "Yes" if required.

NOTE

- Automatic enter self-refresh when there is no DRAM access;
- Put into self-refresh mode by software before entering low power mode;
- Turn off externally by PMIC when PMIC_STBY_REQ signal is asserted.
- Remote wakeup can be supported if the USB PHY power is on in this mode.

4.2.3 Chip power in different Low Power modes

Table 22 shows power consumption in different LP modes.

Table 22. Chip power in different LP modes (Sheet 1 of 2)

Mode	Supply	Voltage (V)	Power (mW) ¹
BBSM	NVCC_BBSM_1P8	1.8	0.14

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² Other wakeup source can be "Yes" if required.

³ WAKEUPMIX can be "ON" if required.

Electrical characteristics

Table 22. Chip power in different LP modes (continued) (Sheet 2 of 2)

Mode	Supply	Voltage (V)	Power (mW) ¹
SUSPEND	NVCC_GPIO, NVCC_SD2 ²	3.3	2.65
	NVCC_WAKEUP ²	1.8	1.20
	VDDQ_DDR	0.6	< 0.01
	VDD2_DDR	1.1	0.25
	VDD_ANA*_1P8	1.8	1.85
	VDD_ANA_0P8	0.8	0.40
	VDD_MIPI_0P8	0.8	0.65
	VDD_USB_0P8	0.8	0.45
	VDD_USB_3P3	3.3	0.25
	VDD_SOC	0.65	7.40
	Total ³	_	15.1

¹ All the power numbers defined in the table are at 25°C. Use case dependent.

4.3 Power supplies requirements and restrictions

The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations:

- Excessive current during power-up phase
- Prevention of the device from booting
- Irreversible damage to the processor (worst-case scenario)

4.3.1 Power-up sequence

The power-up sequence of i.MX 93 is defined as follows:

- 1. Turn on NVCC BBSM 1P8
- 2. [The SoC will assert PMIC ON REQ at this point in time.]
- 3. Turn on VDD SOC digital voltage supplies.
- 4. Turn on all VDD * 0P8 analog, PHY, and PLL supplies.
- 5. Turn on all remaining 1.8 V supplies. This includes VDD_*_1P8 analog, PHY, and PLL supplies, and any 1.8 V NVCC_XXX I/O supplies.
- 6. Turn on DDR I/O supplies.

To achieve this low power consumption values for I/O power rails in SUSPEND mode, it is recommended to configure the IOMUX of those pins to GPIO input and change the PAD control settings to pull-up or pull-down depends on the board design before entering SUSPEND mode.

³ Sum of the listed supply rails.

- 7. Turn on 3.3 V supplies. This includes all 3.3 V NVCC_XXX I/O supplies and VDD_USB_3P3. [This 3.3 V supply step may be simultaneous with either the 1.8 V or the DDR supplies if desired.]
- 8. POR_B release (it should be asserted during the entire power-up sequence.)

4.3.2 Power-down sequence

The power-down sequence of i.MX 93 is defined as follows:

- Turn off NVCC_BBSM_1P8 last
- Turn off VDD_SOC after the other (non-BBSM) power rails or at the same time as other (non-BBSM) rails.
- No sequence for other power rails during power down.

Figure 4 illustrates an example about power sequence of i.MX 93 processors.

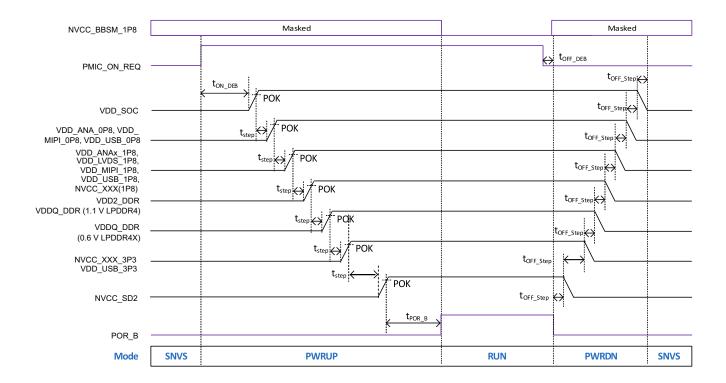


Figure 4. The power sequence of i.MX 93 processors

4.4 PLL electrical characteristics

Table 23 shows the PLL electrical parameters.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 23. PLL electrical parameters

PLL type	Parameter	Value
AUDIO_PLL1	Clock output range	Up to 650 MHz
	Reference clock	24 MHz
	Lock time	50 μs
	Jitter	±1% of output period, ≥ 50 ps
VIDEO_PLL1	Clock output range	Up to 594 MHz
	Reference clock	24 MHz
	Lock time	50 μs
SYS_PLL1	Clock output range	312.5 MHz — 1 GHz
	Reference clock	24 MHz
	Lock time	70 μs
ARM_PLL	Clock output range	800 MHz — 1700 MHz
	Reference clock	24 MHz
	Lock time	70 μs
DRAM_PLL1	Clock output range	400 MHz — 1000 MHz
	Reference clock	24 MHz
	Lock time	50 μs

4.5 I/O DC parameters

This section includes the DC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR4 and LPDDR4X modes
- LVDS I/O

4.5.1 General purpose I/O (GPIO) DC parameters

Table 24 shows DC parameters for GPIO pads. The parameters in Table 24 are guaranteed per the operating ranges in Table 12, unless otherwise noted.

Table 24. GPIO DC parameters

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
High-level output voltage	V _{OH (1.8 V)}	I _{OH} = 1.1/2.2/3.3/4.4/5.5/6.6 mA	0.8 x V _{DD}	_	V_{DD}	V
	V _{OH (3.3 V)}	(1.8 V) I _{OH} = 2/4/6/8/10/12 mA (3.3 V)	0.8 x V _{DD}		V_{DD}	V

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 24. GPIO DC parameters (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Low-level output voltage	V _{OL (1.8 V)}	I _{OL} = 1.1/2.2/3.3/4.4/5.5/6.6 mA	0	_	0.2 x V _{DD}	V
	V _{OL (3.3 V)}	(1.8 V) I _{OL} = 2/4/6/8/10/12 mA (3.3 V)	0	_	0.2 x V _{DD}	V
Low-level input voltage	V_{IL}	V _{DDO} = 1.65 - 3.465 V	-0.3	_	0.3 x V _{DD}	V
High-level input voltage	V _{IH}	V _{DDO} = 1.65 - 3.465 V	0.7 x V _{DD}	_	V _{DD} + 0.3	V
Pull-down resistor	R _{pd3.0V}	V _{DDO} = 3.0 - 3.465 V	22	31	43	ΚΩ
Pull-up resistor	R _{pu3.0V}		22	31	40	ΚΩ
Pull-down resistor	R _{pd1.65V}	V _{DDO} = 1.65 - 1.95 V	16	31	54	ΚΩ
Pull-up resistor	R _{pu1.65V}		17	31	52	ΚΩ

Table 25. Additional leakage parameters

Parameter	Symbol	Condition	Min	Max	Unit
Leakage high	IIH	1.65 V - 3.465 V, pad = VDDIO ¹	-5	5	•
Leakage low	IIL	1.65 V - 3.465 V, pad = VSS ¹	-5	5	μΑ

¹ This specification does not apply to PHY, ANALOG, TAMPER0, TAMPER1 I/Os, PMIC_ON_REQ, and PMIC_STBY_REQ.

4.5.2 DDR I/O DC electrical characteristics

The DDR I/O pads support LPDDR4/LPDDR4X operational modes. The Double Data Rate Controller (DDRC) is compliant with JEDEC-compliant SDRAMs.

DDRC operation is contingent upon the board's DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 93 application processors.

4.5.3 LVDS DC parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

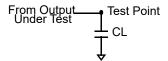
Table 26 shows the Low Voltage Differential Signaling (LVDS) DC parameters.

Table 26. LVDS DC Characteristics (Sheet 1 of 2)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Differential Voltage	V _{OD}	Rload = 100Ω between Pad P and Pad N	250	350	450	mV
Output High Voltage	V _{OH}	Rload = 100Ω between Pad P and Pad N	1.25	_	1.6	V

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 26. LVDS DC Characteristics (continued) (Sheet 2 of 2)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Low Voltage	V _{OL}	Rload = 100Ω between Pad P and Pad N	0.9	_	1.25	V
Offset common mode Voltage	V _{CM}	_	1.125	1.2	1.375	V

4.6 I/O AC parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- LVDS I/O

The GPIO load circuit and output transition time waveforms are shown in Figure 5 and Figure 6.

CL includes package, probe and fixture capacitance

Figure 5. Load circuit for output

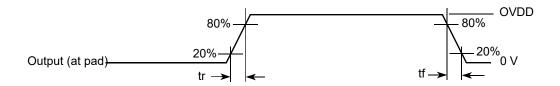


Figure 6. Output transition time waveform

4.6.1 General purpose I/O AC parameters

This section presents the I/O AC parameters for GPIO in different modes. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers.

Table 27. Rise and fall time of GPIO

Parameter	Symbol	Min	Тур	Max	Unit	Condition
TX rise time	t _R SL11	291	_	476	ps	V _{DDO} = 1.62 - 3.465 V; DS = 4; SL = 11
TX fall time	t _F SL11	311	_	458	ps	V _{DDO} = 1.62 - 3.465 V;DS = 4; SL = 11
TX rise time	t _R SL01	291	_	477	ps	V _{DDO} = 1.62 - 3.465 V; DS = 4; SL = 10
TX fall time	t _F SL01	313	_	477	ps	V _{DDO} = 1.62 - 3.465 V; DS = 4; SL = 10
TX rise time	t _R SL10	291	_	476	ps	V _{DDO} = 1.62 - 3.465 V; DS = 4; SL = 01

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Parameter	Symbol	Min	Тур	Max	Unit	Condition
TX fall time	t _F SL10	311	_	462	ps	V _{DDO} = 1.62 - 3.465 V; DS = 4; SL = 01
TX rise time	t _R SL00	293	_	476	ps	V _{DDO} = 1.62 - 3.465 V; DS = 4; SL = 00
TX fall time	t _F SL00	327	_	600	ps	V _{DDO} = 1.62 - 3.465 V; DS = 4; SL = 00

Table 27. Rise and fall time of GPIO (continued)

4.6.2 DDR I/O AC electrical characteristics

The DDR I/O pads support LPDDR4/LPDDR4X operational modes. The DDRC is compliant with JEDEC-compliant SDRAMs.

DDRC operation is contingent upon the board's DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 93 application processor.

4.6.3 LVDS AC Parameters

The differential output transition time waveform is shown in Figure 7.

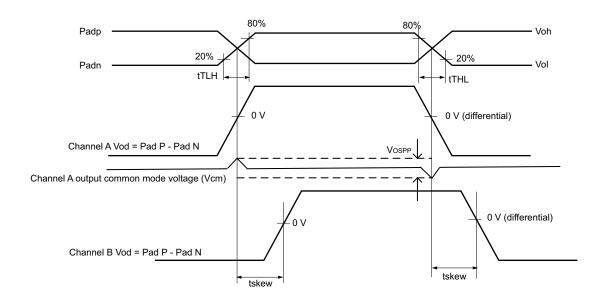


Figure 7. Output transition time waveform

Table 28 shows the AC parameters of LVDS.

Table 28. LV	DS AC	parameters
--------------	-------	------------

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Lane skew ¹	t _{SKew}	Rload = 100 Ω	_	0.25 ²	_	ns
Transition Low to High time ³	ow to High time ³ t_{TLH} Cload = 2 pF		_		0.3	Unit
Transition High to Low time	t _{THL}		_	_	0.3	Interval (UI) ⁴
Operating data rate ⁵	f	_	_	_	560	Mbps
Offset peak to peak voltage imbalance	V _{ospp}	_	_	_	150	mV

 $^{^{1}}$ t_{SKew} is the differential time at V_{od} = 0 voltage between different channel.

4.7 Differential I/O output buffer impedance

The Differential CCM interface is designed to be compatible with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, *Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits* (2001) for details.

4.7.1 DDR I/O output impedance

DDR output driver and ODT impedances are controlled across PVT using ZQ calibration procedure with a 120 ohm $\pm 1\%$ resistor to ground. Programmable drive strength and ODT impedance targets available in the NXP DDR tool are detailed in the device IBIS model. Impedance deviation (calibration accuracy) is $\pm 10\%$ (Maximum/Minimum impedance) across PVT.

4.8 System modules timing

This section contains the timing and electrical parameters for the modules in each i.MX 93 processor.

4.8.1 Reset timing parameters

Figure 8 shows the reset timing and Table 29 lists the timing parameters.

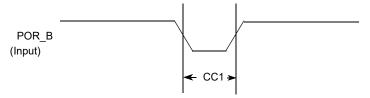


Figure 8. Reset timing diagram

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² This is typical maximum absolute delay between any two channels.

³ Measurement levels are 20–80% from output voltage.

⁴ This value is dependent on Operating data rate.

⁵ This is the maximum bit rate that defined by supported display types.

Table 29. Reset timing parameters

ID	Parameter	Min	Max	Unit
CC1	Duration of POR_B to be qualified as valid. Note: POR_B rise/fall times must be 5 ns or less.	1	_	RTC_XTALI cycle

4.8.2 WDOG Reset timing parameters

Figure 9 shows the WDOG reset timing and Table 30 lists the timing parameters.

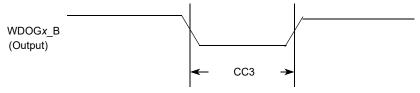


Figure 9. WDOGx_B timing diagram

Table 30. WDOGx_B timing parameters

ID	Parameter	Min	Max	Unit
CC3	Duration of WDOG1_B Assertion	1	_	RTC_XTALI cycle

NOTE

RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 µs.

NOTE

WDOGx_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the *i.MX 93 Applications Processor Reference Manual* (IMX93RM) for detailed information.

4.8.3 JTAG timing parameters

Figure 10 depicts the JTAG test clock input timing. Figure 11 depicts the JTAG boundary scan timing. Figure 12 depicts the JTAG test access port. Signal parameters are listed in Table 31.

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

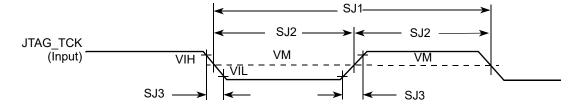


Figure 10. Test Clock Input Timing Diagram

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Electrical characteristics

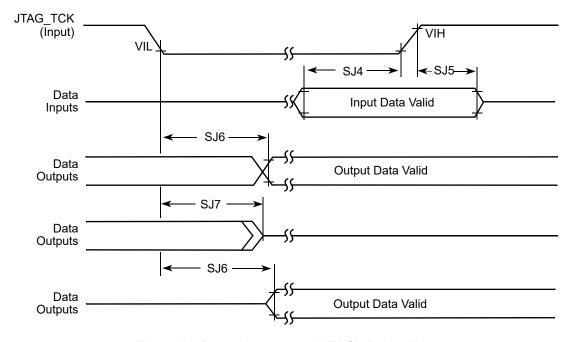


Figure 11. Boundary system (JTAG) timing diagram

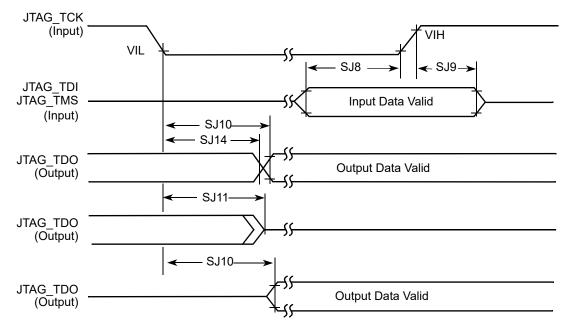


Figure 12. Test Access Port Timing Diagram

Table 31. JTAG Timing^{1,2}

ID	Parameter	All Fred	All Frequencies			
lb lb	Parameter	Min	Max	- Unit		
SJ0	JTAG_TCK frequency of operation ^{3,4}	_	50	MHz		
SJ1	JTAG_TCK cycle time in crystal mode	20	_	ns		
SJ2	JTAG_TCK clock pulse width measured at V _M ⁵	10	_	ns		
SJ3	JTAG_TCK rise and fall times	_	3	ns		
SJ4	Boundary scan input data set-up time	15	_	ns		
SJ5	Boundary scan input data hold time	15	_	ns		
SJ6	JTAG_TCK low to output data valid	_	600	ns		
SJ7	JTAG_TCK low to output high impedance	_	600	ns		
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	_	ns		
SJ9	JTAG_TMS, JTAG_TDI data hold time	5	_	ns		
SJ10	JTAG_TCK low to JTAG_TDO data valid	_	14	ns		
SJ11	JTAG_TCK low to JTAG_TDO high impedance	_	14	ns		
SJ14	JTAG_TCK low to JTAG_TDO data invalid	1	_	ns		

¹ Input timing assumes an input signal slew rate of 3 ns (20%/80%).

4.8.4 SWD timing parameters

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

Figure 13 depicts the SWD timing.

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 Ω , unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance of the transmission line can be equal to the selected RDSON of the I/O pad output driver.

 $^{^{3}}$ T_{DC} = target frequency of JTAG

⁴ 50 MHz frequency is for the JTAG debug interface. For boundary scan, the maximum TCK frequency is 10 MHz.

