Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM
72 MHz Cortex-M0+ based Microcontroller

Supports ultra low power ARM based microcontroller with crystal-less USB feature, large flash and RAM, evolutionary low-power peripherals and security features. This is an ideal solution for Sensor Hub applications, Bluetooth, Wi-Fi connectivity, Smart Energy, Internet of Things, and Edge and Concentrator. This device offers:

- 128KB SRAM for data processing and connectivity stack
- Ultra low dynamic and static power consumption with smart peripherals for low power applications
- Advanced LPI2C and LPSPI supporting asynchronous DMA master data transition
- FlexIO for flexible and high performance interfaces
- Crypto acceleration with AES/DES/3DES/MD5/SHA and TRNG
- USB FS 2.0 device operation without need of external crystal

Core
- ARM® Cortex®-M0+ cores up to 72 MHz in Normal mode and 96 MHz in High Speed mode

Memories
- Up to 512 KB program flash memory
- 128 KB SRAM
- 32 KB ROM with built-in bootloader

System peripherals
- 8-channel DMA controller
- Independent clocked Watchdog
- Low-leakage wakeup unit
- SWD debug interface and Micro Trace Buffer
- Bit Manipulation Engine
- Memory Mapped Divide and Square Root module (MMDDVSQ)
- Cyclic Redundancy Check (CRC) module
- Nested Vector Interrupt Controller (NVIC) supports 32 interrupt vectors
- Additional peripheral interrupt support via Interrupt Multiplexer (INTMUX)

Clocks
- System Clock Generator module that includes the following clock sources:
 - 48 to 60 MHz high accuracy fast internal reference clock (FIRC)

Communication interfaces
- Three 16-bit Low Power Serial Peripheral Interface (LPSPI) modules
- One EMVSIM module supporting EMV version 4.3, ISO7816
- Three LPUART modules
- Three LPI2C modules supporting up to 5 Mbit/s
- One SAI module supporting I2S
- One FlexIO module emulating UART, SPI, I2S, camera interface, and Motorola 68K/Intel 8080 bus
- USB FS 2.0 device operation without need of external crystal

Analog Modules
- 16-bit, 24-channel SAR ADC with internal voltage reference
- Two High-speed analog comparators each containing a 6-bit DAC and programmable reference input
- One 12-bit DAC
- 1.2 V and 2.1 V voltage references (Vref)

Timers
- One 6-channel Timer/PWM module
- Two 2-channel Timer/PWM modules
- Two low-power timers
- Two periodic interrupt timers

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.
• 32–40 kHz, or 3–32 MHz crystal oscillator
• 1 kHz LPO clock
• 8/2 MHz slow internal reference clock (SIRC)
• Peripheral Clock Control (PCC) module that supports asynchronous clocking and clock divide options for peripherals.

Human-machine interface

• General-purpose input/output up to 97
• Low-power hardware touch sensor interface (TSI)

Security and integrity modules

• Secure Real time clock
• 56-bit software time stamp timer at 1 MHz

• 80-bit unique identification number per chip
• MMCAU supports acceleration of the DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms
• True Random Number Generator (TRNG)

Operating Characteristics

• Voltage range: 1.71 to 3.6 V
• Temperature range: –40 to 105 °C

NOTE

The 121-pin packages for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details.

Ordering Information 1

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Memory</th>
<th>Package</th>
<th>IO and ADC channels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flash (KB)</td>
<td>SRAM (KB)</td>
<td>Pin count</td>
</tr>
<tr>
<td>MKL28Z512V LL7</td>
<td>512</td>
<td>128</td>
<td>100</td>
</tr>
<tr>
<td>MKL28Z512V DC7</td>
<td>512</td>
<td>128</td>
<td>121</td>
</tr>
</tbody>
</table>

1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.
2. Package Your Way.

Related Resources

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selector Guide</td>
<td>The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.</td>
<td>Solution Advisor</td>
</tr>
<tr>
<td>Product Brief</td>
<td>The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.</td>
<td>KL2XPB¹</td>
</tr>
<tr>
<td>Reference Manual</td>
<td>The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.</td>
<td>MKL28ZRM¹</td>
</tr>
<tr>
<td>Data Sheet</td>
<td>The Data Sheet includes electrical characteristics and signal connections.</td>
<td>MKL28Z512Vxx7¹</td>
</tr>
<tr>
<td>Chip Errata</td>
<td>The chip mask set Errata provides additional or corrective information for a particular device mask set.</td>
<td>KINETIS_L_1N52N¹</td>
</tr>
<tr>
<td>Package drawing</td>
<td>Package dimensions are provided in package drawings.</td>
<td></td>
</tr>
</tbody>
</table>

1. To find the associated resource, go to http://www.nxp.com and perform a searching using this term.
Figure 1. KL28Z block diagram
Table of Contents

1 Ratings...5
 1.1 Thermal handling ratings...5
 1.2 Moisture handling ratings..5
 1.3 ESD handling ratings..5
 1.4 Voltage and current operating ratings.........................5
2 General...6
 2.1 AC electrical characteristics...6
 2.2 Nonswitching electrical specifications.........................7
 2.2.1 Voltage and current operating requirements....7
 2.2.2 LVD, HVD, and POR operating requirements...7
 2.2.3 Voltage and current operating behaviors.........8
 2.2.4 Power mode transition operating behaviors.....9
 2.2.5 Power consumption operating behaviors......10
 2.2.6 EMC radiated emissions operating behaviors 19
 2.2.7 Designing with radiated emissions in mind.....20
 2.2.8 Capacitance attributes.....................................20
 2.3 Switching specifications...20
 2.3.1 Device clock specifications..............................20
 2.3.2 General switching specifications......................21
 2.4 Thermal specifications...23
 2.4.1 Thermal operating requirements......................23
 2.4.2 Thermal attributes..23
3 Peripheral operating requirements and behaviors.............24
 3.1 Core modules..24
 3.1.1 SWD electricals ...24
 3.2 System modules...26
 3.3 Clock modules..26
 3.3.1 System Clock Generation (SCG) specifications 26
 3.3.2 Oscillator electrical specifications...................28
 3.4 Memories and memory interfaces.............................30
 3.4.1 Flash electrical specifications........................30
 3.5 Security and integrity modules.................................32
 3.6 Analog...32
 3.6.1 ADC electrical specifications...........................32
 3.6.2 Voltage reference electrical specifications.......36
 3.6.3 CMP and 6-bit DAC electrical specifications.....38
 3.6.4 12-bit DAC electrical characteristics...............40
 3.7 Timers...43
3.8 Communication interfaces..43
 3.8.1 EMV SIM specifications.......................................43
 3.8.2 USB electrical specifications..............................48
 3.8.3 USB VREG electrical specifications.....................49
 3.8.4 LPSPI switching specifications..........................49
 3.8.5 LPI2C...54
 3.8.6 LPUART..54
 3.8.7 I2S/SAI switching specifications.........................55
 3.9 Human-machine interfaces (HMI).............................59
 3.9.1 TSI electrical specifications...............................59
4 Dimensions...59
 4.1 Obtaining package dimensions................................59
5 Pinouts and Packaging..60
 5.1 KL28Z Signal Multiplexing and Pin Assignments.........60
 5.2 KL28Z Pinouts..65
6 Ordering parts..67
 6.1 Determining valid orderable parts............................67
7 Design considerations...68
 7.1 Hardware design considerations............................68
 7.1.1 Printed circuit board recommendations.............68
 7.1.2 Power delivery system....................................68
 7.1.3 Analog design...69
 7.1.4 Digital design...70
 7.1.5 Crystal oscillator..74
 7.2 Software considerations...75
8 Part identification..76
 8.1 Description..76
 8.2 Format..76
 8.3 Fields...76
 8.4 Example..77
9 Terminology and guidelines..77
 9.1 Definitions...77
 9.2 Examples..78
 9.3 Typical-value conditions..78
 9.4 Relationship between ratings and operating
 requirements..79
 9.5 Guidelines for ratings and operating requirements.....79
10 Revision History..80
1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{STG}</td>
<td>Storage temperature</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>T_{SDR}</td>
<td>Solder temperature, lead-free</td>
<td>—</td>
<td>260</td>
<td>°C</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Determined according to JEDEC Standard JESD22-A103, *High Temperature Storage Life*.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL</td>
<td>Moisture sensitivity level</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>1</td>
</tr>
</tbody>
</table>

1.3 ESD handling ratings

Table 3. ESD handling ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{HBM}</td>
<td>Electrostatic discharge voltage, human body model</td>
<td>–2000</td>
<td>+2000</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V_{CDM}</td>
<td>Electrostatic discharge voltage, charged-device model</td>
<td>–500</td>
<td>+500</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>I_{LAT}</td>
<td>Latch-up current at ambient temperature of 105 °C</td>
<td>–100</td>
<td>+100</td>
<td>mA</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Determined according to JEDEC Standard JESD22-C101, *Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components*.
3. Determined according to JEDEC Standard JESD78, *IC Latch-Up Test*.
1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Digital supply voltage</td>
<td>-0.3</td>
<td>3.8</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Digital supply current</td>
<td>—</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td>V_{IO}</td>
<td>IO pin input voltage</td>
<td>-0.3</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>I_{D}</td>
<td>Instantaneous maximum current single pin limit (applies to all port pins)</td>
<td>-25</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog supply voltage</td>
<td>$V_{DD} - 0.3$</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{USB_DP}</td>
<td>USB_DP input voltage</td>
<td>-0.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>V_{USB_DM}</td>
<td>USB_DM input voltage</td>
<td>-0.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>V_{REGIN}</td>
<td>USB regulator input</td>
<td>-0.3</td>
<td>6.0</td>
<td>V</td>
</tr>
</tbody>
</table>

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

![Input signal measurement reference](image)

The midpoint is $V_{IL} + (V_{IH} - V_{IL}) / 2$

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30$ pF loads
- Slew rate disabled
- Normal drive strength
2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{DDA})</td>
<td>Analog supply voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{DD} - V_{DDA})</td>
<td>(V_{DD})-to-(V_{DDA}) differential voltage</td>
<td>–0.1</td>
<td>0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{SS} - V_{SSA})</td>
<td>(V_{SS})-to-(V_{SSA}) differential voltage</td>
<td>–0.1</td>
<td>0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input high voltage</td>
<td>0.7 (V_{DD})</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.7 (V \leq V_{DD} \leq 3.6) V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 (V \leq V_{DD} \leq 2.7) V</td>
<td>0.75 (V_{DD})</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input low voltage</td>
<td>—</td>
<td>0.35 (V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.7 (V \leq V_{DD} \leq 3.6) V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 (V \leq V_{DD} \leq 2.7) V</td>
<td></td>
<td>0.3 (V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{HYS})</td>
<td>Input hysteresis</td>
<td>0.06 (V_{DD})</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{ICIO})</td>
<td>IO pin negative DC injection current — single pin</td>
<td>-5</td>
<td>—</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• (V_{IN} < V_{SS} - 0.3) V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{ICont})</td>
<td>Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins</td>
<td>-25</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Negative current injection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{ODPU})</td>
<td>Open drain pullup voltage level</td>
<td>(V_{DD})</td>
<td>(V_{DD})</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>(V_{RAM})</td>
<td>(V_{DD}) voltage required to retain RAM</td>
<td>1.2</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

1. All I/O pins are internally clamped to \(V_{SS}\) through a ESD protection diode. There is no diode connection to \(V_{DD}\). If \(V_{IN}\) greater than \(V_{IO,\text{MIN}} (= V_{SS} - 0.3 \) V\) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as \(R = (V_{IO,\text{MIN}} - V_{IN})/|I_{ICIO}|\).
2. Open drain outputs must be pulled to \(V_{DD}\).

2.2.2 LVD, HVD, and POR operating requirements

Table 6. \(V_{DD}\) supply LVD, HVD, and POR operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{POR})</td>
<td>Falling (V_{DD}) POR detect voltage</td>
<td>0.8</td>
<td>1.1</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{LVDH})</td>
<td>Falling low-voltage detect threshold — high range ((LVDV = 01))</td>
<td>2.48</td>
<td>2.56</td>
<td>2.64</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>(V_{LVW1H})</td>
<td>Low-voltage warning thresholds — high range</td>
<td>2.62</td>
<td>2.70</td>
<td>2.78</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>(V_{LVW2H})</td>
<td>Level 1 falling ((LVWV = 00))</td>
<td>2.72</td>
<td>2.80</td>
<td>2.88</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{LVW3H})</td>
<td>Level 2 falling ((LVWV = 01))</td>
<td>2.82</td>
<td>2.90</td>
<td>2.98</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{LVW4H})</td>
<td>Level 3 falling ((LVWV = 10))</td>
<td>2.92</td>
<td>3.00</td>
<td>3.08</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{HYSH})</td>
<td>Low-voltage inhibit reset/recover hysteresis — high range</td>
<td>—</td>
<td>±60</td>
<td>—</td>
<td>mV</td>
<td>—</td>
</tr>
<tr>
<td>(V_{LVDL})</td>
<td>Falling low-voltage detect threshold — low range ((LVDV=00))</td>
<td>1.54</td>
<td>1.60</td>
<td>1.66</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>(V_{LVW1L})</td>
<td>Low-voltage warning thresholds — low range</td>
<td>1.74</td>
<td>1.80</td>
<td>1.86</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>(V_{LVW2L})</td>
<td>Level 1 falling ((LVWV = 00))</td>
<td>1.84</td>
<td>1.90</td>
<td>1.96</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{LVW3L})</td>
<td>Level 2 falling ((LVWV = 01))</td>
<td>1.94</td>
<td>2.00</td>
<td>2.06</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{LVW4L})</td>
<td>Level 3 falling ((LVWV = 10))</td>
<td>2.04</td>
<td>2.10</td>
<td>2.16</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{HYSL})</td>
<td>Low-voltage inhibit reset/recover hysteresis — low range</td>
<td>—</td>
<td>±40</td>
<td>—</td>
<td>mV</td>
<td>—</td>
</tr>
<tr>
<td>(V_{BG})</td>
<td>Bandgap voltage reference</td>
<td>0.97</td>
<td>1.00</td>
<td>1.03</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>(t_{LPO})</td>
<td>Internal low power oscillator period — factory trimmed</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>μs</td>
<td>—</td>
</tr>
<tr>
<td>(V_{HVDL})</td>
<td>High voltage detect threshold — low range ((HVDV=0)) — Rising</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>(V_{HVDL})</td>
<td>High voltage detect threshold — low range ((HVDV=0)) — Falling</td>
<td>3.35</td>
<td>3.45</td>
<td>3.55</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(V_{HVDH})</td>
<td>High voltage detect threshold — high range ((HVDV=1)) — Rising</td>
<td>3.65</td>
<td>3.75</td>
<td>3.85</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>(V_{HVDH})</td>
<td>High voltage detect threshold — high range ((HVDV=1)) — Falling</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(V_{HYSH})</td>
<td>High voltage detect hysteresis — low range ((HVDV=0))</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>mV</td>
<td>—</td>
</tr>
<tr>
<td>(V_{HYSH})</td>
<td>High voltage detect hysteresis — high range ((HVDV=1))</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. Rising thresholds are falling threshold + hysteresis voltage.
2. The selection of high voltage detect trip voltage is controlled by PMC_HVDSC1[HVDV].
2.2.3 Voltage and current operating behaviors

Table 7. Voltage and current operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>OH</sub></td>
<td>Output high voltage — Normal drive pad</td>
<td>V<sub>DD</sub> – 0.5</td>
<td>—</td>
<td>V<sub>DD</sub> – 0.5</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>• 2.7 V ≤ V<sub>DD</sub> ≤ 3.6 V, I<sub>OH</sub> = –5 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 V ≤ V<sub>DD</sub> ≤ 2.7 V, I<sub>OH</sub> = –2.5 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>OH</sub></td>
<td>Output high voltage — High drive pad</td>
<td>V<sub>DD</sub> – 0.5</td>
<td>—</td>
<td>V<sub>DD</sub> – 0.5</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>• 2.7 V ≤ V<sub>DD</sub> ≤ 3.6 V, I<sub>OH</sub> = –20 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 V ≤ V<sub>DD</sub> ≤ 2.7 V, I<sub>OH</sub> = –10 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>OHT</sub></td>
<td>Output high current total for all ports</td>
<td>—</td>
<td>100</td>
<td>mA</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Output low voltage — Normal drive pad</td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>• 2.7 V ≤ V<sub>DD</sub> ≤ 3.6 V, I<sub>OL</sub> = 5 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 V ≤ V<sub>DD</sub> ≤ 2.7 V, I<sub>OL</sub> = 2.5 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Output low voltage — High drive pad</td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>• 2.7 V ≤ V<sub>DD</sub> ≤ 3.6 V, I<sub>OL</sub> = 20 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.71 V ≤ V<sub>DD</sub> ≤ 2.7 V, I<sub>OL</sub> = 10 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>OLT</sub></td>
<td>Output low current total for all ports</td>
<td>—</td>
<td>100</td>
<td>mA</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>I<sub>IN</sub></td>
<td>Input leakage current (per pin) for full temperature range</td>
<td>—</td>
<td>1</td>
<td>μA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I<sub>IN</sub></td>
<td>Input leakage current (per pin) at 25 °C</td>
<td>—</td>
<td>0.025</td>
<td>μA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I<sub>IN</sub></td>
<td>Input leakage current (total all pins) for full temperature range</td>
<td>—</td>
<td>41</td>
<td>μA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I<sub>OZ</sub></td>
<td>Hi-Z (off-state) leakage current (per pin)</td>
<td>—</td>
<td>1</td>
<td>μA</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>R<sub>PU</sub></td>
<td>Internal pullup resistors</td>
<td>20</td>
<td>50</td>
<td>kΩ</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability selected by the associated PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. PTD4, PTD5, PTD6, PTD7, PTE20, PTE21, PTE22, and PTE23 are also fast pins.
2. Measured at V_{DD} = 3.6 V
3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration in Run mode:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- SCG configured in FIRC mode; peripheral functional clocks from FIRCDIV3_CLK and USB clock from FIRCDIV1_CLK
Table 8. Power mode transition operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{POR}</td>
<td>After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>• VLLS0 → RUN</td>
<td></td>
<td>—</td>
<td>188</td>
<td>193</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>• VLLS1 → RUN</td>
<td></td>
<td>—</td>
<td>188</td>
<td>193</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>• VLLS2 → RUN</td>
<td></td>
<td>—</td>
<td>125</td>
<td>130</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>• VLLS3 → RUN</td>
<td></td>
<td>—</td>
<td>125</td>
<td>130</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>• LLS3 → RUN</td>
<td></td>
<td>—</td>
<td>5.5</td>
<td>6.1</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>• LLS2 → RUN</td>
<td></td>
<td>—</td>
<td>5.5</td>
<td>6.1</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>• VLPS → RUN</td>
<td></td>
<td>—</td>
<td>5.5</td>
<td>6.1</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>• STOP → RUN</td>
<td></td>
<td>—</td>
<td>5.5</td>
<td>6.1</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

2.2.5 Power consumption operating behaviors

NOTE
The values in the following table are based on characterization data with a few samples.

