. . eescale Semiconductor Technical Data

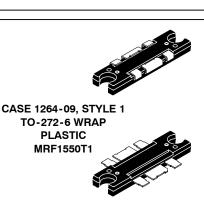
Document Number: MRF1550T1 Rev. 9, 5/2006

MRF1550T1

MRF1550FT1

175 MHz, 50 W, 12.5 V LATERAL N-CHANNEL

BROADBAND


RF POWER MOSFETs

Replaced by MRF1550NT1/FNT1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations.

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Designed for broadband commercial and industrial applications with frequencies to 175 MHz. The high gain and broadband performance of these devices make them ideal for large-signal, common source amplifier applications in 12.5 volt mobile FM equipment.

- Specified Performance @ 175 MHz, 12.5 Volts Output Power — 50 Watts Power Gain — 12 dB Efficiency — 50%
- Capable of Handling 20:1 VSWR, @ 15.6 Vdc, 175 MHz, 2 dB Overdrive
- Excellent Thermal Stability
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Broadband Full Power Across the Band: 135-175 MHz
- Broadband Demonstration Amplifier Information Available
 Upon Request
- 200°C Capable Plastic Package
- In Tape and Reel. T1 Suffix = 500 Units per 44 mm, 13 inch Reel.

DRMATIC

RCHIVI

CASE 1264A-02, STYLE 1 TO-272-6 PLASTIC MRF1550FT1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +40	Vdc
Gate-Source Voltage	V _{GS}	±20	Vdc
Drain Current — Continuous	ا _D	12	Adc
Total Device Dissipation @ T _C = 25°C ⁽¹⁾ Derate above 25°C	PD	165 0.50	W W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	Тј	200	°C

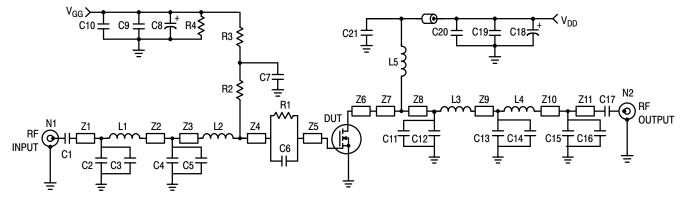
CharacteristicSymbolValueUnitThermal Resistance, Junction to CaseR_{0JC}0.75°C/W

Table 3. Moisture Sensitivity Level

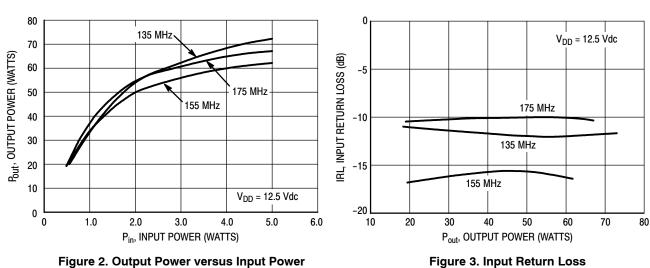
Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	1	260	°C

