NXP Semiconductors

Data Sheet: Technical Data

Document Number: MPC5606E

Rev. 4, 11/2019

MPC5606E

MPC5606E Microcontroller Data Sheet

NOTE

For BCM89810 document please refer to Broadcom website and download the document

- Single issue, 32-bit CPU core complex (e200z0h)
 - Compliant with Power Architecture[®] embedded category
 - Variable Length Encoding (VLE) only
- Memory
 - 512 KB on-chip Code Flash with ECC and erase/program controller
 - additional 64 (4 × 16) KB on-chip Data Flash with ECC for EEPROM emulation
 - 96 KB on-chip SRAM with ECC
- Fail-safe protection
 - Programmable watchdog timer
 - Non-maskable interrupt
 - Fault collection unit
- Interrupts and events
 - 16-channel eDMA controller
 - 16 priority level controller
 - Up to 22 external interrupts
 - PIT implements four 32-bit timers
 - 120 interrupts are routed via INTC
- General purpose I/Os
 - Individually programmable as input, output or special function
 - **—** 39
- 1 general purpose eTimer unit
 - 6 timers each with up/down capabilities

- 16-bit resolution, cascadeable counters
- Quadrature decode with rotation direction flag
- Double buffer input capture and output compare
- Communications interfaces
 - 2 LINFlex channels (1 × Master/Slave, 1 × Master Only)
 - 3 DSPI controllers with automatic chip select generation (up to 2/2/4 chip selects)
 - 1 FlexCAN interface (2.0B Active) with 32 message buffers
- One 10-bit analog-to-digital converter (ADC)
 - 7 input channels
 - 4 channels routed to the pins
 - 3 internal connections: 1x temperature sensor, 1x core voltage, 1x IO voltage
 - Conversion time $< 1 \mu s$ including sampling time at full precision
 - 4 analog watchdogs with interrupt capability
- On-chip CAN/UART bootstrap loader with Boot Assist Module (BAM)
- On-chip TSENS
- 100 Mbps Automotive Ethernet Transceiver
 - Supports precision timestamps
- JPEG/MJPEG 8/12bit Encoder
- 6 x stereo channels audio interface
- 2x I²C controller module
- · CRC module
- BCM89810 Ethernet PHY

Table of Contents

1	Overv	view		3.13 1	6 MHz RC oscillator electrical characteristics 34
	1.1	Device summary		3.14 A	analog-to-Digital Converter (ADC) electrical characteristics
	1.2	Block diagram		3	5
2	Packa	age pinouts and signal descriptions 6		3	3.14.1 Input impedance and ADC accuracy 35
	2.1	Package pinouts		3	3.14.2 ADC conversion characteristics 40
	2.2	Signal descriptions		3.15 T	emperature sensor electrical characteristics 41
		2.2.1 Power supply and reference voltage pins 7		3.16 F	Flash memory electrical characteristics 41
		2.2.2 System pins8		3.17 F	Function Specification
		2.2.3 Pin muxing9		3.18 A	AC specifications
3	Elect	rical characteristics18		3	3.18.1 Pad AC specifications
	3.1	Introduction		3.19 A	C timing characteristics
	3.2	Parameter classification			3.19.1 Generic timing diagrams 46
	3.3	Absolute maximum ratings		3	3.19.2 RESET_B pin characteristics 48
	3.4	Recommended operating conditions20		3	3.19.3 Nexus and JTAG timing 49
	3.5	Thermal characteristics21		3	3.19.4 GPIO timing
		3.5.1 General notes for specifications at maximum		3	3.19.5 External interrupt timing (IRQ pin) 52
		junction temperature		3	3.19.6 FlexCAN timing
	3.6	Electromagnetic Interference (EMI) characteristics23			3.19.7 LINFlex timing
	3.7	Electrostatic Discharge (ESD) characteristics		3	3.19.8 DSPI timing
	3.8	Power management electrical characteristics24			3.19.9 Video interface timing
		3.8.1 Power Management Overview24			3.19.10Fast ethernet interface
		3.8.2 Voltage regulator electrical characteristics 26			3.19.111 ² C timing
		3.8.3 Voltage monitor electrical characteristics 27		3	3.19.12SAI timing
	3.9	Power Up/Down reset sequencing	4	Packag	pe mechanical data
	3.10	DC electrical characteristics			21 MAPBGA mechanical outline drawing 65
	3.11	Main oscillator electrical characteristics	5	Revisio	n History of this Document
	3.12	FMPLL electrical characteristics			

1 Overview

This document provides electrical specifications, pin assignments, and package diagrams for the MPC5606E series of microcontroller units (MCUs).

MPC5606E microcontrollers are members of a new family of next generation microcontrollers built on the Power Architecture. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the devices.

The MPC5606E microcontroller integrates MPC5604E device with the Broadcom^(R) BCM89810 single-port BroadR-ReachTM 100 Mbps automotive Ethernet transceiver. All information about configuration of the BCM89810 BroadR-ReachTM Ethernet transceivers is available at https://support.broadcom.com/. The user should request for an account to access BCM89810 documentation, if the access is not there.

The MPC5606E microcontroller is a gateway system designed to move data from different sources via Ethernet to a receiving system and vice versa. The supported data sources and sinks are:

- Video data (with 8/10/12 bits per data word)
- Audio data (6× stereo channels)
- RADAR data (2×12 bit with <1 µs per sample, digitized externally and read in via SPI)
- Other serial communication interfaces including CAN, LIN, and SPI

The Ethernet module has a bandwidth of 10/100 Mbits/sec and supports precision time stamps (IEEE1588). Unshielded twisted pair cables are used to transfer data (via Ethernet) in the car, resulting in a significant reduction of wiring costs by providing inexpensive high bandwidth data links.

1.1 Device summary

Table 1 summarizes the MPC5606E device.

Table 1. Device summary

Feature	MPC5606E
reature	121 MAPBGA
CPU	e200z0h, 64 MHz, VLE only, no SPE
Flash with ECC	CFlash: 512 KB (LC) DFlash: 64 KB (LC, area optimized)
RAM with ECC	96 KB
DMA	16 channels
PIT	yes
SWT	yes
FCU	yes
Ethernet	100 Mbits MII-Lite
Video Encoder	8bpp/12bpp
Audio Interface	6x Stereo (4x synchronous + 2x synchronous/asynchronous)
ADC (10-bit)	1× 4 channels + V _{DD_IO} + V _{DDCore} + TSens
Timer I/O (eTimer)	1×6 channels
SCI (LINFlex)	2×

Overview

Table 1. Device summary (continued)

Feature	MPC5606E						
reature	121 MAPBGA						
SPI (DSPI)	DSPI_0: 2 chip selects DSPI_1: 2 chip selects DSPI_2: 4 chip selects						
CAN (FlexCAN)	1X						
IIC	2×						
Supply	3.3 V IO 1.2 V Core with dedicated ballast source pin in two modes: • internal ballast or • external supply (using power on reset pin)						
Phase Lock Loop (PLL)	1× FMPLL						
Internal RC Oscillator	16 MHz						
External crystal Oscillator	4 MHz - 40 MHz						
CRC	yes						
Debug	JTAG						
Ambient Temperature	−40 to 125 °C						

1.2 Block diagram

Figure 1 shows a top-level block diagram of the MPC5606E MCU.

Figure 1. MPC5606E block diagram

2.1 Package pinouts

The 121 MAPBGA pinouts are shown in the following figure.

Figure 2. 121 MAPBGA pinout(top view)

2.2 Signal descriptions

The following sections provide signal descriptions and related information about the functionality and configuration of the MPC5606E devices.

2.2.1 Power supply and reference voltage pins

Table 2 lists the power supply and reference voltage for the MPC5606E devices.

Table 2. Supply pins

		Supply	Pin
Port Pin	Multi-bonded Power Supplies/Ground	Description	121 MAPBGA
	VREG control and po	wer supply pins. Pins available on 121 MAPBGA-pin package.	
V _{DD_HV_S_BAL}	V _{DD_HV_S_BALLAST0}	Ballast Source/Supply Voltage	K5
	ADC0 reference and	supply voltage. Pins available on 121 MAPBGA-pin package.	
V _{DD_HV_ADC}	$V_{DD_HV_ADR0}$	ADC0 high reference voltage with respect to ground (V _{SS_HV_ADC})	K4
	Power supply pi	ns (3.3 V). Pins available on 121 MAPBGA-pin package.	
V _{DD_HV}	V _{DD_HV_FLA1}	Code and data flash supply voltage	J11
V _{DD_HV}	V _{DD_HV_FLA0}	Code and data flash supply voltage	A6
V _{DD_HV}	V _{DD_HV_OSC0_REG0}	Code and data flash supply voltage	G1
	Power supply pi	ns (1.2 V). Pins available on 121 MAPBGA-pin package.	
V _{DD_LV}	V _{DD_LV_PLL0}	1.2 V PLL supply voltage	F1
V _{DD_LV}	V _{DD_LV_COR0_1}	1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected between these pins and the nearest V _{SS_LV_COR0_1} pin.	K11
V _{SS_LV}	V _{SS_LV_COR0_2}	1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected between these pins and the nearest V _{DD_LV_COR0_2} pin.	A5
		BCM89810 Supply Pins.	,
OVDD_RGMII	PWR	2.5V or 3.3 V for RGMII pads; 3.3V for MII pads.	F7
OVDD	PWR	2.5 V or 3.3V for non RGMII pads. When 2.5V is selected, RESET, MDIO, and LED pins are not 3.3V tolerant	C5
DVDD	PWR	1.2V power for digital core.	D5, E6
AVDDL	PWR	1.2V power for analog core.	K6
AVDD	PWR	3.3V power for analog core.	J5

Table 2. Supply pins (continued)

		Supply	Pin
Port Pin	Multi-bonded Power Supplies/Ground	Description	121 MAPBGA
XTALVDD	PWR	3.3V Crystal Supply. Ferrite Bead 3.3V 0.1 uF	G4
PLLVDD	PWR	1.2V PLL Supply. PLLVDD Ferrite Bead 1.2V 0.1 uF 10 uF	КЗ
BIASVDD	PWR	Bias VDD. +3.3V. Normally filtered with a low resistance ferrite bead such as a Murata® BLM11A601S or equivalent, as well as a 0.1µF capacitor. Ferrite Bead 0.1 uF	H4

2.2.2 System pins

Table 3 and Table 4 contain information on pin functions for the MPC5606E devices. The pins listed in Table 3 are single-function pins. The pins shown in Table 4 are multi-function pins, programmable via their respective Pad Configuration Register (PCR) values.

Table 3. System pins

Symbol	Description	Direction	121MA PBGA				
MP5604E Dedicated pins							
NMI	Non-maskable Interrupt	Input only	D2				
XTAL	Oscillator amplifier output	Output only	G3				
EXTAL	Input for oscillator amplifier circuit and internal clock generator	Input only	H2				
TDI ¹	JTAG test data input	Input only	J9				
TMS ¹	JTAG state machine control	Input only	H11				
TCK ¹	JTAG clock	Input only	J8				
TDO ¹	JTAG test data output	Output only	F9				
	Reset pin						
RESET_B	Bidirectional reset with Schmitt trigger characteristics and noise filter	Bidirectional	НЗ				
POR_B	Power-on reset	Input only	L10				
	BCM89810 Supply Pins						
RESET_N	RESET. Active-low, Schmitt Trigger input. The BCM89810 requires a hardware RESET prior to normal operation. configuration settings obtained via hardware strap option pins are latched on the rising edge of RESET.	I/O _{PU} , CS, ST	C2				
XTALI	25 MHz Crystal Oscillator Input/Output. A continuous 25 MHz reference clock must be supplied to the BCM89810 by connecting a 25 MHz crystal between these two pins or by driving XTALI with an external 25 MHz clock. when using a crystal, connect a loading capacitor from each pin to GND.	I/XT	H7				

Additional board pull resistors are recommended when JTAG pins are not being used on the board or application.

2.2.3 Pin muxing

Table 4 defines the pin list and muxing for the MPC5606E devices.

Each row of Table 4 shows all the possible ways of configuring each pin, via "alternate functions". The default function assigned to each pin after reset is the ALT0 function. Pins marked as external interrupt capable can also be used to resume from STOP and HALT mode.

MPC5606E devices provide four main I/O pad types depending of the associated functions:

MPC5606E Microcontroller Data Sheet, Rev. 4

- Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission.
- *Medium pads* provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads provide maximum speed. They are used for improved Nexus debugging capability.

Medium and Fast pads can be used in slow configuration to reduce the electromagnetic emissions, at the cost of reducing AC performance.

