K40P81M100SF2

Supports the following:
MK40DN512ZVLK10,
MK40DN512ZVMB10

Features

• Operating Characteristics
 – Voltage range: 1.71 to 3.6 V
 – Flash write voltage range: 1.71 to 3.6 V
 – Temperature range (ambient): -40 to 105°C

• Performance
 – Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz

• Memories and memory interfaces
 – Up to 512 KB program flash memory on non-FlexMemory devices
 – Up to 128 KB RAM
 – Serial programming interface (EzPort)

• Clocks
 – 3 to 32 MHz crystal oscillator
 – 32 kHz crystal oscillator
 – Multi-purpose clock generator

• System peripherals
 – Multiple low-power modes to provide power optimization based on application requirements
 – Memory protection unit with multi-master protection
 – 16-channel DMA controller, supporting up to 63 request sources
 – External watchdog monitor
 – Software watchdog
 – Low-leakage wakeup unit

• Security and integrity modules
 – Hardware CRC module to support fast cyclic redundancy checks
 – 128-bit unique identification (ID) number per chip

• Human-machine interface
 – Segment LCD controller supporting up to 40 frontplanes and 8 backplanes, or 44 frontplanes and 4 backplanes, depending on the package size
 – Low-power hardware touch sensor interface (TSI)
 – General-purpose input/output

• Analog modules
 – Two 16-bit SAR ADCs
 – Programmable gain amplifier (PGA) (up to x64) integrated into each ADC
 – 12-bit DAC
 – Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input
 – Voltage reference

• Timers
 – Programmable delay block
 – Eight-channel motor control/general purpose/PWM timer
 – Two 2-channel quadrature decoder/general purpose timers
 – Periodic interrupt timers
 – 16-bit low-power timer
 – Carrier modulator transmitter
 – Real-time clock

• Communication interfaces
 – USB full-/low-speed On-the-Go controller with on-chip transceiver
 – Controller Area Network (CAN) module
 – Two SPI modules
 – Two I2C modules
 – Four UART modules
 – Secure Digital host controller (SDHC)
 – I2S module

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© 2011–2013 Freescale Semiconductor, Inc.
Table of Contents

1 Ordering parts...4
 1.1 Determining valid orderable parts.................................4
2 Part identification...4
 2.1 Description..4
 2.2 Format..4
 2.3 Fields..4
 2.4 Example...5
3 Terminology and guidelines..5
 3.1 Definition: Operating requirement..................................5
 3.2 Definition: Operating behavior.......................................6
 3.3 Definition: Attribute..6
 3.4 Definition: Rating..7
 3.5 Result of exceeding a rating..7
 3.6 Relationship between ratings and operating requirements...7
 3.7 Guidelines for ratings and operating requirements..........6
 3.8 Definition: Typical value..8
 3.9 Typical value conditions...9
4 Ratings..10
 4.1 Thermal handling ratings...10
 4.2 Moisture handling ratings...10
 4.3 ESD handling ratings..10
 4.4 Voltage and current operating ratings..........................10
5 General..11
 5.1 AC electrical characteristics..11
 5.2 Nonswitching electrical specifications..........................11
 5.2.1 Voltage and current operating requirements............12
 5.2.2 LVD and POR operating requirements..................13
 5.2.3 Voltage and current operating behaviors...............13
 5.2.4 Power mode transition operating behaviors..........15
 5.2.5 Power consumption operating behaviors..............16
 5.2.6 EMC radiated emissions operating behaviors........19
 5.2.7 Designing with radiated emissions in mind............20
 5.2.8 Capacitance attributes.......................................20
 5.3 Switching specifications..20
 5.3.1 Device clock specifications.................................20
 5.3.2 General switching specifications..........................20
 5.4 Thermal specifications...21
 5.4.1 Thermal operating requirements...........................21
 5.4.2 Thermal attributes..22
6 Peripheral operating requirements and behaviors..................23
 6.1 Core modules..23
 6.1.1 Debug trace timing specifications........................23
 6.1.2 JTAG electricals..24
 6.2 System modules..27
 6.3 Clock modules...27
 6.3.1 MCG specifications...27
 6.3.2 Oscillator electrical specifications......................29
 6.3.3 32 kHz Oscillator Electrical Characteristics........31
 6.4 Memories and memory interfaces................................32
 6.4.1 Flash electrical specifications...............................32
 6.4.2 EzPort Switching Specifications..........................34
 6.5 Security and integrity modules....................................35
 6.6 Analog..35
 6.6.1 ADC electrical specifications................................35
 6.6.2 CMP and 6-bit DAC electrical specifications.........42
 6.6.3 12-bit DAC electrical characteristics...................45
 6.6.4 Voltage reference electrical specifications............48
 6.7 Timers...49
 6.8 Communication interfaces...49
 6.8.1 USB electrical specifications.................................49
 6.8.2 USB DCD electrical specifications........................50
 6.8.3 USB VREG electrical specifications.......................50
 6.8.4 CAN switching specifications...............................51
 6.8.5 DSPI switching specifications (limited voltage range).................51
 6.8.6 DSPI switching specifications (full voltage range)..................52
 6.8.7 Inter-Integrated Circuit Interface (I2C) timing.........54
 6.8.8 UART switching specifications..............................55
 6.8.9 SDHC specifications..55
 6.8.10 I2S switching specifications...............................56
 6.9 Human-machine interfaces (HMI).................................59
 6.9.1 TSI electrical specifications.................................59
 6.9.2 LCD electrical characteristics.............................60
 7 Dimensions...61
 7.1 Obtaining package dimensions.................................61
 8 Pinout..61
 8.1 K40 Signal Multiplexing and Pin Assignments.............61
 8.2 K40 Pinouts..66
1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK40 and MK40.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Qualification status</td>
<td>• M = Fully qualified, general market flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• P = Prequalification</td>
</tr>
<tr>
<td>K##</td>
<td>Kinetis family</td>
<td>• K40</td>
</tr>
<tr>
<td>A</td>
<td>Key attribute</td>
<td>• D = Cortex-M4 w/ DSP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• F = Cortex-M4 w/ DSP and FPU</td>
</tr>
<tr>
<td>M</td>
<td>Flash memory type</td>
<td>• N = Program flash only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• X = Program flash and FlexMemory</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Field Description Values

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
</table>
| FFF | Program flash memory size | • 32 = 32 KB
• 64 = 64 KB
• 128 = 128 KB
• 256 = 256 KB
• 512 = 512 KB
• 1M0 = 1 MB
• 2M0 = 2 MB |
| R | Silicon revision | • Z = Initial
• (Blank) = Main
• A = Revision after main |
| T | Temperature range (°C) | • V = –40 to 105
• C = –40 to 85 |
| PP | Package identifier | • FM = 32 QFN (5 mm x 5 mm)
• FT = 48 QFN (7 mm x 7 mm)
• LF = 48 LQFP (7 mm x 7 mm)
• LH = 64 LQFP (10 mm x 10 mm)
• MP = 64 MAPBGA (5 mm x 5 mm)
• LK = 80 LQFP (12 mm x 12 mm)
• LL = 100 LQFP (14 mm x 14 mm)
• MC = 121 MAPBGA (8 mm x 8 mm)
• LQ = 144 LQFP (20 mm x 20 mm)
• MD = 144 MAPBGA (13 mm x 13 mm)
• MJ = 256 MAPBGA (17 mm x 17 mm) |
| CC | Maximum CPU frequency (MHz) | • 5 = 50 MHz
• 7 = 72 MHz
• 10 = 100 MHz
• 12 = 120 MHz
• 15 = 150 MHz |
| N | Packaging type | • R = Tape and reel
• (Blank) = Trays |

2.4 Example

This is an example part number:

MK40DN512ZVMD10

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.
3.1.1 Example

This is an example of an operating requirement:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>1.0 V core supply voltage</td>
<td>0.9</td>
<td>1.1</td>
<td>V</td>
</tr>
</tbody>
</table>

3.2 Definition: Operating behavior

An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWP</td>
<td>Digital I/O weak pullup/pulldown current</td>
<td>10</td>
<td>130</td>
<td>µA</td>
</tr>
</tbody>
</table>

3.3 Definition: Attribute

An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN_D</td>
<td>Input capacitance: digital pins</td>
<td>—</td>
<td>7</td>
<td>pF</td>
</tr>
</tbody>
</table>
3.4 Definition: Rating

A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- **Operating ratings** apply during operation of the chip.
- **Handling ratings** apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>1.0 V core supply voltage</td>
<td>−0.3</td>
<td>1.2</td>
<td>V</td>
</tr>
</tbody>
</table>

3.5 Result of exceeding a rating

The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
3.6 Relationship between ratings and operating requirements

<table>
<thead>
<tr>
<th>Fatal range</th>
<th>Degraded operating range</th>
<th>Normal operating range</th>
<th>Degraded operating range</th>
<th>Fatal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Expected permanent failure</td>
<td>- No permanent failure</td>
<td>- Correct operation</td>
<td>- No permanent failure</td>
<td>- Expected permanent failure</td>
</tr>
<tr>
<td>- Possible decreased life</td>
<td>- No permanent failure</td>
<td>- Possible incorrect operation</td>
<td>- Possible decreased life</td>
<td>- Possible incorrect operation</td>
</tr>
</tbody>
</table>

Operating (power on)

Handling (power off)

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip’s ratings.
- During normal operation, don’t exceed any of the chip’s operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{WP}</td>
<td>Digital I/O weak pullup/pulldown current</td>
<td>10</td>
<td>70</td>
<td>130</td>
<td>μA</td>
</tr>
</tbody>
</table>

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

![Chart showing typical values for V_{DD} and I_{PD_stop}](chart.png)

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Ambient temperature</td>
<td>25</td>
<td>$^{\circ}$C</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>3.3 V supply voltage</td>
<td>3.3</td>
<td>V</td>
</tr>
</tbody>
</table>
4 Ratings

4.1 Thermal handling ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{STG}</td>
<td>Storage temperature</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>T_{SDR}</td>
<td>Solder temperature, lead-free</td>
<td>—</td>
<td>260</td>
<td>°C</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Solder temperature, leaded</td>
<td>—</td>
<td>245</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Determined according to JEDEC Standard JESD22-A103, *High Temperature Storage Life*.

4.2 Moisture handling ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL</td>
<td>Moisture sensitivity level</td>
<td>—</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

4.3 ESD handling ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{HBM}</td>
<td>Electrostatic discharge voltage, human body model</td>
<td>-2000</td>
<td>+2000</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V_{CDM}</td>
<td>Electrostatic discharge voltage, charged-device model</td>
<td>-500</td>
<td>+500</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>I_{LAT}</td>
<td>Latch-up current at ambient temperature of 105°C</td>
<td>-100</td>
<td>+100</td>
<td>mA</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Determined according to JEDEC Standard JESD22-C101, *Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components*.
3. Determined according to JEDEC Standard JESD78, *IC Latch-Up Test*.

4.4 Voltage and current operating ratings

K40 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Freescale Semiconductor, Inc.
Table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Digital supply voltage</td>
<td>-0.3</td>
<td>3.8</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Digital supply current</td>
<td>—</td>
<td>185</td>
<td>mA</td>
</tr>
<tr>
<td>V_{DIO}</td>
<td>Digital input voltage (except RESET, EXTAL, and XTAL)</td>
<td>-0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{AI0}</td>
<td>Analog(^1), RESET, EXTAL, and XTAL input voltage</td>
<td>-0.3</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>I_{D}</td>
<td>Maximum current single pin limit (applies to all digital pins)</td>
<td>-25</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog supply voltage</td>
<td>$V_{DD} - 0.3$</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>$V_{USB_{DP}}$</td>
<td>USB_{DP} input voltage</td>
<td>-0.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>$V_{USB_{DM}}$</td>
<td>USB_{DM} input voltage</td>
<td>-0.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>V_{REGIN}</td>
<td>USB regulator input</td>
<td>-0.3</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{BAT}</td>
<td>RTC battery supply voltage</td>
<td>-0.3</td>
<td>3.8</td>
<td>V</td>
</tr>
</tbody>
</table>

\(^1\) Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

![Input signal measurement reference](image)

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

1. output pins
 - have $C_L=30\text{pF}$ loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)

2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)
5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog supply voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{DD} - V_{DDA}$</td>
<td>V_{DD}-to-V_{DDA} differential voltage</td>
<td>-0.1</td>
<td>0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{SS} - V_{SSA}$</td>
<td>V_{SS}-to-V_{SSA} differential voltage</td>
<td>-0.1</td>
<td>0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{BAT}</td>
<td>RTC battery supply voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input high voltage</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $2.7 , V \leq V_{DD} \leq 3.6 , V$</td>
<td>0.7 × V_{DD}</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1.7 , V \leq V_{DD} \leq 2.7 , V$</td>
<td>0.75 × V_{DD}</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input low voltage</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $2.7 , V \leq V_{DD} \leq 3.6 , V$</td>
<td>—</td>
<td>0.35 × V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1.7 , V \leq V_{DD} \leq 2.7 , V$</td>
<td>—</td>
<td>0.3 × V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>Input hysteresis</td>
<td>0.06 × V_{DD}</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{ICDIO}</td>
<td>Digital pin negative DC injection current — single pin</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• $V_{IN} < V_{SS}$−0.3V</td>
<td>-5</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{ICAIO}</td>
<td>Analog2, EXTAL, and XTAL pin DC injection current — single pin</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>• $V_{IN} < V_{SS}$−0.3V (Negative current injection)</td>
<td>-5</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{IN} > V_{DD}$+0.3V (Positive current injection)</td>
<td>—</td>
<td>+5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{ICcont}</td>
<td>Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Negative current injection</td>
<td>-25</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Positive current injection</td>
<td>—</td>
<td>+25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ODPU}</td>
<td>Open drain pullup voltage level</td>
<td>V_{DD}</td>
<td>V_{DD}</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>V_{RAM}</td>
<td>V_{DD} voltage required to retain RAM</td>
<td>1.2</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{RFVBAT}</td>
<td>V_{BAT} voltage required to retain the VBAT register file</td>
<td>$V_{POR,VBAT}$</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

1. All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} is less than V_{DIO_MIN}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as $R = (V_{DIO_MIN}-V_{IN})/|I_{ICDIO}|$.

2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.

3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as $R = (V_{AIO_MIN}-V_{IN})/|I_{ICAIO}|$. The positive injection current limiting resistor is calculated as $R = (V_{IN}-V_{AIO_MAX})/|I_{ICAIO}|$. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.

