
SECTION 21
DEVELOPMENT SUPPORT

21.1 Overview

The visibility and controllability requirements of emulators and bus analyzers are in op-
position to the trend of modern microcomputers and microprocessors where many bus
cycles are directed to internal resources and are not visible externally.

In order to enhance the development tool visibility and controllability, some of the de-
velopment support functions are implemented in silicon. These functions include pro-
gram flow tracking, internal watchpoint, breakpoint generation, and emulation while in
debug mode.

This section covers program flow tracking support, breakpoint/watchpoint support, de-
velopment system interface support (debug mode) and software monitor debugger
support. These features allow the user to efficiently debug systems based on the
MPC555 / MPC556.

21.2 Program Flow Tracking

The mechanism described below allows tracking of program instruction flow with al-
most no performance degradation. The information provided may be compressed and
captured externally and then parsed by a post-processing program using the microar-
chitecture defined below.

The program instructions flow is visible on the external bus when the MPC555 /
MPC556 is programmed to operate in serial mode and show all fetch cycles on the ex-
ternal bus. This mode is selected by programming the ISCT_SER (instruction fetch
show cycle control) field in the I-bus support control register (ICTRL), as shown in Ta-
ble 21-21. In this mode, the processor is fetch serialized, and all internal fetch cycles
appear on the external bus. Processor performance is, therefore, much lower than
when working in regular mode.

These features, together with the fact that most fetch cycles are performed internally
(e.g., from the I-cache), increase performance but make it very difficult to provide the
user with the real program trace.

In order to reconstruct a program trace, the program code and the following additional
information from the MCU are needed:

• A description of the last fetched instruction (stall, sequential, branch not taken,
branch direct taken, branch indirect taken, exception taken)

• The addresses of the targets of all indirect flow change. Indirect flow changes in-
clude all branches using the link and count registers as the target address, all ex-
ceptions, and rfi, mtmsr and mtspr (to some registers) because they may cause
a context switch.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-1

• The number of instructions canceled each clock

Instructions are fetched sequentially until branches (direct or indirect) or exceptions
appear in the program flow or some stall in execution causes the machine not to fetch
the next address. Instructions may be architecturally executed, or they may be can-
celed in some stage of the machine pipeline.

The following sections define how this information is generated and how it should be
used to reconstruct the program trace. The issue of data compression that could re-
duce the amount of memory needed by the debug system is also mentioned.

21.2.1 Program Trace Cycle

To allow visibility of the events happening in the machine a few dedicated pins are
used and a special bus cycle attribute, program trace cycle, is defined.

The program trace cycle attribute is attached to all fetch cycles resulting from indirect
flow changes. When program trace recording is needed, the user can make sure these
cycles are visible on the external bus.

The VSYNC indication, when asserted, forces all fetch cycles marked with the pro-
gram trace cycle attribute to be visible on the external bus even if their data is found
in one of the internal devices. To enable the external hardware to properly synchronize
with the internal activity of the CPU, the assertion and negation of VSYNC forces the
machine to synchronize. The first fetch after this synchronization is marked as a pro-
gram trace cycle and is visible on the external bus. For more information on the activity
of the external hardware during program trace refer to 21.2.4 The External Hardware.

In order to keep the pin count of the chip as low as possible, VSYNC is not implement-
ed as one of the chip’s external pins. It is asserted and negated using the serial inter-
face implemented in the development port. For more information on this interface refer
to 21.5 Development Port

Forcing the CPU to show all fetch cycles marked with the program trace cycle attribute
can be done either by asserting the VSYNC pin (as mentioned above) or by program-
ming the fetch show cycle bits in the instruction support control register, ICTRL. For
more information refer to 21.2.5 Instruction Fetch Show Cycle Control

When the VSYNC indication is asserted, all fetch cycles marked with the program
trace cycle attribute are made visible on the external bus. These cycles can generate
regular bus cycles (address phase and data phase) when the instructions reside only
in one of the external devices. Or, they can generate address-only cycles when the
instructions reside in one of the internal devices (internal memory, etc.).

When VSYNC is asserted, some performance degradation is expected due to the ad-
ditional external bus cycles. However, since this performance degradation is expected
to be very small, it is possible to program the machine to show all indirect flow chang-
es. In this way, the machine will always perform the additional external bus cycles and
maintain exactly the same behavior both when VSYNC is asserted and when it is ne-
gated. For more information refer to 21.7.6 I-Bus Support Control Register.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-2

The status pins are divided into two groups and one special case listed below:

21.2.1.1 Instruction Queue Status Pins — VF [0:2]

Instruction queue status pins denote the type of the last fetched instruction or how
many instructions were flushed from the instruction queue. These status pins are used
for both functions because queue flushes only happen in clocks that there is no fetch
type information to be reported.

Possible instruction types are defined in Table 21-1.

Table 21-2 shows VF[0:2] encodings for instruction queue flush information.

Table 21-1 VF Pins Instruction Encodings

VF[0:2] Instruction Type VF Next Clock Will Hold

000 None More instruction type information

001 Sequential More instruction type information

010 Branch (direct or indirect) not taken More instruction type information

011
VSYNC was asserted/negated and therefore the
next instruction will be marked with the indirect
change-of-flow attribute

More instruction type information

100
Exception taken — the target will be marked with the
indirect change-of-flow attribute Queue flush information1

NOTES:
1. Unless next clock VF=111. See below.

101

Branch indirect taken, rfi, mtmsr, isync and in some
cases mtspr to CMPA-F, ICTRL, ECR, or DER —
the target will be marked with the indirect change-of-

flow attribute2

2. The sequential instructions listed here affect the machine in a manner similar to indirect branch instructions.
Refer to 21.2.3 Sequential Instructions Marked as Indirect Branch.

Queue flush information1

110 Branch direct taken Queue flush information1

111 Branch (direct or indirect) not taken Queue flush information1
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-3

21.2.1.2 History Buffer Flushes Status Pins— VFLS [0..1]

The history buffer flushes status pins denote how many instructions are flushed from
the history buffer this clock due to an exception.Table 21-3 shows VFLS encodings.

21.2.1.3 Queue Flush Information Special Case

There is one special case when although queue flush information is expected on the
VF pins, (according to the last value on the VF pins), regular instruction type informa-
tion is reported. The only instruction type information that can appear in this case is VF
= 111, branch (direct or indirect) NOT taken. Since the maximum queue flushes pos-
sible is five, it is easy to identify this special case.

21.2.2 Program Trace when in Debug Mode

When entering debug mode an interrupt/exception taken is reported on the VF pins,
(VF = 100) and a cycle marked with the program trace cycle is made visible externally.

When the CPU is in debug mode, the VF pins equal ‘000’ and the VFLS pins equal
‘11’. For more information on debug mode refer to 21.4 Development System Inter-
face

If VSYNC is asserted/negated while the CPU is in debug mode, this information is re-
ported as the first VF pins report when the CPU returns to regular mode. If VSYNC
was not changed while in debug mode. the first VF pins report will be of an indirect
branch taken (VF = 101), suitable for the rfi instruction that is being issued. In both

Table 21-2 VF Pins Queue Flush Encodings

VF[0:2] Queue Flush Information

000 0 instructions flushed from instruction queue

001 1 instruction flushed from instruction queue

010 2 instructions flushed from instruction queue

011 3 instructions flushed from instruction queue

100 4 instructions flushed from instruction queue

101 5 instructions flushed from instruction queue

110 Reserved

111 Instruction type information1

NOTES:
1. Refer to Table 21-1.

Table 21-3 VFLS Pin Encodings

VFLS[0:1] History Buffer Flush Information

00 0 instructions flushed from history queue

01 1 instruction flushed from history queue

10 2 instructions flushed from history queue

11
Used for debug mode indication (FREEZE). Program trace ex-
ternal hardware should ignore this setting.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-4

cases the first instruction fetch after debug mode is marked with the program trace cy-
cle attribute and therefore is visible externally.

21.2.3 Sequential Instructions Marked as Indirect Branch

There are cases when non-branch (sequential) instructions may effect the machine in
a manner similar to indirect branch instructions. These instructions include rfi, mtmsr,
isync and mtspr to CMPA-F, ICTRL, ECR and DER.

These instructions are marked by the CPU as indirect branch instructions (VF = 101)
and the following instruction address is marked with the same program trace cycle at-
tribute as if it were an indirect branch target. Therefore, when one of these special in-
structions is detected in the CPU, the address of the following instruction is visible
externally. In this way the reconstructing software is able to evaluate correctly the ef-
fect of these instructions.

21.2.4 The External Hardware

When program trace is needed, the external hardware needs to sample the status pins
(VF and VFLS) each clock cycle and the address of all cycles marked with the program
trace cycle attribute.

Program trace can be used in various ways. Below are two examples of how program
trace can be used:

• Back trace — Back trace is useful when a record of the program trace before
some event occurred is needed. An example of such an event is some system
failure.
In case back trace is needed the external hardware should start sampling the sta-
tus pins (VF and VFLS) and the address of all cycles marked with the program
trace cycle attribute immediately when reset is negated. If show cycles is pro-
grammed out of reset to show all, all cycles marked with program trace cycle at-
tribute are visible on the external bus. VSYNC should be asserted sometime after
reset and negated when the programmed event occurs. If no show is pro-
grammed for show cycles, make sure VSYNC is asserted before the Instruction
show cycles programming is changed from show all.
Note that in case the timing of the programmed event is unknown it is possible to
use cyclic buffers.
After VSYNC is negated the trace buffer will contain the program flow trace of the
program executed before the programmed event occurred.

• Window trace — Window trace is useful when a record of the program trace be-
tween two events is needed. In case window trace is needed the VSYNC pin
should be asserted between these two events.
After the VSYNC pin is negated the trace buffer will contain information describing
the program trace of the program executed between the two events.

21.2.4.1 Synchronizing the Trace Window to the CPU Internal Events

The assertion/negation of VSYNC is done using the serial interface implemented in the
development port. In order to synchronize the assertion/negation of VSYNC to an in-
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-5

ternal event of the CPU, it is possible to use the internal breakpoints together with de-
bug mode. This method is available only when debug mode is enabled. For more
information on debug mode refer to 21.4 Development System Interface

The following is an example of steps that enable the user to synchronize the trace win-
dow to the CPU internal events:

1. Enter debug mode, either immediately out of reset or using the debug mode re-
quest

2. Program the hardware to break on the event that marks the start of the trace
window using the control registers defined in 21.3 Watchpoints and Break-
points Support

3. Enable debug mode entry for the programmed breakpoint in the debug enable
register (DER). See 21.7.12 Debug Enable Register (DER))

4. Return to the regular code run (see 21.4.1.6 Exiting Debug Mode)
5. The hardware generates a breakpoint when the programmed event is detected

and the machine enters debug mode (see 21.4.1.2 Entering Debug Mode)
6. Program the hardware to break on the event that marks the end of the trace

window
7. Assert VSYNC
8. Return to the regular code run. The first report on the VF pins is a VSYNC (VF

= 011).
9. The external hardware starts sampling the program trace information upon the

report on the VF pins of VSYNC
10. The hardware generates a breakpoint when the programmed event is detected

and the machine enters debug mode
11. Negate VSYNC
12. Return to the regular code run (issue an rfi). The first report on the VF pins is a

VSYNC (VF = 011)
13. The external hardware stops sampling the program trace information upon the

report on the VF pins of VSYNC

21.2.4.2 Detecting the Trace Window Start Address

When using back trace, latching the value of the status pins (VF and VFLS), and the
address of the cycles marked as program trace cycle, should start immediately after
the negation of reset. The start address is the first address in the program trace cycle
buffer.

When using window trace, latching the value of the status pins (VF and VFLS), and
the address of the cycles marked as program trace cycle, should start immediately af-
ter the first VSYNC is reported on the VF pins. The start address of the trace window
should be calculated according to first two VF pins reports.

Assuming that VF1 and VF2 are the two first VF pins reports and T1 and T2 are the
two addresses of the first two cycles marked with the program trace cycle attribute that
were latched in the trace buffer, use the following table to calculate the trace window
start address.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-6

21.2.4.3 Detecting the Assertion/Negation of VSYNC

Since the VF pins are used for reporting both instruction type information and queue
flush information, the external hardware must take special care when trying to detect
the assertion/negation of VSYNC. When VF = 011 it is a VSYNC assertion/negation
report only if the previous VF pins value was one of the following values: 000, 001, or
010.

21.2.4.4 Detecting the Trace Window End Address

The information on the status pins that describes the last fetched instruction and the
last queue/history buffer flushes, changes every clock. Cycles marked as program
trace cycle are generated on the external bus only when possible (when the SIU wins
the arbitration over the external bus). Therefore, there is some delay between the in-
formation reported on the status pins that a cycle marked as program trace cycle will
be performed on the external bus and the actual time that this cycle can be detected
on the external bus.