Table 4. Pin muxing

MPC5						Pad s	peed ⁵	Pin
604E Port pin	PCR register	Alternate function ^{1,2,6}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	121 MAPBG A
			F	Port A (16-bit)				
A[0]	PCR[0]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[0] D[0] D[11] SIN EIRQ[0]	SIUL SAI0 — VID DSPI 1 SIUL	I/O I/O — — I I	Slow	Medium	D1
A[1]	PCR[1]	ALTO ALT1 ALT2 ALT3 —	GPIO[1] D[1] SOUT D[10] EIRQ[1]	SIUL SAI0 DSPI1 — VID SIUL	I/O I/O O — I	Slow	Medium	D4
A[2]	PCR[2]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[2] D[2] SCK D[0] D[9] ETC[5] EIRQ[2]	SIUL SAI0 DSPI1 SAI1 VID ETIMER0 SIUL	I/O I/O I/O I/O I I	Slow	Medium	E4
A[3]	PCR[3]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[3] D[3] — D[0] D[8] SIN EIRQ[3]	SIUL SAI0 — SAI2 VID DSPI2 SIUL	I/O I/O — I/O I	Slow	Medium	E1
A[4]	PCR[4]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[4] SYNC SOUT — D[7] ETC[3] EIRQ[4]	SIUL SAI0 DSPI2 — VID ETIMER0 SIUL	I/O I/O O — I I	Slow	Medium	E3

Table 4. Pin muxing (continued)

MPC5		Alternate r function ^{1,2,6}	Functions			Pad s	peed ⁵	Pin	
604E Port pin	PCR register			Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	121 MAPBG A	
A[5]	PCR[5]	ALTO ALT1 ALT2 ALT3 — —	GPIO[5] SYNC SCK D[0] CLK ETC[4] EIRQ[5]	SIUL SAI1 DSPI2 SAI1 VID ETIMER0 SIUL	I/O I/O I/O I/O I I	Medium	Fast	E2	
A[6]	PCR[6]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[6] SYNC CS0 — VSYNC D[0] ETC[1] EIRQ[6]	SIUL SAI2 DSPI2 — VID VID ETIMER0 SIUL	I/O I/O I/O — I I	Slow	Medium	F2	
A[7]	PCR[7]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[7] BCLK CS1 — HREF D[1] ETC[2] EIRQ[7]	SIUL SAI0 DSPI2 — VID VID ETIMER0 SIUL	I/O I/O I/O — I I	Slow	Medium	H1	
A[8]	PCR[8]	ALTO ALT1 ALT2 ALT3 — — —	GPIO[8] BCLK CS0 D[0] D[6] RX EIRQ[8]	SIUL SAI1 DSPI1 SAI2 VID LIN1 SIUL	I/O I/O I/O I/O I I	Slow	Medium	H5	
A[9]	PCR[9]	ALT0 ALT1 ALT2 ALT3 —	GPIO[9] BCLK CS1 TX D[5] EIRQ[9]	SIUL SAI2 DSPI1 LIN1 VID SIUL	I/O I/O I/O O I	Slow	Medium	J6	
A[10]	PCR[10]	ALTO ALT1 ALT2 ALT3 — —	GPIO[10] MCLK ETC[5] — D[4] SIN EIRQ[10]	SIUL SAI2 ETIMER0 — VID DSPI0 SIUL	I/O I/O I/O — I I	Slow	Medium	L9	

Table 4. Pin muxing (continued)

MPC5		Alternate function ^{1,2,6}	Functions			Pad speed ⁵		Pin
604E Port pin	PCR register			Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	121 MAPBG A
A[11]	PCR[11]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[11] TX CS1 CS0 D[3] RX RX	SIUL CANO DSPIO DSPI1 VID LINO LIN1	I/O O O I/O I I	Slow	Medium	K7
A[12]	PCR[12]	ALTO ALT1 ALT2 ALT3 — —	GPIO[12] TX CS0 TX D[2] RX EIRQ[11]	SIUL LINO DSPIO LIN1 VID CANO SIUL	I/O O I/O O I I	Slow	Medium	К9
A[13]	PCR[13]	ALT0 ALT1 ALT2 ALT3	GPIO[13] CLK F[0] CS0 EIRQ[12]	SIUL IIC1 FCU0 DSPI0 SIUL	I/O I/O O I/O I	Slow	Medium	K8
A[14]	PCR[14]	ALT0 ALT1 ALT2 ALT3 —	GPIO[14] DATA F[1] CS1 SIN EIRQ[13]	SIUL IIC1 FCU0 DSPI0 DSPI0 SIUL	I/O I/O O O I	Slow	Medium	K10
A[15]	PCR[15]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[15] SCK PPS3 MCLK SCK ETC[0] EIRQ[18]	SIUL DSPI0 CE_RTC SAI1 DSPI1 ETIMER0 SIUL	I/O I/O O I/O I	Slow	Medium	A3
			1	Port B (16-bit)				
B[0]	PCR[16]	ALT0 ALT1 ALT2 ALT3	GPIO[16] TX ALARM2 BCLK AN[0]	SIUL CAN0 CE_RTC SAI1 ADC0 ⁶	I/O O O I/O I	Slow	Medium	L2
B[1]	PCR[17]	ALTO ALT1 ALT2 ALT3 — —	GPIO[17] — D[0] AN[1] RX TRIGGER2	SIUL — SAI1 ADC0 ⁶ CAN0 CE_RTC	I/O — — I/O I I	Slow	Medium	K1

MPC5606E Microcontroller Data Sheet, Rev. 4

Table 4. Pin muxing (continued)

MPC5			Functions Peripheral ³		Pad speed ⁵		Pin	
604E Port pin	PCR register	Alternate function ^{1,2,6}		Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	121 MAPBG A
B[2]	PCR[18]	ALT0 ALT1 ALT2 ALT3 —	GPIO[18] TX PPS2 ALARM1 AN[2] TRIGGER1	SIUL LINO CE_RTC CE_RTC ADC0 ⁶ CE_RTC	I/O O O O I	Slow	Medium	K2
B[3]	PCR[19]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[19] ETC[2] SOUT PPS1 AN[3] RX EIRQ[14]	SIUL ETIMERO DSPIO CE_RTC ADCO ⁶ LINO SIUL	I/O I/O I/O O I I	Slow	Medium	J2
B[4]	PCR[20]	ALT0 ALT1 ALT2 ALT3	GPI[20] — — — RX_DV	SIUL FEC	 - - -	Slow	Medium	G8
B[5]	PCR[21]	ALT0 ALT1 ALT2 ALT3	GPIO[21] TX_D0 DEBUG[0]	SIUL FEC SSCM	I/O O I/O	Slow	Medium	G10
B[6]	PCR[22]	ALT0 ALT1 ALT2 ALT3	GPIO[22] TX_D1 DEBUG[1]	SIUL FEC SSCM	I/O O I/O	Slow	Medium	G11
B[7]	PCR[23]	ALT0 ALT1 ALT2 ALT3	GPIO[23] TX_D2 DEBUG[2]	SIUL FEC SSCM	I/O O I/O	Slow	Medium	E9
B[8]	PCR[24]	ALT0 ALT1 ALT2 ALT3	GPIO[24] TX_D3 DEBUG[3]	SIUL FEC SSCM	I/O O I/O	Slow	Medium	F11
B[9]	PCR[25]	ALT0 ALT1 ALT2 ALT3	GPIO[25] TX_EN DEBUG[4]	SIUL FEC SSCM	I/O O I/O	Slow	Medium	E11
B[10]	PCR[26]	ALT0 ALT1 ALT2 ALT3	GPIO[26] MDC DEBUG[5]	SIUL FEC SSCM	I/O O I/O	Slow	Medium	D11

Table 4. Pin muxing (continued)

MPC5						Pad speed ⁵		Pin	
604E Port pin	PCR register	Alternate function ^{1,2,6}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	121 MAPBG A	
B[11]	PCR[27]	ALT0 ALT1 ALT2 ALT3	GPIO[27] MDIO DEBUG[6]	SIUL FEC SSCM	I/O I/O I/O	Slow	Medium	C10	
B[12]	PCR[28]	ALT0 ALT1 ALT2 ALT3	GPIO[28] — DEBUG[7] — TX_CLK	SIUL — SSCM — FEC	I/O — I/O — I	Slow	Medium	A10	
B[13]	PCR[29]	ALT0 ALT1 ALT2 ALT3	GPI[29] — — — RX_D0	SIUL FEC	 - - - 	Slow	Medium	B8	
B[14]	PCR[30]	ALT0 ALT1 ALT2 ALT3	GPI[30] RX_D1	SIUL FEC	 - - - 	Slow	Medium	C7	
B[15]	PCR[31]	ALT0 ALT1 ALT2 ALT3	GPI[31] — — — RX_D2	SIUL — — — FEC	 - - - 	Slow	Medium	D8	
				Port C (7 bit)					
C[0]	PCR[32]	ALTO ALT1 ALT2 ALT3	GPI[32] RX_D3	SIUL FEC	 - - - 	Slow	Medium	C6	
C[1]	PCR[33]	ALT0 ALT1 ALT2 ALT3 —	GPI[33] — — — RX_CLK EIRQ[15]	SIUL FEC SIUL	 - - - - -	Slow	Medium	A7	
C[2]	PCR[34]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[34] ETC[0] TX PPS1 D[0] RX EIRQ[16]	SIUL ETIMERO CANO CE_RTC VID LINO SIUL	I/O I/O O O I I	Slow	Medium	B6	

Table 4. Pin muxing (continued)

MPC5						Pad s	peed ⁵	Pin
604E Port pin	PCR register	Alternate function ^{1,2,6}	Functions	Peripheral ³	I/O direction ⁴	SRC = 0	SRC = 1	121 MAPBG A
C[3]	PCR[35]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[35] ETC[1] TX SYNC D[1] RX EIRQ[17]	SIUL ETIMERO LINO SAI1 VID CANO SIUL	I/O I/O O I/O I	Slow	Medium	A2
C[4]	PCR[36]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[36] CLK_OUT ETC[4] MCLK TRIGGER1 ABS[0] EIRQ[19]	SIUL MC_CGL ETIMER0 SAI0 CE_RTC MC_RGM SIUL	I/O O I/O I/O I I	Medium	Fast	G6
C[5]	PCR[37]	ALT0 ALT1 ALT2 ALT3 —	GPIO[37] CLK ETC[3] CS2 ABS[2] EIRQ[20]	SIUL IIC0 ETIMER0 DSPI2 MC_RGM SIUL	I/O I/O O I	Slow	Medium	B2
C[6]	PCR[38]	ALT0 ALT1 ALT2 ALT3 —	GPIO[38] DATA CS0 CS3 FAB EIRQ[21]	SIUL IIC0 DSPI1 DSPI2 MC_RGM SIUL	I/O — I/O O I	Slow	Medium	B1

¹ ALT0 is the primary (default) function for each port after reset.

The following conventions are used in the following table:

- I = Input
- O = Output
- I/O = Bidirectional
- OT = Tristateable signal

Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 → ALT0; PCR.PA = 01 → ALT1; PCR.PA = 10 → ALT2; PCR.PA = 11 → ALT3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

³ Module included on the MCU.

Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

⁵ Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.

On not use ALT multiplexing when ADC channels are used.

- B = Bias
- PU = Internal pull-up
- PD = Internal pull-down
- SOR = Sample on reset
- CS = Continuously sampled
- ST = Schmitt trigger
- XT = Crystal inputs/outputs pin type
- A = Analog pint type
- D = Digital pin type
- G = RGMII pin type

Table 5. Pin muxing for BCM89810

Functions	I/O Type	121 MAPBGA
GTX_CLK	I _{PD} OT G	A9
LED1	I _{PU,} O	C3
LED2	I _{PU,} O	B3
LED3	I _{PU,} O	B4
LED4	I _{PU,} O	C4
MDC	I _{PD} , ST	C11
MDIO	I/O _{PU} , D, ST	B10
PHYA0	I _{PD} , SOR	B5
RDAC	В	L7
RESET_N	I _{PU} , CS, ST	C2
RXC	OT, G	B7
RXD0	OT, G	B9
RXD1	OT, G	C9
RXD2	OT, G	D9
RXD3	OT, G	D7
RXDV	OT, G	Н8
TDN0	A, A	L4
TDP0	A, A	L5
TEST2	I _{PD} , CS	F5
TEST3	I _{PD} , CS	F3
TVCOI	0	J3

MPC5606E Microcontroller Data Sheet, Rev. 4

Table 5. Pin muxing (continued)for BCM89810

Functions	I/O Type	121 MAPBGA
TXD0	I _{PD} , G	H9
TXD1	I _{PD} , G	H10
TXD2	I _{PD} , G	E8
TXD3	I _{PD} , G	F10
TXEN	I _{PD} , G	E10
XTALI	I/XT	H7

Electrical characteristics

3 Electrical characteristics

3.1 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.2 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 3 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute maximum ratings