1. Calculated based on the formula $P_D = \frac{IJ - I}{D}$

^υ R_θJC


NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

$(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ Image: Constraint of the second	Symbol	Min	Тур	Max	Unit
$(V_{DS} = 60 \text{ Vdc}, V_{QS} = 0 \text{ Vdc})$ II<	·				
$(V_{GS} = 10 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$ Image: the state of the sta	I _{DSS}	—	—	1	μAdc
Gate Threshold Voltage $(V_{DS} = 12.5 \text{ Vdc}, I_D = 800 \mu\text{A})$ $V_{GS(th)}$ 13VdcDrain-Source On-Voltage $(V_{GS} = 5 \text{ Vdc}, I_D = 1.2 \text{ A})$ $R_{DS(on)}$ 0.5 Ω Drain-Source On-Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 4.0 \text{ Adc})$ $V_{DS(on)}$ 1VdcDynamic CharacteristicsInput Capacitance (Includes Input Matching Capacitance) $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{iss} 500pFOutput Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{oss} 35pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} 35pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} 35pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} 35pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} 35pFCommon -Source Amplifier Power Gain $(V_{DD} = 12.5 \text{ Vdc}, P_{out} = 50 \text{ Watts}, I_{DQ} = 500 \text{ mA}) f = 175 \text{ MHz}$ G_{ps} 10dB	I _{GSS}	-	_	0.5	μAdc
	·	•			
$(V_{GS} = 5 \text{ Vdc}, I_D = 1.2 \text{ A})$ $D_{O(SI)}$	V _{GS(th)}	1	_	3	Vdc
$(V_{GS} = 10 \text{ Vdc}, I_D = 4.0 \text{ Adc})$ Image: CharacteristicsDynamic CharacteristicsInput Capacitance (Includes Input Matching Capacitance) $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{iss} 500pFOutput Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{oss} 250pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} 35pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} 35pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} 35pFReverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ G_{ps} 10Reverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, P_{out} = 50 \text{ Watts}, I_{DQ} = 500 \text{ mA}) f = 175 \text{ MHz}$ G_{ps} 10	R _{DS(on)}	—	—	0.5	Ω
Input Capacitance (Includes Input Matching Capacitance) $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{iss} $ 500$ pF Output Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{oss} $ 250$ pF Reverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} $ 35$ pF Reverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} $ 35$ pF Returns for Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} $ 35$ pF Returns for Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ G_{ps} $ dB$ Returns for Capacitance for the capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ G_{ps} $ dB$ Returns for Capacitance for the ca	V _{DS(on)}	_	_	1	Vdc
$(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, \text{f} = 1 \text{ MHz})$ C_{oss} $ 250$ pF Output Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, \text{f} = 1 \text{ MHz})$ C_{rss} $ 250$ pF Reverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, \text{f} = 1 \text{ MHz})$ C_{rss} $ 35$ pF Reverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, \text{f} = 1 \text{ MHz})$ C_{rss} $ 35$ pF Recent Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, \text{f} = 1 \text{ MHz})$ G_{ps} $ dB$ Common-Source Amplifier Power Gain $(V_{DD} = 12.5 \text{ Vdc}, P_{out} = 50 \text{ Watts}, I_{DQ} = 500 \text{ mA})$ $f = 175 \text{ MHz}$ G_{ps} 10 $ -$		-		<u> </u>	
$(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} $ 35$ pF Reverse Transfer Capacitance $(V_{DS} = 12.5 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ C_{rss} $ 35$ pF RF Characteristics (In Freescale Test Fixture)Common-Source Amplifier Power Gain $(V_{DD} = 12.5 \text{ Vdc}, P_{out} = 50 \text{ Watts}, I_{DQ} = 500 \text{ mA}) f = 175 \text{ MHz}$ G_{ps} 10 $ dB$	C _{iss}	-	_	500	pF
(V _{DS} = 12.5 Vdc, V _{GS} = 0 V, f = 1 MHz) Image: Compose of the second sec	C _{oss}	—	_	250	pF
Common-Source Amplifier Power Gain $(V_{DD} = 12.5 \text{ Vdc}, P_{out} = 50 \text{ Watts}, I_{DQ} = 500 \text{ mA})$ $f = 175 \text{ MHz}$ G_{ps} 10 $ dB$ Description: G_{ps} 10 $ dB$	C _{rss}	—	_	35	pF
(V _{DD} = 12.5 Vdc, P _{out} = 50 Watts, I _{DQ} = 500 mA) f = 175 MHz 10 — —		•			
Drain Efficiency n %	G _{ps}	10	_	_	dB
$(V_{DD} = 12.5 \text{ Vdc}, P_{out} = 50 \text{ Watts}, I_{DQ} = 500 \text{ mA}) f = 175 \text{ MHz}$ 50	η	50	_	_	%
		IDSS IGSS VGS(th) RDS(on) VDS(on) Ciss Coss Crss Gps	IDSS - IGSS - IGSS - VGS(th) 1 RDS(on) - VDS(on) - Ciss - Coss - Crss - Gps 10 η 10	$\begin{tabular}{ c c c c c } \hline I_{DSS} & - & - & - & - & - & - & - & - & - & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