 $^{^{5}}$ V_M = mid-point voltage

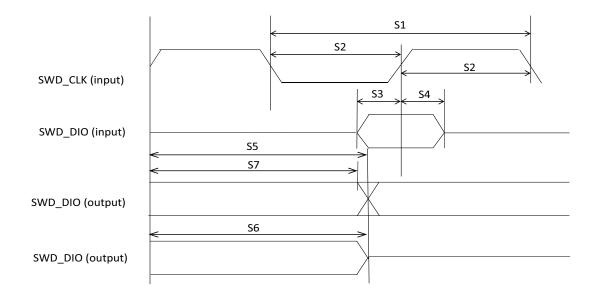


Figure 13. SWD timing

Table 32 shows SWD timing parameters.

Table 32. SWD timing parameters 1,2

Symbol	Description	Min	Max	Unit
S0	SWD_CLK frequency	_	50	MHz
S1	SWD_CLK cycle time	20	_	ns
S2	SWD_CLK pulse width	10	_	ns
S3	Input data setup time	5	_	ns
S4	Input data hold time	5	_	ns
S5	Output data valid time	_	14	ns
S6	Output high impedance time	_	14	ns
S7	Output data invalid time	0	_	ns

¹ Input timing assumes an input signal slew rate of 3 ns (20%/80%).

4.8.5 DDR SDRAM-specific parameters (LPDDR4/LPDDR4X)

The i.MX 93 Family of processors have been designed and tested to work with JEDEC JESD209-4 — compliant LPDDR4/LPDDR4X memory. Timing diagrams and tolerances required to work with these memories are specified in the respective documents and are not reprinted here.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² Timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 Ω, unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line can be equal to the selected RDSON of the I/O pad output.

Meeting the necessary timing requirements for a DDR memory system is highly dependent on the components chosen and the design layout of the system as a whole. NXP cannot cover in this document all the requirements needed to achieve a design that meets full system performance over temperature, voltage, and part variation; PCB trace routing, PCB dielectric material, number of routing layers used, placement of bulk/decoupling capacitors on critical power rails, VIA placement, GND and Supply planes layout, and DDR controller/PHY register settings all are factors affecting the performance of the memory system. Consult the hardware user guide for this device and NXP validated design layouts for information on how to properly design a PCB for best DDR performance. NXP strongly recommends duplicating an NXP validated design as much as possible in the design of critical power rails, placement of bulk/decoupling capacitors and DDR trace routing between the processor and the selected DDR memory. All supporting material is readily available on the device web page on https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-applications-processors/i.mx-applications-processors/i.mx-applications-processors/i.mx-p-processors:IMX9-SERIES.

Processors that demonstrate full DDR performance on NXP validated designs, but do not function on customer designs, are not considered marginal parts. A report detailing how the returned part behaved on an NXP validated system will be provided to the customer as closure to a customer's reported DDR issue. Customers bear the responsibility of properly designing the Printed Circuit Board, correctly simulating and modeling the designed DDR system, and validating the system under all expected operating conditions (temperatures, voltages) prior to releasing their product to market.

Parameter	LPDDR4/LPDDR4X		
Number of Controllers	1		
Number of Channels	1		
Number of Chip Selects	2		
Bus Width	16-bit		
Maximum supported data rate			
Low drive mode	1866 MT/s		
Nominal drive mode	2880 MT/s		
Overdrive mode	3733 MT/s ¹		

Table 33. i.MX 93 DRAM controller supported SDRAM configurations

4.8.5.1 Clock/data/command/address pin allocations

These processors uses generic names for clock, data, and command address bus (DCF—DRAM controller functions); see Table 107 for details about mapping of clock, data, and command address signals of LPDDR4/LPDDR4X modes.

4.9 Display and graphics

The following sections provide information on display and graphic interfaces.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

¹ For 9 x 9 mm package, the maximum date rate of LPDDR4x/LPDDR4 is 3200 MT/s.

4.9.1 MIPI D-PHY electrical characteristics

4.9.1.1 MIPI HS-TX specifications

Table 34. MIPI high-speed transmitter DC specifications

Symbol	Parameter	Min	Тур	Max	Unit
V _{CMTX} ¹	High Speed Transmit Static Common Mode Voltage	150	200	250	mV
$ \Delta V_{CMTX} _{(1,0)}$	V _{CMTX} mismatch when Output is Differential-1 or Differential-0	_	_	5	mV
V _{OD} ¹	High Speed Transmit Differential Voltage	140	200	270	mV
ΔV _{OD}	V _{OD} mismatch when Output is Differential-1 or Differential-0	_	_	14	mV
V _{OHHS} ¹	High Speed Output High Voltage	_	_	360	mV
Z _{OS}	Single Ended Output Impedance	40	50	62.5	Ω
ΔZ _{OS}	Single Ended Output Impedance Mismatch	_	_	10	%

Value when driving into load impedance anywhere in the Z_{ID} range.

Table 35. MIPI high-speed transmitter AC specifications

Symbol	Parameter	Min	Тур	Max	Unit
$\Delta V_{CMTX(HF)}$	Common-level variations above 450 MHz	_	_	15	mVRMS
$\Delta V_{CMTX(LF)}$	Common-level variation between 50-450 MHz	_	_	25	mVPEAK
t _R and t _F ¹	Rise Time and Fall Time (20% to 80%)	100	1	0.35 x UI	ps

¹ UI is the long-term average unit interval.

4.9.1.2 MIPI HS-RX specifications

Table 36. MIPI high-speed receiver DC specifications

Symbol	Parameter	Min	Тур	Max	Unit
V _{IDTH}	Differential input high voltage threshold	70	_	_	mV
V _{IDTL}	Differential input low voltage threshold	—	—	-70	mV
V _{IHHS}	Single ended input high voltage	460	_	_	mV
V _{ILHS}	Single ended input low voltage	_	_	-40	mV
V _{CMRXDC}	Input common mode voltage	70	_	330	mV
Z_{ID}	Differential input impedance	80	100	125	Ω

Table 37. MIPI high-speed receiver AC specifications

Symbol	Parameter	Min	Тур	Max	Unit
$\Delta V_{CMRX(HF)}^{1}$	Common mode interference beyond 450 MHz	_	_	50	mV
$\Delta V_{CMRX(LF)}$	Common mode interference between 50 and 450 MHz	-25	_	25	mV
C _{CM}	Common mode termination	_	_	60	pF

 $^{^{1}}$ $\Delta V_{CMRX(HF)}$ is the peak amplitude of a sine wave superimposed on the receiver inputs.

4.9.1.3 MIPI LP-TX specifications

Table 38. MIPI low-power transmitter DC specifications

Symbol	Parameter	Min	Тур	Max	Unit
V _{OH} ¹	Thevenin Output High Level	1.1	1.2	1.3	V
V _{OL}	Thevenin Output Low Level	-50	_	50	mV
Z _{OLP} ²	Output Impedance of Low Power Transmitter	110			Ω

¹ This specification can only be met when limiting the core supply variation from 1.1 V till 1.3 V.

Table 39. MIPI low-power transmitter AC specifications

Symbol	Parameter	Min	Тур	Max	Unit
T _{RLP} /T _{FLP} ¹	15% to 85% Rise Time and Fall Time	_	_	25	ns
T _{REOT} ^{1,2,3}	30% to 85% Rise Time and Fall Time	_	_	35	ns
T _{LP-PULSE-TX} ⁴	Pulse width of the LP exclusive-OR clock: First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state	40	_	_	ns
	Pulse width of the LP exclusive-OR clock: All other pulses	20	_	_	ns
T _{LP-PER-TX}	Period of the LP exclusive-OR clock	90	_	_	ns
$\delta V/\delta t_{SR}^{1,5,6,7}$	Slew Rate @ CLOAD= 0 pF	25	_	500	mV/ns
	Slew Rate @ CLOAD= 5 pF	25	_	300	mV/ns
	Slew Rate @ CLOAD= 20 pF	25	_	250	mV/ns
	Slew Rate @ CLOAD= 70 pF	25	_	150	mV/ns
C _{LOAD}	Load Capacitance	0	_	70	pF

C_{LOAD} includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be < 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.</p>

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Although there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification is met.

The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due to stopping the differential drive.

- ³ With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane.
- ⁴ This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section.
- ⁵ When the output voltage is between 15% and below 85% of the fully settled LP signal levels.
- ⁶ Measured as average across any 50 mV segment of the output signal transition.
- ⁷ This value represents a corner point in a piecewise linear curve.

4.9.1.4 MIPI LP-RX specifications

Table 40. MIPI low power receiver DC specifications

Symbol	Parameter	Min	Тур	Max	Unit
V _{IH}	Logic 1 input voltage	740	_	_	mV
V _{IL}	Logic 0 input voltage, not in ULP state	_	_	550	mV
V _{IL-ULPS}	Logic 0 input voltage, ULP state	_	_	300	mV
V _{HYST}	Input hysteresis	25	_	_	mV

Table 41. MIPI low power receiver AC specifications

Symbol	Parameter	Min	Тур	Max	Unit
e _{SPIKE} 1,2	Input pulse rejection	_	_	300	V.ps
T _{MIN-RX} ³	Minimum pulse width response	20	_	_	ns
V _{INT}	Peak Interference amplitude	_	_	200	mV
f _{INT}	Interference frequency	450	_	_	MHz

¹ Time-voltage integration of a spike above V_{IL} when in LP-0 state or below VIH when in LP-1 state.

4.9.1.5 MIPI LP-CD specifications

Table 42. MIPI contention detector DC specifications

Symbol	Parameter	Min	Тур	Max	Unit
V _{IHCD}	Logic 1 contention threshold	450	_	_	mV
V _{ILCD}	Logic 0 contention threshold	_	_	200	mV

4.9.2 LCD Controller (LCDIF) timing parameters

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

² An impulse below this value will not change the receiver state.

³ An input pulse greater than this value shall toggle the output.

Figure 14 shows the LCDIF timing and Table 43 lists the timing parameters.

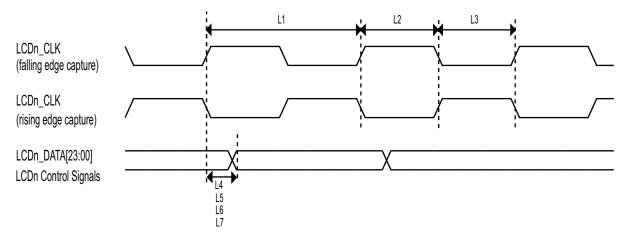


Figure 14. LCD timing

Table 43. LCD timing parameters^{1,2}

ID	Parameter	Symbol	Min	Max	Unit
L1	LCD pixel clock frequency	tCLK(LCD)		80	MHz
L2	LCD pixel clock high (falling edge capture)	tCLKH(LCD)	5	_	ns
L3	LCD pixel clock low (rising edge capture)	tCLKL(LCD)	5	_	ns
L4	LCD pixel clock high to data valid (falling edge capture)	td(CLKH-DV)	-1.5	1.5	ns
L5	LCD pixel clock low to data valid (rising edge capture)	td(CLKL-DV)	-1.5	1.5	ns
L6	LCD pixel clock high to control signal valid (falling edge capture)	td(CLKH-CTRLV)	-1.5	1.5	ns
L7	LCD pixel clock low to control signal valid (rising edge capture)	td(CLKL-CTRLV)	-1.5	1.5	ns

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm, unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

4.10 Audio

This section provides information about audio subsystem.

4.10.1 SAI switching specifications

This section provides the AC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes. All timings are given for non inverted serial clock polarity (SAI_TCR2[BCP] = 0, SAI_RCR2[BCP] = 0) and non inverted frame sync (SAI_TCR4[FSP] = 0, SAI_RCR4[FSP] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² Input timing assumes an input signal slew rate of 3 ns (20%/80%).

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

For the 50 MHz BCLK operation, the BCLK and SYNC must always be in the same direction as the data (source synchronous):

- SAI transmitter must be in asynchronous mode with BCLK and SYNC configuration as outputs
- SAI receiver must be:
 - In asynchronous mode with BCLK and SYNC configuration as inputs
 - In synchronous mode with SAI_RCR2[BCI] = 1

Table 44. Master mode SAI timing (50 MHz)^{1,2,3}

Num	Characteristic	Min	Max	Unit
S1	SAI_MCLK cycle time	20	_	ns
S2	SAI_MCLK pulse width high/low	40%	60%	MCLK period
S3	SAI_BCLK cycle time	20	_	ns
S4	SAI_BCLK pulse width high/low	40%	60%	BCLK period
S5	SAI_BCLK to SAI_FS output valid	_	3	ns
S6	SAI_BCLK to SAI_FS output invalid	-2	_	ns
S7	SAI_BCLK to SAI_TXD valid	_	3	ns
S8	SAI_BCLK to SAI_TXD invalid	-2	_	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	3	_	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	2	_	ns

To achieve 50 MHz for BCLK operation, clock must be set in feedback mode.

Table 45. Master mode SAI timing (25 MHz)^{1,2}

Num	Characteristic	Min	Max	Unit
S1	SAI_MCLK cycle time	40	_	ns
S2	SAI_MCLK pulse width high/low	40%	60%	MCLK period
S3	SAI_BCLK cycle time	40	_	ns
S4	SAI_BCLK pulse width high/low	40%	60%	BCLK period
S5	SAI_BCLK to SAI_FS output valid	_	3	ns
S6	SAI_BCLK to SAI_FS output invalid	-2	_	ns
S7	SAI_BCLK to SAI_TXD valid	_	3	ns
S8	SAI_BCLK to SAI_TXD invalid	-2	_	ns

² Input timing assumes an input signal slew rate of 3 ns (20%/80%).

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

Table 45. Master mode SAI timing (25 MHz)^{1,2} (continued)

Num	Num Characteristic		Max	Unit
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	8	_	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	_	ns

Input timing assumes an input signal slew rate of 3 ns (20%/80%).

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

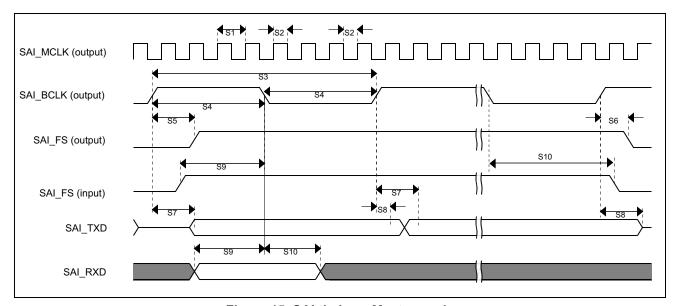


Figure 15. SAI timing—Master mode

Table 46. Slave mode SAI timing (25 MHz)^{1,2}

Num	Characteristic	Min	Max	Unit
S11	SAI_BCLK cycle time (input)	40	_	ns
S12	SAI_BCLK pulse width high/low (input)	40%	60%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	3	_	ns
S14	SAI_FS input hold after SAI_BCLK	2	_	ns
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	_	9	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	_	ns
S17	SAI_RXD setup before SAI_BCLK	3	_	ns
S18	SAI_RXD hold after SAI_BCLK	2	_	ns
S19	SAI_FS input assertion to SAI_TXD output valid ³	_	25	ns

¹ Input timing assumes an input signal slew rate of 3 ns (20%/80%).

- Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.
- Applies to first bit in each frame and only if the TCR4[FSE] bit is clear.

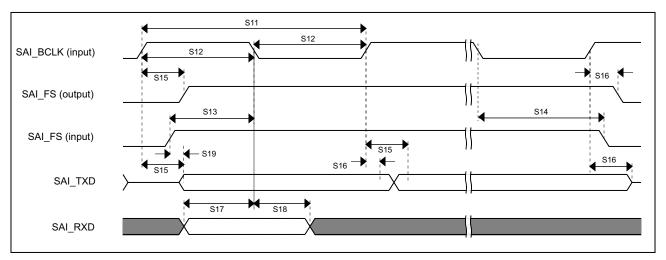


Figure 16. SAI Timing — Slave Mode

4.10.2 SPDIF timing parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 47 and Figure 17 and Figure 18 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

Parameter	Symbol	Timing Para	Unit	
rarameter	Symbol	Min	Max	Onit
SPDIF_IN Skew: asynchronous inputs, no specs apply	_	_	0.7	ns
SPDIF_OUT output (Load = 50 pf) • Skew • Transition rising • Transition falling	_ _ _	_ _ _	1.5 24.2 31.3	ns
SPDIF_OUT output (Load = 30 pf) • Skew • Transition rising • Transition falling		_ _ _	1.5 13.6 18.0	ns
Modulating Rx clock (SPDIF_SR_CLK) period	srckp	40.0	_	ns
SPDIF_SR_CLK high period	srckph	16.0	_	ns

Table 47. SPDIF timing parameters

Parameter	Symbol	Timing Para	Unit	
Farameter	Symbol	Min	Max	Offic
SPDIF_SR_CLK low period	srckpl	16.0	_	ns
Modulating Tx clock (SPDIF_ST_CLK) period	stclkp	40.0	_	ns
SPDIF_ST_CLK high period	stclkph	16.0	_	ns
SPDIF_ST_CLK low period	stclkpl	16.0	_	ns

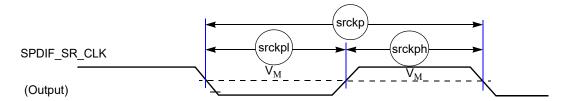


Figure 17. SPDIF_SR_CLK timing diagram

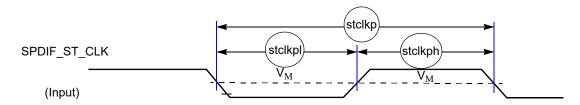


Figure 18. SPDIF_ST_CLK timing diagram

4.10.3 PDM Microphone interface timing parameters

NOTE

These timing requirements apply only if the clock divider is enabled (PDM_CTRL2[CLKDIV] = 0), otherwise there are no special timing requirements.