Table 4. Absolute Maximum Ratings¹

Symbol		Parameter	Conditions	Min	Max ²	Unit
V _{SS}	SR	Device ground	_	V _{SS}	V_{SS}	V
V _{DD_HV_IO}	SR	3.3 V Input/Output Supply Voltage (supply). Code Flash supply with V _{DD_HV_IO3} and Data Flash with V _{DD_HV_IO2}	_	V _{SS _} 0.3	V _{SS} + 6.0	V
V _{SS_HV_IO}	SR	3.3 VInput/Output Supply Voltage (ground). Code Flash ground with V _{SS_HV_IO3} and Data Flash with V _{SS_HV_IO2}	_	V _{SS _} 0.1	V _{SS} + 0.1	V
V _{DD_HV_OSC}	SR	3.3 V Crystal Oscillator Amplifier Supply voltage (supply)	double-bounde		_{V_IO} segments. See	_
V _{SS_HV_OSC}	SR	3.3 V Crystal Oscillator Amplifier Supply voltage (ground)	V _{DD_HV_IO} and	V _{SS_HV_IO} speci	fications.	
V _{DD_HV_ADC0} ³	SR	3.3 V ADC_0 Supply and High Reference voltage	_	V _{SS} _ 0.3	V _{SS} + 6.0	V
V _{SS_HV_ADC0}	SR	3.3 V ADC_0 Ground and Low Reference voltage		V _{SS} _ 0.1	V _{SS} + 0.1	V
V _{DD_HV_REG}	SR	3.3 V Voltage Regulator Supply voltage	_	V _{SS} _ 0.3	V _{SS} + 6.0	V
TV _{DD}	SR	Slope characteristics on all VDD during power up ⁴	_	_	0.1	V/us
V _{DD_LV_COR}	SR	1.2 V supply pins for core logic (supply)	_	V _{SS} _ 0.3	V _{SS} + 1.4	V
V _{SS_LV_COR}	SR	1.2 V supply pins for core logic (ground)	_	V _{SS} _ 0.1	V _{SS} + 0.1	V
V _{IN}	SR	Voltage on any pin with respect to ground (V _{SS_HV_IO})	_	V _{SS_HV_IO} _0.3	V _{DD_HV_IO} +0.5	V
I _{INJPAD}	SR	Input current on any pin during overload condition		-10	10	mA
I _{INJSUM}	SR	Absolute sum of all input currents during overload condition	_	-50	50	mA
T _{STORAGE}	SR	Storage temperature	_	- 55	150	°C
T _J	SR	Junction temperature under bias	_	-40	132	°C
T _A	SR	Ambient temperature under bias	f _{CPU} <64 MHz	-40	125	°C
			f _{CPU} <64 MHz Video use case with internal supply	-40	105	°C
		BCM89810 Absolute	Maximum Ratin	ngs		•
OVDD		Supply voltage		GND-0.3	3.8	V

Electrical characteristics

Symbol	Parameter	Conditions	Min	Max ²	Unit
AVDD	Supply voltage		GND-0.3	3.8	٧
BIASVDD	Supply voltage		GND-0.3	3.8	V
XTALVDD	Supply voltage		GND-0.3	3.8	V
AVDDL	Supply voltage		GND-0.3	1.4	V
DVDD	Supply voltage		GND-0.3	1.4	V
T _{STG}	Storage temperature		-40	125	°C
V _{ESD}	ESD protection		-2500	2500	V

¹ Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

3.4 Recommended operating conditions

NOTE

For BCM89810 document please refer to Broadcom website and download the document

Table 5. Recommended operating conditions

Symbol Parameter		Conditions	Min	Max ¹	Unit	
V _{SS}	SR	Device ground	_	V _{SS}	V_{SS}	V
V _{DD_HV_IO}	SR	3.3 V input/output supply voltage	_	3.0	3.6	٧
V _{SS_HV_IO}	SR	Input/output ground voltage	_	0	0	٧
V _{DD_HV_OSC}	SR	3.3 V Crystal Oscillator Amplifier Supply voltage (supply)	The oscillator and are double-bound	ed with the \	V _{DD} HV IOx	_
V _{SS_HV_OSC}	SR	3.3 V Crystal Oscillator Amplifier Supply voltage (ground)	segments. See V _{DD_HV_IOx} and V _{SS_HV_IOx} specifications.		na	
V _{DD_HV_ADC0} ²	SR	3.3 V ADC_0 Supply and High Reference voltage	_	3.0	3.6	V
V _{DD_HV_REG}	SR	3.3 V voltage regulator supply voltage	_	3.0	3.6	٧
V _{DD_LV_EXTCOR}	SR	Externally supplied core voltage	_	1.15	1.32	٧
V _{DD_LV_REGCOR}	SR	Internal supply voltage	_	_	_	٧
V _{SS_LV_REGCOR}	SR	Internal reference voltage	_	0	0	٧
V _{DD_LV_COR}	SR	Internal supply voltage	_	_	_	٧
V _{SS_LV_COR}	SR	Internal reference voltage		0	0	٧

MPC5606E Microcontroller Data Sheet, Rev. 4

Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.

MPC5606E's I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently from other supplies.

⁴ Guaranteed by device validation.

Table 5. Recommended operating conditions (continued)

Symbol		Parameter	Conditions	Min	Max ¹	Unit
V _{SS_HV_ADC0}	SR	Ground and Low Reference voltage	_	0	0	٧
TJ	SR	Junction temperature under bias		-40	132	°C
T _A	SR	Ambient temperature under bias	f _{CPU} <64 MHz	-40	125	°C
			f _{CPU} <64 MHz Video use case with internal supply	-40	105	°C

¹ Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.

3.5 Thermal characteristics

Table 6. Thermal characteristics for 121 MAPBGA

Symbol	Parameter	Conditions	Typical value	Unit
$R_{\theta JA}$	Junction to Ambient Natural Convection ¹²	Single layer board—1s	42.46	°C/W
$R_{\theta JA}$	Junction to Ambient Natural Convection ¹²³	Four layer board—2s2p	27.18	°C/W
$R_{\theta JMA}$	Junction to Ambient (@200 ft/min) ¹³	Single layer board—1s	34.67	°C/W
		Four layer board—2s2p	23.75	°C/W
$R_{\theta JB}$	Junction to Board ²	_	21.27	°C/W
$R_{\theta JCtop}$	Junction to case ³	_	11.88	°C/W
Ψ_{JT}	Junction to package top ⁴	Natural Convection	0.12	°C/W

Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

3.5.1 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from Equation 1:

$$T_{J} = T_{A} + (R_{\theta JA} * P_{D})$$
 Eqn. 1

where:

MPC5606E Microcontroller Data Sheet, Rev. 4

MPC5606E's I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently from other supplies.

Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT

Electrical characteristics

 T_A = ambient temperature for the package (°C) $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W) P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta IA} = R_{\theta IC} + R_{\theta CA}$$
 Eqn. 2

where:

 $\begin{array}{ll} R_{\theta JA} & = \text{junction to ambient thermal resistance (°C/W)} \\ R_{\theta JC} & = \text{junction to case thermal resistance (°C/W)} \\ R_{\theta CA} & = \text{case to ambient thermal resistance (°C/W)} \end{array}$

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3:

$$T_{I} = T_{T} + (\Psi_{IT} \times P_{D})$$
 Eqn. 3

where:

 T_T = thermocouple temperature on top of the package (°C)

Ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International

3081 Zanker Road

San Jose, CA 95134 U.S.A.

(408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the WEB at http://www.jedec.org.

1. C.E. Triplett and B. Joiner, *An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module*, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

MPC5606E Microcontroller Data Sheet, Rev. 4

- 2. G. Kromann, S. Shidore, and S. Addison, *Thermal Modeling of a PBGA for Air-Cooled Applications*, Electronic Packaging and Production, pp. 53-58, March 1998.
- 3. B. Joiner and V. Adams, *Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling*, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

3.6 Electromagnetic Interference (EMI) characteristics

Table 7. EMI Testing Specifications¹

Symbol	Parameter	Conditions	Clocks	Frequency Range	Level (Typ)	Unit
Radiated	V _{EME}	$V_{DD} = 3.3 \text{ V}$	Oscillator Frequency = 8	150 kHz-50 MHz	2	dBμV
emissions		T _A = +25 °C	MHz; System Bus Frequency =	50–150 MHz	14	
		Device	64 MHz;	150–500 MHz	11	
		Configuration, test conditions and EM	CPU Freq = 64MHZ No PLL Frequency Modulation	500–1000 MHz	7	
		testing per standard IEC61967-2.		IEC Level	М	
			External Oscillator Freq = 8 MHz System Bus Freq = 64 MHz	150 kHz-50 MHz	1	dΒμV
				50–150 MHz	11	
				150–500 MHz	7	
	CPU Freq = 64MHZ	500–1000 MHz	1			
			2% PLL Freq Modulation	IEC Level	N	

¹ EMI testing and I/O port waveforms per standard IEC61967-2.

3.7 Electrostatic Discharge (ESD) characteristics

Table 8. ESD ratings^{1,2}

Symbol		Parameter	Conditions	Value	Unit
V _{ESD(HBM)}	SR	Electrostatic discharge (Human Body Model)	_	2000	V
V _{ESD(CDM)}	SR	Electrostatic discharge (Charged Device Model)	_	750 (corners)	V
				500 (other)	

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification

3.8 Power management electrical characteristics

3.8.1 Power Management Overview

The device supports the following power modes:

- Internal voltage regulation mode
- External voltage regulation mode

3.8.1.1 MPC5604E Internal voltage regulation mode

In this mode, the following supplies are involved:

• $V_{DD\ HV\ IO}(3.3V)$ — This is the main supply provided externally.

NOTE

1.2V is not generated internally for BCM89810 so the user has to use external power supply mode for applications where BCM89810 is used.

• V_{DD_LV_COR} (1.2V) — This is the core logic supply. In the internal regulation mode, the core supply is derived from the main supply via an on-chip linear regulator driving an internal PMOS ballast transistor. The PMOS ballast transistors are located in the pad ring and their source connectors are directly bonded to a dedicated pin. See Figure 6.

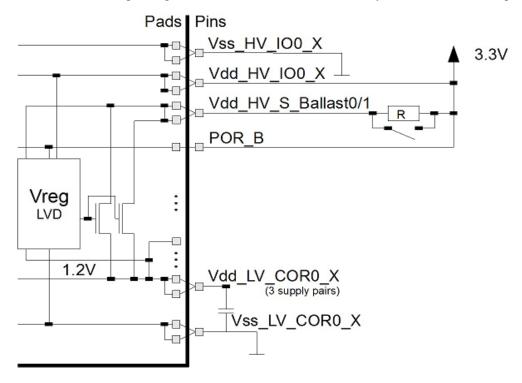


Figure 6. Internal Regulation Mode

The core supply can also be provided externally. Table 9 shows how to connect $V_{DD_HV_S_BALLAST}$ pin for internal and external core supply mode.

NOTE

 $V_{DD\ HV\ S}$ BALLAST pin is the supply pin, which carries the entire core logic current in the internal regulation mode, while in external regulation mode it is used as a signal to bypass the regulator.

Table 9. Core Sup	ply Select

Mode	V _{DD_HV_S_Ballast}
Internal supply mode (via internal PMOS ballast transistors)	V _{DD_HV_IO} (3.3V)
External supply mode (e.g., via external switched regulator)	V _{DD_LV_COR} (1.2V)

3.8.1.2 MPC5604E External voltage regulation mode

In the external regulation mode, the core supply is provided externally using a switched regulator. This saves on-chip power consumption by avoiding the voltage drop over the ballast transistor. The external supply mode is selected via a board level supply change at the $V_{DD\ HV\ S\ BALLAST}$ pin.

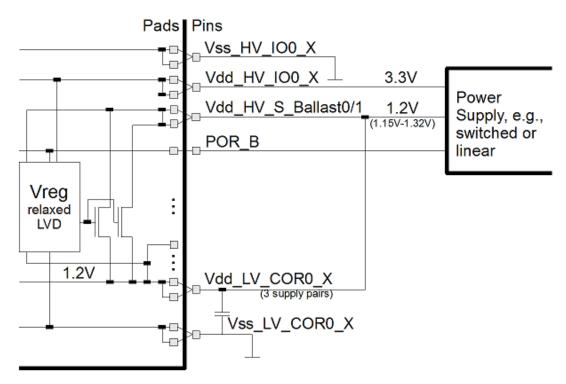


Figure 7. External Regulation Mode

MPC5606E Microcontroller Data Sheet, Rev. 4 **NXP Semiconductors** 25

NOTE

In external regulation mode, POR_B pin should be used to control the power on RESET for the device. POR_B should be kept low (asserted) as long as the input supplies are unstable or below the specified operating range. Failure to do so may lead to unexpected device operation and erratic reset recovery.

3.8.1.3 Recommended power supply sequencing¹

For MPC5606E, the external supplies need to be maintained as per the following relations:

- $V_{DD\ HV\ IO}$ should be always greater or equal to $V_{DD\ HV\ S\ Ballast}$
- $V_{DD\ HV\ IO}$ should be always greater than $V_{DD\ LV\ COR0\ X}$
- ullet $V_{DD\ HV\ IO}$ should be always greater than $V_{DD\ HV\ ADC}$

3.8.2 Voltage regulator electrical characteristics

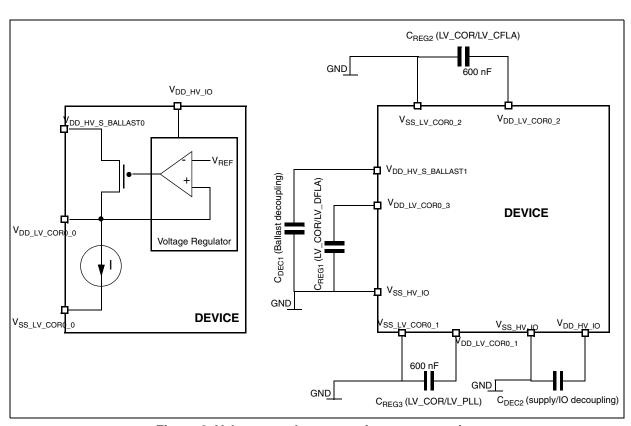


Figure 8. Voltage regulator capacitance connection

MPC5606E Microcontroller Data Sheet, Rev. 4

^{1.} Investigations are in process to relax power supply sequencing recommendation.