When VSYNC is negated by the user (through the serial interface of the development
port), the CPU delays the report of the of the assertion/negation of VSYNC on the VF
pins (VF = 011) until all addresses marked with the program trace cycle attribute were
visible externally. Therefore, the external hardware should stop sampling the value of
the status pins (VF and VFLS), and the address of the cycles marked as program trace
cycle immediately after the VSYNC report on the VF pins.

The last two instructions reported on the VF pins are not always valid. Therefore at the
last stage of the reconstruction software, the last two instructions should be ignored.

21.2.4.5 Compress

In order to store all the information generated on the pins during program trace (five
bits per clock + 30 bits per show cycle) a large memory buffer may be needed. How-
ever, since this information includes events that were canceled, compression can be
very effective. External hardware can be added to eliminate all canceled instructions
and report only on branches (taken and not taken), indirect flow change, and the num-
ber of sequential instructions after the last flow change.

Table 21-4 Detecting the Trace Buffer Start Point

VF1 VF2 Starting point Description

011
VSYNC

001
sequential

T1
VSYNC asserted followed by a sequential instruction. The
start address is T1

011
VSYNC

110
branch direct taken

T1 - 4 +
offset (T1 - 4)

VSYNC asserted followed by a taken direct branch. The
start address is the target of the direct branch

011
VSYNC

101
branch indirect tak-

en
T2

VSYNC asserted followed by a taken indirect branch. The
start address is the target of the indirect branch
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-7

21.2.5 Instruction Fetch Show Cycle Control

Instruction fetch show cycles are controlled by the bits in the ICTRL and the state of
VSYNC. The following table defines the level of fetch show cycles generated by the
CPU. For information on the fetch show cycles control bits refer to Table 21-5

NOTE

A cycle marked with the program trace cycle attribute is generated for
any change in the VSYNC state (assertion or negation).

21.3 Watchpoints and Breakpoints Support

Watchpoints, when detected, are reported to the external world on dedicated pins but
do not change the timing and the flow of the machine. Breakpoints, when detected,
force the machine to branch to the appropriate exception handler. The CPU supports
internal watchpoints, internal breakpoints, and external breakpoints.

Internal watchpoints are generated when a user programmable set of conditions are
met. Internal breakpoints can be programmed to be generated either as an immediate
result of the assertion of one of the internal watchpoints, or after an internal watchpoint
is asserted for a user programmable times. Programming a certain internal watchpoint
to generate an internal breakpoint can be done either in software, by setting the cor-
responding software trap enable bit, or on the fly using the serial interface implement-
ed in the development port to set the corresponding development port trap enable bit.

External breakpoints can be generated by any of the peripherals of the system, includ-
ing those found on the MPC555 / MPC556 or externally, and also by an external de-
velopment system. Peripherals found on the external bus use the serial interface of the
development port to assert the external breakpoint.

In the CPU, as in other RISC processors, saving/restoring machine state on the stack
during exception handling, is done mostly in software. When the software is in the mid-
dle of saving/restoring machine state, the MSR[RI] bit is cleared. Exceptions that occur
and that are handled by the CPU when the MSR[RI] bit is clear result in a non-restart-
able machine state. For more information refer to 3.15.4 Interrupts

In general, breakpoints are recognized in the CPU is only when the MSR[RI] bit is set,
which guarantees machine restartability after a breakpoint. In this working mode
breakpoints are said to be masked. There are cases when it is desired to enable

Table 21-5 Fetch Show Cycles Control

VSYNC
ISCTL

Instruction Fetch Show Cycle
Control Bits ISCTRL[ISCT_SER]

Show Cycles Generated

X x00 All fetch cycles

X x01 All change of flow (direct & indirect)

X x10 All indirect change of flow

0 x11 No show cycles are performed

1 x11 All indirect change of flow
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-8

breakpoints even when the MSR[RI] bit is clear, with the possible risk of causing a non-
restartable machine state. Therefore internal breakpoints have also a programmable
non-masked mode, and an external development system can also choose to assert a
non-maskable external breakpoint.

Watchpoints are not masked and therefore always reported on the external pins, re-
gardless of the value of the MSR[RI] bit. The counters, although counting watchpoints,
are part of the internal breakpoints logic and therefore are not decremented when the
CPU is operating in the masked mode and the MSR[RI] bit is clear.

The following figure illustrates the watchpoints and breakpoints support of the CPU.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-9

Figure 21-1 Watchpoints and Breakpoint Support in the CPU

B
re

ak
po

in
t

N
on

-m
as

ka
bl

e
B

re
ak

po
in

t

M
S

R
[R

I]

W
at

ch
po

in
ts

T
o

w
at

ch
po

in
ts

 p
in

s

M
as

ka
bl

e
B

re
ak

po
in

t

D
ev

el
op

m
en

t P
or

t T
ra

p
E

na
bl

e
B

its

C
o

u
n

te
rs

(N
on

-m
as

ke
d

C
on

tr
ol

 B
it)

In
te

rn
al

W
at

ch
p

o
in

ts
L

o
g

ic

D
ev

el
o

p
m

en
t

P
o

rt

L
C

T
R

L
2

M
S

R

S
of

tw
ar

e
tr

ap
 E

na
bl

e
B

its

to
 C

P
U

D
ev

el
o

p
m

en
t

S
ys

te
m

 O
R

E
xt

er
n

al
P

er
ip

h
er

al
s

In
te

rn
al

P
er

ip
h

er
al

s

X
X

X
bi

t w
is

e
A

N
D

bi
t w

is
e

O
R

XX
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-10

21.3.1 Internal Watchpoints and Breakpoints

This section describes the internal breakpoints and watchpoints support of the CPU.
For information on external breakpoints support refer to 21.4 Development System
Interface

Internal breakpoint and watchpoint support is based on eight comparators comparing
information on instruction and load/store cycles, two counters, and two AND-OR logic
structures. The comparators perform compare on the Instruction address (I-address),
on the load/store address (L-address) and on the load/store data (L-data).

The comparators are able to detect the following conditions: equal, not equal, greater
than, less than (greater than or equal and less than or equal are easily obtained from
these four conditions, for more information refer to 21.3.1.6 Generating Six Compare
Types). Using the AND-OR logic structures “in range” and “out of range” detections
(on address and on data) are supported. Using the counters, it is possible to program
a breakpoint to be recognized after an event was detected a predefined number of
times.

The L-data comparators can operate on fix point data of load or store. When operating
on fix point data the L-data comparators are able to perform compare on bytes, half-
words and words and can treat numbers either as signed or as unsigned values.

The comparators generate match events. The match events enter the instruction
AND-OR logic where the instruction watchpoints and breakpoint are generated. The
instruction watchpoints, when asserted, may generate the instruction breakpoint. Two
of them may decrement one of the counters. If one of the instruction watchpoints ex-
pires in a counter that is counting, the instruction breakpoint is asserted.

The instruction watchpoints and the load/store match events (address and data) enter
the load/store AND-OR logic where the load/store watchpoints and breakpoint are
generated. The load/store watchpoints, when asserted, may generate the load/store
breakpoint or they may decrement one of the counters. When a counter that is count-
ing one of the load/store watchpoints expires, the load/store breakpoint is asserted.

Watchpoints progress in the machine and are reported on retirement. Internal break-
points progress in the machine until they reach the top of the history buffer when the
machine branches to the breakpoint exception routine.

In order to enable the user to use the breakpoint features without adding restrictions
on the software, the address of the load/store cycle that generated the load/store
breakpoint is not stored in the DAR (data address register), like other load/store type
exceptions. In case of a load/store breakpoint, the address of the load/store cycle that
generated the breakpoint is stored in an implementation-dependent register called the
BAR (breakpoint address register).

Key features of internal watchpoint and breakpoint support are:

• Four I-address comparators (each supports equal, not equal, greater than, less
than)

• Two L-address comparators (each supports equal, not equal, greater than, less
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-11

than) including least significant bits masking according to the size of the bus cycle
for the byte and half-word working modes. Refer to 21.3.1.2 Byte and Half-Word
Working Modes

• Two L-data comparators (each supports equal, not equal, greater than, less than)
including byte, half-word and word operating modes and four byte mask bits for
each comparator. Can be used for fix point data. Match is detected only on the
valid part of the data bus (according to the cycle’s size and the two address least
significant bits).

• No internal breakpoint/watchpoint matching support for unaligned words and half-
words

• The L-data comparators can be programmed to treat fix point numbers as signed
values or as unsigned values

• Combine comparator pairs to detect in and out of range conditions (including ei-
ther signed or unsigned values on the L-data)

• A programmable AND-OR logic structure between the four instruction compara-
tors results with five outputs, four instruction watchpoints and one instruction
breakpoint

• A programmable AND-OR logic structure between the four instruction watch-
points and the four load/store comparators results with three outputs, two load/
store watchpoints and one load/store breakpoint

• Five watchpoint pins, three for the instruction and two for the load/store
• Two dedicated 16-bit down counters. Each can be programmed to count either

an instruction watchpoint or an load/store watchpoint. Only architecturally execut-
ed events are counted, (count up is performed in case of recovery).

• On the fly trap enable programming of the different internal breakpoints using the
serial interface of the development port (refer to 21.5 Development Port). Soft-
ware control is also available.

• Watchpoints do not change the timing of the machine
• Internal breakpoints and watchpoints are detected on the instruction during in-

struction fetch
• Internal breakpoints and watchpoints are detected on the load/store during load/

store bus cycles
• Both instruction and load/store breakpoints and watchpoints are handled and re-

ported on retirement. Breakpoints and watchpoints on recovered instructions (as
a result of exceptions, interrupts or miss prediction) are not reported and do not
change the timing of the machine.

• Instructions with instruction breakpoints are not executed. The machine branches
to the breakpoint exception routine BEFORE it executes the instruction.

• Instructions with load/store breakpoints are executed. The machine branches to
the breakpoint exception routine AFTER it executes the instruction. The address
of the access is placed in the BAR (breakpoint address register).

• Load/store multiple and string instructions with load/store breakpoints first finish
execution (all of it) and then the machine branches to the breakpoint exception
routine.

• Load/store data compare is done on the load/store, AFTER swap in store access-
es and BEFORE swap in load accesses (as the data appears on the bus).

• Internal breakpoints may operate either in masked mode or in non-masked mode.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-12

• Both “go to x” and “continue” working modes are supported for the instruction
breakpoints.

21.3.1.1 Restrictions

There are cases when the same watchpoint can be detected more than once during
the execution of a single instruction, e.g. a load/store watchpoint is detected on more
than one transfer when executing a load/store multiple/string or a load/store watch-
point is detected on more than one byte when working in byte mode. In all these cases
only one watchpoint of the same type is reported for a single instruction. Similarly, only
one watchpoint of the same type can be counted in the counters for a single instruc-
tion.

Since watchpoint events are reported upon the retirement of the instruction that
caused the event, and more than one instruction can retire from the machine in one
clock, consequent events may be reported in the same clock. Moreover the same
event, if detected on more than one instruction (e.g., tight loops, range detection), in
some cases will be reported only once. Note that the internal counters count correctly
in these cases.

Do not put a breakpoint on an mtspr ICTRL instruction. When a breakpoint is set on
an mtspr ICTRL Rx instruction and the value of bit 28 (IFM) is one, the result will be
unpredictable. A breakpoint can be taken or not on the instruction and the value of the
IFM bit can be either zero or one. Also, do not put a breakpoint on an mtspr ICTRL Rx
instruction when Rx contains one in bit 28.

21.3.1.2 Byte and Half-Word Working Modes

The CPU watchpoints and breakpoints support enables the user to detect matches on
bytes and half-words even when accessed using a load/store instruction of larger data
widths, for example when loading a table of bytes using a series of load word instruc-
tions. In order to use this feature, the user needs to program the byte mask for each
of the L-data comparators and to write the needed match value to the correct half-word
of the data comparator when working in half-word mode and to the correct bytes of the
data comparator when working in byte mode.

Since bytes and half-words can be accessed using a larger data width instruction, it is
impossible for the user to predict the exact value of the L-address lines when the re-
quested byte/half-word is accessed, (e.g., if the matched byte is byte two of the word
and it is accessed using a load word instruction), the L-address value will be of the
word (byte zero). Therefore, the CPU masks the two least-significant bits of the L-ad-
dress comparators whenever a word access is performed and the least-significant bit
whenever a half-word access is performed.

