Low-Power CMOS Ionization Smoke Detector IC with Interconnect

The MC14468, when used with an ionization chamber and a small number of external components, will detect smoke. When smoke is sensed, an alarm is sounded via an external piezoelectric transducer and internal drivers. This circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 specifications.

Features
- Ionization Type with On-Chip FET Input Comparator
- Piezoelectric Horn Driver
- Guard Outputs on Both Sides of Detect Input
- Input-Production Diodes on the Detect Input
- Low-Battery Trip Point, Internally Set, can be Altered Via External Resistor
- Detect Threshold, Internally Set, can be Altered Via External Resistor
- Pulse Testing for Low Battery Uses LED for Battery Loading
- Comparator Output for Detect
- Internal Reverse Battery Protection
- Strobe Output for External Trim Resistors
- I/O Pin Allows Up to 40 Units to be Connected for Common Signaling
- Power-On Reset Prevents False Alarms on Battery Change
- Pb-Free Packaging Designated by Suffix Code ED

### ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Temperature Range</th>
<th>Case No.</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC14468P</td>
<td>–10° to 60°C</td>
<td>648-08</td>
<td>Plastic Dip</td>
</tr>
<tr>
<td>MC14468ED</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Pin Connections
Table 1. Maximum Ratings\(^{(1)}\)
(Voltages referenced to VSS)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Supply Voltage</td>
<td>(V_{DD})</td>
<td>–0.5 to +15 V</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage, All Inputs Except Pin 8</td>
<td>(V_{IN})</td>
<td>–0.25 to (V_{DD} + 0.25) V</td>
<td>V</td>
</tr>
<tr>
<td>DC Current Drain per Input Pin, Except Pin 15 = 1 mA</td>
<td>(I)</td>
<td>10 mA</td>
<td>mA</td>
</tr>
<tr>
<td>DC Current Drain per Output Pin</td>
<td>(I)</td>
<td>30 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_A)</td>
<td>–10 to +60 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_{STG})</td>
<td>–55 to +125 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Reverse Battery Time</td>
<td>(t_{RB})</td>
<td>5.0 s</td>
<td>s</td>
</tr>
</tbody>
</table>

1. Maximum Ratings are those values beyond which damage to the device may occur. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended \(V_{IN}\) and \(V_{OUT}\) be constrained to the range \(V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}\).
### Table 2. Recommended Operating Conditions
( Voltages Referenced to VSS )

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>VDD</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>Timing Capacitor</td>
<td>—</td>
<td>0.1</td>
<td>µF</td>
</tr>
<tr>
<td>Timing Resistor</td>
<td>—</td>
<td>8.2</td>
<td>MΩ</td>
</tr>
<tr>
<td>Battery Load (Resistor or LED)</td>
<td>—</td>
<td>10</td>
<td>mA</td>
</tr>
</tbody>
</table>

