

. reescale Semiconductor Technical Data

Document Number: MHW1346N

Rev. 3, 5/2006

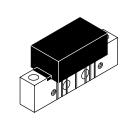
RoHS

CATV Amplifier Module

Features

- Specified for 22- and 26-Channel Loading
- Excellent Distortion Performance
- Superior Gain, Return Loss and DC Current Stability over Temperature
- Capable of Handling Multiple Channels in the Return Path with Good Distortion Performance
- Silicon Bipolar Transistor Technology
- Unconditionally Stable Under All Load Conditions

Applications


- CATV Systems Operating in the 5 to 200 MHz Frequency Range
- Designed for Broadband Applications Requiring Low Distortion Characteristics
- Specified for Use as a Return Path Amplifier for Low-, Mid- and High-Split 2-Way Cable TV Systems

Description

- 24 Vdc Supply, 5 to 200 MHz, CATV Reverse Amplifier Module
- Replaced MHW1346. There are no form, fit or function changes with this
 part replacement.
- RoHS Compliant

MHW1346N

5-200 MHz, 35 dB GAIN 26-CHANNEL CATV HIGH-SPLIT REVERSE AMPLIFIER MODULE

CASE 1302-01, STYLE 1

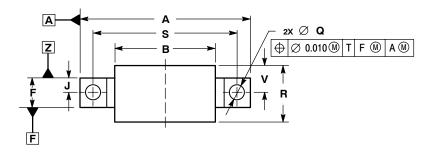
Table 1. Maximum Ratings

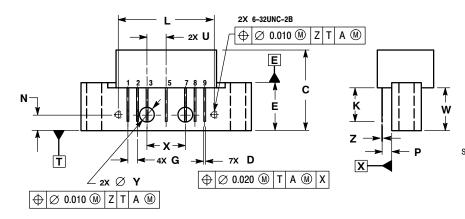
Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	V _{in}	+65	dBmV
DC Supply Voltage	V _{CC}	+28	Vdc
Operating Case Temperature Range	T _C	- 20 to +100	°C
Storage Temperature Range	T _{stg}	- 40 to +100	°C

Table 2. Electrical Characteristics (V_{CC} = 24 Vdc, T_{C} = +30°C, 75 Ω system, unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Bandwidth	All	BW	5	=	200	MHz
Power Gain	(f = 5 MHz)	G _p	34.5	35	35.8	dB
Slope	(5-200 MHz)	S	0	_	1.0	dB
Gain Flatness (Peak To Valley)	(5-200 MHz)	G _F	_	0.6	1	dB
Return Loss — Input/Output		IRL/ORL				dB
, , ,	(@ f = 5-65 MHz)	·	20	24	_	
	(@ f = 65-200 MHz)		16	20	_	
Composite Second Order						dBc
(V _{out} = +50 dBmV per Ch., Worst Case)						
5-175 MHz 22-Channel FLAT		CSO ₂₂	_	-76	-72	
5-200 MHz 26-Channel FLAT		CSO ₂₆	_	-75	_	

Table 2. Electrical Characteristics (V_{CC} = 24 Vdc, T_{C} = 30°C, 75 Ω system, unless otherwise noted) (continued)


Cha	Symbol	Min	Тур	Max	Unit	
Cross Modulation Distortion					dBc	
(V _{out} = +50 dBmV per Ch., Worst Case)						
	22-Channel FLAT	XMD_{22}	_	- 64	- 60	
	26-Channel FLAT	XMD ₂₆	_	- 63	_	
Composite Triple Beat						dBc
$(V_{out} = +50 \text{ dBmV per Ch.},$						
5-175 MHz	22-Channel FLAT	CTB ₂₂		- 72	- 68	
5-200 MHz	26-Channel FLAT	CTB ₂₆	_	- 70	_	
Noise Figure		NF				dB
_	(f = 200 MHz)		_	3.5	5	
DC Current		I _{DC}	310	325	350	mA


ARCHIVE INFORMATION

ARCHIVE INFORMATION

PACKAGE DIMENSIONS

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α		1.775		45.085	
В		1.085		27.559	
С		0.840		21.336	
D	0.015	0.021	0.381	0.533	
Е	0.465	0.510	11.811	12.954	
F	0.300	0.325	7.62	8.255	
G	0.100	BSC	2.540 BSC		
J	0.150	BSC	3.962	BSC	
K	0.315	0.355	8.001	9.017	
L	1.000	BSC	25.400 BSC		
N	0.165 BSC		4.191 BSC		
P	0.100 BSC		2.540 BSC		
Q	0.148	0.168	3.759	4.267	
R		0.600		15.24	
S	1.500	BSC	38.100 BSC		
U	0.200	BSC	5.080 BSC		
V		0.250		6.350	
W	0.435		11.049		
Х	0.400	BSC	10.16	D BSC	
Υ	0.152	0.163	3.861	4.140	
Z	0.009	0.011	0.229	0.279	

STYLE 1:
PIN 1. RF INPUT
2. GROUND
3. GROUND
4. DELETED
5. VDC
6. DELETED
7. GROUND
8. GROUND
9. RF OUTPUT

CASE 1302-01 ISSUE E

ARCHIVE INFORMATION

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006, 2008. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Document Number: MHW1346N

Rev. 3, 5/2006