Table 10. Voltage regulator electrical characteristics

Symbol		С	Parameter	Conditions ¹		Value		Unit
Symbol			raiametei	Conditions	Min	Тур	Max	Oiiit
C _{REGn} ²	SR	_	Internal voltage regulator external capacitance	_	200	_	600	nF
R _{REG}	SR	_	Stability capacitor equivalent serial resistance	_	0.05	_	0.2	Ω
C _{DEC1}	SR	—	Decoupling capacitance ³ ballast	_	100 ⁴	470 ⁵	_	nF
				_	400		_	
C _{DEC2}	SR	_	Decoupling capacitance regulator supply	_	100 nF	1 μF	_	_
V _{MREG}	CC	Т	Main regulator output voltage	Before exiting from reset	_	1.32	_	V
		Р		After trimming	1.15	1.28	1.32	
I _{MREG}	SR		Main regulator current provided to V_{DD_LV} domain	_	_	_	150	mA
I _{MREGINT}	CC	D	Main regulator module current	I _{MREG} = 200 mA	_	_	2	mA
			consumption	I _{MREG} = 0 mA	_	_	1	
I _{DD_BV}	СС	D	In-rush current on V _{DD_BV} during power-up ⁶	_	_	_	40 ⁷	mA

 $^{^{1}}$ V_{DD} = 3.3 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.8.3 Voltage monitor electrical characteristics

The device implements a POR module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the $V_{DD\ HV}$ and the $V_{DD\ LV}$ voltage while device is supplied:

- POR monitors V_{DD HV} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors V_{DD HV} to ensure device reset below minimum functional supply
- LVDLVCOR monitors low voltage digital power domain

² It is required by the device in internal voltage regulation mode only.

This capacitance value is driven by the constraints of the external voltage regulator that supplies the V_{DD BV} voltage. A typical value is in the range of 470 nF. This capacitance should be placed close to the device pin.

⁴ This value is acceptable to guarantee operation from 3.0 V to 3.6 V

 $^{^{5}}$ External regulator and capacitance circuitry must be capable of providing $I_{DD\ BV}$ while maintaining supply $V_{DD\ BV}$ in operating range.

⁶ In-rush current is seen only for short time during power-up and on standby exit (max 20 μs, depending on external LV capacitances to be load)

⁷ The duration of the in-rush current depends on the capacitance placed on LV pins. BV decaps must be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.

Parameter	Conditions ¹	Va	lu
rainotor	Conditions	Min	П

Symbol		Parameter	Conditions ¹	Val	lue	Unit
Cymbol		i didilicici	Conditions	Min	Max	Onne
V _{PORH}	Т	Power-on reset threshold	_	1.5	2.7	V
V _{PORUP}	D	Supply for functional POR module	T _A = 25°C	1.0	_	V
V _{DDHVLVDMOK_H}	Р	V _{DD_HV} low voltage detector high threshold	_	_	2.95	V
V _{DDHVLVDMOK_L}	Р	V _{DD_HV} low voltage detector low threshold	_	2.6	_	V
V _{MLVDDOK_H}	Р	Digital supply low voltage detector high	_	_	1.135	V
V _{MLVDDOK_L}	Р	Digital supply low voltage detector low	_	1.095	_	V

Table 11. Low voltage monitor electrical characteristics

Power Up/Down reset sequencing 3.9

The MPC5606E implements a precise sequence to ensure each module is started only when all conditions for switching it ON are available. For BCM89810 clock on XTALI clock input pad before RESET N is released. This prevents overstress event or miss-functionality within and outside the device:

- A POR module working on voltage regulator supply is controlling the correct start-up of the regulator. This is a key module ensuring safe configuration for all Voltage regulator functionality when supply is below 1.5 V. Associated POR (or POR) signal is active low.
- Several Low Voltage Detectors, working on voltage regulator supply are monitoring the voltage of the critical modules (Voltage regulator, I/Os, Flash and Low voltage domain). LVDs are gated low when POWER ON is active.
- A POWER OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, Flash and RC16 oscillator needed during power-up phase and reset phase. When POWER OK is low the associated module are set into a safe state.

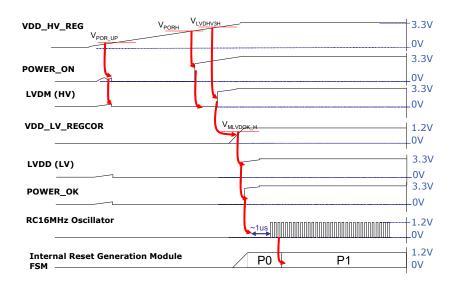


Figure 9. Power-up typical sequence

MPC5606E Microcontroller Data Sheet, Rev. 4

 $^{^{1}}$ V_{DD-HV} = 3.3V \pm 10% T_A = -40 °C to T_{A MAX}, unless otherwise specified

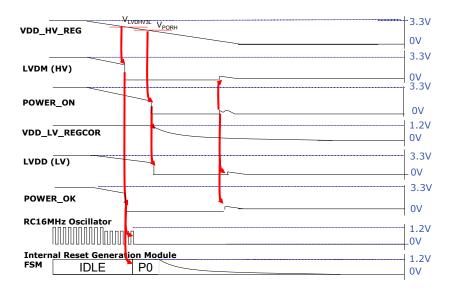


Figure 10. Power-down typical sequence

3.10 DC electrical characteristics

Table 12 gives the DC electrical characteristics at 3.3 V (3.0 V < $V_{DD_HV_IO}$ < 3.6 V).

NOTE

For BCM89810 document please refer to Broadcom website and download the document

Table 12. DC electrical characteristics (3.3 V)¹

Symbo	ol	Parameter	Conditions	Min	Max	Unit
V _{IL}	D	Minimum low level input voltage	_	-0.4 ²	_	V
V _{IL}	Р	Maximum low level input voltage	_	_	0.35 V _{DD_HV_IO}	V
V _{IH}	Р	Minimum high level input voltage	_	0.65 V _{DD_HV_IO}	_	V
V _{IH}	D	Maximum high level input voltage	_	_	$V_{DD_HV_IO} + 0.4^2$	V
V _{HYS}	Т	Schmitt trigger hysteresis	_	0.1 V _{DD_HV_IO}	_	V
V _{OL_S}	Р	Slow, low level output voltage	I _{OL} = 2 mA	_	0.1V _{DD_HV_IO}	V
V _{OH_S}	Р	Slow, high level output voltage	$I_{OH} = -2 \text{ mA}$	0.8V _{DD_HV_IO}	_	V
V _{OL_M}	Р	Medium, low level output voltage	I _{OL} = 2 mA	_	0.1V _{DD_HV_IO}	V
V _{OH_M}	Р	Medium, high level output voltage	$I_{OH} = -3 \text{ mA}$	0.8V _{DD_HV_IO}	_	V
V _{OL_F}	Р	Fast, high level output voltage	I _{OL} = 11 mA	_	0.1V _{DD_HV_IO}	٧
V _{OH_F}	Р	Fast, high level output voltage	I _{OH} = -11 mA	0.8V _{DD_HV_IO}	_	V
I _{PU}	Р	Equivalent pull-up current	$V_{IN} = V_{IL}$	- 95	_	μΑ
I _{PD}	Р	Equivalent pull-down current	$V_{IN} = V_{IH}$	_	95	
I _{IL}	Р	Input leakage current (all bidirectional ports)	T _A = -40 to 125 °C	_	1	μΑ
I _{IL}	Р	Input leakage current (all ADC input-only ports)	T _A = -40 to 125 °C	_	0.5	μΑ
V _{ILR}	D	Minimum RESET, low level input voltage	_	-0.4 ²	_	V
V _{ILR}	Р	Maximum RESET, low level input voltage	_	_	0.35 V _{DD_HV_IO}	V
V_{IHR}	Р	Minimum RESET, high level input voltage	_	0.65 V _{DD_HV_IO}	_	V
V_{IHR}	D	Maximum RESET, high level input voltage	_	_	$V_{DD_HV_IO} + 0.4^2$	V
V _{HYSR}	D	RESET, Schmitt trigger hysteresis	_	0.1 V _{DD_HV_IO}	_	V
V _{OLR}	D	RESET, low level output voltage	I _{OL} = 0.5 mA	_	0.1V _{DD_HV_IO}	V
I _{PU}	D	RESET, equivalent pull-up	$V_{IN} = V_{IL}$	-130	_	μΑ
		current	$V_{IN} = V_{IH}$	_	-10	
C _{IN}	D	Input capacitance	_	_	10	pF

MPC5606E Microcontroller Data Sheet, Rev. 4

- ¹ These specifications are design targets and subject to change per device characterization.
- ² "SR" parameter values must not exceed the absolute maximum ratings shown in Table 4.

Table 13. Supply current

Comple - I		Parameter		Conditions	Value ¹			Unit
Symbol		Parameter			Min	Тур	Max	Oilit
I DD_LV_CORE	С	Supply current	RUN Mode, I/O currents not included, worst case over temperature for system clock		_	75	120	mA
	Р	-	HALT Mode ²	V DD_LV_CORx externally forced at 1.3 V	_	4	25	
	Р		STOP Mode ³	V DD_LV_CORx externally forced at 1.3 V	_	4	25	
I _{DD_FLASH}	С			Code Flash				
			FLASH supply current during read	V _{DD_HV_IO} at 3.3 V	_	4	7	
			FLASH supply current during erase operation on 1 Flash module	V _{DD_HV_IO} at 3.3 V	_	9	14	
				Data Flash		+	+	
			FLASH supply current during read	V _{DD_HV_IO} at 3.3 V	_	3.5	6	
			FLASH supply current during erase operation on 1 Flash module	V _{DD_HV_IO} at 3.3 V	_	7.5	12	
I _{DD_ADC}	С		ADC supply current	V _{DD_HV_ADC0} at 3.3 V ADC Freq = 16MHz	_	1.8	3	
DD_OSC	С	-	OSC supply current	V _{DD_HV_OSC} at 3.3 V 16 MHz	_	0.74	4	

¹ All values to be confirmed after characterization/data collection.

3.11 Main oscillator electrical characteristics

The MPC5606E provides an oscillator/resonator driver.

NOTE

For BCM89810 document please refer to Broadcom website and download the document

MPC5606E Microcontroller Data Sheet, Rev. 4

Halt mode configurations: Code fetched from SRAM, Code Flash and Data Flash in low power mode, OSC/PLL0 are OFF, Core clock frozen, all peripherals are disabled.

STOP "P" mode DUT configuration: Code fetched from SRAM, Code Flash and Data Flash off, OSC/PLL0 are OFF, Core clock frozen, all peripherals are disabled.

Electrical characteristics

Table 14. Main oscillator electrical characteristics

Symbol		Parameter	Min	Max	Unit
f _{OSC}	SR	Oscillator frequency	4	40	MHz
9 _m	Р	Transconductance	4	15.846	mA/V
V _{OSC}	Т	Oscillation amplitude on XTAL pin	1.3	2.25	V
toscsu	Т	Start-up time ^{1,2}	_	5	ms

The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.

Table 15. Input clock characteristics

Symbol		Parameter	Min	Тур	Max	Unit
fosc	SR	Oscillator frequency	4	_	40	MHz
f _{CLK}	SR	Frequency in bypass	_	-	100	MHz
t _{rCLK}	SR	Rise/fall time in bypass	_	_	1	ns
t _{DC}	SR	Duty cycle	47.5	50	52.5	%

3.12 FMPLL electrical characteristics

Table 16. PLLMRFM electrical specifications 1 (V_{DDPLL} = 3.0 V to 3.6 V, V_{SS} = V_{SSPLL} = 0 V, T_A = T_L to T_H)

Symbo	.i	В	arameter	Conditions	Va	lue	Unit
Symbo)I	F	arameter	Conditions	Min	Max	Offic
f _{ref_crystal} f _{ref_ext}	D	PLL reference frequency range ²		Crystal reference	4	40	MHz
f _{pll_in}	D	Phase detector (after pre-divide	rinput frequency range er)	_	4	16	MHz
f _{FMPLL_0} PCS	D	Clock frequency range in normal mode		_	4	128	MHz
f _{FMPLL_0} _CLK	D	PLL output frequency		_	4	256	MHz
f _{VCO}	Р	VCO frequency	/		256	512	MHz
f _{sys}	D	On-chip PLL fro	equency ²	_	16	64	MHz
t _{CYC}	D	System clock p	eriod	_	1 /	f _{sys}	ns
f _{SCM}	D	Self-clocked m	ode frequency ^{3,4}	_	20	150	MHz
C _{JITTER}	Т	CLKOUT period	Peak-to-peak (clock edge to clock edge)	f _{SYS} maximum	-500	500	ps
		jitter ^{5,6,7,8}	Long-term jitter (avg. over 2 ms interval)		-6	6	ns

MPC5606E Microcontroller Data Sheet, Rev. 4

² Value captured when amplitude reaches 90% of XTAL

Table 16. PLLMRFM electrical specifications¹ $(V_{DDPLL} = 3.0 \text{ V to } 3.6 \text{ V}, V_{SS} = V_{SSPLL} = 0 \text{ V}, T_A = T_L \text{ to } T_H) \text{ (continued)}$

Symbo	~!	Parameter	Conditions	Va	Unit	
Syllide	Ji	Farameter	Conditions	Min	Max	Ollit
t _{lpll}	D	PLL lock time ^{9, 10}	_	_	200	μs
t _{dc}	D	Duty cycle of reference	_	40	60	%
f _{LCK}	D	Frequency LOCK range	_	-6	6	% f _{sys}
f _{UL}	D	Frequency un-LOCK range	_	-18	18	% f _{sys}
fcs	D	Modulation Depth	Center spread	±0.25	±4.0 ¹¹	%f _{sys}
f _{DS}			Down Spread	-0.5	-8.0	
f _{MOD}	D	Modulation frequency ¹²	_	_	100	kHz

¹ All values given are initial design targets and subject to change.