4. Open drain outputs must be pulled to VDD.
5.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{POR}</td>
<td>Falling VDD POR detect voltage</td>
<td>0.8</td>
<td>1.1</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{LVDH}</td>
<td>Falling low-voltage detect threshold — high range (LVDV=01)</td>
<td>2.48</td>
<td>2.56</td>
<td>2.64</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{LVW1H}</td>
<td>Low-voltage warning thresholds — high range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Level 1 falling (LVWV=00)</td>
<td>2.62</td>
<td>2.70</td>
<td>2.78</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V_{LVW2H}</td>
<td>• Level 2 falling (LVWV=01)</td>
<td>2.72</td>
<td>2.80</td>
<td>2.88</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{LVW3H}</td>
<td>• Level 3 falling (LVWV=10)</td>
<td>2.82</td>
<td>2.90</td>
<td>2.98</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{LVW4H}</td>
<td>• Level 4 falling (LVWV=11)</td>
<td>2.92</td>
<td>3.00</td>
<td>3.08</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{HYSH}</td>
<td>Low-voltage inhibit reset/recover hysteresis — high range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{LVDL}</td>
<td>Falling low-voltage detect threshold — low range (LVDV=00)</td>
<td>1.54</td>
<td>1.60</td>
<td>1.66</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{LVW1L}</td>
<td>Low-voltage warning thresholds — low range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Level 1 falling (LVWV=00)</td>
<td>1.74</td>
<td>1.80</td>
<td>1.86</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V_{LVW2L}</td>
<td>• Level 2 falling (LVWV=01)</td>
<td>1.84</td>
<td>1.90</td>
<td>1.96</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{LVW3L}</td>
<td>• Level 3 falling (LVWV=10)</td>
<td>1.94</td>
<td>2.00</td>
<td>2.06</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{LVW4L}</td>
<td>• Level 4 falling (LVWV=11)</td>
<td>2.04</td>
<td>2.10</td>
<td>2.16</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{HYSL}</td>
<td>Low-voltage inhibit reset/recover hysteresis — low range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{BG}</td>
<td>Bandgap voltage reference</td>
<td>0.97</td>
<td>1.00</td>
<td>1.03</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>t_{LPO}</td>
<td>Internal low power oscillator period — factory trimmed</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

1. Rising thresholds are falling threshold + hysteresis voltage

Table 3. VBAT power operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{POR,VBAT}$</td>
<td>Falling VBAT supply POR detect voltage</td>
<td>0.8</td>
<td>1.1</td>
<td>1.5</td>
<td>V</td>
</tr>
</tbody>
</table>
5.2.3 Voltage and current operating behaviors

Table 4. Voltage and current operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output high voltage — high drive strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}, I_{OH} = -9mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1.71 \text{ V} \leq V_{DD} \leq 2.7 \text{ V}, I_{OH} = -3mA$</td>
<td>$V_{DD} - 0.5$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output high voltage — low drive strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}, I_{OH} = -2mA$</td>
<td>$V_{DD} - 0.5$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1.71 \text{ V} \leq V_{DD} \leq 2.7 \text{ V}, I_{OH} = -0.6mA$</td>
<td>$V_{DD} - 0.5$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{OHT}</td>
<td>Output high current total for all ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low voltage — high drive strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}, I_{OL} = 9mA$</td>
<td></td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1.71 \text{ V} \leq V_{DD} \leq 2.7 \text{ V}, I_{OL} = 3mA$</td>
<td></td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output low voltage — low drive strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}, I_{OL} = 2mA$</td>
<td></td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1.71 \text{ V} \leq V_{DD} \leq 2.7 \text{ V}, I_{OL} = 0.6mA$</td>
<td></td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{OLT}</td>
<td>Output low current total for all ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{INA}</td>
<td>Input leakage current, analog pins and digital pins configured as analog inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{SS} \leq V_{IN} \leq V_{DD}$</td>
<td></td>
<td>0.002</td>
<td>0.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All pins except EXTL32, XTAL32, EXTAL, XTAL</td>
<td></td>
<td>0.004</td>
<td>1.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EXTAL (PTA18) and XTAL (PTA19)</td>
<td></td>
<td>0.075</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EXTL32, XTAL32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IND}</td>
<td>Input leakage current, digital pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{SS} \leq V_{IN} \leq V_{IL}$</td>
<td></td>
<td>0.002</td>
<td>0.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All digital pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{IN} = V_{DD}$</td>
<td></td>
<td>0.002</td>
<td>0.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All digital pins except PTD7</td>
<td></td>
<td>0.004</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PTD7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IND}</td>
<td>Input leakage current, digital pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{IL} < V_{IN} < V_{DD}$</td>
<td></td>
<td>18</td>
<td>26</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{DD} = 3.6 \text{ V}$</td>
<td></td>
<td>12</td>
<td>49</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{DD} = 3.0 \text{ V}$</td>
<td></td>
<td>8</td>
<td>13</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{DD} = 2.5 \text{ V}$</td>
<td></td>
<td>3</td>
<td>6</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $V_{DD} = 1.7 \text{ V}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 4. Voltage and current operating behaviors (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>IND</sub></td>
<td>Input leakage current, digital pins</td>
<td>—</td>
<td>1</td>
<td>50</td>
<td>μA</td>
<td>4, 5</td>
</tr>
<tr>
<td> • V<sub>DD</sub> < V<sub>IN</sub> < 5.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z<sub>IND</sub></td>
<td>Input impedance examples, digital pins</td>
<td>—</td>
<td>—</td>
<td>48</td>
<td>kΩ</td>
<td>4, 7</td>
</tr>
<tr>
<td> • V<sub>DD</sub> = 3.6 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> • V<sub>DD</sub> = 3.0 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> • V<sub>DD</sub> = 2.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> • V<sub>DD</sub> = 1.7 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>PU</sub></td>
<td>Internal pullup resistors</td>
<td>20</td>
<td>35</td>
<td>50</td>
<td>kΩ</td>
<td>8</td>
</tr>
<tr>
<td>R<sub>PD</sub></td>
<td>Internal pulldown resistors</td>
<td>20</td>
<td>35</td>
<td>50</td>
<td>kΩ</td>
<td>9</td>
</tr>
</tbody>
</table>

1. Typical values characterized at 25°C and VDD = 3.6 V unless otherwise noted.
2. Open drain outputs must be pulled to V_{DD}.
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
4. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
5. Internal pull-up/pull-down resistors disabled.
6. Characterized, not tested in production.
7. Examples calculated using V_{IL} relation, V_{DD}, and max I_{IND}; Z_{IND}=V_{IL}/I_{IND}. This is the impedance needed to pull a high signal to a level below V_{IL} due to leakage when V_{IL} < V_{IN} < V_{DD}. These examples assume signal source low = 0 V.
8. Measured at V_{DD} supply voltage = V_{DD} min and V_{IN} = V_{SS}.
9. Measured at V_{DD} supply voltage = V_{DD} min and V_{IN} = V_{DD}.

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR}, and VLLSx→RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI
Table 5. Power mode transition operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t<sub>POR</sub></td>
<td>After a POR event, amount of time from the point V<sub>DD</sub> reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.</td>
<td>—</td>
<td>300</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• V<sub>DD</sub> slew rate ≥ 5.7 kV/s</td>
<td>—</td>
<td>1.7 V / (V<sub>DD</sub> slew rate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V<sub>DD</sub> slew rate < 5.7 kV/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VLLS1 → RUN</td>
<td>—</td>
<td>134</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VLLS2 → RUN</td>
<td>—</td>
<td>96</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VLLS3 → RUN</td>
<td>—</td>
<td>96</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LLS → RUN</td>
<td>—</td>
<td>6.2</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VLPS → RUN</td>
<td>—</td>
<td>5.9</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• STOP → RUN</td>
<td>—</td>
<td>5.9</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors

Table 6. Power consumption operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>DDA</sub></td>
<td>Analog supply current</td>
<td>—</td>
<td>—</td>
<td>See note</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td>I<sub>DD_RUN</sub></td>
<td>Run mode current — all peripheral clocks disabled, code executing from flash</td>
<td>—</td>
<td>45</td>
<td>70</td>
<td>mA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>• @ 1.8V</td>
<td>—</td>
<td>47</td>
<td>72</td>
<td>mA</td>
<td>2</td>
</tr>
<tr>
<td>I<sub>DD_RUN</sub></td>
<td>Run mode current — all peripheral clocks enabled, code executing from flash</td>
<td>—</td>
<td>61</td>
<td>85</td>
<td>mA</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>• @ 1.8V</td>
<td>—</td>
<td>63</td>
<td>71</td>
<td>mA</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>• @ 3.0V</td>
<td>—</td>
<td>72</td>
<td>87</td>
<td>mA</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>• @ 25°C</td>
<td>—</td>
<td></td>
<td></td>
<td>mA</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>• @ 125°C</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
<td>3, 4</td>
</tr>
<tr>
<td>I<sub>DD_WAIT</sub></td>
<td>Wait mode high frequency current at 3.0 V — all peripheral clocks disabled</td>
<td>—</td>
<td>35</td>
<td>—</td>
<td>mA</td>
<td>2</td>
</tr>
<tr>
<td>I<sub>DD_WAIT</sub></td>
<td>Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>mA</td>
<td>5</td>
</tr>
<tr>
<td>I<sub>DD_VLPR</sub></td>
<td>Very-low-power run mode current at 3.0 V — all peripheral clocks disabled</td>
<td>—</td>
<td>N/A</td>
<td>—</td>
<td>mA</td>
<td>6</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 6. Power consumption operating behaviors (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD_VLPR}</td>
<td>Very-low-power run mode current at 3.0 V — all peripheral clocks enabled</td>
<td>—</td>
<td>N/A</td>
<td>—</td>
<td>mA</td>
<td>7</td>
</tr>
<tr>
<td>I_{DD_VLPW}</td>
<td>Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled</td>
<td>—</td>
<td>N/A</td>
<td>—</td>
<td>mA</td>
<td>8</td>
</tr>
<tr>
<td>I_{DD_STOP}</td>
<td>Stop mode current at 3.0 V</td>
<td>—</td>
<td>0.59</td>
<td>1.4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>2.26</td>
<td>7.9</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>5.94</td>
<td>19.2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLPS}</td>
<td>Very-low-power stop mode current at 3.0 V</td>
<td>—</td>
<td>93</td>
<td>435</td>
<td>μA</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>520</td>
<td>2000</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>1350</td>
<td>4000</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_LLS}</td>
<td>Low leakage stop mode current at 3.0 V</td>
<td>—</td>
<td>4.8</td>
<td>20</td>
<td>μA</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>28</td>
<td>68</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>126</td>
<td>270</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLLS3}</td>
<td>Very low-leakage stop mode 3 current at 3.0 V</td>
<td>—</td>
<td>3.1</td>
<td>8.9</td>
<td>μA</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>17</td>
<td>35</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>82</td>
<td>148</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLLS2}</td>
<td>Very low-leakage stop mode 2 current at 3.0 V</td>
<td>—</td>
<td>2.2</td>
<td>5.4</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>7.1</td>
<td>12.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>41</td>
<td>125</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLLS1}</td>
<td>Very low-leakage stop mode 1 current at 3.0 V</td>
<td>—</td>
<td>2.1</td>
<td>7.6</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>6.2</td>
<td>13.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>30</td>
<td>46</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_VBAT}</td>
<td>Average current with RTC and 32kHz disabled at 3.0 V</td>
<td>—</td>
<td>0.33</td>
<td>0.39</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>0.60</td>
<td>0.78</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>1.97</td>
<td>2.9</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 6. Power consumption operating behaviors (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD_VBAT}</td>
<td>Average current when CPU is not accessing RTC registers</td>
<td>—</td>
<td>0.71</td>
<td>0.81</td>
<td>μA</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>• @ 1.8V</td>
<td>—</td>
<td>1.01</td>
<td>1.3</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ –40 to 25°C</td>
<td>—</td>
<td>2.82</td>
<td>4.3</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 70°C</td>
<td>—</td>
<td>0.84</td>
<td>0.94</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 105°C</td>
<td>—</td>
<td>1.17</td>
<td>1.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ 3.0V</td>
<td>—</td>
<td>3.16</td>
<td>4.6</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
2. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled.
3. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode.
6. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
7. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
8. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
9. Data reflects devices with 128 KB of RAM.
10. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL
5.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors as measured on 144LQFP and 144MAPBGA packages

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Frequency band (MHz)</th>
<th>144LQFP</th>
<th>144MAPBGA</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RE1}</td>
<td>Radiated emissions voltage, band 1</td>
<td>0.15–50</td>
<td>23</td>
<td>12</td>
<td>dBμV</td>
<td>1, 2</td>
</tr>
<tr>
<td>V_{RE2}</td>
<td>Radiated emissions voltage, band 2</td>
<td>50–150</td>
<td>27</td>
<td>24</td>
<td>dBμV</td>
<td></td>
</tr>
<tr>
<td>V_{RE3}</td>
<td>Radiated emissions voltage, band 3</td>
<td>150–500</td>
<td>28</td>
<td>27</td>
<td>dBμV</td>
<td></td>
</tr>
<tr>
<td>V_{RE4}</td>
<td>Radiated emissions voltage, band 4</td>
<td>500–1000</td>
<td>14</td>
<td>11</td>
<td>dBμV</td>
<td></td>
</tr>
<tr>
<td>V_{RE, IEC}</td>
<td>IEC level</td>
<td>0.15–1000</td>
<td>K</td>
<td>K</td>
<td>—</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

1. Determined according to IEC Standard 61967-1, *Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions* and IEC Standard 61967-2, *Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method*. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \degree \text{C}, f_{OSC} = 12 \text{ MHz (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48\text{MHz}$

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN_A}</td>
<td>Input capacitance: analog pins</td>
<td>—</td>
<td>7</td>
<td>pF</td>
</tr>
<tr>
<td>C_{IN_D}</td>
<td>Input capacitance: digital pins</td>
<td>—</td>
<td>7</td>
<td>pF</td>
</tr>
</tbody>
</table>

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{SYS}</td>
<td>System and core clock</td>
<td>—</td>
<td>100</td>
<td>MHz</td>
</tr>
<tr>
<td>$f_{SYS,USB}$</td>
<td>System and core clock when Full Speed USB in operation</td>
<td>20</td>
<td>—</td>
<td>MHz</td>
</tr>
<tr>
<td>f_{BUS}</td>
<td>Bus clock</td>
<td>—</td>
<td>50</td>
<td>MHz</td>
</tr>
<tr>
<td>f_{FLASH}</td>
<td>Flash clock</td>
<td>—</td>
<td>25</td>
<td>MHz</td>
</tr>
<tr>
<td>f_{LPTMR}</td>
<td>LPTMR clock</td>
<td>—</td>
<td>25</td>
<td>MHz</td>
</tr>
</tbody>
</table>

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I²C signals.
Table 10. General switching specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path</td>
<td>1.5</td>
<td>—</td>
<td>Bus clock cycles</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path</td>
<td>16</td>
<td>—</td>
<td>ns</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>External reset pulse width (digital glitch filter disabled)</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mode select (EZP_CS) hold time after reset deassertion</td>
<td>2</td>
<td>—</td>
<td>Bus clock cycles</td>
<td></td>
</tr>
<tr>
<td>Port rise and fall time (high drive strength)</td>
<td>Slew disabled</td>
<td>—</td>
<td>12</td>
<td>ns</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>• 1.71 ≤ V_{DD} ≤ 2.7V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.7 ≤ V_{DD} ≤ 3.6V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew enabled</td>
<td>—</td>
<td>36</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 ≤ V_{DD} ≤ 2.7V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.7 ≤ V_{DD} ≤ 3.6V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew disabled</td>
<td>—</td>
<td>24</td>
<td>ns</td>
<td>5</td>
</tr>
<tr>
<td>Port rise and fall time (low drive strength)</td>
<td>Slew disabled</td>
<td>—</td>
<td>12</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 ≤ V_{DD} ≤ 2.7V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.7 ≤ V_{DD} ≤ 3.6V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew enabled</td>
<td>—</td>
<td>36</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 ≤ V_{DD} ≤ 2.7V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.7 ≤ V_{DD} ≤ 3.6V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
4. 75 pF load
5. 15 pF load

5.4 Thermal specifications
5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_J)</td>
<td>Die junction temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>(T_A)</td>
<td>Ambient temperature</td>
<td>–40</td>
<td>105</td>
<td>°C</td>
</tr>
</tbody>
</table>

