

The RF Line NPN Silicon RF Power Transistor

The MRF6409 is designed for GSM base stations applications. It incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness.

- To be used in Class AB
- Specified 26 Volts, 960 MHz Characteristics Output Power — 20 Watts CW Gain — 11 dB Typ Efficiency — 60% Typ

20 W, 960 MHz RF POWER TRANSISTOR NPN SILICON

CASE 319-07, STYLE 2

ARCHIVE INFORMATIC

MAXIMUM RATINGS

Rating		Symbol	Val	ue	Unit
Collector–Emitter Voltage		V _{CEO}	24		Vdc
Collector-Emitter Voltage		V _{CES}	5	5	Vdc
Emitter-Base Voltage		V _{EBO}	4.	.0	Vdc
Collector-Current — Continuous		Ι _C	5.	.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C		PD	4 0.2	5 26	Watts W/°C
Storage Temperature Range		T _{stg}	–65 to	+150	°C
Operating Junction Temperature		TJ	20	00	°C
THERMAL CHARACTERISTICS			-		
Characteristic		Symbol	Ма	ах	Unit
Thermal Resistance, Junction to Case (1)		$R_{\theta JC}$	3.	.8	°C/W
ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise	e noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage $(I_{C} = 20 \text{ mAdc}, I_{B} = 0)$	V _{(BR)CEO}	24	30	_	Vdc
Emitter–Base Breakdown Voltage ($I_B = 5.0 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	4.0	5.0	—	Vdc
Collector–Emitter Breakdown Voltage $(I_{C} = 20 \text{ mAdc}, V_{BE} = 0)$	V _{(BR)CES}	55	60	—	Vdc
Collector–Cutoff Current ($V_{CE} = 30 \text{ Vdc}, V_{BE} = 0$)	I _{CES}	—	—	6.0	mA

(1) Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ($I_{CE} = 1.0$ Adc, $V_{CE} = 5.0$ Vdc)	h _{FE}	20	35	80	_
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 26 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	18	_	pF
FUNCTIONAL TESTS					
Common–Emitter Amplifier Power Gain (V_{CC} = 26 Vdc, P _{out} = 20 W (CW), I _{CQ} = 50 mA, f = 960 MHz)	G _{pe}	10	11	_	dB
Collector Efficiency ($V_{CC} = 26$ Vdc, $P_{out} = 20$ W (CW), $I_{CQ} = 50$ mA, f = 960 MHz)	η	50	60	_	%
Load Mismatch (V _{CC} = 26 Vdc, P _{out} = 15 W (CW), I _{CQ} = 50 mA, f = 960 MHz, Load VSWR = 3:1, All Phase Angles at Frequency of Test)	Ψ	No Degradation in Output Power			

Ferrite Bead	C11	4.7 μF, 50 V, Tantalum Capacitor
3.3 pF, Chip Capacitor, High Q	D1, D2	Diode BAS16 Type or Equivalent
4.7 pF, Chip Capacitor, High Q	P1	1.0 kΩ, Trimmer
2.2 pF, Chip Capacitor, High Q	R1	3.3 Ω, Chip Resistor
82 pF, Chip Capacitor, High Q	R2	68 Ω, Chip Resistor
330 pF, Chip Capacitor, High Q	R3	2.2 kΩ, Resistor
0.1 µF. Chip Capacitor	T1	NPN Transistor
22 µF, 16 V, Tantalum Capacitor	Board	Glass Teflon [®] , $\varepsilon_r = 2.55$, H = 1/50 inch
	Ferrite Bead 3.3 pF, Chip Capacitor, High Q 4.7 pF, Chip Capacitor, High Q 2.2 pF, Chip Capacitor, High Q 82 pF, Chip Capacitor, High Q 330 pF, Chip Capacitor, High Q 0.1 μF, Chip Capacitor 22 μF, 16 V, Tantalum Capacitor	Ferrite BeadC11 $3.3 pF$, Chip Capacitor, High QD1, D2 $4.7 pF$, Chip Capacitor, High QP1 $2.2 pF$, Chip Capacitor, High QR1 $82 pF$, Chip Capacitor, High QR2 $330 pF$, Chip Capacitor, High QR3 $0.1 \mu F$, Chip CapacitorT1 $22 \mu F$, 16 V, Tantalum CapacitorBoard

Figure 1.	Test	Circuit	Electrical	Schematic
-----------	------	---------	------------	-----------

TYPICAL CHARACTERISTICS

N

f (MHz)	Z _{in} (Ω)	Z _{OL} * (Ω)
920	1.4 + j3.0	3.2 – j2.5
940	1.5 + j3.9	3.5 – j1.88
960	1.5 + j4.2	3.9 – j2.5
980	1.6 + j4.4	4.0 – j2.8

Z_{OL}*: Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 9. 960 MHz Test Circuit RF, Photomaster Scale 1:1 (Reduced 18% in printed data book, DL110/D)

Figure 10. 960 MHz Test Circuit RF, Photomaster Scale 1:1 and Components Location (Reduced 18% in printed data book, DL110/D)

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *Q* are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

 \Diamond

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315

Mfax is a trademark of Motorola, Inc.

MfaxTM: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://sps.motorola.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