The PDM microphones must meet the setup and hold timing requirements shown in the following table. The "k" factor value in Table 48 depends on the selected quality mode as shown in Table 49.

Table 48. PDM timing parameters

Parameter	Value
trs, tfs	1 <=floor (kxCLKDIV) - 1 @(moduleNickname)_CLK_ROOTrate
trh, tfh	>= 0

[@]moduleNickname = PDM. Depending on K value, user must make sure floor (K x CLKDIV) > 1 to avoid timing problems.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 49. K factor value

Quality factor	K factor
High Quality	1/2
Medium Quality, Very Low Quality 0	1
Low Quality, Very Low Quality 1	2
Very Low Quality 2	4

Figure 19 illustrates the timing requirements for the PDM.

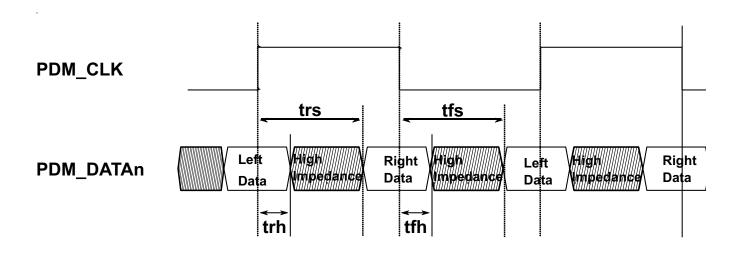


Figure 19. PDM input/output timing requirements

4.10.4 Medium Quality Sound (MQS) electrical specifications

Medium quality sound (MQS) is used to generate medium quality audio via a standard GPIO in the pinmux, allowing the user to connect stereo speakers or headphones to a power amplifier without an additional DAC chip. Two outputs are asynchronous PWM pulses and their maximum frequency is 1/32 x mclk frequency.

Table 50. MQS specifications

Symbol	Description	Min	Тур	Max	Unit
f _{mclk} ¹	Bit clock is used to generate the mclk.	_	24.576	66.5	MHz

¹ Frequency of mclk depends on software settings.

Please see Section 4.6.1, General purpose I/O AC parameters for other electrical parameters.

4.11 Analog

The following sections introduce the timing and electrical parameters about analog interfaces of i.MX 93 processors.

4.11.1 12-bit ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

Table 51. ADC electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{ADIN}	Input voltage	V_{GND}	_	V_{DDA}	V	1
f _{AD_CK}	ADC clock frequency	20	_	80	MHz	_
f _{ADCK}	ADC conversion clock frequency	20	_	66	MHz	_
C _{sample}	Sample cycles	5.5	_	_	ns	_
C _{compare}	Fixed compare cycles	_	58	131.5	ns	_
C _{conversion}	Conversion cycles	C _{conversion} = C _{sample +} C _{compare}			ns	_
C _{AD_INPUT}	ADC input capacitance	_	_	7	pF	2
R _{AD_INPUT}	ADC input series resistance	_	_	1.25	ΚΩ	_
DNL	ADC differential nonlinearity	_	±2	_	LSB	3
INL	ADC integral nonlinearity	_	±6	_	LSB	3
R _{AS}	Analog source resistance	_	_	5	ΚΩ	_
Bandgap	Output voltage ready time for bandgap	_	1	_	μs	4

¹ On or off channels

Table 52. ADC electrical specifications (VREFH = VDD_ANAx_1P8 1 and VADIN $_{max} \le VREFH$) 2

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{ADIN}	Input voltage	V_{GND}	_	V_{DDA}	V	_
C _{ADIN}	Input capacitance	_	4.5	_	pF	_
R _{ADIN}	Input resistance	_	500	_	Ω	_
R _{AS}	Analog source resistance	_	_	5	ΚΩ	3
f _{ADCK}	ADC conversion clock frequency	8	_	66	MHz	_
C _{sample}	Sample cycles	3.5	_	131.5	Cycles	4

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² ADC component plus pad capacitance (~ 2 pF)

³ After calibration

⁴ Based on simulation test

Table 52. ADC electrical specifications (VREFH = VDD_ANAx_1P8¹ and VADIN_{max} ≤ VREFH)² (continued)

Symbol	Description	Min	Тур	Max	Unit	Notes
C _{compare}	Fixed compare cycles	_	17.5	_	Cycles	_
C _{conversion}	Conversion cycles	C _{conversion} = C _s	$C_{conversion} = C_{sample} + C_{compare}$		Cycles	_
DNL	Differential nonlinearity	_	±2	_	LSB	_
INL	Integral nonlinearity	_	±6	_	LSB	_
ENOB	Effective number of bits: Single-ended mode (14 x 14 mm package)	_	10.5	_	bit	5,6,7,8
SINAD	Signal to noise plus distortion	SINAD = 6.02 x ENOB + 1.76			dB	_

¹ The range is from 1.71 V to 1.89 V.

ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.

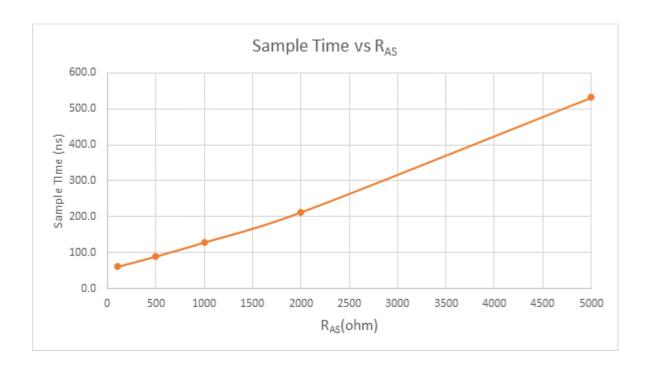


Figure 20. Sample time vs RAS

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

 $^{^{2}}$ Values in this table are based on test with limited matrix samples in lab environment.

³ This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance.

See Figure 20

Noise on the ADC reference voltage (VDD_ANA1P8) will result in performance loss of the ADC proportional to teh noise present.

⁶ Input data used for test is 1 kHz sine wave.

Measured at VREFH = 1.8 V and pwrsel = 2.

4.11.1.1 12-bit ADC input impedance equivalent circuit diagram

There is an additional R_{IOMUX} of 350 Ω (from 295 Ω to 405 Ω) resistance if an input goes through the MUX inside the IO and C_P of 2.5 pF as shown in Figure 21.

To calculate the sample request time, using the following equation where $R_{ADCtotal} = R_{ADIN} + R_{IOMUX}$, $R_{IOMUX} = 350 \ \Omega$, $C_P = 2.5 \ pF$ and $B = 11 \ for 1/4 \ LSB$ settling.

$$T_{smp\ req} = B [R_{AS} (C_{AS} + C_P + C_{ADIN}) + (R_{AS} + R_{ADCtotal}) C_{ADIN}]$$

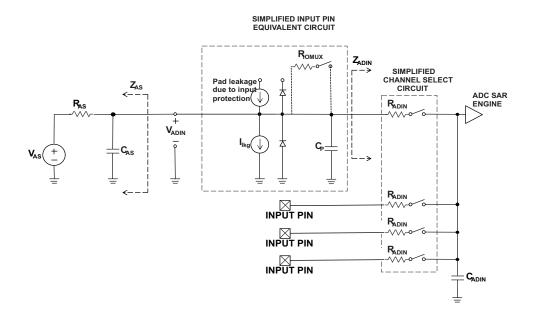


Figure 21. ADC input impedance equivalent circuit diagram

4.12 External peripheral interface parameters

The following subsections provide information on external peripheral interfaces.

4.12.1 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC5.1 (single data rate) timing, eMMC5.1/SD3.0 (dual data rate) timing and SDR50/SDR104 AC timing.

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

4.12.1.1 SD3.0/eMMC5.1 (single data rate) AC timing

Figure 22 depicts the timing of SD3.0/eMMC5.1, and Table 53 lists the SD3.0/eMMC5.1 timing characteristics.

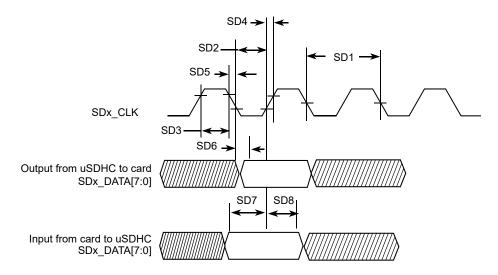


Figure 22. SD3.0/eMMC5.1 (SDR) timing

Table 53. SD3.0/eMMC5.1 (SDR) interface timing specification 1,2

ID	Parameter	Symbols	Min	Max	Unit			
	Card Input Clock							
SD1	Clock Frequency (Low Speed)	f _{PP} ³	0	400	kHz			
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ⁴	0	25/50	MHz			
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ⁵	0	20/52	MHz			
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz			
SD2	Clock Low Time	t _{WL}	7	_	ns			
SD3	Clock High Time	t _{WH}	7	_	ns			
SD4	Clock Rise Time	t _{TLH}	_	3	ns			
SD5	Clock Fall Time	t _{THL}	_	3	ns			
	uSDHC Output/Card Inputs SD_CMD, SDx_	DATAx (Refere	nce to CLK)					
SD6	uSDHC Output Delay	t _{OD}	-6.6	3.6	ns			
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)							
SD7	uSDHC Input Setup Time	t _{ISU}	2.5	_	ns			
SD8	uSDHC Input Hold Time ⁶	t _{IH}	1.5	_	ns			

¹ Input timing assumes an input signal slew rate of 3 ns (20%/80%).

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

- Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm, unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.
- 3 In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
- In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0 25 MHz. In High-speed mode, clock frequency can be any value between 0 50 MHz.
- In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0 20 MHz. In High-speed mode, clock frequency can be any value between 0 52 MHz.
- ⁶ To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.12.1.2 eMMC5.1/SD3.0 (dual data rate) AC timing

Figure 23 depicts the timing of eMMC5.1/SD3.0 (DDR). Table 54 lists the eMMC5.1/SD3.0 (DDR) timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).

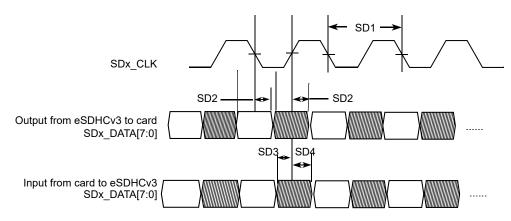


Figure 23. eMMC5.1/SD3.0 (DDR) timing

Table 54. eMMC5.1/SD3.0 (DDR) interface timing specification^{1,2}

ID	Parameter	Symbols	Min	Max	Unit			
	Card Input Clock							
SD1	Clock Frequency (eMMC5.1 DDR)	f _{PP}	0	52	MHz			
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz			
	uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)							
SD2	uSDHC Output Delay	t _{OD}	2.8	6.8	ns			
	uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)							
SD3	uSDHC Input Setup Time	t _{ISU}	2.4	_	ns			
SD4	uSDHC Input Hold Time	t _{IH}	1.5	_	ns			

¹ Input timing assumes an input signal slew rate of 3 ns (20%/80%).

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm, unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

4.12.1.3 HS400 DDR AC timing

Figure 24 depicts the timing of HS400 mode, Table 55 and Table 56 list the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6, and SD7 parameters in Table 60 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode.

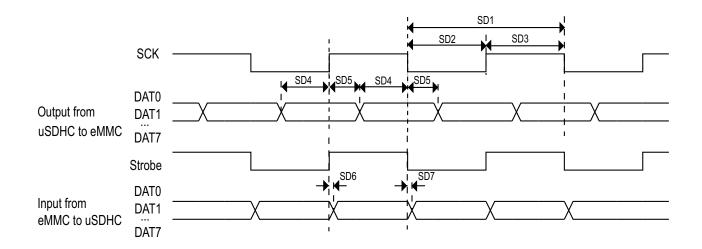


Figure 24. HS400 timing

Table 55. HS400 interface timing specification (Nominal and Overdrive mode)^{1,2}

ID	Parameter	Symbols	Min	Max	Unit				
	Card Input Clock								
SD1	Clock frequency	f _{PP}	0	200	MHz				
SD2	Clock low time	t _{CL}	2.2	_	ns				
SD3	Clock high time	t _{CH}	2.2		ns				
	uSDHC Output/Card Inputs DAT (Reference to SCK)								
SD4	Output skew from Data of edge of SCK	t _{OSkew1}	0.45	_	ns				
SD5	Output skew from SCK to Data of edge	t _{OSkew2}	0.45	_	ns				
	uSDHC Input/Card Outputs DAT (Reference to Strobe)								
SD6	uSDHC input skew	t _{RQ}	_	0.45	ns				
SD7	uSDHC hold skew	t _{RQH}	_	0.45	ns				

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 56. HS400 interface timing specification (Low drive mode)^{1,2}

ID	Parameter	Symbols	Min	Max	Unit				
	Card Input Clock								
SD1	Clock frequency	f _{PP}	0	133	MHz				
SD2	Clock low time	t _{CL}	3.3	_	ns				
SD3	Clock high time	t _{CH}	3.3	_	ns				
uSDHC Output/Card Inputs DAT (Reference to SCK)									
SD4	Output skew from data of edge of SCK	t _{OSkew1}	0.45	_	ns				
SD5	Output skew from edge of SCk to data	t _{OSkew2}	0.45	_	ns				
	uSDHC Input/Card Outputs DAT (Reference to Strobe)								
SD6	uSDHC input skew	t _{RQ}	_	0.45	ns				
SD7	uSDHC hold skew	t _{RQH}	_	0.45	ns				

¹ Input timing assumes an input signal slew rate of 1 ns (20%/80%).

4.12.1.4 HS200 Mode AC timing

Figure 25 depicts the timing of HS200 mode, Table 57 and Table 58 list the HS200 timing characteristics.

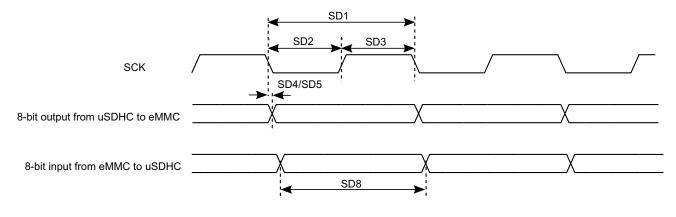


Figure 25. HS200 timing

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

¹ Input timing assumes an input signal slew rate of 1 ns (20%/80%).

Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance of the transmission line should be matched closely to the RDSON of the I/O pad output driver.

Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance of the transmission line should be matched closely to the RDSON of the I/O pad output driver.

Table 57. HS200 interface timing specification (Nominal and Overdrive mode)^{1,2}

ID	Parameter	Symbols	Min	Max	Unit		
	Card Input Clock	(
SD1	Clock Frequency Period	t _{CLK}	5.0	_	ns		
SD2	Clock Low Time	t _{CL}	2.2	_	ns		
SD3	Clock High Time	t _{CH}	2.2	_	ns		
	uSDHC Output/Card Inputs SD_CMD, SDx_DATA	Ax in HS200 (Re	eference to (CLK)			
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns		
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) ³						
SD8	uSDHC Input Data Window	t _{ODW}	0.475 x t _{CLK}	_	ns		

¹ Input timing assumes an input signal slew rate of 1 ns (20%/80%).

Table 58. HS200 interface timing specification (Low drive mode)^{1,2}

ID	Parameter	Symbols	Min	Max	Unit		
	Card Input Clock						
SD1	Clock Frequency Period	t _{CLK}	7.5	_	ns		
SD2	Clock Low Time	t _{CL}	3.3	_	ns		
SD3	Clock High Time	t _{CH}	3.3	_	ns		
	uSDHC Output/Card Inputs SD_CMD, SDx_DATA	Ax in HS200 (Re	eference to (CLK)			
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns		
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) ³						
SD8	uSDHC Input Data Window	t _{ODW}	0.475 x t _{CLK}	_	ns		

¹ Input timing assumes an input signal slew rate of 1 ns (20%/80%).

Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance of the transmission line should be matched closely to the RDSON of the I/O pad output driver.

 $^{^{3}\,}$ HS200 is for 8 bits while SDR104 is for 4 bits.

Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance of the transmission line should be matched closely to the RDSON of the I/O pad output driver.

³ HS200 is for 8 bits while SDR104 is for 4 bits.

4.12.1.5 SDR50/SDR104 AC timing

Figure 26 depicts the timing of SDR50/SDR104, Table 59 and Table 60 list the SDR50/SDR104 timing characteristics.

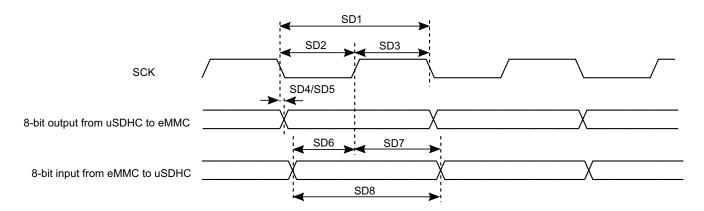


Figure 26. SDR50/SDR104 timing

Table 59. SDR50/SDR104 interface timing specification (Nominal and Overdrive mode)^{1,2}

ID	Parameter	Symbols	Min	Max	Unit			
	Card Input Clock							
SD1	Clock Frequency Period	t _{CLK}	5	_	ns			
SD2	Clock Low Time	t _{CL}	2.2	_	ns			
SD3	Clock High Time	t _{CH}	2.2	_	ns			
	uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)							
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns			
	uSDHC Output/Card Inputs SD_CMD, SDx_DATA	x in SDR104 (R	eference to	CLK)				
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns			
	uSDHC Input/Card Outputs SD_CMD, SDx_DATA	Ax in SDR50 (R	eference to	CLK)				
SD6	uSDHC Input Setup Time	t _{ISU}	2.4	_	ns			
SD7	uSDHC Input Hold Time	t _{IH}	1.5	_	ns			
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) ³							
SD8	uSDHC Input Data Window	t _{ODW}	0.5 x t _{CLK}	_	ns			

¹ Input timing assumes an input signal slew rate of 1 ns (20%/80%).

