KMI16/1
Integrated rotational speed sensor

Product specification
Supersedes data of 1998 May 15

2000 Sep 05
Integrated rotational speed sensor

DESCRIPTION

The KMI16/1 sensor detects rotational speed of ferrous gear wheels and reference marks.

The sensor consists of a magnetoresistive sensor element, a signal conditioning integrated circuit in bipolar technology and a ferrite magnet.

The frequency of the digital current output signal is proportional to the rotational speed of the target wheel.

The open collector (OC) output allows for a high degree of flexibility in the design of subsequent conditioning electronics.

CAUTION

Do not press two or more products together against their magnetic forces. Do not expose products to strong magnetic fields of more than 30 kA/m.

PINNING

<table>
<thead>
<tr>
<th>PIN</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>DC supply voltage</td>
</tr>
<tr>
<td>2</td>
<td>Vout</td>
<td>open collector output</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>ground</td>
</tr>
</tbody>
</table>

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>DC supply voltage</td>
<td>4.5</td>
<td>5</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>ICC</td>
<td>DC supply current (pin 1)</td>
<td>4</td>
<td>10</td>
<td>14</td>
<td>mA</td>
</tr>
<tr>
<td>VCESat</td>
<td>OC saturation voltage</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>dmax</td>
<td>maximum sensing distance</td>
<td>2.4</td>
<td>2.9</td>
<td>–</td>
<td>mm</td>
</tr>
<tr>
<td>fT</td>
<td>operating tooth frequency</td>
<td>0</td>
<td>–</td>
<td>25000</td>
<td>Hz</td>
</tr>
<tr>
<td>Tamb</td>
<td>ambient operating temperature</td>
<td>–40</td>
<td>–</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Fig.1 Simplified outline (SOT477B).
Integrated rotational speed sensor

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_CC</td>
<td>DC operating supply voltage</td>
<td>T_amb = -40 to +150 °C</td>
<td>4.5</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>voltage pin 1</td>
<td>T_amb = -40 to +150 °C; no wrong polarity protection</td>
<td>-0.5</td>
<td>+16</td>
<td>V</td>
</tr>
<tr>
<td>V_out</td>
<td>OC output voltage</td>
<td>T_amb = -40 to +150 °C; no wrong polarity protection; see Fig.5</td>
<td>-0.5</td>
<td>+16</td>
<td>V</td>
</tr>
<tr>
<td>V_out(max)</td>
<td>peak OC output voltage</td>
<td>T_amb = -40 to +40 °C; no wrong polarity protection; see Fig.5</td>
<td>-0.5</td>
<td>+26.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{out(max)}</td>
<td>OC output current</td>
<td>T_amb = -40 to +150 °C</td>
<td>-</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>I_{out(0ff)}</td>
<td>OC output leakage current</td>
<td>T_amb = -40 to +150 °C</td>
<td>-</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>T_amb = -40 to +150 °C</td>
<td>-</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>T_sld</td>
<td>soldering temperature</td>
<td>t ≤ 10 s</td>
<td>-</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>T_stg</td>
<td>storage temperature</td>
<td>-65 to +150 °C</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_amb</td>
<td>ambient operating temperature</td>
<td>-40 to +150 °C</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTICS
T_amb = 25 °C; V_CC = 5 V; d = 1.9 mm; f_t = 2 kHz; test circuit see Fig.5; gear wheel: module 2.08 mm; material 95SnPb28k; see Fig.6; centred sensor position; see notes 1, 2 and 3; unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CC}</td>
<td>supply current (pin 1)</td>
<td>T_amb = -40 to +150 °C</td>
<td>4</td>
<td>10</td>
<td>14</td>
<td>mA</td>
</tr>
<tr>
<td>V_{out(high)}</td>
<td>OC output voltage high</td>
<td>OC = off state; T_amb = -40 to +150 °C</td>
<td>4.7</td>
<td>4.9</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{CE sat}</td>
<td>OC saturation voltage</td>
<td>OC = on state; I_{out} = 20 mA</td>
<td>-</td>
<td>0.4</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>t_r</td>
<td>output signal rise time</td>
<td>10% to 90%</td>
<td>5</td>
<td>12</td>
<td>20</td>
<td>µs</td>
</tr>
<tr>
<td>t_f</td>
<td>output signal fall time</td>
<td>10% to 90%</td>
<td>0.1</td>
<td>0.4</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>δ</td>
<td>duty cycle</td>
<td>T_amb = -40 to +150 °C</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>%</td>
</tr>
<tr>
<td>d_{min}</td>
<td>minimum sensing distance</td>
<td>T_amb = -40 to +150 °C</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>mm</td>
</tr>
<tr>
<td>d_{max}</td>
<td>maximum sensing distance</td>
<td>T_amb = -40 to +150 °C</td>
<td>2.4</td>
<td>2.9</td>
<td>-</td>
<td>mm</td>
</tr>
</tbody>
</table>

