

Document Number: MRF8P20140WH Rev. 1, 11/2013

VRoHS

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

Designed for CDMA base station applications with frequencies from 1880 to 2025 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats.

• Typical Doherty Single-Carrier W-CDMA Performance: $V_{DD} = 28$ Volts, $I_{DQA} = 500$ mA, $V_{GSB} = 1.2$ Vdc, $P_{out} = 24$ Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
1880 MHz	16.0	42.8	8.0	-31.0
1920 MHz	16.0	43.7	8.1	-32.6
2025 MHz	15.9	42.0	8.1	-31.2

- Capable of Handling 10:1 VSWR, @ 30 Vdc, 1920 MHz, 160 Watts CW ⁽¹⁾ Output Power (3 dB Input Overdrive from Rated P_{out})
- Typical P_{out} @ 3 dB Compression Point ≃ 170 Watts ⁽¹⁾

Features

- Designed for Wide Instantaneous Bandwidth Applications. VBW_{res} \simeq 240 \ \text{MHz}.
- Designed for Wideband Applications that Require 160 MHz Signal Bandwidth
- Production Tested in a Symmetrical Doherty Configuration
- 100% PAR Tested for Guaranteed Output Power Capability
- Characterized with Large-Signal Load-Pull Parameters and Common Source S-Parameters
- · Internally Matched for Ease of Use
- Integrated ESD Protection
- Greater Negative Gate-Source Voltage Range for Improved Class C
 Operation
- Designed for Digital Predistortion Error Correction Systems
- NI-780H-4L in Tape and Reel. R3 Suffix = 250 Units, 56 mm Tape Width, 13-inch Reel.
- NI-780S-4L, NI-780GS-4L in Tape and Reel. R3 Suffix = 250 Units, 32 mm Tape Width, 13-inch Reel.

1880-2025 MHz, 24 W AVG., 28 V SINGLE W-CDMA LATERAL N-CHANNEL RF POWER MOSFETS

(Top View)

1. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	125	°C
Operating Junction Temperature (1,2)	TJ	225	°C
CW Operation @ T _C = 25°C Derate above 25°C	CW	140 0.66	W W/°C

Table 2. Thermal Characteristics

Characteristic		Value ^(2,3)	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W
Case Temperature 80°C, 24 W CW, 28 Vdc, I _{DQA} = 500 mA, V _{GSB} = 1.2 Vdc, 1920 MHz		0.68	
Case Temperature 96°C, 130 W CW ⁽³⁾ , 28 Vdc, I _{DQA} = 500 mA, V _{GSB} = 1.2 Vdc, 1920 MHz		0.40	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾		-			
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	—	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—	_	1	μAdc
On Characteristics ^(4,5)					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 200 μAdc)	V _{GS(th)}	1.1	1.8	2.6	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DA} = 500 mAdc)	V _{GSA(Q)}	—	2.6	_	Vdc
Fixture Gate Quiescent Voltage ⁽⁶⁾ (V_{DD} = 28 Vdc, I _{DA} = 500 mAdc, Measured in Functional Test)	V _{GGA(Q)}	4.5	5.2	6.0	Vdc

1. Continuous use at maximum temperature will affect MTTF.

MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

V_{DS(on)}

0.1

0.2

0.3

Vdc

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.

Select Documentation/Application Notes - AN1955.

4. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

5. Each side of device measured separately.

Drain-Source On-Voltage

 $(V_{GS} = 10 \text{ Vdc}, I_D = 2 \text{ Adc})$

6. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

7. V_{GG} = 2.0 x V_{GS(Q)}. Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. (continued)

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

	, .	-			
Characteristic	Symbol	Min	Тур	Мах	Unit

Functional Tests (1,2,3,4) (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQA} = 500 mA, V_{GSB} = 1.2 Vdc, P_{out} = 24 W Avg., f1 = 1880 MHz, f2 = 1910 MHz, 2-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.8 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	15.0	16.0	18.0	dB
Drain Efficiency	η _D	37.5	41.2	—	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.3	7.7	—	dB
Adjacent Channel Power Ratio	ACPR	_	-31.9	-29.5	dBc

