

PTN3222DHN

1-Port eUSB2 to USB2 Redriver for Automotive Applications

Rev. 1.0 — 13 January 2026

Product data sheet

Document information

Information	Content
Keywords	PTN3222DHN, I ² C, eUSB2, USB2, Host role, Device role, Equalization
Abstract	PTN3222DHN is a 1-port eUSB2 to USB2 redriver IC that performs translation between eUSB2 and USB2 signaling schemes.

1 General description

PTN3222DHN is a 1-port eUSB2 to USB2 redriver IC that performs translation between eUSB2 and USB2 signaling schemes. It is meant to be used in systems that have eUSB2 interface on one side and USB2 interface on the other side. It supports host repeater, device repeater, or dual role repeater function.

PTN3222DHN implements repeater mode (eUSB2 to USB2 redriver) and it supports link power management features. PTN3222DHN is targeted to be USB2 compliant and eUSB2 conformant. It supports all three speeds/data rates: Low Speed (1.5 Mbit/s), Full Speed (12 Mbit/s), and High Speed (480 Mbit/s).

PTN3222DHN provides a target I²C register interface to initialize the required functionality and features as per the platform application need. The I²C target address is selectable using a quaternary input pin (that selects one of the four addresses).

It is powered by two power supplies (VDD3V3, VDD1V8) and is available in a DVQFN12 package (1.95 x 2.4 x 0.85 mm, 0.5 mm pitch), with wettable flanks, ideal for automotive applications.

2 Features and benefits

- 1-port eUSB2 to USB2 redriver functionality
- Conforms to USB2 specification along with relevant ECNs
- Conforms to eUSB2 specification v1.1
- Supports Auto Resume with 20 ms timeout
- Supports host only repeater, device only repeater, and dual-mode repeater role
- Supports all USB2.0 data rates
 - Low-speed operation (1.5 Mbit/s)
 - Full speed operation (12 Mbit/s)
 - High-speed operation (480 Mbit/s)
- Supports Register Access Protocol (RAP) accesses for a select set of register accesses
- Integrated and selectable pullup and pulldown resistors on both eUSB2 and USB2 ends
- Signal Integrity (SI) configurability
 - eUSB2 – TX de-emphasis, RX equalization, RX squelch threshold, TX output swing
 - USB2 – HS disconnect detection threshold, RX squelch threshold, RX termination, RX equalization, TX de-emphasis, TX slew rate, TX output swing
- Supports BC1.2 power provider Charging Downstream Port (CDP) configuration capability in host mode
- Low current consumption
 - Supports eUSB2 and USB2 power management
 - Enables Deep Standby mode for lowest power consumption
- Robustness features
 - USB2 data pins tolerate 5.5 V (DC) for 24 hours
 - USB2 data pins withstand short to GND for 24 hours
 - USB2 data pins withstand collision on DP/DN pins due to faulty USB devices
- GPIOs and high-speed data pins are backpower safe
- I²C target interface supports standard mode, fast mode, and Fast-mode Plus
- Power supplies - VDD3V3, VDD1V8
- Electrostatic Discharge (ESD)Human Body Model (HBM) 2 kV Charged Device Model (CDM) 500 V
- AEC-Q100 Grade 2 compliant
- Operating ambient temperature range -40 °C to +105 °C
- Available in DVQFN12 package with wettable flanks

3 Applications

- eUSB2 to USB2 repeater function in automotive applications
 - Host only repeater
 - Device only repeater
 - Dual role repeater (as determined dynamically in the application)

4 Ordering information

[Table 3](#) describes the ordering information for PTN3222DHN.

Table 1. Ordering information

Type number	Package			Version
	Name	Description		
PTN3222DHN/Q900	DVQFN12	PQFN-12, dimple wettable flank quad flat no-lead package, 12 terminals, 0.5 mm pitch, 1.95 mm x 2.4 mm x 0.85 mm		SOT2225-1(DD)

4.1 Ordering options

[Table 2](#) describes the ordering options for PTN3222DHN.

Table 2. Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
PTN3222DHN/Q900	PTN3222DHN/Q900X ^[1]	DVQFN12	REEL 7" Q1/T1 *STANDARD MARK SMD	3000	T _{amb} = -40 °C to 105 °C

[1] PTN3222DHN/Q900X is AEC-Q100 Grade 2 compliant. Contact NXP sales for PPAP.

4.2 Top side marking

[Table 3](#) describes the top side marking for PTN3222DHN.

Table 3. Top side marking

Line number	Character	Content	Remarks
Line A	1	Pin 1 dot	Pin 1 indication
	2-3	Product life cycle	Product status: • "2D": Production silicon
Line B	1-2	Production information	DBSN
	3	Production information	Lot ID: week code
Line C	1-4	Production information	Lot ID: year code
Line D	1-4	Production information	Lot ID: month code
Line E	1-2	Production information	Plant code identifier

5 Functional diagram

[Figure 1](#) shows the functional block diagram.