NOTE
The actual power consumption measured in the related condition, with certain peripherals running, is the sum of related low power current consumption of the device listed in Table 9 and the related low power mode peripheral adders in Table 10.
NOTE
The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3σ).

Table 9. Power consumption operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DDA}</td>
<td>Analog supply current</td>
<td>—</td>
<td>—</td>
<td>See note</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td>I_{DD_HSRUN}</td>
<td>High speed run mode current at 96 MHz - all peripheral clocks disabled, code executing from flash, while(1) loop</td>
<td>—</td>
<td>12.6</td>
<td>17.4</td>
<td>mA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>12.8</td>
<td>17.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_HSRUN}</td>
<td>High speed run mode current at 96 MHz - all peripheral clocks enabled, code executing from flash, while(1) loop</td>
<td>—</td>
<td>15.5</td>
<td>20.4</td>
<td>mA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>15.7</td>
<td>20.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_RUN}</td>
<td>Run mode current at 72 MHz - all peripheral clocks disabled, code executing from flash, while(1) loop</td>
<td>—</td>
<td>9.4</td>
<td>13.6</td>
<td>mA</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>9.6</td>
<td>13.8</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_RUN}</td>
<td>Run mode current at 48 Mhz - all peripheral clocks disabled, code executing from flash, while(1) loop</td>
<td>—</td>
<td>7.3</td>
<td>11.4</td>
<td>mA</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>7.4</td>
<td>11.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_RUN}</td>
<td>Run mode current at 72 MHz - all peripheral clocks enabled, code executing from flash, while(1) loop</td>
<td>—</td>
<td>11.6</td>
<td>15.9</td>
<td>mA</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>11.7</td>
<td>16.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_RUN}</td>
<td>Run mode current at 48 Mhz - all peripheral clocks enabled, code executing from flash, while(1) loop</td>
<td>—</td>
<td>8.9</td>
<td>13.1</td>
<td>mA</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>9.1</td>
<td>13.3</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD_WAIT}</td>
<td>Wait mode high frequency current at 72 MHz, at 3.0 V - all peripheral clocks disabled, while(1) loop</td>
<td>—</td>
<td>7.0</td>
<td>9.0</td>
<td>mA</td>
<td>4</td>
</tr>
<tr>
<td>I_{DD_WAIT}</td>
<td>Wait mode current at 3.0 V at 48 Mhz — all peripheral clocks disabled, while(1) loop</td>
<td>—</td>
<td>5.7</td>
<td>10.4</td>
<td>mA</td>
<td>5</td>
</tr>
<tr>
<td>I_{DD_VLPR}</td>
<td>Very-low-power run mode current at 3.0 V — all peripheral clocks enabled at 4 MHz, while(1) loop</td>
<td>—</td>
<td>483.7</td>
<td>1011.7</td>
<td>μA</td>
<td>8</td>
</tr>
<tr>
<td>I_{DD_VLPR}</td>
<td>Very-low-power run mode current at 3.0 V — all peripheral clocks enabled at 8 MHz, while(1) loop</td>
<td>—</td>
<td>557.6</td>
<td>1720.2</td>
<td>μA</td>
<td>9</td>
</tr>
<tr>
<td>I_{DD_VLPR}</td>
<td>Very-low-power run mode current at 3.0 V — all peripheral clocks disabled at 4 MHz, while(1) loop</td>
<td>—</td>
<td>400.3</td>
<td>926.5</td>
<td>μA</td>
<td>10</td>
</tr>
<tr>
<td>I_{DD_VLPR}</td>
<td>Very-low-power run mode current at 3.0 V — all peripheral clocks disabled at 8 MHz, while(1) loop</td>
<td>—</td>
<td>415.2</td>
<td>941.1</td>
<td>μA</td>
<td>11</td>
</tr>
<tr>
<td>I_{DD_VLPW}</td>
<td>Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled at 4 MHz, while(1) loop</td>
<td>—</td>
<td>285.9</td>
<td>1145.6</td>
<td>μA</td>
<td>10</td>
</tr>
<tr>
<td>I_{DD_VLPW}</td>
<td>Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled at 8 MHz, while(1) loop</td>
<td>—</td>
<td>415.6</td>
<td>1498.7</td>
<td>μA</td>
<td>11</td>
</tr>
<tr>
<td>I_{DD_STOP}</td>
<td>Stop mode current at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C</td>
<td>—</td>
<td>264.5</td>
<td>320.5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLPS}</td>
<td>Very-low-power stop mode current at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C</td>
<td>—</td>
<td>4.2</td>
<td>16.4</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD_LLS2}</td>
<td>Low-leakage stop mode 2 current at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C</td>
<td>—</td>
<td>2.7</td>
<td>5.4</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 9. Power consumption operating behaviors (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• at 85 °C</td>
<td></td>
<td>30.4</td>
<td>88.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 105 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD_LLS3}</td>
<td>Low-leakage stop mode 3 current at 3.0 V</td>
<td>3.0</td>
<td>5.9</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -40 to 25 °C</td>
<td></td>
<td>5.9</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 50 °C</td>
<td></td>
<td>11.4</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 70 °C</td>
<td></td>
<td>19.7</td>
<td>65.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 85 °C</td>
<td></td>
<td>40.9</td>
<td>122.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLLS3}</td>
<td>Very-low-leakage stop mode 3 current at 3.0 V</td>
<td>2.2</td>
<td>5.1</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -40 to 25 °C</td>
<td></td>
<td>4.6</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 50 °C</td>
<td></td>
<td>9.0</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 70 °C</td>
<td></td>
<td>15.9</td>
<td>44.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 85 °C</td>
<td></td>
<td>33.1</td>
<td>91.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLLS2}</td>
<td>Very-low-leakage stop mode 2 current at 3.0 V</td>
<td>1.8</td>
<td>3.4</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -40 to 25 °C</td>
<td></td>
<td>3.3</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 50 °C</td>
<td></td>
<td>6.1</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 70 °C</td>
<td></td>
<td>10.4</td>
<td>26.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 85 °C</td>
<td></td>
<td>21.6</td>
<td>54.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLLS1}</td>
<td>Very-low-leakage stop mode 1 current at 3.0 V</td>
<td>0.65</td>
<td>1.1</td>
<td>1.6</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -40 to 25 °C</td>
<td></td>
<td>1.1</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 50 °C</td>
<td></td>
<td>2.1</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 70 °C</td>
<td></td>
<td>3.6</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 85 °C</td>
<td></td>
<td>8.5</td>
<td>32.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DD_VLLS0}</td>
<td>Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) at 3.0 V</td>
<td>372.0</td>
<td>598</td>
<td></td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -40 to 25 °C</td>
<td></td>
<td>768.6</td>
<td>1331</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 50 °C</td>
<td></td>
<td>1734</td>
<td>3038</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 70 °C</td>
<td></td>
<td>3291</td>
<td>20575</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 85 °C</td>
<td></td>
<td>8025</td>
<td>27560</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 9. Power consumption operating behaviors (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• at 85 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 105 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_DD_VLLS0</td>
<td>Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1) at 3.0 V</td>
<td>—</td>
<td>94.1</td>
<td>311</td>
<td>nA</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>• -40 to 25 °C</td>
<td>—</td>
<td>480.9</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 50 °C</td>
<td>—</td>
<td>1416</td>
<td>2760</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 70 °C</td>
<td>—</td>
<td>2970</td>
<td>19574</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 85 °C</td>
<td>—</td>
<td>7642</td>
<td>27325</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• at 105 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module’s specification for its supply current.
2. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock (DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_HCCR\[SCS\] = 0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCCN] and SCG_SIRCCSR[SIRCEN].
3. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock (DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_HCCR\[SCS\] = 0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz from SPLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCCN] and SCG_SIRCCSR[SIRCEN].
4. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock (DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_RCCR[SCS] = 0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCCN] and SCG_SIRCCSR[SIRCEN].
5. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock (DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS] = 0011). All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_FIRCCSR register. PLL, SOSC, and SIRC disabled by clearing SCG_SPLLLCSSR[SPLLEN], SCG_SOSCSSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].
6. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock (DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_RCCR[SCS] = 0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz from SPLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCCN] and SCG_SIRCCSR[SIRCEN].
7. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock (DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS] = 0011). All peripheral functional clocks except USB = 24 MHz from FIRCDIV3_CLK. USB functional clock = 48 MHz from FIRCDIV1_CLK. PLL, SOSC, and SIRC disabled by clearing SCG_SPLLLCSSR[SPLLEN], SCG_SOSCSSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].
8. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock (DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS] = 0010). All peripheral functional clocks except USB = 1 MHz from SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLLCSSR[SPLLEN], SCG_SOSCSSR[SOSCEN], and SCG_FIRCCSR[FIRCCN].
9. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock (DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS] = 0010). All peripheral functional clocks except USB = 1 MHz from SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLLCSSR[SPLLEN], SCG_SOSCSSR[SOSCEN], and SCG_FIRCCSR[FIRCCN].
10. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock (DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS] = 0010). All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLLCSSR[SPLLEN], SCG_SOSCSSR[SOSCEN], and SCG_FIRCCSR[FIRCCN].
11. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock (DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS] = 0010). All peripheral functional clocks disabled by clearing all
xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing SCG_PLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].

12. No brownout

Table 10. Low power mode peripheral adders — typical value

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Temperature (°C)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{\text{EREFSTEN8MHz}}$</td>
<td>External 8 MHz crystal clock adder with System OSC. Measured by entering VLPS mode with the crystal enabled (SCG_SOSCCFG[RANGE] = 10, SCG_SOSCCFG[HGO] = 0, SCG_SOSCCFG[EREFS] = 1, and SC2P/SC4P/SC8P = 0).</td>
<td>402.9, 462.1, 477.5, 492, 506.2, 530.4</td>
<td>uA</td>
</tr>
</tbody>
</table>
| $I_{\text{EREFSTEN32KHz}}$ | External 32 kHz crystal clock adder with System OSC by means of SCG_SOSCCFG[RANGE] = 01, SCG_SOSCCFG[HGO] = 0, SCG_SOSCCFG[EREFS] = 1, and SC2P/SC4P/SC8P = 0. Measured by entering all the following modes with the crystal enabled:
• VLLS1
• VLLS3
• LLS3
• VLPS
• STOP | 373.9, 539.2, 612.3, 644.9, 523.7, 1000 | nA |
| I_{LPTMR} | LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO clock. | 151.0, 7.7, 21.8, 7.6, 174.0, 31.0 | nA |
| I_{CMP} | CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. | 18.8, 19.6, 19.9, 20.0, 20.4, 20.5 | µA |
| I_{RTC} | RTC peripheral adder measured by placing the device in VLLS1 mode and the RTC ALARM set for 1 minute. Includes selected clock source power consumption.
• OSC32KCLK (32KHz external crystal)
• LPO (internal 1K Hz Low Power Oscillator) | 116.0, 1400, 1400, 1500, 1500, 120.0 | nA |
| I_{LPUART} | LPUART peripheral adder measured by placing the device in STOP mode with selected clock source waiting for RX data at 115200 baud rate. Includes | 35.0, 1400, 1400, 1600, 1400, 120.0 | nA |

Table continues on the next page...
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Temperature (°C)</th>
<th>Unit</th>
</tr>
</thead>
</table>
| | selected clock source power consumption.
• Slow IRC clock from SCG (8 MHz internal reference clock)
• OSCERCLK (8 MHz external crystal) | 85.7 89.4 87.3 88.4 85.3 86.6 | µA |
| | **I**_{LPSPI} | **I**_{LPSPI} peripheral adder measured by placing the device in VLPS mode with selected clock source, LPSPI is configured as master mode with bit rate of 4 Mbps. Includes selected clock source power consumption.
• Slow IRC clock from SCG (8 MHz internal reference clock)
• OSCERCLK (8 MHz external crystal) | 69.4 66.7 65.9 66.1 65.8 66.0 | µA |
| | **I**_{TPM} | **I**_{TPM} peripheral adder measured by placing the device in STOP mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.
• Slow IRC clock from SCG (8 MHz internal reference clock)
• OSCERCLK (8 MHz external crystal) | 80.7 84.2 84.2 84.4 84.8 86.3 | µA |
| | **I**_{LPI2C} | **I**_{LPI2C} peripheral adder measured by placing the device in VLPS mode with selected clock source, LPI2C is configured as master, and bit rate is 400 Kbps. Includes selected clock source power consumption.
• Slow IRC clock from SCG (8 MHz internal reference clock)
• OSCERCLK (8 MHz external crystal) | 69.7 66.7 66.9 67.6 68.2 68.2 | µA |
| | **I**_{BG} | Bandgap adder when BGEN bit is set and device is placed in VLPS mode.
• Bandgap buffer disabled
• Bandgap buffer enabled | 96.8 95.4 96.4 98.2 98.2 98.5 | µA |
| | **I**_{ADC} | ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP mode. ADC is configured for low power mode using the ADC asynchronous clock (ADACK) and continuous conversions. | 372.9 380.5 384.0 388.3 392.2 394.6 | µA |

Table continues on the next page...
Table 10. Low power mode peripheral adders — typical value (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Temperature (°C)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-40</td>
<td>25</td>
</tr>
</tbody>
</table>
| I_{WDOG}| WDOG peripheral adder measured by placing the device in STOP mode, WDOG is configured to time out at 1 second. Includes selected clock source power consumption.
- Slow IRC clock from SCG (8 MHz internal reference clock)
- OSCERCLK (8 MHz external crystal)
- LPO (internal 1 kHz Lower Power Oscillator) | 68.8 | 68.5 | 69.2 | 69.9 | 71.7 | 72.6 | µA |
| I_{SIRC_8MHz} | SIRC adder when SIRC is configured to 8 MHz. Measured by entering VLPS mode with 8 MHz IRC enabled, and SIRCDIV1, SIRCDIV2, SIRCDIV3 =000. | 67.2 | 63.0 | 63.3 | 63.2 | 63.3 | 63.6 | µA |
| I_{SIRC_2MHz} | SIRC adder when SIRC is configured to 2 MHz. Measured by entering STOP or VLPS mode with 2 MHz IRC enabled, and SIRCDIV1, SIRCDIV2, SIRCDIV3 =000. | 22.3 | 21.2 | 21.4 | 21.5 | 21.7 | 21.4 | µA |

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- SCG is configured as SPLL mode with SOSC as the clock source for RUN mode current measurement, and as SIRC mode for VLPR mode current measurement
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA
- For the ALLON curve, all peripheral clocks are enabled as specified in notes of Power consumption operating behaviors.
Figure 3. Run mode supply current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors

Table 11. EMC radiated emissions operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Frequency band (MHz)</th>
<th>Typ.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RE1}</td>
<td>Radiated emissions voltage, band 1</td>
<td>0.15–50</td>
<td>18</td>
<td>dBμV</td>
<td>1, 2</td>
</tr>
<tr>
<td>V_{RE2}</td>
<td>Radiated emissions voltage, band 2</td>
<td>50–150</td>
<td>21</td>
<td>dBμV</td>
<td></td>
</tr>
<tr>
<td>V_{RE3}</td>
<td>Radiated emissions voltage, band 3</td>
<td>150–500</td>
<td>21</td>
<td>dBμV</td>
<td></td>
</tr>
<tr>
<td>V_{RE4}</td>
<td>Radiated emissions voltage, band 4</td>
<td>500–1000</td>
<td>24</td>
<td>dBμV</td>
<td></td>
</tr>
<tr>
<td>V_{RE_IEC}</td>
<td>IEC level</td>
<td>0.15–1000</td>
<td>L</td>
<td>—</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