Typical Performance over Frequency ⁽³⁾ — (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQA} = 500 \text{ mA}$, $V_{GSB} = 1.2 \text{ Vdc}$, $P_{out} = 24 \text{ W}$ Avg., Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
1880 MHz	16.0	42.8	8.0	-31.0
1920 MHz	16.0	43.7	8.1	-32.6
2025 MHz	15.9	42.0	8.1	-31.2

Typical Performances ⁽³⁾ (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQA} = 500 mA, V_{GSB} = 1.2 Vdc, 1880-2025 MHz Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	—	140	—	W
Pout @ 3 dB Compression Point (5)	P3dB	—	170	—	W
IMD Symmetry @ 24 W PEP, P _{out} where IMD Third Order Intermodulation ≅ 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB)	IMD _{sym}		133	_	MHz
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	—	240	—	MHz
Gain Flatness in 145 MHz Bandwidth @ P _{out} = 24 W Avg.	G _F	—	0.25	—	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.013	—	dB/°C
Output Power Variation over Temperature (-30°C to +85°C) (6)	∆P1dB	_	0.003	_	dB/°C

1. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

2. Part internally matched both on input and output.

3. Measurement made with device in a Symmetrical Doherty configuration.

4. Measurement made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GHS) parts.

5. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

Note 1: * denotes that C2, C3, C12 and C13 are mounted vertically. Note 2: V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

Figure 2. MRF8P20140WHR3(WHSR3) Test Circuit Component Layout

Table 5. MRF8P20140WHR3(WHSR3) Test Circuit Componen	t Designations and Values
-------------------------------	-------------------------	---------------------------

Part	Description	Part Number	
C1	0.6 pF Chip Capacitor	ATC600F0R6BT250XT	ATC
C2, C3	8.2 pF Chip Capacitors	ATC600F8R2BT250XT	ATC
C4, C8, C18, C24	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C5	1.2 pF Chip Capacitor	ATC600F1R2BT250XT	ATC
C6, C10, C12, C13, C14, C20	12 pF Chip Capacitors	ATC600F120JT250XT	ATC
C7, C11	10 μF, 32 V Chip Capacitors	GRM32ER61H106KA12L	Murata
C9, C17	0.1 pF Chip Capacitors	ATC600F0R1BT250XT	ATC
C15, C21	6.8 μF, 50 V Chip Capacitors	C4532X7R1H685KT	TDK
C16, C22	2.2 μF, 100 V Chip Capacitors	C3225X7R2A225KT	TDK
C19, C25	220 μF, 100 V Chip Capacitors	EEV-FK2A221M	Panasonic-ECG
C23	0.2 pF Chip Capacitor	ATC600F0R2BT250XT	ATC
C26	1.5 pF Chip Capacitor	ATC600F1R5BT250XT	ATC
R1	50 Ω, Chip Resistor	ATCCW12010T0050GBK	ATC
R2, R3, R4, R5	1.5 k Ω , 1/4 W Chip Resistors	CRCW12061K50FKEA	Vishay
R6, R7	2.2 Ω, 1/4 W Chip Resistors	CRCW12062R2FNEA	Vishay
Z1	1700-2000 MHz Band 90°, 3 dB Hybrid Coupler	1P503S	Anaren
PCB	$0.020'', \epsilon_r = 3.5$	R04350B	Rogers

Figure 3. Possible Circuit Topologies

TYPICAL CHARACTERISTICS

Figure 4. 2-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 24 Watts Avg.