5.4.2 Thermal attributes

<table>
<thead>
<tr>
<th>Board type</th>
<th>Symbol</th>
<th>Description</th>
<th>81 MAPBGA</th>
<th>80 LQFP</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-layer (1s)</td>
<td>(R_{\theta JA})</td>
<td>Thermal resistance, junction to ambient (natural convection)</td>
<td>65</td>
<td>50</td>
<td>°C/W</td>
<td>1</td>
</tr>
<tr>
<td>Four-layer (2s2p)</td>
<td>(R_{\theta JA})</td>
<td>Thermal resistance, junction to ambient (natural convection)</td>
<td>36</td>
<td>35</td>
<td>°C/W</td>
<td>1</td>
</tr>
<tr>
<td>Single-layer (1s)</td>
<td>(R_{\theta JMA})</td>
<td>Thermal resistance, junction to ambient (200 ft./min. air speed)</td>
<td>52</td>
<td>39</td>
<td>°C/W</td>
<td>1</td>
</tr>
<tr>
<td>Four-layer (2s2p)</td>
<td>(R_{\theta JMA})</td>
<td>Thermal resistance, junction to ambient (200 ft./min. air speed)</td>
<td>31</td>
<td>29</td>
<td>°C/W</td>
<td>1</td>
</tr>
<tr>
<td>—</td>
<td>(R_{\theta JB})</td>
<td>Thermal resistance, junction to board</td>
<td>17</td>
<td>19</td>
<td>°C/W</td>
<td>2</td>
</tr>
<tr>
<td>—</td>
<td>(R_{\theta JC})</td>
<td>Thermal resistance, junction to case</td>
<td>13</td>
<td>8</td>
<td>°C/W</td>
<td>3</td>
</tr>
<tr>
<td>—</td>
<td>(\Psi_{JT})</td>
<td>Thermal characterization parameter, junction to package top outside center</td>
<td>3</td>
<td>2</td>
<td>°C/W</td>
<td>4</td>
</tr>
</tbody>
</table>

Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

Table 12. Debug trace operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{cyc}})</td>
<td>Clock period</td>
<td>Frequency dependent</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(T_{\text{wl}})</td>
<td>Low pulse width</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>(T_{\text{wh}})</td>
<td>High pulse width</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>(T_{r})</td>
<td>Clock and data rise time</td>
<td>—</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>(T_{f})</td>
<td>Clock and data fall time</td>
<td>—</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>(T_{s})</td>
<td>Data setup</td>
<td>3</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>(T_{h})</td>
<td>Data hold</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 3. TRACE_CLKOUT specifications

Figure 4. Trace data specifications
6.1.2 JTAG electricals

Table 13. JTAG limited voltage range electricals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>2.7</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>J1</td>
<td>TCLK frequency of operation</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>• Boundary Scan</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JTAG and CJTAG</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Serial Wire Debug</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>TCLK cycle period</td>
<td>1/J1</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>J3</td>
<td>TCLK clock pulse width</td>
<td>50</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>• Boundary Scan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JTAG and CJTAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Serial Wire Debug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J4</td>
<td>TCLK rise and fall times</td>
<td></td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>J5</td>
<td>Boundary scan input data setup time to TCLK rise</td>
<td>20</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J6</td>
<td>Boundary scan input data hold time after TCLK rise</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J7</td>
<td>TCLK low to boundary scan output data valid</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>J8</td>
<td>TCLK low to boundary scan output high-Z</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>J9</td>
<td>TMS, TDI input data setup time to TCLK rise</td>
<td>8</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J10</td>
<td>TMS, TDI input data hold time after TCLK rise</td>
<td>1</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J11</td>
<td>TCLK low to TDO data valid</td>
<td></td>
<td>17</td>
<td>ns</td>
</tr>
<tr>
<td>J12</td>
<td>TCLK low to TDO high-Z</td>
<td></td>
<td>17</td>
<td>ns</td>
</tr>
<tr>
<td>J13</td>
<td>TRST assert time</td>
<td>100</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J14</td>
<td>TRST setup time (negation) to TCLK high</td>
<td>8</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 14. JTAG full voltage range electricals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>J1</td>
<td>TCLK frequency of operation</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>• Boundary Scan</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JTAG and CJTAG</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Serial Wire Debug</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>TCLK cycle period</td>
<td>1/J1</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 14. JTAG full voltage range electricals (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>J3</td>
<td>TCLK clock pulse width</td>
<td>50</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>• Boundary Scan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JTAG and CJTAG</td>
<td>25</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>• Serial Wire Debug</td>
<td>12.5</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J4</td>
<td>TCLK rise and fall times</td>
<td>—</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>J5</td>
<td>Boundary scan input data setup time to TCLK rise</td>
<td>20</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J6</td>
<td>Boundary scan input data hold time after TCLK rise</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J7</td>
<td>TCLK low to boundary scan output data valid</td>
<td>—</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>J8</td>
<td>TCLK low to boundary scan output high-Z</td>
<td>—</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>J9</td>
<td>TMS, TDI input data setup time to TCLK rise</td>
<td>8</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J10</td>
<td>TMS, TDI input data hold time after TCLK rise</td>
<td>1.4</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J11</td>
<td>TCLK low to TDO data valid</td>
<td>—</td>
<td>22.1</td>
<td>ns</td>
</tr>
<tr>
<td>J12</td>
<td>TCLK low to TDO high-Z</td>
<td>—</td>
<td>22.1</td>
<td>ns</td>
</tr>
<tr>
<td>J13</td>
<td>TRST assert time</td>
<td>100</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J14</td>
<td>TRST setup time (negation) to TCLK high</td>
<td>8</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 5. Test clock input timing
Figure 6. Boundary scan (JTAG) timing

Figure 7. Test Access Port timing
6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Table 15. MCG specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{ints_{,} ft}$</td>
<td>Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C</td>
<td>—</td>
<td>32.768</td>
<td>—</td>
<td>kHz</td>
<td>1</td>
</tr>
<tr>
<td>$f_{ints_{,} t}$</td>
<td>Internal reference frequency (slow clock) — user trimmed — over fixed voltage and temperature range of 0–70°C</td>
<td>31.25</td>
<td>—</td>
<td>38.2</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>$\Delta f_{dco_{,} res_{,} t}$</td>
<td>Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM</td>
<td>—</td>
<td>± 0.3</td>
<td>± 0.6</td>
<td>%f_{dco}</td>
<td>1</td>
</tr>
<tr>
<td>$\Delta f_{dco_{,} t}$</td>
<td>Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C</td>
<td>—</td>
<td>± 1.5</td>
<td>± 4.5</td>
<td>%f_{dco}</td>
<td>1</td>
</tr>
<tr>
<td>$f_{int_{,} ft}$</td>
<td>Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>$f_{int_{,} t}$</td>
<td>Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25°C</td>
<td>3</td>
<td>—</td>
<td>5</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>$f_{loc_{,} low}$</td>
<td>Loss of external clock minimum frequency — RANGE = 00</td>
<td>(3/5) x $f_{ints_{,} t}$</td>
<td>—</td>
<td>—</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>$f_{loc_{,} high}$</td>
<td>Loss of external clock minimum frequency — RANGE = 01, 10, or 11</td>
<td>(16/5) x $f_{ints_{,} t}$</td>
<td>—</td>
<td>—</td>
<td>kHz</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{dco}})</td>
<td>DCO output frequency range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low range (DRS=00)</td>
<td>20</td>
<td>20.97</td>
<td>25</td>
<td>MHz</td>
<td>2, 3</td>
</tr>
<tr>
<td></td>
<td>(640 \times f_{\text{fll_ref}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid range (DRS=01)</td>
<td>40</td>
<td>41.94</td>
<td>50</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1280 \times f_{\text{fll_ref}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid-high range (DRS=10)</td>
<td>60</td>
<td>62.91</td>
<td>75</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1920 \times f_{\text{fll_ref}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High range (DRS=11)</td>
<td>80</td>
<td>83.89</td>
<td>100</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(f_{\text{dco _1_DMX32}})</td>
<td>DCO output frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low range (DRS=00)</td>
<td>—</td>
<td>23.99</td>
<td>—</td>
<td>MHz</td>
<td>4, 5</td>
</tr>
<tr>
<td></td>
<td>(732 \times f_{\text{fll_ref}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid range (DRS=01)</td>
<td>—</td>
<td>47.97</td>
<td>—</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1464 \times f_{\text{fll_ref}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid-high range (DRS=10)</td>
<td>—</td>
<td>71.99</td>
<td>—</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2197 \times f_{\text{fll_ref}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High range (DRS=11)</td>
<td>—</td>
<td>95.98</td>
<td>—</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(J_{\text{cyc_fll}})</td>
<td>FLL period jitter</td>
<td>—</td>
<td>180</td>
<td>—</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (f_{\text{VCO}} = 48) MHz</td>
<td>—</td>
<td>150</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{fll_acquire}})</td>
<td>FLL target frequency acquisition time</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>ms</td>
<td>6</td>
</tr>
<tr>
<td>PLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{vco}})</td>
<td>VCO operating frequency</td>
<td>48.0</td>
<td>—</td>
<td>100</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{ll}})</td>
<td>PLL operating current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PLL @ 96 MHz ((f_{\text{osc_hi_1}} = 8) MHz, (f_{\text{fll_ref}} = 2) MHz, VDIV multiplier = 48)</td>
<td>—</td>
<td>1060</td>
<td>—</td>
<td>(\mu)A</td>
<td>7</td>
</tr>
<tr>
<td>(I_{\text{ll}})</td>
<td>PLL operating current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PLL @ 48 MHz ((f_{\text{osc_hi_1}} = 8) MHz, (f_{\text{fll_ref}} = 2) MHz, VDIV multiplier = 24)</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>(\mu)A</td>
<td>7</td>
</tr>
<tr>
<td>(f_{\text{fll_ref}})</td>
<td>PLL reference frequency range</td>
<td>2.0</td>
<td>—</td>
<td>4.0</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(J_{\text{cyc_pll}})</td>
<td>PLL period jitter (RMS)</td>
<td>—</td>
<td>120</td>
<td>—</td>
<td>ps</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• (f_{\text{vco}} = 48) MHz</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>(J_{\text{acc_pll}})</td>
<td>PLL accumulated jitter over 1(\mu)s (RMS)</td>
<td>—</td>
<td>1350</td>
<td>—</td>
<td>ps</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• (f_{\text{vco}} = 48) MHz</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>(D_{\text{lock}})</td>
<td>Lock entry frequency tolerance</td>
<td>± 1.49</td>
<td>—</td>
<td>± 2.98</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(D_{\text{unl}})</td>
<td>Lock exit frequency tolerance</td>
<td>± 4.47</td>
<td>—</td>
<td>± 5.97</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(f_{\text{pll_lock}})</td>
<td>Lock detector detection time</td>
<td>—</td>
<td>—</td>
<td>150 (\times 10^{-6} + 1075(1/ f_{\text{fll_ref}}))</td>
<td>s</td>
<td>9</td>
</tr>
</tbody>
</table>
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{DDOSC}</td>
<td>Supply current — low-power mode (HGO=0)</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>nA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 32 kHz</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4 MHz</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8 MHz (RANGE=01)</td>
<td>—</td>
<td>950</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 16 MHz</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 24 MHz</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 32 MHz</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DDOSC}</td>
<td>Supply current — high gain mode (HGO=1)</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>μA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 32 kHz</td>
<td>—</td>
<td>400</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4 MHz</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8 MHz (RANGE=01)</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 16 MHz</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 24 MHz</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 32 MHz</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>C_x</td>
<td>EXTAL load capacitance</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>nA</td>
<td>2, 3</td>
</tr>
<tr>
<td>C_y</td>
<td>XTAL load capacitance</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>μA</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 16. Oscillator DC electrical specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_f)</td>
<td>Feedback resistor — low-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MΩ</td>
<td>2, 4</td>
</tr>
<tr>
<td></td>
<td>Feedback resistor — low-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feedback resistor — high-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feedback resistor — high-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>(R_s)</td>
<td>Series resistor — low-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series resistor — low-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series resistor — high-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series resistor — high-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>(V_{pp})</td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>(V_{DD})</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>(V_{DD})</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

1. \(V_{DD} = 3.3 \) V, Temperature =25 °C
2. See crystal or resonator manufacturer’s recommendation
3. \(C_x, C_y \) can be provided by using either the integrated capacitors or by using external components.
4. When low power mode is selected, \(R_f \) is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications

Table 17. Oscillator frequency specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{osc,lo})</td>
<td>Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)</td>
<td>32</td>
<td>—</td>
<td>40</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>(f_{osc,hi,1})</td>
<td>Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)</td>
<td>3</td>
<td>—</td>
<td>8</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 17. Oscillator frequency specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{osc, hi}})</td>
<td>Oscillator crystal or resonator frequency — high frequency mode (high range) ((\text{MCG}_C2[\text{RANGE}]=1x))</td>
<td>8</td>
<td>—</td>
<td>32</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(f_{\text{ec, extal}})</td>
<td>Input clock frequency (external clock mode)</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>MHz</td>
<td>1, 2</td>
</tr>
<tr>
<td>(f_{\text{dc, extal}})</td>
<td>Input clock duty cycle (external clock mode)</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(t_{\text{cst}})</td>
<td>Crystal startup time — 32 kHz low-frequency, low-power mode ((\text{HGO}=0))</td>
<td>—</td>
<td>750</td>
<td>—</td>
<td>ms</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>Crystal startup time — 32 kHz low-frequency, high-gain mode ((\text{HGO}=1))</td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal startup time — 8 MHz high-frequency ((\text{MCG}_C2[\text{RANGE}]=01)), low-power mode ((\text{HGO}=0))</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal startup time — 8 MHz high-frequency ((\text{MCG}_C2[\text{RANGE}]=01)), high-gain mode ((\text{HGO}=1))</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by \(\text{FRDIV} \), it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz Oscillator Electrical Characteristics

This section describes the module electrical characteristics.

6.3.3.1 32 kHz oscillator DC electrical specifications

Table 18. 32kHz oscillator DC electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{BAT}})</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(R_F)</td>
<td>Internal feedback resistor</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>MΩ</td>
</tr>
<tr>
<td>(C_{\text{para}})</td>
<td>Parasitical capacitance of ERTAL32 and XRTAL32</td>
<td>—</td>
<td>5</td>
<td>7</td>
<td>pF</td>
</tr>
<tr>
<td>(V_{\text{pp}})</td>
<td>Peak-to-peak amplitude of oscillation</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>V</td>
</tr>
</tbody>
</table>

1. When a crystal is being used with the 32 kHz oscillator, the ERTAL32 and XRTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.
6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{hvpgm4})</td>
<td>Longword Program high-voltage time</td>
<td>—</td>
<td>7.5</td>
<td>18</td>
<td>(\mu s)</td>
<td></td>
</tr>
<tr>
<td>(t_{hversscr})</td>
<td>Sector Erase high-voltage time</td>
<td>—</td>
<td>13</td>
<td>113</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>(t_{hversblk256k})</td>
<td>Erase Block high-voltage time for 256 KB</td>
<td>—</td>
<td>416</td>
<td>3616</td>
<td>ms</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands

Table 21. Flash command timing specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{rd1blk256k})</td>
<td>Read 1s Block execution time</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{rd1sec2k})</td>
<td>Read 1s Section execution time (flash sector)</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>(\mu s)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 21. Flash command timing specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pgmchk})</td>
<td>Program Check execution time</td>
<td>—</td>
<td>—</td>
<td>45</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>(t_{rdrsrc})</td>
<td>Read Resource execution time</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>(t_{pgm4})</td>
<td>Program Longword execution time</td>
<td>—</td>
<td>65</td>
<td>145</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>(t_{ersblk256k})</td>
<td>Erase Flash Block execution time</td>
<td>—</td>
<td>435</td>
<td>3700</td>
<td>ms</td>
<td>2</td>
</tr>
<tr>
<td>(t_{ersscr})</td>
<td>Erase Flash Sector execution time</td>
<td>—</td>
<td>14</td>
<td>114</td>
<td>ms</td>
<td>2</td>
</tr>
<tr>
<td>(t_{pgmsec512})</td>
<td>Program Section execution time</td>
<td>—</td>
<td>2.4</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{pgmsec1k})</td>
<td></td>
<td>—</td>
<td>4.7</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{pgmsec2k})</td>
<td></td>
<td>—</td>
<td>9.3</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{rd1all})</td>
<td>Read 1s All Blocks execution time</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{rdonce})</td>
<td>Read Once execution time</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>(t_{pgmonce})</td>
<td>Program Once execution time</td>
<td>—</td>
<td>65</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>(t_{ersall})</td>
<td>Erase All Blocks execution time</td>
<td>—</td>
<td>870</td>
<td>7400</td>
<td>ms</td>
<td>2</td>
</tr>
<tr>
<td>(t_{fykey})</td>
<td>Verify Backdoor Access Key execution time</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>(t_{swapx01})</td>
<td>Swap Control execution time</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>(t_{swapx02})</td>
<td></td>
<td>—</td>
<td>70</td>
<td>150</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>(t_{swapx04})</td>
<td></td>
<td>—</td>
<td>70</td>
<td>150</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>(t_{swapx08})</td>
<td></td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.