1. Determined according to IEC Standard 61967-2 (and SAE J1752/3), *Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions — TEM Cell and Wideband TEM Cell Method*. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
2. $V_{DD} = 3.3\ V$, $V_{REG} = 5\ V$, $T_A = 25\ ^\circ\ C$, $f_{OSC} = 8\ MHz$ (crystal), $f_{SYS_CORE} = 96\ MHz$, $f_{BUS} = 24\ MHz$
3. IEC/SAE level maximum: $L \leq 24\ dB\ mV$

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

1. Go to www.nxp.com.
2. Perform a keyword search for “EMC design.”

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Input capacitance</td>
<td>—</td>
<td>7</td>
<td>pF</td>
</tr>
</tbody>
</table>

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Run mode(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{SYS}</td>
<td>System and core clock (DIVCORE_CLK)</td>
<td>—</td>
<td>96</td>
<td>MHz</td>
<td>High speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>72</td>
<td>MHz</td>
<td>Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>8</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_{BUS}</td>
<td>Bus clock/Slow clock (DIVSLOW_CLK)</td>
<td>—</td>
<td>24</td>
<td>MHz</td>
<td>High speed run mode and Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_{FLASH}</td>
<td>Flash clock</td>
<td>—</td>
<td>24</td>
<td>MHz</td>
<td>High speed run mode and Normal speed run mode</td>
</tr>
<tr>
<td>f_{LLWU}</td>
<td>LLWU clock</td>
<td>—</td>
<td>1</td>
<td>KHz</td>
<td>All modes</td>
</tr>
<tr>
<td>f_{RCM}</td>
<td>RCM clock</td>
<td>—</td>
<td>1</td>
<td>KHz</td>
<td>All modes</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 13. Device clock specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Run mode¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_WDOG, f_TSI</td>
<td>WDOG clock, TSI clock</td>
<td>—</td>
<td>24</td>
<td>MHz</td>
<td>High speed run mode and Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_ADC</td>
<td>ADC clock</td>
<td>—</td>
<td>24²</td>
<td>MHz</td>
<td>High speed run mode and Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>8</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_RTC</td>
<td>RTC clock</td>
<td>—</td>
<td>32.768</td>
<td>KHz</td>
<td>All modes</td>
</tr>
<tr>
<td>f_TSTMR</td>
<td>TSTMR clock</td>
<td>—</td>
<td>1</td>
<td>MHz</td>
<td>All modes</td>
</tr>
<tr>
<td>f_LPTMR</td>
<td>LPTMR clock</td>
<td>—</td>
<td>24</td>
<td>MHz</td>
<td>All modes</td>
</tr>
<tr>
<td>f_TPM, f_LPIT, f_LPSP, f_LPUC, f_LPUART, f_EMVSIM, f_SAI, f_FLEXIO</td>
<td>TPM clock, LPIT clock, LPSSI clock, LPI2C clock, LPUART clock, EMVSIM clock, SAI clock, FlexIO clock</td>
<td>—</td>
<td>96</td>
<td>MHz</td>
<td>High speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>72</td>
<td>MHz</td>
<td>Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>8</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_USB</td>
<td>USB clock</td>
<td>—</td>
<td>48</td>
<td>MHz</td>
<td>High speed run mode and Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_ERCLK</td>
<td>External reference clock</td>
<td>—</td>
<td>48</td>
<td>MHz</td>
<td>High speed run mode and Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>16</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_osc, n₂</td>
<td>Oscillator crystal or resonator frequency — high frequency mode (high range) (SCG_SOSCCFG[RANGE]=11)</td>
<td>—</td>
<td>32</td>
<td>MHz</td>
<td>High speed run mode and Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>16</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
<tr>
<td>f_CAU, f_GPIO</td>
<td>CAU clock, GPIO clock</td>
<td>—</td>
<td>96</td>
<td>MHz</td>
<td>High speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>72</td>
<td>MHz</td>
<td>Normal speed run mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>8</td>
<td>MHz</td>
<td>VLPR mode</td>
</tr>
</tbody>
</table>

1. Normal run mode, High speed run mode, and VLPR mode.
2. See ADC electrical specifications

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO, LPI2C, and LPUART signals.
Table 14. General switching specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path</td>
<td>1.5</td>
<td>—</td>
<td>Bus clock cycles</td>
<td>1</td>
</tr>
<tr>
<td>GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>External RESET and NMI pin interrupt pulse width — Asynchronous path</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>GPIO pin interrupt pulse width — Asynchronous path</td>
<td>16</td>
<td>—</td>
<td>ns</td>
<td>2</td>
</tr>
</tbody>
</table>

Port rise/fall time

<table>
<thead>
<tr>
<th>Normal drive pins</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2.7 ≤ VDD ≤ 3.6 V</td>
<td>—</td>
<td>3</td>
<td>ns</td>
<td>3</td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1.71 ≤ VDD ≤ 2.7 V</td>
<td>—</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High drive pins</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal/low drive enabled</td>
<td>—</td>
<td>2.5</td>
<td>ns</td>
<td>4</td>
</tr>
<tr>
<td>• 2.7 ≤ VDD ≤ 3.6 V</td>
<td>—</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1.71 ≤ VDD ≤ 2.7 V</td>
<td>—</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High drive enabled</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2.7 ≤ VDD ≤ 3.6 V</td>
<td>—</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1.71 ≤ VDD ≤ 2.7 V</td>
<td>—</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal drive fast pins</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2.7 ≤ VDD ≤ 3.6 V</td>
<td>—</td>
<td>0.5</td>
<td>ns</td>
<td>5</td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1.71 ≤ VDD ≤ 2.7 V</td>
<td>—</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High drive fast pins</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal/low drive enabled</td>
<td>—</td>
<td>0.5</td>
<td>ns</td>
<td>6</td>
</tr>
</tbody>
</table>

Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016

NXP Semiconductors
Table 14. General switching specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• $1.71 \leq VDD \leq 2.7$ V</td>
<td>—</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fast slew rate</td>
<td>—</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slow slew rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High drive enabled
• $2.7 \leq VDD \leq 3.6$ V
• Fast slew rate
• Slow slew rate
• $1.71 \leq VDD \leq 2.7$ V
• Fast slew rate
• Slow slew rate

1. The synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. For high drive pins with high drive enabled, load is 75pF; other pins load (normal/low drive) is 25pF. Fast slew rate is enabled by clearing PORTx_PCRn[SRE].
4. High drive pins are PTB0, PTB1, PTC3, and PTC4. High drive capability is enabled by setting PORTx_PCRn[DSE].
5. Normal drive fast pins are PTE20, PTE21, PTE22, and PTE23.
6. High drive fast pins are PTD4, PTD5, PTD6, and PTD7. High drive capability is enabled by setting PORTx_PCRn[DSE].

NOTE
Only PTA4, PTA20, and PTB19 pins have analog/passive filter.

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>Die junction temperature</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>Ambient temperature</td>
<td>-40</td>
<td>105</td>
<td>°C</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{JA} \times$ chip power dissipation.
Peripheral operating requirements and behaviors

2.4.2 Thermal attributes

Table 16. Thermal attributes

<table>
<thead>
<tr>
<th>Board type</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-layer (1S)</td>
<td>(R_{\text{JA}})</td>
<td>Thermal resistance, junction to ambient (natural convection)</td>
<td>64</td>
<td>94</td>
<td>°C/W</td>
<td>1</td>
</tr>
<tr>
<td>Four-layer (2s2p)</td>
<td>(R_{\text{JA}})</td>
<td>Thermal resistance, junction to ambient (natural convection)</td>
<td>51</td>
<td>57</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Single-layer (1S)</td>
<td>(R_{\text{JMA}})</td>
<td>Thermal resistance, junction to ambient (200 ft./min. air speed)</td>
<td>54</td>
<td>81</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Four-layer (2s2p)</td>
<td>(R_{\text{JMA}})</td>
<td>Thermal resistance, junction to ambient (200 ft./min. air speed)</td>
<td>45</td>
<td>53</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>(R_{\text{JB}})</td>
<td>Thermal resistance, junction to board</td>
<td>37</td>
<td>40</td>
<td>°C/W</td>
<td>2</td>
</tr>
<tr>
<td>—</td>
<td>(R_{\text{JC}})</td>
<td>Thermal resistance, junction to case</td>
<td>19</td>
<td>30</td>
<td>°C/W</td>
<td>3</td>
</tr>
<tr>
<td>—</td>
<td>(\Psi_{\text{JT}})</td>
<td>Thermal characterization parameter, junction to package top outside center (natural convection)</td>
<td>4</td>
<td>8</td>
<td>°C/W</td>
<td>4</td>
</tr>
</tbody>
</table>

3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td></td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>J1</td>
<td>SWD_CLK frequency of operation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 17. SWD full voltage range electricals (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Serial wire debug</td>
<td>0</td>
<td>25</td>
<td>MHz</td>
</tr>
<tr>
<td>J2</td>
<td>SWD_CLK cycle period</td>
<td>1/J1</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J3</td>
<td>SWD_CLK clock pulse width</td>
<td>20</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J4</td>
<td>SWD_CLK rise and fall times</td>
<td>—</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>J9</td>
<td>SWD_DIO input data setup time to SWD_CLK rise</td>
<td>10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J10</td>
<td>SWD_DIO input data hold time after SWD_CLK rise</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>J11</td>
<td>SWD_CLK high to SWD_DIO data valid</td>
<td>—</td>
<td>32</td>
<td>ns</td>
</tr>
<tr>
<td>J12</td>
<td>SWD_CLK high to SWD_DIO high-Z</td>
<td>5</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 5. Serial wire clock input timing

Figure 6. Serial wire data timing
3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 System Clock Generation (SCG) specifications

3.3.1.1 Fast IRC (FIRC) specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{dd_firc})</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(F_{firc_target})</td>
<td>IRC target frequency (nominal)</td>
<td></td>
<td>48</td>
<td></td>
<td>MHz</td>
<td>1</td>
</tr>
<tr>
<td>Trim range = 00</td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim range = 01</td>
<td></td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim range = 10</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim range = 11</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta f_{firc_ol_lv})</td>
<td>Open loop total deviation of FIRC frequency at low voltage ((VDD=1.71V-1.89V)) over full temperature</td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>%F_{firc_target}</td>
<td>1</td>
</tr>
<tr>
<td>• Regulator disable</td>
<td>((SCG_FIRCCSR[FIRCREGOFF]=1))</td>
<td>—</td>
<td>±0.5</td>
<td>±1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Regulator enable</td>
<td>((SCG_FIRCCSR[FIRCREGOFF]=0))</td>
<td>±0.5</td>
<td>±1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta f_{firc_ol_hv})</td>
<td>Open loop total deviation of FIRC frequency at high voltage ((VDD=1.89V-3.6V)) over full temperature</td>
<td>—</td>
<td>±0.5</td>
<td>±1.0</td>
<td>%F_{firc_target}</td>
<td>2</td>
</tr>
<tr>
<td>Regulator enable</td>
<td>((SCG_FIRCCSR[FIRCREGOFF]=0))</td>
<td>±0.5</td>
<td>±1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta f_{firc_cl})</td>
<td>Fine Trim Resolution</td>
<td>—</td>
<td>—</td>
<td>±0.1</td>
<td>%F_{firc_target}</td>
<td>2</td>
</tr>
<tr>
<td>(J_{cyc_firc})</td>
<td>Period Jitter (RMS)</td>
<td>—</td>
<td>35</td>
<td>150</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>(T_{st_firc})</td>
<td>Startup time</td>
<td>—</td>
<td>2</td>
<td>3</td>
<td>µs</td>
<td>3</td>
</tr>
<tr>
<td>(I_{dd_firc})</td>
<td>Current consumption:</td>
<td>—</td>
<td>350</td>
<td>400</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>• 48 MHz</td>
<td></td>
<td>—</td>
<td>360</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 52 MHz</td>
<td></td>
<td>—</td>
<td>380</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 60 MHz</td>
<td></td>
<td>—</td>
<td>400</td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. FIRC trim range is programmable via SCG_FIRCCFG[RANGE].
2. Closed loop operation of the FIRC is only usable for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting FIRC as USB clock source, and enabling the clock recover function (USBN_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, SCG_FIRCCSR[FIRCREGOFF]=0).

3. FIRC startup time is defined as the time between clock enablement and clock availability for system use.

3.3.1.2 Slow IRC (SIRC) specifications

Table 19. Slow IRC specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD,sirc2M}</td>
<td>Supply current in 2 MHz mode</td>
<td>—</td>
<td>14</td>
<td>17</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD,sirc8M}</td>
<td>Supply current in 8 MHz mode</td>
<td>—</td>
<td>25</td>
<td>35</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>f_{sirc}</td>
<td>Output frequency</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>MHz</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>8</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δf_{sirc}</td>
<td>Total deviation of trimmed frequency over voltage and temperature</td>
<td>—</td>
<td>—</td>
<td>±3</td>
<td>%f_{sirc}</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>• 0 to 105 °C</td>
<td>—</td>
<td>—</td>
<td>±4</td>
<td>%f_{sirc}</td>
<td>2</td>
</tr>
<tr>
<td>Δf_{sirc_t}</td>
<td>Total deviation of trimmed frequency over temperature @V_{DD}=3.3V</td>
<td>—</td>
<td>—</td>
<td>±3</td>
<td>%f_{sirc}</td>
<td>2</td>
</tr>
<tr>
<td>T_{su,sirc}</td>
<td>Startup time</td>
<td>—</td>
<td>—</td>
<td>12.5</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>J_{cyc,sirc}</td>
<td>Period jitter (RMS)</td>
<td>—</td>
<td>350</td>
<td>—</td>
<td>ps</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>• f_{sirc} = 2 MHz</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Selection of output frequency for Slow IRC between 2 MHz and 8 MHz is controlled by SCG_ SIRCCFG[RANGE].
2. Maximum deviation occurs at cold temperature (-40 °C) and hot temperature (105 °C).
3. This specification was obtained using a NXP developed PCB. Jitter is dependent on the noise characteristics of each PCB and results will vary.

3.3.1.3 System PLL specifications

Table 20. System PLL Specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{pll_ref}</td>
<td>PLL reference frequency range</td>
<td>8</td>
<td>—</td>
<td>16</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>f_{vcoclk,2x}</td>
<td>VCO output frequency</td>
<td>180</td>
<td>—</td>
<td>288</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>f_{vcoclk}</td>
<td>PLL output frequency</td>
<td>90</td>
<td>—</td>
<td>144</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>I_{pl}</td>
<td>PLL operating current — VCO @ 180 MHz (f_{osc_hi,2} = 10 MHz , f_{pl_ref} = 10 MHz ,VDIV multiplier = 18)</td>
<td>—</td>
<td>1.1</td>
<td>—</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PLL operating current — VCO @ 288 MHz (f_{osc_hi,2} = 32 MHz , f_{pl_ref} = 8 MHz ,VDIV multiplier = 36)</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_{cyc_pll}</td>
<td>PLL period jitter (RMS)</td>
<td>—</td>
<td>120</td>
<td>—</td>
<td>ps</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>• f_{vco} = 180 MHz</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• f_{vco} = 288 MHz</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 20. System PLL Specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{acc_pll}</td>
<td>PLL accumulated jitter over 1 μs (RMS)</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>ps</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>• f_{vco} = 180 MHz</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• f_{vco} = 288 MHz</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{unl}</td>
<td>Lock exit frequency tolerance</td>
<td>±4.47</td>
<td>—</td>
<td>±5.97</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>t_{pll_lock}</td>
<td>Lock detector detection time</td>
<td>—</td>
<td>—</td>
<td>150 × 10^{-6} + 1075(1/f_{PLL_ref})</td>
<td>s</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Excludes any oscillator currents that are also consuming power while PLL is in operation.
2. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
3. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled to PLL enabled. If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications

Table 21. Oscillator DC electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{DDOSC}</td>
<td>Supply current — low-power mode (HGO=0)</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>nA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 32 kHz</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4 MHz</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8 MHz (RANGE=01)</td>
<td>—</td>
<td>950</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 16 MHz</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 24 MHz</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 32 MHz</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DDOSC}</td>
<td>Supply current — high gain mode (HGO=1)</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>μA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 32 kHz</td>
<td>—</td>
<td>400</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4 MHz</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8 MHz (RANGE=01)</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 16 MHz</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 24 MHz</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 21. Oscillator DC electrical specifications (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx</td>
<td>EXTAL load capacitance</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>2, 3</td>
</tr>
<tr>
<td>Cy</td>
<td>XTAL load capacitance</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>2, 3</td>
</tr>
<tr>
<td>RF</td>
<td>Feedback resistor — low-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Ω</td>
<td>2, 4</td>
</tr>
<tr>
<td></td>
<td>Feedback resistor — low-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feedback resistor — high-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feedback resistor — high-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Series resistor — low-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series resistor — low-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series resistor — high-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series resistor — high-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Vpp5</td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>VDD</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)</td>
<td>—</td>
<td>VDD</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx, Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.
3.3.2.2 Oscillator frequency specifications