3.13 16 MHz RC oscillator electrical characteristics

Table 17. 16 MHz RC oscillator electrical characteristics

Symbol		Parameter	Conditions	Min	Тур	Max	Unit
f _{RC}	С	RC oscillator frequency	T _A = 25 °C	8.5	16	24	MHz
$\Delta_{\sf RCMVAR}$	Р	Fast internal RC oscillator variation in temperature and supply with respect to f_{RC} at $T_A = 55^{\circ}\text{C}$ in high-frequency configuration	_	- 5	_	5	%
$\Delta_{RCMTRIM}$	Т	Post Trim Accuracy: The variation of the PTF ¹ from the 16 MHz oscillator	T _A = 25 °C	-2	_	2	%

PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and temperature

² Considering operation with PLL not bypassed.

Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls.

⁴ fscm represents PLL0 VCO frequency in free running (when the PLL reference clock is disconnected).

⁵ This value is determined by the crystal manufacturer and board design.

Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{SYS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{JITTER} percentage for a given interval.

Proper PC board layout procedures must be followed to achieve specifications.

⁸ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C_{JITTER} and either f_{CS} or f_{DS} (depending on whether center spread or down spread modulation is enabled).

This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits.

¹⁰ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).

¹¹ This value is true when operating at frequencies above 60 MHz, otherwise f_{CS} is 2% (above 64 MHz).

¹² Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.

3.14 Analog-to-Digital Converter (ADC) electrical characteristics

The device provides a 10-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

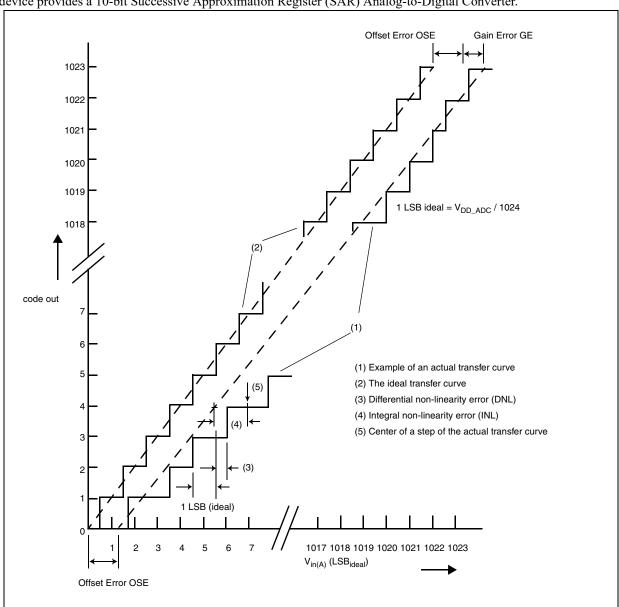


Figure 11. ADC characteristics and error definitions

3.14.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to

be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times C_S)$), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S) and the sum of $R_S + R_F + R_L + R_{SW} + R_{AD}$, the external circuit must be designed to respect the Equation 4:

Egn. 4

$$V_A \bullet \frac{R_S + R_F + R_L + R_{SW} + R_{AD}}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW} and R_{AD}) can be neglected with respect to external resistances.

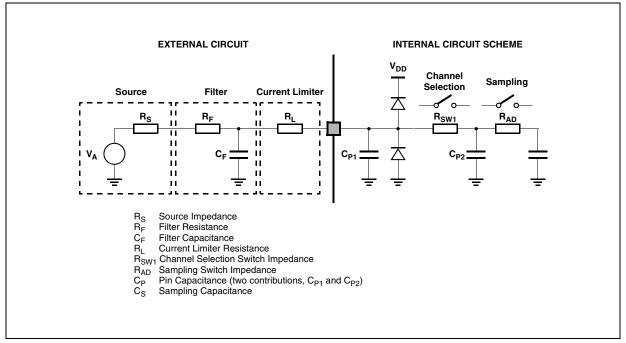


Figure 12. Input equivalent circuit

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in Figure 12): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

NXP Semiconductors 35

MPC5606E Microcontroller Data Sheet, Rev. 4

Electrical characteristics

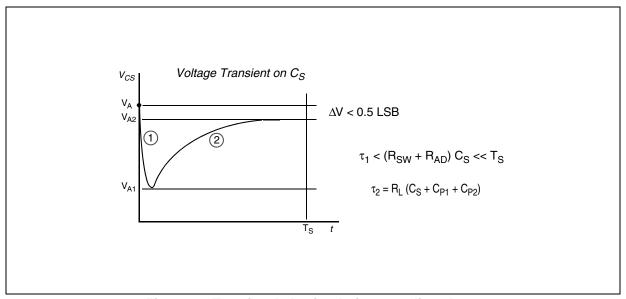


Figure 13. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call C_P = C_{P1} + C_{P2}), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$
 Eqn. 5

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$
 Eqn. 6

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$
 Eqn. 7

A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance
R_L: again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality
would be faster), the time constant is:

Eqn. 8
$$\tau_2 < R_L \bullet (C_S + C_{p_1} + C_{p_2})$$

MPC5606E Microcontroller Data Sheet, Rev. 4

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

Egn. 9

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Egn. 10

$${\rm V_{A2}} \bullet ({\rm C_S} + {\rm C_{P1}} + {\rm C_{P2}} + {\rm C_F}) = {\rm V_A} \bullet {\rm C_F} + {\rm V_{A1}} \bullet ({\rm C_{P1}} + {\rm C_{P2}} + {\rm C_S})$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S) . The filter is typically designed to act as anti-aliasing.

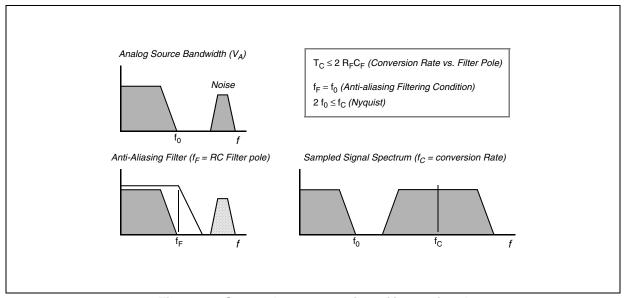


Figure 14. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C) . Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter $R_F C_F$ is definitively much higher than the sampling time T_S , so the charge level on T_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

MPC5606E Microcontroller Data Sheet, Rev. 4

Eqn. 11

$$\frac{v_A}{v_{A2}} = \frac{c_{P1} + c_{P2} + c_F}{c_{P1} + c_{P2} + c_F + c_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \cdot C_S$$

3.14.2 ADC conversion characteristics

Table 18. ADC conversion characteristics

Symbo	al -	Parameter	Conditions ¹		Value		Unit
Symbo)i	Parameter	Conditions	Min	Тур	Max	Jonne
f _{CK}	SR	ADC clock frequency (depends on ADC configuration) (The duty cycle depends on ADCClk ² frequency)	_	1	_	64	MHz
fs	SR	Sampling frequency	_	_	_	1.53	MHz
t _{ADC_S}	D	Sample time ³	f _{ADC} = 20 MHz, ADC_conf_sample_input = 17	500	_	_	ns
			f _{ADC} = 9 MHz, INPSAMP = 255	_		28.2	μs
t _{ADC_C}	Р	Conversion time ⁴	f _{ADC} = 20 MHz ⁵ , ADC_conf_comp = 3	500	_	_	ns
C _S ⁶	D	ADC input sampling capacitance	_	_	_	2.5	pF
C _{P1} ⁶	D	ADC input pin capacitance 1	_	_	_	0.8 ⁷	pF
C_{P2}^{6}	D	ADC input pin capacitance 2	_	_	_	1	pF
R _{SW1} ⁶	D	Internal resistance of analog source	resistance of analog —		_	0.6	kΩ
R _{AD} ⁶	D	Internal resistance of analog source	_	_	_	2	kΩ
I _{INJ}	Т	Input current injection	Current injection on one ADC input, different from the converted one. Remains within TUE specification	- 5	_	5	mA
INL	Р	Integral Non Linearity	No overload	-1.5	_	1.5	LSB
DNL	Р	Differential Non Linearity	No overload	-1.0	_	1.0	LSB
OFS	Т	Offset error	_	_	±1	_	LSB
GNE	Т	Gain error	_	_	±1	_	LSB
TUE	Р	Total unadjusted error without current injection	_	-3	_	3	LSB
TUE	Т	Total unadjusted error with current injection	_	-3		3	LSB
TUE	Р	Total unadjusted error	_	-3	_	3	LSB
TUEP	CC	Total Unadjusted Error for	No overload	-2	_	2	LSB
		precise channels, input only pins	overload conditions on adjacent channel	_	_	_	LSB
TUEX	CC	Total Unadjusted Error for	No overload	-3	_	3	LSB
		extended channel,	overload conditions on adjacent channel	_	_	_	LSB

- 1 $V_{DD} = 3.3$ V to 3.6 V, $T_{A} = -40$ to +125 °C, unless otherwise specified and analog input voltage from V_{AGND} to V_{AREF}
- ² ADCClk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.
- ³ During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC_S}. After the end of the sample time t_{ADC_S}, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC_S} depend on programming.
- ⁴ This parameter does not include the sample time t_{ADC_S}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- ⁵ 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC.
- ⁶ See Figure 12.
- Does not include packaging and bonding capacitances

3.15 Temperature sensor electrical characteristics

Table 19. Temperature sensor electrical characteristics

Symbo	Symbol		Parameter	Conditions		Value		Unit
Symbo	"	С	i diametei	Conditions	min typical max			
_	CC	С	Temperature monitoring range	_	-40	_	132	°C
_	CC	С	Sensitivity	_	_	5.14	_	mV/°C
_	СС	С	Accuracy	$T_J = -40$ to 25 °C	-10	_	10	°C
_	СС	С		T _J = -25 to 125 °C	-10	_	10	°C

3.16 Flash memory electrical characteristics

Table 20. Code flash program and erase specifications¹

Symbol	Parameter	Min Value	Value ² Max ³ (100		Max ⁴ (100000 Cycles)	Unit
T _{DWPRG}	Double Word Program ⁵	_	22	50	500	μs
T _{BKPRG}	Bank Program (512 KB) ^{5, 6}	_	1.45	1.65	33	s
T _{ER8K}	Sector Erase (8KB)	_	0.2	0.4	5.0	s
T _{ER16K}	Sector Erase (16KB)	_	0.3	0.5	5.0	S
T _{ER32K}	Sector Erase (32KB)	_	0.3	0.6	5.0	s
T _{ER64K}	Sector Erase (64KB)	_	0.6	0.9	5.0	S
T _{ER128K}	Sector Erase (128KB)	_	0.8	1.3	7.5	S
T _{ER512K}	Bank Erase (512KB)	_	4.8	7.6	55	s
T _{PABT}	Program Abort Latency	_	_	10	10	μs
T _{EABT}	Erase Abort Latency	_	_	30	30	μs

Table 20. Code flash program and erase specifications¹

Symbol	Parameter	Min Value	Typical Value ² (0 Cycles)	Initial Max ³ (100 Cycles)	Max ⁴ (100000 Cycles)	Unit
T _{EABT}	Erase Suspend Latency	_	_	30	30	μs
T _{EABT}	Erase Suspend Request Rate	10	_	_	_	ms
NER	Endurance (8KB, 16KB sectors) Endurance (32KB, 64KB sectors) Endurance (128KB sectors)	100 10 1	_	_	_	Kcycles
T _{DR}	Data Retention at 1K cycles Data Retention at 10K cycles Data Retention at 100K cycles	20 10 5		_	_	Years

¹ TBC = To be confirmed

Table 21. Data flash program and erase specifications¹

Symbol	Parameter	Min Value	Typical Value ² (0 Cycles)	Initial Max ³ (100 Cycles)	Max ⁴ (100000 Cycles)	Unit
T _{DWPRG}	Word Program ⁵	_	30	TBC	TBC	μs
T _{BKPRG}	Bank Program (64 KB) ^{5, 6}	_	0.49	TBC	TBC	S
T _{ER16K}	Sector Erase (16KB)	_	0.7	TBC	TBC	S
T _{ER512K}	Bank Erase (64KB)	_	1.9	TBC	TBC	S
T _{PABT}	Program Abort Latency	_	_	12	12	μs
T _{EABT}	Erase Abort Latency	_	_	30	30	μs
T _{EABT}	Erase Suspend Latency	_	_	30	30	μs
T _{EABT}	Erase Suspend Request Rate	10	_	_	_	ms
NER	Endurance (16KB sectors)	100	_	_	_	K cycles
T _{DR}	Data Retention at 1K cycles Data Retention at 10K cycles Data Retention at 100K cycles	20 10 1	_	_	_	Years @85C

¹ TBC = To be confirmed

Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

 $^{^3}$ Initial factory condition: < 100 program/erase cycles, 25 $^{\circ}\text{C}$, typical supply voltage.

⁴ The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁵ Actual hardware programming times. This does not include software overhead.

⁶ Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).

² Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

- 3 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
- The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- ⁵ Actual hardware programming times. This does not include software overhead.
- ⁶ Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).