6.4.1.3 Flash high voltage current behaviors

Table 22. Flash high voltage current behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DD_PGM})</td>
<td>Average current adder during high voltage flash programming operation</td>
<td>—</td>
<td>2.5</td>
<td>6.0</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{DD_ERS})</td>
<td>Average current adder during high voltage flash erase operation</td>
<td>—</td>
<td>1.5</td>
<td>4.0</td>
<td>mA</td>
</tr>
</tbody>
</table>

6.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program Flash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 23. NVM reliability specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{nvmretp10k}</td>
<td>Data retention after up to 10 K cycles</td>
<td>5</td>
<td>50</td>
<td>—</td>
<td>years</td>
<td>1</td>
</tr>
<tr>
<td>t_{nvmretp1k}</td>
<td>Data retention after up to 1 K cycles</td>
<td>20</td>
<td>100</td>
<td>—</td>
<td>years</td>
<td>2</td>
</tr>
<tr>
<td>n_{nvmcycp}</td>
<td>Cycling endurance</td>
<td>10 K</td>
<td>50 K</td>
<td>—</td>
<td>cycles</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ T_{j} ≤ 125°C.

6.4.2 EzPort Switching Specifications

Table 24. EzPort switching specifications

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>EP1</td>
<td>EZP_CK frequency of operation (all commands except READ)</td>
<td>—</td>
<td>f_{SYS}/2</td>
<td>MHz</td>
</tr>
<tr>
<td>EP1a</td>
<td>EZP_CK frequency of operation (READ command)</td>
<td>—</td>
<td>f_{SYS}/8</td>
<td>MHz</td>
</tr>
<tr>
<td>EP2</td>
<td>EZP_CS negation to next EZP_CS assertion</td>
<td>2 x t_{EZP_CK}</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>EP3</td>
<td>EZP_CS input valid to EZP_CK high (setup)</td>
<td>5</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>EP4</td>
<td>EZP_CK high to EZP_CS input invalid (hold)</td>
<td>5</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>EP5</td>
<td>EZP_D input valid to EZP_CK high (setup)</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>EP6</td>
<td>EZP_CK high to EZP_D input invalid (hold)</td>
<td>5</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>EP7</td>
<td>EZP_CK low to EZP_Q output valid</td>
<td>—</td>
<td>16</td>
<td>ns</td>
</tr>
<tr>
<td>EP8</td>
<td>EZP_CK low to EZP_Q output invalid (hold)</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>EP9</td>
<td>EZP_CS negation to EZP_Q tri-state</td>
<td>—</td>
<td>12</td>
<td>ns</td>
</tr>
</tbody>
</table>
6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3.

The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 27 and Table 28.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.
16-bit ADC operating conditions

Table 25. 16-bit ADC operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDA}</td>
<td>Supply voltage</td>
<td>Absolute</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ΔV_{DDA}</td>
<td>Supply voltage</td>
<td>Delta to V_{DD} (V_{DD} - V_{DDA})</td>
<td>-100</td>
<td>0</td>
<td>+100</td>
<td>mV</td>
<td>2</td>
</tr>
<tr>
<td>ΔV_{SSA}</td>
<td>Ground voltage</td>
<td>Delta to V_{SS} (V_{SS} - V_{SSA})</td>
<td>-100</td>
<td>0</td>
<td>+100</td>
<td>mV</td>
<td>2</td>
</tr>
<tr>
<td>V_{REFH}</td>
<td>ADC reference voltage high</td>
<td></td>
<td>1.13</td>
<td>V_{DDA}</td>
<td>V_{DDA}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{REFL}</td>
<td>ADC reference voltage low</td>
<td></td>
<td>V_{SSA}</td>
<td>V_{SSA}</td>
<td>V_{SSA}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{ADIN}</td>
<td>Input voltage</td>
<td>• 16-bit differential mode</td>
<td>V_{REFL}</td>
<td>—</td>
<td>31/32 * V_{REFH}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All other modes</td>
<td>V_{REFL}</td>
<td>—</td>
<td>V_{REFH}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{ADIN}</td>
<td>Input capacitance</td>
<td>• 16-bit mode</td>
<td>—</td>
<td>8</td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 8-bit / 10-bit / 12-bit modes</td>
<td>—</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ADIN}</td>
<td>Input resistance</td>
<td></td>
<td>—</td>
<td>2</td>
<td>5</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>R_{AS}</td>
<td>Analog source resistance</td>
<td>13-bit / 12-bit modes</td>
<td></td>
<td>—</td>
<td>5</td>
<td>kΩ</td>
<td>3</td>
</tr>
<tr>
<td>f_{ADCK}</td>
<td>ADC conversion clock frequency</td>
<td>≤ 13-bit mode</td>
<td>1.0</td>
<td>—</td>
<td>18.0</td>
<td>MHz</td>
<td>4</td>
</tr>
<tr>
<td>f_{ADCK}</td>
<td>ADC conversion clock frequency</td>
<td>16-bit mode</td>
<td>2.0</td>
<td>—</td>
<td>12.0</td>
<td>MHz</td>
<td>4</td>
</tr>
<tr>
<td>C_{rate}</td>
<td>ADC conversion rate</td>
<td>≤ 13-bit modes</td>
<td>20.000</td>
<td>—</td>
<td>818.330</td>
<td>Ksps</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No ADC hardware averaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous conversions enabled, subsequent conversion time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{rate}</td>
<td>ADC conversion rate</td>
<td>16-bit mode</td>
<td>37.037</td>
<td>—</td>
<td>461.467</td>
<td>Ksps</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No ADC hardware averaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous conversions enabled, subsequent conversion time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
6.6.1.2 16-bit ADC electrical characteristics

Table 26. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions 1</th>
<th>Min.</th>
<th>Typ. 2</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{DDA,ADC}$</td>
<td>Supply current</td>
<td>—</td>
<td>0.215</td>
<td>—</td>
<td>1.7</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>f_{ADACK}</td>
<td>ADC asynchronous clock source</td>
<td>• ADLPC = 1, ADHSC = 0</td>
<td>1.2</td>
<td>2.4</td>
<td>3.9</td>
<td>MHz</td>
<td>$f_{ADACK} = 1/f_{ADACK}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ADLPC = 1, ADHSC = 1</td>
<td>2.4</td>
<td>4.0</td>
<td>6.1</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ADLPC = 0, ADHSC = 0</td>
<td>3.0</td>
<td>5.2</td>
<td>7.3</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ADLPC = 0, ADHSC = 1</td>
<td>4.4</td>
<td>6.2</td>
<td>9.5</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>TUE</td>
<td>Total unadjusted error</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>±4</td>
<td>±6.8</td>
<td>LSB 4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>±1.4</td>
<td>±2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNL</td>
<td>Differential non-linearity</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>±0.7</td>
<td>-1.1 to +1.9</td>
<td>LSB 4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>±0.2</td>
<td>-0.3 to 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INL</td>
<td>Integral non-linearity</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>±1.0</td>
<td>-2.7 to +1.9</td>
<td>LSB 4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>±0.5</td>
<td>-0.7 to +0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{FS}</td>
<td>Full-scale error</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>-4</td>
<td>-5.4</td>
<td>LSB 4</td>
<td>$V_{ADIN} = V_{DDA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>-1.4</td>
<td>-1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Time: See Reference Manual chapter for sample times

6.6.1.2 16-bit ADC electrical characteristics

Figure 10. ADC input impedance equivalency diagram
Table 26. 16-bit ADC characteristics ($V_{\text{REFH}} = V_{\text{DDA}}, V_{\text{REFL}} = V_{\text{SSA}}$) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_Q</td>
<td>Quantization error</td>
<td>• 16-bit modes</td>
<td>—</td>
<td>-1 to 0</td>
<td>—</td>
<td>LSB4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ≤13-bit modes</td>
<td>—</td>
<td>—</td>
<td>±0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENOB</td>
<td>Effective number of bits</td>
<td>16-bit differential mode</td>
<td>12.8</td>
<td>14.5</td>
<td>—</td>
<td>bits</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 4</td>
<td>11.9</td>
<td>13.8</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bit single-ended mode</td>
<td>12.2</td>
<td>13.9</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 4</td>
<td>11.4</td>
<td>13.1</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-noise plus distortion</td>
<td>See ENOB</td>
<td>6.02 × ENOB + 1.76</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
<td>16-bit differential mode</td>
<td>—</td>
<td>-94</td>
<td>—</td>
<td>dB</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bit single-ended mode</td>
<td>—</td>
<td>-85</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious free dynamic range</td>
<td>16-bit differential mode</td>
<td>82</td>
<td>95</td>
<td>—</td>
<td>dB</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bit single-ended mode</td>
<td>78</td>
<td>90</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>E_{IL}</td>
<td>Input leakage error</td>
<td>$I_{in} \times R_{AS}$</td>
<td>mV</td>
<td>$I_{in} = \text{leakage current (refer to the MCU's voltage and current operating ratings)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp sensor slope</td>
<td>Across the full temperature range of the device</td>
<td>1.55</td>
<td>1.62</td>
<td>1.69</td>
<td>mV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{TEMP25}</td>
<td>Temp sensor voltage</td>
<td>25 °C</td>
<td>706</td>
<td>716</td>
<td>726</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

1. All accuracy numbers assume the ADC is calibrated with $V_{\text{REFH}} = V_{\text{DDA}}$
2. Typical values assume $V_{\text{DDA}} = 3.0$ V, Temp = 25°C, $f_{\text{ADCK}} = 2.0$ MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
4. 1 LSB = ($V_{\text{REFH}} - V_{\text{REFL}}$)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
Peripheral operating requirements and behaviors

Figure 11. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Figure 12. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

K40 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.
Freescale Semiconductor, Inc.
6.6.1.3 16-bit ADC with PGA operating conditions

Table 27. 16-bit ADC with PGA operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ. (^1)</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{DDA})</td>
<td>Supply voltage</td>
<td>Absolute</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_{REFPGA})</td>
<td>PGA ref voltage</td>
<td>V(_{REF_OUT})</td>
<td>—</td>
<td>128</td>
<td>—</td>
<td>(\Omega)</td>
<td>IN+ to IN-(^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{REF_OUT})</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{REF_OUT})</td>
<td>—</td>
<td>32</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(_{ADIN})</td>
<td>Input voltage</td>
<td>V(_{SSA})</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>V(_{CM})</td>
<td>Input Common Mode range</td>
<td>V(_{SSA})</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R(_{PGAD})</td>
<td>Differential input impedance</td>
<td>Gain = 1, 2, 4, 8</td>
<td>—</td>
<td>18.484</td>
<td>450</td>
<td>Ksps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gain = 16, 32</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gain = 64</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripheral clock = 50 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R(_{AS})</td>
<td>Analog source resistance</td>
<td>—</td>
<td>18.484</td>
<td>—</td>
<td>450</td>
<td>Ksps</td>
<td></td>
</tr>
<tr>
<td>T(_S)</td>
<td>ADC sampling time</td>
<td>—</td>
<td>37.037</td>
<td>—</td>
<td>250</td>
<td>Ksps</td>
<td></td>
</tr>
<tr>
<td>C(_{rate})</td>
<td>ADC conversion rate</td>
<td>≤ 13 bit modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No ADC hardware averaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous conversions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripheral clock = 50 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 bit modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No ADC hardware averaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous conversions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripheral clock = 50 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Typical values assume V\(_{DDA}\) = 3.0 V, Temp = 25°C, f\(_{ADCCK}\) = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (V\(_{REF_OUT}\)).
3. PGA reference is internally connected to the V\(_{REF_OUT}\) pin. If the user wishes to drive V\(_{REF_OUT}\) with a voltage other than the output of the VREF module, the VREF module must be disabled.
4. For single ended configurations the input impedance of the driven input is R\(_{PGAD}/2\).
5. The analog source resistance (R\(_{AS}\)), external to MCU, should be kept as minimum as possible. Increased R\(_{AS}\) causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25\(\mu\)s time should be allowed for \(f_{in}=4\) kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1
Table 28. 16-bit ADC with PGA characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DDA,PGA}</td>
<td>Supply current</td>
<td>Low power (ADC_PGA[PGALPb]=0)</td>
<td>—</td>
<td>420</td>
<td>644</td>
<td>μA</td>
<td>2</td>
</tr>
<tr>
<td>I_{DC,PGA}</td>
<td>Input DC current</td>
<td></td>
<td>—</td>
<td>1.54</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gain</td>
<td>• PGAG=0</td>
<td>0.95</td>
<td>1</td>
<td>1.05</td>
<td></td>
<td>R_{AS} < 100Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PGAG=1</td>
<td>1.9</td>
<td>2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PGAG=2</td>
<td>3.8</td>
<td>4</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PGAG=3</td>
<td>7.6</td>
<td>8</td>
<td>8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PGAG=4</td>
<td>15.2</td>
<td>16</td>
<td>16.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PGAG=5</td>
<td>30.0</td>
<td>31.6</td>
<td>33.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PGAG=6</td>
<td>58.8</td>
<td>63.3</td>
<td>67.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Input signal bandwidth</td>
<td>• 16-bit modes</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• < 16-bit modes</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power supply rejection ratio</td>
<td>Gain=1</td>
<td>—</td>
<td>-84</td>
<td>—</td>
<td>dB</td>
<td>V_{DDA} = 3V ±100mV, f_{VDDA} = 50Hz, 60Hz</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common mode rejection ratio</td>
<td>• Gain=1</td>
<td>—</td>
<td>-84</td>
<td>—</td>
<td>dB</td>
<td>V_{CM} = 500mVpp, f_{VCM} = 50Hz, 100Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=64</td>
<td>—</td>
<td>-85</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>V_{OFS}</td>
<td>Input offset voltage</td>
<td>—</td>
<td>0.2</td>
<td>—</td>
<td>—</td>
<td>mV</td>
<td>Output offset = V_{OFS}*(Gain+1)</td>
</tr>
<tr>
<td>T_{GSW}</td>
<td>Gain switching settling time</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>μs</td>
<td>5</td>
</tr>
<tr>
<td>E_{IL}</td>
<td>Input leakage error</td>
<td>All modes</td>
<td>I_{In} × R_{AS}</td>
<td>mV</td>
<td>I_{In} = leakage current (refer to the MCU’s voltage and current operating ratings)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{PP,DIFF}</td>
<td>Maximum differential input signal swing</td>
<td>[\left(\min(V_{x},V_{DDA} - V_{x}) - 0.2 \right) / \text{Gain}]</td>
<td>V_{x} = V_{REFPGA} × 0.583</td>
<td>V</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
<td>• Gain=1</td>
<td>80</td>
<td>90</td>
<td>—</td>
<td>dB</td>
<td>16-bit differential mode, Average=32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=64</td>
<td>52</td>
<td>66</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 28. 16-bit ADC with PGA characteristics (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
<td>• Gain=1</td>
<td>85</td>
<td>100</td>
<td>—</td>
<td>dB</td>
<td>16-bit differential mode, Average=32, f<sub>in</sub>=100Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=64</td>
<td>49</td>
<td>95</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious free dynamic range</td>
<td>• Gain=1</td>
<td>85</td>
<td>105</td>
<td>—</td>
<td>dB</td>
<td>16-bit differential mode, Average=32, f<sub>in</sub>=100Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=64</td>
<td>53</td>
<td>88</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>ENOB</td>
<td>Effective number of bits</td>
<td>• Gain=1, Average=4</td>
<td>11.6</td>
<td>13.4</td>
<td>—</td>
<td>bits</td>
<td>16-bit differential mode, f<sub>in</sub>=100Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=64, Average=4</td>
<td>7.2</td>
<td>9.6</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=1, Average=32</td>
<td>12.8</td>
<td>14.5</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=2, Average=32</td>
<td>11.0</td>
<td>14.3</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=4, Average=32</td>
<td>7.9</td>
<td>13.8</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=8, Average=32</td>
<td>7.3</td>
<td>13.1</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=16, Average=32</td>
<td>6.8</td>
<td>12.5</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=32, Average=32</td>
<td>6.8</td>
<td>11.5</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gain=64, Average=32</td>
<td>7.5</td>
<td>10.6</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-noise plus distortion ratio</td>
<td>See ENOB</td>
<td></td>
<td></td>
<td>6.02 × ENOB + 1.76</td>
<td>dB</td>
<td>1. Typical values assume V<sub>DDA</sub>=3.0V, Temp=25°C, f<sub>ADCK</sub>=6MHz unless otherwise stated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. This current is a PGA module adder, in addition to ADC conversion currents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V<sub>CM</sub>) and the PGA gain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Gain = 2<sup>PGAG</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.</td>
</tr>
</tbody>
</table>