Table 22. Oscillator frequency specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{osc_lo}</td>
<td>Oscillator crystal or resonator frequency — low-</td>
<td>32</td>
<td>—</td>
<td>40</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency range (SCG_SOSCCFG[RANGE]=01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{osc_hi_1}</td>
<td>Oscillator crystal or resonator frequency — medium</td>
<td>1</td>
<td>—</td>
<td>8</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency range (SCG_SOSCCFG[RANGE]=10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{osc_hi_2}</td>
<td>Oscillator crystal or resonator frequency — high</td>
<td>8</td>
<td>—</td>
<td>32</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency range (SCG_SOSCCFG[RANGE]=11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{ec_extal}</td>
<td>Input clock frequency (external clock mode)</td>
<td>—</td>
<td>—</td>
<td>48</td>
<td>MHz</td>
<td>1, 2</td>
</tr>
<tr>
<td>f_{dc_extal}</td>
<td>Input clock duty cycle (external clock mode)</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>t_{cst}</td>
<td>Crystal startup time — 32 kHz low-frequency, low-</td>
<td>—</td>
<td>750</td>
<td>—</td>
<td>ms</td>
<td>3, 4, 5</td>
</tr>
<tr>
<td></td>
<td>power mode (HGO=0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal startup time — 32 kHz low-frequency, high-</td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gain mode (HGO=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal startup time — 8 MHz medium</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency (SCG_SOSCCFG[RANGE]=11), low-power mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(HGO=0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal startup time — 8 MHz medium</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency (SCG_SOSCCFG[RANGE]=10), high-gain mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(HGO=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Other frequency limits may apply when external clock is being used as a reference for the PLL.
2. When transitioning to system PLL mode, restrict the frequency of the input clock so that, when it is divided by PREDIV, it remains within the limits of the PLL reference input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the SCG_SOSCCSR[SOSCVLD] being set.
5. Crystal startup time is dependent on external crystal and/or resonator and loading capacitance as well as series resistance.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.
Table 23. NVM program/erase timing specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{hvpgm4})</td>
<td>Longword Program high-voltage time</td>
<td>—</td>
<td>7.5</td>
<td>18</td>
<td>(\mu \text{s})</td>
<td>—</td>
</tr>
<tr>
<td>(t_{hverscr})</td>
<td>Sector Erase high-voltage time</td>
<td>—</td>
<td>13</td>
<td>113</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>(t_{hversblk128k})</td>
<td>Erase Block high-voltage time for 128 KB</td>
<td>—</td>
<td>52</td>
<td>452</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>(t_{hversall})</td>
<td>Erase All high-voltage time</td>
<td>—</td>
<td>104</td>
<td>904</td>
<td>ms</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands

Table 24. Flash command timing specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{rd1blk128k})</td>
<td>Read 1s Block execution time 128 KB program flash</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>(t_{rd1sect1k})</td>
<td>Read 1s Section execution time (flash sector)</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>(\mu \text{s})</td>
<td>1</td>
</tr>
<tr>
<td>(t_{pgmchk})</td>
<td>Program Check execution time</td>
<td>—</td>
<td>—</td>
<td>45</td>
<td>(\mu \text{s})</td>
<td>1</td>
</tr>
<tr>
<td>(t_{rdsrc})</td>
<td>Read Resource execution time</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>(\mu \text{s})</td>
<td>1</td>
</tr>
<tr>
<td>(t_{pgm4})</td>
<td>Program Longword execution time</td>
<td>—</td>
<td>65</td>
<td>145</td>
<td>(\mu \text{s})</td>
<td>—</td>
</tr>
<tr>
<td>(t_{ersblk128k})</td>
<td>Erase Flash Block execution time 128 KB program flash</td>
<td>—</td>
<td>88</td>
<td>600</td>
<td>ms</td>
<td>2</td>
</tr>
<tr>
<td>(t_{ersscr})</td>
<td>Erase Flash Sector execution time</td>
<td>—</td>
<td>14</td>
<td>114</td>
<td>ms</td>
<td>2</td>
</tr>
<tr>
<td>(t_{rd1all})</td>
<td>Read 1s All Blocks execution time</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
<td>ms</td>
<td>1</td>
</tr>
<tr>
<td>(t_{rdonce})</td>
<td>Read Once execution time</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>(\mu \text{s})</td>
<td>1</td>
</tr>
<tr>
<td>(t_{pgmonce})</td>
<td>Program Once execution time</td>
<td>—</td>
<td>65</td>
<td>—</td>
<td>(\mu \text{s})</td>
<td>—</td>
</tr>
<tr>
<td>(t_{ersall})</td>
<td>Erase All Blocks execution time</td>
<td>—</td>
<td>175</td>
<td>1300</td>
<td>ms</td>
<td>2</td>
</tr>
<tr>
<td>(t_{vfykey})</td>
<td>Verify Backdoor Access Key execution time</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>(\mu \text{s})</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors

Table 25. Flash high voltage current behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DD,PGM})</td>
<td>Average current adder during high voltage flash programming operation</td>
<td>—</td>
<td>2.5</td>
<td>6.0</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{DD,ERS})</td>
<td>Average current adder during high voltage flash erase operation</td>
<td>—</td>
<td>1.5</td>
<td>4.0</td>
<td>mA</td>
</tr>
</tbody>
</table>
3.4.1.4 Reliability specifications

Table 26. NVM reliability specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{nvmretp10k}})</td>
<td>Data retention after up to 10 K cycles</td>
<td>5</td>
<td>50</td>
<td>—</td>
<td>years</td>
<td>—</td>
</tr>
<tr>
<td>(t_{\text{nvmretp1k}})</td>
<td>Data retention after up to 1 K cycles</td>
<td>20</td>
<td>100</td>
<td>—</td>
<td>years</td>
<td>—</td>
</tr>
<tr>
<td>(n_{\text{nvmcycp}})</td>
<td>Cycling endurance</td>
<td>10 K</td>
<td>50 K</td>
<td>—</td>
<td>cycles</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at \(-40 \, {\degree}C \leq T_j \leq 125 \, {\degree}C\).

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

3.6.1.1 16-bit ADC operating conditions

Table 27. 16-bit ADC operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{DDA}})</td>
<td>Supply voltage</td>
<td>Absolute</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta V_{\text{DDA}})</td>
<td>Supply voltage</td>
<td>Delta to (V_{\text{DD}} - V_{\text{DDA}})</td>
<td>-100</td>
<td>0</td>
<td>+100</td>
<td>mV</td>
<td>2</td>
</tr>
<tr>
<td>(\Delta V_{\text{SSA}})</td>
<td>Ground voltage</td>
<td>Delta to (V_{\text{SS}} - V_{\text{SSA}})</td>
<td>-100</td>
<td>0</td>
<td>+100</td>
<td>mV</td>
<td>2</td>
</tr>
<tr>
<td>(V_{\text{ADIN}})</td>
<td>Input voltage</td>
<td>• 16-bit differential mode</td>
<td>—</td>
<td>VREFL</td>
<td>—</td>
<td>VREFL</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All other modes</td>
<td></td>
<td>VREFL</td>
<td>—</td>
<td>VREFL</td>
<td>—</td>
</tr>
<tr>
<td>(C_{\text{ADIN}})</td>
<td>Input capacitance</td>
<td>• 16-bit mode</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>pF</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 8-bit / 10-bit / 12-bit modes</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>(R_{\text{ADIN}})</td>
<td>Input series resistance</td>
<td></td>
<td>—</td>
<td>2</td>
<td>5</td>
<td>kΩ</td>
<td>—</td>
</tr>
<tr>
<td>(R_{\text{AS}})</td>
<td>Analog source resistance</td>
<td>16-bit modes</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>kΩ</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 27. 16-bit ADC operating conditions (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} = 4\text{–}8 \text{ MHz})</td>
<td></td>
<td></td>
<td>1</td>
<td>kΩ</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} < 4 \text{ MHz})</td>
<td></td>
<td></td>
<td>2</td>
<td>kΩ</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13-bit / 12-bit modes</td>
<td></td>
<td></td>
<td>0.5</td>
<td>kΩ</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} > 16 \text{ MHz})</td>
<td></td>
<td></td>
<td>1</td>
<td>kΩ</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} = 4\text{–}8 \text{ MHz})</td>
<td></td>
<td></td>
<td>2</td>
<td>kΩ</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} < 4 \text{ MHz})</td>
<td></td>
<td></td>
<td>5</td>
<td>kΩ</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-bit / 10-bit modes</td>
<td></td>
<td></td>
<td>2</td>
<td>kΩ</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} > 8 \text{ MHz})</td>
<td></td>
<td></td>
<td>5</td>
<td>kΩ</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} < 8 \text{ MHz})</td>
<td></td>
<td></td>
<td>10</td>
<td>kΩ</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-bit / 8-bit modes</td>
<td></td>
<td></td>
<td>5</td>
<td>kΩ</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} > 8 \text{ MHz})</td>
<td></td>
<td></td>
<td>10</td>
<td>kΩ</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{\text{ADCK}} < 8 \text{ MHz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{ADCK}})</td>
<td>ADC conversion clock frequency</td>
<td>(\leq 13)-bit mode</td>
<td>1.0</td>
<td></td>
<td>24.0</td>
<td>MHz</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bit mode</td>
<td>2.0</td>
<td></td>
<td>12.0</td>
<td>MHz</td>
<td>6</td>
</tr>
<tr>
<td>(C_{\text{rate}})</td>
<td>ADC conversion rate</td>
<td>(\leq 13)-bit modes</td>
<td>20.000</td>
<td>1200</td>
<td>ksps</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No ADC hardware averaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous conversions enabled, subsequent conversion time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{\text{rate}})</td>
<td>ADC conversion rate</td>
<td>16-bit mode</td>
<td>37.037</td>
<td>461.467</td>
<td>ksps</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No ADC hardware averaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous conversions enabled, subsequent conversion time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Typical values assume \(V_{\text{DDA}} = 3.0 \text{ V} \), Temp = 25 °C, \(f_{\text{ADCK}} = 1.0 \text{ MHz} \), unless otherwise stated. Typical values are for reference only, and are not tested in production.
2. DC potential difference.
3. Assumes \(\text{ADLSMP}=0 \).
4. This resistance is external to the MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had \(< 8 \Omega \) analog source resistance. The \(R_{\text{AS}} \times C_{\text{AS}} \) time constant should be kept to \(< 1 \text{ ns} \).
5. To use the maximum ADC conversion clock frequency, \(\text{CFG2[ADHSC]} \) must be set and \(\text{CFG1[ADLPC]} \) must be clear.
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
3.6.1.2 16-bit ADC electrical characteristics

Table 28. 16-bit ADC characteristics \((V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DDA,ADC})</td>
<td>Supply current</td>
<td></td>
<td>0.215</td>
<td>—</td>
<td>1.7</td>
<td>mA</td>
<td>3</td>
</tr>
<tr>
<td>(f_{ADACK})</td>
<td>ADC asynchronous clock source</td>
<td>• ADLPC = 1, ADHSC = 0</td>
<td>1.2</td>
<td>2.4</td>
<td>3.9</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ADLPC = 1, ADHSC = 1</td>
<td>2.4</td>
<td>4.0</td>
<td>6.1</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ADLPC = 0, ADHSC = 0</td>
<td>3.0</td>
<td>5.2</td>
<td>7.3</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ADLPC = 0, ADHSC = 1</td>
<td>4.4</td>
<td>6.2</td>
<td>9.5</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(f_{ADACK} = 1/f_{ADACK})</td>
</tr>
<tr>
<td>TUE</td>
<td>Total unadjusted error</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>±4</td>
<td>±6.8</td>
<td>LSB</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>±1.4</td>
<td>±2.1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential non-linearity</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>±0.7</td>
<td>−1.1 to +1.9</td>
<td>LSB</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>±0.2</td>
<td>−0.3 to 0.5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>INL</td>
<td>Integral non-linearity</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>±1.0</td>
<td>−2.7 to +1.9</td>
<td>LSB</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>±0.5</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 28. 16-bit ADC characteristics ($V_{\text{REFH}} = V_{\text{DDA}}$, $V_{\text{REFL}} = V_{\text{SSA}}$) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{FS}</td>
<td>Full-scale error</td>
<td>• 12-bit modes</td>
<td>—</td>
<td>-4</td>
<td>-5.4</td>
<td>LSB4</td>
<td>$V_{\text{ADIN}} = V_{\text{DDA}}^5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <12-bit modes</td>
<td>—</td>
<td>-1.4</td>
<td>-1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{Q}</td>
<td>Quantization error</td>
<td>• 16-bit modes</td>
<td>—</td>
<td>-1 to 0</td>
<td>—</td>
<td>LSB4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• \leq13-bit modes</td>
<td>—</td>
<td>—</td>
<td>±0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENOB</td>
<td>Effective number of bits</td>
<td>16-bit differential mode</td>
<td>• Avg = 32</td>
<td>12.8</td>
<td>14.5</td>
<td>—</td>
<td>bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 4</td>
<td>11.9</td>
<td>13.8</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-bit single-ended mode</td>
<td>• Avg = 32</td>
<td>12.2</td>
<td>13.9</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avg = 4</td>
<td>11.4</td>
<td>13.1</td>
<td>—</td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-noise plus distortion</td>
<td>See ENOB</td>
<td></td>
<td>6.02 \times ENOB + 1.76</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
<td>16-bit differential mode</td>
<td>• Avg = 32</td>
<td>—</td>
<td>-94</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bit single-ended mode</td>
<td>• Avg = 32</td>
<td>—</td>
<td>-85</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious free dynamic range</td>
<td>16-bit differential mode</td>
<td>• Avg = 32</td>
<td>82</td>
<td>95</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bit single-ended mode</td>
<td>• Avg = 32</td>
<td>78</td>
<td>90</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>E_{IL}</td>
<td>Input leakage error</td>
<td>$I_{\text{in}} \times R_{\text{AS}}$</td>
<td></td>
<td>mV</td>
<td>$I_{\text{in}} = \text{leakage current}$ (refer to the MCU's voltage and current operating ratings)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp sensor slope</td>
<td></td>
<td>Across the full temperature range of the device</td>
<td>1.55</td>
<td>1.62</td>
<td>1.69</td>
<td>mV/°C</td>
<td></td>
</tr>
<tr>
<td>V_{TEMP25}</td>
<td>Temp sensor voltage</td>
<td>25 °C</td>
<td>706</td>
<td>716</td>
<td>726</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

1. All accuracy numbers assume the ADC is calibrated with $V_{\text{REFH}} = V_{\text{DDA}}$
2. Typical values assume $V_{\text{DDA}} = 3.0$ V, Temp = 25 °C, $f_{\text{ADCK}} = 2.0$ MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC CFG1[ADLPC] (low power). For lowest power operation, ADC CFG1[ADLPC] must be set, the ADC CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016

NXP Semiconductors
4. \(1 \text{ LSB} = \frac{(V_{\text{REFH}} - V_{\text{REFL}})}{2^N}\)
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz

![Typical ADC 16-bit Differential ENOB vs ADC Clock](image1)

Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode

![Typical ADC 16-bit Single-Ended ENOB vs ADC Clock](image2)

Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 Voltage reference electrical specifications
Table 29. VREF full-range operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDA}</td>
<td>Supply voltage for 1.2V output</td>
<td>3.6</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supply voltage for 2.1V output</td>
<td>2.4</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>Temperature</td>
<td></td>
<td></td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>C_L</td>
<td>Output load capacitance</td>
<td>100</td>
<td></td>
<td>nF</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 30. VREF full-range operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{out}</td>
<td>Voltage reference output with factory trim at nominal V_{DDA} and temperature=25°C</td>
<td>1.190</td>
<td>1.195</td>
<td>1.2</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.092</td>
<td>2.1</td>
<td>2.108</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{out}</td>
<td>Voltage reference 1.2 V output — factory trim</td>
<td>1.188</td>
<td>1.195</td>
<td>1.202</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Voltage reference 2.1 V output — factory trim</td>
<td>2.087</td>
<td>2.1</td>
<td>2.113</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V_{step}</td>
<td>Voltage reference trim step for 1.2 V output</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>mV</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Voltage reference trim step for 2.1 V output</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>mV</td>
<td>1</td>
</tr>
<tr>
<td>A_{C}</td>
<td>Aging coefficient</td>
<td>—</td>
<td>—</td>
<td>400</td>
<td>uV/yr</td>
<td>—</td>
</tr>
<tr>
<td>I_{bg}</td>
<td>Bandgap only current</td>
<td>—</td>
<td>60</td>
<td>80</td>
<td>µA</td>
<td>1</td>
</tr>
<tr>
<td>I_{lp}</td>
<td>Low-power buffer current</td>
<td>—</td>
<td>180</td>
<td>360</td>
<td>µA</td>
<td>1</td>
</tr>
<tr>
<td>I_{hp}</td>
<td>High-power buffer current</td>
<td>—</td>
<td>480</td>
<td>960</td>
<td>µA</td>
<td>1</td>
</tr>
<tr>
<td>ΔV_{LOAD}</td>
<td>Load regulation — current is ± 1.0 mA</td>
<td>—</td>
<td>±0.2</td>
<td>—</td>
<td>mV</td>
<td>1, 2</td>
</tr>
<tr>
<td>T_{start}</td>
<td>Buffer startup time</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>µs</td>
<td>—</td>
</tr>
<tr>
<td>V_{vdrift}</td>
<td>Voltage drift for 1.2 V output (Vmax -Vmin across the full voltage range)</td>
<td>—</td>
<td>0.5</td>
<td>2</td>
<td>mV</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Voltage drift for 2.1 V output (Vmax -Vmin across the full voltage range)</td>
<td>—</td>
<td>0.9</td>
<td>3.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{tdrift}</td>
<td>Temperature drift for 1.2 V output (Vmax -Vmin across the full temperature range)</td>
<td>—</td>
<td>2</td>
<td>15</td>
<td>mV</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Temperature drift for 2.1 V output (Vmax -Vmin across the full temperature range)</td>
<td>—</td>
<td>3.5</td>
<td>26</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register for V_{out} selection of 1.2 V or 2.1 V.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 31. VREF limited-range operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Temperature</td>
<td>0</td>
<td>50</td>
<td>°C</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 32. VREF limited-range operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{out}</td>
<td>Voltage reference output 1.2 V with factory trim</td>
<td>1.173</td>
<td>1.225</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Voltage reference output 2.1 V with factory trim</td>
<td>2.088</td>
<td>2.115</td>
<td>V</td>
<td>—</td>
</tr>
</tbody>
</table>

3.6.3 CMP and 6-bit DAC electrical specifications

Table 33. Comparator and 6-bit DAC electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Supply voltage</td>
<td>1.71</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>I_{DDHS}</td>
<td>Supply current, High-speed mode (EN=1, PMODE=1)</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>μA</td>
</tr>
<tr>
<td>I_{DDLs}</td>
<td>Supply current, low-speed mode (EN=1, PMODE=0)</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>μA</td>
</tr>
<tr>
<td>V_{AIN}</td>
<td>Analog input voltage</td>
<td>V_{SS} – 0.3</td>
<td>—</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>V_{AIO}</td>
<td>Analog input offset voltage</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>mV</td>
</tr>
<tr>
<td>V_H</td>
<td>Analog comparator hysteresis¹</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>• CR0[HYSTCTR] = 00</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>• CR0[HYSTCTR] = 10</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>• CR0[HYSTCTR] = 11</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td>V_{CMPOh}</td>
<td>Output high</td>
<td>V_{DD} – 0.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>V_{CMPOl}</td>
<td>Output low</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>t_{DHS}</td>
<td>Propagation delay, high-speed mode (EN=1, PMODE=1)</td>
<td>20</td>
<td>50</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t_{DLS}</td>
<td>Propagation delay, low-speed mode (EN=1, PMODE=0)</td>
<td>80</td>
<td>250</td>
<td>600</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Analog comparator initialization delay²</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>μs</td>
</tr>
<tr>
<td>I_{DAC6b}</td>
<td>6-bit DAC current adder (enabled)</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>μA</td>
</tr>
<tr>
<td>INL</td>
<td>6-bit DAC integral non-linearity</td>
<td>—0.5</td>
<td>—</td>
<td>0.5</td>
<td>LSB³</td>
</tr>
<tr>
<td>DNL</td>
<td>6-bit DAC differential non-linearity</td>
<td>—0.3</td>
<td>—</td>
<td>0.3</td>
<td>LSB</td>
</tr>
</tbody>
</table>

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL] and the comparator output settling to a stable level.
3. 1 LSB = V_{reference}/64
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.4 12-bit DAC electrical characteristics

3.6.4.1 12-bit DAC operating requirements

Table 34. 12-bit DAC operating requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDA}</td>
<td>Supply voltage</td>
<td>3.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DACR}</td>
<td>Reference voltage</td>
<td>1.13</td>
<td>3.6</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>C_L</td>
<td>Output load capacitance</td>
<td>—</td>
<td>100</td>
<td>pF</td>
<td>2</td>
</tr>
<tr>
<td>I_{L}</td>
<td>Output load current</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

1. The DAC reference can be selected to be V_{DDA} or V_{REFH}.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
3.6.4.2 12-bit DAC operating behaviors

Table 35. 12-bit DAC operating behaviors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DDA_DACL_P}</td>
<td>Supply current — low-power mode</td>
<td></td>
<td>—</td>
<td>250</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DDA_DACH_P}</td>
<td>Supply current — high-speed mode</td>
<td></td>
<td>—</td>
<td>900</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>t_{DACLP}</td>
<td>Full-scale settling time (0x080 to 0xFF) — low-power mode</td>
<td>—</td>
<td>100</td>
<td>200</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>t_{DACHP}</td>
<td>Full-scale settling time (0x080 to 0xFF) — high-power mode</td>
<td>—</td>
<td>15</td>
<td>30</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>t_{CCDACLPLP}</td>
<td>Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode</td>
<td></td>
<td>0.7</td>
<td>1</td>
<td>μs</td>
<td>1</td>
</tr>
<tr>
<td>V_{dacoutl}</td>
<td>DAC output voltage range low — high-speed mode, no load, DAC set to 0x000</td>
<td></td>
<td>—</td>
<td>100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{dacouth}</td>
<td>DAC output voltage range high — high-speed mode, no load, DAC set to 0xFF</td>
<td>V_{DACR}</td>
<td>—</td>
<td>V_{DACR}</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>INL</td>
<td>Integral non-linearity error — high speed mode</td>
<td></td>
<td>—</td>
<td>±8</td>
<td>LSB</td>
<td>2</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential non-linearity error — V_{DACR} > 2 V</td>
<td></td>
<td>—</td>
<td>±1</td>
<td>LSB</td>
<td>3</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential non-linearity error — V_{DACR} = VREF_OUT</td>
<td></td>
<td>—</td>
<td>±1</td>
<td>LSB</td>
<td>4</td>
</tr>
<tr>
<td>V_{OFFSET}</td>
<td>Offset error</td>
<td></td>
<td>±0.4</td>
<td>±0.8</td>
<td>%FSR</td>
<td>5</td>
</tr>
<tr>
<td>E_{G}</td>
<td>Gain error</td>
<td></td>
<td>±0.1</td>
<td>±0.6</td>
<td>%FSR</td>
<td>5</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power supply rejection ratio, V_{DDA} ≥ 2.4 V</td>
<td>60</td>
<td>—</td>
<td>90</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>T_{CO}</td>
<td>Temperature coefficient offset voltage</td>
<td></td>
<td>3.7</td>
<td>—</td>
<td>μV/C</td>
<td>6</td>
</tr>
<tr>
<td>T_{GE}</td>
<td>Temperature coefficient gain error</td>
<td></td>
<td>0.000421</td>
<td>—</td>
<td>%FSR/C</td>
<td></td>
</tr>
<tr>
<td>R_{op}</td>
<td>Output resistance (load = 3 kΩ)</td>
<td></td>
<td>—</td>
<td>250</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate -80h → F7Fh → 80h</td>
<td></td>
<td>—</td>
<td>V/μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High power (SP_{HP})</td>
<td>1.2</td>
<td>1.7</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low power (SP_{LP})</td>
<td>0.05</td>
<td>0.12</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>3dB bandwidth</td>
<td></td>
<td>—</td>
<td>—</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High power (SP_{HP})</td>
<td>550</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low power (SP_{LP})</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to V_{DACR} −100 mV
3. The DNL is measured for 0 + 100 mV to V_{DACR} −100 mV
4. The DNL is measured for 0 + 100 mV to V_{DACR} −100 mV with V_{DDA} > 2.4 V
5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} − 100 mV
6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device
Figure 12. Typical INL error vs. digital code
3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 EMV SIM specifications

Each EMV SIM module interface consists of a total of five pins.
The interface is designed to be used with synchronous Smart cards, meaning the EMV SIM module provides the clock used by the Smart card. The clock frequency is typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also work with CLK frequencies of 16 times the Tx/Rx data rate.

There is no timing relationship between the clock and the data. The clock that the EMV SIM module provides to the Smart card is used by the Smart card to recover the clock from the data in the same manner as standard UART data exchanges. All five signals of the EMV SIM module are asynchronous with each other.

There are no required timing relationships between signals in normal mode. The smart card is initiated by the interface device; the Smart card responds with Answer to Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816).

![Figure 14. EMV SIM Clock Timing Diagram](image-url)
The following table defines the general timing requirements for the EMV SIM interface.

Table 36. Timing Specifications, High Drive Strength

<table>
<thead>
<tr>
<th>ID</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI1</td>
<td>EMV SIM clock frequency (EMVSIMn_CLK)(^1)</td>
<td>(S_{\text{freq}})</td>
<td>1</td>
<td>5</td>
<td>MHz</td>
</tr>
<tr>
<td>SI2</td>
<td>EMV SIM clock rise time (EMVSIMn_CLK)(^2)</td>
<td>(S_{\text{rise}})</td>
<td>—</td>
<td>0.08 \times (1/S_{\text{freq}})</td>
<td>ns</td>
</tr>
<tr>
<td>SI3</td>
<td>EMV SIM clock fall time (EMVSIMn_CLK)(^2)</td>
<td>(S_{\text{fall}})</td>
<td>—</td>
<td>0.08 \times (1/S_{\text{freq}})</td>
<td>ns</td>
</tr>
<tr>
<td>SI4</td>
<td>EMV SIM input transition time (EMVSIMn_IO, EMVSIMn_PD)</td>
<td>(S_{\text{tran}})</td>
<td>20</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>SI5</td>
<td>EMV SIM I/O rise time / fall time (EMVSIMn_IO)(^3)</td>
<td>(\text{Tr/Tf})</td>
<td>—</td>
<td>0.8</td>
<td>(\mu\text{s})</td>
</tr>
<tr>
<td>SI6</td>
<td>EMV SIM RST rise time / fall time (EMVSIMn_RST)(^4)</td>
<td>(\text{Tr/Tf})</td>
<td>—</td>
<td>0.8</td>
<td>(\mu\text{s})</td>
</tr>
</tbody>
</table>

1. 50% duty cycle clock,
2. With \(C = 50\) pF
3. With \(C_{\text{in}} = 30\) pF, \(C_{\text{out}} = 30\) pF,
4. With \(C_{\text{in}} = 30\) pF,

3.8.1.1 EMV SIM Reset Sequences

Smart cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases.

3.8.1.1.1 Smart Cards with Internal Reset

Following figure shows the reset sequence for Smart cards with internal reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time \(T_0\))
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- The card must send a response on EMVSIMn_IO acknowledging the reset between 400–40000 clock cycles after \(T_0\).
The following table defines the general timing requirements for the SIM interface.

Table 37. Timing Specifications, Internal Reset Card Reset Sequence

<table>
<thead>
<tr>
<th>Ref</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>200</td>
<td>EMVSIMx_CLK clock cycles</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>40,000</td>
<td>EMVSIMx_CLK clock cycles</td>
</tr>
</tbody>
</table>

3.8.1.1.2 Smart Cards with Active Low Reset

Following figure shows the reset sequence for Smart cards with active low reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles)
- EMVSIMn_RST is asserted (at time T1)
- EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on EMVSIMn_IO between 400 and 40,000 clock cycles after T1.
The following table defines the general timing requirements for the EMVSIM interface..

Table 38. Timing Specifications, Internal Reset Card Reset Sequence

<table>
<thead>
<tr>
<th>Ref No</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>200</td>
<td>EMVSIMx_CLK clock cycles</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>40,000</td>
<td>EMVSIMx_CLK clock cycles</td>
</tr>
<tr>
<td>3</td>
<td>40,000</td>
<td>—</td>
<td>EMVSIMx_CLK clock cycles</td>
</tr>
</tbody>
</table>

3.8.1.2 EMVSIM Power-Down Sequence

Following figure shows the EMV SIM interface power-down AC timing diagram. Table 39 table shows the timing requirements for parameters (SI7–SI10) shown in the figure. The power-down sequence for the EMV SIM interface is as follows:

- EMVSIMn_SIMPD port detects the removal of the Smart Card
- EMVSIMn_RST is negated
- EMVSIMn_CLK is negated
- EMVSIM_IO is negated
- EMVSIMx_VCCENy is negated

Each of the above steps requires one OSC32KCLK period (usually 32 kHz, also known as rtcclk in below figure). Power-down may be initiated by a Smart card removal detection; or it may be launched by the processor.
Figure 17. Smart Card Interface Power Down AC Timing

Table 39. Timing Requirements for Power-down Sequence

<table>
<thead>
<tr>
<th>Ref No</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI7</td>
<td>EMVSIM reset to SIM clock stop</td>
<td>$S_{rst2clk}$</td>
<td>$0.9 \times 1/Frtcclk$</td>
<td>$1.1 \times 1/Frtcclk$</td>
<td>μs</td>
</tr>
<tr>
<td>SI8</td>
<td>EMVSIM reset to SIM Tx data low</td>
<td>$S_{rst2dat}$</td>
<td>$1.8 \times 1/Frtcclk$</td>
<td>$2.2 \times 1/Frtcclk$</td>
<td>μs</td>
</tr>
<tr>
<td>SI9</td>
<td>EMVSIM reset to SIM voltage enable low</td>
<td>$S_{rst2ven}$</td>
<td>$2.7 \times 1/Frtcclk$</td>
<td>$3.3 \times 1/Frtcclk$</td>
<td>μs</td>
</tr>
<tr>
<td>SI10</td>
<td>EMVSIM presence detect to SIM</td>
<td>S_{pd2rst}</td>
<td>$0.9 \times 1/Frtcclk$</td>
<td>$1.1 \times 1/Frtcclk$</td>
<td>μs</td>
</tr>
</tbody>
</table>

1. Frtcclk is OSC32KCLK, and this clock must be enabled during the power down sequence.

NOTE

Same timing is also followed when auto power down is initiated. See Reference Manual for reference.
3.8.2 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org.

NOTE

The Fast IRC do not meet the USB jitter specifications for certification for Host mode operation.

3.8.3 USB VREG electrical specifications

Table 40. USB VREG electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ. ¹</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREGIN</td>
<td>Input supply voltage</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_DDon</td>
<td>Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V</td>
<td>—</td>
<td>125</td>
<td>186</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_DDstby</td>
<td>Quiescent current — Standby mode, load current equal zero</td>
<td>—</td>
<td>1.1</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_DDoff</td>
<td>Quiescent current — Shutdown mode</td>
<td>—</td>
<td>650</td>
<td>—</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VREGIN = 5.0 V and temperature=25 °C</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Across operating voltage and temperature</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>I_LOADrun</td>
<td>Maximum load current — Run mode</td>
<td>—</td>
<td>—</td>
<td>120</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_LOADstby</td>
<td>Maximum load current — Standby mode</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>V_Reg33out</td>
<td>Regulator output voltage — Input supply (VREGIN) > 3.6 V</td>
<td>3</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Run mode</td>
<td>2.1</td>
<td>2.8</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standby mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_Reg33out</td>
<td>Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode</td>
<td>2.1</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_OUT</td>
<td>External output capacitor</td>
<td>1.76</td>
<td>2.2</td>
<td>8.16</td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>ESR</td>
<td>External output capacitor equivalent series resistance</td>
<td>1</td>
<td>—</td>
<td>100</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>I_LIM</td>
<td>Short circuit current</td>
<td>—</td>
<td>290</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

¹. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
². Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_Load.
3.8.4 LPSPI switching specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes.

All timing is shown with respect to 20% \(V_{DD}\) and 80% \(V_{DD}\) thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.

NOTE

- Slew rate disabled pads are those pins with PORTx_PCRn[SRE] bit cleared. Slew rate enabled pads are those pins with PORTx_PCRn[SRE] bit set.
- To achieve high bit rate, it is recommended to use fast pins (PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, and PTD7) and/or high drive pins (PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7).