MRF1550T1 MRF1550FT1

B1 C1 C2 C3 C4, C16 C5 C6 C7, C17 C8, C18 C9, C19 C10 C11, C12 C13 C14 C15 C20 L1 L2 L3	Ferroxcube #VK200 180 pF, 100 mil Chip Capacitor 10 pF, 100 mil Chip Capacitor 33 pF, 100 mil Chip Capacitor 24 pF, 100 mil Chip Capacitor 240 pF, 100 mil Chip Capacitor 240 pF, 100 mil Chip Capacitor 300 pF, 100 mil Chip Capacitors 10 μ F, 50 V Electrolytic Capacitors 0.1 μ F, 100 mil Chip Capacitors 470 pF, 100 mil Chip Capacitor 200 pF, 100 mil Chip Capacitor 20 pF, 100 mil Chip Capacitor 30 pF, 100 mil Chip Capacitor 30 pF, 100 mil Chip Capacitor 30 pF, 100 mil Chip Capacitor 1,000 pF, 100 mil Chip Capacitor 1,000 pF, 100 mil Chip Capacitor 18.5 nH, Coilcraft #A05T 5 nH, Coilcraft #A02T 1 Turn, #24 AWG, 0.250" ID	L4 L5 N1, N2 R1 R2 R3 R4 Z1 Z2 Z3 Z4 Z5, Z6 Z7 Z8 Z9 Z10 Z11 Board	1 Turn, #26 AWG, 0.240" ID 3 Turn, #24 AWG, 0.180" ID Type N Flange Mounts 5.1 Ω , 1/4 W Chip Resistor 39 Ω Chip Resistor (0805) 1 k Ω , 1/8 W Chip Resistor 33 k Ω , 1/4 W Chip Resistor 1.000" x 0.080" Microstrip 0.400" x 0.080" Microstrip 0.200" x 0.080" Microstrip 0.200" x 0.080" Microstrip 0.100" x 0.223" Microstrip 0.160" x 0.080" Microstrip 0.260" x 0.080" Microstrip 0.260" x 0.080" Microstrip 0.280" x 0.080" Microstrip 0.280" x 0.080" Microstrip 0.270" x 0.080" Microstrip 0.270" x 0.080" Microstrip 0.730" x 0.080" Microstrip Glass Teflon [®] , 31 mils
---	--	---	--

Figure 1. 135 - 175 MHz Broadband Test Circuit

TYPICAL CHARACTERISTICS

Figure 3. Input Return Loss versus Output Power

TYPICAL CHARACTERISTICS

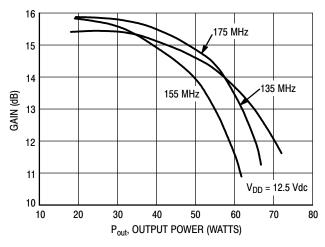


Figure 4. Gain versus Output Power

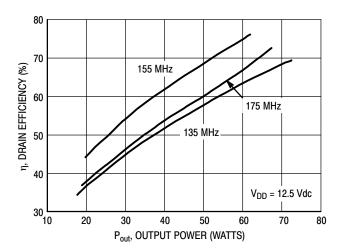


Figure 5. Drain Efficiency versus Output Power

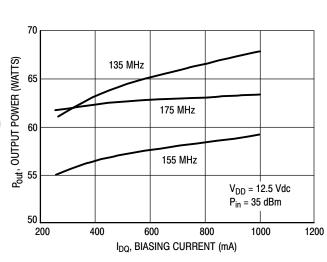


Figure 6. Output Power versus Biasing Current

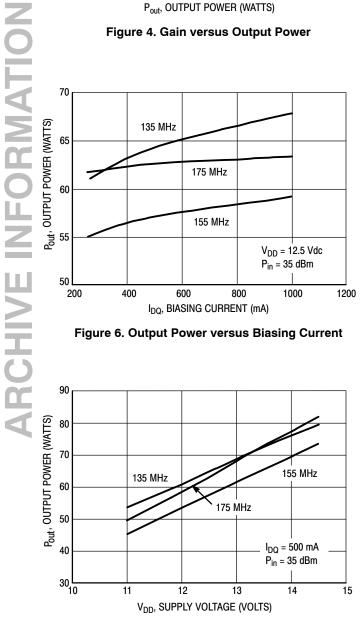


Figure 8. Output Power versus Supply Voltage

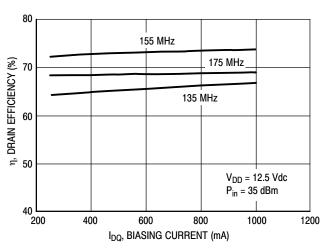


Figure 7. Drain Efficiency versus **Biasing Current**

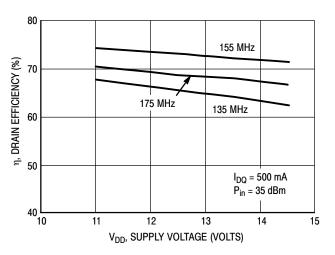
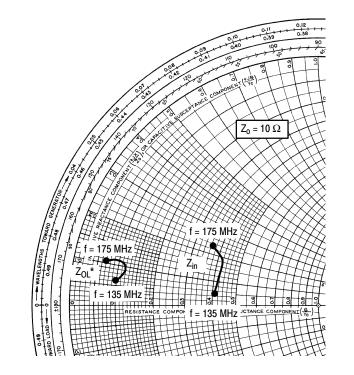