6.6.2 CMP and 6-bit DAC electrical specifications

Table 29. Comparator and 6-bit DAC electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>DD</sub></td>
<td>Supply voltage</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>DDHS</sub></td>
<td>Supply current, High-speed mode (EN=1, PMODE=1)</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>μA</td>
</tr>
<tr>
<td>I<sub>DDL</sub></td>
<td>Supply current, low-speed mode (EN=1, PMODE=0)</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>μA</td>
</tr>
<tr>
<td>V<sub>A</sub></td>
<td>Analog input voltage</td>
<td>V<sub>SS</sub> – 0.3</td>
<td>—</td>
<td>V<sub>DD</sub></td>
<td>V</td>
</tr>
<tr>
<td>V<sub>A0</sub></td>
<td>Analog input offset voltage</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>mV</td>
</tr>
</tbody>
</table>
Table 29. Comparator and 6-bit DAC electrical specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_H</td>
<td>Analog comparator hysteresis1</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>• CR0[HYSTCTR] = 00</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>• CR0[HYSTCTR] = 01</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>• CR0[HYSTCTR] = 10</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td>V_{CMPOH}</td>
<td>Output high</td>
<td>$V_{DD} - 0.5$</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>V_{CMPOI}</td>
<td>Output low</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>t_{DHS}</td>
<td>Propagation delay, high-speed mode (EN=1, PMODE=1)</td>
<td>20</td>
<td>50</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t_{DLS}</td>
<td>Propagation delay, low-speed mode (EN=1, PMODE=0)</td>
<td>80</td>
<td>250</td>
<td>600</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Analog comparator initialization delay2</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>μs</td>
</tr>
<tr>
<td>I_{DAC6b}</td>
<td>6-bit DAC current adder (enabled)</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>μA</td>
</tr>
<tr>
<td>INL</td>
<td>6-bit DAC integral non-linearity</td>
<td>–0.5</td>
<td>—</td>
<td>0.5</td>
<td>LSB3</td>
</tr>
<tr>
<td>DNL</td>
<td>6-bit DAC differential non-linearity</td>
<td>–0.3</td>
<td>—</td>
<td>0.3</td>
<td>LSB</td>
</tr>
</tbody>
</table>

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}-0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = $V_{reference}/64$
Peripheral operating requirements and behaviors

Figure 13. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)
6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements

Table 30. 12-bit DAC operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDA}</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{DACR}</td>
<td>Reference voltage</td>
<td>1.13</td>
<td>3.6</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>T_A</td>
<td>Temperature</td>
<td></td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating temperature range of the device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>Output load capacitance</td>
<td>—</td>
<td>100</td>
<td>pF</td>
<td>2</td>
</tr>
<tr>
<td>I_L</td>
<td>Output load current</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

1. The DAC reference can be selected to be V_{DDA} or the voltage output of the VREF module (VREF_OUT).
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
6.6.3.2 12-bit DAC operating behaviors

Table 31. 12-bit DAC operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{DDA_DACL_P}$</td>
<td>Supply current — low-power mode</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$I_{DDA_DACH_P}$</td>
<td>Supply current — high-speed mode</td>
<td>—</td>
<td>—</td>
<td>700</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>t_{DACLP}</td>
<td>Full-scale settling time (0x080 to 0xF7F) — low-power mode</td>
<td>—</td>
<td>100</td>
<td>200</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>t_{DACHP}</td>
<td>Full-scale settling time (0x080 to 0xF7F) — high-power mode</td>
<td>—</td>
<td>15</td>
<td>30</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>$t_{CCDACLP}$</td>
<td>Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode</td>
<td>—</td>
<td>0.7</td>
<td>1</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>$V_{dacoutl}$</td>
<td>DAC output voltage range low — high-speed mode, no load, DAC set to 0x000</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>$V_{dacouth}$</td>
<td>DAC output voltage range high — high-speed mode, no load, DAC set to 0xFFF</td>
<td>V_{DACR} -100</td>
<td>—</td>
<td>V_{DACR}</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>INL</td>
<td>Integral non-linearity error — high speed mode</td>
<td>—</td>
<td>—</td>
<td>±8</td>
<td>LSB</td>
<td>2</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential non-linearity error — V_{DACR} > 2 V</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>LSB</td>
<td>3</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential non-linearity error — V_{DACR} = VREF_OUT</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>LSB</td>
<td>4</td>
</tr>
<tr>
<td>V_{OFFSET}</td>
<td>Offset error</td>
<td>—</td>
<td>±0.4</td>
<td>±0.8</td>
<td>%FSR</td>
<td>5</td>
</tr>
<tr>
<td>E_G</td>
<td>Gain error</td>
<td>—</td>
<td>±0.1</td>
<td>±0.6</td>
<td>%FSR</td>
<td>5</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power supply rejection ratio, V_{DDA} ≥ 2.4 V</td>
<td>60</td>
<td>—</td>
<td>90</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>T_{CO}</td>
<td>Temperature coefficient offset voltage</td>
<td>—</td>
<td>3.7</td>
<td>—</td>
<td>μV/C</td>
<td>6</td>
</tr>
<tr>
<td>T_{GE}</td>
<td>Temperature coefficient gain error</td>
<td>—</td>
<td>0.000421</td>
<td>—</td>
<td>%FSR/C</td>
<td></td>
</tr>
<tr>
<td>Rop</td>
<td>Output resistance load = 3 kΩ</td>
<td>—</td>
<td>—</td>
<td>250</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate -80h → F7Fh → 80h</td>
<td>1.2</td>
<td>1.7</td>
<td>—</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High power (SP<sub>HP</sub>)</td>
<td>0.05</td>
<td>0.12</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low power (SP<sub>LP</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>Channel to channel cross talk</td>
<td>—</td>
<td>—</td>
<td>-80</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>3dB bandwidth</td>
<td>550</td>
<td>—</td>
<td>—</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High power (SP<sub>HP</sub>)</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low power (SP<sub>LP</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to V_{DACR} − 100 mV
3. The DNL is measured for 0 + 100 mV to V_{DACR} − 100 mV
4. The DNL is measured for 0 + 100 mV to V_{DACR} − 100 mV with V_{DDA} > 2.4 V
5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} − 100 mV
6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_C0:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device
Figure 15. Typical INL error vs. digital code
6.6.4 Voltage reference electrical specifications

Table 32. VREF full-range operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDA}</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>Temperature</td>
<td></td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>Output load capacitance</td>
<td>100</td>
<td></td>
<td>nF</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.
Table 33. VREF full-range operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{out}</td>
<td>Voltage reference output with factory trim at nominal V_{DDA} and temperature=25°C</td>
<td>1.1915</td>
<td>1.195</td>
<td>1.1977</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{out}</td>
<td>Voltage reference output — factory trim</td>
<td>1.1584</td>
<td>—</td>
<td>1.2376</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{step}</td>
<td>Voltage reference trim step</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{tdrift}</td>
<td>Temperature drift (V_{max} - V_{min} across the full temperature range)</td>
<td>—</td>
<td>—</td>
<td>80</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>I_{bg}</td>
<td>Bandgap only current</td>
<td>—</td>
<td>—</td>
<td>80</td>
<td>µA</td>
<td>1</td>
</tr>
<tr>
<td>I_{lp}</td>
<td>Low-power buffer current</td>
<td>—</td>
<td>—</td>
<td>360</td>
<td>uA</td>
<td>1</td>
</tr>
<tr>
<td>I_{hp}</td>
<td>High-power buffer current</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td>ΔV_{LOAD}</td>
<td>Load regulation</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>mV</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>• current = + 1.0 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• current = - 1.0 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{stup}</td>
<td>Buffer startup time</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>V_{vdrift}</td>
<td>Voltage drift (V_{max} - V_{min} across the full voltage range)</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>mV</td>
<td>1</td>
</tr>
</tbody>
</table>

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 34. VREF limited-range operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{A}</td>
<td>Temperature</td>
<td>0</td>
<td>50</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Table 35. VREF limited-range operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{out}</td>
<td>Voltage reference output with factory trim</td>
<td>1.173</td>
<td>1.225</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

6.7 Timers

See General switching specifications.

6.8 Communication interfaces
6.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org.

6.8.2 USB DCD electrical specifications

Table 36. USB DCD electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DP_SRC}</td>
<td>USB_DP source voltage (up to 250 μA)</td>
<td>0.5</td>
<td>—</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>V_{LGC}</td>
<td>Threshold voltage for logic high</td>
<td>0.8</td>
<td>—</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>I_{DP_SRC}</td>
<td>USB_DP source current</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>μA</td>
</tr>
<tr>
<td>I_{DM_SINK}</td>
<td>USB_DM sink current</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>μA</td>
</tr>
<tr>
<td>R_{DM_DWN}</td>
<td>D- pulldown resistance for data pin contact detect</td>
<td>14.25</td>
<td>—</td>
<td>24.8</td>
<td>kΩ</td>
</tr>
<tr>
<td>V_{DAT_REF}</td>
<td>Data detect voltage</td>
<td>0.25</td>
<td>0.33</td>
<td>0.4</td>
<td>V</td>
</tr>
</tbody>
</table>

6.8.3 USB VREG electrical specifications

Table 37. USB VREG electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ. 1</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREGIN</td>
<td>Input supply voltage</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{DDon}</td>
<td>Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V</td>
<td>—</td>
<td>120</td>
<td>186</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DDstby}</td>
<td>Quiescent current — Standby mode, load current equal zero</td>
<td>—</td>
<td>1.27</td>
<td>30</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DDoff}</td>
<td>Quiescent current — Shutdown mode</td>
<td>—</td>
<td>650</td>
<td>—</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>$I_{LOADrun}$</td>
<td>Maximum load current — Run mode</td>
<td>—</td>
<td>—</td>
<td>120</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$I_{LOADstby}$</td>
<td>Maximum load current — Standby mode</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$V_{Reg33out}$</td>
<td>Regulator output voltage — Input supply (VREGIN) > 3.6 V</td>
<td>—</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>External output capacitor</td>
<td>1.76</td>
<td>2.2</td>
<td>8.16</td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>ESR</td>
<td>External output capacitor equivalent series resistance</td>
<td>1</td>
<td>—</td>
<td>100</td>
<td>mΩ</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 37. USB VREG electrical specifications
(continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.1</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{LIM}</td>
<td>Short circuit current</td>
<td>—</td>
<td>290</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

6.8.4 CAN switching specifications

See General switching specifications.

6.8.5 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Table 38. Master mode DSPI timing (limited voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>2.7</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency of operation</td>
<td>—</td>
<td>25</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>DS1</td>
<td>DSPI_SCK output cycle time</td>
<td>$2 \times t_{BUS}$</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td>DSPI_SCK output high/low time</td>
<td>$(t_{SCK}/2) - 2$</td>
<td>$(t_{SCK}/2) + 2$</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS3</td>
<td>DSPI_PCSn valid to DSPI_SCK delay</td>
<td>$(t_{BUS} \times 2) - 2$</td>
<td>—</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>DS4</td>
<td>DSPI_SCK to DSPI_PCSn invalid delay</td>
<td>$(t_{BUS} \times 2) - 2$</td>
<td>—</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>DS5</td>
<td>DSPI_SCK to DSPI_SOUT valid</td>
<td>—</td>
<td>8.5</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS6</td>
<td>DSPI_SCK to DSPI_SOUT invalid</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS7</td>
<td>DSPI_SIN to DSPI_SCK input setup</td>
<td>15</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS8</td>
<td>DSPI_SCK to DSPI_SIN input hold</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
Table 39. Slave mode DSPI timing (limited voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>2.7</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Frequency of operation</td>
<td>12.5</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>DS9</td>
<td>DSPI_SCK input cycle time</td>
<td>4 x tBUS</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS10</td>
<td>DSPI_SCK input high/low time</td>
<td>(tSCK/2) − 2</td>
<td>(tSCK/2) + 2</td>
<td>ns</td>
</tr>
<tr>
<td>DS11</td>
<td>DSPI_SCK to DSPI_SOUT valid</td>
<td>—</td>
<td>10</td>
<td>ns</td>
</tr>
<tr>
<td>DS12</td>
<td>DSPI_SCK to DSPI_SOUT invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS13</td>
<td>DSPI_SIN to DSPI_SCK input setup</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS14</td>
<td>DSPI_SCK to DSPI_SIN input hold</td>
<td>7</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS15</td>
<td>DSPI_SS active to DSPI_SOUT driven</td>
<td>—</td>
<td>14</td>
<td>ns</td>
</tr>
<tr>
<td>DS16</td>
<td>DSPI_SS inactive to DSPI_SOUT not driven</td>
<td>—</td>
<td>14</td>
<td>ns</td>
</tr>
</tbody>
</table>
6.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Table 40. Master mode DSPI timing (full voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency of operation</td>
<td>—</td>
<td>12.5</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>DS1</td>
<td>DSPI_SCK output cycle time</td>
<td>4 x tBUS</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td>DSPI_SCK output high/low time</td>
<td>(tSCK/2) - 4</td>
<td>(tSCK/2) + 4</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS3</td>
<td>DSPI_PCSn valid to DSPI_SCK delay</td>
<td>(tBUS x 2) − 4</td>
<td>—</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>DS4</td>
<td>DSPI_SCK to DSPI_PCSn invalid delay</td>
<td>(tBUS x 2) − 4</td>
<td>—</td>
<td>ns</td>
<td>3</td>
</tr>
<tr>
<td>DS5</td>
<td>DSPI_SCK to DSPI_SOUT valid</td>
<td>—</td>
<td>10</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS6</td>
<td>DSPI_SCK to DSPI_SOUT invalid</td>
<td>-4.5</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS7</td>
<td>DSPI_SIN to DSPI_SCK input setup</td>
<td>20.5</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DS8</td>
<td>DSPI_SCK to DSPI_SIN input hold</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