### Table 3. Electrical Characteristics
(T_A = 25°C)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>VDD</th>
<th>VDC</th>
<th>Min</th>
<th>Type(1)</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>VDD</td>
<td>—</td>
<td>—</td>
<td>6.0</td>
<td>—</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>VOH</td>
<td>7.2</td>
<td>6.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Piezoelectric Horn Drivers</td>
<td>VDL</td>
<td>9.0</td>
<td>8.5</td>
<td>8.8</td>
<td>—</td>
<td>0.9</td>
<td>V</td>
</tr>
<tr>
<td>Comparators (I_OH = –30 µA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoelectric Horn Drivers</td>
<td></td>
<td>7.2</td>
<td>—</td>
<td>—</td>
<td>0.9</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Comparators (I_OL = +30 µA)</td>
<td></td>
<td>9.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage — LED Driver, I_OL = 10 mA</td>
<td>VDL</td>
<td>7.2</td>
<td>—</td>
<td>—</td>
<td>3.0</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Output Impedance, Active Guard</td>
<td>LO-Z</td>
<td>9.0</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>1000</td>
<td>kΩ</td>
</tr>
<tr>
<td>Pin 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin 16</td>
<td>HI-Z</td>
<td>9.0</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>9.0</td>
<td>µA</td>
</tr>
<tr>
<td>Operating Current (R_BIAS = 8.2 MΩ)</td>
<td>I_DD</td>
<td>9.0</td>
<td>—</td>
<td>—</td>
<td>12.0</td>
<td>12.0</td>
<td>µA</td>
</tr>
<tr>
<td>Input Current — Detect (40% R.H.)</td>
<td>I_IN</td>
<td>9.0</td>
<td>—</td>
<td>—</td>
<td>±1.0</td>
<td>±0.1</td>
<td>pA</td>
</tr>
<tr>
<td>Input Current, Pin 8</td>
<td>I_IN</td>
<td>9.0</td>
<td>—</td>
<td>—</td>
<td>±0.1</td>
<td>±6.0</td>
<td>pA</td>
</tr>
<tr>
<td>Input Current @ 50°C, Pin 15</td>
<td>I_IN</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±6.0</td>
<td>—</td>
<td>pA</td>
</tr>
<tr>
<td>Internal Set Voltage</td>
<td>VLOW</td>
<td>9.0</td>
<td>7.2</td>
<td>—</td>
<td>7.8</td>
<td>53</td>
<td>% VDD</td>
</tr>
<tr>
<td>Low Battery Sensitivity</td>
<td>VSET</td>
<td>9.0</td>
<td>—</td>
<td>47</td>
<td>50</td>
<td>53</td>
<td>% VDD</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>V_HYS</td>
<td>9.0</td>
<td>75</td>
<td>100</td>
<td>150</td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td>Offset Voltage (Measured at V_IN = V_DD/2)</td>
<td>V_OS</td>
<td>9.0</td>
<td>—</td>
<td>—</td>
<td>±100</td>
<td>±50</td>
<td>mV</td>
</tr>
<tr>
<td>Active Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect Comparator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range, Pin 8</td>
<td>V_IN</td>
<td>—</td>
<td>V_SS – 10</td>
<td>—</td>
<td>V_DD + 10</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_IN</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>Common Mode Voltage Range, Pin 15</td>
<td>V_CM</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>V_DD – 2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I/O Current, Pin 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input, V_H = V_DD – 2</td>
<td>I_IN</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>100</td>
<td>±16</td>
<td>µA</td>
</tr>
<tr>
<td>Output, V_OH = V_DD – 2</td>
<td>I_OH</td>
<td>—</td>
<td>–4.0</td>
<td>—</td>
<td>100</td>
<td>–16</td>
<td>mA</td>
</tr>
</tbody>
</table>

1. Data labelled “Typ” is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
Table 4. Timing Parameters
(C = 0.1 µF, Rbias = 8.2 MΩ, VDD = 9.0 V, TA = 25°C, See Figure 7)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ(1)</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator Period</td>
<td>No Smoke</td>
<td>tCI</td>
<td>1.34</td>
<td>1.67</td>
<td>20</td>
</tr>
<tr>
<td>Smoke</td>
<td></td>
<td></td>
<td>32</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>Oscillator Rise Time</td>
<td></td>
<td>tR</td>
<td>8.0</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Horn Output (During Smoke)</td>
<td>On Time</td>
<td>PWON</td>
<td>120</td>
<td>160</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Off Time</td>
<td>PWOFF</td>
<td>60</td>
<td>80</td>
<td>104</td>
</tr>
<tr>
<td>LED Output</td>
<td>Between Pulses</td>
<td>tLED</td>
<td>32</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>On time</td>
<td>tON</td>
<td>8.0</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Horn Output (During Low Battery)</td>
<td>Between Pulses</td>
<td>tOFF</td>
<td>32</td>
<td>40</td>
<td>48</td>
</tr>
</tbody>
</table>

1. Data labelled “Typ” is not to be used for design purposes, but is intended as an indication of the IC’s potential performance.