Notes
1. High rotational wheel speeds reduce the maximum sensing distance because of eddy currents, depending on target wheel dimensions and materials used.
2. Output pins are designed for electrostatic sensitivity for more than 2000 V according to Human Body Model (HBM); MIL-STD-883; method 3015.
3. EMC behaviour depends greatly on design of application circuit.
FUNCTIONAL DESCRIPTION

The KMI16/1 sensor is sensitive to the motion of ferrous gear wheels or reference marks. The functional principle is shown in Fig.3. Due to the effect of flux bending, the different directions of magnetic field lines in the magnetoresistive sensor element will cause an electrical signal. Because of the chosen sensor orientation and the direction of ferrite magnetization, the KMI16/1 is sensitive to movement in the ‘y’ direction in front of the sensor only (see Fig.2).

The magnetoresistive sensor element signal is amplified, temperature compensated and passed to a Schmitt trigger in the conditioning integrated circuit (see Fig.4). The digital output signal level is independent of the sensing distance within the measuring range (see Fig.10). A (3-wire) output current enables safe transfer of the sensor signal to the detecting circuit (see Fig.5). The integrated circuit housing is separated from the sensor element housing to optimize the sensor behaviour at high temperatures.

Fig.2 Component detail of the KMI16/1.

Fig.3 Functional principle.
Integrated rotational speed sensor

Fig. 4 Block diagram.

Fig. 5 Test and application circuit.
APPLICATION INFORMATION

Mounting conditions

The recommended sensor position in front of a gear wheel is shown in Fig.11. The distance 'd' is measured between the sensor front and the tip of a gear wheel tooth. The KMI16/1 senses ferrous indicators like gear wheels in the 'y' direction only (no rotational symmetry of the sensor); see Fig.2. The effect of incorrect mounting positions on sensing distance is shown in Figs 7, 8 and 9. The symmetrical reference axis of the sensor corresponds to the axis of the ferrite magnet.

Environmental conditions

Due to eddy current effects the sensing distance depends on the tooth frequency (see Fig.13). The influence of the gear wheel module on the sensing distance is shown in Fig.12.

Gear Wheel Dimensions

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>German DIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>number of teeth</td>
<td>–</td>
</tr>
<tr>
<td>d</td>
<td>diameter</td>
<td>mm</td>
</tr>
<tr>
<td>m</td>
<td>module m = d/z</td>
<td>mm</td>
</tr>
<tr>
<td>p</td>
<td>pitch p = (\pi \times m)</td>
<td>mm</td>
</tr>
<tr>
<td>ASA; note 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>pitch diameter (d in inch)</td>
<td>inch</td>
</tr>
<tr>
<td>DP</td>
<td>diametric pitch DP = z/PD</td>
<td>inch⁻¹</td>
</tr>
<tr>
<td>CP</td>
<td>circular pitch CP = (\pi/DP)</td>
<td>inch</td>
</tr>
</tbody>
</table>

Note

1. For conversion from ASA to DIN: \(m = 25.4 \text{ mm/DP} \);
 \(p = 25.4 \text{ mm } \times CP \).

Fig.6 Gear wheel dimensions.
Integrated rotational speed sensor KMI16/1

Fig. 7 Sensing distance as a function of positional tolerance in the y-axis; typical values.

$$V_{CC} = 12 \text{ V}; f_t = 2 \text{ kHz}; \text{ module } = 2 \text{ mm}; \text{ pitch diameter } = 100 \text{ mm}.$$

