

Technical Data

RF LDMOS Wideband Integrated Power Amplifier

The MWE6IC9100N wideband integrated circuit is designed with on-chip matching that makes it usable from 869 to 960 MHz. This multi-stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulation formats.

Final Application

 Typical GSM Performance: V_{DD} = 26 Volts, I_{DQ1} = 120 mA, I_{DQ2} = 950 mA, P_{out} = 100 Watts CW, f = 960 MHz Power Gain — 33.5 dB Power Added Efficiency — 54%

GSM EDGE Application

- Typical GSM EDGE Performance: V_{DD} = 28 Volts, I_{DQ1} = 230 mA, I_{DQ2} = 870 mA, P_{out} = 50 Watts Avg., Full Frequency Band (869–960 MHz) Power Gain 35.5 dB
 Power Added Efficiency 39%
 Spectral Regrowth @ 400 kHz Offset = -63 dBc
 Spectral Regrowth @ 600 kHz Offset = -81 dBc
 EVM 2% rms
- Capable of Handling 10:1 VSWR, @ 32 Vdc, 960 MHz, 3 dB Overdrive, Designed for Enhanced Ruggedness
- Stable into a 5:1 VSWR. All Spurs Below -60 dBc @ 1 mW to 120 W CW $\mathsf{P}_{out}.$

Features

- Characterized with Series Equivalent Large–Signal Impedance Parameters and Common Source S-Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽¹⁾
- Integrated ESD Protection
- 225°C Capable Plastic Package
- In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13 inch Reel.

1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

Document Number: MWE6IC9100N-2 Rev. 6, 10/2011

MWE6IC9100NBR1

VRoHS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +66	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +6	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C

Table 2. Thermal Characteristics

C	Symbol	Value ^(2,3)	Unit	
Thermal Resistance, Junction to C	Case	$R_{ extsf{ heta}JC}$		°C/W
GSM Application (P _{out} = 100 W CW)	Stage 1, 26 Vdc, I _{DQ1} = 120 mA Stage 2, 26 Vdc, I _{DQ2} = 950 mA		1.82 0.38	
GSM EDGE Application (P _{out} = 50 W Avg.)	Stage 1, 28 Vdc, I _{DQ1} = 230 mA Stage 2, 28 Vdc, I _{DQ2} = 870 mA		1.77 0.44	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	III

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 — Off Characteristics				•	•
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 66 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	—	_	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	—	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—	_	10	μAdc
Stage 1 — On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 35 μAdc)	V _{GS(th)}	1.5	2	3.5	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _D = 120 mAdc)	V _{GS(Q)}	—	2.7	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 26 Vdc, I _D = 120 mAdc, Measured in Functional Test)	V _{GG(Q)}	6	9.4	12	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 2 — Off Characteristics	•	•		•	•
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 66 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}		_	1	μAdc
Gate-Source Leakage Current $(V_{GS} = 5 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}	_	_	10	μAdc
Stage 2 — On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 290 μAdc)	V _{GS(th)}	1.5	2	3.5	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _D = 950 mAdc)	V _{GS(Q)}	_	2.7	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 26 Vdc, I _D = 950 mAdc, Measured in Functional Test)	V _{GG(Q)}	6	8.6	12	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1 Adc)	V _{DS(on)}	0.05	0.4	0.8	Vdc
Functional Tests (In Freescale Test Fixture, 50 ohm system) V _{DD} = 26 Vdc	, P _{out} = 100 V	V CW, I _{DQ1} =	120 mA, I _{DQ2}	₂ = 950 mA, f	= 960 MHz
Power Gain	G _{ps}	31	33.5	36	dB
Input Return Loss	IRL	_	-15	-10	dB
Power Added Efficiency	PAE	52	54	_	%
Pout @ 1 dB Compression Point, CW	P1dB	100	112	—	W
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, I_{DQ2} = 870 mA, 869-894 MHz and 920-960 MHz EDGE Modulation	50 ohm syster	m) V _{DD} = 28 \	/dc, P _{out} = 50) W Avg., I _{DQ} -	_l = 230 mA,

Power Gain	G _{ps}	_	35.5	_	dB
Power Added Efficiency	PAE	_	39	_	%
Error Vector Magnitude	EVM	_	2	_	% rms
Spectral Regrowth at 400 kHz Offset	SR1	_	-63	_	dBc
Spectral Regrowth at 600 kHz Offset	SR2	_	-81	_	dBc

Figure 3	. MWE6IC9100NBR1	Test Circuit	Schematic
----------	------------------	---------------------	-----------