Figure 5. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 24 Watts Avg.

gure 6. Intermodulation Distortion Product versus Two-Tone Spacing

TYPICAL CHARACTERISTICS

Pout. OUTPUT POWER (WATTS) AVG. Figure 9. 2-Carrier W-CDMA Power Gain, IM3, IM5, IM7 versus Output Power f, FREQUENCY (MHz) Figure 10. Broadband Frequency Response

MRF8P20140WHR3 MRF8P20140WHSR3 MRF8P20140WGHSR3

Gps, POWER GAIN (dB)

2250

Vnn = 28 Vdd	c. Inov = 200 mA.	Pulsed CW.	10 usec(on)	. 10% Duty	/ Cvcle
•DD = 20 •a	$O_{1} O_{1} O_{1} A = O_{1} $	1 aloou 011,	10 proce(en)	, 10/0 Dul	0,010

			Max Output Power					
f	Zsource	Z _{load} ⁽¹⁾		P1dB			P3dB	
(MHz)	(Ω)	(Ω)	(dBm)	(W)	η _D (%)	(dBm)	(W)	η _D (%)
1880	5.35 - j5.03	2.36 - j4.84	49.7	93	53.7	50.5	113	56.2
1930	7.39 - j5.10	2.57 - j4.73	50.0	100	56.9	50.8	119	59.3
1990	9.46 - j1.71	2.48 - j5.11	50.0	100	56.4	50.7	118	58.6
2025	9.30 + j0.80	2.50 - j5.30	50.0	100	56.7	50.7	118	59.1

(1) Load impedance for optimum P1dB power.

Z_{source} = Impedance as measured from gate contact to ground.

Z_{load} = Impedance as measured from drain contact to ground.

Figure 15. Carrier Side Load Pull Performance — Maximum P1dB Tuning

			Max Drain Efficiency					
f	Zsource	Z _{load} (1)		P1dB			P3dB	
(MHz)	(Ω)	(Ω)	(dBm)	(W)	η _D (%)	(dBm)	(W)	η _D (%)
1880	5.35 - j5.03	6.91 - j4.37	47.6	57	64.6	48.2	67	65.2
1930	7.39 - j5.10	6.36 - j3.60	48.0	63	67.3	48.6	72	68.3
1990	9.46 - j1.71	5.61 - j3.11	48.0	63	67.2	48.6	72	67.8
2025	9.30 + j0.80	5.28 - j2.88	47.9	61	66.5	48.5	70	67.3

V _{DD} = 28 Vdc, I _{DQA}	= 500 mA, Pulse	ed CW, 10 µsec(on), 10% Duty Cycle
--	-----------------	-----------------	---------------------

(1) Load impedance for optimum P1dB efficiency.

Z_{source} = Impedance as measured from gate contact to ground.

 Z_{load} = Impedance as measured from drain contact to ground.

Figure 16. Carrier Side Load Pull Performance — Maximum Efficiency Tuning

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA10793D	REV: 0
NI 780-4		CASE NUMBER	∷ 465M−01	27 MAR 2007
		STANDARD: NO	N-JEDEC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION H IS MEASURED . 030 (0. 762) AWAY FROM PACKAGE BODY.

STYLE 1:

- PIN 1. DRAIN
 - 2. DRAIN
 - 3. GATE 4. GATE
 - 5. SOURCE

	IN	СН	MIL	LIMETER			INCH	ΜI	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	1.335	1.345	33.91	34.16	R	.365	.375	9.2	7 9.53	
В	.380	.390	9.65	9.91	S	.365	.375	9.2	7 9.52	
С	.125	.170	3.18	4.32	U		.040		1.02	
Е	.035	.045	0.89	1.14	Z		.030		0.76	
F	.003	.006	0.08	0.15	AB	. 145	. 155	3.68	3.94	
G	1.100	BSC	27	.94 BSC						
Н	.057	.067	1.45	1.7	aaa	.005		0.127		
J	. 175	BSC	4.	44 BSC	bbb		.010		0.254	
К	.170	.210	4.32	5.33	ccc		.015		0.381	
М	.774	.786	19.61	20.02						
N	.772	.788	19.61	20.02						
Q	ø.118	ø.138	øЗ	ø3.51						
© F	REESCALE SEM	IICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	_ OUTLINE PRINT VERSION N		SION NO	DT TO SCALE	
TITLE:					DOCU	DOCUMENT NO: 98ASA10793D REV: 0			REV: 0	
NI 780-4					CASE	CASE NUMBER: 465M-01 27 MAR 20			27 MAR 2007	
					STAN	DARD: NO	N-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA10718D	REV: A
NI 780S-4		CASE NUMBER	: 465H—02	27 MAR 2007
		STANDARD: NO	N-JEDEC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED . 030 (0. 762) AWAY FROM PACKAGE BODY.