Fig. 8 Sensing distance as a function of positional tolerance; typical values.

$$V_{CC} = 12 \text{ V}; f_t = 2 \text{ kHz}; \text{ module } = 2 \text{ mm}.$$

Fig. 9 Sensing distance as a function of positional tolerance in the x-axis; typical values.

$$V_{CC} = 12 \text{ V}; f_t = 2 \text{ kHz}; \text{ module } = 2 \text{ mm}.$$

Fig. 10 Sensing distance as a function of ambient temperature; typical values.

$$V_{CC} = 12 \text{ V}; f_t = 2 \text{ kHz}; \text{ module } = 2 \text{ mm}.$$
Integrated rotational speed sensor

Fig. 11 Sensor positioning.

Fig. 12 Normalized maximum sensing distance as a function of gear wheel module; typical values.

d_0 = measuring distance for a gear wheel with module $m = 2$ mm.

$V_{CC} = 12$ V; module = 2 mm.

Fig. 13 Sensing distance as a function of tooth frequency; typical values.
PACKAGE OUTLINE
Plastic single-ended multi-chip package; magnetized ferrite magnet (8 x 8 x 4.5 mm); 4 interconnections; 3 in-line leads

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A(1)</th>
<th>b_p</th>
<th>b_p1</th>
<th>c</th>
<th>D(2)</th>
<th>D_1(2)</th>
<th>E</th>
<th>E_1</th>
<th>E_2</th>
<th>e</th>
<th>e_1</th>
<th>H_E</th>
<th>H_E1</th>
<th>K_max</th>
<th>L</th>
<th>L_1</th>
<th>L_2</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3(1)</th>
<th>Q</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.7</td>
<td>1.57</td>
<td>0.3</td>
<td>5.7</td>
<td>4.5</td>
<td>5.7</td>
<td>4.6</td>
<td>2.35</td>
<td>2.15</td>
<td>5.6</td>
<td>5.37</td>
<td>7.25</td>
<td>3.9</td>
<td>3.5</td>
<td>8.15</td>
<td>8.15</td>
<td>4.3</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0.8</td>
<td>0.7</td>
<td>1.47</td>
<td>0.24</td>
<td>4.1</td>
<td>5.5</td>
<td>4.4</td>
<td>2.15</td>
<td>17.8</td>
<td>5.5</td>
<td>5.5</td>
<td>7.85</td>
<td>3.9</td>
<td>3.5</td>
<td>7.85</td>
<td>7.85</td>
<td>4.3</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Glue thickness not included.
2. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION REFERENCES EUROPEAN PROJECTION ISSUE DATE
SOT477B IEC JEDEC EIAJ

IEC

JEDEC

EIAJ

00-09-28

00-08-31
Integrated rotational speed sensor

KMI16/1

DATA SHEET STATUS

<table>
<thead>
<tr>
<th>DATA SHEET STATUS</th>
<th>PRODUCT STATUS</th>
<th>DEFINITIONS (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>Development</td>
<td>This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>Qualification</td>
<td>This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.</td>
</tr>
<tr>
<td>Product specification</td>
<td>Production</td>
<td>This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.</td>
</tr>
</tbody>
</table>

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
Philips Semiconductors – a worldwide company

Argentina: see South America
Australia: 3 Fitzgree Drive, HOMEBUSI, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulbagia Ltd., Energoproject, 15th floor, 51 James Bouchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +66 2 351 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsvegade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd. Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax. +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-gu, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 570 5214, Fax. +60 3 577 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +1 800 234 7381, Fax. +1 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 83999
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al. Jeruzalskiskie 195 B, 02-222 WARSZAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatkheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Korea: Philips House, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2 361 7910, Fax. +66 2 398 3447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, 02004 KIEV, Tel. +380 44 264 2745
Uruguay: see South America
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 754 8421, Fax. +44 208 730 5000
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Philips Semiconductors N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed In The Netherlands 6135Z0/02/pp12 Date of release: 2000 Sep 05 Document order number: 9397 750 07248

For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

SCA 70

Let’s make things better.

Philips Semiconductors