Table 6.	MWE6IC9100NBR1	Test Cir	cuit Com	ponent De	esignations	and Values

Part	Description	Part Number	Manufacturer
C1, C2	10 pF Chip Capacitors	ATC100B100GT500XT	ATC
C3, C4, C5	3.9 pF Chip Capacitors	ATC100B3R9BT500XT	ATC
C6	0.5 pF Chip Capacitor	ATC100B0R5BT500XT	ATC
C7, C8, C9, C10, C11, C12, C13, C14	33 pF Chip Capacitors	ATC100B330JT500XT	ATC
C15, C16, C17, C18, C19, C20, C21	6.8 μF Chip Capacitors	C4532X5R1H685MT	TDK
C22, C23	470 µF, 63 V Electrolytic Capacitors, Radial	222212018470	Vishay
C24	330 pF Chip Capacitor	ATC100B331JT200XT	ATC
R1, R2	4.7 kΩ, 1/8 W Chip Resistors	CRCW08054701FKEA	Vishay

Figure 4. MWE6IC9100NBR1 Test Circuit Component Layout

TYPICAL CHARACTERISTICS

Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW

Figure 6. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 50 Watts Avg.

@ I_{DQ2} = 950 mA

Figure 13. Power Gain and Power Added Efficiency versus Output Power @ 880 MHz

Figure 10. Intermodulation Distortion Products versus Tone Spacing

Figure 12. Power Gain and Power Added Efficiency versus Output Power @ 945 MHz

Figure 14. Power Gain versus Output Power

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

GSM TEST SIGNAL

Figure 25. EDGE Spectrum

NP

 V_{DD} = 26 Vdc, I_{DQ1} = 120 mA, I_{DQ2} = 950 mA, P_{out} = 100 W CW

f MHz	Z _{source} Ω	Z _{load} Ω
820	35.40 + j21.50	0.516 - j0.365
840	35.00 + j18.00	0.638 - j0.172
860	35.00 + j15.50	0.768 - j0.010
880	34.50 + j12.20	0.874 + j0.071
900	34.00 + j9.00	1.030 + j0.133
920	34.30 + j7.20	1.101 + j0.082
940	38.50 + j6.00	1.088 + j0.037
960	42.00 + j7.40	1.011 + j0.018
980	45.55 + j12.75	0.872 + j0.051

 Z_{source} = Test circuit impedance as measured from gate to ground.

Figure 26. Series Equivalent Source and Load Impedance

f	S	11	S	21	S	12	S	22
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
750	0.230	95	5.81	-87	0.0007	-119	0.989	-180
760	0.188	93	6.48	-97	0.0007	-116	0.987	180
770	0.149	92	7.18	-107	0.0007	-111	0.985	180
780	0.114	92	7.88	-117	0.0007	-110	0.983	180
790	0.085	96	8.56	-128	0.0008	-109	0.981	180
800	0.063	104	9.22	-139	0.0008	-108	0.979	180
810	0.047	117	9.82	-150	0.0009	-109	0.978	180
820	0.037	134	10.37	-161	0.0009	-110	0.978	-180
830	0.031	156	10.85	-172	0.0009	-111	0.977	-180
840	0.029	-177	11.27	178	0.0010	-113	0.977	-180
850	0.033	-152	11.60	167	0.0010	-114	0.978	-180
860	0.041	-134	11.87	156	0.0010	-117	0.978	-180
870	0.052	-123	12.07	146	0.0010	-119	0.979	-180
880	0.063	-116	12.20	135	0.0010	-122	0.979	-180
890	0.074	-112	12.25	125	0.0010	-123	0.979	180
900	0.084	-109	12.23	115	0.0010	-126	0.980	180
910	0.094	-106	12.15	106	0.0010	-129	0.979	180
920	0.104	-103	12.01	96	0.0010	-131	0.978	180
930	0.113	-99	11.82	86	0.0009	-133	0.978	180
940	0.125	-95	11.57	77	0.0009	-135	0.977	180
950	0.141	-91	11.28	68	0.0008	-138	0.976	180
960	0.160	-88	10.97	59	0.0008	-136	0.976	180
970	0.183	-86	10.62	50	0.0007	-135	0.976	180
980	0.209	-85	10.23	42	0.0006	-133	0.976	180
990	0.238	-85	9.83	34	0.0006	-130	0.975	180
1000	0.268	-86	9.41	26	0.0006	-125	0.975	180

Table 7. Common Source Scattering Parameters (V_{DD} = 26 V, 50 ohm system, I_{DQ1} = 120 mA, I_{DQ2} = 950 mA)

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANI		L OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO: 98ASA10649D		REV: A	
14 IFAD	JY	CASE NUMBER	27 JUN 2007		
IT LEAD		STANDARD: NO	N-JEDEC		