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance of the transmission line should be matched closely to the RDSON of the I/O pad output driver.

³ Data window in SDR100 mode is variable.

Table 60. SDR50/SDR104 interface timing specification (Low drive mode)^{1,2}

ID	Parameter	Symbols	Min	Max	Unit			
	Card Input Clock							
SD1	Clock Frequency Period	t _{CLK}	7.5	_	ns			
SD2	Clock Low Time	t _{CL}	3.3	_	ns			
SD3	Clock High Time	t _{CH}	3.3	_	ns			
	uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)							
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns			
	uSDHC Output/Card Inputs SD_CMD, SDx_DATA	x in SDR104 (R	eference to	CLK)				
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns			
	uSDHC Input/Card Outputs SD_CMD, SDx_DATA	Ax in SDR50 (R	eference to	CLK)				
SD6	uSDHC Input Setup Time	t _{ISU}	2.4	_	ns			
SD7	uSDHC Input Hold Time	t _{IH}	1.5	_	ns			
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) ³							
SD8	uSDHC Input Data Window	t _{ODW}	0.5 x t _{CLK}	_	ns			

¹ Input timing assumes an input signal slew rate of 1 ns (20%/80%).

4.12.1.6 Bus operation condition for 3.3 V and 1.8 V signaling

Signaling level of SD/eMMC4.5/5.0/5.1 can be 1.8 V or 3.3 V depending on the working mode. The DC parameters for NVCC_SD2 supplies are identical to those shown in Table 24, "GPIO DC parameters," on page 28.

4.12.1.7 uSDHC supported modes

For SD:

- All SD 3.0 protocols are supported at full speeds on all three SDHC interfaces. This includes DS, HS, SDR12, SDR25, SDR50, SDR104, and DDR50.
- The maximum supported SDR frequency is 200 MHz which is covered in SDR104 mode, and maximum DDR frequency is 50 MHz as a part of DDR50 mode.

For eMMC:

- eMMC HS400 is only supported on SDHC1 as that is the only one with 8-bit interface.
- eMMC HS200 is supported on all three SDHC interfaces because this protocol supports both 4-bit mode and 8-bit mode, which can work on SDHC2 and SDHC3.

Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance of the transmission line should be matched closely to the RDSON of the I/O pad output driver.

³ Data window in SDR100 mode is variable.

Alt 0

Alt 1

Alt 0

0

Τ

- eMMC High Speed DDR, High Speed SDR, and less than or equal to 26 MHz MMC legacy protocols are also supported on all three SDHC interfaces.
- The maximum supported SDR frequency is 200 MHz which is covered in HS200 mode, and the maximum DDR frequency is 200 MHz as a part of HS400 mode.

uSDHC3 supports up to SDR104 (200 MHz) on primary SD3_* pins, but when it is multiplexing on GPIO IO[27:22], below are the modes supported:

- eMMC High Speed DDR, High Speed SDR, and less than or equal to 26 MHz MMC legacy protocols are supported.
- SDR50 (100 MHz) and SDR104 (200 MHz) modes are NOT supported.
- eMMC HS400 and HS200 modes are NOT supported
- The maximum supported SDR and DDR frequency is 50 and 52 MHz

If IO is supplied by 3.3 V, the maximum supported SDR/DDR frequency is 50/52 MHz

4.12.2 Ethernet controller (ENET) AC electrical specifications

Ethernet supports the following key features:

- Support ENET AVB
- Support IEEE 1588

ENET2_TD3

ENET2 RXC

ENET2_RX_CTL

- Support Energy Efficient Ethernet (EEE)
- 1.8 V/3.3 V RMII operation, 1.8 V RGMII operation

RGMII_TD3

RGMII RXC

RGMII_RX_CTL

The following sections introduce the ENET AC electrical specifications.

4.12.2.1 ENET2 signal mapping

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Alt mode Direction Pad name **RGMII** RMII Alt mode ENET2_MDC RGMII_MDC Alt 0 RMII_MDC Alt 0 0 **ENET2 MDIO RGMII MDIO** Alt 0 RMII MDIO Alt 0 I/O ENET2_TXC **RGMII TXC** Alt 0 RMII TX ER Alt 1 0 ENET2_TX_CTL RGMII_TX_CTL Alt 0 RMII_TX_EN Alt 0 0 ENET2 TD0 **RGMII TD0** Alt 0 RMII TD0 Alt 0 0 RMII TD1 ENET2_TD1 RGMII TD1 Alt 0 Alt 0 0 ENET2_TD2 RGMII_TD2 Alt 0 RMII_REF_CLK Alt 1 0

Table 61. ENET2 signal mapping¹ (Sheet 1 of 2)

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Alt 0

Alt 0

Alt 0

RMII RX ER

RMII CRS DV

Table 61. ENET2 signal mapping¹ (continued) (Sheet 2 of 2)

Pad name	RGMII	Alt mode	RMII	Alt mode	Direction
ENET2_RD0	RGMII_RD0	Alt 0	RMII_RD0	Alt 0	I
ENET2_RD1	RGMII_RD1	Alt 0	RMII_RD1	Alt 0	I
ENET2_RD2	RGMII_RD2	Alt 0	_	Alt 0	I
ENET2_RD3	RGMII_RD3	Alt 0	_	Alt 0	I

¹ ENET1 is Ethernet QoS with TSN, while ENET2 is Ethernet MAC.

4.12.2.2 RMII mode timing

In RMII mode, enet1.RMII_CLK is used as the REF_CLK, which is a $50 \text{ MHz} \pm 50 \text{ ppm}$ continuous reference clock.

Figure 27 shows RMII mode timings. Table 62 describes the timing parameters (M16–M21) shown in the figure.

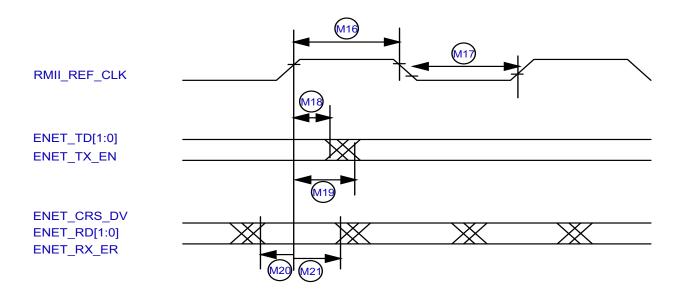


Figure 27. RMII mode signal timing diagram

Table	62.	RMII	signal	timing ^{1,2,3}
-------	-----	------	--------	-------------------------

ID	Characteristic	Min.	Max.	Unit
M16	ENET_CLK pulse width high	35%	65%	RMII_REF_CLK period
M17	RMII_REF_CLK pulse width low	35%	65%	RMII_REF_CLK period
M18	RMII_REF_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid	2	_	ns
M19	RMII_REF_CLK to ENET0_TXD[1:0], ENET_TX_EN valid	_	14	ns
M20	ENET_RX_DATA[1:0], ENET_CRS_DV, ENET_RX_ER to RMII_REF_CLK setup	4	_	ns
M21	RMII_REF_CLK to ENET_RX_DATA[1:0], ENET_CRS_DV, ENET_RX_ER hold	2	_	ns

The timings assume the following configuration: CTL[5:0] = 001111 and SL[1:0] = 11.

4.12.2.3 MII serial management channel timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification.

Figure 28 shows MII asynchronous input timings. Table 63 describes the timing parameters (M10–M15) shown in the figure.

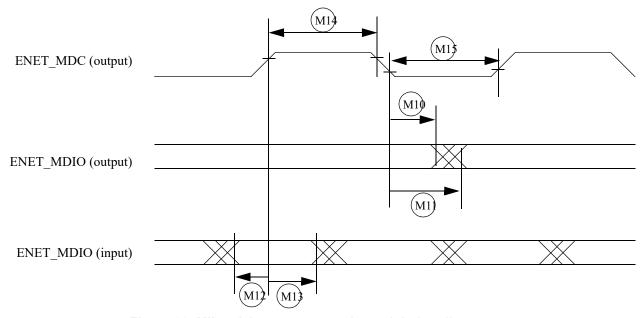


Figure 28. MII serial management channel timing diagram

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² Input timing assumes an input signal slew rate of 3 ns (20%/80%).

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm, unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

Table 63. MII serial management channel timing 1,2,3

ID	Characteristic	Min.	Max.	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay)	-1.5	_	ns
M11	ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay)	_	13	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	13	_	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	_	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

¹ The timings assume the following configuration: CTL[5:0] = 001111 and SL[1:0] = 11.

4.12.2.4 RGMII signal switching specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Table 64. RGMII signal switching specifications 1,2,3,4

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock cycle duration	7.2	8.8	ns
T_{skewT}	Data to clock output skew at transmitter	-500	500	ps
T _{skewR}	Data to clock input skew at receiver	1	2.6	ns
Duty_G	Duty cycle for Gigabit	45	55	%
Duty_T	Duty cycle for 10/100T	40	60	%

The timings assume the following configuration: CTL[5:0] = 001111 and SL[1:0] = 11.

² Input timing assumes an input signal slew rate of 3 ns (20%/80%).

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

² Measured as defined in *EIA/JESD* 8-6 1995 with a timing threshold voltage of VDDQ/2.

Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance in the transmission line should be matched closely to the selected RDSON of the I/O pad output driver.

⁴ RGMII timing specifications are only valid for 1.8 V nominal I/O pad supply voltage.

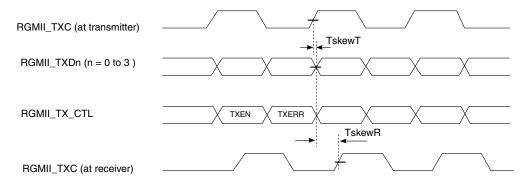


Figure 29. RGMII transmit signal timing diagram original

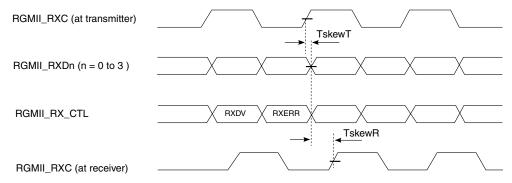


Figure 30. RGMII receive signal timing diagram original

4.12.3 Ethernet Quality-of-Service (QOS) electrical specifications

Ethernet QOS supports the following Time Sensitive Networking (TSN) features:

- 802.1Qbv Enhancements to Scheduling Traffic
- 802.1Qbu Frame preemption
- Time based Scheduling
- 1.8 V/3.3 V RMII operation, 1.8 V RGMII operation

4.12.3.1 Ethernet QOS signal mapping

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Pad name **RGMII** Alt mode **RMII** Alt mode Direction **ENET1 MDC** RGMII MDC Alt 0 RMII MDC Alt 0 0 **RGMII MDIO ENET1 MDIO** Alt 0 RMII MDIO Alt 0 I/O **ENET1 TXC RGMII TXC** Alt 0 RMII TX ER Alt 1 0

Table 65. ENET QOS signal mapping¹ (Sheet 1 of 2)

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Pad name	RGMII	Alt mode	RMII	Alt mode	Direction
ENET1_TX_CTL	RGMII_TX_CTL	Alt 0	RMII_TX_EN	Alt 0	0
ENET1_TD0	RGMII_TD0	Alt 0	RMII_TD0	Alt 0	0
ENET1_TD1	RGMII_TD1	Alt 0	RMII_TD1	Alt 0	0
ENET1_TD2	RGMII_TD2	Alt 0	RMII_REF_CLK	Alt 1	0
ENET1_TD3	RGMII_TD3	Alt 0	_	Alt 0	0
ENET1_RXC	RGMII_RXC	Alt 0	RMII_RX_ER	Alt 1	1
ENET1_RX_CTL	RGMII_RX_CTL	Alt 0	RMII_CRS_DV	Alt 0	1
ENET1_RD0	RGMII_RD0	Alt 0	RMII_RD0	Alt 0	1
ENET1_RD1	RGMII_RD1	Alt 0	RMII_RD1	Alt 0	1
ENET1_RD2	RGMII_RD2	Alt 0	_	Alt 0	1
ENET1_RD3	RGMII_RD3	Alt 0	_	Alt 0	1

¹ ENET1 is Ethernet QoS with TSN, while ENET2 is Ethernet MAC.

4.12.3.2 RMII mode timing

In RMII mode, RMII_REF_CLK is a 50 MHz \pm 50 ppm continuous reference clock.

Figure 31 shows RMII mode timings. Table 66 describes the timing parameters (M16–M21) shown in the figure.

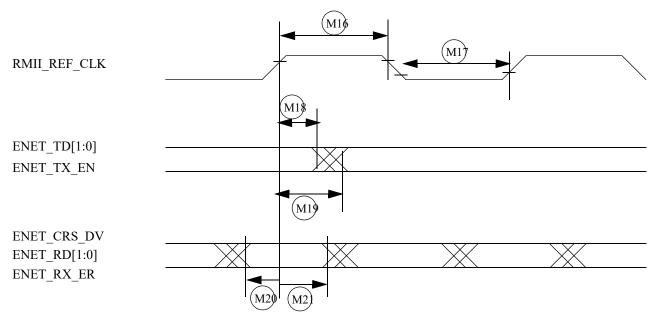


Figure 31. RMII mode signal timing diagram

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 66. RMII	signal	timing ^{1,2,3}
----------------	--------	-------------------------

ID	Characteristic	Min.	Max.	Unit
M16	RMII_REF_CLK pulse width high	35%	65%	RMII_REF_CLK period
M17	RMII_REF_CLK pulse width low	35%	65%	RMII_REF_CLK period
M18	RMII_REF_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid	2	_	ns
M19	RMII_REF_CLK to ENET0_TXD[1:0], ENET_TX_EN valid	_	14	ns
M20	ENET_RX_DATA[1:0], ENET_CRS_DV, ENET_RX_ER to RMII_REF_CLK setup	4	_	ns
M21	RMII_REF_CLK to ENET_RX_DATA[1:0], ENET_CRS_DV, ENET_RX_ER hold	2	_	ns

The timings assume the following configuration: CTL[5:0] = 001111 and SL[1:0] = 11.

4.12.3.3 MII serial management channel timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification.

Figure 28 shows MII asynchronous input timings. Table 63 describes the timing parameters (M10–M15) shown in the figure.

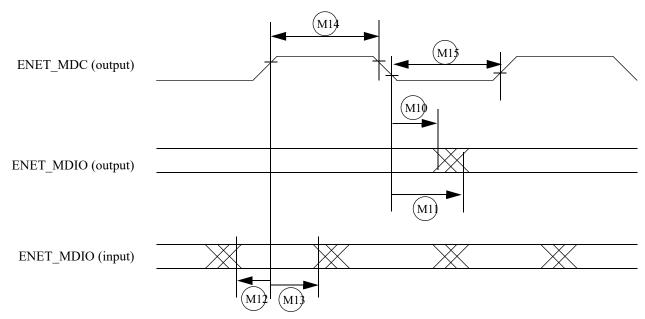


Figure 32. MII serial management channel timing diagram

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² Input timing assumes an input signal slew rate of 3 ns (20%/80%).

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm, unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

Table 67. MII serial management channel timing 1,2,3

ID	Characteristic	Min.	Max.	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay)	-1.5	_	ns
M11	ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay)	_	13	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	13	_	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	_	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

¹ The timings assume the following configuration: CTL[5:0] = 001111 and SL[1:0] = 11.

4.12.3.4 RGMII signal switching specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Table 68. RGMII signal switching specifications 1,2,3,4

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock cycle duration	7.2	8.8	ns
T _{skewT}	Data to clock output skew at transmitter	-500	500	ps
T _{skewR}	Data to clock input skew at receiver	1	2.6	ns
Duty_G	Duty cycle for Gigabit	45	55	%
Duty_T	Duty cycle for 10/100T	40	60	%

The timings assume the following configuration: CTL[5:0] = 001111 and SL[1:0] = 11.

² Input timing assumes an input signal slew rate of 3 ns (20%/80%).

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

² Measured as defined in *EIA/JESD* 8-6 1995 with a timing threshold voltage of VDDQ/2.

Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, unterminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance in the transmission line should be matched closely to the selected RDSON of the I/O pad output driver.

⁴ RGMII timing specifications are only valid for 1.8 V nominal I/O pad supply voltage.

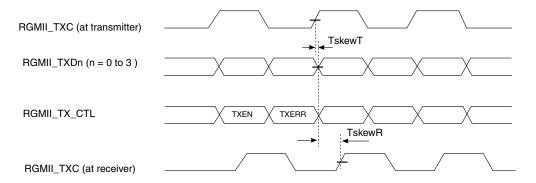


Figure 33. RGMII transmit signal timing diagram original

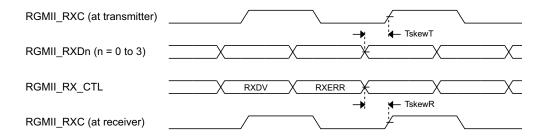


Figure 34. RGMII receive signal timing diagram original

4.12.4 LPSPI timing parameters

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 25 pF maximum load on all LPSPI pins.