Table 22. Flash read access timing

Symbol	С	Parameter	Conditions ¹	Max	Unit
Fmax	С	Maximum working frequency for Code Flash at	2 wait states	66	MHz
		given number of WS in worst conditions	0 wait states	18	
Fmax	С	Maximum working frequency for Data Flash at given number of WS in worst conditions	8 wait states	66	MHz

 $^{^{1}}$ VDD_HV = 3.3 V \pm 10%, TA = -40 to 125 °C, unless otherwise specified

3.17 NMI filter functional specification

Table 23. Function Specification

Pulse Width	Value	Units
Maximum pulse width that is rejected	40	ns
Maximum pulse width that is accepted	205	ns

The pulses shorter than "Maximum pulse width that is rejected" are blocked. The Pulses wider than "Minimum pulse width that is passed" are allowed. When the pulses lengths are between they may be blocked or passed. This is due to tolerance of analog circuit.

3.18 AC specifications

3.18.1 Pad AC specifications

Table 24 gives the AC electrical characteristics at 3.3 V (3.0 V < V_{DD HV IO} < 3.6 V) operation.

NOTE

For BCM89810 document please refer to Broadcom website and download the document

MPC5606E Microcontroller Data Sheet, Rev. 4

Table 24. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)

Pad	Symbol	Parameter	Load drive		Rise/Fall ¹ (ns)		Unit
			(pF)	Min	Тур	Max	
Slow	Tswitchon	Propagation delay from	25	3	_	40	ns
		vdd/2 of internal signal to Pchannel / Nchannel	50	3	_	40	ns
		switch on condition	100	3	_	40	ns
			200	3	_	40	ns
	tr/tf	Slope at rising/falling	25	4	_	40	ns
		edge	50	6	_	50	ns
			100	10	_	75	ns
			200	14	_	100	ns
	Freq	Frequency	25	_	_	4	MHz
		of Operation	50	_	_	2	MHz
			100	_	_	2	MHz
			200	_	_	2	MHz
	Current	Slew rate at rising edge	25	0.01	_	2	mA/ns
	Slew	of current	50	0.01	_	2	mA/ns
			100	0.01	_	2	mA/ns
			200	0.01	_	2	mA/ns
Medium	Tswitchon	Propagation delay from	25	1	_	15	ns
		vdd/2 of internal signal to Pchannel / Nchannel switch on condition	50	1	_	15	ns
			100	1	_	15	ns
			200	1	_	15	ns
	tr/tf	Slope at rising/falling	25	2	_	12	ns
		edge	50	4	_	25	ns
			100	8	_	40	ns
			200	14	_	70	ns
	Freq	Frequency	25	_	_	40	MHz
		of Operation	50	_	_	20	MHz
		·	100	_	_	13	MHz
			200	_	_	7	MHz
	Current	Slew rate at rising edge	25	2.5	_	7	mA/ns
	Slew	of current	50	2.5	_	7	mA/ns
			100	2.5	_	7	mA/ns
			200	2.5	_	7	mA/ns

Table 24. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)

Pad	Symbol	Parameter	Load drive		Rise/Fall ¹ (ns)		Unit	
			(pF)	Min	Тур	Max		
Fast	Tswitchon	Propagation delay from	25	1	_	6	ns	
		vdd/2 of internal signal to Pchannel	50	1	_	6	ns	
		switch on condition	100	1	_	6	ns	
			200	1	_	6	ns	
	tr/tf	Slope at rising/falling	25	1	_	4	ns	
		edge	50	1.5	_	7	ns	
			100	3	_	12	ns	
			200	5	_	18	ns	
	Freq	Frequency	25	_	_	72	MHz	
		of Operation	50	_	_	55	MHz	
			100	_	_	40	MHz	
			200	_	_	25	MHz	
	Current	Slew rate at rising edge	25	3	_	40	mA/ns	
	Slew	of current	50	3	_	40	mA/ns	
			100	3	_	40	mA/ns	
			200	3	_	40	mA/ns	
Symmetric	Tswitchon	Propagation delay from vdd/2 of internal signal to Pchannel / Nchannel switch on condition	25	1	_	8	ns	
	tr/tf	Slope at rising/falling edge	25	1	_	5	ns	
	TRise/TFall	Delay at rising/falling edge	25	3	_	12	ns	
	ITRise - TFall	Delay between rising and falling edge	25	0.05	_	1	ns	
	Freq	Frequency of Operation	25	_	_	50	MHz	
	Current Slew	Slew rate at rising edge of current	25	3	_	25	mA/ns	

¹ Slope at rising/falling edge

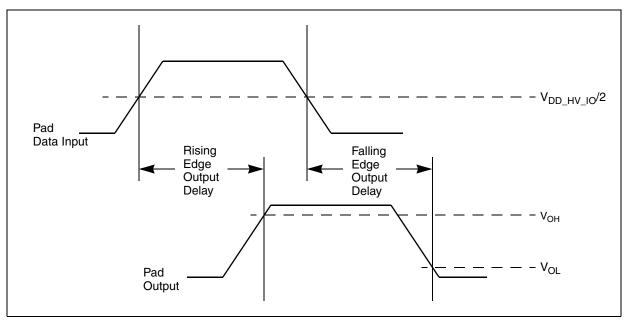


Figure 15. Pad output delay

3.19 AC timing characteristics

3.19.1 Generic timing diagrams

The generic timing diagrams in Figure 16 and Figure 17 apply to all I/O pins with pad types fast, slow and medium. See Section 2.2, "Signal descriptions for the pad type for each pin.

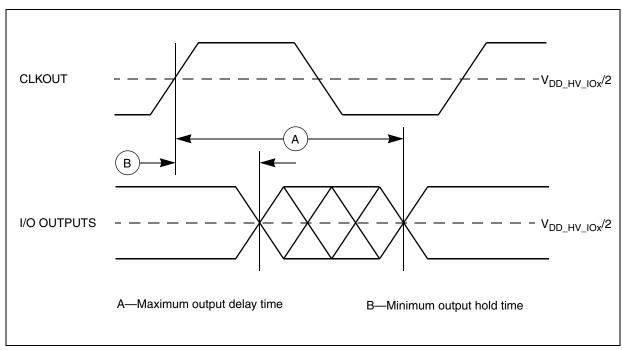


Figure 16. Generic output delay/hold timing

MPC5606E Microcontroller Data Sheet, Rev. 4

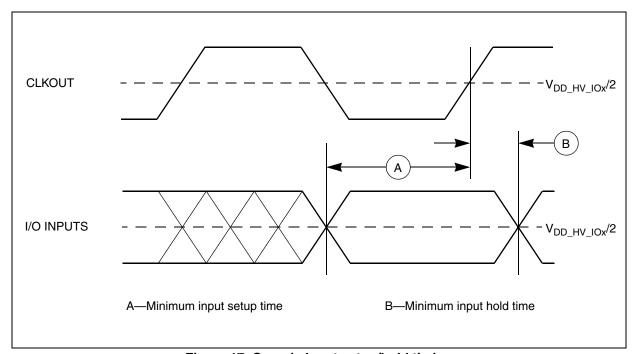


Figure 17. Generic Input setup/hold timing

3.19.2 RESET_B pin characteristics

The MPC5606E implements a dedicated bidirectional RESET pin.

Figure 18. Start-up reset requirements

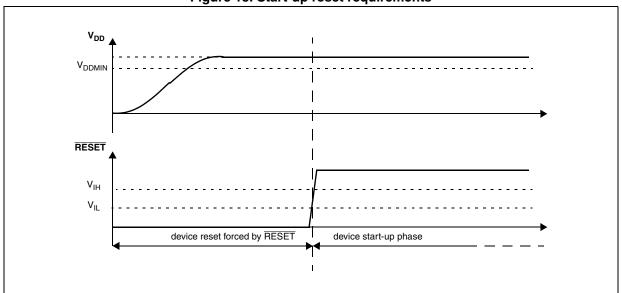
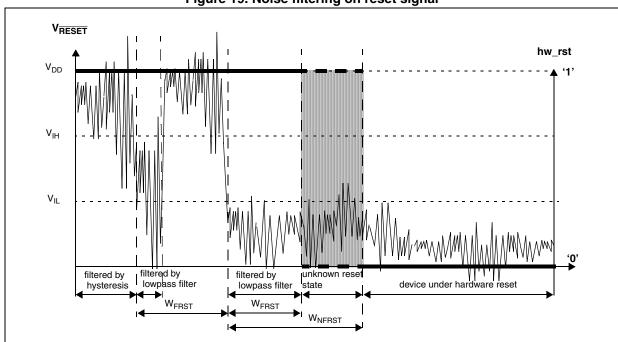



Figure 19. Noise filtering on reset signal

MPC5606E Microcontroller Data Sheet, Rev. 4

Table 25. RESET electrical characteristics

Symb	٥l	С	Parameter	Conditions ¹		Value		Unit
Symb	Oi.	J	i arameter	Conditions	Min	Тур	Max	Oille
V _{IH}	SR	Р	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	— V _{DD} +0.4	
V _{IL}	SR	Р	Input low Level CMOS (Schmitt Trigger)	_	-0.4	_	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}			V
V _{OL}	СС	Р	Output low level	Push Pull, I _{OL} = 3 mA,	_	_	0.1V _{DD}	V
T _{tr}	output pin ²		output pin ²	$C_L = 25 \text{ pF},$ $V_{DD} = 3.3 \text{ V} \pm 10\%$	_	_	12	ns
			MEDIUM configuration	$C_L = 50 \text{ pF},$ $V_{DD} = 3.3 \text{ V} \pm 10\%$	_	_	25	
				C _L = 100 pF, V _{DD} = 3.3 V ± 10%	_	_	40	
W _{FRST}	SR	Р	RESET input filtered pulse	_	_	_	40	ns
W _{NFRST}	SR	Р	RESET input not filtered pulse	_	500	_	_	ns
II _{WPU} I	СС	Р	Weak pull-up current absolute value	$V_{DD} = 3.3 \text{ V} \pm 10\%$	10	_	150	μΑ

 $^{^{1}}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified 2 C_L includes device and package capacitance (C_{PKG} < 5 pF).

Nexus and JTAG timing 3.19.3

Table 26. Nexus debug port timing¹

No	No. Symbo	ol.	С	Parameter		Value		Unit
140.	Syllid	OI.		i arameter	Min Typ Max		Max	
1	t _{MCYC}	CC	D	MCKO Cycle Time	CKO Cycle Time 2 — 8		8	t _{CYC}
2A	t _{MCYCP}	CC	D	MCKO cycle period	15	_	_	ns
2B	t _{MDC}	CC	D	MCKO duty cycle	48	_	52	%
3	t _{MDOV}	CC	D	MCKO low to MDO data valid ²	-0.1	_	0.22	t _{MCYC}
4	t _{MSEOV}	CC	D	MCKO low to MSEO data valid ²	-0.1	_	0.22	t _{MCYC}
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid ²	-0.1	_	0.22	t _{MCYC}
6	t _{TCYC}	CC	D	TCK cycle time	50	_	_	ns
7	t _{TDC}	CC	D	TCK Duty Cycle	40	_	60	%

No.	Symbol		С	Parameter		Value		Unit
INO.				Farameter	Min	Тур	Max	- Onit
8	t _{NTDIS}	CC	D	TDI data setup time	0.2	_	_	t _{TCYC}
	t _{NTMSS}	CC	D	TMS data setup time	0.2	_	_	t _{TCYC}
9	t _{NTDIH}	CC	D	TDI data hold time	0.1	_	_	t _{TCYC}
	t _{NTMSH}	CC	D	TMS data hold time	0.1	_	_	t _{TCYC}
10	t _{TDOV}	CC	D	TCK low to TDO data valid	_	_	25	ns
11	t _{TDOV}	CC	D	TCK low to TDO data invalid	0.1	_	_	t _{TCYC}

¹ All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

² MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.

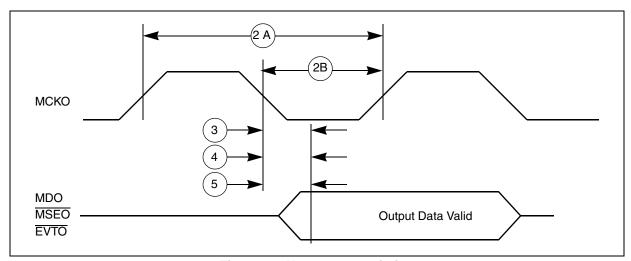


Figure 20. Nexus output timing

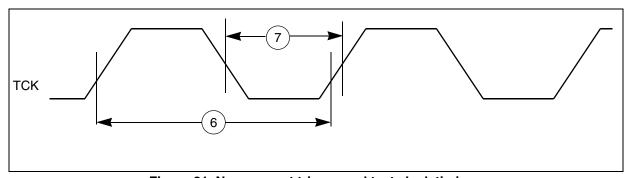


Figure 21. Nexus event trigger and test clock timings

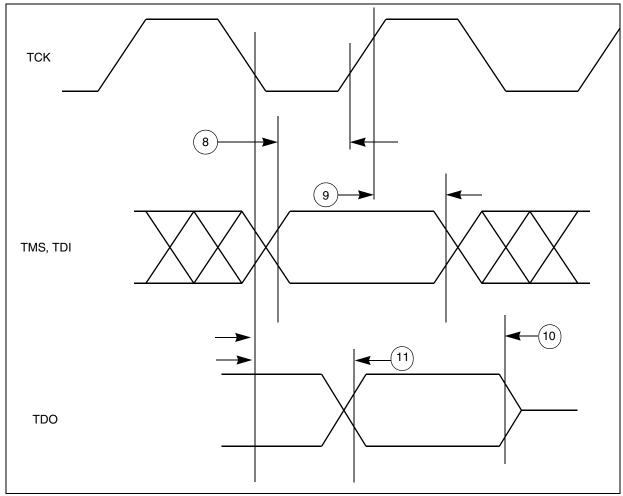


Figure 22. Nexus TDI, TMS, TDO Timing

3.19.4 GPIO timing

The GPIO specifications for setup time and output valid relative to CLKOUT are the same for all pins on the device regardless of the primary pin function.