Address range is supported only when aligned according to the access size. (See ex-
amples)
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-13

21.3.1.3 Examples

• A fully supported scenario:
Looking for:
Data size: Byte
Address: 0x00000003
Data value: greater than 0x07 and less than 0x0c

Programming options:
One L-address comparator = 0x00000003 and program for equal
One L-data comparator = 0x00000007 and program for greater than
One L-data comparator = 0x0000000c and program for less than
Both byte masks = 0xe
Both L-data comparators program to byte mode
Result: The event will be correctly detected regardless of the load/store instruc-
tion the compiler chooses for this access

• A fully supported scenario:
Looking for:
Data size: half-word
Address: greater than 0x00000000 and less than 0x0000000c
Data value: greater than 0x4e204e20 and less than 0x9c409c40
Programming option:
One L-address comparator = 0x00000000 and program for greater than
One L-address comparator = 0x0000000c and program for less than
One L-data comparator = 0x4e204e20 and program for greater than
One L-data comparator = 0x9c409c40 and program for less than
Both byte masks = 0x0
Both L-data comparators program to half-word mode
Result: The event will be correctly detected as long as the compiler does not use
a load/store instruction with data size of byte.

• A partially supported scenario:
Looking for:
Data size: half-word
Address: greater than or equal 0x00000002 and less than 0x0000000e
Data value: greater than 0x4e204e20 and less than 0x9c409c40
Programming option:
One L-address comparator = 0x00000001 and program for greater than
One L-address comparator = 0x0000000e and program for less than
One L-data comparator = 0x4e204e20 and program for greater than
One L-data comparator = 0x9c409c40 and program for less than
Both byte masks = 0x0
Both L-data comparators program to half-word mode or to word mode
Result: The event will be correctly detected if the compiler chooses a load/store
instruction with data size of half-word. If the compiler chooses load/store instruc-
tions with data size greater than half-word (word, multiple), there might be some
false detections.

These can be ignored only by the software that handles the breakpoints. The following
figure illustrates this partially supported scenario.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-14

Figure 21-2 Partially Supported Watchpoint/Breakpoint Example

21.3.1.4 Context Dependent Filter

The CPU can be programmed to either recognize internal breakpoints only when the
recoverable interrupt bit in the MSR is set (masked mode) or it can be programmed to
always recognize internal breakpoints (non-masked mode).

When the CPU is programmed to recognize internal breakpoints only when MSRRI =
1, it is possible to debug all parts of the code except when the machine status save/
restore registers (SRR0 and SRR1), DAR (data address register) and DSISR (data
storage interrupt status register) are busy and, therefore, MSRRI = 0, (in the prologues
and epilogues of interrupt/exception handlers).

When the CPU is programmed always to recognize internal breakpoints, it is possible
to debug all parts of the code. However, if an internal breakpoint is recognized when
MSRRI = 0 (SRR0 and SRR1 are busy), the machine enters into a non-restartable
state. For more information refer to 3.15.4 Interrupts

When working in the masked mode, all internal breakpoints detected when MSRRI =
0 are lost. Watchpoints detected in this case are not counted by the debug counters.
Watchpoints detected are always reported on the external pins, regardless of the value
of the MSRRI bit.

Out of reset, the CPU is in masked mode. Programming the CPU to be in non-masked
mode is done by setting the BRKNOMSK bit in the LCTRL2 register. Refer to 21.7.8
L-Bus Support Control Register 2 The BRKNOMSK bit controls all internal break-
points (I-breakpoints and L-breakpoints).

21.3.1.5 Ignore First Match

In order to facilitate the debugger utilities “continue” and “go from x”, the ignore first
match option is supported for instruction breakpoints. When an instruction breakpoint
is first enabled (as a result of the first write to the instruction support control register or
as a result of the assertion of the MSRRI bit when operating in the masked mode), the
first instruction will not cause an instruction breakpoint if the ignore first match (IFM)
bit in the instruction support control register (ICTRL) is set (used for “continue”).

Possible false detect on these half-words when using word/multiple

0x00000000

0x00000004

0x00000008

0x0000000C
0x00000010
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-15

When the IFM bit is clear, every matched instruction can cause an instruction break-
point (used for “go from x”). This bit is set by the software and cleared by the hardware
after the first instruction breakpoint match is ignored. Load/store breakpoints and all
counter generated breakpoints (instruction and load/store) are not affected by this
mode.

21.3.1.6 Generating Six Compare Types

Using the four compare types mentioned above (equal, not equal, greater than, less
than) it is possible to generate also two more compare types: greater than or equal and
less than or equal.

• Generating the greater than or equal compare type can be done by using the
greater than compare type and programming the comparator to the needed value
minus 1.

• Generating the less than or equal compare type can be done by using the less
than compare type and programming the comparator to the needed value plus 1.

This method does not work for the following boundary cases:

• Less than or equal of the largest unsigned number (1111...1)
• Greater than or equal of the smallest unsigned number (0000...0)
• Less than or equal of the maximum positive number when in signed mode

(0111...1)
• Greater than or equal of the maximum negative number when in signed mode

(1000...)

These boundary cases need no special support because they all mean ‘always true’
and can be programmed using the ignore option of the load/store watchpoint program-
ming (refer to 21.3 Watchpoints and Breakpoints Support).

21.3.2 Instruction Support

There are four instruction address comparators A,B,C, and D. Each is 30 bits long,
generating two output signals: equal and less than. These signals are used to gener-
ate one of the following four events: equal, not equal, greater than, less than.

The instruction watchpoints and breakpoint are generated using these events and ac-
cording to user programming. Note that using the OR option enables “out of range” de-
tect.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-16

Figure 21-3 Instruction Support General Structure

21.3.2.1 Load/Store Support

There are two load/store address comparators E, and F. Each compares the 32 ad-
dress bits and the cycle’s attributes (read/write). The two least-significant bits are

Table 21-6 Instruction Watchpoints Programming Options

Name Description Programming options

IWP0 First instruction watchpoint
Comparator A

Comparators (A&B)

IWP1 Second instruction watchpoint
Comparator B

Comparator (A | B)

IWP2 Third instruction watchpoint
Comparator C

Comparators (C&D)

IWP3 Fourth instruction watchpoint
Comparator D

Comparator (C | D)

Comparator A

eq

lt

Compare Type

Comparator B

eq

lt

Comparator C

eq

lt

Comparator D

eq

lt

E
ve

n
ts

 G
en

er
at

o
r AND-OR

Logic

Control Bits

A

B

(A&B)

(A | B)

C

D

(C&D)

(C | D)

I-Watchpoint 0

I-Watchpoint 1

I-Breakpoint

I-Watchpoint 2

I-Watchpoint 3

Compare
Type
Logic

Compare
Type
Logic

Compare
Type
Logic

Compare
Type
Logic
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-17

masked (ignored) whenever a word is accessed and the least-significant bit is masked
whenever a half-word is accessed. (For more information refer to 21.3.1.2 Byte and
Half-Word Working Modes). Each comparator generates two output signals: equal
and less than. These signals are used to generate one of the following four events
(one from each comparator): equal, not equal, greater than, less than.

There are two load/store data comparators (comparators G,H) each is 32 bits wide and
can be programmed to treat numbers either as signed values or as unsigned values.
Each data comparator operates as four independent byte comparators. Each byte
comparator has a mask bit and generates two output signals: equal and less than, if
the mask bit is not set. Therefore, each 32 bit comparator has eight output signals.

These signals are used to generate the “equal and less than” signals according to the
compare size programmed by the user (byte, half-word, word). When operating in byte
mode all signals are significant, when operating in half-word mode only four signals
from each 32 bit comparator are significant. When operating in word mode only two
signals from each 32 bit comparator are significant.

From the new “equal and less than” signals and according to the compare type pro-
grammed by the user one of the following four match events are generated: equal, not
equal, greater than, less than. Therefore, from the two 32-bit comparators eight match
indications are generated: Gmatch[0:3], Hmatch[0:3].

According to the lower bits of the address and the size of the cycle, only match indica-
tions that were detected on bytes that have valid information are validated, the rest are
negated. Note that if the cycle executed has a smaller size than the compare size (e.g.,
a byte access when the compare size is word or half-word) no match indication will be
asserted.

Using the match indication signals four load/store data events are generated in the fol-
lowing way.

The four load/store data events together with the match events of the load/store ad-
dress comparators and the instruction watchpoints are used to generate the load/store
watchpoints and breakpoint according to the users programming.

Table 21-7 Load/Store Data Events

Event Name Event Function1

NOTES:
1. ‘&’ denotes a logical AND, ‘|’ denotes a logical OR

G (Gmatch0 | Gmatch1 | Gmatch2 | Gmatch3)

H (Hmatch0 | Hmatch1 | Hmatch2 | Hmatch3)

(G&H) ((Gmatch0 & Hmatch0) | (Gmatch1 & Hmatch1) | (Gmatch2 & Hmatch2) | (Gmatch3 & Hmatch3))

(G | H) ((Gmatch0 | Hmatch0) | (Gmatch1 | Hmatch1) | (Gmatch2 | Hmatch2) | (Gmatch3 | Hmatch3))
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-18

Note that when programming the load/store watchpoints to ignore L-addr events and
L-data events, it does not reduce the load/store watchpoints detection logic to be in-
struction watchpoint detection logic since the instruction must be a load/store instruc-
tion for the load/store watchpoint event to trigger.

Table 21-8 Load/Store Watchpoints Programming Options

Name Description
Instruction Events

Programming
Options

L-address Events
Programming Options

L-data Events
Programming Options

LWP0
First

Load/store watch-
point

IWP0, IWP1, IWP2,
IWP3,

ignore instruction
events

Comparator E
Comparator F

Comparators (E&F)
Comparators (E | F)
ignore L-addr events

Comparator G
Comparator H

Comparators (G&H)
Comparators (G | H)
ignore L-data events

LWP1
Second

Load/store watch-
point

IWP0, IWP1, IWP2,
IWP3,

ignore instruction
events

Comparator E
Comparator F

Comparators (E&F)
Comparators (E | F)
ignore I-addr events

Comparator G
Comparator H

Comparators (G&H)
Comparators (G | H)
ignore L-data events
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-19

Figure 21-4 Load/Store Support General Structure

co
m

p
ar

at
o

r
G

B
yt

e
0

eq lt

C
o

m
p

ar
e

S
iz

e
C

o
m

p
ar

e
T

yp
e

B
yt

e
1

eq lt

B
yt

e
2

eq lt

B
yt

e
3

eq lt

eq lt eq lt eq lt eq lt

C
o

m
p

ar
at

o
r

H

B
yt

e
0

eq lt

B
yt

e
1

eq lt

B
yt

e
2

eq lt

B
yt

e
3

eq lt

eq lt eq lt eq lt eq lt

add(30:31)

D
at

a
C

yc
le

 S
iz

e

Compare Size

Valid 0

Valid 1
Valid 2
Valid 3

G H

(G
&

H
)

(G
 |

H
)

Instruction Watchpoints

L
-w

at
ch

p
o

in
t

0

L
-w

at
ch

p
o

in
t

1

L
-b

re
ak

p
o

in
t

S
iz

e
L

o
g

ic
C

o
m

p
ar

e
B

yt
e

Q
u

al
if

ie
r

L
o

g
ic

Events Generator

A
N

D
-O

R
 L

o
g

ic
S

iz
e

L
o

g
ic

B
yt

e
Q

u
al

if
ie

r
L

o
g

ic

Control bits

E

F
(E&F)
(E | F)

C
o

m
p

ar
at

o
r

E

T
yp

e
L

o
g

ic E
ve

n
ts

G
en

er
at

o
r

lt
eq

C
o

m
p

ar
at

o
r

F

T
yp

e
L

o
g

ic

lt
eq

C
o

m
p

ar
e

T
yp

e

T
yp

e
L

o
g

ic

C
o

m
p

ar
e

T
yp

e
L

o
g

ic

B
yt

e
M

as
k

B
yt

e
M

as
k

MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-20

21.3.3 Watchpoint Counters

There are two 16-bit watchpoint counters. Each counter is able to count one of the in-
struction watchpoints or one of the load/store watchpoints. Both generate the corre-
sponding breakpoint when they reach ZERO.

When working in the masked mode, the counters do not count watchpoints detected
when MSRRI = 0. See 21.3.1.4 Context Dependent Filter

The counters value when counting watchpoints programmed on the actual instructions
that alter the counters, are not predictable. Reading values from the counters when
they are active, must be synchronized by inserting a sync instruction before the actual
read is performed.

NOTE

When programmed to count instruction watchpoints, the last instruc-
tion which decrements the counter to ZERO is treated like any other
instruction breakpoint in the sense that it is not executed and the ma-
chine branches to the breakpoint exception routine BEFORE it exe-
cutes this instruction. As a side effect of this behavior, the value of
the counter inside the breakpoint exception routine equals ONE and
not ZERO as might be expected.

When programmed to count load/store watchpoints, the last instruction which decre-
ments the counter to ZERO is treated like any other load/store breakpoint in the sense
that it is executed and the machine branches to the breakpoint exception routine AF-
TER it executes this instruction. Therefore, the value of the counter inside the break-
point exception routine equals ZERO.