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

Number	Symbol	Description	Min.	Max.	Units	Note
1	f _{SCK}	Frequency of LPSPI clock	_	30	MHz	3
			_	60	MHz	4
2	t _{SCK}	SCK period	2 x t _{periph}	_	ns	5
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	twsck	Clock (SCK) high or low time	t _{SCK} / 2 - 3	t _{SCK} / 2 + 3	ns	_

Table 69. LPSPI Master mode timing 12

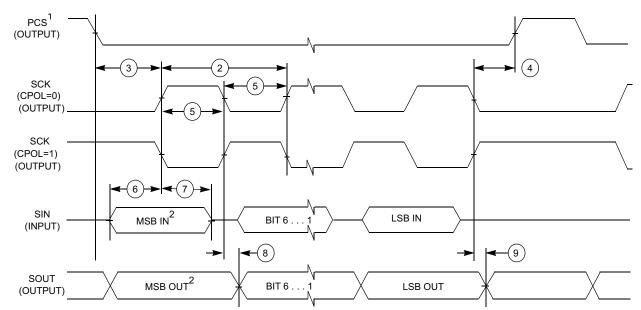

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 69. LPSPI Master mode timing 1 2 (continued)

Number	Symbol	Description	Min.	Max.	Units	Note
6	t _{SU}	Data setup time (inputs)	8	_	ns	6,7
7	t _{HI}	Data hold time (inputs)	0	_	ns	6
8	t _V	Data valid (after SCK edge)	_	2.5	ns	_
9	t _{HO}	Data hold time (outputs)	-2.5	_	ns	_

Input timing assumes an input signal slew rate of 3 ns (20%/80%).

⁷ For 3.3 V I/O supply, tSU (Data setup time) parameter value is 9 ns in LPSPI master mode.

^{1.} If configured as an output.

Figure 35. LPSPI Master mode timing (CPHA = 0)


Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

 $^{^{3}\,}$ The clock driver in the LPSPI module for f_periph must guaranteed this limit is not exceeded.

In master loopback mode when LPSPI_CFGR1[SAMPLE] bit is 1.

 f_{periph} = Functional clock / (2 ^ PRESCALE) and t_{periph} = 1 / f_{periph} If LPSPI_CFGR1[SAMPLE] bit is 1, the data setup time (inputs) / data hold time (inputs) specifications are same with the one in Slave mode.

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 36. LPSPI Master mode timing (CPHA = 1)

Table 70. LPSPI Slave mode timing 12

Number	Symbol	Description	Min.	Max.	Units	Note
1	f _{SCK}	Frequency of LPSPI clock	0	30	MHz	_
2	t _{SCK}	SCK period	2 x t _{periph}	_	ns	3
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	
5	twsck	Clock (SCK) high or low time	t _{SCK} / 2 - 5	t _{SCK} / 2 + 5	ns	1
6	t_{SU}	Data setup time (inputs)	3	_	ns	_
7	t _{HI}	Data hold time (inputs)	3	_	ns	_
8	t _a	Slave access time	_	20	ns	4
9	t _{dis}	Slave MISO disable time	_	20	ns	5
10	t _V	Data valid (after SCK edge)	_	8	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_

¹ Input timing assumes an input signal slew rate of 3 ns (20%/80%).

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

 $^{^3}$ f_{periph} = Functional clock / (2 $^{\wedge}$ PRESCALE) and t_{periph} = 1 / f_{periph}

⁴ Time to data active from high-impedance state

⁵ Hold time to high-impedance state

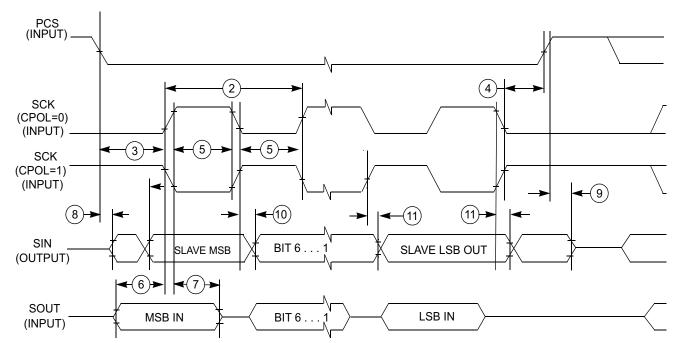


Figure 37. LPSPI Slave mode timing (CPHA = 0)

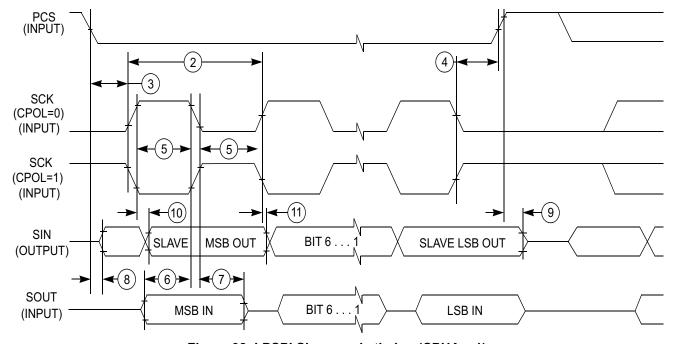


Figure 38. LPSPI Slave mode timing (CPHA = 1)

4.12.5 LPI2C timing parameters

LPI2C is a low-power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as a controller and/or as a target.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 71. LPI2C module timing parameters¹

Symbol	Description		Min	Max	Unit	Notes
f _{SCL}	SCL clock frequency	Standard mode (Sm)	0	100	kHz	2
		Fast mode (Fm)	0	400		
		Fast mode Plus (Fm+)	0	1000		
		High speed mode (Hs-mode)	0	3400		
		Ultra Fast mode (UFm)	0	5000		

¹ For more details, see *UM10204 I2C-bus specification and user manual*.

4.12.6 Improved Inter-Integrated Circuit Interface (I3C) specifications

Unless otherwise specified, I3C specifications are timed to/from the V_{IH} and/or V_{IL} signal points.

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

Table 72. I3C specifications when communicating with legacy I2C devices

Symbol	Characteristic	400 kHz/Fast mode		1 MHz/Fa	l lmi4		
Symbol	Characteristic	Min	Max	Min	Max	- Unit	
f _{SCL}	SCL clock frequency	0	0.4	0	1.0	MHz	
t _{SU_STA}	Set-up time for a repeated START condition	600	_	260	_	ns	
t _{HD_STA}	Hold time (repeated START condition)	600	_	260	_	ns	
t _{LOW}	LOW period of the SCL clock	1300	_	500	_	ns	
t _{HIGH}	HIGH period of the SCL clock	600	_	260	_	ns	
t _{SU_DAT}	Data set-up time	100	_	50	_	ns	
t _{HD_DAT}	Data hold time for I2C bus devices	0	_	0	_	ns	
t _f	Fall time of SDA and SCL signals	20 + 0.1C _b ¹	300	$20 + 0.1C_b^{-1}$	120	ns	
t _r	Rise time of SDA and SCL signals	20 + 0.1C _b ¹	300	$20 + 0.1C_b^{-1}$	120	ns	
t _{SU_STO}	Set-up time for STOP condition	600	_	260	_	ns	
t _{BUF}	Bus free time between STOP and START condition	1.3	_	0.5	_	μѕ	
t _{SP}	Pulse width of spikes that must be suppressed by the input filter	0	50	0	50	ns	

 $^{^{1}}$ C_b = total capacitance of the one bus line in pF.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² Standard, Fast, Fast+, and Ultra Fast modes are supported; High speed mode (HS) in slave mode.

Table 73. I3C open drain mode specifications

Symbol	Characteristic	Min	Max	Unit	Notes
t _{LOW_OD}	LOW period of the SCL clock	200	_	ns	_
t _{DIG_OD_L}		t _{LOW_OD} + t _{fDA_OD} (min)	_	ns	_
t _{HIGH}	HIGH period of the SCL clock	t _{CF}	12	ns	_
t _{fDS_OD}	Fall time of SDA signals	20 + 0.1C _b	120	ns	1
t _{SU_OD}	Data set-up time during open drain mode	3	_	ns	_
t _{CAS}	Clock after START (S) condition • ENTAS0 • ENTAS1 • ENTAS2 • ENTAS3	38.4 n 38.4 n 38.4 n 38.4 n	1 μ 100 μ 2 m 50 m	\$ \$ \$ \$	_
t _{CBP}	Clock before STOP (P) condition	t _{CAS} (min) / 2	_	ns	_
t _{MMOverlap}	Current master to secondary master overlap time during handoff	t _{DIG_OD_L}	_	ns	_
t _{AVAL}	Bus available condition	1	_	μs	_
t _{IDLE}	Bus idle condition		_	ms	_
t _{MMLock}	Time internal where new master not driving SDA low		_	μ\$	_

 $^{^{1}}$ C_b = total capacitance of the one bus line in pF.

Table 74. Push-Pull timing parameters for SDR modes

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
f _{SCL}	SCL clock frequency	0.01	12.5	12.9	MHz	1
t _{DIG_L}	SCL clock low period	32	_	_	ns	2,3
t _{DIG_H}	SCL clock high period	32	_	_	ns	2
t _{LOW}	LOW period of the SCL clock	24	_	_	ns	_
t _{SCO}	Clock in to data out for slave					4,5
	Load capacitance = 50 pF		_	15	ns	_
	Load capacitance = 25 pF	_	_	13	ns	_
t _{CR}	SCL clock rise time	_	_	150 e06 x 1 / f _{SCL} (capped at 60)	ns	6

Table 74. Push-Pull timing parameters for SDR modes	(continued)	

Symbol	Characteristic	Min	Тур	Max	Unit	Notes
t _{CF}	SCL clock fall time	_	_	150e06 x 1 / f _{SCL} (capped at 60)	ns	6
t _{HD_PP}	SDA signal data hold • Master mode • Slave mode	tCR + 3 and tCF + 3	_ _		ns	7,8
t _{SU_PP}	SDA signal data Setup in Push-Pull mode	3	_	N/A	ns	7

 $^{^{1}} f_{SCL} = 1 / (t_{DIG_L} + t_{DIG_H})$

t_{HD_PP} is a Hold time parameter for Push-Pull Mode that has a different value for Master mode vs. Slave mode. In SDR Mode the Hold time parameter is referred to as t_{HD_PP}.

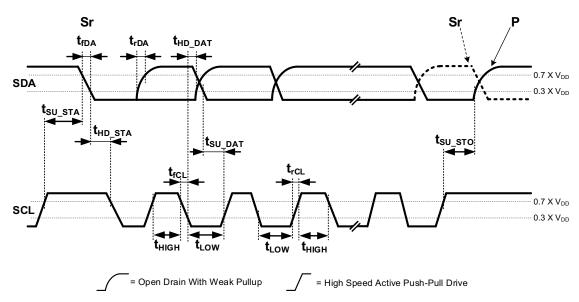


Figure 39. I3C legacy mode timing

 $^{^2}$ t_{DIG-L} and t_{DIG-H} are the clock Low and High periods as seen at the receiver end of the I3C Bus using VIL and VIH

³ As both edges are used, the hold time needs to be satisfied for the respective edges; i.e., t_{CF} + 3 for falling edge clocks, and t_{CR} + 3 for rising edge clocks.

 $^{^4}$ Pad delay based on 90 Ω / 4 mA driver and 50 pF load. Note that Master may be a Slave in a multi-Master system, and thus shall also adhere to this requirement

Devices with more than 12ns of t_{SCO} delay shall set the limitation bit in the BCR, and shall support the GETMXDS CCC to allow the Master to read this value and adjust computations accordingly. For purposes of system design and test conformance, this parameter should be considered together with pad delay, bus capacitance, propagation delay, and clock triggering points.

⁶ The clock maximum rise/fall time is capped at 60 ns. For lower frequency rise and fall the maximum value is limited at 60 ns, and is not dependent upon the clock frequency.

Applicable for slave and master loopback modes

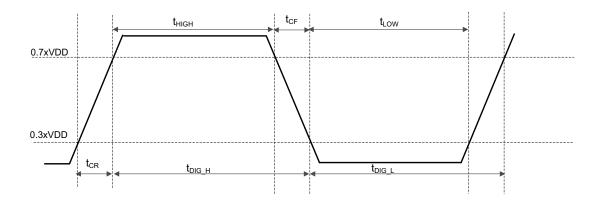


Figure 40. $t_{\mbox{\scriptsize DIG_H}}$ and $t_{\mbox{\scriptsize DIG_L}}$

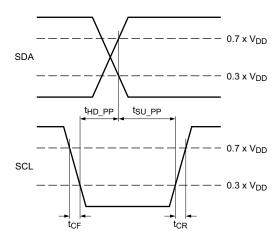


Figure 41. Master out timing

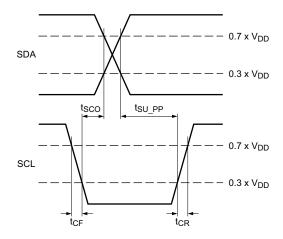


Figure 42. Slave out timing

4.12.7 CAN network AC electrical specifications

The Controller Area Network (CAN) module is a communication controller implementing the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol specification. The processor has two CAN modules available. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx pins; these ports are named CAN_TX and CAN_RX, respectively.

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

Please see Section 4.6.1, General purpose I/O AC parameters for timing parameters.

Parameters	BCAN (Classical and FD)	FlexCAN (Classical and FD)	BCANXL (Classical, FD, and XL)	Unit
Minimum operating frequency	20/40	20/40	40/160	MHz
Maximum Baud Rate	8/8	8/8	20/20	Mbps
TXD Rise time wcs	4/4	4/4	4/4	ns
TXD Fall time wcs	4/4	4/4	4/4	ns
RXD Rise time wcs	4/4	4/4	4/4	ns
RXD Fall time wcs	4/4	4/4	4/4	ns
TXD	3.3/3.3	3.3/3.3	3.3/3.3	V
RXD	3.3/3.3	3.3/3.3	3.3/3.3	V
Internal delay wcs	100/50	100/50	50/12.5	ns
TX PAD delay wcs	25/25	25/25	25/25	ns
RX PAD delay wcs	10/10	10/10	10/10	ns

Table 75. CAN-FD electrical specifications

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 75. CAN-FD electrical specifications (continued)

Parameters	BCAN (Classical and FD)	FlexCAN (Classical and FD)	BCANXL (Classical, FD, and XL)	Unit
TX routing delay wcs	5/5	5/5	5/5	ns
RX routing delay wcs	5/5	5/5	5/5	ns
Transceiver loop delay wcs	250/250	250/250	190/190	ns
Total loop delay	395/345	395/345	285/247.5	ns

4.12.8 Timer/Pulse width modulator (TPM) timing parameters

This section describes the output timing parameters of the TPM.

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

Figure 43 depicts the timing of the PWM, and Table 76 lists the TPM timing parameters.

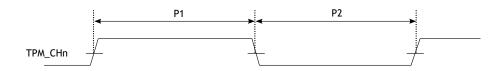


Figure 43. TPM timing

Table 76. TPM output timing parameters

ID	Parameter	Min	Max	Unit
	PWM Module Clock Frequency	0	83.3	MHz
P1	PWM output pulse width high	12	_	ns
P2	PWM output pulse width low	12	_	ns

4.12.9 FlexSPI timing parameters

The FlexSPI interface can work in SDR or DDR modes. Only FlexSPIn_MCR0[RXCLKSRC] = 0 and FlexSPIn_MCR0[RXCLKSRC] = 1 configurations are supported when I/O is supplied by 3.3 V.

Input timing assumes an input signal slew rate of 1 ns (20%/80%) and Output timing valid for maximum external load CL = 15 pF, which is assumed to be a 8 pF load at the end of a 50 ohm, un-terminated, 2-inch microstrip trace on standard FR4 (1.5 pF/inch). For best signal integrity, the series resistance of the transmission line should be matched closely to the selected RDSON of the I/O pad output driver.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

4.12.9.1 FlexSPI input/read timing

There are three sources for the internal sample clock of FlexSPI read data:

- Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn MCR0[RXCLKSRC] = 0x0)
- Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad $(FlexSPIn\ MCR0[RXCLKSRC] = 0x1)$
- Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3)

The following sections describe input signal timing for each of these three internal sample clock sources.

4.12.9.1.1 SDR mode with FlexSPIn MCR0[RXCLKSRC] = 0x0, 0x1

Table 77. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0 (Nominal and Overdrive mode)

Symbol	Parameter	Min	Мах	Unit
_	Frequency of operation	_	66	MHz
F1	Setup time for incoming data	6	_	ns
F2	Hold time for incoming data	0	_	ns

Table 78. FlexSPI input timing in SDR mode where FlexSPIn MCR0[RXCLKSRC] = 0X0 (Low drive mode)

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	50	MHz
F1	Setup time for incoming data	7	_	ns
F2	Hold time for incoming data	0	_	ns

Table 79. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1 (Nominal and Overdrive mode)

Symbol	Parameter	Min	Мах	Unit
_	Frequency of operation	_	166	MHz
F1	Setup time for incoming data	1	_	ns
F2	Hold time for incoming data	1	_	ns

Table 80. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1 (Low drive mode)

Symbol	Parameter	Min	Мах	Unit
_	Frequency of operation	_	100	MHz

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Electrical characteristics

Table 80. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1 (Low drive mode)

Symbol	Parameter	Min	Мах	Unit
F1	Setup time for incoming data	2	_	ns
F2	Hold time for incoming data	1	_	ns

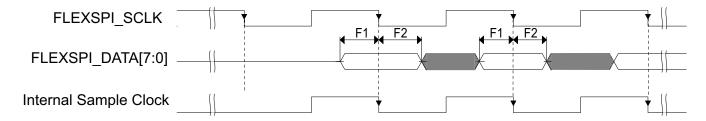


Figure 44. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1

NOTE

Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge.