Figure 3. Typical LED Output
I-V Characteristic

Figure 4. Typical Comparator Output
I-V Characteristic

Figure 5. Typical P Horn Driver Output
I-V Characteristic
DEVICE OPERATION

Timing
The internal oscillator of the MC14468 operates with a period of 1.67 seconds during no-smoke conditions. Each 1.67 seconds, internal power is applied to the entire IC and a check is made for smoke, except during LED pulse, Low Battery Alarm Chirp, or Horn Modulation (in smoke). Every 24 clock cycles a check is made for low battery by comparing VDD to an internal zener voltage. Since very small currents are used in the oscillator, the oscillator capacitor should be of a low leakage type.

Detect Circuitry
If smoke is detected, the oscillator period becomes 40 ms and the piezoelectric horn oscillator circuit is enabled. The horn output is modulated 160 ms on, 80 ms off. During the off time, smoke is again checked and will inhibit further horn output if no smoke is sensed. During local smoke conditions the low battery alarm is inhibited, but the LED pulses at a 1.0 Hz rate. In remote smoke, the LED is inhibited as well.

An active guard is provided on both pins adjacent to the detect input. The voltage at these pins will be within 100 mV of the input signal. This will keep surface leakage currents to a minimum and provide a method of measuring the input voltage without loading the ionization chamber. The active guard op amp is not power strobed and thus gives constant protection from surface leakage currents. Pin 15 (the Detect input) has internal diode protection against static damage.

Interconnect
The I/O (Pin 2), in combination with VSS, is used to interconnect up to 40 remote units for common signaling. A Local Smoke condition activates a current limited output driver, thereby signaling Remote Smoke to interconnected units. A small current sink improves noise immunity during non-smoke conditions. Remote units at lower voltages do not draw excessive current from a sending unit at a higher voltage. The I/O is disabled for three oscillator cycles after power up, to eliminate false alarming of remote units when the battery is changed.

Sensitivity/Low Battery Thresholds
Both the sensitivity threshold and the low battery voltage levels are set internally by a common voltage divider (please see Figure 2) connected between VDD and VSS. These voltages can be altered by external resistors connected from pins 3 or 13 to either VDD or VSS. There will be a slight interaction here due to the common voltage divider network. The sensitivity threshold can also be set by adjusting the smoke chamber ionization source.

Test Mode
Since the internal op amps and comparators are power strobed, adjustments for sensitivity or low battery level could be difficult and/or time-consuming. By forcing Pin 12 to VSS, the power strobing is bypassed and the output, Pin 1, constantly shows smoke/no smoke. Pin 1 = VDD for smoke. In this mode and during the 10 ms power strobe, chip current rises to approximately 50 µA.

LED Pulse
The 9-volt battery level is checked every 40 seconds during the LED pulse. The battery is loaded via a 10 mA pulse for 10 ms. If the LED is not used, it should be replaced with an equivalent resistor such that the battery loading remains at 10 mA.

Hysteresis
When smoke is detected, the resistor/divider network that sets sensitivity is altered to increase sensitivity. This yields approximately 100 mV of hysteresis and reduces false triggering.

Figure 6. Typical Application as Ionization Smoke Detector
Notes:
1. Horn modulation is self-completing. When going from smoke to no smoke, the alarm condition will terminate only when horn is off.
2. Comparators are strobed on once per clock cycle (1.67 s for no smoke, 40 ms for smoke).
3. Low battery comparator information is latched only during LED pulse.
4. ~100 mV p-p swing.

Figure 7. Timing Diagram
## REVISION HISTORY

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION OF CHANGES</th>
</tr>
</thead>
</table>
| 5.0      | 11/2006 | • Implemented Revision History page  
|          |       | • Converted to Freescale format  
|          |       | • Added part number MC14468ED to Ordering Information. |