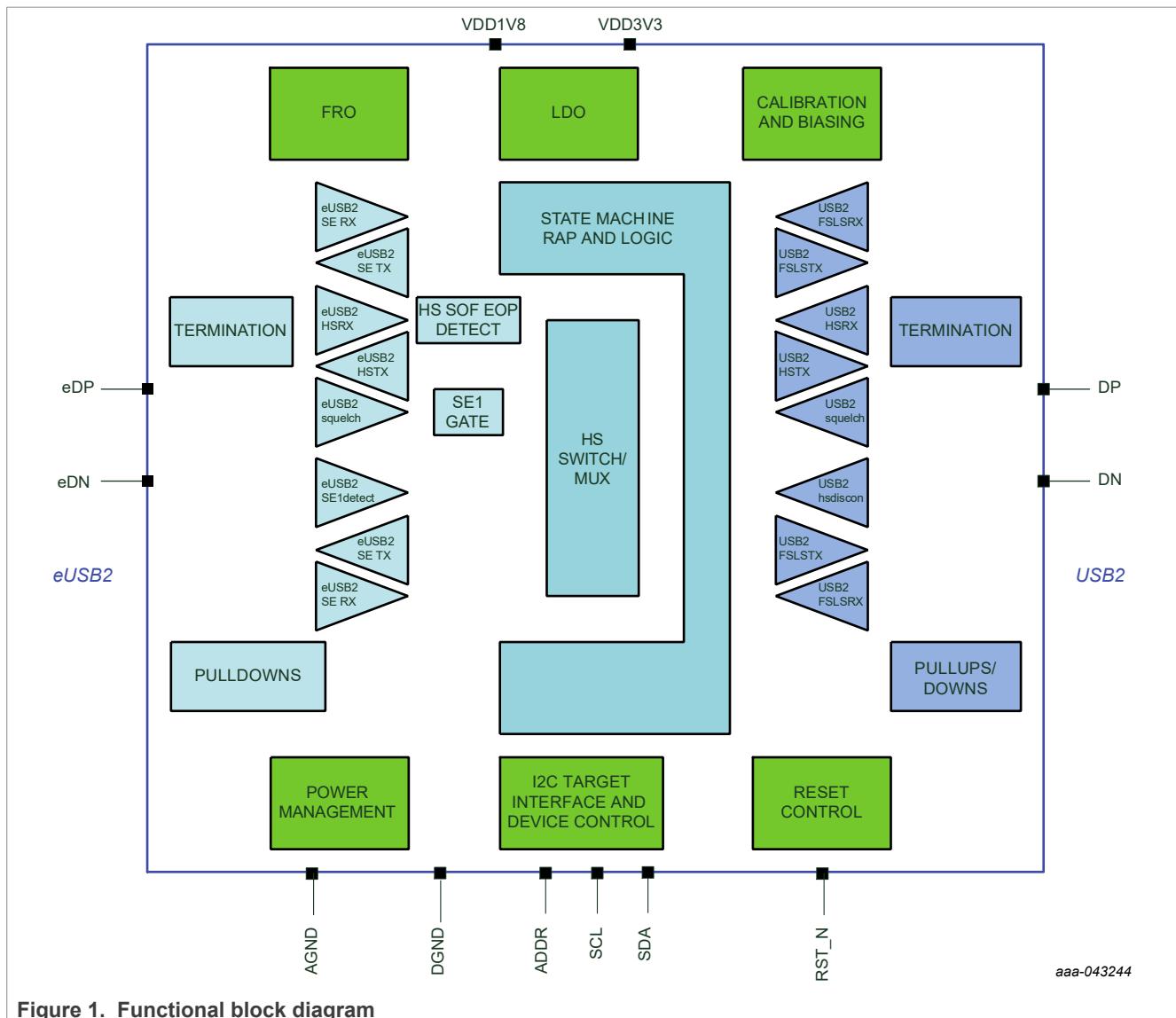


Figure 1. Functional block diagram

6 Pinning information

This section provides the pin configuration and description of PTN3222DHN.

6.1 Pinning

[Figure 2](#) shows the pin configuration of PTN3222DHN.