4.12.9.1.2 SDR mode with FlexSPIn MCR0[RXCLKSRC] = 0x3

There are two cases when the memory provides both read data and the read strobe in SDR mode:

- A1—Memory generates both read data and read strobe on SCK rising edge (or falling edge)
- A2—Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge

Table 81. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1) (Nominal and Overdrive mode)¹

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	200	MHz
T _{SCKD}	Time from SCK to data valid	_	_	ns
T _{SCKDQS}	Time from SCK to DQS	_	_	ns
T _{SCKD} - T _{SCKDQS}	Time delta between $T_{\mbox{\footnotesize SCKD}}$ and $T_{\mbox{\footnotesize SCKDQS}}$	-0.6	0.6	ns

These timing specifications are valid only for 1.8 V nominal I/O pad supply voltage. For 3.3 V I/O supply, see Table 82, "FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1) (Low drive mode)".

Table 82. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1) (Low drive mode)

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	133	MHz
T _{SCKD}	Time from SCK to data valid	_	_	ns
T _{SCKDQS}	Time from SCK to DQS	_	_	ns
T _{SCKD} - T _{SCKDQS}	Time delta between T _{SCKD} and T _{SCKDQS}	-2	2	ns

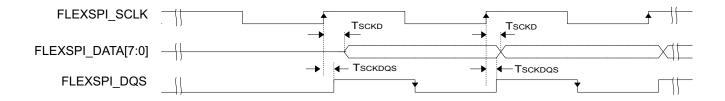


Figure 45. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1)

NOTE

Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge.

Table 83. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2) (Nominal and Overdrive mode)¹

Symbol	Parameter	Val	ue	Unit
Symbol	T drameter	Min	Max	Onit
_	Frequency of operation	_	200	MHz
T _{SCKD}	Time from SCK to data valid	_	_	ns
T _{SCKDQS}	Time from SCK to DQS	_	_	ns
T _{SCKD} - T _{SCKDQS}	Time delta between T _{SCKD} and T _{SCKDQS}	-0.6	0.6	ns

These timing specifications are valid only for 1.8 V nominal I/O pad supply voltage. For 3.3 V I/O supply, see Table 84, "FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2) (Low drive mode)".

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 84. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2) (Low drive mode)

Symbol	Parameter	Val	ue	Unit
	Faranneter	Min	Max	
_	Frequency of operation	_	133	MHz
T _{SCKD}	Time from SCK to data valid	_	_	ns
T _{SCKDQS}	Time from SCK to DQS	_	_	ns
T _{SCKD} - T _{SCKDQS}	Time delta between T _{SCKD} and T _{SCKDQS}	-2	2	ns

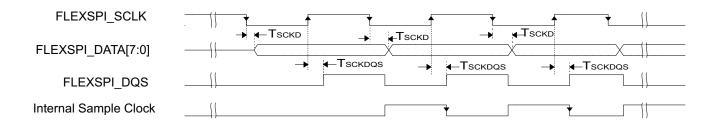


Figure 46. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2)

NOTE

Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half cycle delayed DQS falling edge.

4.12.9.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

Table 85. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 (Nominal, Overdrive, and Low drive mode)

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	33	MHz
F1	Setup time for incoming data	6	_	ns
F2	Hold time for incoming data	0	_	ns

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 86. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 (Nominal and Overdrive mode)

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	83	MHz
F1	Setup time for incoming data	1	_	ns
F2	Hold time for incoming data	1	_	ns

Table 87. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 (Low drive mode)

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	66	MHz
F1	Setup time for incoming data	1.5	_	ns
F2	Hold time for incoming data	1	_	ns

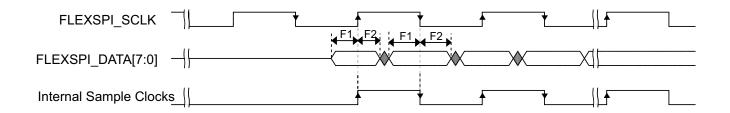


Figure 47. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

4.12.9.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3

Table 88. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Nominal and Overdrive mode)¹

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	200	MHz
T _{SCKD}	Time from SCK to data valid	_	_	ns
T _{SCKDQS}	Time from SCK to DQS	_	_	ns
T _{SCKD} - T _{SCKDQS}	Time delta between T _{SCKD} and T _{SCKDQS}	-0.6	0.6	ns

These timing specifications are valid only for 1.8 V nominal I/O pad supply voltage. For 3.3 V I/O supply, see Table 89, "FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Low drive mode)".

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 89. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Low drive mode)

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	133	MHz
T _{SCKD}	Time from SCK to data valid	_	_	ns
T _{SCKDQS}	Time from SCK to DQS	_	_	ns
T _{SCKD} - T _{SCKDQS}	Time delta between T _{SCKD} and T _{SCKDQS}	-0.9	0.9	ns

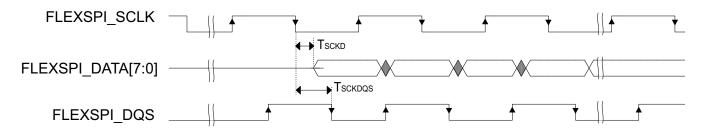


Figure 48. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3

4.12.9.2 FlexSPI output/write timing

The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs.

4.12.9.2.1 SDR mode

Table 90. FlexSPI output timing in SDR mode (Nominal and Overdrive mode)¹

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	200 ²	MHz
T _{ck}	SCK clock period	5	_	ns
T _{DVO}	Output data valid time	_	0.6	ns
T _{DHO}	Output data hold time	-0.6	_	ns
T _{CSS}	Chip select output setup time ³	(T _{CSS} + 0.5) x T _{ck} - 0.6	_	ns
T _{CSH}	Chip select output hold time ³	(T _{CSH} x T _{ck}) - 0.6	_	ns

These timing specifications are valid only for 1.8 V nominal I/O pad supply voltage. For 3.3 V I/O supply, see the FlexSPI SDR output timing in SDR mode (Low drive mode).

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

² The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used, see the FlexSPI SDR input timing specifications.

T_{CSS} and T_{CSH} are configured by the FlexSPIn_FLSHAxCR1 register. See i.MX 93 Applications Processor Reference Manual (IMX93RM) for more details.

Table 91. FlexSPI output timing in SDR mode (Lo	ow drive mode)
---	----------------

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	133 ¹	MHz
T _{ck}	SCK clock period	7.5	_	ns
T _{DVO}	Output data valid time	_	2	ns
T _{DHO}	Output data hold time	-2	_	ns
T _{CSS}	Chip select output setup time ²	(T _{CSS} + 0.5) x T _{ck} - 2	_	ns
T _{CSH}	Chip select output hold time ²	(T _{CSH} x T _{ck}) - 2	_	ns

The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used, see the FlexSPI SDR input timing specifications.

² T_{CSS} and T_{CSH} are configured by the FlexSPIn_FLSHAxCR1 register. See i.MX 93 Applications Processor Reference Manual (IMX93RM) for more details.

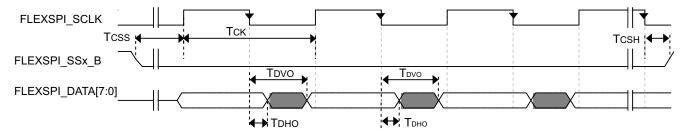


Figure 49. FlexSPI output timing in SDR mode

Electrical characteristics

4.12.9.2.2 DDR mode

Table 92. FlexSPI output timing in DDR mode (Nominal and Overdrive mode)¹

Symbol	Parameter	Min	Max	Unit	
_	Frequency of operation	_	200 ²	MHz	
T _{ck}	SCK clock period	5	_	ns	
T _{DVO}	Output data valid time	_	1.815	ns	
T _{DHO}	Output data hold time	0.615	_	ns	
T _{CSS}	Chip select output setup time ³	(T _{CSS} + 0.5) x T _{ck} - 0.6	_	ns	
T _{CSH}	Chip select output hold time ³	(T _{CSH} + 0.5) x T _{ck} - 0.6	_	ns	

These timing specifications are valid only for 1.8 V nominal IO pad supply voltage. For 3.3 V I/O supply, see Table 93. FlexSPI output timing in DDR mode (Low drive mode).

Table 93. FlexSPI output timing in DDR mode (Low drive mode)

Symbol	Parameter	Min	Max	Unit
_	Frequency of operation	_	133 ¹	MHz
T _{ck}	SCK clock period	7.5	_	ns
T _{DVO}	Output data valid time	_	2.75	ns
T _{DHO}	Output data hold time	0.9	_	ns
T _{CSS}	Chip select output setup time ²	(T _{CSS} + 0.5) x T _{ck} - 0.9	_	ns
T _{CSH}	Chip select output hold time ²	(T _{CSH} + 0.5) x T _{ck} - 0.9	_	ns

The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used, see the FlexSPI DDR input timing specifications.

² The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used, see the FlexSPI DDR input timing specifications.

³ T_{CSS} and T_{CSH} are configured by the FlexSPIn_FLSHAxCR1 register. See i.MX 93 Applications Processor Reference Manual (IMX93RM) for more details.

² T_{CSS} and T_{CSH} are configured by the FlexSPIn_FLSHAxCR1 register. See i.MX 93 Applications Processor Reference Manual (IMX93RM) for more details.

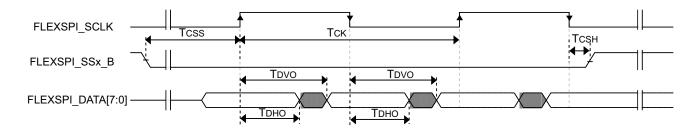


Figure 50. FlexSPI output timing in DDR mode

4.12.10 LPUART I/O configuration and timing parameters

Please refer to Section 4.6.1, General purpose I/O AC parameters.

4.12.11 Flexible I/O controller (FlexIO) electrical specifications

The CTL[5:0] = 001111 and SL[1:0] = 11 are required drive settings to meet the timing.

Table 94 shows FlexIO timing specifications.

Table 94. FlexIO timing specifications^{1,2}

Symbol	Descriptions	Min	Тур	Max	Unit	Notes
t _{ODS}	Output delay skew between any two FlexIO_Dx pins configured as outputs that toggle on same internal clock cycle	0	_	12	ns	3
t _{IDS}	Input delay skew between any two FlexIO_Dx pins configured as inputs that are sampled on the same internal clock cycle	0	_	12	ns	3

¹ Input timing assumes an input signal slew rate of 3 ns (20%/80%).

4.12.12 USB PHY parameters

The USB PHY parameters meet the electrical compliance requirements listed as following:

• Universal Serial Bus Revision 2.0 Specification (including ECNs and errata), On-The-Go and Embedded Host Supplement to the Universal Serial Bus Revision 2.0 Specification (including ECNs and errata)

4.12.12.1 Pad/Package/Board connections

The USBx VBUS pin cannot directly connect to the 5 V VBUS voltage on the USB2.0 link.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 ohm. Unterminated, 5-inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance in the transmission line should be equal to the selected RDSON of the I/O pad output driver.

³ Assume pins muxed on same VDD_IO domain with same load.

Electrical characteristics

Each USBx VBUS pin must be isolated by an external 30 KΩ 1% precision resistor.

The USB 2.0 PHY uses USBx_TXRTUNE and an external resistor to calibrate the USBx_DP/DN 45 Ω source impedance. The external resistor value is 200 Ω 1% precision on each of USBx_TXRTUNE pad to ground.

4.12.12.2 USB PHY worst power consumption

Table 95 shows the USB 2.0 PHY worst power dissipation.

Table 95. USB 2.0 PHY worst power dissipation

Mode	VDD_USB_	VDD_USB_0P8		3P3	VDD_USB_	1P8	Total Pow	er er
HS TX	8.286		4.63		23.409		70.448	
FS TX	6.767		12.52		5.968		63.22	
LS TX	7.001	mA	13.58	mA	6.224	mA	67.779	mW
Suspend	0.752		0.164		0.106		1.465	
Sleep	0.761		0.163		0.106		1.472	

5 Boot mode configuration

This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.

i.MX 93 supports three different boot modes:

- Normal Boot Mode
- Boot from Internal Fuse Mode
- Serial Download Boot Mode

Three different boot modes can be either selected via different boot mode pins or overridden by fuses.

i.MX 93 has two kinds of boot type:

- Single Boot: Cortex®-A55 core is in charge of loading all containers and images, while Cortex®-M33 core is doing nothing except waiting Cortex®-M33 firmware is loaded and available during boot.
- Low Power Boot (LPB): only Cortex®-M33 core is running after POR. Cortex®-A55 core is expected to kick off by Cortex®-M33 firmware in some use cases.

For detailed boot mode configuration, see the "Fuse Map" and the "System Boot" chapter in *i.MX 93 Reference Manual (IMX93RM)*.

5.1 Boot mode configuration pins

There are four boot mode pins used to select boot mode.

Table 96. Fuses and associated pins used for boot

BOOT_MODE[3:0]	Function
x000	Boot from Internal Fuses
0001	Serial Download (USB1)
0010	uSDHC1 8-bit eMMC 5.1
0011	uSDHC2 4-bit SD 3.0
0100	FlexSPI Serial NOR
0101	FlexSPI Serial NAND 2K
0110	Infinite Loop
0111	Reserved
1000	LPB: Boot from Internal Fuses
1001	LPB: Serial Downloader (USB1)
1010	LPB: uSDHC1 8-bit 1.8 V eMMC 5.1
1011	LPB: uSDHC2 4-bit SD 3.0
1100	LPB: FlexSPI Serial NOR
1101	LPB: FlexSPI Serial NAND 2K

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Boot mode configuration

Table 96. Fuses and associated pins used for boot (continued)

BOOT_MODE[3:0]	Function
1110	Infinite Loop
1111	Reserved

- HW samples the boot CFG pins before ROM starts, these pins should be mapped to Boot CFG pins by default.
- Once HW samples the boot CFG pins and stores the boot CFG in CMC register, the register should be latched. The register value is no more changes and reflecting the pins status.

Additional boot options are also supported for both Normal Boot Mode and Internal Fuse mode:

- All boot modes support for a range of speeds, timings, and protocol formats;
- eMMC and SD boot can be supported from any USDHC instance 1 or 2;
- Serial NOR boot supports for 1-bit, 4-bit, and 8-bit mode;
- Serial NAND boot supports for 1-bit, 4-bit, and 8-bit mode (8-bit Serial NAND)

BOOT_MODE pins are multiplexed over other functional pins. The functional I/O that are multiplexed with these pins must be selected subject to two criteria:

- Functional I/O must not be used if they are inputs to the SoC, which could potentially be constantly driven by external components. Such functional mode driving may interfere with the need for the board to pull these pins a certain way while POR is asserted.
- Functional I/O must not be used if they are outputs of the SoC, which will be connected to components on the board that may misinterpret the signals as valid signals if they are toggled (such as, the board drives them while POR is asserted).

5.2 Boot device interface allocation

i.MX 93 supports three kinds of boot devices:

- Primary Boot Device
 - The primary boot device is selected by Boot Config pins if boot mode is the Normal Boot or Internal Fuses Boot. The valid primary boot device options are SD/eMMC/FlexSPI NOR/SPI NAND. The valid options also depend on the Boot Type and other fuses configuration.
- Recovery Boot Device
 - After failure of booting from Primary Boot Device, i.MX 93 tries to boot from another boot source. The recovery boot device is only from SPI1/2/3/4.
- Serial Download Boot Device
 - Both Cortex®-M33 and Cortex®-A55 support serial download mode via USB1.

The following tables list the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The tables also describe the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate.