Table 41. LPSPI master mode timing on slew rate disabled pads

<table>
<thead>
<tr>
<th>Num.</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f_{op})</td>
<td>Frequency of operation</td>
<td>(f_{periph}/2048)</td>
<td>(f_{periph}/2)</td>
<td>Hz</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(t_{SPSCK})</td>
<td>SPSCK period</td>
<td>(2 \times t_{periph})</td>
<td>(2048 \times t_{periph})</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>(t_{Lead})</td>
<td>Enable lead time</td>
<td>(1/2)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>(t_{Lag})</td>
<td>Enable lag time</td>
<td>(1/2)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>(t_{WSPSCK})</td>
<td>Clock (SPSCK) high or low time</td>
<td>(t_{periph} \times 30)</td>
<td>(1024 \times t_{periph})</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>(t_{SU})</td>
<td>Data setup time (inputs)</td>
<td>18</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>(t_{HI})</td>
<td>Data hold time (inputs)</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>(t_{V})</td>
<td>Data valid (after SPSCK edge)</td>
<td>—</td>
<td>15</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>(t_{HO})</td>
<td>Data hold time (outputs)</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>(t_{RI})</td>
<td>Rise time input</td>
<td>—</td>
<td>(t_{periph} \times 25)</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(t_{FI})</td>
<td>Fall time input</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>(t_{RO})</td>
<td>Rise time output</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(t_{FO})</td>
<td>Fall time output</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. \(f_{periph}\) is the LPSPI peripheral functional clock.
2. \(t_{periph} = 1/f_{periph}\)

Table 42. LPSPI master mode timing on slew rate enabled pads

<table>
<thead>
<tr>
<th>Num.</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f_{op})</td>
<td>Frequency of operation</td>
<td>(f_{periph}/2048)</td>
<td>(f_{periph}/2)</td>
<td>Hz</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 42. LPSPI master mode timing on slew rate enabled pads (continued)

<table>
<thead>
<tr>
<th>Num.</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(t_{SPSCK})</td>
<td>SPSCK period</td>
<td>(2 \times t_{periph})</td>
<td>(2048 \times t_{periph})</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>(t_{Lead})</td>
<td>Enable lead time</td>
<td>(1/2)</td>
<td>—</td>
<td>(t_{SPSCK})</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>(t_{Lag})</td>
<td>Enable lag time</td>
<td>(1/2)</td>
<td>—</td>
<td>(t_{SPSCK})</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>(t_{WSPSCK})</td>
<td>Clock (SPSCK) high or low time</td>
<td>(t_{periph} - 30)</td>
<td>(1024 \times t_{periph})</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>(t_{SLU})</td>
<td>Data setup time (inputs)</td>
<td>96</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>(t_{HI})</td>
<td>Data hold time (inputs)</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>(t_{v})</td>
<td>Data valid (after SPSCK edge)</td>
<td>—</td>
<td>52</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>(t_{HO})</td>
<td>Data hold time (outputs)</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>(t_{RI})</td>
<td>Rise time input</td>
<td>—</td>
<td>(t_{periph} - 25)</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(t_{FI})</td>
<td>Fall time input</td>
<td>—</td>
<td>36</td>
<td>ns</td>
<td>—</td>
</tr>
</tbody>
</table>

1. \(t_{periph}\) is the LPSPI peripheral functional clock
2. \(t_{periph} = 1/f_{periph}\)

Figure 18. LPSPI master mode timing (CPHA = 0)
Figure 19. LPSPI master mode timing (CPHA = 1)

Table 43. LPSPI slave mode timing on slew rate disabled pads

<table>
<thead>
<tr>
<th>Num.</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f_{op})</td>
<td>Frequency of operation</td>
<td>0</td>
<td>(f_{periph}/4)</td>
<td>Hz</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(t_{SPSCK})</td>
<td>SPSCK period</td>
<td>(4 \times t_{periph})</td>
<td>—</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>(t_{Lead})</td>
<td>Enable lead time</td>
<td>1</td>
<td>—</td>
<td>(t_{periph})</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>(t_{Lag})</td>
<td>Enable lag time</td>
<td>1</td>
<td>—</td>
<td>(t_{periph})</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>(t_{WSPSCK})</td>
<td>Clock (SPSCK) high or low time</td>
<td>(t_{periph} \times 30)</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>(t_{SU})</td>
<td>Data setup time (inputs)</td>
<td>2.5</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>(t_{HI})</td>
<td>Data hold time (inputs)</td>
<td>3.5</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>(t_a)</td>
<td>Slave access time</td>
<td>—</td>
<td>(t_{periph})</td>
<td>ns</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>(t_{dis})</td>
<td>Slave MISO disable time</td>
<td>—</td>
<td>(t_{periph})</td>
<td>ns</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>(t_v)</td>
<td>Data valid (after SPSCK edge)</td>
<td>—</td>
<td>31</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>(t_{HO})</td>
<td>Data hold time (outputs)</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>(t_{RI})</td>
<td>Rise time input</td>
<td>—</td>
<td>(t_{periph} \times 25)</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(t_{FI})</td>
<td>Fall time input</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>(t_{RO})</td>
<td>Rise time output</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(t_{FO})</td>
<td>Fall time output</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. \(f_{periph} \) is the LPSPI peripheral functional clock
2. \(t_{periph} = 1/f_{periph} \)
3. Time to data active from high-impedance state
4. Hold time to high-impedance state
Table 44. LPSPI slave mode timing on slew rate enabled pads

<table>
<thead>
<tr>
<th>Num.</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f_{op})</td>
<td>Frequency of operation</td>
<td>0</td>
<td>(f_{periph}/4)</td>
<td>Hz</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(t_{SPSCK})</td>
<td>SPSCK period</td>
<td>(4 \times t_{periph})</td>
<td>—</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>(t_{Lead})</td>
<td>Enable lead time</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>(t_{Lag})</td>
<td>Enable lag time</td>
<td>1</td>
<td>—</td>
<td>(t_{periph})</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>(t_{WSPSCK})</td>
<td>Clock (SPSCK) high or low time</td>
<td>(t_{periph} \times 30)</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>(t_{SU})</td>
<td>Data setup time (inputs)</td>
<td>2</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>(t_{HI})</td>
<td>Data hold time (inputs)</td>
<td>7</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>(t_s)</td>
<td>Slave access time</td>
<td>—</td>
<td>(t_{periph})</td>
<td>ns</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>(t_{dis})</td>
<td>Slave MISO disable time</td>
<td>—</td>
<td>(t_{periph})</td>
<td>ns</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>(t_v)</td>
<td>Data valid (after SPSCK edge)</td>
<td>—</td>
<td>122</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>(t_{HO})</td>
<td>Data hold time (outputs)</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>(t_{RI})</td>
<td>Rise time input</td>
<td>—</td>
<td>(t_{periph} \times 25)</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>(t_{FO})</td>
<td>Fall time output</td>
<td>—</td>
<td>36</td>
<td>ns</td>
<td>—</td>
</tr>
</tbody>
</table>

1. \(f_{periph}\) is the LPSPI peripheral functional clock
2. \(t_{periph} = 1/f_{periph}\)
3. Time to data active from high-impedance state
4. Hold time to high-impedance state

Figure 20. LPSPI slave mode timing (CPHA = 0)
3.8.5 LPI²C

Table 45. LPI²C specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{SCL}</td>
<td>SCL clock frequency</td>
<td></td>
<td></td>
<td>kHz</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Standard mode (Sm)</td>
<td>0</td>
<td>100</td>
<td></td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>Fast mode (Fm)</td>
<td>0</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fast mode Plus (Fm+)</td>
<td>0</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ultra Fast mode (UFm)</td>
<td>0</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High speed mode (Hs-mode)</td>
<td>0</td>
<td>3400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. See General switching specifications, measured at room temperature.
2. Measured with the maximum bus loading of 400pF at 3.3V VDD with pull-up $R_p = 580\Omega$ on normal drive pins or 350\Omega on high drive pins, and at 1.8V VDD with $R_p = 880\Omega$. For all other cases, select appropriate R_p per I2C Bus Specification and the pin drive capability.
3. Fm+ is only supported on high drive pin with high drive enabled. It is measured with the maximum bus loading of 400pF at 3.3V VDD with $R_p = 350\Omega$. For all other cases, select appropriate R_p per I2C Bus Specification and the pin drive capability.
4. UFm is only supported on high drive pin with high drive enabled and push-pull output only mode. It is measured at 3.3V VDD with the maximum bus loading of 400pF. For 1.8V VDD, the maximum speed is 4Mbps.
5. Hs-mode is only supported in slave mode and on the high drive pins with high drive enabled.

3.8.6 LPUART

See General switching specifications.
3.8.7 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

3.8.7.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

<table>
<thead>
<tr>
<th>Num.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>S1</td>
<td>I2S_MCLK cycle time</td>
<td>40</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S2</td>
<td>I2S_MCLK (as an input) pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S3</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)</td>
<td>80</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S4</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>BCLK period</td>
</tr>
<tr>
<td>S5</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS output valid</td>
<td>—</td>
<td>15.5</td>
<td>ns</td>
</tr>
<tr>
<td>S6</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS output invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S7</td>
<td>I2S_TX_BCLK to I2S_TXD valid</td>
<td>—</td>
<td>19</td>
<td>ns</td>
</tr>
<tr>
<td>S8</td>
<td>I2S_TX_BCLK to I2S_TXD invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S9</td>
<td>I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK</td>
<td>26</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S10</td>
<td>I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>
Figure 22. I2S/SAI timing — master modes

Table 47. I2S/SAI slave mode timing

<table>
<thead>
<tr>
<th>Num.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>S11</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)</td>
<td>80</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S12</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S13</td>
<td>I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK</td>
<td>10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S14</td>
<td>I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S15</td>
<td>I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid</td>
<td>—</td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>S16</td>
<td>I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S17</td>
<td>I2S_RXD setup before I2S_RX_BCLK</td>
<td>10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S18</td>
<td>I2S_RXD hold after I2S_RX_BCLK</td>
<td>2</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S19</td>
<td>I2S_TX_FS input assertion to I2S_TXD output valid</td>
<td>—</td>
<td>28</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
3.8.7.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 48. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

<table>
<thead>
<tr>
<th>Num.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating voltage</td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>S1</td>
<td>I2S_MCLK cycle time</td>
<td>62.5</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S2</td>
<td>I2S_MCLK pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S3</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)</td>
<td>250</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S4</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low</td>
<td>45%</td>
<td>55%</td>
<td>BCLK period</td>
</tr>
<tr>
<td>S5</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/</td>
<td>—</td>
<td>45</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>I2S_RX_FS output valid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>I2S_RX_FS output invalid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>I2S_TX_BCLK to I2S_TXD valid</td>
<td>—</td>
<td>45</td>
<td>ns</td>
</tr>
<tr>
<td>S8</td>
<td>I2S_TX_BCLK to I2S_TXD invalid</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S9</td>
<td>I2S_RXD/I2S_RX_FS input setup before</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>I2S_RX_BCLK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>I2S_RXD/I2S_RX_FS input hold after</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>I2S_RX_BCLK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 24. I2S/SAI timing — master modes

<table>
<thead>
<tr>
<th>Num.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)</td>
<td>250</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S12</td>
<td>I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)</td>
<td>45%</td>
<td>55%</td>
<td>MCLK period</td>
</tr>
<tr>
<td>S13</td>
<td>I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK</td>
<td>30</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S14</td>
<td>I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S15</td>
<td>I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S16</td>
<td>I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid</td>
<td>0</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S17</td>
<td>I2S_RXD setup before I2S_RX_BCLK</td>
<td>30</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S18</td>
<td>I2S_RXD hold after I2S_RX_BCLK</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>S19</td>
<td>I2S_TX_FS input assertion to I2S_TXD output valid</td>
<td>—</td>
<td>72</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
3.9 Human-machine interfaces (HMI)

3.9.1 TSI electrical specifications

Table 50. TSI electrical specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_RUNF</td>
<td>Fixed power consumption in run mode</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>µA</td>
</tr>
<tr>
<td>TSI_RUNV</td>
<td>Variable power consumption in run mode (depends on oscillator's current selection)</td>
<td>1.0</td>
<td>—</td>
<td>128</td>
<td>µA</td>
</tr>
<tr>
<td>TSI_EN</td>
<td>Power consumption in enable mode</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>µA</td>
</tr>
<tr>
<td>TSI_DIS</td>
<td>Power consumption in disable mode</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>µA</td>
</tr>
<tr>
<td>TSI_TEN</td>
<td>TSI analog enable time</td>
<td>—</td>
<td>66</td>
<td>—</td>
<td>µs</td>
</tr>
<tr>
<td>TSI_CREF</td>
<td>TSI reference capacitor</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>TSI_DVOLT</td>
<td>Voltage variation of VP & VM around nominal values</td>
<td>0.19</td>
<td>—</td>
<td>1.03</td>
<td>V</td>
</tr>
</tbody>
</table>

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.
To find a package drawing, go to nxp.com and perform a keyword search for the drawing’s document number:

<table>
<thead>
<tr>
<th>If you want the drawing for this package</th>
<th>Then use this document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-pin LQFP</td>
<td>98ASS23308W</td>
</tr>
<tr>
<td>121-pin XFBGA</td>
<td>98ASA00595D</td>
</tr>
</tbody>
</table>

5 Pinouts and Packaging

5.1 KL28Z Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT function is available on each pin.

NOTE
The 121-pin XFBGA package for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details.

NOTE
- A pull-up resistor (typically 4.7 KΩ) must be connected to the EMVSIM0_IO pin if this pin is configured as EMV SIM function.
- PTB0/1, PTC3/4, PTD4/5/6/7 have both high drive and normal/low drive capability. PTD4, PTD5, PTD6, PTD7, PTE20, PTE21, PTE22, PTE23 are also fast pins. When a high bit rate is required on the communication interface pins, it is recommended to use fast pins. In case of high bus loading, the high drive strength of high drive pins must be enabled by setting the corresponding PORTx_PCRn[DSE] bit.
- RESET_b pin is open drain with internal pullup device and passive analog filter when configured as RESET pin (default state after POR). When this pin is configured to other shared functions, the passive analog filter is disabled.
- NM10_b pin has pullup device enabled and passive analog filter disabled after POR.
- SWD_DIO pin has pullup device enabled after POR.
 SWD_CLK has pulldown device enabled after POR.

<table>
<thead>
<tr>
<th>1210_XFB</th>
<th>100_LQFP</th>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4 1</td>
<td>PTE0</td>
<td>ADC0_SE16/ADC0_SE16</td>
<td>PTE0/RTC_CLKOUT</td>
<td>LPSP11_SIN</td>
<td>LPUART1_TX</td>
<td>CMP0_OUT</td>
<td>LP2C1_SDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3 2</td>
<td>PTE1/LLWU_P0</td>
<td>ADC0_SE17/ADC0_SE17</td>
<td>PTE1/LLWU_P0</td>
<td>LPSP11_SOUT</td>
<td>LPUART1_RX</td>
<td></td>
<td>LP2C1_SCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2 3</td>
<td>PTE2/LLWU_P1</td>
<td>ADC0_SE18/ADC0_SE18</td>
<td>PTE2/LLWU_P1</td>
<td>LPSP11_SCK</td>
<td>LPUART1_CTS_b</td>
<td></td>
<td>LP2C1_SDAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4 4</td>
<td>PTE3</td>
<td>ADC0_SE19/ADC0_SE19</td>
<td>PTE3</td>
<td>LPSP11_SIN</td>
<td>LPUART1_RTS_b</td>
<td></td>
<td>LP2C1_SCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7 5</td>
<td>PTE4/LLWU_P2</td>
<td>DISABLED</td>
<td>PTE4/LLWU_P2</td>
<td>LPSP11_PCS0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4 6</td>
<td>PTE5</td>
<td>DISABLED</td>
<td>PTE5</td>
<td>LPSP11_PCS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3 7</td>
<td>PTE6/LLWU_P16</td>
<td>DISABLED</td>
<td>PTE6/LLWU_P16</td>
<td>LPSP11_PCS2</td>
<td>I2S0_MCLK</td>
<td>USB_SOF_OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E6 8</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7 9</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>—</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 10</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td>USB0_DP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2 11</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td>USB0_DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1 12</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td>VOUT33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2 13</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td>VREGIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1 14</td>
<td>PTE16</td>
<td>ADC0_DP1/ADC0_SE1</td>
<td>ADC0_DP1/ADC0_SE1</td>
<td>PTE16</td>
<td>LPSP10_PCS0</td>
<td>LPUART2_TX</td>
<td>TPM0_CLKIN</td>
<td>LPSP11_PCS3</td>
<td>FXIO0_D0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 15</td>
<td>PTE17/LLWU_P19</td>
<td>ADC0_DM1/ADC0_SE5a</td>
<td>ADC0_DM1/ADC0_SE5a</td>
<td>PTE17/LLWU_P19</td>
<td>LPSP10_SCK</td>
<td>LPUART2_RX</td>
<td>TPM1_CLKIN</td>
<td>LPTMR0_ALT3/LPTMR1_ALT3</td>
<td>FXIO0_D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1 16</td>
<td>PTE18/LLWU_P20</td>
<td>ADC0_DP2/ADC0_SE2</td>
<td>ADC0_DP2/ADC0_SE2</td>
<td>PTE18/LLWU_P20</td>
<td>LPSP10_SOUT</td>
<td>LPUART2_CTS_b</td>
<td>LP2C0_SDA</td>
<td>FXIO0_D2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2 17</td>
<td>PTE19</td>
<td>ADC0_DM2/ADC0_SE6a</td>
<td>ADC0_DM2/ADC0_SE6a</td>
<td>PTE19</td>
<td>LPSP10_SIN</td>
<td>LPUART2_RTS_b</td>
<td>LP2C0_SCL</td>
<td>FXIO0_D3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1 18</td>
<td>PTE20</td>
<td>ADC0_DP3/ADC0_SE0</td>
<td>ADC0_DP3/ADC0_SE0</td>
<td>PTE20</td>
<td>LPSP12_SCK</td>
<td>TPM1_CH0</td>
<td>LPUART0_TX</td>
<td>FXIO0_D4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2 19</td>
<td>PTE21</td>
<td>ADC0_DM3/ADC0_SE4a</td>
<td>ADC0_DM3/ADC0_SE4a</td>
<td>PTE21</td>
<td>LPSP12_SOUT</td>
<td>TPM1_CH1</td>
<td>LPUART0_RX</td>
<td>FXIO0_D5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1 20</td>
<td>PTE22</td>
<td>ADC0_DP3/ADC0_SE3</td>
<td>ADC0_DP3/ADC0_SE3</td>
<td>PTE22</td>
<td>LPSP12_SIN</td>
<td>TPM2_CH0</td>
<td>LPUART2_TX</td>
<td>FXIO0_D6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 21</td>
<td>PTE23</td>
<td>ADC0_DM3/ADC0_SE7a</td>
<td>ADC0_DM3/ADC0_SE7a</td>
<td>PTE23</td>
<td>LPSP12_PCS0</td>
<td>TPM2_CH1</td>
<td>LPUART2_RX</td>
<td>FXIO0_D7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5 22</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016