21.3.3.1 Trap Enable Programming

The trap enable bits can be programmed by regular software (only if MSRPR = 0) us-
ing THE mtspr instruction or “on the fly” using the special development port interface.
For more information refer to section 21.5.6.5 Development Port Serial Communi-
cations — Trap Enable Mode.

The value used by the breakpoints generation logic is the bit wise OR of the software
trap enable bits, (the bits written using the mtspr) and the development port trap en-
able bits (the bits serially shifted using the development port).

All bits, the software trap enable bits and the development port trap enable bits, can
be read from ICTRL and the LCTRL2 using mfspr. For the exact bits placement refer
to 21.7.6 I-Bus Support Control Register and to 21.7.8 L-Bus Support Control
Register 2

21.4 Development System Interface

When debugging an existing system, it is sometimes desirable to be able to do so with-
out the need to insert any changes in the existing system. In some cases it is not de-
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-21

sired, or even impossible, to add load to the lines connected to the existing system.
The development system interface of the CPU supports such a configuration.

The development system interface of the CPU uses a dedicated serial port (the devel-
opment port) and, therefore, does not need any of the regular system interfaces. Con-
trolling the activity of the system from the development port is done when the CPU is
in the debug mode. The development port is a relatively economical interface (three
pins) that allows the development system to operate in a lower frequency than the fre-
quency of the CPU. Note that it is also possible to debug the CPU using monitor de-
bugger software, for more information refer to 21.6 Software Monitor Debugger
Support.

Debug mode is a state where the CPU fetches all instructions from the development
port. In addition, when in debug mode, data can be read from the development port
and written to the development port. This allows memory and registers to be read and
modified by a development tool (emulator) connected to the development port.

For protection purposes, two possible working modes are defined: debug mode en-
able and debug mode disable. These working modes are selected only during reset.
For more information refer to 21.4.1.1 Debug Mode Enable vs. Debug Mode Disable

The user can work in debug mode starting from reset or the CPU can be programmed
to enter debug mode as a result of a predefined list of events. These events include
all possible interrupts and exceptions in the CPU system, including the internal break-
points, together with two levels of development port requests (masked and non-
masked) and one peripheral breakpoint request that can be generated by any one of
the peripherals of the system (including internal and external modules). Each event
can be programmed either to be treated as a regular interrupt that causes the machine
to branch to its interrupt vector, or to be treated as a special interrupt that causes de-
bug mode entry.

When in debug mode an rfi instruction will return the machine to its regular work mode.

The relationship between the debug mode logic to the rest of the CPU chip is shown
in the following figure.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-22

Figure 21-5 Functional Diagram of MPC555 / MPC556 Debug Mode Support

The development port provides a full duplex serial interface for communications be-
tween the internal development support logic of the CPU and an external development
tool. The development port can operate in two working modes: the trap enable mode
and the debug mode.

The trap enable mode is used in order to shift into the CPU internal development sup-
port logic the following control signals:

1. Instruction trap enable bits, used for on the fly programming of the instruction
breakpoint

2. Load/store trap enable bits, used for on the fly programming of the load/store
breakpoint

3. Non-maskable breakpoint, used to assert the non-maskable external break-
point

4. Maskable breakpoint, used to assert the maskable external breakpoint
5. VSYNC, used to assert and negate VSYNC

32

Development Port

Development Port

32

35

ECR

DER

CPU Core

DPIR

DPDR

9

TECR

Control Logic

Shift Register
DSDO

VFLS,
FRZ

EXT
BUS

SIU/
EBI

BKPT, TE,
VSYNC

DSDI

DSCK

Development
Support

Logic
Port

Internal
Bus
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-23

In debug mode the development port controls also the debug mode features of the
CPU. For more information 21.5 Development Port

21.4.1 Debug Mode Support

The debug mode of the CPU provides the development system with the following basic
functions:

• Gives an ability to control the execution of the processor and maintain control on
it under all circumstances. The development port is able to force the CPU to enter
to the debug mode even when external interrupts are disabled.

• It is possible to enter debug mode immediately out of reset thus allowing the user
even to debug a ROM-less system.

• The user can selectively define, using an enable register, the events that will
cause the machine to enter into the debug mode.

• When in debug mode the user can detect the reason upon which the machine en-
tered debug mode by reading a cause register.

• Entering into the debug mode in all regular cases is restartable in the sense that
the user is able to continue to run his regular program from the location where it
entered the debug mode.

• When in debug mode all instructions are fetched from the development port but
load/store accesses are performed on the real system memory.

• Data Register of the development port is accessed using mtspr and mfspr in-
structions via special load/store cycles. (This feature together with the last one
enables easy memory dump & load).

• Upon entering debug mode, the processor gets into the privileged state (MSRPR
= 0). This allows execution of any instruction, and access to any storage location.

• An OR signal of all exception cause register (ECR) bits (ECR_OR) enables the
development port to detect pending events while already in debug mode. An ex-
ample is the ability of the development port to detect a debug mode access to a
non existing memory space.

The following figure illustrates the debug mode logic implemented in the CPU.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-24

Figure 21-6 Debug Mode Logic

5

Event valid

Event

setreset

ECR_OR

freeze

rfi

Decoder

Exception Cause Register

Debug Enable Register

Q

(ECR)

(DER)

debug mode enable
internal debug mode signal
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-25

21.4.1.1 Debug Mode Enable vs. Debug Mode Disable

For protection purposes two possible working modes are defined: debug mode enable
and debug mode disable. These working modes are selected only during reset.

Debug mode is enabled by asserting the DSCK pin during reset. The state of this pin
is sampled three clocks before the negation of SRESET.

NOTE

Since SRESET negation is done by an external pull up resistor any
reference here to SRESET negation time refers to the time the
MPC555 / MPC556 releases SRESET. If the actual negation is slow
due to large resistor, set up time for the debug port signals should be
set accordingly.

If the DSCK pin is sampled negated, debug mode is disabled until a subsequent reset
when the DSCK pin is sampled in the asserted state. When debug mode is disabled
the internal watchpoint/breakpoint hardware will still be operational and may be used
by a software monitor program for debugging purposes.

When working in debug mode disable, all development support registers (see list in
Table 21-14) are accessible to the supervisor code (MSRPR = 0) and can be used by
a monitor debugger software. However, the processor never enters debug mode and,
therefore, the exception cause register (ECR) and the debug enable register (DER)
are used only for asserting and negating the freeze signal. For more information on the
software monitor debugger support refer to 21.6 Software Monitor Debugger Sup-
port.

When working in debug mode enable, all development support registers are accessi-
ble only when the CPU is in debug mode. Therefore, even supervisor code that may
be still under debug cannot prevent the CPU from entering debug mode. The develop-
ment system has full control of all development support features of the CPU through
the development port. Refer to Table 21-16

21.4.1.2 Entering Debug Mode

Entering debug mode can be a result of a number of events. All events have a pro-
grammable enable bit so the user can selectively decide which events result in debug
mode entry and which in regular interrupt handling.

Entering debug mode is also possible immediately out of reset, thus allowing the user
to debug even a ROM-less system. Using this feature is possible by special program-
ming of the development port during reset. If the DSCK pin continues to be asserted
following SRESET negation (after enabling debug mode) the processor will take a
breakpoint exception and go directly to debug mode instead of fetching the reset vec-
tor. To avoid entering debug mode following reset, the DSCK pin must be negated no
later than seven clock cycles after SRESET negates. In this case, the processor will
jump to the reset vector and begin normal execution. When entering debug mode im-
mediately after reset, bit 31 (development port interrupt) of the exception cause regis-
ter (ECR) is set.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-26

Figure 21-7 Debug Mode Reset Configuration

When debug mode is disabled all events result in regular interrupt handling.

D
S

C
K

O
U

T
C

LK S
R

E
S

E
T

D
S

C
K

 a
ss

er
ts

 h
ig

h
w

hi
le

 S
R

E
S

E
T

 a
ss

er
te

d
to

 e
na

bl
e

de
bu

g
m

od
e

op
er

at
io

n.

0
1

2
3

4
5

8
9

10
11

12
13

14
15

16
17

 D
S

C
K

 a
ss

er
ts

 h
ig

h
fo

llo
w

in
g

S
R

E
S

E
T

 n
eg

at
io

n
to

 e
na

bl
e

de
bu

g
m

od
e

im
m

ed
ia

te
ly

.

MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-27

The internal freeze signal is asserted whenever an enabled event occurs, regardless
if debug mode is enabled or disabled. The internal freeze signal is connected to all rel-
evant internal modules. These modules can be programmed to stop all operations in
response to the assertion of the freeze signal. Refer to 21.6.1 Freeze Indication.

The freeze indication is negated when exiting debug mode. Refer to 21.4.1.6 Exiting
Debug Mode

The following list contains the events that can cause the CPU to enter debug mode.
Each event results in debug mode entry if debug mode is enabled and the correspond-
ing enable bit is set. The reset values of the enable bits let the user, in most cases, to
use of the debug mode features without the need to program the debug enable register
(DER). For more information refer to 21.7.12 Debug Enable Register (DER).

• NMI exception as a result of the assertion of the IRQ0_B pin. For more information
refer to 3.15.4.1 System Reset Interrupt

• Check stop. Refer to 21.4.1.3 The Check Stop State and Debug Mode

• Machine check exception

• Implementation specific instruction protection error

• Implementation specific data protection error

• External interrupt, recognized when MSREE = 1

• Alignment interrupt

• Program interrupt

• Floating point unavailable exception

• Floating point assist exception

• Decrementer exception, recognized when MSREE = 1

• System call exception

• Trace, asserted when in single trace mode or when in branch trace mode (refer to
3.15.4.10 Trace Interrupt)

• Implementation dependent software emulation exception

• Instruction breakpoint, when breakpoints are masked (BRKNOMSK bit in the
LCTRL2 is clear) recognized only when MSRRI = 1, when breakpoints are not
masked (BRKNOMSK bit in the LCTRL2 is set) always recognized

• Load/store breakpoint, when breakpoints are masked (BRKNOMSK bit in the
LCTRL2 is cleared) recognized only when MSRRI = 1, when breakpoints are not
masked (BRKNOMSK bit in the LCTRL2 is set) always recognized

• Peripherals breakpoint, from the development port, internal and external modules.
are recognized only when MSRRI = 1.

• Development port non-maskable interrupt, as a result of a debug station request.
Useful in some catastrophic events like an endless loop when MSRRI = 0. As a result
of this event the machine may enter a non-restartable state, for more information re-
fer to 3.15.4 Interrupts.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-28

The processor enters into the debug mode state when at least one of the bits in the
exception cause register (ECR) is set, the corresponding bit in the debug enable reg-
ister (DER) is enabled and debug mode is enabled. When debug mode is enabled and
an enabled event occurs, the processor waits until its pipeline is empty and then starts
fetching the next instructions from the development port. For information on the exact
value of machine status save/restore registers (SRR0 and SRR1) refer to 3.15.4 In-
terrupts

When the processor is in debug mode the freeze indication is asserted thus allowing
any peripheral that is programmed to do so to stop. The fact that the CPU is in debug
mode is also broadcast to the external world using the value b11 on the VFLS pins.

NOTE

The freeze signal can be asserted by software when debug mode is
disabled.

The development port should read the value of the exception cause register (ECR) in
order to get the cause of the debug mode entry. Reading the exception cause register
(ECR) clears all its bits.

21.4.1.3 The Check Stop State and Debug Mode

The CPU enters the check stop state if the machine check interrupt is disabled
(MSRME = 0) and a machine check interrupt is detected. However, if a machine check
interrupt is detected when MSRME = 0, debug mode is enabled and the check stop
enable bit in the debug enable register (DER) is set, the CPU enters debug mode rath-
er then the check stop state.

The different actions taken by the CPU when a machine check interrupt is detected
are shown in the following table.

21.4.1.4 Saving Machine State upon Entering Debug Mode

If entering debug mode was as a result of any load/store type exception, and therefore
the DAR (data address register) and DSISR (data storage interrupt status register)

Table 21-9 The Check Stop State and Debug Mode

MSRME

Debug
Mode

Enable
CHSTPE1

NOTES:
1. Check stop enable bit in the debug enable register (DER)

MCIE2

2. Machine check interrupt enable bit in the debug enable register (DER)

Action Performed by the CPU when
Detecting a Machine Check Interrupt

Exception Cause
Register (ECR)

Value

0 0 X X Enter the check stop state 0x20000000

1 0 X X Branch to the machine check interrupt 0x10000000

0 1 0 X Enter the check stop state 0x20000000

0 1 1 X Enter Debug Mode 0x20000000

1 1 X 0 Branch to the machine check interrupt 0x10000000

1 1 X 1 Enter Debug Mode 0x10000000
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-29

have some significant value, these two registers must be saved before any other op-
eration is performed. Failing to save these registers may result in loss of their value in
case of another load/store type exception inside the development software.