Table 27. GPIO Timing

No.	Symbol	Characteristic	Min.	Max.	Unit
1	t _{READ}	GPIO Read Time	5	_	t _{CYC}
2	t _{WRITE}	GPIO Write Time	6	_	t _{CYC}

51

External interrupt timing (IRQ pin) 3.19.5

Table 28. External interrupt timing¹

No.	Symbol C		С	Parameter	Conditions	Min	Max	Unit
1	t _{IPWL}	СС	D	IRQ pulse width low	_	4	_	t_{CYC}
2	t _{IPWH}	СС	D	IRQ pulse width high	_	4	_	t _{CYC}
3	t _{ICYC}	СС	D	IRQ edge to edge time ²	_	4+N ³	_	t_{CYC}

¹ IRQ timing specified at $f_{SYS} = 64$ MHz and $V_{DD_HV_IOX} = 3.0$ V, $T_A = T_L$ to T_H , and CL = 200 pF with SRC = 0b00.

 $^{^{3}}$ N = ISR time to clear the flag

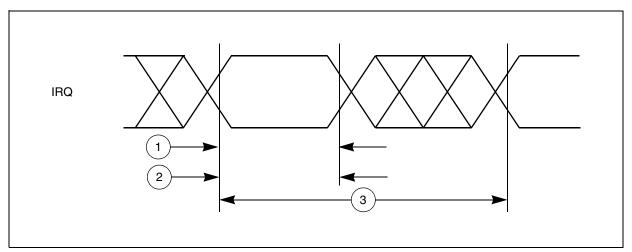


Figure 23. External interrupt timing

FlexCAN timing 3.19.6

Table 29. FlexCAN timing¹

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	CTNX Output Valid after CLKOUT Rising Edge (Output Delay)	t _{CANOV}	_	26.0	ns
2	CNRX Input Valid to CLKOUT Rising Edge (Setup Time)	t _{CANSU}	_	9.8	ns

FlexCAN timing specified at $f_{SYS} = 64$ MHz, VDD = 1.35 V to 1.65 V, VDDEH = 3.0 V to 5.5 V, VRC33 and VDDPLL = 3.0 V to 3.6 V, $T_A = TL$ to TH, and CL = 50 pF with SRC = 0b00.

LINFlex timing 3.19.7

Minimum design target for interface frequency is 2 MBit/s.

MPC5606E Microcontroller Data Sheet, Rev. 4

 $^{^{2}\,}$ Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

3.19.8 DSPI timing

Table 30. DSPI timing

No.	Sym	bol	С	Parameter	Conditions	Min	Max	Unit
1	t _{SCK}	CC	D		Master (MTFE = 0)	62.5	_	
				DSPI cycle time	Slave (MTFE = 0)	128	_	ns
					Master (MTFE = 1,CPHA=1)	31.25	_	
2	t _{CSC}	СС	D	CS to SCK delay	-	16	_	ns
3	t _{ASC}	СС	D	After SCK delay	_	16	_	ns
4	t _{SDC}	СС	D	SCK duty cycle	_	0.4 * t _{SCK}	0.6 * t _{SCK}	ns
5	t _A	СС	D	Slave access time	SS active to SOUT valid	_	40	ns
6	t _{DIS}	СС	D	Slave SOUT disable time	SS inactive to SOUT High-Z or invalid	_	10	ns
7	t _{PCSC}	СС	D	PCSx to PCSS time	_	13	_	ns
8	t _{PASC}	СС	D	PCSS to PCSx time	_	13	_	ns
9	t _{SUI}	СС			Master (MTFE = 0)	12	_	
			6	Data action times for investe	Slave	2	_	
			D	Data setup time for inputs	Master (MTFE = 1, CPHA = 0)	NA ¹		ns
					Master (MTFE = 1, CPHA = 1)	12	_	
10	t _{HI}	CC			Master (MTFE = 0)	-5	_	
			D	Data hold time for inpute	Slave	4	_	no
			D	Data hold time for inputs	Master (MTFE = 1, CPHA = 0)	N.	A ¹	ns
					Master (MTFE = 1, CPHA = 1)	-5	_	
11	t _{SUO}	CC			Master (MTFE = 0)	_	4	
			D	Data valid (after SCK edge)	Slave	_	33	no
			D	Data valid (after 50K edge)	Master (MTFE = 1, CPHA = 0)	N.	A ¹	ns
					Master (MTFE = 1, CPHA = 1)	_	11	
12	t _{HO}	CC			Master (MTFE = 0)	-2	_	
			_	Data hold time for outputs	Slave	6	_	no
			D	Data hold time for outputs	Master (MTFE = 1, CPHA = 0)	N.	A ¹	ns
					Master (MTFE = 1, CPHA = 1)	-2	_	

¹ This mode is not feasible at 32 MHz.

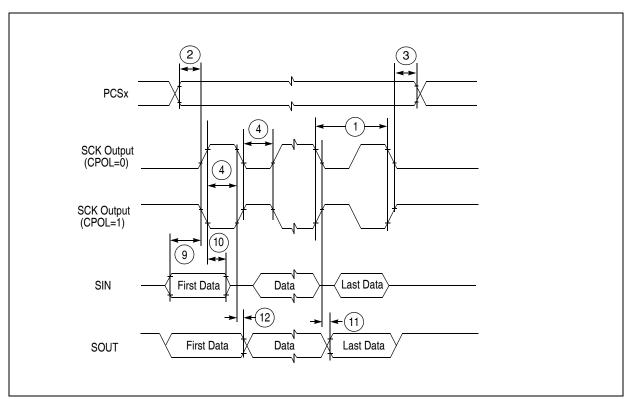


Figure 24. DSPI classic SPI timing — Master, CPHA = 0

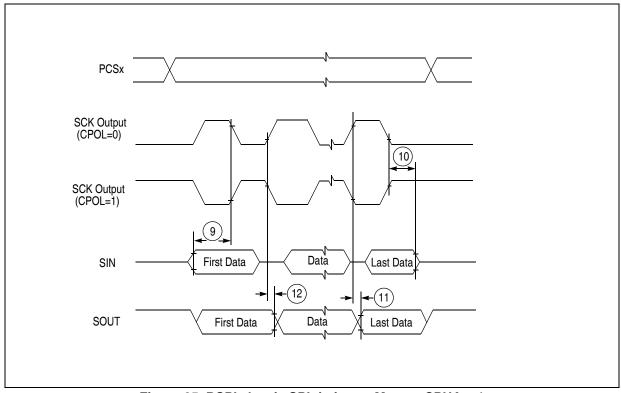


Figure 25. DSPI classic SPI timing — Master, CPHA = 1

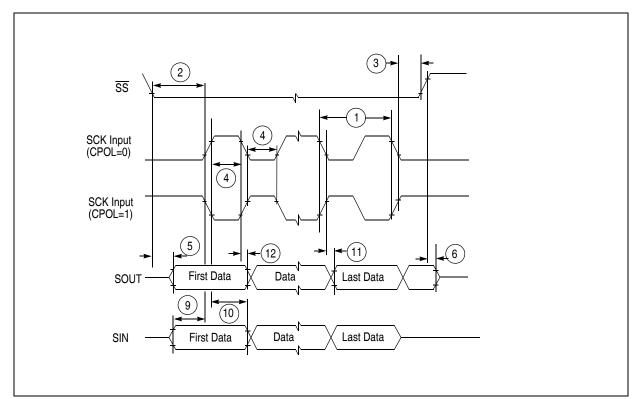


Figure 26. DSPI classic SPI timing — Slave, CPHA = 0

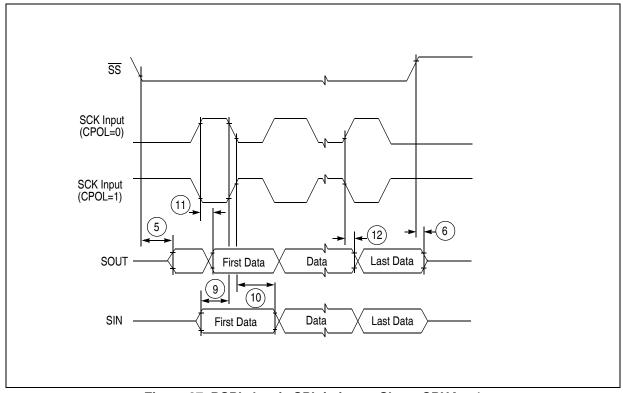


Figure 27. DSPI classic SPI timing — Slave, CPHA = 1

MPC5606E Microcontroller Data Sheet, Rev. 4

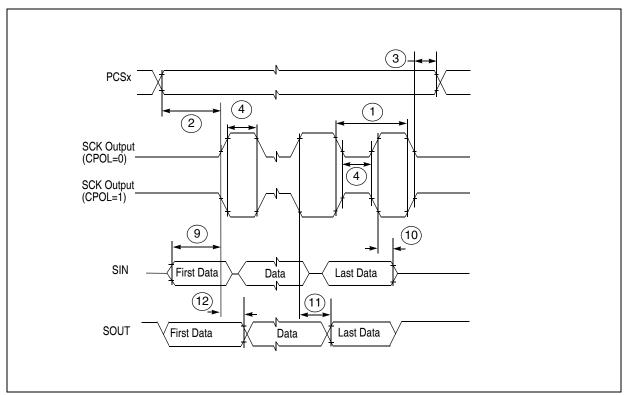


Figure 28. DSPI modified transfer format timing — Master, CPHA = 0

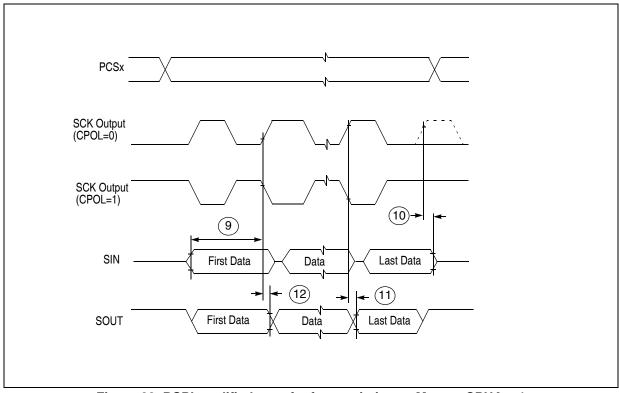


Figure 29. DSPI modified transfer format timing — Master, CPHA = 1

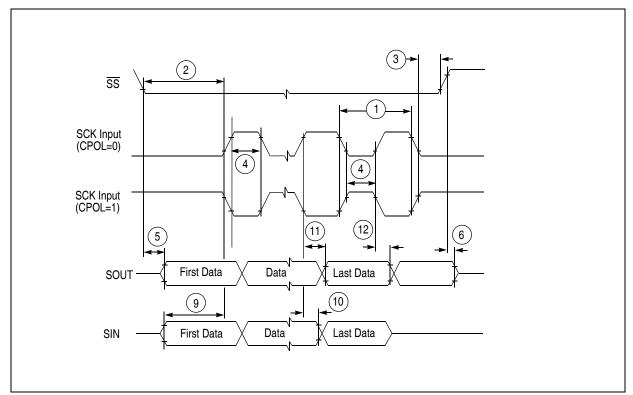


Figure 30. DSPI modified transfer format timing — Slave, CPHA = 0

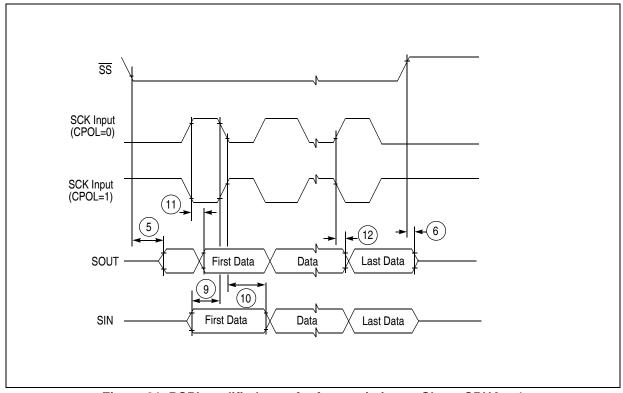


Figure 31. DSPI modified transfer format timing — Slave, CPHA = 1

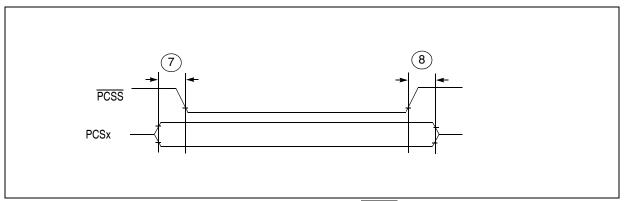


Figure 32. DSPI PCS Strobe (PCSS) timing

3.19.9 Video interface timing

Table 31 details the MPC5606E's video encoder block's pixel input clocking requirement.