NXP Semiconductors
<table>
<thead>
<tr>
<th>121</th>
<th>XFB</th>
<th>100</th>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5</td>
<td>23</td>
<td>VREFH/ VREF_OUT</td>
<td>VREFH/ VREF_OUT</td>
<td>VREFH/ VREF_OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>24</td>
<td>VREFL</td>
<td>VREFL</td>
<td>VREFL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>25</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>26</td>
<td>PTE29</td>
<td>CMP1_INS/ CMP0_INS/ ADC0_SE4b</td>
<td>CMP1_INS/ CMP0_INS/ ADC0_SE4b</td>
<td>PTE29</td>
<td>EMVSIMO_CLK</td>
<td>TPM0_CH2</td>
<td>TPM0_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>27</td>
<td>PTE30</td>
<td>DAC0_OUT/ CMP1_INS/ ADC0_SE23/ CMP0_IN4</td>
<td>DAC0_OUT/ CMP1_INS/ ADC0_SE23/ CMP0_IN4</td>
<td>PTE30</td>
<td>EMVSIMO_RST</td>
<td>TPM0_CH3</td>
<td>TPM1_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>28</td>
<td>PTE31</td>
<td>DISABLED</td>
<td></td>
<td>PTE31</td>
<td>EMVSIMO_VCCEN</td>
<td>TPM0_CH4</td>
<td>TPM2_CLKIN</td>
<td>LPI2C0_HREQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>29</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K6</td>
<td>30</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>31</td>
<td>PTE24</td>
<td>ADO0_SE20</td>
<td>ADO0_SE20</td>
<td>PTE24</td>
<td>EMVSIMO_IO</td>
<td>TPM0_CH0</td>
<td>LPI2C0_SCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J5</td>
<td>32</td>
<td>PTE25/ LLWU_P21</td>
<td>ADO0_SE21</td>
<td>ADO0_SE21</td>
<td>PTE25/ LLWU_P21</td>
<td>EMVSIMO_PD</td>
<td>TPM0_CH1</td>
<td>LPI2C0_SDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>33</td>
<td>PTE26</td>
<td>DISABLED</td>
<td></td>
<td>PTE26/ RTC_CLKOUT</td>
<td></td>
<td>TPM0_CH5</td>
<td>LPI2C0_SCL5</td>
<td>USB_CLKIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J6</td>
<td>34</td>
<td>PTA0</td>
<td>SWD_CLK</td>
<td>TSIO_CH1</td>
<td>PTA0</td>
<td>LPUART0_CTS_b</td>
<td>TPM0_CH5</td>
<td>LPI2C0_SDA5</td>
<td>SWD_CLK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>35</td>
<td>PTA1</td>
<td>DISABLED</td>
<td>TSIO_CH2</td>
<td>PTA1</td>
<td>LPUART0_RX</td>
<td>TPM0_CH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J7</td>
<td>36</td>
<td>PTA2</td>
<td>DISABLED</td>
<td>TSIO_CH3</td>
<td>PTA2</td>
<td>LPUART0_TX</td>
<td>TPM2_CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>37</td>
<td>PTA3</td>
<td>SWD_DIO</td>
<td>TSIO_CH4</td>
<td>PTA3</td>
<td>LPI2C1_SCL</td>
<td>TPM0_CH0</td>
<td>LPUART0_RTS_b</td>
<td>SWD_DIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J8</td>
<td>38</td>
<td>PTA4/ LLWU_P3</td>
<td>DISABLED</td>
<td>TSIO_CH5</td>
<td>PTA4/ LLWU_P3</td>
<td>LPI2C1_SDA</td>
<td>TPM0_CH1</td>
<td></td>
<td>NMI_0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K7</td>
<td>39</td>
<td>PTA5</td>
<td>DISABLED</td>
<td></td>
<td>PTA5</td>
<td>USB_CLKIN</td>
<td>TPM0_CH2</td>
<td>LPI2C2_HREQ</td>
<td>I2S0_TX_BCLK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>—</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>—</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>40</td>
<td>PTA6</td>
<td>DISABLED</td>
<td></td>
<td>PTA6</td>
<td></td>
<td>TPM0_CH3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>41</td>
<td>PTA7</td>
<td>DISABLED</td>
<td></td>
<td>PTA7</td>
<td>LPSPI0_PCS3</td>
<td>TPM0_CH4</td>
<td>LPI2C2_SDA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9</td>
<td>—</td>
<td>PTA10/ LLWU_P22</td>
<td>DISABLED</td>
<td></td>
<td>PTA10/ LLWU_P22</td>
<td>LPSPI0_PCS2</td>
<td>TPM2_CH0</td>
<td>LPI2C2_SCL5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J4</td>
<td>—</td>
<td>PTA11/ LLWU_P23</td>
<td>DISABLED</td>
<td></td>
<td>PTA11/ LLWU_P23</td>
<td>LPSPI0_PCS1</td>
<td>TPM2_CH1</td>
<td>LPI2C2_SDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K8</td>
<td>42</td>
<td>PTA12</td>
<td>DISABLED</td>
<td></td>
<td>PTA12</td>
<td></td>
<td>TPM1_CH0</td>
<td>LPI2C2_SCL</td>
<td>I2S0_TXD0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L8</td>
<td>43</td>
<td>PTA13/ LLWU_P4</td>
<td>DISABLED</td>
<td></td>
<td>PTA13/ LLWU_P4</td>
<td>TPM1_CH1</td>
<td>LPI2C2_SDA</td>
<td>I2S0_TX_FS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K9</td>
<td>44</td>
<td>PTA14</td>
<td>DISABLED</td>
<td></td>
<td>PTA14</td>
<td>LPSPI0_PCS0</td>
<td>LPUART0_TX</td>
<td>LPI2C2_SCL</td>
<td>I2S0_RX_BCLK</td>
<td>I2S0_TXD0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>45</td>
<td>PTA15</td>
<td>DISABLED</td>
<td></td>
<td>PTA15</td>
<td>LPSPI0_SCK</td>
<td>LPUART0_RX</td>
<td>I2S0_RXD0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinout</td>
<td>Pin Name</td>
<td>Default</td>
<td>ALT0</td>
<td>ALT1</td>
<td>ALT2</td>
<td>ALT3</td>
<td>ALT4</td>
<td>ALT5</td>
<td>ALT6</td>
<td>ALT7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J10</td>
<td>PTA16</td>
<td>DISABLED</td>
<td>PTA16</td>
<td>LPSPI0_SOUT</td>
<td>LPUART0_CTS_b</td>
<td>I2S0_RX_FS</td>
<td>I2S0_RXD0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>PTA17</td>
<td>ADC0_SE22</td>
<td>ADC0_SE22</td>
<td>PTA17</td>
<td>LPSPI0_SIN</td>
<td>LPUART0_RTS_b</td>
<td>I2S0_MCLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L10</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K10</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L11</td>
<td>PTA18</td>
<td>EXTA0</td>
<td>EXTA0</td>
<td>PTA18</td>
<td>LPUART1_RX</td>
<td>TPM0_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K11</td>
<td>PTA19</td>
<td>XTA0</td>
<td>XTA0</td>
<td>PTA19</td>
<td>LPUART1_TX</td>
<td>TPM1_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J11</td>
<td>PTA20</td>
<td>RESET_b</td>
<td>PTA20</td>
<td>LPI2C0_SCL</td>
<td>TPM2_CLKIN</td>
<td></td>
<td>RESET_b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>PTA29</td>
<td>DISABLED</td>
<td>PTA29</td>
<td>LPI2C0_SDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G11</td>
<td>PTB/LLWU_P5</td>
<td>ADC0_SE8/TSIO_CH0</td>
<td>ADC0_SE8/TSIO_CH0</td>
<td>PTB/LLWU_P5</td>
<td>LPI2C0_SCL</td>
<td>TPM1_CH0</td>
<td>FXIO0_D8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G10</td>
<td>PTB1</td>
<td>ADC0_SE8/TSIO_CH6</td>
<td>ADC0_SE8/TSIO_CH6</td>
<td>PTB1</td>
<td>LPI2C0_SDA</td>
<td>TPM1_CH1</td>
<td>FXIO0_D9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G9</td>
<td>PTB2</td>
<td>ADC0_SE12/TSIO_CH7</td>
<td>ADC0_SE12/TSIO_CH7</td>
<td>PTB2</td>
<td>LPI2C0_SCL</td>
<td>TPM2_CH0</td>
<td>LPUART0_RTS_b</td>
<td>FXIO0_D10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G8</td>
<td>PTB3</td>
<td>ADC0_SE13/TSIO_CH8</td>
<td>ADC0_SE13/TSIO_CH8</td>
<td>PTB3</td>
<td>LPI2C0_SDA</td>
<td>TPM2_CH1</td>
<td>LPSPI1_PCS3</td>
<td>LPUART0_CTS_b</td>
<td>FXIO0_D11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>PTB6</td>
<td>DISABLED</td>
<td>PTB6</td>
<td>LPSPI1_PCS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11</td>
<td>PTB7</td>
<td>DISABLED</td>
<td>PTB7</td>
<td>LPSPI1_PCS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>PTB8</td>
<td>DISABLED</td>
<td>PTB8</td>
<td>LPSPI1_PCS0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E10</td>
<td>PTB9</td>
<td>DISABLED</td>
<td>PTB9</td>
<td>LPSPI1_SCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>PTB10</td>
<td>DISABLED</td>
<td>PTB10</td>
<td>LPSPI1_PCS0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>PTB11</td>
<td>DISABLED</td>
<td>PTB11</td>
<td>LPSPI1_SCK</td>
<td>TPM2_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>PTB16</td>
<td>TSIO_CH9</td>
<td>TSIO_CH9</td>
<td>PTB16</td>
<td>LPSPI1_SOUT</td>
<td>LPUART0_RX</td>
<td>TPM0_CLKIN</td>
<td>LPSPI2_PCS3</td>
<td>FXIO0_D16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9</td>
<td>PTB17</td>
<td>TSIO_CH10</td>
<td>TSIO_CH10</td>
<td>PTB17</td>
<td>LPSPI1_SIN</td>
<td>LPUART0_TX</td>
<td>TPM1_CLKIN</td>
<td>LPSPI2_PCS2</td>
<td>FXIO0_D17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>PTB18</td>
<td>TSIO_CH11</td>
<td>TSIO_CH11</td>
<td>PTB18</td>
<td>TPM2_CH0</td>
<td>I2S0_TX_BCLK</td>
<td>TPM0_CLKIN</td>
<td>LPI2C1_HREQ</td>
<td>FXIO0_D18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>PTB19</td>
<td>TSIO_CH12</td>
<td>TSIO_CH12</td>
<td>PTB19</td>
<td>TPM2_CH1</td>
<td>I2S0_TX_FS</td>
<td>LPSPI2_PCS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>PTB20</td>
<td>DISABLED</td>
<td>PTB20</td>
<td>LPSPI2_PCS0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>PTB21</td>
<td>DISABLED</td>
<td>PTB21</td>
<td>LPSPI2_SCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>PTB22</td>
<td>DISABLED</td>
<td>PTB22</td>
<td>LPSPI2_SOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E8</td>
<td>PTB23</td>
<td>DISABLED</td>
<td>PTB23</td>
<td>LPSPI2_SIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>PTC0</td>
<td>ADC0_SE14/TSIO_CH13</td>
<td>ADC0_SE14/TSIO_CH13</td>
<td>PTC0</td>
<td>LPSPI2_PCS1</td>
<td></td>
<td></td>
<td>USB_SOF_OUT</td>
<td>CMP0_OUT</td>
<td>I2S0_TXD0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>PTC1/LLWU_P6</td>
<td>ADC0_SE15/TSIO_CH14</td>
<td>ADC0_SE15/TSIO_CH14</td>
<td>PTC1/LLWU_P6</td>
<td>LPI2C1_SCL</td>
<td>TPM0_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016