Figure 9. Drain Efficiency versus Supply Voltage

ARCHIVE INFORMATION

 V_{DD} = 12.5 V, I_{DQ} = 500 mA, P_{out} = 50 W

f MHz	Z _{in} Ω	Ζ_{ΟL}* Ω
135	4.1 + j0.5	1.0 + j0.6
155	4.2 + j1.7	1.2 + j.09
175	3.7 + j2.3	0.7 + j1.1

Z_{in} = Complex conjugate of source impedance.

 Z_{OL}^{\star} = Complex conjugate of the load

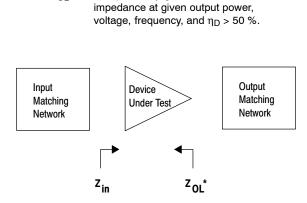


Figure 10. Series Equivalent Input and Output Impedance

					I _{DQ} = 500 mA					
	f	s	11	S	21	S	12	S ₂₂		
	MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$	
	50	0.93	-178	4.817	80	0.009	- 39	0.86	-176	
	100	0.94	- 178	2.212	69	0.009	-3	0.88	- 175	
	150	0.95	- 178	1.349	61	0.008	-8	0.90	- 174	
	200	0.95	- 178	0.892	54	0.006	-13	0.92	- 174	
	250	0.96	-178	0.648	51	0.005	-7	0.93	-174	
	300	0.97	-178	0.481	47	0.004	-8	0.95	-174	
	350	0.97	-178	0.370	46	0.005	4	0.95	- 174	
	400	0.98	-178	0.304	43	0.001	15	0.97	- 174	
Ζ	450	0.98	-178	0.245	43	0.005	81	0.97	-174	
0	500	0.98	-178	0.209	43	0.003	84	0.97	-174	
	550	0.99	-177	0.178	41	0.007	70	0.98	-175	
	600	0.98	-178	0.149	41	0.010	106	0.96	-175	
RMATIC					I _{DQ} = 2.0 mA	L.				
	f	S	11	S	21	S	12	S	22	
	MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$	
	50	0.93	-177	4.81	80	0.003	- 119	0.93	-178	
	100	0.94	- 178	2.20	69	0.006	4	0.93	- 178	
INFO	150	0.95	-178	1.35	61	0.003	-1	0.93	-177	
	200	0.95	-178	0.89	54	0.004	18	0.93	-176	
Ζ	250	0.96	-178	0.65	51	0.001	28	0.94	-176	
	300	0.97	-178	0.48	47	0.004	77	0.94	-175	
ш	350	0.97	-178	0.37	46	0.006	85	0.95	-175	
	400	0.98	-178	0.30	43	0.007	53	0.96	-174	
	450	0.98	-178	0.25	43	0.006	74	0.97	-174	
	500	0.98	-177	0.21	44	0.006	84	0.97	-174	
$\overline{\mathbf{a}}$	550	0.99	-177	0.18	41	0.002	106	0.97	-175	
	600	0.98	-178	0.15	41	0.004	116	0.96	-174	
BC					I _{DQ} = 4.0 mA					
4	f	S	11	S	21	S	12	S	22	
	MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$	
	50	0.97	- 179	5.04	87	0.002	- 116	0.94	-179	

Table 5. Common Source Scattering Parameters (V_{DD} = 12.5 Vdc)

I_{DQ} = 500 mA

4

	I _{DQ} = 4.0 mA								
f	S.	11	S	21	S	12	S	22	
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$	
50	0.97	- 179	5.04	87	0.002	-116	0.94	-179	
100	0.96	- 179	2.43	82	0.006	42	0.94	-178	
150	0.96	- 179	1.60	77	0.004	13	0.94	-177	
200	0.96	- 179	1.14	74	0.003	43	0.95	-176	
250	0.97	- 179	0.89	71	0.004	65	0.95	-175	
300	0.97	- 179	0.71	68	0.006	68	0.95	-175	
350	0.97	- 179	0.57	67	0.006	74	0.97	- 174	