Since exceptions are treated differently when in debug mode (refer to 21.4.1.5 Run-
ning in Debug Mode), there is no need to save machine status save/restore zero reg-
ister (SRR0) and machine status save/restore one register (SRR1).

21.4.1.5 Running in Debug Mode

When running in debug mode all fetch cycles access the development port regardless
of the actual address of the cycle. All load/store cycles access the real memory system
according to the cycle’s address. The data register of the development port is mapped
as a special control register therefore it is accessed using mtspr and mfspr instruc-
tions via special load/store cycles (refer to 21.7.13 Development Port Data Register
(DPDR)).

Exceptions are treated differently when running in debug mode. When already in de-
bug mode, upon recognition of an exception, the exception cause register (ECR) is up-
dated according to the event that caused the exception, a special error indication
(ECR_OR) is asserted for one clock cycle to report to the development port that an
exception occurred and execution continues in debug mode without any change in
SRR0 and SRR1. ECR_OR is asserted before the next fetch occurs to allow the de-
velopment system to detect the excepting instruction.

Not all exceptions are recognized when in debug mode. Breakpoints and watchpoints
are not generated by the hardware when in debug mode (regardless of the value of
MSRRI). Upon entering debug mode MSREE is cleared by the hardware thus forcing
the hardware to ignore external and decrementer interrupts.

Setting the MSREE bit while in debug mode, (by the debug software), is strictly forbid-
den. The reason for this restriction is that the external interrupt event is a level signal,
and since the CPU only reports exceptions while in debug mode but do not treat them,
the CPU does not clear the MSREE bit and, therefore, this event, if enabled, is recog-
nized again every clock cycle.

When the ECR_OR signal is asserted the development station should investigate the
exception cause register (ECR) in order to find out the event that caused the excep-
tion.

Since the values in SRR0 and SRR1 do not change if an exception is recognized while
already in debug mode, they only change once when entering debug mode, saving
them when entering debug mode is not necessary.

21.4.1.6 Exiting Debug Mode

The rfi instruction is used to exit from debug mode in order to return to the normal pro-
cessor operation and to negate the freeze indication. The development system may
monitor the freeze status to make sure the MPC555 / MPC556 is out of debug mode.
It is the responsibility of the software to read the exception cause register (ECR) before
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-30

performing the rfi. Failing to do so will force the CPU to immediately re-enter to debug
mode and to re-assert the freeze indication in case an asserted bit in the interrupt
cause register (ECR) has a corresponding enable bit set in the debug enable register
(DER).

21.5 Development Port

The development port provides a full duplex serial interface for communications be-
tween the internal development support logic including debug mode and an external
development tool.

The relationship of the development support logic to the rest of the CPU chip is shown
in Figure 21-5. The development port support logic is shown as a separate block for
clarity. It is implemented as part of the SIU module.

21.5.1 Development Port Pins

The following development port pin functions are provided:

1. Development serial clock (DSCK)
2. Development serial data in (DSDI)
3. Development serial data out (DSDO)

21.5.2 Development Serial Clock

The development serial clock (DSCK) is used to shift data into and out of the develop-
ment port shift register. At the same time, the new most significant bit of the shift reg-
ister is presented at the DSDO pin. In all further discussions references to the DSCK
signal imply the internal synchronized value of the clock. The DSCK input must be driv-
en either high or low at all times and not allowed to float. A typical target environment
would pull this input low with a resistor.

The clock may be implemented as a free running clock or as gated clock. As discussed
in section 21.5.6.5 Development Port Serial Communications — Trap Enable
Mode and section 21.5.6.8 Development Port Serial Communications — Debug
Mode, the shifting of data is controlled by ready and start signals so the clock does not
need to be gated with the serial transmissions.

The DSCK pin is also used at reset to enable debug mode and immediately following
reset to optionally cause immediate entry into debug mode following reset.

21.5.3 Development Serial Data In

Data to be transferred into the development port shift register is presented at the de-
velopment serial data in (DSDI) pin by external logic. To be sure that the correct value
is used internally. When driven asynchronous (synchronous) with the system clock,
the data presented to DSDI must be stable a setup time before the rising edge of
DSCK (CLKOUT) and a hold time after the rising edge of DSCK (CLKOUT).
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-31

The DSDI pin is also used at reset to control the overall chip configuration mode and
to determine the development port clock mode. See section 21.5.6.4 Development
Port Serial Communications — Clock Mode Selection for more information.

21.5.4 Development Serial Data Out

The debug mode logic shifts data out of the development port shift register using the
development serial data out (DSDO) pin. All transitions on DSDO are synchronous
with DSCK or CLKOUT depending on the clock mode. Data will be valid a setup time
before the rising edge of the clock and will remain valid a hold time after the rising edge
of the clock.

Refer to Table 21-12 for DSDO data meaning.

21.5.5 Freeze Signal

The freeze indication means that the processor is in debug mode (i.e., normal proces-
sor execution of user code is frozen). On the MPC555 / MPC556, the freeze state can
be indicated by three different pins. The FRZ signal is generated synchronously with
the system clock. This indication may be used to halt any off-chip device while in de-
bug mode as well as a handshake means between the debug tool and the debug port.
The internal freeze status can also be monitored through status in the data shifted out
of the debug port.

21.5.5.1 SGPIO6/FRZ/PTR Pin

The SGPIO6/FRZ/PTR pin powers up as the PTR function and its function is controlled
by the GPC bits in the SIUMCR.

21.5.5.2 IWP[0:1]/VFLS[0:1] Pins

The IWP[0:1]/VFLS[0:1] pins power up as the VFLS[0:1] function and their function
can be changed via the DBGC bits in the SIUMCR (see 6.13.1.1 SIU Module Config-
uration Register). They can also be set via the reset configuration word (See 7.5.2
Hard Reset Configuration Word). The FRZ state is indicated by the value b11 on the
VFLS[0:1] pins.

21.5.5.3 VFLS[0:1]_MPIO32B[3:4] Pins

The VFLS[0:1]_MPIO32B[3:4] Pins power up as the MPIO32B[3:4] function and their
function can be changed via the VFLS bit in the MIOS1TPCR register (see section
15.15.1.1). The FRZ state is indicated by the value b11 on the VFLS[0:1] pins.

21.5.6 Development Port Registers

The development port consists logically of the three registers: development port in-
struction register (DPIR), development port data register (DPDR), and trap enable
control register (TECR). These registers are physically implemented as two registers,
development port shift register and trap enable control register. The development port
shift register acts as both the DPIR and DPDR depending on the operation being per-
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-32

formed. It is also used as a temporary holding register for data to be stored into the
TECR. These registers are discussed below in more detail.

21.5.6.1 Development Port Shift Register

The development port shift register is a 35-bit shift register. Instructions and data are
shifted into it serially from DSDI using DSCK (or CLKOUT depending on the debug
port clock mode, refer to 21.5.6.4 Development Port Serial Communications —
Clock Mode Selection) as the shift clock. These instructions or data are then trans-
ferred in parallel to the CPU, the trap enable control register (TECR). When the pro-
cessor enters debug mode it fetches instructions from the DPIR which causes an
access to the development port shift register. These instructions are serially loaded
into the shift register from DSDI using DSCK (or CLKOUT) as the shift clock. In a sim-
ilar way, data is transferred to the CPU by moving it into the shift register which the
processor reads as the result of executing a “move from special purpose register DP-
DR” instruction. Data is also parallel-loaded into the development port shift register
from the CPU by executing a “move to special purpose register DPDR” instruction. It
is then shifted out serially to DSDO using DSCK (or CLKOUT) as the shift clock.

21.5.6.2 Trap Enable Control Register

The trap enable control register is a 9-bit register that is loaded from the development
port shift register. The contents of the control register are used to drive the six trap en-
able signals, the two breakpoint signals, and the VSYNC signal to the CPU. The
“transfer data to trap enable control register” commands will cause the appropriate bits
to be transferred to the control register.

The trap enable control register is not accessed by the CPU, but instead supplies sig-
nals to the CPU. The trap enable bits, VSYNC bit, and the breakpoint bits of this reg-
ister are loaded from the development port shift register as the result of trap enable
mode transmissions. The trap enable bits are reflected in ICTRL and LCTRL2 special
registers. See 21.7.6 I-Bus Support Control Register and 21.7.8 L-Bus Support
Control Register 2.

21.5.6.3 Development Port Registers Decode

The development port shift register is selected when the CPU accesses DPIR or DP-
DR. Accesses to these two special purpose registers occur in debug mode and appear
on the internal bus as an address and the assertion of an address attribute signal in-
dicating that a special purpose register is being accessed. The DPIR register is read
by the CPU to fetch all instructions when in debug mode and the DPDR register is read
and written to transfer data between the CPU and external development tools. The
DPIR and DPDR are pseudo registers. Decoding either of these registers will cause
the development port shift register to be accessed. The debug mode logic knows
whether the CPU is fetching instructions or reading or writing data. If what the CPU is
expecting and what the register receives from the serial port do not match (instruction
instead of data) the mismatch is used to signal a sequence error to the external devel-
opment tool.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-33

21.5.6.4 Development Port Serial Communications — Clock Mode Selection

All of the serial transmissions are clock transmissions and are therefore synchronous
communications. However, the transmission clock may be either synchronous or
asynchronous with the system clock (CLKOUT). The development port allows the user
to select two methods for clocking the serial transmissions. The first method allows the
transmission to occur without being externally synchronized with CLKOUT, in this
mode a serial clock DSCK must be supplied to the MPC555 / MPC556. The other com-
munication method requires a data to be externally synchronized with CLKOUT.

The first clock mode is called “asynchronous clock” since the input clock (DSCK) is
asynchronous with CLKOUT. To be sure that data on DSDI is sampled correctly, tran-
sitions on DSDI must occur a setup time ahead and a hold time after the rising edge
of DSCK. This clock mode allows communications with the port from a development
tool which does not have access to the CLKOUT signal or where the CLKOUT signal
has been delayed or skewed. Refer to the timing diagram in Figure 21-8

The second clock mode is called “synchronous self clock”. It does not require an input
clock. Instead the port is timed by the system clock. The DSDI input is required to meet
setup and hold time requirements with respect to CLKOUT rising edge. The data rate
for this mode is always the same as the system clock. Refer to the timing diagram in
Figure 21-9.

The selection of clock or self clock mode is made at reset. The state of the DSDI input
is latched eight clocks after SRESET negates. If it is latched low, asynchronous clock
mode is enabled. If it is latched high then synchronous self clock mode is enabled.

Since DSDI is used to select the development port clocking scheme, it is necessary to
prevent any transitions on DSDI during this time from being recognized as the start of
a serial transmission. The port will not begin scanning for the start bit of a serial trans-
mission until 16 clocks after the negation of SRESET. If DSDI is asserted 16 clocks
after SRESET negation, the port will wait until DSDI is negated to begin scanning for
the start bit.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-34

Figure 21-8 Asynchronous Clock Serial Communications

D
S

C
K

D
S

D
I

M
O

D
E

C
N

T
R

L
D

I<
0>

S
<0

>
S

<
1>

D
O

<
0>

S
TA

R
T

R
E

A
D

Y
D

S
D

O

D
eb

ug
 P

or
t d

riv
es

 “
re

ad
y”

 b
it

on
to

 D
S

D
O

 w
he

n
re

ad
y

fo
r

a
ne

w
 tr

an
sm

is
si

on
.

D
eb

ug
 P

or
t d

et
ec

ts
 th

e
“s

ta
rt

”
bi

t o
n

D
S

D
I a

nd
 fo

llo
w

s
th

e
“r

ea
dy

”
bi

t w
ith

 tw
o

st
at

us
 b

its
 a

nd
 7

 o
r

32
 o

ut
pu

t d
at

a
bi

ts
.

D
ev

el
op

m
en

t T
oo

l d
riv

es
 th

e
“s

ta
rt

”
bi

t o
n

D
S

D
I (

af
te

r
de

te
ct

in
g

“r
ea

dy
”

bi
t o

n
D

S
D

O
 w

he
n

in
 d

eb
ug

 m
od

e)
. T

he
 “

st
ar

t”
 b

it
is

 im
m

ed
ia

te
ly

 fo
llo

w
ed

 b
y

a
m

od
e

bi
t a

nd
 a

 c
on

tr
ol

 b
it

an
d

th
en

 7
 o

r
32

 in
pu

t d
at

a
bi

ts
.

N
O

T
E

: D
S

C
K

 a
nd

 D
S

D
I t

ra
ns

iti
on

s
ar

e
no

t r
eq

ui
re

d
to

 b
e

sy
nc

hr
on

ou
s

w
ith

 C
LK

O
U

T.