NXP Semiconductors
Pinouts and Packaging

<table>
<thead>
<tr>
<th>121 XFB GA</th>
<th>100 LQFP</th>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8</td>
<td>72</td>
<td>PTC2</td>
<td>ADC0_SE11/</td>
<td>CMP1_IN0/</td>
<td>CMP1_IN0/</td>
<td>CMP1_IN0/</td>
<td>CMP1_IN0/</td>
<td>LPI2C1_SDA</td>
<td>LPUART1_</td>
<td>TPM0_CH1</td>
<td>I2S0_TX_FS</td>
</tr>
<tr>
<td>B8</td>
<td>73</td>
<td>PTC3/</td>
<td>LLWU_P7</td>
<td>CMP1_IN1</td>
<td>CMP1_IN1</td>
<td>PTC3/</td>
<td>LLWU_P7</td>
<td>LPSPI0_PCS0</td>
<td>LPUART1_RX</td>
<td>TPM0_CH2</td>
<td>CLKOUT</td>
</tr>
<tr>
<td>F7</td>
<td>74</td>
<td>VSS</td>
</tr>
<tr>
<td>E7</td>
<td>75</td>
<td>VDD</td>
</tr>
<tr>
<td>B11 —</td>
<td>PTC22</td>
<td>DISABLED</td>
<td>PTC22</td>
<td>LPSPI0_PCS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11 —</td>
<td>PTC23</td>
<td>DISABLED</td>
<td>PTC23</td>
<td>LPSPI0_PCS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>76</td>
<td>PTC4/</td>
<td>LLWU_P8</td>
<td>DISABLED</td>
<td>PTC4/</td>
<td>LLWU_P8</td>
<td>LPSPI0_PCS0</td>
<td>LPUART1_TX</td>
<td>TPM0_CH3</td>
<td>I2S0_MCLK</td>
<td>CMP1_OUT</td>
</tr>
<tr>
<td>D7</td>
<td>77</td>
<td>PTC5/</td>
<td>LLWU_P9</td>
<td>DISABLED</td>
<td>PTC5/</td>
<td>LLWU_P9</td>
<td>LPSPI0_SCK</td>
<td>LPTMR0_ALT2/LPTMR1_ALT2</td>
<td>I2S0_RXD0</td>
<td>CMP0_OUT</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>78</td>
<td>PTC6/</td>
<td>LLWU_P10</td>
<td>CMP0_IN0</td>
<td>CMP0_IN0</td>
<td>PTC6/</td>
<td>LLWU_P10</td>
<td>LPSPI0_SOUT</td>
<td>USB_SOF_OUT</td>
<td>I2S0_RX_BCLK</td>
<td>I2S0_MCLK</td>
</tr>
<tr>
<td>B7</td>
<td>79</td>
<td>PTC7</td>
<td>CMP0_IN1</td>
<td>CMP0_IN1</td>
<td>PTC7</td>
<td>LPSPI0_SIN</td>
<td>USB_SOF_OUT</td>
<td>I2S0_RX_FS</td>
<td>FXIO0_D20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>80</td>
<td>PTC8</td>
<td>CMP0_IN2</td>
<td>CMP0_IN2</td>
<td>PTC8</td>
<td>LPI2C0_SCL</td>
<td>TPM0_CH4</td>
<td>I2S0_MCLK</td>
<td>FXIO0_D21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>81</td>
<td>PTC9</td>
<td>CMP0_IN3</td>
<td>CMP0_IN3</td>
<td>PTC9</td>
<td>LPI2C0_SDA</td>
<td>TPM0_CH5</td>
<td>I2S0_RX_BCLK</td>
<td>FXIO0_D22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>82</td>
<td>PTC10</td>
<td>DISABLED</td>
<td>PTC10</td>
<td>LPI2C1_SCL</td>
<td>I2S0_RX_FS</td>
<td>FXIO0_D23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>83</td>
<td>PTC11/</td>
<td>LLWU_P11</td>
<td>DISABLED</td>
<td>PTC11/</td>
<td>LLWU_P11</td>
<td>LPI2C1_SDA</td>
<td>I2S0_RXD0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>84</td>
<td>PTC12</td>
<td>DISABLED</td>
<td>PTC12</td>
<td>LPI2C1_SCLS</td>
<td>TPM0_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>85</td>
<td>PTC13</td>
<td>DISABLED</td>
<td>PTC13</td>
<td>LPI2C1_SDA</td>
<td>TPM0_CLKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>86</td>
<td>PTC14</td>
<td>DISABLED</td>
<td>PTC14</td>
<td>EMVSIM0_CLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>87</td>
<td>PTC15</td>
<td>DISABLED</td>
<td>PTC15</td>
<td>EMVSIM0_RST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>88</td>
<td>VSS</td>
</tr>
<tr>
<td>—</td>
<td>89</td>
<td>VDD</td>
</tr>
<tr>
<td>D5</td>
<td>90</td>
<td>PTC16</td>
<td>DISABLED</td>
<td>PTC16</td>
<td>EMVSIM0_VCCEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>91</td>
<td>PTC17</td>
<td>DISABLED</td>
<td>PTC17</td>
<td>EMVSIM0_IO</td>
<td>LPSPI0_PCS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>92</td>
<td>PTC18</td>
<td>DISABLED</td>
<td>PTC18</td>
<td>EMVSIM0_PD</td>
<td>LPSPI0_PCS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4 —</td>
<td>PTC19</td>
<td>DISABLED</td>
<td>PTC19</td>
<td>LPSPI0_PCS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>93</td>
<td>PTD0/</td>
<td>LLWU_P12</td>
<td>DISABLED</td>
<td>PTD0/</td>
<td>LLWU_P12</td>
<td>LPSPI0_PCS0</td>
<td>LPUART2_RTS_b</td>
<td>TPM0_CH10</td>
<td>FXIO0_D0</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>94</td>
<td>PTD1</td>
<td>ADC0_SEb</td>
<td>ADC0_SEb</td>
<td>PTD1</td>
<td>LPSPI0_SCK</td>
<td>LPUART2_RTS_b</td>
<td>TPM0_CH1</td>
<td>FXIO0_D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>95</td>
<td>PTD2/</td>
<td>LLWU_P13</td>
<td>DISABLED</td>
<td>PTD2/</td>
<td>LLWU_P13</td>
<td>LPSPI0_SOUT</td>
<td>LPUART2_RX</td>
<td>TPM0_CH2</td>
<td>FXIO0_D2</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table provides a summary of pinouts and pin configurations for the Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 from NXP Semiconductors.
KL28Z Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTD3</td>
<td>DISABLED</td>
<td>PTD3</td>
<td>LPSP10_SIN</td>
<td>LPUART2_TX</td>
<td>TPM0_CH3</td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D3</td>
</tr>
<tr>
<td>PTD4/LLWU_P14</td>
<td>DISABLED</td>
<td>PTD4/LLWU_P14</td>
<td>LPSP11PCS0</td>
<td>LPUART2_RX</td>
<td>TPM0_CH4</td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D4</td>
</tr>
<tr>
<td>PTD6</td>
<td>ADC0_SE6b</td>
<td>PTD6</td>
<td>LPSP11_SCK</td>
<td>LPUART2_TX</td>
<td>TPM0_CH5</td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D5</td>
</tr>
<tr>
<td>PTD8/LLWU_P24</td>
<td>DISABLED</td>
<td>PTD8/LLWU_P24</td>
<td>LPSP11_PCS1</td>
<td>LPUART2_RX</td>
<td>TPM0_CH5</td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D6</td>
</tr>
<tr>
<td>PTD9</td>
<td>DISABLED</td>
<td>PTD9</td>
<td>LPIC0_SCL</td>
<td>LPSP11_PCS1</td>
<td>LPUART0_RX</td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D7</td>
</tr>
<tr>
<td>PTD10</td>
<td>DISABLED</td>
<td>PTD10</td>
<td>LPSP11_PCS1</td>
<td>LPUART0_RX</td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D8</td>
<td></td>
</tr>
<tr>
<td>PTD11/LLWU_P25</td>
<td>DISABLED</td>
<td>PTD11/LLWU_P25</td>
<td>LPSP12_PCS0</td>
<td>LPUART0_RX</td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D9</td>
<td></td>
</tr>
<tr>
<td>PTD12</td>
<td>DISABLED</td>
<td>PTD12</td>
<td>LPSP12_SCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D10</td>
</tr>
<tr>
<td>PTD13</td>
<td>DISABLED</td>
<td>PTD13</td>
<td>LPSP12_SOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D11</td>
</tr>
<tr>
<td>PTD14</td>
<td>DISABLED</td>
<td>PTD14</td>
<td>LPSP12_SIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D12</td>
</tr>
<tr>
<td>PTD15</td>
<td>DISABLED</td>
<td>PTD15</td>
<td>LPSP12_PCS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FXIO0_D13</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 KL28Z Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.
Pinouts and Packaging

Figure 26. 121 XFBGA Pinout Diagram
Figure 27. 100 LQFP Pinout Diagram

6 Ordering parts
6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: PKL28Z and MKL28Z

7 Design considerations

7.1 Hardware design considerations

This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit.

7.1.1 Printed circuit board recommendations

- Place connectors or cables on one edge of the board and do not place digital circuits between connectors.
- Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground.
- Physically isolate analog circuits from digital circuits if possible.
- Place input filter capacitors as close to the MCU as possible.
- For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP/MAPBGA packages.

7.1.2 Power delivery system

Consider the following items in the power delivery system:

- Use a plane for ground.
- Use a plane for MCU VDD supply if possible.
- Always route ground first, as a plane or continuous surface, and never as sequential segments.
- Route power next, as a plane or traces that are parallel to ground traces.
- Place bulk capacitance, 10 μF or more, at the entrance of the power plane.
- Place bypass capacitors for MCU power domain as close as possible to each VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.
• The minimum bypass requirement is to place 0.1 \mu F capacitors positioned as near as possible to the package supply pins.
• The VREG_IN voltage range is 2.7 V to 5.5 V. Typically, 5.0V is applied here. If USB module is used, this pin must be powered to make the USB transceiver also powered. It is recommended to include a filter circuit with one bulk capacitor (no less than 2.2 \mu F) and one 0.1 \mu F capacitor to VREG_IN at this pin to improve USB performance. Total capacitors on VBUS should be less than 10 \mu F.
• Take special care to minimize noise levels on the VREFH/VREFL inputs. An option is to use the internal reference voltage (output 1.2 V or 2.1 V typically) as the ADC reference.

NOTE
The internal reference voltage output (VREF_OUT) is bonded to the VREFH pin. When the VREF_OUT output is used, a 0.1 \mu F capacitor is required as a filter. Do not connect any other supply voltage to the pin that has VREF_OUT activated.

7.1.3 Analog design

Each ADC input must have an RC filter as shown in the following figure. The maximum value of R must be smaller than RAS max if high resolution is required. The value of C must be chosen to ensure that the RC time constant is very small compared to the sample period. See AN4373: Cookbook for SAR ADC Measurements for how to select proper RC values.

![Figure 28. RC circuit for ADC input](image)

High voltage measurement circuits require voltage division, current limiting, and overvoltage protection as shown the following figure. The voltage divider formed by R1 – R4 must yield a voltage less than or equal to VREFH. Typically, VREFH is connected to VDDA. The current must be limited to less than the negative injection current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes must be included to protect against transient over-voltages.
7.1.4 Digital design

Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).

CAUTION
Do not provide power to I/O pins prior to VDD, especially the RESET_b pin.

- **High drive pins**
 PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. When in high drive mode, the sink/source current for a high drive pin can reach 20 mA. However, the total current flowing into the MCU VDD must not exceed maximum limit of IDD.

- **Fast pins**
 PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, PTD7 can support fast slew rate of 0.5 ns and are used for high speed communications. It is set/cleared by PTx_PCRn[SRE].

- **Default I/O state**
 Most of digital pins are disabled (in high impedance state) after power up, so a pull-up/down is needed to a determined level for some applications. Please refer to the Signal Multiplexing and Pin Assignments chapter to know the default IO state for a dedicate pin.

- **RESET_b pin**

![Figure 29. High voltage measurement with an ADC input](image)
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An external RC circuit is recommended to filter noise as shown in the following figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the recommended capacitance value is 0.1 μF. The RESET_b pin also has a selectable digital filter to reject spurious noise.

Figure 30. Reset circuit

When an external supervisor chip is connected to the RESET_b pin, a series resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. The supervisor chip must have an active high, open-drain output.

Figure 31. Reset signal connection to external reset chip

- NMI pin
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI function, an external pull-up resistor (10 kΩ) as shown in the following figure is recommended for robustness.

If the NMI_b pin is used as an I/O pin, use the following two ways to disable NMI function:

a. Define NMI interrupt handler in which NMI pin function is remapped to other pin mux function
b. Disable NMI function by programming flash configuration byte at 0x40d for FOPT, change FOPT[NMI_DIS] bit to zero. It will not take effect until next reset.

![Figure 32. NMI pin biasing](image)

Figure 32. NMI pin biasing

- Debug interface

This MCU uses the standard ARM SWD interface protocol as shown in the following figure. While pull-up or pull-down resistors are not required (SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ pull resistors are recommended for system robustness. The RESET_b pin recommendations mentioned above must also be considered.
• Low leakage stop mode wakeup

Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the low leakage stop modes (LLS/VLLSx). See KL28 Signal Multiplexing and Pin Assignments chapter for pin selection.

• Unused pin

Unused GPIO pins must be left floating (no electrical connections) with the MUX field of the pin’s PORTx_PCRn register equal to 000. This disables the digital input path to the MCU.

If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM) floating.

• EMVSIM

When using EMVSIM, a typical 4.7 KΩ pull up resistor should be added on the EMVSIM_IO pin.
Connect the pull up resistor to VDD_MCU for the pins like RESET and NMI. For other pull up resistor, do not use VDD_MCU.

7.1.5 Crystal oscillator

When using an external crystal or ceramic resonator as the frequency reference for the MCU clock system, refer to the following table and diagrams.

The feedback resistor, RF, is incorporated internally with the low power oscillators. An external feedback is required when using high gain (HGO=1) mode. In harsh EMC environment, it is recommended to use high gain mode. For low frequency (32 to 40 kHz), switching between high gain and low power is not supported.

The series resistor, RS, is used to limit current to external crystal or resonator to avoid overdrive, and is required in high gain (HGO=1) mode when the crystal or resonator frequency is below 2 MHz. The low power oscillator (HGO=0) must not have any series resistor RS.

Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode. Use the SCxP bits in the SCG_SOSCCFG register to adjust the load capacitance for the crystal. Typically, values of 10 pF to 16 pF are sufficient for 32.768 kHz crystals that have a 12.5 pF CL specification. The internal load capacitor selection must not be used for high frequency crystals and resonators. See crystal or resonator manufacturer's recommendation for parameters about load capacitance and RF.

<table>
<thead>
<tr>
<th>Oscillator mode</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low frequency (32 kHz-40 kHz), low power</td>
<td>Diagram 1</td>
</tr>
<tr>
<td>Low frequency (32 kHz-40 kHz), high gain</td>
<td>Diagram 2, Diagram 4</td>
</tr>
<tr>
<td>High/Medium frequency (1-32 MHz), low power</td>
<td>Diagram 3</td>
</tr>
<tr>
<td>High/Medium frequency (1-32 MHz), high gain</td>
<td>Diagram 4</td>
</tr>
</tbody>
</table>

Figure 35. Crystal connection – Diagram 1
7.2 Software considerations

All Kinetis MCUs are supported by comprehensive NXP and third-party hardware and software enablement solutions, which can reduce development costs and time to market. Featured software and tools are listed below. Visit http://www.nxp.com/kinetis/sw for more information and supporting collateral.

Evaluation and Prototyping Hardware
Part identification

- NXP Freedom Development Platform: http://www.nxp.com/freedom

IDEs for Kinetis MCUs
- Kinetis Design Studio IDE: http://www.nxp.com/kds
- Partner IDEs: http://www.nxp.com/kide

Development Tools
- PEG Graphics Software: http://www.nxp.com/peg

Run-time Software
- Kinetis SDK: http://www.nxp.com/ksdk
- Kinetis Bootloader: http://www.nxp.com/kboot
- ARM mbed Development Platform: http://www.nxp.com/mbed
- MQX RTOS: http://www.nxp.com/mqx

For all other partner-developed software and tools, visit http://www.nxp.com/partners.

8 Part identification

8.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

8.2 Format
Part numbers for this device have the following format:
Q KL## A FFF R T PP CC N
8.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Qualification status</td>
<td>• M = Fully qualified, general market flow
• P = Prequalification</td>
</tr>
<tr>
<td>KL##</td>
<td>Kinetis family</td>
<td>• KL28</td>
</tr>
<tr>
<td>A</td>
<td>Key attribute</td>
<td></td>
</tr>
<tr>
<td>FFF</td>
<td>Program flash memory size</td>
<td>• 256 = 256 KB
• 512 = 512 KB</td>
</tr>
<tr>
<td>R</td>
<td>Silicon revision</td>
<td>• (Blank) = Main
• A = Revision after main</td>
</tr>
<tr>
<td>T</td>
<td>Temperature range (°C)</td>
<td>• V = –40 to 105</td>
</tr>
<tr>
<td>PP</td>
<td>Package identifier</td>
<td>• LL = 100 LQFP (14 mm x 14 mm)
• DC = 121XFBGA (8mm x 8mm)</td>
</tr>
<tr>
<td>CC</td>
<td>Maximum CPU frequency (MHz)</td>
<td>• 7 = 72 MHz</td>
</tr>
<tr>
<td>N</td>
<td>Packaging type</td>
<td>• R = Tape and reel
• (Blank) = Trays</td>
</tr>
</tbody>
</table>

8.4 Example

This is an example part number:
MKL28Z512VDC7
MKL28Z512VLL7

9 Terminology and guidelines

9.1 Definitions

Key terms are defined in the following table:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Terminology and guidelines

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating requirements</td>
<td>A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.</td>
</tr>
<tr>
<td>Operating behavior</td>
<td>A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.</td>
</tr>
</tbody>
</table>
| Typical value | A specified value for a technical characteristic that:
| |
| | - Lies within the range of values specified by the operating behavior
| | - Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions. |

NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.

9.2 Examples

Operating rating:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>1.0 V core supply voltage</td>
<td>0.9</td>
<td>1.1</td>
<td>V</td>
</tr>
</tbody>
</table>

Operating requirement:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>1.0 V core supply voltage</td>
<td>0.9</td>
<td>1.1</td>
<td>V</td>
</tr>
</tbody>
</table>

Operating behavior that includes a typical value:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{WP}</td>
<td>Digital I/O weak pullup/pulldown current</td>
<td>10</td>
<td>70</td>
<td>130</td>
<td>μA</td>
</tr>
</tbody>
</table>
9.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Ambient temperature</td>
<td>25</td>
<td>°C</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>Supply voltage</td>
<td>3.3</td>
<td>V</td>
</tr>
</tbody>
</table>

9.4 Relationship between ratings and operating requirements

<table>
<thead>
<tr>
<th>Operating (power on)</th>
<th>Fatal range</th>
<th>Degraded operating range</th>
<th>Normal operating range</th>
<th>Degraded operating range</th>
<th>Fatal range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected permanent failure</td>
<td>- No permanent failure - Possible decreased life - Possible incorrect operation</td>
<td>- No permanent failure - Correct operation</td>
<td>- No permanent failure - Possible decreased life - Possible incorrect operation</td>
<td>Expected permanent failure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handling (power off)</th>
<th>Fatal range</th>
<th>Handling range</th>
<th>Fatal range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected permanent failure</td>
<td>No permanent failure</td>
<td>Expected permanent failure</td>
</tr>
</tbody>
</table>

9.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip’s ratings.
- During normal operation, don’t exceed any of the chip’s operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.
10 Revision History

The following table provides a revision history for this document.

Table 53. Revision History

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Date</th>
<th>Substantial Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08/2015</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
| 1 | 10/2015 | • Removed "Ready Play module (RPM)" from the features list
| | | • Added "96 MHz high speed mode" to the features list under "Core"
| | | • Updated the values in the following sections:
| | | • Voltage and current operating requirements
| | | • Power mode transition operating behaviors
| | | • EMC radiated emissions operating behaviors
| | | • General switching specifications
| | | • Oscillator frequency specifications
| | | • 16-bit ADC operating conditions
| | | • LPSPI switching specifications
| | | • LP12C specifications
| | | • Created new table for topic "Power consumption operating behaviors"
| | | • Updated the pinouts
| | | • Updated the "Terminology and guidelines" section to a new format |
| 2 | 04/2016 | • Removed 64-pin package information and marked 121-pin package information as "Package Your Way"
| | | • Updated the values in Power mode transition operating behaviors
| | | • Updated values and resolved TBDs in Power consumption operating behaviors
| | | • In section Diagram: Typical IDD_RUN operating behavior:
| | | • Added "For the ALLON curve, all peripheral clocks are enabled as specified in notes of Table 9."
| | | • Updated figures
| | | • Updated table in Slow IRC (SIRC) specifications
| | | • Removed section "Specification Test Methods"
| | | • In table VREF full-range operating behaviors, removed the user trim values and updated the factory trim values |
| 2.1 | 06/2016 | • In table Table 10 Low power mode peripheral adders — typical value, removed I_{USB_Alive} |