MRF1550T1 MRF1550FT1

f	S	11	S	S ₂₁ S ₁₂ S ₂₂		S ₁₂		22
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
400	0.97	-179	0.49	63	0.005	58	0.97	-173
450	0.98	-178	0.41	63	0.005	73	0.98	-173
500	0.98	-178	0.36	62	0.003	128	0.98	-173
550	0.98	-178	0.32	58	0.004	57	0.99	-174
600	0.98	- 178	0.27	58	0.009	83	0.98	-174

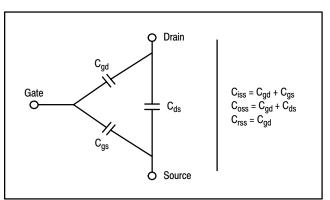
Table 5. Common Source Scattering Parameters (V_{DD} = 12.5 Vdc) (continued)

I _{DQ} = 4.0 mA (conti	nued)
Set	Sta

DESIGN CONSIDERATIONS

This device is a common-source, RF power, N-Channel enhancement mode, Lateral <u>Metal-Oxide Semiconductor</u> <u>Field-Effect Transistor (MOSFET)</u>. Freescale Application Note AN211A, "FETs in Theory and Practice", is suggested reading for those not familiar with the construction and characteristics of FETs.

This surface mount packaged device was designed primarily for VHF and UHF mobile power amplifier applications. Manufacturability is improved by utilizing the tape and reel capability for fully automated pick and placement of parts. However, care should be taken in the design process to insure proper heat sinking of the device.


The major advantages of Lateral RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage.

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}). These capacitances are characterized as input (C_{iss}), output (C_{oss}) and reverse transfer (C_{rss}) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The C_{iss} can be specified in two ways:

- 1. Drain shorted to source and positive voltage at the gate.
- 2. Positive voltage of the drain in respect to source and zero volts at the gate.

In the latter case, the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

DRAIN CHARACTERISTICS

One critical figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $R_{DS(on)}$, occurs in the linear region of the output characteristic and is specified at a specific gate-source voltage and drain current. The drain-source voltage under these conditions is termed $V_{DS(on)}$. For MOSFETs, $V_{DS(on)}$ has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device.

 $\mathsf{BV}_{\mathsf{DSS}}$ values for this device are higher than normally required for typical applications. Measurement of $\mathsf{BV}_{\mathsf{DSS}}$ is not recommended and may result in possible damage to the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The DC input resistance is very high - on the order of $10^9 \Omega$ — resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage to the gate greater than the gate-to-source threshold voltage, $V_{GS(th)}$.

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate-to-source impedance low also helps dampen transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

DC BIAS

Since this device is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. RF power FETs operate optimally with a quiescent drain current (I_{DQ}), whose value is application dependent. This device was characterized at $I_{DQ} = 150$ mA, which is the suggested value of bias current for typical applications. For special applications such as linear amplification, I_{DQ} may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

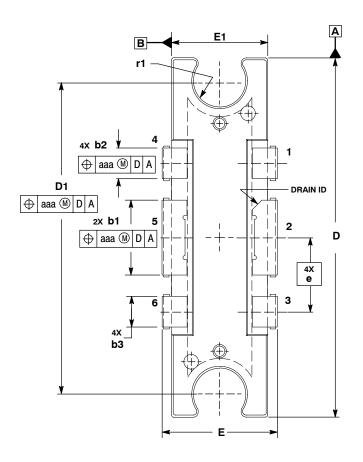
GAIN CONTROL

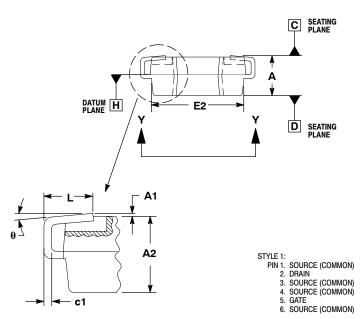
Power output of this device may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, ALC/AGC and modulation systems. This characteristic is very dependent on frequency and load line.

ARCHIVE INFORMATIO

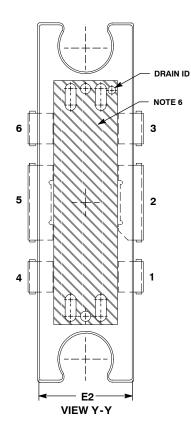
MOUNTING

The specified maximum thermal resistance of 0.75° C/W assumes a majority of the $0.170'' \times 0.608''$ source contact on the back side of the package is in good contact with an appropriate heat sink. As with all RF power devices, the goal of the thermal design should be to minimize the temperature at the back side of the package.