D
I

D
I

D
I

<N
>

<
N

-1
>

<N
-2

>

D
O

D
O

D
O

<N
>

<N
-1

>
<N

-2
>

MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-35

Figure 21-9 Synchronous Self Clock Serial Communication

O
U

T
C

LK

D
ev

el
op

m
en

t T
oo

l d
riv

es
 th

e
“s

ta
rt

”
bi

t o
n

D
S

D
I (

af
te

r
de

te
ct

in
g

“r
ea

dy
”

bi
t o

n

D
eb

ug
 P

or
t d

riv
es

 “
re

ad
y”

 b
it

on
to

 D
S

D
O

 w
he

n
C

P
U

 s
ta

rt
s

a
re

ad
 o

f D
P

IR
 o

r
D

P
D

R
.

D
S

D
I

D
eb

ug
 P

or
t d

et
ec

ts
 th

e
“s

ta
rt

”
bi

t o
n

D
S

D
I a

nd
 fo

llo
w

s
th

e
“r

ea
dy

”
bi

t w
ith

 tw
o

st
at

us
 b

its
 a

nd
 7

 o
r

32
 o

ut
pu

t d
at

a
bi

ts
.

M
O

D
E

C
N

T
R

L
D

I<
0>

S
TA

R
T

D
I

D
I

D
I

D
I<

1>
D

I

1

<
N

>
<N

-1
>

<
N

-2
>

<
N

-3
>

D
I<

D
S

D
O

 w
he

n
in

 d
eb

ug
 m

od
e)

. T
he

 “
st

ar
t”

 b
it

is
 im

m
ed

ia
te

ly
 fo

llo
w

ed
 b

y
a

m
od

e
bi

t a
nd

 a
 c

on
tr

ol
 b

it
an

d
th

en
 7

 o
r

32
 in

pu
t d

at
a

bi
ts

.

S
<

0>
S

<
1>

D
O

<
0>

R
E

A
D

Y
D

O
D

O
D

O
D

S
D

O
D

O
D

O
<

1>
<N

>
<N

-1
>

<N
-2

>
<

N
-3

>

MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-36

Figure 21-10 Enabling Clock Mode Following Reset

D
S

D
I

O
U

T
C

LK

S
R

E
S

E
T

 D
S

D
I n

eg
at

es
 fo

llo
w

in
g

S
R

E
S

E
T

 n
eg

at
io

n
to

 e
na

bl
e

cl
oc

ke
d

m
od

e.

C
LK

E
N

In
te

rn
al

 c
lo

ck
 e

na
bl

e
si

gn
al

 a
ss

er
ts

 8
 c

lo
ck

s
af

te
r

S
R

E
S

E
T

 n
eg

at
io

n
if

D
S

D
I i

s
ne

ga
te

d.
 T

hi
s

en
ab

le
s

cl
oc

ke
d

m
od

e.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

F
irs

t S
ta

rt
 b

it
de

te
ct

ed
 a

fte
r

D
S

D
I n

eg
at

io
n

(s
el

f c
lo

ck
ed

 m
od

e)
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-37

21.5.6.5 Development Port Serial Communications — Trap Enable Mode

When in not in debug mode the development port starts communications by setting
DSDO (the MSB of the 35-bit development port shift register) low to indicate that all
activity related to the previous transmission are complete and that a new transmission
may begin. The start of a serial transmission from an external development tool to the
development port is signaled by a start bit. A mode bit in the transmission defines the
transmission as either a trap enable mode transmission or a debug mode transmis-
sion. If the mode bit is set the transmission will only be 10 bits long and only seven
data bits will be shifted into the shift register. These seven bits will be latched into the
TECR. A control bit determines whether the data is latched into the trap enable and
VSYNC bits of the TECR or into the breakpoints bits of the TECR.

21.5.6.6 Serial Data into Development Port — Trap Enable Mode

The development port shift register is 35 bits wide but trap enable mode transmissions
only use the start/ready bit, a mode/status bit, a control/status bit, and the seven least
significant data bits. The encoding of data shifted into the development port shift reg-
ister (through the DSDI pin) is shown in Table 21-10 and Table 21-11 below:

The watchpoint trap enables and VSYNC functions are described in section 21.3
Watchpoints and Breakpoints Support and section 21.2 Program Flow Tracking.

Table 21-10 Trap Enable Data Shifted into Development Port Shift Register

Start Mode Con-
trol

1st 2nd 3rd 4th 1st 2nd

VSYNC Function- - - - - - Instruction- - - - - - - - Data- -

Watchpoint Trap Enables

1 1 0 0 = disabled; 1 = enabled
Transfer Data to
Trap Enable
Control Register

Table 21-11 Debug Port Command Shifted Into Development Port Shift Register

Start Mode Con-
trol

Extended
Opcode Major Opcode Function

1 1 1

x x

00000 NOP

00001 Hard Reset request

00010 Soft Reset request

0 x 00011 Reserved

1 0 00011 End Download procedure

1 1 00011 Start Download procedure

x x 00100... 11110 Reserved

x 0 11111 Negate Maskable breakpoint.

x 1 11111 Assert Maskable breakpoint.

0 x 11111 Negate Non Maskable breakpoint.

1 x 11111 Assert Non Maskable breakpoint.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-38

The debug port command function allows the development tool to either assert or ne-
gate breakpoint requests, reset the processor, activate or deactivate the fast down-
load procedure.

21.5.6.7 Serial Data Out of Development Port — Trap Enable Mode

In trap enable mode the only response out of the development port is “sequencing er-
ror.”

Data that can come out of the development port is shown in Table 21-12. “Valid data
from CPU” and “CPU interrupt” status cannot occur in trap enable mode.

When not in debug mode the sequencing error encoding indicates that the transmis-
sion from the external development tool was a debug mode transmission. When a se-
quencing error occurs the development port will ignore the data shifted in while the
sequencing error was shifting out. It will be treated as a NOP function.

Finally, the null output encoding is used to indicate that the previous transmission did
not have any associated errors.

When not in debug mode, ready will be asserted at the end of each transmission. If
debug mode is not enabled and transmission errors can be guaranteed not to occur,
the status output is not needed.

21.5.6.8 Development Port Serial Communications — Debug Mode

When in debug mode the development port starts communications by setting DSDO
low to indicate that the CPU is trying to read an instruction from DPIR or data from DP-
DR. When the CPU writes data to the port to be shifted out the ready bit is not set. The
port waits for the CPU to read the next instruction before asserting ready. This allows
duplex operation of the serial port while allowing the port to control all transmissions
from the external development tool. After detecting this ready status the external de-
velopment tool begins the transmission to the development port with a start bit (logic
high) on the DSDI pin.

Table 21-12 Status / Data Shifted Out of Development Port Shift Register

Ready Status [0:1]
Data

Function
Bit 0 Bit 1 Bits 2:31 or 2:6 —

(Depending on Input Mode)

(0) 0 0 Data Valid Data from CPU

(0) 0 1
Freeze

status1

NOTES:
1. The “Freeze” status is set to (1) when the CPU is in debug mode and to (0) otherwise.

Download
Procedure

in

progress2

2. The “Download Procedure in progress” status is asserted (0) when Debug port in the Download procedure and
is negated (1) otherwise.

1’s Sequencing Error

(0) 1 0 1’s CPU Interrupt

(0) 1 1 1’s Null
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-39

21.5.6.9 Serial Data Into Development Port

 In debug mode the 35 bits of the development port shift register are interpreted as a
start/ready bit, a mode/status bit, a control/status bit, and 32 bits of data. All instruc-
tions and data for the CPU are transmitted with the mode bit cleared indicating a 32-
bit data field. The encoding of data shifted into the development port shift register
(through the DSDI pin) is shown below in Table 21-13

.

Data values in the last two functions other than those specified are reserved.

All transmissions from the debug port on DSDO begin with a “0” or “ready” bit. This
indicates that the CPU is trying to read an instruction or data from the port. The exter-
nal development tool must wait until it sees DSDO go low to begin sending the next
transmission.

The control bit differentiates between instructions and data and allows the develop-
ment port to detect that an instruction was entered when the CPU was expecting data
and vice versa. If this occurs a sequence error indication is shifted out in the next serial
transmission.

The trap enable function allows the development tool to transfer data to the trap enable
control register.

The debug port command function allows the development tool to either negate break-
point requests, reset the processor, activate or deactivate the fast down load proce-
dure.

The NOP function provides a null operation for use when there is data or a response
to be shifted out of the data register and the appropriate next instruction or command
will be determined by the value of the response or data shifted out.

Table 21-13 Debug Instructions / Data Shifted Into Development Port Shift Register

Start Mode Control
Instruction / Data (32 Bits)

Function
Bits 0:6 Bits 7:31

1 0 0 CPU Instruction
Transfer Instruction

to CPU

1 0 1 CPU Data
Transfer Data

to CPU

1 1 0 Trap enable1

NOTES:
1. Refer to Table 21-10

Not exist
Transfer data to

Trap Enable
Control Register

1 1 1 0011111 Not exist
Negate breakpoint requests

to the CPU.

1 1 1 0 Not exist nop
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-40

21.5.6.10 Serial Data Out of Development Port

The encoding of data shifted out of the development port shift register in debug mode
(through the DSDO pin) is the same as for trap enable mode and is shown in Table
21-12.

Valid data encoding is used when data has been transferred from the CPU to the de-
velopment port shift register. This is the result of an instruction to move the contents
of a general purpose register to the debug port data register (DPDR). The valid data
encoding has the highest priority of all status outputs and will be reported even if an
interrupt occurs at the same time. Since it is not possible for a sequencing error to oc-
cur and also have valid data there is no priority conflict with the sequencing error sta-
tus. Also, any interrupt that is recognized at the same time that there is valid data is
not related to the execution of an instruction. Therefore, a valid data status will be out-
put and the interrupt status will be saved for the next transmission.

The sequencing error encoding indicates that the inputs from the external develop-
ment tool are not what the development port and/or the CPU was expecting. Two cas-
es could cause this error:

1. The processor was trying to read instructions and there was data shifted into
the development port, or

2. The processor was trying to read data and there was instruction shifted into the
development port. The port will terminate the read cycle with a bus error.

This bus error will cause the CPU to signal that an interrupt (exception) occurred.
Since a status of sequencing error has a higher priority than exception, the port will
report the sequencing error first, and the CPU interrupt on the next transmission. The
development port will ignore the command, instruction, or data shifted in while the se-
quencing error or CPU interrupt is shifted out. The next transmission after all error sta-
tus is reported to the port should be a new instruction, trap enable or command
(possibly the one that was in progress when the sequencing error occurred).

The interrupt-occurred encoding is used to indicate that the CPU encountered an in-
terrupt during the execution of the previous instruction in debug mode. Interrupts may
occur as the result of instruction execution (such as unimplemented opcode or arith-
metic error), because of a memory access fault, or from an unmasked external inter-
rupt. When an interrupt occurs the development port will ignore the command,
instruction, or data shifted in while the interrupt encoding was shifting out. The next
transmission to the port should be a new instruction, trap enable or debug port com-
mand.

Finally, the null encoding is used to indicate that no data has been transferred from the
CPU to the development port shift register.

21.5.6.11 Fast Download Procedure

The download procedure is used to download a block of data from the debug tool into
system memory. This procedure can be accomplished by repeating the following se-
quence of transactions from the development tool to the debug port for the number of
data words to be down loaded:
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-41

Figure 21-11 Download Procedure Code Example

For large blocks of data this sequence may take significant time to complete. The “fast
download procedure” of the debug port may be used to reduce this time. This time re-
duction is achieved by eliminating the need to transfer the instructions in the loop to
the debug port. The only transactions needed are those required to transfer the data
to be placed in system memory. Figure 21-12 and Figure 21-13 illustrate the time
benefit of the “fast download procedure”.

Figure 21-12 Slow Download Procedure Loop

Figure 21-13 Fast Download Procedure Loop

INIT:Save RX, RY
RY <- Memory Block address- 4

•••

repeat:mfsprRX, DPDR
DATA word to be moved to memory
stwuRX, 0x4(RY)
until here

•••

Restore RX,RY

External
MFSPR DATA STWUTransaction

Internal
Activity

External
DATATransaction

Internal
Activity
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-42

The sequence of the instructions used in the “fast download procedure” is the one il-
lustrated in Figure 21-11 with RX = r31 and RY = r30. This sequence is repeated infi-
nitely until the “end download procedure” command is issued to the debug port.

Note that, the internal general purpose register 31 is used for temporary storage data
value. Before beginning the “fast download procedure” by the “start download proce-
dure command”, The value of the first memory block address, – 4, must be written to
the general purpose register 30.