![Figure 19. DSPI classic SPI timing — master mode](image)

Table 41. Slave mode DSPI timing (full voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Frequency of operation</td>
<td>—</td>
<td>6.25</td>
<td>MHz</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 41. Slave mode DSPI timing (full voltage range) (continued)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS9</td>
<td>DSPI_SCK input cycle time</td>
<td>$8 \times t_{BUS}$</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS10</td>
<td>DSPI_SCK input high/low time</td>
<td>$(t_{SCK}/2) - 4$</td>
<td>$(t_{SCK}/2) + 4$</td>
<td>ns</td>
</tr>
<tr>
<td>DS11</td>
<td>DSPI_SCK to DSPI_SOUT valid</td>
<td>—</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>DS12</td>
<td>DSPI_SCK to DSPI_SOUT invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS13</td>
<td>DSPI_SIN to DSPI_SCK input setup</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS14</td>
<td>DSPI_SCK to DSPI_SIN input hold</td>
<td>7</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>DS15</td>
<td>DSPI_SS active to DSPI_SOUT driven</td>
<td>—</td>
<td>19</td>
<td>ns</td>
</tr>
<tr>
<td>DS16</td>
<td>DSPI_SS inactive to DSPI_SOUT not driven</td>
<td>—</td>
<td>19</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 20. DSPI classic SPI timing — slave mode

Table 42. I²C timing

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Standard Mode</th>
<th>Fast Mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>SCL Clock Frequency</td>
<td>f_{SCL}</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Hold time (repeated) START condition. After this period, the first clock pulse is generated.</td>
<td>$t_{HD}; STA$</td>
<td>4</td>
<td>—</td>
<td>0.6</td>
</tr>
<tr>
<td>LOW period of the SCL clock</td>
<td>t_{LOW}</td>
<td>4.7</td>
<td>—</td>
<td>1.3</td>
</tr>
<tr>
<td>HIGH period of the SCL clock</td>
<td>t_{HIGH}</td>
<td>4</td>
<td>—</td>
<td>0.6</td>
</tr>
<tr>
<td>Set-up time for a repeated START condition</td>
<td>$t_{SU}; STA$</td>
<td>4.7</td>
<td>—</td>
<td>0.6</td>
</tr>
<tr>
<td>Data hold time for I²C bus devices</td>
<td>$t_{HD}; DAT$</td>
<td>01</td>
<td>3.452</td>
<td>03</td>
</tr>
<tr>
<td>Data set-up time</td>
<td>$t_{SU}; DAT$</td>
<td>2504</td>
<td>—</td>
<td>100$^2, 5$</td>
</tr>
<tr>
<td>Rise time of SDA and SCL signals</td>
<td>t_r</td>
<td>—</td>
<td>1000</td>
<td>20 +0.1C6</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 42. I²C timing (continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Standard Mode</th>
<th>Fast Mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>Fall time of SDA and SCL signals</td>
<td>t_f</td>
<td>—</td>
<td>300</td>
<td>20 $+0.1C_b^5$</td>
</tr>
<tr>
<td>Set-up time for STOP condition</td>
<td>$t_{SU;STO}$</td>
<td>4</td>
<td>—</td>
<td>0.6</td>
</tr>
<tr>
<td>Bus free time between STOP and START condition</td>
<td>t_{BUF}</td>
<td>4.7</td>
<td>—</td>
<td>1.3</td>
</tr>
<tr>
<td>Pulse width of spikes that must be suppressed by the input filter</td>
<td>t_{SP}</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>

1. The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

2. The maximum $t_{HD;DAT}$ must be met only if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

3. Input signal $Slew = 10\text{ns}$ and Output Load $= 50\text{pf}$

4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.

5. A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement $t_{SU;DAT} \geq 250\text{ ns}$ must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{max} + t_{SU;DAT} = 1000 + 250 = 1250\text{ ns}$ (according to the Standard mode I²C bus specification) before the SCL line is released.

6. $C_b = \text{total capacitance of the one bus line in pF}$.

Figure 21. Timing definition for fast and standard mode devices on the I²C bus

6.8.8 UART switching specifications

See General switching specifications.
6.8.9 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

<table>
<thead>
<tr>
<th>Num</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD1</td>
<td>fpp</td>
<td>Clock frequency (low speed)</td>
<td></td>
<td>0</td>
<td>400 kHz</td>
</tr>
<tr>
<td></td>
<td>fpp</td>
<td>Clock frequency (SD/SDIO full speed/high speed)</td>
<td></td>
<td>0</td>
<td>25\50 MHz</td>
</tr>
<tr>
<td></td>
<td>fpp</td>
<td>Clock frequency (MMC full speed/high speed)</td>
<td></td>
<td>0</td>
<td>20\50 MHz</td>
</tr>
<tr>
<td></td>
<td>f_{OD}</td>
<td>Clock frequency (identification mode)</td>
<td></td>
<td>0</td>
<td>400 kHz</td>
</tr>
<tr>
<td>SD2</td>
<td>t_{WL}</td>
<td>Clock low time</td>
<td>7</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SD3</td>
<td>t_{WH}</td>
<td>Clock high time</td>
<td>7</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SD4</td>
<td>t_{RLH}</td>
<td>Clock rise time</td>
<td></td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>SD5</td>
<td>t_{THL}</td>
<td>Clock fall time</td>
<td></td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>SD6</td>
<td>t_{OD}</td>
<td>SDHC output delay (output valid)</td>
<td>-5</td>
<td>8.3</td>
<td>ns</td>
</tr>
<tr>
<td>SD7</td>
<td>t_{ISU}</td>
<td>SDHC input setup time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SD8</td>
<td>t_{IH}</td>
<td>SDHC input hold time</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 22. SDHC timing
6.8.10 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Table 44. I²S master mode timing (limited voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>2.7</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>S1</td>
<td>I²S_MCLK cycle time</td>
<td>2 x tSYS</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>S2</td>
<td>I²S_MCLK pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S3</td>
<td>I²S_BCLK cycle time</td>
<td>5 x tSYS</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>S4</td>
<td>I²S_BCLK pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>BCLK period</td>
</tr>
<tr>
<td>S5</td>
<td>I²S_BCLK to I²S_FS output valid</td>
<td>—</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>S6</td>
<td>I²S_BCLK to I²S_FS output invalid</td>
<td>-2.5</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S7</td>
<td>I²S_BCLK to I²S_TXD valid</td>
<td>—</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>S8</td>
<td>I²S_BCLK to I²S_TXD invalid</td>
<td>-3</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S9</td>
<td>I²S_RXD/I²S_FS input setup before I²S_BCLK</td>
<td>20</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S10</td>
<td>I²S_RXD/I²S_FS input hold after I²S_BCLK</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 23. I²S timing — master mode
Table 45. I^2S slave mode timing (limited voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>2.7</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>S11</td>
<td>I^2S_BCLK cycle time (input)</td>
<td>8 x t_{SYS}</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S12</td>
<td>I^2S_BCLK pulse width high/low (input)</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S13</td>
<td>I^2S_FS input setup before I^2S_BCLK</td>
<td>10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S14</td>
<td>I^2S_FS input hold after I^2S_BCLK</td>
<td>3</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S15</td>
<td>I^2S_BCLK to I^2S_TXD/I^2S_FS output valid</td>
<td>—</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>S16</td>
<td>I^2S_BCLK to I^2S_TXD/I^2S_FS output invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S17</td>
<td>I^2S_RXD setup before I^2S_BCLK</td>
<td>10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S18</td>
<td>I^2S_RXD hold after I^2S_BCLK</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 24. I^2S timing — slave modes

Table 46. I^2S master mode timing (full voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>S1</td>
<td>I^2S_MCLK cycle time</td>
<td>2 x t_{SYS}</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S2</td>
<td>I^2S_MCLK pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S3</td>
<td>I^2S_BCLK cycle time</td>
<td>5 x t_{SYS}</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S4</td>
<td>I^2S_BCLK pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>BCLK period</td>
</tr>
<tr>
<td>S5</td>
<td>I^2S_BCLK to I^2S_FS output valid</td>
<td>—</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>S6</td>
<td>I^2S_BCLK to I^2S_FS output invalid</td>
<td>-4.3</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S7</td>
<td>I^2S_BCLK to I^2S_TXD valid</td>
<td>—</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>S8</td>
<td>I^2S_BCLK to I^2S_TXD invalid</td>
<td>-4.6</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S9</td>
<td>I^2S_RXD/I^2S_FS input setup before I^2S_BCLK</td>
<td>23.9</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S10</td>
<td>I^2S_RXD/I^2S_FS input hold after I^2S_BCLK</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 47. I²S slave mode timing (full voltage range)

<table>
<thead>
<tr>
<th>Num</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>S11</td>
<td>I²S_BCLK cycle time (input)</td>
<td>8 x fSYS</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S12</td>
<td>I²S_BCLK pulse width high/low (input)</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S13</td>
<td>I²S_FS input setup before I²S_BCLK</td>
<td>10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S14</td>
<td>I²S_FS input hold after I²S_BCLK</td>
<td>3.5</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S15</td>
<td>I²S_BCLK to I²S_TXD/I²S_FS output valid</td>
<td>—</td>
<td>28.6</td>
<td>ns</td>
</tr>
<tr>
<td>S16</td>
<td>I²S_BCLK to I²S_TXD/I²S_FS output invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S17</td>
<td>I²S_RXD setup before I²S_BCLK</td>
<td>10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S18</td>
<td>I²S_RXD hold after I²S_BCLK</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DDTSI</td>
<td>Operating voltage</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_ELE</td>
<td>Target electrode capacitance range</td>
<td>1</td>
<td>20</td>
<td>500</td>
<td>pF</td>
<td>1</td>
</tr>
<tr>
<td>f_REFmax</td>
<td>Reference oscillator frequency</td>
<td>—</td>
<td>5.5</td>
<td>12.7</td>
<td>MHz</td>
<td>2</td>
</tr>
<tr>
<td>f_ELEmax</td>
<td>Electrode oscillator frequency</td>
<td>—</td>
<td>0.5</td>
<td>4.0</td>
<td>MHz</td>
<td>3</td>
</tr>
<tr>
<td>C_REF</td>
<td>Internal reference capacitor</td>
<td>0.5</td>
<td>1</td>
<td>1.2</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>V_DELTA</td>
<td>Oscillator delta voltage</td>
<td>100</td>
<td>600</td>
<td>760</td>
<td>mV</td>
<td>4</td>
</tr>
<tr>
<td>I_REF</td>
<td>Reference oscillator current source base current</td>
<td>—</td>
<td>1.133</td>
<td>1.5</td>
<td>μA</td>
<td>3, 5</td>
</tr>
<tr>
<td>I_ELE</td>
<td>Electrode oscillator current source base current</td>
<td>—</td>
<td>36</td>
<td>50</td>
<td>μA</td>
<td>3, 6</td>
</tr>
<tr>
<td>Pres5</td>
<td>Electrode capacitance measurement precision</td>
<td>—</td>
<td>8.3333</td>
<td>38400</td>
<td>fF/count</td>
<td>7</td>
</tr>
<tr>
<td>Pres20</td>
<td>Electrode capacitance measurement precision</td>
<td>—</td>
<td>8.3333</td>
<td>38400</td>
<td>fF/count</td>
<td>8</td>
</tr>
<tr>
<td>Pres100</td>
<td>Electrode capacitance measurement precision</td>
<td>—</td>
<td>8.3333</td>
<td>38400</td>
<td>fF/count</td>
<td>9</td>
</tr>
<tr>
<td>MaxSens</td>
<td>Maximum sensitivity</td>
<td>0.003</td>
<td>12.5</td>
<td>—</td>
<td>fF/count</td>
<td>10</td>
</tr>
<tr>
<td>Res</td>
<td>Resolution</td>
<td>—</td>
<td>—</td>
<td>16</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>T_Con20</td>
<td>Response time @ 20 pF</td>
<td>8</td>
<td>15</td>
<td>25</td>
<td>μs</td>
<td>11</td>
</tr>
<tr>
<td>I_TSI_RUN</td>
<td>Current added in run mode</td>
<td>—</td>
<td>55</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_TSI_LP</td>
<td>Low power mode current adder</td>
<td>—</td>
<td>1.3</td>
<td>2.5</td>
<td>μA</td>
<td>12</td>
</tr>
</tbody>
</table>

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.
3. \(\text{CAPTRM}=0, \text{DELVOL}=2 \), and fixed external capacitance of 20 pF.
4. \(\text{CAPTRM}=0, \text{EXTCHRG}=9 \), and fixed external capacitance of 20 pF.
5. The programmable current source value is generated by multiplying the \(\text{SCANC[REFCHRG]} \) value and the base current.
6. The programmable current source value is generated by multiplying the \(\text{SCANC[EXTCHRG]} \) value and the base current.
7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, \(\text{PS} = 128, \text{NSCN} = 8; \text{Iext} = 16 \).
8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, \(\text{PS} = 128, \text{NSCN} = 2; \text{Iext} = 16 \).
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, \(\text{PS} = 16, \text{NSCN} = 3; \text{Iext} = 16 \).
10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to \((\text{C}_{\text{ref}} \times \text{I}_{\text{ext}}) / (\text{I}_{\text{ref}} \times \text{PS} \times \text{NSCN}) \). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: \(\text{I}_{\text{ext}} = 5 \ muA, \text{EXTCHRG} = 4, \text{PS} = 128, \text{NSCN} = 2, \text{I}_{\text{ref}} = 16 \ muA, \text{REFCHRG} = 15, \text{C}_{\text{ref}} = 1.0 \ pF \). The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based on the following configuration: \(\text{I}_{\text{ext}} = 1 \ muA, \text{EXTCHRG} = 0, \text{PS} = 128, \text{NSCN} = 32, \text{I}_{\text{ref}} = 32 \ muA, \text{REFCHRG} = 31, \text{C}_{\text{ref}} = 0.5 \ pF \).
11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, \(\text{PS} = 0, \text{NSCN} = 0, 1 \) electrode, \(\text{DELVOL} = 2, \text{EXTCHRG} = 15 \).
12. \(\text{CAPTRM}=7, \text{DELVOL}=2, \text{REFCHRG}=0, \text{EXTCHRG}=4, \text{PS}=7, \text{NSCN}=0F, \text{LPSCNITV}=F, \text{LPO} \) is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

6.9.2 LCD electrical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{Frame}})</td>
<td>LCD frame frequency</td>
<td>28</td>
<td>30</td>
<td>58</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>(C_{\text{LCD}})</td>
<td>LCD charge pump capacitance — nominal value</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>nF</td>
<td>1</td>
</tr>
<tr>
<td>(C_{\text{BYLCD}})</td>
<td>LCD bypass capacitance — nominal value</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>nF</td>
<td>1</td>
</tr>
<tr>
<td>(C_{\text{Glass}})</td>
<td>LCD glass capacitance</td>
<td>—</td>
<td>2000</td>
<td>8000</td>
<td>pF</td>
<td>2</td>
</tr>
<tr>
<td>(V_{\text{IREG}})</td>
<td>(V_{\text{IREG}})</td>
<td>—</td>
<td>1.11</td>
<td>—</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL=0, RVTRIM=1111)</td>
<td>—</td>
<td>1.01</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL=0, RVTRIM=1000)</td>
<td>—</td>
<td>0.91</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL=0, RVTRIM=0000)</td>
<td>—</td>
<td>1.84</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL=1, RVTRIM=1111)</td>
<td>—</td>
<td>1.69</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL=1, RVTRIM=1000)</td>
<td>—</td>
<td>1.54</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL=1, RVTRIM=0000)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(\Delta R_{\text{TRIM}})</td>
<td>(V_{\text{IREG}}) TRIM resolution</td>
<td>—</td>
<td>—</td>
<td>3.0</td>
<td>% (V_{\text{IREG}})</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(V_{\text{IREG}}) ripple</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL = 0)</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(HREFSEL = 1)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{VIREG}})</td>
<td>(V_{\text{IREG}}) current adder — (RVEN = 1)</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>\muA</td>
<td>4</td>
</tr>
<tr>
<td>(I_{\text{RBIA}})</td>
<td>RBIAS current adder</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>\muA</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 49. LCD electricals (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{RBIAS}</td>
<td>RBIAS resistor values</td>
<td>—</td>
<td>0.28</td>
<td>—</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF)</td>
<td>—</td>
<td>2.98</td>
<td>—</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>VLL2</td>
<td>VLL2 voltage</td>
<td>2.0 − 5%</td>
<td>2.0</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HREFSEL = 0</td>
<td>2.0 − 5%</td>
<td>3.3 − 5%</td>
<td>3.3 − 5%</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HREFSEL = 1</td>
<td>3.3 − 5%</td>
<td>5 − 5%</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>VLL3</td>
<td>VLL3 voltage</td>
<td>3.0 − 5%</td>
<td>3.0</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HREFSEL = 0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HREFSEL = 1</td>
<td>5 − 5%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

1. The actual value used could vary with tolerance.
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device’s reference manual.
3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} - 0.15 V
4. 2000 pF load LCD, 32 Hz frame frequency

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number:

<table>
<thead>
<tr>
<th>If you want the drawing for this package</th>
<th>Then use this document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-pin LQFP</td>
<td>98ASS23174W</td>
</tr>
<tr>
<td>81-pin MAPBGA</td>
<td>98ASA00344D</td>
</tr>
</tbody>
</table>

8 Pinout
8.1 K40 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

The 81-pin ballmap assignments are currently being developed.