STYLE 1: PIN

I 1. DRAIN	
2. DRAIN	
3. GATE	
4. GATE	
5. SOURCI	-

	IN	СН	MIL	LIMETER			INCH	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN		MAX
А	.805	.815	20.45	20.7	U		.040			1.02
В	.380	.390	9.65	9.91	Z		.030			0.76
С	.125	.170	3.18	4.32	AB	. 145	. 155	3.6	3 —	3. 94
Е	.035	.045	0.89	1.14						
F	.003	.006	0.08	0.15	aaa		.005		0.12	27
н	.057	.067	1.45	1.7	bbb		.010		0.25	54
J	. 175	BSC	4.	44 BSC	ccc	.015		.015 0.38		31
к	.170	.210	4.32	5.33						
м	.774	.786	19.61	20.02						
N	.772	.788	19.61	20.02						
R	.365	.375	9.27	9.53						
S	.365	.375	9.27	9.52						
© F	REESCALE SEN ALL RIGHT	MICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	L OUTLINE PRINT VERSI		SION NO	от то	SCALE
TITLE	TITLE:					MENT NC	: 98ASA10718	D	REV:	А
NI 780S-4					CASE	NUMBER	: 465H–02		27 M	AR 2007
					STAN	DARD: NO	N-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUME	NT NO: 98ASA00238D	REV: B
NI-780GS-4L		STANDAF	RD: NON-JEDEC	
				05 SEP 2013

B1-

AA (FLANGE)

А

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM T. THE POSITIVE VALUE IMPLIES THAT THE PACKAGE BOTTOM IS HIGHER THAN THE LEAD BOTTOM.

	INCH MILLIMETER		LIMETER			INCH	MILLI	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	Z	R.000	R.040	R0.00	R1.02
A1	.002	.008	0.05	0.20	AB	.145	.155	3.68	3.94
BB	.380	.390	9.65	9.91	t°	0.	8.	0.	8.
B1	.546	.562	13.87	14.27	aaa		.005	0	.13
СС	.125	.170	3.18	4.32	bbb		.010	0	.25
Е	.035	.045	0.89	1.14	ccc		.015	0	.38
F	.003	.006	0.08	0.15					
L	.038	.046	0.97	1.17					
L1	.010	BSC	0.	25 BSC					
J	.175	BSC	4.	44 BSC					
М	.774	.786	19.66	19.96					
N	.772	.788	19.61	20.02					
R	.365	.375	9.27	9.53					
S	.365	.375	9.27	9.53					
© F	REESCALE SEM	ICONDUCTOR,	INC.				DRINT VER	L	TO SCALE
ALL RIGHTS RESERVED.									TO SOALL
TITLI	Ξ:				Ļ	DOCUMEN	IT NO: 98ASA	00238D	REV: B
	Ν	I-780G\$	5—4L			STANDAR	RD: NON-JEDE	0	
								05	SEP 2013

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, Software and Tools to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Apr. 2011	Initial Release of Data Sheet
1	Nov. 2013	 Added part number MRF8P20140WGHSR3 (NI-780GS-4L), p. 1 Table 3, ESD Protection Characteristics, removed the word "Minimum" after the ESD class rating. ESD ratings are characterized during new product development but are not 100% tested during production. ESD ratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitive devices, p. 2 Added NI-780GS-4L package isometric, p. 1, and Mechanical Outline, pp. 14-15 Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software,
		p. 16

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