To end a download procedure, an “end download procedure” command should be is-
sued to the debug port, and then, additional DATA transaction should be sent by the
development tool. This data word will NOT be placed into the system memory, but it is
needed to stop the procedure gracefully.

21.6 Software Monitor Debugger Support

When in debug mode disable, a software monitor debugger can make use of all of the
development support features defined in the CPU. When debug mode is disabled all
events result in regular interrupt handling, i.e. the processor resumes execution in the
corresponding interrupt handler. The exception cause register (ECR) and the debug
enable register (DER) only influence the assertion and negation of the freeze signal.

21.6.1 Freeze Indication

The internal freeze signal is connected to all relevant internal modules. These modules
can be programmed to stop all operations in response to the assertion of the freeze
signal. In order to enable a software monitor debugger to broadcast the fact that the
debug software is now executed, it is possible to assert and negate the internal freeze
signal also when debug mode is disabled.

The assertion and negation of the freeze signal when in debug mode disable is con-
trolled by the exception cause register (ECR) and the debug enable register (DER) as
described in Figure 21-6. In order to assert the freeze signal the software needs to
program the relevant bits in the debug enable register (DER). In order to negate the
freeze line the software needs to read the exception cause register (ECR) in order to
clear it and perform an rfi instruction.

If the exception cause register (ECR) is not cleared before the rfi is performed the
freeze signal is not negated. Therefore it is possible to nest inside a software monitor
debugger without affecting the value of the freeze line although rfi may be performed
a few times. Only before the last rfi the software needs to clear the exception cause
register (ECR).

The above mechanism enables the software to accurately control the assertion and
the negation of the freeze signal.

21.7 Development Support Registers

Table 21-14 lists the registers used for development support. The registers are ac-
cessed with the mtspr and mfspr instructions.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-43

21.7.1 Register Protection

Table 21-15 and Table 21-16 summarize protection features of development support
registers during read and write accesses, respectively.

Table 21-14 Development Support Programming Model

SPR Number
(Decimal) Name

144
Comparator A Value Register (CMPA)
See Table 21-17 for bit descriptions.

145
Comparator B Value Register (CMPB)
See Table 21-17 for bit descriptions.

146
Comparator C Value Register (CMPC)
See Table 21-17 for bit descriptions.

147
Comparator D Value Register (CMPD)
See Table 21-17 for bit descriptions.

148
Exception Cause Register (ECR)
See Table 21-27 for bit descriptions.

149
Debug Enable Register (DER)
See Table 21-28 for bit descriptions.

150
Breakpoint Counter A Value and Control Register (COUNTA)
See Table 21-25 for bit descriptions.

151
Breakpoint Counter B Value and Control Register (COUNTB)
See Table 21-26 for bit descriptions.

152
Comparator E Value Register (CMPE)
See Table 21-18 for bit descriptions.

153
Comparator F Value Register (CMPF)
See Table 21-18 for bit descriptions.

154
Comparator G Value Register (CMPG)
See Table 21-20 for bit descriptions.

155
Comparator H Value Register (CMPH)
See Table 21-20 for bit descriptions.

156
L-Bus Support Control Register 1 (LCTRL1)
See Table 21-23 for bit descriptions.

157
L-Bus Support Control Register 2 (LCTRL2)
See Table 21-24 for bit descriptions.

158
I-Bus Support Control Register (ICTRL)
See Table 21-21 for bit descriptions.

159
Breakpoint Address Register (BAR)
See Table 21-19 for bit descriptions.

630
Development Port Data Register (DPDR)
See 21.7.13 Development Port Data Register (DPDR) for bit de-
scriptions.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-44

21.7.2 Comparator A–D Value Registers (CMPA–CMPD)

Table 21-15 Development Support Registers Read Access Protection

MSR[PR] Debug Mode
Enable In Debug Mode Result

0 0 X
Read is performed.
ECR is cleared when read.
Reading DPDR yields indeterminate data.

0 1 0
Read is performed.
ECR is not cleared when read.
Reading DPDR yields indeterminate data.

0 1 1
Read is performed.
ECR is cleared when read.

1 X X
Program exception is generated.
Read is not performed.
ECR is not cleared when read.

Table 21-16 Development Support Registers Write Access Protection

MSR[PR] Debug Mode
Enable In Debug Mode Result

0 0 X
Write is performed.
Write to ECR is ignored.
Writing to DPDR is ignored.

0 1 0
Write is not performed.
Writing to DPDR is ignored.

0 1 1
Write is performed.
Write to ECR is ignored.

1 X X
Write is not performed.
Program exception is generated.

CMPA–CMPD — Comparator A–D Value Register SPR 144 – SPR 147

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CMPAD

RESET: UNAFFECTED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPAD RESERVED

RESET: UNAFFECTED

Table 21-17 CMPA-CMPD Bit Descriptions

Bits Mnemonic Description

0:29 CMPAD Address bits to be compared

30:31 — Reserved
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-45

These registers are unaffected by reset.

21.7.3 Comparator E–F Value Registers

These registers are unaffected by reset.

21.7.4 Breakpoint Address Register (BAR)

21.7.5 Comparator G–H Value Registers (CMPG–CMPH)

These registers are unaffected by reset.

CMPE–CMPF — Comparator E–F Value Registers SPR 152, 153

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPEF

RESET: UNAFFECTED

Table 21-18 CMPE-CMPF Bit Descriptions

Bits Mnemonic Description

0:31 CMPV Address bits to be compared

BAR — Breakpoint Address Register SPR 159

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPEF

RESET: UNAFFECTED

Table 21-19 BAR Bit Descriptions

Bits Mnemonic Description

0:31 BARV[0:31] The address of the load/store cycle that generated the breakpoint

CMPG–CMPH — Comparator G–H Value Registers SPR 154, 155

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPGH

RESET: UNAFFECTED

Table 21-20 CMPG-CMPH Bit Descriptions

Bits Mnemonic Description

0:31 CMPGH Data bits to be compared
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-46

21.7.6 I-Bus Support Control Register

*Changing the instruction show cycle programming starts to take effect only from the second instruction after the actual
mtspr to ICTRL.

If the processor aborts a fetch of the target of a direct branch (due to an exception),
the target is not always visible on the external pins. Program trace is not affected by
this phenomenon.

ICTRL — I-Bus Support Control Register SPR 158

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTA CTB CTC CTD IWP0 IWP1

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IWP2 IWP3 SIWP0
EN

SIWP1
EN

SIWP2
EN

SIWP3
EN

DIWP0
EN

DIWP
1

EN

DIWP
2

EN

DIWP
3

EN
IIFM ISCT_SER*

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-47

Table 21-21 ICTRL Bit Descriptions

Bits Mnemonic Description Function

0:2 CTA Compare type of comparator A 0xx = not active (reset value)
100 = equal
101 = less than
110 = greater than
111 = not equal

3:5 CTB Compare type of comparator B

6:8 CTC Compare type of comparator C

9:11 CTD Compare type of comparator D

12:13 IWP0 I-bus 1st watchpoint programming
0x = not active (reset value)
10 = match from comparator A
11 = match from comparators (A&B)

14:15 W1 I-bus 2nd watchpoint programming
0x = not active (reset value)
10 = match from comparator B
11 = match from comparators (A | B)

16:17 IWP2 I-bus 3rd watchpoint programming
0x = not active (reset value)
10 = match from comparator C
11 = match from comparators (C&D)

18:19 IWP3 I-bus 4th watchpoint programming
0x = not active (reset value)
10 = match from comparator D
11 = match from comparators (C | D)

20 SIWP0EN
Software trap enable selection of
the 1st I-bus watchpoint

0 = trap disabled (reset value)
1 = trap enabled

21 SIWP1EN
Software trap enable selection of
the 2nd I-bus watchpoint

22 SIWP2EN
Software trap enable selection of
the 3rd I-bus watchpoint

23 SIWP3EN
Software trap enable selection of
the 4th I-bus watchpoint

24 DIWP0EN
Development port trap enable se-
lection of the 1st I-bus watchpoint
(read only bit)

0 = trap disabled (reset value)
1 = trap enabled

25 DIWP1EN
Development port trap enable se-
lection of the 2nd I-bus watchpoint
(read only bit)

26 DIWP2EN
Development port trap enable se-
lection of the 3rd I-bus watchpoint
(read only bit)

27 DIWP3EN
Development port trap enable se-
lection of the 4th I-bus watchpoint
(read only bit)

28 IIFM
Ignore first match, only for I-bus
breakpoints

0 = Do not ignore first match, used for “go to x” (re-
set value)

1 = Ignore first match (used for “continue”)

29:31 ISCT_SER
Instruction fetch show cycle and
RCPU serialize control

These bits control serialization and instruction
fetch show cycles. See Table 21-5 for the bit def-
initions.

NOTE: Changing the instruction show cycle pro-
gramming starts to take effect only from the sec-
ond instruction after the actual mtspr to ICTRL.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-48

21.7.7 L-Bus Support Control Register 1

Table 21-22 ISCT_SER Bit Descriptions

Serialize
(SER)

Instruction
Fetch Show

Cycle)
Control
(ISCTL)

Functions Selected

0 00
 RCPU is fully serialized and show cycle will be performed for all fetched instructions

(reset value)

0 01
 RCPU is fully serialized and show cycle will be performed for all changes in the program

flow

0 10
RCPU is fully serialized and show cycle will be performed for all indirect changes in the

program flow

0 11 RCPU is fully serialized and no show cycles will be performed for fetched instructions

1 00 Illegal. This mode should not be selected.

1 01
RCPU is not serialized (normal mode) and show cycle will be performed for all changes

in the program flow

1 10
RCPU is not serialized (normal mode) and show cycle will be performed for all indirect

changes in the program flow

1 11
RCPU is not serialized (normal mode) and no show cycles will be performed for fetched

instructions

LCTRL1 — L-Bus Support Control Register 1 SPR 156

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTE CTF CTG CTH CRWE CRWF

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CSG CSH SUSG SUSH CGBMSK CHBMSK UNUSED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-49

LCTRL1 is cleared following reset.

21.7.8 L-Bus Support Control Register 2

Table 21-23 LCTRL1 Bit Descriptions

Bits Mnemonic Description Function

0:2 CTE Compare type, comparator E 0xx = not active (reset value)
100 = equal
101 = less than
110 = greater than
111 = not equal

3:5 CTF Compare type, comparator F

6:8 CTG Compare type, comparator G

9:11 CTH Compare type, comparator H

12:13 CRWE
Select match on read/write of com-
parator E 0X = don’t care (reset value)

10 = match on read
11 = match on write14:15 CRWF

Select match on read/write of com-
parator F

16:17 CSG Compare size, comparator G 00 = reserved
01 = word
10 = half word
11 = byte
(Must be programmed to word for floating point

compares)

18:19 CSH Compare size, comparator H

20 SUSG
Signed/unsigned operating mode
for comparator G

0 = unsigned
1 = signed
(Must be programmed to signed for floating

point compares)21 SUSH
Signed/unsigned operating mode
for comparator H

22:25 CGBMSK
Byte mask for 1st L-data compara-
tor

0000 = all bytes are not masked
0001 = the last byte of the word is masked
.
.
.
1111 = all bytes are masked

26:29 CHBMSK
Byte mask for 2nd L-data compara-
tor

30:31 — Reserved —

LCTRL2 — L-Bus Support Control Register 2 SPR 157

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LW0EN LW0IA LW0
IADC LW0LA LW0

LADC LW0LD LW0
LDDC LW1EN LW1IA LW1

IADC LW1LA

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LW1
LADC LW1LD LW1

LDDC
BRK

NOMSK RESERVED DLW0
EN

DLW1
EN

SLW0
EN

SLW1
EN

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-50

Table 21-24 LCTRL2 Bit Descriptions

Bits Mnemonic Description Function

0 LW0EN 1st L-bus watchpoint enable bit 0 = watchpoint not enabled (reset value)
1 = watchpoint enabled

1:2 LW0IA
1st L-bus watchpoint I-addr
watchpoint selection

00 = first I-bus watchpoint
01 = second I-bus watchpoint
10 = third I-bus watchpoint
11 = fourth I-bus watchpoint

3 LW0IADC
1st L-bus watchpoint
care/don’t care I-addr events

0 = Don’t care
1 = Care

4:5 LW0LA
1st L-bus watchpoint
L-addr events selection

00 = match from comparator E
01 = match from comparator F
10 = match from comparators (E&F)
11 = match from comparators (E | F)

6 LW0LADC
1st L-bus watchpoint
care/don’t care L-addr events

0 = Don’t care
1 = Care

7:8 LW0LD
1st L-bus watchpoint
L-data events selection

00 = match from comparator G
01 = match from comparator H
10 = match from comparators (G&H)
11 = match from comparators (G | H)

9 LW0LDDC
1st L-bus watchpoint
care/don’t care L-data events

0 = Don’t care
1 = Care

10 LW1EN 2nd L-bus watchpoint enable bit 0 = watchpoint not enabled (reset value)
1 = watchpoint enabled

11:12 LW1IA
2nd L-bus watchpoint I-addr
watchpoint selection

00 = first I-bus watchpoint
01 = second I-bus watchpoint
10 = third I-bus watchpoint
11 = fourth I-bus watchpoint

13 LW1IADC
2nd L-bus watchpoint
care/don’t care I-addr events

0 = Don’t care
1 = Care

14:15 LW1LA
2nd L-bus watchpoint
L-addr events selection

00 = match from comparator E
01 = match from comparator F
10 = match from comparators (E&F)
11 = match from comparators (E | F)

16 LW1LADC
2nd L-bus watchpoint
care/don’t care L-addr events

0 = Don’t care
1 = Care

17:18 LW1LD
2nd L-bus watchpoint
L-data events selection

00 = match from comparator G
01 = match from comparator H
10 = match from comparators (G&H)
11 = match from comparator (G | H)

19 LW1LDDC
2nd L-bus watchpoint
care/don’t care L-data events

0 = Don’t care
1 = Care

20 BRKNOMSK
Internal breakpoints non-mask
bit

0 = masked mode; breakpoints are recognized
only when MSR[RI]=1 (reset value)

1 = non-masked mode; breakpoints are always
recognized

21:27 — Reserved —
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-51

LCTRL2 is cleared following reset.