The • in the entries in this package column indicate which signals are present on the package.

<table>
<thead>
<tr>
<th>81 MAP BGA</th>
<th>80 LQFP</th>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
<th>EzPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4</td>
<td>1</td>
<td>PTE0</td>
<td>ADC1_SE4a</td>
<td>ADC1_SE4a</td>
<td>PTE0</td>
<td>SPI1_PCS1</td>
<td>UART1_TX</td>
<td>SDHC0_D1</td>
<td>I2C1_SDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>2</td>
<td>PTE1/ LLWU_P0</td>
<td>ADC1_SE5a</td>
<td>ADC1_SE5a</td>
<td>PTE1/ LLWU_P0</td>
<td>SPI1_SOUT</td>
<td>UART1_RX</td>
<td>SDHC0_D0</td>
<td>I2C1_SCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>3</td>
<td>PTE2/ LLWU_P1</td>
<td>ADC1_SE6a</td>
<td>ADC1_SE6a</td>
<td>PTE2/ LLWU_P1</td>
<td>SPI1_SCK</td>
<td>UART1_CTS_b</td>
<td>SDHC0_DCLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>4</td>
<td>PTE3</td>
<td>ADC1_SE7a</td>
<td>ADC1_SE7a</td>
<td>PTE3</td>
<td>SPI1_SIN</td>
<td>UART1_RTS_b</td>
<td>SDHC0_CMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E7</td>
<td>—</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>—</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>5</td>
<td>PTE4/ LLWU_P2</td>
<td>DISABLED</td>
<td>DISABLED</td>
<td>PTE4/ LLWU_P2</td>
<td>SPI1_PCS0</td>
<td>UART3_TX</td>
<td>SDHC0_D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>6</td>
<td>PTE5</td>
<td>DISABLED</td>
<td>DISABLED</td>
<td>PTE5</td>
<td>SPI1_PCS2</td>
<td>UART3_RX</td>
<td>SDHC0_D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>7</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>8</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>—</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>9</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>10</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>11</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>12</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>13</td>
<td>PGA0_DP/ ADC0_DP0/ ADC1_DP3</td>
<td>PGA0_DP/ ADC0_DP0/ ADC1_DP3</td>
<td>PGA0_DP/ ADC0_DP0/ ADC1_DP3</td>
<td>PGA0_DP/ ADC0_DP0/ ADC1_DP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>14</td>
<td>PGA0_DM/ ADC0_DM/ ADC1_DM3</td>
<td>PGA0_DM/ ADC0_DM/ ADC1_DM3</td>
<td>PGA0_DM/ ADC0_DM/ ADC1_DM3</td>
<td>PGA0_DM/ ADC0_DM/ ADC1_DM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>15</td>
<td>PGA1_DP/ ADC1_DP0/ ADC0_DP3</td>
<td>PGA1_DP/ ADC1_DP0/ ADC0_DP3</td>
<td>PGA1_DP/ ADC1_DP0/ ADC0_DP3</td>
<td>PGA1_DP/ ADC1_DP0/ ADC0_DP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>16</td>
<td>PGA1_DM/ ADC1_DM0/ ADC0_DM3</td>
<td>PGA1_DM/ ADC1_DM0/ ADC0_DM3</td>
<td>PGA1_DM/ ADC1_DM0/ ADC0_DM3</td>
<td>PGA1_DM/ ADC1_DM0/ ADC0_DM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>17</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>18</td>
<td>VREFH</td>
<td>VREFH</td>
<td>VREFH</td>
<td>VREFH</td>
<td>VREFH</td>
<td>VREFH</td>
<td>VREFH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>19</td>
<td>VREFL</td>
<td>VREFL</td>
<td>VREFL</td>
<td>VREFL</td>
<td>VREFL</td>
<td>VREFL</td>
<td>VREFL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K40 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Freescale Semiconductor, Inc.
<table>
<thead>
<tr>
<th>B1</th>
<th>MAP</th>
<th>BGA</th>
<th>80</th>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
<th>EdPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>20</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSA</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>21</td>
<td>VREF_OUT/ CMP1_INS/ CMP0_INS/ ADC1_SE18</td>
<td>VREF_OUT/ CMP1_INS/ CMP0_INS/ ADC1_SE18</td>
<td>VREF_OUT/ CMP1_INS/ CMP0_INS/ ADC1_SE18</td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>22</td>
<td>DAC0_OUT/ CMP1_INS/ ADC0_SE23</td>
<td>DAC0_OUT/ CMP1_INS/ ADC0_SE23</td>
<td>DAC0_OUT/ CMP1_INS/ ADC0_SE23</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>23</td>
<td>XTAL32</td>
<td>XTAL32</td>
<td>XTAL32</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>24</td>
<td>EXTAL32</td>
<td>EXTAL32</td>
<td>EXTAL32</td>
<td></td>
</tr>
<tr>
<td>K6</td>
<td>25</td>
<td>VBAT</td>
<td>VBAT</td>
<td>VBAT</td>
<td></td>
</tr>
<tr>
<td>J6</td>
<td>26</td>
<td>PTA0</td>
<td>JTAG_TCLK/ SWD_CLK/ EZP_CLK</td>
<td>TS0_CH1</td>
<td>PTA0</td>
<td>UART0_CTS_/ b</td>
<td>FTM0_CH5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>27</td>
<td>PTA1</td>
<td>JTAG_TDI/ EXP_DI</td>
<td>TS0_CH2</td>
<td>PTA1</td>
<td>UART0_RX</td>
<td>FTM0_CH6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>J7</td>
<td>28</td>
<td>PTA2</td>
<td>JTAG_TDO/ TRACE_SWO/ EXP.DO</td>
<td>TS0_CH3</td>
<td>PTA2</td>
<td>UART0_TX</td>
<td>FTM0_CH7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>29</td>
<td>PTA3</td>
<td>JTAG_TMS/ SMD_DIO</td>
<td>TS0_CH4</td>
<td>PTA3</td>
<td>UART0_RTS_/ b</td>
<td>FTM0_CH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>J8</td>
<td>30</td>
<td>PTA4/ LLWU_P3</td>
<td>NMI_b/ EXP_CS_b</td>
<td>TS0_CH5</td>
<td>PTA4/ LLWU_P3</td>
<td>FTM0_CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>K7</td>
<td>31</td>
<td>PTA5</td>
<td>DISABLED</td>
<td>PTA5</td>
<td>FTM0_CH2</td>
<td>CMP2_OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>E5</td>
<td></td>
<td>—</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td>—</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K8</td>
<td>32</td>
<td>PTA12</td>
<td>CMP2_IN0</td>
<td>CMP2_IN0</td>
<td>PTA12</td>
<td>CAN0_TX</td>
<td>FTM1_CH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>L8</td>
<td>33</td>
<td>PTA13/ LLWU_P4</td>
<td>CMP2_IN1</td>
<td>CMP2_IN1</td>
<td>PTA13/ LLWU_P4</td>
<td>CAN0_RX</td>
<td>FTM1_CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>K9</td>
<td>34</td>
<td>PTA14</td>
<td>DISABLED</td>
<td>PTA14</td>
<td>SPI0_PCS0</td>
<td>UART0_TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>35</td>
<td>PTA15</td>
<td>DISABLED</td>
<td>PTA15</td>
<td>SPI0_SCK</td>
<td>UART0_RX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>J10</td>
<td>36</td>
<td>PTA16</td>
<td>DISABLED</td>
<td>PTA16</td>
<td>SPI0_SOUT</td>
<td>UART0_CTS_/ b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>37</td>
<td>PTA17</td>
<td>ADC1_SE17</td>
<td>ADC1_SE17</td>
<td>PTA17</td>
<td>SPI0_SIN</td>
<td>UART0_RTS_/ b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>L10</td>
<td>38</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>K10</td>
<td>39</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>L11</td>
<td>40</td>
<td>PTA18</td>
<td>EXTAL</td>
<td>EXTAL</td>
<td>PTA18</td>
<td>FTM0_FLT2</td>
<td>FTM_CLKIN0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>K11</td>
<td>41</td>
<td>PTA19</td>
<td>XTAL</td>
<td>XTAL</td>
<td>PTA19</td>
<td>FTM1_FLT0</td>
<td>FTM_CLKIN1</td>
<td>LPT0_ALT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>J11</td>
<td>42</td>
<td>RESET_b</td>
<td>RESET_b</td>
<td>RESET_b</td>
<td></td>
</tr>
<tr>
<td>G11</td>
<td>43</td>
<td>PTB0/ LLWU_P5</td>
<td>LCD_P0/ ADC0_SE8/</td>
<td>LCD_P0/ ADC0_SE8/ ADC1_SE8/ TS0_CH0</td>
<td>PTB0/ LLWU_P5</td>
<td>I2C0_SCL</td>
<td>FTM1_CH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

K40 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Freescale Semiconductor, Inc. 63
<table>
<thead>
<tr>
<th>B1 MAP BGA</th>
<th>80</th>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
<th>EdPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10</td>
<td>44</td>
<td>PTB1</td>
<td>LCD_P1/</td>
<td>LCD_P1/</td>
<td>PTB1</td>
<td>I2C0_SDA</td>
<td>FTM1_CH1</td>
<td></td>
<td>FTM1_OD_PHB</td>
<td>LCD_P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC0_SE8/</td>
<td>ADC0_SE8/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC1_SE9/</td>
<td>ADC1_SE9/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH6</td>
<td>TS10_CH6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G9</td>
<td>45</td>
<td>PTB2</td>
<td>LCD_P2/</td>
<td>LCD_P2/</td>
<td>PTB2</td>
<td>I2C0_SCL</td>
<td>UART0_RTS_</td>
<td></td>
<td>FTM0_FLT3</td>
<td>LCD_P2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC0_SE12/</td>
<td>ADC0_SE12/</td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH7</td>
<td>TS10_CH7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G8</td>
<td>46</td>
<td>PTB3</td>
<td>LCD_P3/</td>
<td>LCD_P3/</td>
<td>PTB3</td>
<td>I2C0_SDA</td>
<td>UART0_CTS_</td>
<td></td>
<td>FTM0_FLT3</td>
<td>LCD_P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC0_SE13/</td>
<td>ADC0_SE13/</td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH8</td>
<td>TS10_CH8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>47</td>
<td>PTB8</td>
<td>LCD_P8</td>
<td>LCD_P8</td>
<td>PTB8</td>
<td>SP11PCS1</td>
<td>UART3_RTS_</td>
<td></td>
<td>LCD_P8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E10</td>
<td>48</td>
<td>PTB9</td>
<td>LCD_P9</td>
<td>LCD_P9</td>
<td>PTB9</td>
<td>SP11PCS1</td>
<td>UART3_CTS_</td>
<td></td>
<td>LCD_P9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>49</td>
<td>PTB10</td>
<td>LCD_P10/</td>
<td>LCD_P10/</td>
<td>PTB10</td>
<td>SP11PCS0</td>
<td>UART3_RX</td>
<td></td>
<td>LCD_P10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC1_SE14</td>
<td>ADC1_SE14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>50</td>
<td>PTB11</td>
<td>LCD_P11/</td>
<td>LCD_P11/</td>
<td>PTB11</td>
<td>SP11_SCK</td>
<td>UART3_TX</td>
<td></td>
<td>LCD_P11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC1_SE15</td>
<td>ADC1_SE15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>51</td>
<td>PTB16</td>
<td>LCD_P12/</td>
<td>LCD_P12/</td>
<td>PTB16</td>
<td>SP11_SOUT</td>
<td>UART0_RX</td>
<td></td>
<td>LCD_P12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH8</td>
<td>TS10_CH8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9</td>
<td>52</td>
<td>PTB17</td>
<td>LCD_P13/</td>
<td>LCD_P13/</td>
<td>PTB17</td>
<td>SP11_SIN</td>
<td>UART0_TX</td>
<td>I2S0_TX_BCLK</td>
<td>EWM_IN</td>
<td>LCD_P13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH10</td>
<td>TS10_CH10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>53</td>
<td>PTB18</td>
<td>LCD_P14/</td>
<td>LCD_P14/</td>
<td>PTB18</td>
<td>CAN0_TX</td>
<td>FT2M_CH0</td>
<td>I2S0_TX_FS</td>
<td>LCD_P14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH11</td>
<td>TS10_CH11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>54</td>
<td>PTB19</td>
<td>LCD_P15/</td>
<td>LCD_P15/</td>
<td>PTB19</td>
<td>CAN0_RX</td>
<td>FT2M_CH1</td>
<td>I2S0_TX_FS</td>
<td>LCD_P15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH12</td>
<td>TS10_CH12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>55</td>
<td>PTC0</td>
<td>LCD_P20/</td>
<td>LCD_P20/</td>
<td>PTC0</td>
<td>SP10PCS4</td>
<td>UART1_RTS_</td>
<td>I2S0_TXD</td>
<td>LCD_P20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC0_SE14/</td>
<td>ADC0_SE14/</td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH14</td>
<td>TS10_CH14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>56</td>
<td>PTC1/LLWU_P6</td>
<td>LCD_P21/</td>
<td>LCD_P21/</td>
<td>PTC1</td>
<td>SP10PCS3</td>
<td>UART1_RTS_</td>
<td>FTM0_CH0</td>
<td>LCD_P21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC0_SE15/</td>
<td>ADC0_SE15/</td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH10</td>
<td>TS10_CH10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>57</td>
<td>PTC2</td>
<td>LCD_P22/</td>
<td>LCD_P22/</td>
<td>PTC2</td>
<td>SP10PCS2</td>
<td>UART1_CTS_</td>
<td>FTM0_CH1</td>
<td>LCD_P22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADC0_SE4b/</td>
<td>ADC0_SE4b/</td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMP1_IN0/</td>
<td>CMP1_IN0/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH14</td>
<td>TS10_CH14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>58</td>
<td>PTC3/LLWU_P7</td>
<td>LCD_P23/</td>
<td>LCD_P23/</td>
<td>PTC3</td>
<td>SP10PCS1</td>
<td>UART1_RX</td>
<td>FTM0_CH2</td>
<td>LCD_P23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMP1_IN1/</td>
<td>CMP1_IN1/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS10_CH15</td>
<td>TS10_CH15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>60</td>
<td>VLL3</td>
<td>VLL3</td>
<td>VLL3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>61</td>
<td>VLL2</td>
<td>VLL2</td>
<td>VLL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>62</td>
<td>VLL1</td>
<td>VLL1</td>
<td>VLL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>63</td>
<td>VCAP2</td>
<td>VCAP2</td>
<td>VCAP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>64</td>
<td>VCAP1</td>
<td>VCAP1</td>
<td>VCAP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>65</td>
<td>PT/C4/LLWU_P8</td>
<td>LCD_P24</td>
<td>LCD_P24</td>
<td>PT/C4</td>
<td>SP10PCS0</td>
<td>UART1_TX</td>
<td>FTM0_CH3</td>
<td>CMP1_OUT</td>
<td>LCD_P24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