13

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. MECHANIC, ALL RIGHTS RESERVED.		L OUTLINE PRINT VERSION NOT TO SCA		
TITLE: TO 272 WIDE DOI		DOCUMENT NO: 98ASA10649D		REV: A
14 IFAD	JY	CASE NUMBER	8: 1617–02	27 JUN 2007
		STANDARD: NO	DN-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE . 005 (0.13) TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	IN	СН	MIL	MILLIMETER		INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	.100	.104	2.54	2.64	b	.154	.160	3.91	4.06	
A1	.039	.043	0.99	1.09	b1	.010	.016	0.25	0.41	
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	0.28	
D	.928	.932	23.57	23.67	е	.020 BSC		0.51 BSC		
D1	.810	BSC	20	.57 BSC	e1	.040 BSC		1.02 BSC		
Е	.551	.559	14.00	14.20	e2	.1105 BSC		2.807 BSC		
E1	.353	.357	8.97	9.07	r1	.063	.068	1.6	1.73	
E2	.346	.350	8.79	8.89						
F	.025	BSC	0.	64 BSC	aaa	.004			0.10	
М	.600		15.24							
Ν	.270		6.86							
©	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			L OUTLINE PRINT VERSION NOT TO SCALE			T TO SCALE			
TITLE	TITLE: DOCUMENT NO: 98ASA10649D REV: .					REV: A				
TO-272 WIDE BODY				CASE NUMBER: 1617–02 27 JUN			27 JUN 2007			
14 LEAD				STANDARD: NON-JEDEC						

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages
- · AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Feb. 2007	Initial Release of Data Sheet
1	May 2007	 Changed Device box to 960 MHz to reflect functional test frequency, p. 1 Added Power Added Efficiency to GSM EDGE Application Typical Performances, p. 1 Changed "5:1 VSWR, @ 28 Vdc" to "10:1 VSWR, @ 32 Vdc" in the Capable of Handling bullet, p. 1 Added Footnote (1) to Quiescent Current Thermal Tracking bullet under Features section and to Quiescent Current Temperature Compensation in Fig. 1, Functional Block Diagram, p. 1 Added top-level, 2-stage block diagram depiction to Fig. 2, Pin Connections; updated Note, p. 1 Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 Added Stage 1 and Stage 2 DC Electrical Characteristics tables, p. 2, 3 In Table 6, Component Designations and Values, corrected Part Number ATC100B331JT500XT to ATC100B331JT200XT for C24 capacitor, p. 4 Updated Figs. 7 and 8, Power Gain versus Output Power, to remove non-variable I_{DQ} value, p. 6 Updated Fig. 9, Intermodulation Distortion Products versus Output Power, to show PEP and not CW; corrected frequency value to show 100 kHz Tone Spacing, p. 7 Updated graphical representation of Ideal/Actual in Fig. 11, Pulsed CW Output Power versus Input Power, to show correct 3 and 6 dB compression points, p. 7
2	June 2007	 Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature rating will be added to the Maximum Ratings table when parts' Operating Junction Temperature is increased to 225°C.

(continued)

REVISION HISTORY (continued)

Revision	Date	Description
3	Dec. 2008	 Changed full frequency band in Typical GSM Performance bullet to f = 960 MHz to match actual production test, p. 1
		 Changed Storage Temperature Range in Max Ratings table from -65 to +200 to -65 to +150 for standardization across products, p. 2
		Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2
		 Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related "Continuous use at maximum temperature will affect MTTF" footnote added and changed 200°C to 225°C in Capable Plastic Package bullet, p. 1, 2
		Corrected Z10 from 1.17" to 0.117" in the Test Circuit Schematic Z list, p. 4
		 Updated Part Numbers in Table 6, Component Designations and Values, to latest RoHS compliant part numbers, p. 4
		 Replaced Case Outline 1617-01 with 1617-02, Issue A, p. 1, 13-15. Revised cross-hatched area for exposed heat spreader. Added pin numbers 1, 12, 13, and 14 to Sheets 1 and 2. Corrected mm Min and Max values for dimension A1 to 0.99 and 1.09, respectively.
		• Replaced Case Outline 1618-01 with 1618-02, Issue A, p. 1, 16-18. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheet 1. Removed Pin 5 designation from Sheet 2.
		• Replaced Case Outline 1621-01 with 1621-02, Issue A, p. 1, 19-21. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheets 1 and 3. Removed Pin 5 designation from Sheet 2.
		Added Product Documentation and Revision History, p. 22
5	Dec. 2010	Data sheet revised to reflect part status change, p. 1.
		Data sheet split due to change in part life cycle. See MWE6IC9100N-1 Rev. 4 for MWE6IC9100NR1.
6	Oct. 2011	Removed part number MWE6IC9100GNR1 (TO-270 WB-14 Gull), p. 1
		• Table 3, ESD Protection Characteristics: Changed ESD Human Body Model rating from 2 to 1A and Machine Model rating from B to A to reflect recent ESD test results of the device. Removed the word "Minimum" after the ESD class rating. ESD ratings are characterized during new product development but are not 100% tested during production. ESD ratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitive devices, p. 2
		 Fig. 25, MTTF versus Junction Temperature removed, p. 10. Refer to the device's MTTF Calculator available at freescale.com/RFpower. Go to Design Resources > Software and Tools.
		 Added AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and AN3789, Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages to Product Documentation, Application Notes, p. 16
		 Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 16

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008, 2010-2011. All rights reserved.