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 97. Boot through FlexSPI

Signal name	PAD name	ALT
FlexSPIA_DATA0	SD3_DATA0	ALT1
FlexSPIA_DATA1	SD3_DATA1	ALT1
FlexSPIA_DATA2	SD3_DATA2	ALT1
FlexSPIA_DATA3	SD3_DATA3	ALT1
FlexSPIA_DQS	SD1_STROBE	ALT1
FlexSPIA_SS0_B	SD3_CMD	ALT1
FlexSPIA_SCLK	SD3_CLK	ALT1
FlexSPIA_DATA4	SD1_DATA4	ALT1
FlexSPIA_DATA5	SD1_DATA5	ALT1
FlexSPIA_DATA6	SD1_DATA6	ALT1
FlexSPIA_DATA7	SD1_DATA7	ALT1

Table 98. Boot through uSDHC1

Signal name	PAD name	ALT
USDHC1_CMD	SD1_CMD	ALT0
USDHC1_CLK	SD1_CLK	ALT0
USDHC1_DATA0	SD1_DATA0	ALT0
USDHC1_DATA1	SD1_DATA1	ALT0
USDHC1_DATA2	SD1_DATA2	ALT0
USDHC1_DATA3	SD1_DATA3	ALT0
USDHC1_DATA4	SD1_DATA4	ALT0
USDHC1_DATA5	SD1_DATA5	ALT0
USDHC1_DATA6	SD1_DATA6	ALT0
USDHC1_DATA7	SD1_DATA7	ALT0
USDHC1_RESET	SD1_DATA5	ALT2

Table 99. Boot through uSDHC2

Signal name	PAD name	ALT
USDHC2_CMD	SD2_CMD	ALT0
USDHC2_CLK	SD2_CLK	ALT0

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Boot mode configuration

Table 99. Boot through uSDHC2 (continued)

USDHC2_DATA0	SD2_DATA0	ALT0
USDHC2_DATA1	SD2_DATA1	ALT0
USDHC2_DATA2	SD2_DATA2	ALT0
USDHC2_DATA3	SD2_DATA3	ALT0
USDHC2_RESET	SD2_RESET_B	ALT0
USDHC2_VSELECT	SD2_VSELECT	ALT0

Table 100. Boot through SPI1

Signal name	PAD name	ALT
SPI1_PCS1	PDM_BIT_STREAM0	ALT2
SPI1_SIN	SAI1_TXC	ALT2
SPI1_SOUT	SAI1_RXD0	ALT2
SPI1_SCK	SAI1_TXD0	ALT2
SPI1_PCS0	SAI1_TXFS	ALT2

Table 101. Boot through SPI2

Signal name	PAD name	ALT
SPI2_PCS1	PDM_BIT_STREAM1	ALT2
SPI2_SIN	UART1_RXD	ALT2
SPI2_SOUT	UART2_RXD	ALT2
SPI2_SCK	UART2_TXD	ALT2
SPI2_PCS0	UART1_TXD	ALT2

Table 102. Boot through SPI3

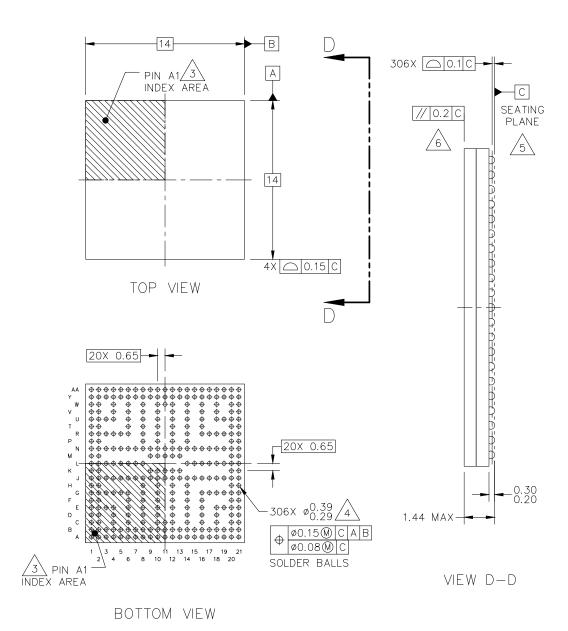
Signal name	PAD name	ALT
SPI3_PCS1	GPIO_IO07	ALT1
SPI3_SIN	GPIO_IO09	ALT1
SPI3_SOUT	GPIO_IO10	ALT1
SPI3_SCK	GPIO_IO11	ALT1
SPI3_PCS0	GPIO_IO08	ALT1

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 103. Boot through SPI4

Signal name	PAD name	ALT
SPI4_PCS1	GPIO_IO17	ALT5
SPI4_PCS2	GPIO_IO16	ALT5
SPI4_SIN	GPIO_IO19	ALT5
SPI4_SOUT	GPIO_IO20	ALT5
SPI4_SCK	GPIO_IO21	ALT5
SPI4_PCS0	GPIO_IO18	ALT5

USB1 interfaces are dedicated pins, thus no IOMUX options.


This section includes the contact assignment information and mechanical package drawing.

6.1 14 x 14 mm package information

6.1.1 14 x 14 mm, 0.65 mm pitch, ball matrix

Figure 51 shows the top, bottom, and side views of the 14 x 14 mm FCBGA package.

SOT2200-1

RELEASED FOR EXTERNAL ASSEMBLY ONLY. THIS DESIGN ONLY MEETS EXTERNAL DESIGN AND ASSEMBLY RULES. MUST BE REVIEWED AND UPDATED BEFORE BEING ASSEMBLED INTERNALLY.

© NXP B.V.	ALL RIGHTS RESERVED		DATE: 0	5 JAN 2023
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA02028D	ΧO	1 OF 6

Figure 51. 14 x 14 mm BGA, case x package top, bottom, and side Views

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

6.1.2 14 x 14 mm supplies contact assignments and functional contact assignments

Table 104 shows the device connection list for ground, sense, and reference contact signals.

Table 104. 14 x 14 mm supplies contact assignment

Supply Rail Name	Ball(s) Position(s)	Remark
NVCC_AON	L16	_
NVCC_BBSM_1P8	G12	_
NVCC_GPIO	N15, N16	_
NVCC_SD2	R16	_
NVCC_WAKEUP	R10, R12, W8	_
VDD_ANA_0P8	J15, J16, R14	_
VDD_ANA0_1P8	F16, G16	_
VDD_ANA1_1P8	R8	_
VDD_ANAVDET_1P8	L15	_
VDD_BBSM_0P8_CAP	G14	_
VDD_LVDS_1P8	F6	_
VDD_MIPI_0P8	G8	_
VDD_MIPI_1P8	F8	_
VDD_SOC	J9, J10, J11, J12, J13, K9, K10, K12, K13, M9, M10, M12, M13, N9, N10, N11, N12, N13	_
VDD_USB_0P8	F10	_
VDD_USB_1P8	E8	_
VDD_USB_3P3	G10	_
VDD2_DDR	L7, N6, N7, R6, T6	_
VDDQ_DDR	G6, J6, J7, L6	_
VSS	A1, A21, C2, C4, C6, C8, C10, C12, C14, C16, C18, E3, E19, G3, G19, H8, H10, H12, H14, J3, J5, J8, J14, J19, K11, L1, L3, L5, L8, L14, L19, M11, N3, N5, N8, N14, N19, P8, P10, P12, P14, R3, R19, T1, U3, U19, W4, W6, W10, W12, W14, W16, W18, AA1, AA21	

Table 105 shows an alpha-sorted list of functional contact assignments of the 14 x 14 mm package.

Table 105. 14 x 14 mm functional contact assignment

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
ADC_IN0	B19	VDD_ANA_1P8	ANALOG	_	_	Input without PU ¹ / PD ²
ADC_IN1	A20	VDD_ANA_1P8	ANALOG	_	_	Input without PU / PD
ADC_IN2	B20	VDD_ANA_1P8	ANALOG	_	_	Input without PU / PD
ADC_IN3	B21	VDD_ANA_1P8	ANALOG	_	_	Input without PU / PD
CCM_CLKO1	AA2	NVCC_WAKEUP	GPIO	Alt0	CCMSRCGPCMIX.CLK01	Output low
CCM_CLKO2	Y3	NVCC_WAKEUP	GPIO	Alt0	CCMSRCGPCMIX.CLK02	Output low
CCM_CLKO3	U4	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[28]	Input with PD
CCM_CLKO4	V4	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[29]	Input with PD
CLKIN1	B17	VDD_ANA_1P8	ANALOG	_	_	Input without PU / PD
CLKIN2	A18	VDD_ANA_1P8	ANALOG	_	_	Input without PU / PD
DAP_TCLK_SWCLK	Y1	NVCC_WAKEUP	GPIO	Alt0	DAP.TCLK_SWCLK	Input with PD
DAP_TDI	W1	NVCC_WAKEUP	GPIO	Alt0	DAP.TDI	Input with PU
DAP_TDO_TRACESW O	Y2	NVCC_WAKEUP	GPIO	Alt0	DAP.TDO_TRACESWO	Input without PU/PD
DAP_TMS_SWDIO	W2	NVCC_WAKEUP	GPIO	Alt0	DAP.TMS_SWDIO	Input with PU
DRAM_CA0_A	H2	VDD2_DDR	DDR	_	_	_
DRAM_CA1_A	G1	VDD2_DDR	DDR	_	_	_
DRAM_CA2_A	F2	VDD2_DDR	DDR	_	_	_
DRAM_CA3_A	E1	VDD2_DDR	DDR	_	_	_
DRAM_CA4_A	E2	VDD2_DDR	DDR	_	_	_
DRAM_CA5_A	D1	VDD2_DDR	DDR	_	_	_
DRAM_CK_C_A	G5	VDD2_DDR	DDR	_	_	_
DRAM_CK_T_A	G4	VDD2_DDR	DDR	_	_	_
DRAM_CKE0_A	H1	VDD2_DDR	DDR	_	_	_
DRAM_CKE1_A	J4	VDD2_DDR	DDR	_	_	_
DRAM_CS0_A	F1	VDD2_DDR	DDR	_	_	_

Table 105. 14 x 14 mm functional contact assignment (continued)

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
DRAM_CS1_A	G2	VDD2_DDR	DDR	_	_	_
DRAM_DMI0_A	L2	VDDQ_DDR	DDR	_	_	_
DRAM_DMI1_A	T2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ00_A	N1	VDDQ_DDR	DDR	_	_	_
DRAM_DQ01_A	N2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ02_A	M1	VDDQ_DDR	DDR	_	_	_
DRAM_DQ03_A	M2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ04_A	K1	VDDQ_DDR	DDR	_	_	_
DRAM_DQ05_A	K2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ06_A	J1	VDDQ_DDR	DDR	_	_	_
DRAM_DQ07_A	J2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ08_A	V1	VDDQ_DDR	DDR	_	_	_
DRAM_DQ09_A	V2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ10_A	U2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ11_A	U1	VDDQ_DDR	DDR	_	_	_
DRAM_DQ12_A	R1	VDDQ_DDR	DDR	_	_	_
DRAM_DQ13_A	R2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ14_A	P2	VDDQ_DDR	DDR	_	_	_
DRAM_DQ15_A	P1	VDDQ_DDR	DDR	_	_	_
DRAM_DQS0_C_A	L4	VDDQ_DDR	_	_	_	_
DRAM_DQS0_T_A	N4	VDDQ_DDR	DDRCLK	_	_	_
DRAM_DQS1_C_A	R5	VDDQ_DDR	_	_	_	_
DRAM_DQS1_T_A	R4	VDDQ_DDR	DDRCLK	_	_	_
DRAM_MTEST1	D4	VDD2_DDR	DDR	_	_	_
DRAM_RESET_N	D2	VDD2_DDR	DDR	_	_	_
DRAM_ZQ	E4	VDDQ_DDR	DDR	_	_	_
ENET1_MDC	AA11	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[0]	Input with PD
ENET1_MDIO	AA10	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[1]	Input with PD
ENET1_RD0	AA8	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[10]	Input with PD
ENET1_RD1	Y9	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[11]	Input with PD

Table 105. 14 x 14 mm functional contact assignment (continued)

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
ENET1_RD2	AA9	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[12]	Input with PD
ENET1_RD3	Y10	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[13]	Input with PD
ENET1_RX_CTL	Y8	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[8]	Input with PD
ENET1_RXC	AA7	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[9]	Input with PD
ENET1_TD0	W11	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[5]	Input with PD
ENET1_TD1	T12	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[4]	Input with PD
ENET1_TD2	U12	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[3]	Input with PD
ENET1_TD3	V12	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[2]	Input with PD
ENET1_TX_CTL	V10	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[6]	Input with PD
ENET1_TXC	U10	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[7]	Input with PD
ENET2_MDC	Y7	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[14]	Input with PD
ENET2_MDIO	AA6	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[15]	Input with PD
ENET2_RD0	AA4	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[24]	Input with PD
ENET2_RD1			GPIO	Alt5	GPIO4.IO[25]	Input with PD
ENET2_RD2	AA5	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[26]	Input with PD
ENET2_RD3	Y6	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[27]	Input with PD
ENET2_RX_CTL	Y4	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[22]	Input with PD
ENET2_RXC	AA3	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[23]	Input with PD
ENET2_TD0	Т8	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[19]	Input with PD
ENET2_TD1	U8	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[18]	Input with PD
ENET2_TD2	V8	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[17]	Input with PD
ENET2_TD3	T10	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[16]	Input with PD
ENET2_TX_CTL	V6	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[20]	Input with PD
ENET2_TXC	U6	NVCC_WAKEUP	GPIO	Alt5	GPIO4.IO[21]	Input with PD
GPIO_IO00	J21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[0]	Input with PD
GPIO_IO01	GPIO_IO01 J20		GPIO	Alt0	GPIO2.IO[1]	Input with PD
GPIO_IO02	K20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[2]	Input with PD
GPIO_IO03	K21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[3]	Input with PD
GPIO_IO04	L17	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[4]	Input with PD
GPIO_IO05	L18	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[5]	Input with PD

Table 105. 14 x 14 mm functional contact assignment (continued)

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
GPIO_IO06	L20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[6]	Input with PD
GPIO_IO07	L21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[7]	Input with PD
GPIO_IO08	M20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[8]	Input with PD
GPIO_IO09	M21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[9]	Input with PD
GPIO_IO10	N17	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[10]	Input with PD
GPIO_IO11	N18	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[11]	Input with PD
GPIO_IO12	N20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[12]	Input with PD
GPIO_IO13	N21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[13]	Input with PD
GPIO_IO14	P20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[14]	Input with PD
GPIO_IO15	P21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[15]	Input with PD
GPIO_IO16	R21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[16]	Input with PD
GPIO_IO17	R20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[17]	Input with PD
GPIO_IO18	R18	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[18]	Input with PD
GPIO_IO19	R17	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[19]	Input with PD
GPIO_IO20	T20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[20]	Input with PD
GPIO_IO21	T21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[21]	Input with PD
GPIO_IO22	U18	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[22]	Input with PD
GPIO_IO23	U20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[23]	Input with PD
GPIO_IO24	U21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[24]	Input with PD
GPIO_IO25	V21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[25]	Input with PD
GPIO_IO26	V20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[26]	Input with PD
GPIO_IO27	W21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[27]	Input with PD
GPIO_IO28	W20	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[28]	Input with PD
GPIO_IO29	Y21	NVCC_GPIO	GPIO	Alt0	GPIO2.IO[29]	Input with PD
I2C1_SCL	C20	NVCC_AON	GPIO	Alt5	GPIO1.IO[0]	Input with PD
I2C1_SDA	C21	NVCC_AON	GPIO	Alt5	GPIO1.IO[1]	Input with PD
I2C2_SCL	D20	NVCC_AON	GPIO	Alt5	GPIO1.IO[2]	Input with PD
I2C2_SDA	D21	NVCC_AON	GPIO	Alt5	GPIO1.IO[3]	Input with PD
LVDS_D0_P	B5	VDD_LVDS_1P8	PHY	_	_	_
LVDS_D0_N	A5	VDD_LVDS_1P8	PHY	_	_	_

Table 105. 14 x 14 mm functional contact assignment (continued)

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
LVDS_D1_P	B4	VDD_LVDS_1P8	PHY	_	_	_
LVDS_D1_N	A4	VDD_LVDS_1P8	PHY	_	_	_
LVDS_D2_P	B2	VDD_LVDS_1P8	PHY	_	_	_
LVDS_D2_N	A2	VDD_LVDS_1P8	PHY	_	_	_
LVDS_D3_P	C1	VDD_LVDS_1P8	PHY	_	_	_
LVDS_D3_N	B1	VDD_LVDS_1P8	PHY	_	_	_
LVDS_CLK_P	В3	VDD_LVDS_1P8	PHY	_	_	_
LVDS_CLK_N	A3	VDD_LVDS_1P8	PHY	_	_	_
MIPI_CSI1_CLK_N	D10	MIPI_CSI1_VPH	PHY	_	_	_
MIPI_CSI1_CLK_P	E10	MIPI_CSI1_VPH	PHY	_	_	_
MIPI_CSI1_D0_N	A11	MIPI_CSI1_VPH	PHY	_	_	_
MIPI_CSI1_D0_P	B11	MIPI_CSI1_VPH	PHY	_	_	_
MIPI_CSI1_D1_N	A10	MIPI_CSI1_VPH	PHY	_	_	_
MIPI_CSI1_D1_P	B10	MIPI_CSI1_VPH	PHY	_	_	_
MIPI_DSI1_CLK_N	D6	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_CLK_P	E6	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D0_N	A6	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D0_P	В6	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D1_N	A7	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D1_P	В7	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D2_N	A8	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D2_P	B8	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D3_N	A9	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_DSI1_D3_P	В9	MIPI_DSI1_VPH	PHY	_	_	_
MIPI_REXT	D8	MIPI_DSI1_VPH	PHY	_	_	_
ONOFF	A19	NVCC_BBSM_1P8	GPIO	Alt0	BBSMMIX.ONOFF	Input without PU / PD
PDM_BIT_STREAM0	J17	NVCC_AON	GPIO	Alt5	GPIO1.IO[9]	Input with PD
PDM_BIT_STREAM1	G18	NVCC_AON	GPIO	Alt5	GPIO1.IO[10]	Input with PD
PDM_CLK	G17	NVCC_AON	GPIO	Alt5	GPIO1.IO[8]	Input with PD

Table 105. 14 x 14 mm functional contact assignment (continued)