K40 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Freescale Semiconductor, Inc.
<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
<th>EdPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC5/ LLWU_P9</td>
<td>LCD_P25</td>
<td>LCD_P25</td>
<td>PTC5/ LLWU_P9</td>
<td>SPI0_SCK</td>
<td>LPT0_ALT2</td>
<td>CMP0_OUT</td>
<td>LCD_P25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD_P26/ CMP0_IN0</td>
<td>LCD_P26/ CMP0_IN0</td>
<td>PTC5/ LLWU_P10</td>
<td>SPI0_SOUT</td>
<td>PDB0_EXTRG</td>
<td>LCD_P26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD_P27/ CMP0_IN1</td>
<td>LCD_P27/ CMP0_IN1</td>
<td>LCD_P28/ CMP0_IN2</td>
<td>LCD_P28/ CMP0_IN2</td>
<td>LCD_P28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD_P29/ CMP0_IN3</td>
<td>LCD_P29/ CMP0_IN3</td>
<td>PTC9</td>
<td>PTC9</td>
<td>I2C1_MCLK</td>
<td>I2C1_MCLK</td>
<td>LCD_P29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTC10/ LLWU_P11</td>
<td>PTC10/ LLWU_P11</td>
<td>PTC10</td>
<td>PTC10</td>
<td>I2C1_SCL</td>
<td>I2C1_SCL</td>
<td>LCD_P30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD0/ LLWU_P12</td>
<td>PTD0/ LLWU_P12</td>
<td>PTD0</td>
<td>PTD0</td>
<td>UART2_RTS_b</td>
<td>UART2_RTS_b</td>
<td>LCD_P40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD1/ LLWU_P13</td>
<td>PTD1/ LLWU_P13</td>
<td>PTD1</td>
<td>PTD1</td>
<td>UART2_CTS_b</td>
<td>UART2_CTS_b</td>
<td>LCD_P41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD2/ LLWU_P14</td>
<td>PTD2/ LLWU_P14</td>
<td>PTD2</td>
<td>PTD2</td>
<td>UART2_RX</td>
<td>UART2_RX</td>
<td>LCD_P42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD3/ LLWU_P15</td>
<td>PTD3/ LLWU_P15</td>
<td>PTD3</td>
<td>PTD3</td>
<td>UART2_TX</td>
<td>UART2_TX</td>
<td>LCD_P43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD4/ LLWU_P16</td>
<td>PTD4/ LLWU_P16</td>
<td>PTD4</td>
<td>PTD4</td>
<td>UART0_RTS_b</td>
<td>UART0_RTS_b</td>
<td>LCD_P44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD5/ LLWU_P17</td>
<td>PTD5/ LLWU_P17</td>
<td>PTD5</td>
<td>PTD5</td>
<td>UART0_CTS_b</td>
<td>UART0_CTS_b</td>
<td>LCD_P45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD6/ LLWU_P18</td>
<td>PTD6/ LLWU_P18</td>
<td>PTD6</td>
<td>PTD6</td>
<td>UART0_RX</td>
<td>UART0_RX</td>
<td>LCD_P46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTD7/ LLWU_P19</td>
<td>PTD7/ LLWU_P19</td>
<td>PTD7</td>
<td>PTD7</td>
<td>UART0_TX</td>
<td>UART0_TX</td>
<td>LCD_P47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>RESERVED</td>
<td>RESERVED</td>
<td>RESERVE</td>
<td>RESERVE</td>
<td>RESERVE</td>
<td>RESERVE</td>
<td>RESERVE</td>
<td>RESERVE</td>
<td>RESERVE</td>
<td>RESERVE</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2 K40 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
<th>EzPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>J9</td>
<td>NC</td>
</tr>
<tr>
<td>J4</td>
<td>NC</td>
</tr>
<tr>
<td>H11</td>
<td>NC</td>
</tr>
<tr>
<td>F11</td>
<td>NC</td>
</tr>
<tr>
<td>E11</td>
<td>NC</td>
</tr>
<tr>
<td>F10</td>
<td>NC</td>
</tr>
<tr>
<td>F9</td>
<td>NC</td>
</tr>
<tr>
<td>F8</td>
<td>NC</td>
</tr>
<tr>
<td>E8</td>
<td>NC</td>
</tr>
<tr>
<td>B6</td>
<td>NC</td>
</tr>
<tr>
<td>A6</td>
<td>NC</td>
</tr>
<tr>
<td>A5</td>
<td>NC</td>
</tr>
<tr>
<td>B5</td>
<td>NC</td>
</tr>
<tr>
<td>D5</td>
<td>NC</td>
</tr>
<tr>
<td>C4</td>
<td>NC</td>
</tr>
<tr>
<td>B4</td>
<td>NC</td>
</tr>
<tr>
<td>A4</td>
<td>NC</td>
</tr>
<tr>
<td>B1</td>
<td>NC</td>
</tr>
<tr>
<td>C1</td>
<td>NC</td>
</tr>
<tr>
<td>D1</td>
<td>NC</td>
</tr>
<tr>
<td>E1</td>
<td>NC</td>
</tr>
<tr>
<td>C2</td>
<td>NC</td>
</tr>
<tr>
<td>D2</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>PTD7</td>
<td>PTD5</td>
<td>PTD4</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>PTC8</td>
<td>PTC4</td>
<td>VLL1</td>
<td>VLL2</td>
</tr>
<tr>
<td>B</td>
<td>NC</td>
<td>PTD6</td>
<td>PTD3</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>PTC7</td>
<td>PTC3</td>
<td>PTC0</td>
<td>PTE6</td>
</tr>
<tr>
<td>C</td>
<td>NC</td>
<td>NC</td>
<td>PTD2</td>
<td>NC</td>
<td>NC</td>
<td>PTC11</td>
<td>PTC10</td>
<td>PTC6</td>
<td>PTE2</td>
<td>PTE9</td>
</tr>
<tr>
<td>D</td>
<td>NC</td>
<td>NC</td>
<td>PTD1</td>
<td>PTD0</td>
<td>NC</td>
<td>PTC9</td>
<td>PTC5</td>
<td>PTC1</td>
<td>PTE1</td>
<td>PTE8</td>
</tr>
<tr>
<td>E</td>
<td>NC</td>
<td>PTE2</td>
<td>PTE1</td>
<td>PTE0</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>NC</td>
<td>PTE17</td>
<td>PTE9</td>
</tr>
<tr>
<td>F</td>
<td>USB0_DP</td>
<td>USB0_DM</td>
<td>NC</td>
<td>PTE3</td>
<td>VDDA</td>
<td>VSSA</td>
<td>VSS</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>G</td>
<td>VOUT33</td>
<td>VREGIN</td>
<td>VSS</td>
<td>PTE5</td>
<td>VREFH</td>
<td>VREFL</td>
<td>VSS</td>
<td>PTE3</td>
<td>PTE2</td>
<td>PTE1</td>
</tr>
<tr>
<td>H</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>PTE4</td>
<td>PTA1</td>
<td>PTA3</td>
<td>PTA17</td>
</tr>
<tr>
<td>J</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>PTA0</td>
<td>PTA2</td>
<td>PTA4</td>
</tr>
<tr>
<td>K</td>
<td>PGA0_DP/ADC0_DM/ADC1_DP3</td>
<td>PGA0_DM/ADC0_DM/ADC1_DM3</td>
<td>NC</td>
<td>NC</td>
<td>DAC0_OUT/CMP1_IN2/ADC0_SE23</td>
<td>VBAT</td>
<td>PTA5</td>
<td>PTA12</td>
<td>PTA14</td>
<td>VSS</td>
</tr>
<tr>
<td>L</td>
<td>PGA1_DP/ADC1_DP/ADC0_DP3</td>
<td>PGA1_DM/ADC1_DM/ADC0_DM3</td>
<td>VREF_OUT/CMPI_IN5/CMPO_IN5/ADC1_SE14</td>
<td>XTAL32</td>
<td>XTAL32</td>
<td>VSS</td>
<td>RESERVED</td>
<td>PTA13</td>
<td>PTA15</td>
<td>VDD</td>
</tr>
</tbody>
</table>

Figure 25. K40 81 MAPBGA Pinout Diagram
9 Revision History

The following table provides a revision history for this document.

Figure 26. K40 80 LQFP Pinout Diagram
<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Date</th>
<th>Substantial Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/2010</td>
<td>Initial public revision</td>
</tr>
<tr>
<td>2</td>
<td>3/2011</td>
<td>Many updates throughout Corrected 81- and 104-pin package codes Corrected 81- and 104-pin package codes</td>
</tr>
<tr>
<td>3</td>
<td>3/2011</td>
<td>Added sections that were inadvertently removed in previous revision Added sections that were inadvertently removed in previous revision</td>
</tr>
<tr>
<td>4</td>
<td>3/2011</td>
<td>Reworded (I_{OC}) footnote in "Voltage and Current Operating Requirements" table. Added paragraph to "Peripheral operating requirements and behaviors" section. Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.</td>
</tr>
</tbody>
</table>
| 5 | 6/2011 | • Changed supported part numbers per new part number scheme
• Changed \(DC\) injection current specs in "Voltage and current operating requirements" table
• Changed Input leakage current and internal pullup/pulldown resistor specs in "Voltage and current operating behaviors" table
• Split Low power stop mode current specs by temperature range in "Power consumption operating behaviors" table
• Changed typical \(I_{DD,VBAT}\) spec in "Power consumption operating behaviors" table
• Added LPTMR clock specs to "Device clock specifications" table
• Changed Minimum external reset pulse width in "General switching specifications" table
• Changed PLL operating current in "MCG specifications" table
• Added footnote to PLL period jitter in "MCG specifications" table
• Changed Supply current in "Oscillator DC electrical specifications" table
• Changed Crystal startup time in "Oscillator frequency specifications" table
• Changed Operating voltage in "EzPort switching specifications" table
• Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table
• Changed Gain spec in "16-bit ADC with PGA characteristics" table
• Added typical Input DC current to "16-bit ADC with PGA characteristics" table
• Changed Input offset voltage and ENOB notes field in "16-bit ADC with PGA characteristics" table
• Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications"
• Changed Code-to-code settling time, DAC output voltage range low, and Temperature coefficient offset voltage in "12-bit DAC operating behaviors" table
• Changed Temperature drift and Load regulation in "VREF full-range operating behaviors" table
• Changed Regulator output voltage in "USB VREG electrical specifications" table
• Changed \(I_{SM}\) description and specs in "USB VREG electrical specifications" table
• Changed DSPI SCK cycle time specs in "DSPI timing" tables
• Changed DSPI SS specs in "Slave mode DSPI timing (low-speed mode)" table
• Changed DSPI SCK to DSPI SOUT valid spec in "Slave mode DSPI timing (high-speed mode)" table
• Changed Reference oscillator current source base current spec and added Low-power current adder footer in "TSI electrical specifications" table
• Added LCD glass capacitance footnote
Table continues on the next page... | • Changed supported part numbers per new part number scheme
• Changed \(DC\) injection current specs in "Voltage and current operating requirements" table
• Changed Input leakage current and internal pullup/pulldown resistor specs in "Voltage and current operating behaviors" table
• Split Low power stop mode current specs by temperature range in "Power consumption operating behaviors" table
• Changed typical \(I_{DD,VBAT}\) spec in "Power consumption operating behaviors" table
• Added LPTMR clock specs to "Device clock specifications" table
• Changed Minimum external reset pulse width in "General switching specifications" table
• Changed PLL operating current in "MCG specifications" table
• Added footnote to PLL period jitter in "MCG specifications" table
• Changed Supply current in "Oscillator DC electrical specifications" table
• Changed Crystal startup time in "Oscillator frequency specifications" table
• Changed Operating voltage in "EzPort switching specifications" table
• Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table
• Changed Gain spec in "16-bit ADC with PGA characteristics" table
• Added typical Input DC current to "16-bit ADC with PGA characteristics" table
• Changed Input offset voltage and ENOB notes field in "16-bit ADC with PGA characteristics" table
• Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications"
• Changed Code-to-code settling time, DAC output voltage range low, and Temperature coefficient offset voltage in "12-bit DAC operating behaviors" table
• Changed Temperature drift and Load regulation in "VREF full-range operating behaviors" table
• Changed Regulator output voltage in "USB VREG electrical specifications" table
• Changed \(I_{SM}\) description and specs in "USB VREG electrical specifications" table
• Changed DSPI SCK cycle time specs in "DSPI timing" tables
• Changed DSPI SS specs in "Slave mode DSPI timing (low-speed mode)" table
• Changed DSPI SCK to DSPI SOUT valid spec in "Slave mode DSPI timing (high-speed mode)" table
• Changed Reference oscillator current source base current spec and added Low-power current adder footer in "TSI electrical specifications" table
• Added LCD glass capacitance footnote |
Table 50. Revision History (continued)

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Date</th>
<th>Substantial Changes</th>
</tr>
</thead>
</table>
| 6 | 01/2012| • Added AC electrical specifications.
 | | • Replaced TBDs with silicon data throughout.
 | | • In "Power mode transition operating behaviors" table, removed entry times.
 | | • Updated "EMC radiated emissions operating behaviors" to remove SAE level and also added data for 144LQFP.
 | | • Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram".
 | | • Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes" figures.
 | | • Updated IDD_RUN numbers in 'Power consumption operating behaviors' section.
 | | • Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run mode supply current vs. core frequency — all peripheral clocks disabled' figure.
 | | • In 'Voltage reference electrical specifications' section, updated C_L, V_tdrift, and V_vdrift values.
 | | • In 'USB electrical specifications' section, updated V_{DP_SRC}, I_{DDstby}, and V_{Reg33out} values.
 | | • In 'LCD electrical characteristics' section, updated V_{IREG} and Δ_{RTRIM} values. |
| 7 | 02/2013| • In "ESD handling ratings", added a note for I_{LAT}.
 | | • Updated "Voltage and current operating requirements".
 | | • Updated "Voltage and current operating behaviors".
 | | • Updated "Power mode transition operating behaviors".
 | | • Updated "EMC radiated emissions operating behaviors" to add MAPBGA data.
 | | • In "MCG specifications", updated the description of f_{ints,t}.
 | | • In "16-bit ADC operating conditions", updated the max spec of V_{ADIN}.
 | | • In "16-bit ADC electrical characteristics", updated the temp sensor slope and voltage specs.
 | | • Updated "I2C switching specifications".
 | | • In "SDHC specifications", removed the operating voltage limits and updated the SD1 and SD6 specs.
 | | • In "I2S switching specifications", added separate specification tables for the full operating voltage range. |