No.	Parameter	Min	Max	Unit
1	PDI Clock Period	10	_	ns
2	PDI Clock Duty Cycle	50	50	%
3	Input setup time	2	_	ns
4	Input Hold Time	2	_	ns
5	Input Pixel Clock Slew Rate	_	2	ns

Table 31. Input pixel clock characteristics

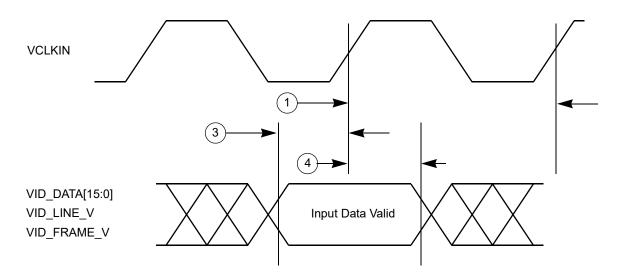


Figure 33. Video interface timing

3.19.10 Fast ethernet interface

MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics.

3.19.10.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency.

No.	Parameter	Min	Max	Unit
1	Rx Clock Period	40	_	ns
2	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5	_	ns
3	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5	_	ns
4	Rx Clock Duty Cycle	40	60	%

Table 32. MII receive signal timing

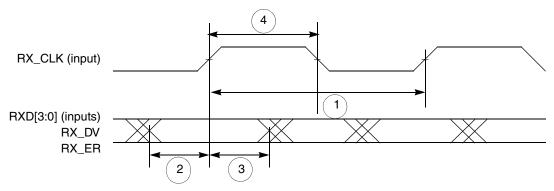


Figure 34. MII receive signal timing diagram

3.19.10.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.

Refer to the Ethernet chapter for details of this option and how to enable it.

Table 33. MII transmit signal timing¹

No.	Parameter	Min	Max	Unit
5	TX Clock Period	40	_	ns
6	TX_CLK to TXD[3:0], TX_EN, TX_ER invalid	5	_	ns
7	TX_CLK to TXD[3:0], TX_EN, TX_ER valid	_	25	ns
8	TX Clock Duty Cycle	40	60	%

Output pads configured with SRC = 0b11.

MPC5606E Microcontroller Data Sheet, Rev. 4

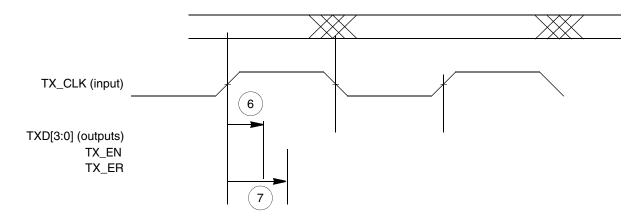


Figure 35. MII transmit signal timing diagram

3.19.10.3 MII async inputs signal timing (CRS and COL)

Table 34. MII async inputs signal timing¹

No.	Parameter	Min	Max	Unit
9	CRS, COL minimum pulse width	1.5		TX_CLK period

¹ Output pads configured with SRC = 0b11.

Figure 36. MII async inputs timing diagram

3.19.10.4 MII serial management channel timing (MDIO and MDC)

The FEC functions correctly with a maximum MDC frequency of 5 MHz.

Table 35. MII serial management channel timing (MDIO and MDC)

No.	Parameter	Min	Max	Unit
1	MDIO Input delay setup	28	_	ns
2	MDIO Input delay hold	0	_	ns
3	MDIO Output delay valid	_	25	ns
4	MDIO Output delay Invalid	0	_	ns
5	MDC clock period	100	_	ns
6	MDC Duty Cycle	40	60	%

3.19.11 I²C timing

Table 36. I²C SCL and SDA input timing specifications

No	No. Symbol		Parameter	Value		Unit	
110.			, arameter		Max	Onit	
1	_	D	Start condition hold time	2	_	IP bus cycle ¹	
2	_	D	Clock low time	8	_	IP bus cycle ¹	
4	_	D	Data hold time	0.0	_	ns	
6	_	D	Clock high time	4	_	IP bus cycle ¹	
7	_	D	Data setup time	0.0	_	ns	
8	_	D	Start condition setup time (for repeated start condition only)	2	_	IP bus cycle ¹	
9	_	D	Stop condition setup time	2	_	IP bus cycle ¹	

Inter Peripheral Clock is the clock at which the I²C peripheral is working in the device. It is equal to the system clock (Sys_clk).

Table 37. I²C SCL and SDA output timing specifications

No.	Symbol	Symbol Parameter	Va	lue	Unit	
110.					Max	O.I.I.
1 ¹	_	D	Start condition hold time	6	_	IP bus cycle ²
2 ¹	_	D	Clock low time	10	_	IP bus cycle ¹
3 ³	_	D	SCL/SDA rise time	_	99.6	ns
41	_	D	Data hold time	7	_	IP bus cycle ¹
5 ¹	_	D	SCL/SDA fall time	_	99.5	ns
6 ¹	_	D	Clock high time	10	_	IP bus cycle ¹
7 ¹	_	D	Data setup time	2	_	IP bus cycle ¹
8 ¹	_	D	Start condition setup time (for repeated start condition only)	20	_	IP bus cycle ¹
9 ¹	_	D	Stop condition setup time	10	_	IP bus cycle ¹

Programming IBFD (I²C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I²C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR.

² Inter Peripheral Clock is the clock at which the I²C peripheral is working in the device.

Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

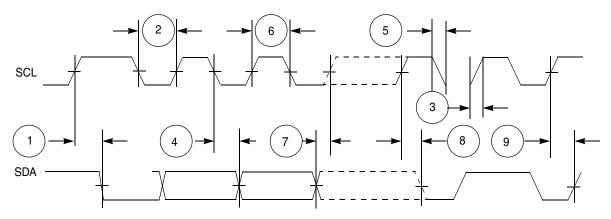


Figure 38. I²C input/output timing

3.19.12 **SAI** timing

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device.

Table 37. Master Mode SAI Timing

No.	Parameter	Value		Unit
		Min	Max	Oilit
	Operating voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	31.25	_	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	62.5	_	ns
S4	SAI_BCLK pulse width high/low	45%	55%	BCLK period
S5	SAI_BCLK to SAI_FS output valid	_	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	_	ns
S7	SAI_BCLK to SAI_TXD valid	_	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	_	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	28	_	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	_	ns

MPC5606E Microcontroller Data Sheet, Rev. 4

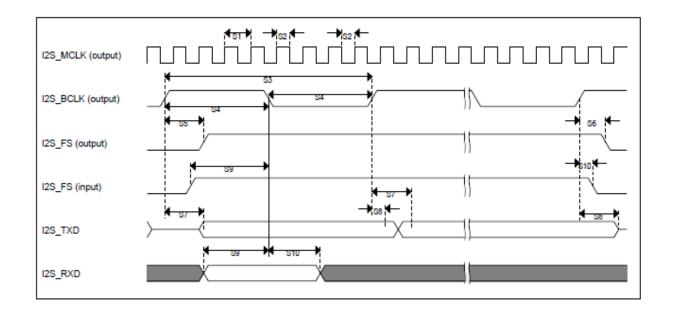


Figure 39. SAI timing master modes

Table 38. Slave Mode SAI Timing

No.	Parameter	Value		Unit
		Min	Max	Oilit
	Operating voltage	2.7	3.6	V
S11	SAI_BCLK cycle time (input)	80	_	ns
S12	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	_	ns
S14	SAI_FS input hold after SAI_BCLK	2	_	ns
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	_	28	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	_	ns
S17	SAI_RXD setup before SAI_BCLK	10	_	ns
S18	SAI_RXD hold after SAI_BCLK	2	_	ns

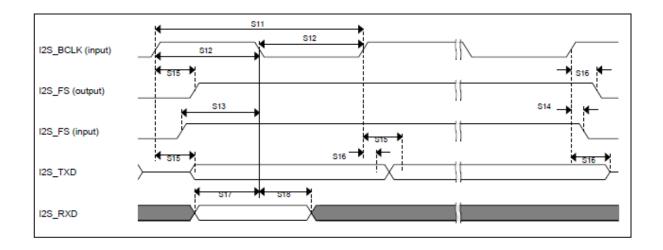


Figure 40. SAI timing slave modes

4 Package mechanical data

4.1 121 MAPBGA mechanical outline drawing

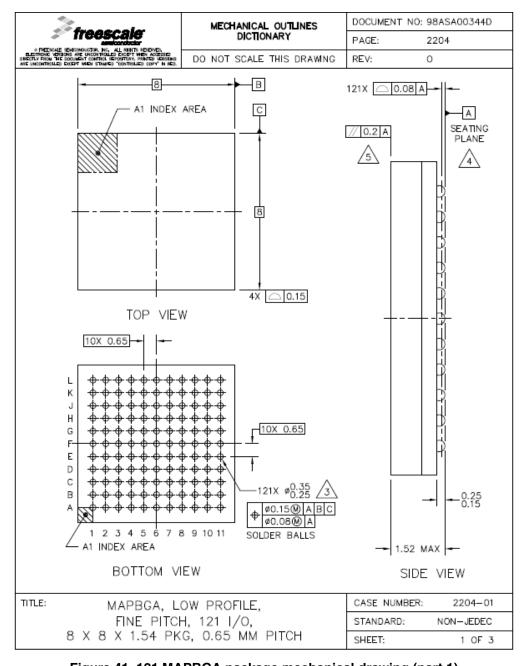


Figure 41. 121 MAPBGA package mechanical drawing (part 1)

*-		MECHANICAL OUTLINES	DOCUMENT NO: 98ASA00344D	
2	freescale	DICTIONARY	PAGE:	2204
O FREESCALE S ELECTRONIC VEHSO ORIGITLY FROM THE C ARE UNCONTROLLED I	EMICONDUCTOR, NC. ALL RIGHTS RESERVED, INS ARE UNCONTROLLED EXCEPT WHEN ACCESSED SOCIAMENT CONTROL REPOSITION, PRINTED VARISHIS DOCUMENT STAMPO "CONTROLLED COPY" IN NCO.	DO NOT SCALE THIS DRAWING	REV:	0
2. DIM 3. MAX 4. DAT SOI 5. PAR	XIMUM SOLDER BALL DIA TUM A, THE SEATING PLA LDER BALLS.	TERS. NCING PER ASME Y14.5M—1994. METER MEASURED PARALLEL TO D ANE, IS DETERMINED BY THE SPHE T SHALL EXCLUDE ANY EFFECT OF	RICAL CROWNS O	
TITLE:	MAPBGA, LO	DW PROFILE, H, 121 I/O,	CASE NUMBER:	2204-01 NON-JEDEC
		G, 0.65 MM PITCH		

Figure 42. 121 MAPBGA package mechanical drawing (part 2)

5 Revision History

Table 39. Revision history

Topic	Description				
Revision 1					
Section 3.3, Absolute maximum ratings	In Table 4 (Absolute Maximum Ratings), updated Junction temperature under bias temprature from 150°C to 132°C				
Section 3.4, Recommended operating conditions	In Table 5 (Recommended operating conditions), updated Junction temperature under bias temprature from 150°C to 132°C				
	Revision 2				
Section 2.2, Signal descriptions	In Table 4 updated the ports B[4], B[13], B[14], B[15], C[0] and C[1] from GPIO to GPI				
Section 3.15, Temperature sensor electrical characteristics	In Table 19 updated the Temperature monitoring range from 150°C to 132°C				
Revision 3					
3.8.1.2, MPC5604E External voltage regulation mode	Added the following note: • In external regulation mode, POR_B pin should be used to control the power on RESET for the device. POR_B should be kept low (asserted) as long as the input supplies are unstable or below the specified operating range. Failure to do so may lead to unexpected device operation and erratic reset recovery.				
3.8.3, Voltage monitor electrical characteristics	In Table 11., Low voltage monitor electrical characteristics, changed the Max value of V _{MLVDDOK_H} from 1.235 V to 1.135 V.				
3.12, FMPLL electrical characteristics	In Table 16., PLLMRFM electrical specifications (V _{DDPLL} = 3.0 V to 3.6 V, V _{SS} = V _{SSPLL} = 0 V, TA = TL to TH) changed the following: • Changed the name from f _{FMPLLOUT} to f _{FMPLL_0PCS} changed the Max value to 128 • Added PLL output frequecy parameter row • Changed the frequency of f _{VCO} Min range from 20 MHz to 256 MHz and Max range from 120 MHz to 512 MHz • Changed the Min/Max value of System clock period parameter to 1/f _{sys}				
1.1, Device summary	In Table 1., Device summary, deleted VGATE current . In Figure 1., MPC5606E block diagram , 4+4 channel is change to 4+3.				
3.19.12, SAI timing	In Table 37., Master Mode SAI Timing, changed the following: • Updated minimal SAI_MCLK cycle time from 40ns to 31.25 ns • Updated minimal SAI_BCLK cycle time from 80 ns to 62.5 ns • Updated the unit of SAI_BCLK cycle time from BCLK period to ns • Updated the unit of SAI_BCLK pulse width high/low from ns to BCLK period				
3.17, NMI filter functional specification	Added section Section 3.17, NMI filter functional specification				
Revision 4					
	Update revision number from Rev 3 11/2019 to Rev 4 11/2019				

MPC5606E Microcontroller Data Sheet, Rev. 4

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ÅgTypicalÅh parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including Ågtypicals,Åh must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject tounidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customerÅfs applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, ÉþVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2020 NXP B.V.

Document Number: MPC5606E Rev. 4 11/2019