AMPLIFIER DESIGN

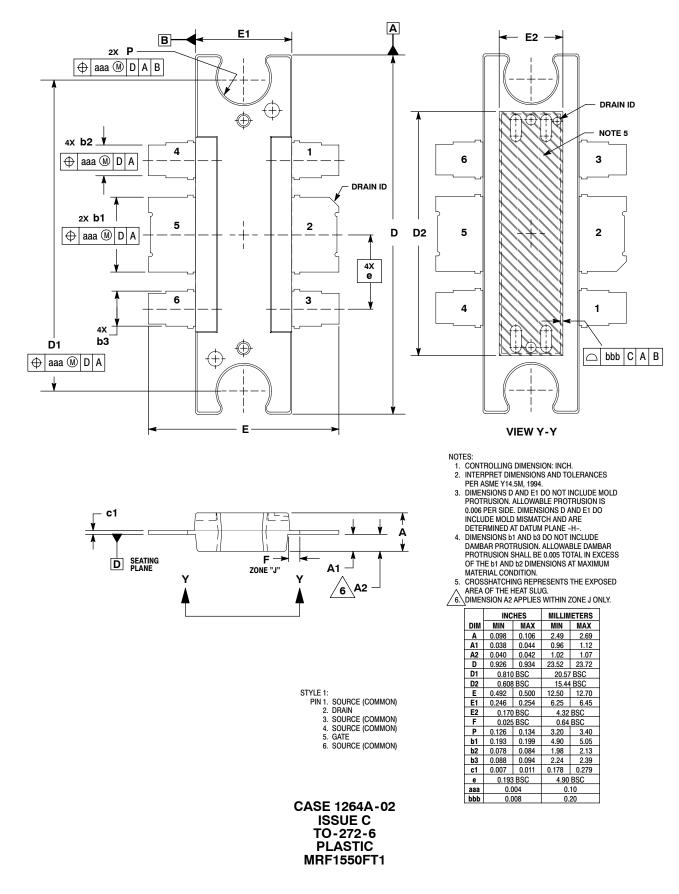

Impedance matching networks similar to those used with bipolar transistors are suitable for this device. For examples see Freescale Application Note AN721, "Impedance Matching Networks Applied to RF Power Transistors." Large-signal impedances are provided, and will yield a good first pass approximation. Since RF power MOSFETs are triode devices, they are not unilateral. This coupled with the very high gain of this device yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The RF test fixture implements a parallel resistor and capacitor in series with the gate, and has a load line selected for a higher efficiency, lower gain, and more stable operating region.

Two-port stability analysis with this device's S-parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Free-scale Application Note AN215A, "RF Small-Signal Design Using Two-Port Parameters" for a discussion of two port network theory and stability.



PACKAGE DIMENSIONS

CASE 1264-09 **ISSUE K TO-272-6 WRAP** PLASTIC **MRF1550T1**


NOTES:

- NOTES:
 CONTROLLING DIMENSION: INCH.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
 DIMENSION D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.006 PER SIDE. DIMENSION D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
 DIMENSIONS b1 AND b3 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.005 TOTAL IN EXCESS OF THE b1 AND b2 DIMENSIONS AT MAXIMUM
- OF THE b1 AND b2 DIMENSIONS AT MAXIMUM MATERIAL CONDITION. 6. CROSSHATCHING REPRESENTS THE EXPOSED
- AREA OF THE HEAT SLUG.

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.098	0.108	2.49	2.74	
A1	0.000	0.004	0.00	0.10	
A2	0.100	0.104	2.54	2.64	
D	0.928	0.932	0.932 23.57		
D1	0.806	0.814	20.47	20.68	
Е	0.296	0.304	7.52	7.72	
E1	0.248	0.252	6.30	6.40	
E2	0.241	0.245 6.12		6.22	
L	0.060	0.070	1.52	1.78	
b1	0.193	0.199	4.90	5.05	
b2	0.078	0.084	1.98	2.13	
b3	0.088	0.094	2.24	2.39	
c1	0.007	0.011	0.18	0.28	
e	0.193	BSC	4.90	BSC	
r1	0.063	0.068	1.60	1.73	
θ	0 °	6 °	0 °	6 °	
aaa	0.0	004	0.	10	

MRF1550T1 MRF1550FT1

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