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
PMIC_ON_REQ	A17	NVCC_BBSM_1P8	GPIO	Alt0	BBSMMIX.PMIC_ON_REQ	Output high without PU / PD
PMIC_STBY_REQ	B18	NVCC_BBSM_1P8	GPIO	Alt0	BBSMMIX.PMIC_STBY_ REQ	Output low without PU / PD
POR_B	A16	NVCC_BBSM_1P8	GPIO	Alt0	BBSMMIX.POR_B	Input without PU / PD
RTC_XTALI	E16	NVCC_BBSM_1P8	ANALOG	Alt0	BBSMMIX.RTC	_
RTC_XTALO	D16	NVCC_BBSM_1P8	ANALOG	_	_	_
SAI1_RXD0	H20	NVCC_AON	GPIO	Alt5	GPIO1.IO[4]	Input with PD
SAI1_TXC	G20	NVCC_AON	GPIO	Alt5	GPIO1.IO[12]	Input with PD
SAI1_TXD0	H21	NVCC_AON	GPIO	Alt5	GPIO1.IO[13] CCMSRCGPCMIX.BOOT_ MODE[3]	Input with PD
SAI1_TXFS	G21	NVCC_AON	GPIO	Alt5	GPIO1.IO[11] CCMSRCGPCMIX.BOOT_ MODE[2]	Input with PD
SD1_CLK	Y11	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[8]	Input with PD
SD1_CMD	AA12	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[9]	Input with PD
SD1_DATA0	AA14	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[10]	Input with PD
SD1_DATA1	AA15	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[11]	Input with PD
SD1_DATA2	AA16	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[12]	Input with PD
SD1_DATA3	AA13	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[13]	Input with PD
SD1_DATA4	Y13	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[14]	Input with PD
SD1_DATA5	Y14	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[15]	Input with PD
SD1_DATA6	Y15	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[16]	Input with PD
SD1_DATA7	Y16	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[17]	Input with PD
SD1_STROBE Y12		NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[18]	Input without PU / PD
SD2_CD_B	Y17	NVCC_SD2	GPIO	Alt5	GPIO3.IO[0]	Input with PD
SD2_CLK	AA19	NVCC_SD2	GPIO	Alt5	GPIO3.IO[1]	Input with PD
SD2_CMD	Y19	NVCC_SD2	GPIO	Alt5	GPIO3.IO[2]	Input with PD
SD2_DATA0	Y18	NVCC_SD2	GPIO	Alt5	GPIO3.IO[3]	Input with PD

Table 105. 14 x 14 mm functional contact assignment (continued)

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
SD2_DATA1	AA18	NVCC_SD2	GPIO	Alt5	GPIO3.IO[4]	Input with PD
SD2_DATA2	Y20	NVCC_SD2	GPIO	Alt5	GPIO3.IO[5]	Input with PD
SD2_DATA3	AA20	NVCC_SD2	GPIO	Alt5	GPIO3.IO[6]	Input with PD
SD2_RESET_B	AA17	NVCC_SD2	GPIO	Alt5	GPIO3.IO[7]	Input with PD
SD2_VSELECT	V18	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[19]	Input with PD
SD3_CLK	V16	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[20]	Input with PD
SD3_CMD	U16	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[21]	Input with PD
SD3_DATA0	T16	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[22]	Input with PD
SD3_DATA1	V14	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[23]	Input with PD
SD3_DATA2	U14	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[24]	Input with PD
SD3_DATA3	T14	NVCC_WAKEUP	GPIO	Alt5	GPIO3.IO[25]	Input with PD
TAMPER0	B16	NVCC_BBSM_1P8	GPIO	Alt0	BBSMMIX.TAMPER0	Input with PD
TAMPER1	F14	NVCC_BBSM_1P8	GPIO	Alt0	BBSMMIX.TAMPER1	Input with PD
UART1_RXD	E20	NVCC_AON	GPIO	Alt5	GPIO1.IO[4]	Input with PD
UART1_TXD	E21	NVCC_AON	GPIO	Alt5	GPIO1.IO[5] CCMSRCGPCMIX.BOOT_ MODE[0]	Input with PD
UART2_RXD	F20	NVCC_AON	GPIO	Alt5	GPIO1.IO[6]	Input with PD
UART2_TXD	F21	NVCC_AON	GPIO	Alt5	GPIO1.IO[7] CCMSRCGPCMIX.BOOT_ MODE[1]	Input with PD
USB1_D_N	A14	VDD_USB_3P3	PHY	_	_	_
USB1_D_P	B14	VDD_USB_3P3	PHY	_	_	_
USB1_ID	C11	VDD_USB_1P8	PHY	_	_	_
USB1_TXRTUNE	D12	VDD_USB_1P8	PHY	_	_	_
USB1_VBUS	F12	VDD_USB_3P3	PHY	_	_	_
USB2_D_N	B2_D_N A15		PHY	_	_	_
USB2_D_P	B15	VDD_USB_3P3	PHY	_	_	_
USB2_ID	E12	VDD_USB_1P8	PHY	_	_	_
USB2_TXRTUNE	D14	VDD_USB_1P8	PHY	_	_	_
USB2_VBUS	E14	VDD_USB_3P3	PHY	_	_	_
WDOG_ANY	J18	NVCC_AON	GPIO	Alt0	WDOG1.WDOG_ANY	Input with PU

Table 105. 14 x 14 mm functional contact assignment (continued)

					Default setting	
Ball name	14 x 14 ball	Power group	Ball Types	Default modes	Default function	Status while reset is asserted
XTALI_24M	D18	VDD_ANA_1P8	ANALOG	_	_	_
XTALO_24M	E18	VDD_ANA_1P8	ANALOG	_		_

¹ Pull Up

² Pull Down

6.1.3 14 x 14 mm, 0.65 mm pitch, ball map

Table 106 shows the 14 x 14 mm, 0.65 mm pitch ball map for the i.MX 93.

Table 106. 14 x 14 mm, 0.65 mm pitch, ball map

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
A	VSS	LVDS_D2_N	LVDS_CLK_N	LVDS_D1_N	N_0Q_SQV1	MIPI_DSI1_D0_N	MIPI_DSI1_D1_N	MIPI_DSI1_D2_N	MIPI_DSI1_D3_N	MIPI_CSI1_D1_N	MIPI_CSI1_D0_N	NC_A12	NC_A13	USB1_D_N	USB2_D_N	POR_B	PMIC_ON_REQ	CLKIN2	ONOFF	ADC_IN1	VSS	A
В	LVDS_D3_N	LVDS_D2_P	LVDS_CLK_P	LVDS_D1_P	LVDS_D0_P	MIPL_DSI1_D0_P	MIPL_DSI1_D1_P	MIPI_DSI1_D2_P	MIPI_DSI1_D3_P	MIPI_CSI1_D1_P	MIPL_CSI1_D0_P	NC_B12	NC_B13	USB1_D_P	USB2_D_P	TAMPERO	CLKIN1	PMIC_STBY_REQ	ADC_IN0	ADC_IN2	ADC_IN3	В
С	LVDS_D3_P	VSS		VSS		VSS		VSS		VSS	USB1_ID	VSS		NSS		VSS		VSS		I2C1_SCL	I2C1_SDA	С
D	DRAM_CA5_A	DRAM_RESET_N		DRAM_MTEST1		MIPI_DSI1_CLK_N		MIPI_REXT		MIPI_CSI1_CLK_N		USB1_TXRTUNE		USB2_TXRTUNE		RXC_XTALO		XTALI_24M		I2C2_SCL	I2C2_SDA	D

Table 106. 14 x 14 mm, 0.65 mm pitch, ball map (continued)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
E	DRAM_CA3_A	DRAM_CA4_A	VSS	DRAM_ZQ		MIPI_DSI1_CLK_P		VDD_USB_1P8		MIPI_CSI1_CLK_P		USB2_ID		USB2_VBUS		RTC_XTALI		XTALO_24M	VSS	UART1_RXD	UART1_TXD	E
F	DRAM_CS0_A	DRAM_CA2_A				VDD_LVDS_1P8		VDD_MIPI_1P8		VDD_USB_0P8		USB1_VBUS		TAMPER1		VDD_ANA0_1P8				UART2_RXD	UART2_TXD	F
G	DRAM_CA1_A	DRAM_CS1_A	VSS	DRAM_CK_T_A	DRAM_CK_C_A	VDDQ_DDR		VDD_MIPI_0P8		VDD_USB_3P3		NVCC_BBSM_1P8		VDD_BBSM_0P8_CAP		VDD_ANA0_1P8	PDM_CLK	PDM_BIT_STREAM1	\SS	SAI1_TXC	SAI1_TXF	G
Н	DRAM_CKE0_A	DRAM_CA0_A						VSS		VSS		VSS		VSS						SAI1_RXD0	SAI1_TXD0	н

Table 106. 14 x 14 mm, 0.65 mm pitch, ball map (continued)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
J	DRAM_DQ06_A	DRAM_DQ07_A	VSS	DRAM_CKE1_A	NSS	VDDQ_DDR	VDDQ_DDR	NSS	VDD_SOC	VDD_SOC	VDD_SOC	VDD_SOC	VDD_SOC	NSS	VDD_ANA_0P8	VDD_ANA_0P8	PDM_BIT_STREAM0	WDOG_ANY	NSS	GPIO_I001	GPIO_IO00	J
к	DRAM_DQ04_A	DRAM_DQ05_A							VDD_SOC	VDD_SOC	VSS	VDD_SOC	VDD_SOC							GPIO_I002	GPIO_I003	К
L	VSS	DRAM_DMI0_A	VSS	DRAM_DQS0_C_A	VSS	VDDQ_DDR	VDD2_DDR	VSS						VSS	VDD_ANAVDET_1P8	NVCC_AON	GPIO_I004	GPIO_I005	VSS	900I_0IQ	GPIO_IO07	L
М	DRAM_DQ02_A	DRAM_DQ03_A							VDD_SOC	VDD_SOC	VSS	VDD_SOC	VDD_SOC							GPIO_I008	600_0P9	М

Table 106. 14 x 14 mm, 0.65 mm pitch, ball map (continued)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
N	DRAM_DQ00_A	DRAM_DQ01_A	VSS	DRAM_DQS0_T_ A	VSS	VDD2_DDR	VDD2_DDR	VSS	VDD_SOC	VDD_SOC	VDD_SOC	VDD_SOC	VDD_SOC	VSS	NVCC_GPIO	NVCC_GPIO	GPIO_IO10	GPIO_I011	VSS	GPIO_I012	GPIO_I013	N
P	DRAM_DQ15_A	DRAM_DQ14_A						\SS		VSS		VSS		\SS						GPIO_I014	GP10_1015	P
R	DRAM_DQ12_A	DRAM_DQ13_A	\SS	DRAM_DQS1_T_A	DRAM_DQS1_C_ A	VDD2_DDR		VDD_ANA1_1P8		NVCC_WAKEUP		NVCC_WAKEUP		VDD_ANA_0P8		NVCC_SD2	GPIO_I019	GPIO_I018	\SS\	GPIO_I017	GP10_1016	R
т	VSS	DRAM_DMI1_A				VDD2_DDR		ENET2_TD0		ENET2_TD3		ENET1_TD1		SD3_DATA3		SD3_DATA0				GPIO_I020	GPIO_1021	т
U	DRAM_DQ11_A	DRAM_DQ10_A	SSA	CCM_CLK03		ENET2_TXC		ENET2_TD1		ENET1_TXC		ENET1_TD2		SD3_DATA2		SD3_CMD		GPIO_I022	NSS N	GPIO_I023	GP10_1024	U

Table 106. 14 x 14 mm, 0.65 mm pitch, ball map (continued)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
V	DRAM_DQ08_A	DRAM_DQ09_A		CCM_CLKO4		ENET2_TX_CTL		ENET2_TD2		ENET1_TX_CTL		ENET1_TD3		SD3_DATA1		SD3_CLK		SD2_VSELECT		GP10_1026	GP10_1025	v
v	DAP_TDI	DAP_TMS_SWDIO		VSS		SSA		NVCC_WAKEUP		\SS	ENET1_TD0	VSS		VSS		NSS		VSS		GP10_1028	GP10_1027	w
Y	DAP_TCLK_SWCLK	DAP_TDO_TRACESWO	CCM_CLK02	ENET2_RX_CTL	ENET2_RD1	ENET2_RD3	ENET2_MDC	ENET1_RX_CTL	ENET1_RD1	ENET1_RD3	SD1_CLK	SD1_STROBE	SD1_DATA4	SD1_DATA5	SD1_DATA6	SD1_DATA7	SD2_CD_B	SD2_DATA0	SD2_CMD	SD2_DATA2	GPIO_1029	Y
A	A SS/	CCM_CLK01	ENET2_RXC	ENET2_RD0	ENET2_RD2	ENET2_MDIO	ENET1_RXC	ENET1_RD0	ENET1_RD2	ENET1_MDIO	ENET1_MDC	SD1_CMD	SD1_DATA3	SD1_DATA0	SD1_DATA1	SD1_DATA2	SD2_RESET_B	SD2_DATA1	SD2_CLK	SD2_DATA3	SSA	AA
	1	2		3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	

6.2 DDR pin function list

Table 107 shows the DDR pin function list.

Table 107. DDR pin function list

Ball name	LPDDR4/LPDDR4x
DRAM_DQS0_T_A	DQSA_T[0]
DRAM_DQS0_C_A	DQSA_C[0]
DRAM_DMI0_A	DM/DBIA[0]
DRAM_DQ00_A	DQA[0]
DRAM_DQ01_A	DQA[1]
DRAM_DQ02_A	DQA[2]
DRAM_DQ03_A	DQA[3]
DRAM_DQ04_A	DQA[4]
DRAM_DQ05_A	DQA[5]
DRAM_DQ06_A	DQA[6]
DRAM_DQ07_A	DQA[7]
DRAM_DQS1_T_A	DQSA_T[1]
DRAM_DQS1_C_A	DQSA_C[1]
DRAM_DMI1_A	DM/DBIA[1]
DRAM_DQ08_A	DQA[8]
DRAM_DQ09_A	DQA[9]
DRAM_DQ10_A	DQA[10]
DRAM_DQ11_A	DQA[11]
DRAM_DQ12_A	DQA[12]
DRAM_DQ13_A	DQA[13]
DRAM_DQ14_A	DQA[14]
DRAM_DQ15_A	DQA[15]
DRAM_RESET_N	RESET_N
DRAM_MTRST1	_
DRAM_CKE0_A	CKEA[0]
DRAM_CKE1_A	CKEA[1]
DRAM_CS0_A	CSA[0]
DRAM_CS1_A	CSA[1]
DRAM_CK_T_A	CLKA_T
DRAM_CK_C_A	CLKA_C
DRAM_CA0_C	CAA[0]

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Table 107. DDR pin function list (continued)

DRAM_CA1_C	CAA[1]
DRAM_CA2_C	CAA[2]
DRAM_CA3_C	CAA[3]
DRAM_CA4_C	CAA[4]
DRAM_CA5_C	CAA[5]
DRAM_ZQ ¹	_

DRAM_ZQ can be connected with a 120 Ω ±1% resistor to GND.

7 Revision history

Table 108 provides a revision history for this data sheet.

Table 108. i.MX 93 Data Sheet document revision history (continued)

Rev. Number	Date	Substantive Change(s)					
Rev. 3	12/2023	 Added information about FlexIO in Table 3. i.MX 93 modules list Updated Figure 1, "Part number nomenclature—i.MX 93" Updated Figure 2, "i.MX 93 system block diagram" Updated Table 4. Special signal considerations Updated Table 9. Absolute maximum ratings Updated Table 10. Electrostatic discharge and latch up ratings Updated Table 12. Operating ranges Added Table 15. External clock frequency Updated the current values in Table 19. Maximum supply currents Added a note in Section 4.2.1, Power mode definition Updated Table 20. The power supply states Added footnotes in Table 21. Low power mode definition Added Table 22. Chip power in different LP modes Updated Table 24. GPIO DC parameters, Table 25. Additional leakage parameters, and Table 27. Rise and fall time of GPIO Updated the operating frequency in Table 28. LVDS AC parameters Updated ENOB values in Table 52. ADC electrical specifications (VREFH = VDD_ANAx_1P8 and VADINmax ≤ VREFH) Updated Section 4.12.9, FlexSPI timing parameters Update the signal name of RMII_RX_ER in Table 61. ENET2 signal mapping and Table 65. ENET QOS signal mapping Updated the naming of ENET_CLK to RMII_REF_CLK, ENET_TD, and ENET_RD in Section 4.12.2.2, RMII mode timing Removed USB 3.0 information from Section 4.12.12, USB PHY parameters Updated NVCC_BBSM_1P8 in Section 6.1, 14 x 14 mm package information 					
Rev. 2	08/2023	 Updated the term "Consumer" to "Commercial" Updated JTAG pin description in Table 1. Features Updated Table 2. Ordering information Updated remarks in Table 4. Special signal considerations Added ADC and TAMPER pin information in Table 5. Unused function strapping recommendations Updated NVCC_BBSM_1P8 description in Section 4.1.3, Power architecture Updated descriptions in Section 4.1.6.1, External clock sources Updated Figure 7, "Output transition time waveform" Updated Table 24. GPIO DC parameters and Table 25. Additional leakage parameters Removed JTAG_TRST information from Section 4.8.3, JTAG timing parameters Updated Table 61. ENET2 signal mapping and Table 65. ENET QOS signal mapping Updated footnotes of Table 69. LPSPI Master mode timing and Table 70. LPSPI Slave mode timing Updated Table 96. Fuses and associated pins used for boot 					
Rev. 1	04/2023	Initial version					

i.MX 93 Application Processors Data Sheet for Automotive Products, Rev. 3, 12/2023

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition					
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.					
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.					
Product [short] data sheet	Production	This document contains the product specification.					

- [1] Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

i.MX — is a trademark of NXP B.V.

Synopsys & Designware — are registered trademarks of Synopsys, Inc.

 $\label{eq:Synopsys} \textbf{ — Portions Copyright} @ 2018-2022 \ Synopsys, Inc. \ Used \ with permission. \ All \ rights \ reserved.$

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2023.

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12/2023 Document identifier: IMX93AEC