For each watchpoint, three control register fields (LWxIA, LWxLA, LWxLD) must be
programmed. For a watchpoint to be asserted, all three conditions must be detected.

21.7.9 Breakpoint Counter A Value and Control Register

COUNTA[16:31] are cleared following reset; COUNTA[0:15] are unaffected by reset.

28 DLW0EN

Development port trap enable
selection of the 1st L-bus watch-
point
(read only bit)

0 = trap disabled (reset value)
1 = trap enabled

29 DLW1EN

Development port trap enable
selection of the 2nd L-bus
watchpoint
(read only bit)

30 SLW0EN
Software trap enable selection
of the 1st L-bus watchpoint

31 SLW1EN
Software trap enable selection
of the 2nd L-bus watchpoint

COUNTA — Breakpoint Counter A Value and Control Register SPR 150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CNTV

RESET: UNAFFECTED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED CNTC

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 21-25 Breakpoint Counter A Value and Control Register (COUNTA)

Bit(s) Name Description

0:15 CNTV Counter preset value

16:29 — Reserved

30:31 CNTC

Counter source select
00 = not active (reset value)
01 = I-bus first watchpoint
10 =L-bus first watchpoint

11 = Reserved

Table 21-24 LCTRL2 Bit Descriptions (Continued)

Bits Mnemonic Description Function
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-52

21.7.10 Breakpoint Counter B Value and Control Register

COUNTB[16:31] are cleared following reset; COUNTB[0:15] are unaffected by reset.

21.7.11 Exception Cause Register (ECR)

The ECR indicates the cause of entry into debug mode. All bits are set by the hardware
and cleared when the register is read when debug mode is disabled, or if the processor
is in debug mode. Attempts to write to this register are ignored. When the hardware
sets a bit in this register, debug mode is entered only if debug mode is enabled and
the corresponding mask bit in the DER is set.

All bits are cleared to zero following reset.

COUNTB — Breakpoint Counter B Value and Control Register SPR 151

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CNTV

RESET: UNAFFECTED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED CNTC

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 21-26 Breakpoint Counter B Value and Control Register (COUNTB)

Bit(s) Name Description

0:15 CNTV Counter preset value

16:29 — Reserved

30:31 CNTC

Counter source select
00 = not active (reset value)
01 = I-bus second watchpoint
10 = L-bus second watchpoint

11 = Reserved
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-53

ECR — Exception Cause Register SPR 148

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 RST CHST
P MCE RESERVED EXTI ALE PRE FPUV

E DECE RESERVED SYSE TR FPAS
E

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 SEE
RE-

SERV
ED

ITL-
BER

RE-
SERV

ED

DTL-
BER RESERVED LBRK IBRK EBRK

D DPI

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 21-27 ECR Bit Descriptions

Bit(s) Name Description

0 — Reserved

1 RST Reset interrupt bit. This bit is set when the system reset pin is asserted.

2 CHSTP Checkstop bit. Set when the processor enters checkstop state.

3 MCE
Machine check interrupt bit. Set when a machine check exception (other than one caused by a
data storage or instruction storage error) is asserted.

4:5 — Reserved

6 EXTI External interrupt bit. Set when the external interrupt is asserted.

7 ALE Alignment exception bit. Set when the alignment exception is asserted.

8 PRE Program exception bit. Set when the program exception is asserted.

9 FPUVE Floating point unavailable exception bit. Set when the program exception is asserted.

10 DECE Decrementer exception bit. Set when the decrementer exception is asserted.

11:12 — Reserved

13 SYSE System call exception bit. Set when the system call exception is asserted.

14 TR Trace exception bit. Set when in single-step mode or when in branch trace mode.

15 FPASE Floating point assist exception bit. Set when the floating point assist exception occurs.

16 — Reserved

17 SEE Software emulation exception. Set when the software emulation exception is asserted.

18 — Reserved

19 ITLBER
Implementation specific instruction protection error

This bit is set as a result of an instruction protection error. Results in debug mode entry if debug
mode is enabled and the corresponding enable bit is set.

20 — Reserved

21 DTLBER
Implementation specific data protection error

This bit is set as a result of an data protection error. Results in debug mode entry if debug mode
is enabled and the corresponding enable bit is set.

22:27 — Reserved
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-54

21.7.12 Debug Enable Register (DER)

This register enables the user to selectively mask the events that may cause the pro-
cessor to enter into debug mode.

28 LBRK
L-bus breakpoint exception bit. This bit is set as a result of the assertion of a load/store break-
point. Results in debug mode entry if debug mode is enabled and the corresponding enable bit
is set.

29 IBRK
I-bus breakpoint exception bit. This bit is set as a result of the assertion of an Instruction break-
point. Results in debug mode entry if debug mode is enabled and the corresponding enable bit
is set.

30 EBRK

External breakpoint exception bit. Set when an external breakpoint is asserted (by an on-chip
IMB or L-bus module, or by an external device or development system through the development
port). This bit is set as a result of the assertion of an external breakpoint. Results in debug mode
entry if debug mode is enabled and the corresponding enable bit is set.

31 DPI
Development port interrupt bit. Set by the development port as a result of a debug station non-
maskable request or when debug mode is entered immediately out of reset.

DER — Debug Enable Register SPR 149

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 RSTE CHST
PE MCEE RESERVED EXTIE ALEE PREE FPU-

VEE
DE-
CEE RESERVED SY-

SEE TRE FPAS
E

RESET:

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RE-
SERV

ED
SEEE

RE-
SERV

ED

ITL-
BERE

RE-
SERV

ED

DTL-
BERE RESERVED LBRK

E IBRKE EBRK
E DPIE

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Table 21-28 DER Bit Descriptions

Bit(s) Name Description

0:1 — Reserved

1 RSTE
Reset enable
0 = Debug entry is disabled (reset value)
1 = Debug entry is enabled

2 CHSTPE
Checkstop enable bit
0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

3 MCEE
Machine check exception enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

4:5 — Reserved

Table 21-27 ECR Bit Descriptions (Continued)

Bit(s) Name Description
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-55

6 EXTIE
External interrupt enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

7 ALEE
Alignment exception enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

8 PREE
Program exception enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

9 FPUVEE
Floating point unavailable exception enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

10 DECEE
Decrementer exception enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

11:12 — Reserved

13 SYSEE
System call exception enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

14 TRE
Trace exception enable bit
0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

15 FPASEE
Floating point assist exception enable bit.
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

16 — Reserved

17 SEEE
Software emulation exception enable bit
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

18 — Reserved

19 ITLBERE
Implementation specific instruction protection error enable bit.
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

20 — Reserved

21 DTLBERE
Implementation specific data protection error enable bit.
0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

22:27 — Reserved

28 LBRKE
Load/store breakpoint enable bit.
0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

29 IBRKE
Instruction breakpoint interrupt enable bit.
0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

30 EBRKE
External breakpoint interrupt enable bit (development port, internal or external modules).
0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

31 DPIE
Development port interrupt enable bit
0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

Table 21-28 DER Bit Descriptions (Continued)

Bit(s) Name Description
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-56

21.7.13 Development Port Data Register (DPDR)

This 32-bit special purpose register physically resides in the development port logic. It
is used for data interchange between the core and the development system. An ac-
cess to this register is initiated using mtspr and mfspr (SPR 630) and implemented
using a special bus cycle on the internal bus.
MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-57

MPC555 / MPC556 DEVELOPMENT SUPPORT MOTOROLA

USER’S MANUAL Rev. 15 October 2000 21-58

	SECTION 21 DEVELOPMENT SUPPORT
	21.1 Overview
	21.2 Program Flow Tracking
	21.2.1 Program Trace Cycle
	21.2.1.1 Instruction Queue Status Pins — VF [0:2]
	21.2.1.2 History Buffer Flushes Status Pins— VFLS [0..1]
	21.2.1.3 Queue Flush Information Special Case

	21.2.2 Program Trace when in Debug Mode
	21.2.3 Sequential Instructions Marked as Indirect Branch
	21.2.4 The External Hardware
	21.2.4.1 Synchronizing the Trace Window to the CPU Internal Events
	21.2.4.2 Detecting the Trace Window Start Address
	21.2.4.3 Detecting the Assertion/Negation of VSYNC
	21.2.4.4 Detecting the Trace Window End Address
	21.2.4.5 Compress

	21.2.5 Instruction Fetch Show Cycle Control

	21.3 Watchpoints and Breakpoints Support
	21.3.1 Internal Watchpoints and Breakpoints
	21.3.1.1 Restrictions
	21.3.1.2 Byte and Half-Word Working Modes
	21.3.1.3 Examples
	21.3.1.4 Context Dependent Filter
	21.3.1.5 Ignore First Match
	21.3.1.6 Generating Six Compare Types

	21.3.2 Instruction Support
	21.3.2.1 Load/Store Support

	21.3.3 Watchpoint Counters
	21.3.3.1 Trap Enable Programming

	21.4 Development System Interface
	21.4.1 Debug Mode Support
	21.4.1.1 Debug Mode Enable vs. Debug Mode Disable
	21.4.1.2 Entering Debug Mode
	21.4.1.3 The Check Stop State and Debug Mode
	21.4.1.4 Saving Machine State upon Entering Debug Mode
	21.4.1.5 Running in Debug Mode
	21.4.1.6 Exiting Debug Mode

	21.5 Development Port
	21.5.1 Development Port Pins
	21.5.2 Development Serial Clock
	21.5.3 Development Serial Data In
	21.5.4 Development Serial Data Out
	21.5.5 Freeze Signal
	21.5.5.1 SGPIO6/FRZ/PTR Pin
	21.5.5.2 IWP[0:1]/VFLS[0:1] Pins
	21.5.5.3 VFLS[0:1]_MPIO32B[3:4] Pins

	21.5.6 Development Port Registers
	21.5.6.1 Development Port Shift Register
	21.5.6.2 Trap Enable Control Register
	21.5.6.3 Development Port Registers Decode
	21.5.6.4 Development Port Serial Communications — Clock Mode Selection
	21.5.6.5 Development Port Serial Communications — Trap Enable Mode
	21.5.6.6 Serial Data into Development Port — Trap Enable Mode
	21.5.6.7 Serial Data Out of Development Port — Trap Enable Mode
	21.5.6.8 Development Port Serial Communications — Debug Mode
	21.5.6.9 Serial Data Into Development Port
	21.5.6.10 Serial Data Out of Development Port
	21.5.6.11 Fast Download Procedure

	21.6 Software Monitor Debugger Support
	21.6.1 Freeze Indication

	21.7 Development Support Registers
	21.7.1 Register Protection
	21.7.2 Comparator A–D Value Registers (CMPA–CMPD)
	21.7.3 Comparator E–F Value Registers
	21.7.4 Breakpoint Address Register (BAR)
	21.7.5 Comparator G–H Value Registers (CMPG–CMPH)
	21.7.6 I-Bus Support Control Register
	21.7.7 L-Bus Support Control Register 1
	21.7.8 L-Bus Support Control Register 2
	21.7.9 Breakpoint Counter A Value and Control Register
	21.7.10 Breakpoint Counter B Value and Control Register
	21.7.11 Exception Cause Register (ECR)
	21.7.12 Debug Enable Register (DER)
	21.7.13 Development Port Data Register (DPDR)