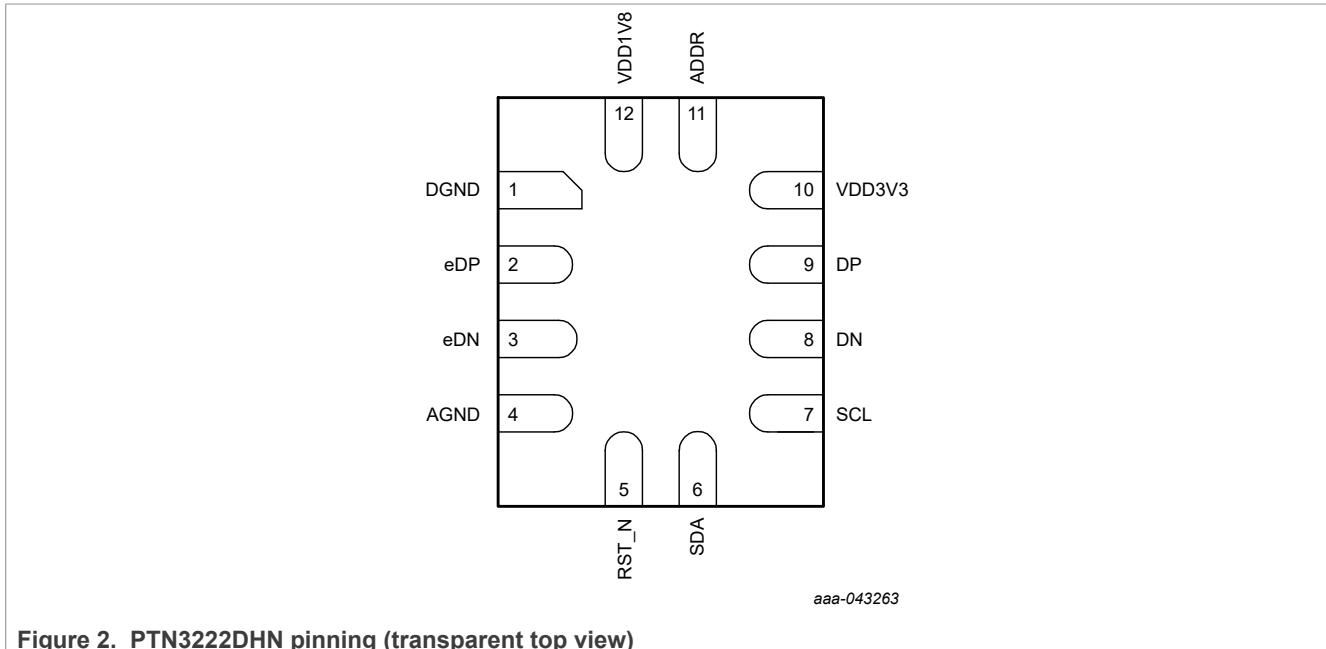


Figure 2. PTN3222DHN pinning (transparent top view)

6.2 Pin description

This section provides a detailed description of various pins on PTN3222DHN.

Table 4. Pin description

Pin	Symbol	Direction	Pad power domain	Type	Description
1	DGND	OUT		Power	Digital ground. This pin is connected to a low-noise ground plane and avoids long PCB traces
12	VDD1V8	IN		Power	1.8 V power supply. 0.47 μ F and 33 pF decoupling capacitors are placed on this pin on the PCB
10	VDD3V3	IN		Power	3.3 V power supply. 0.47 μ F and 33 pF decoupling capacitors are placed on this pin on the PCB
2	eDP	IO	VDD1V8	Analog input/output	Positive terminal of eUSB2 analog transceiver interface
11	ADDR	IN	VDD1V8	Analog input	Quaternary pin for I ² C target address selection (sampled once after POR and when power supplies are stable and valid). The external pullup resistor is placed close enough to the decoupling capacitors of VDD1V8
9	DP	IO	VDD1V8, VDD3V3	Analog input/output	Positive terminal of USB2 analog transceiver interface DP pin has an internal 2 M Ω pulldown resistor enabled under all situations
3	eDN	IO	VDD1V8	Analog input/output	Negative terminal of eUSB2 analog transceiver interface
5	RST_N	IN	VDD1V8	Digital input	This is an Active Low input pin. When RST_N is LOW, PTN3222DHN's DP and DN pins are put to Hi-Z condition and redriver is placed in Deep standby state. When RST_N is HIGH, the redriver is put into repeater mode

Table 4. Pin description...continued

Pin	Symbol	Direction	Pad power domain	Type	Description
8	DN	IO	VDD1V8, VDD3V3	Analog input/output	Negative terminal of USB2 analog transceiver interface DN pin has an internal 2 MΩ pulldown resistor enabled under all situations
4	AGND	OUT		Power	Analog low noise ground. This pin must connect to PCB ground plane, avoid long PCB traces, and not be routed near noisy circuits
6	SDA	IO	VDD1V8	Digital input/output	I ² C data input/output. There is no internal pullup resistor, and an external pullup resistor to I ² C pullup voltage must be used
7	SCL	I	VDD1V8	Digital input	I ² C clock input. There is no internal pullup resistor, and an external pullup resistor to I ² C pullup voltage must be used

7 Functional description

PTN3222DHN consists of the following major functions:

- eUSB2 repeater
- BC1.2 support
- I²C interface
- Reset schemes

7.1 Reset

PTN3222DHN supports the following reset schemes:

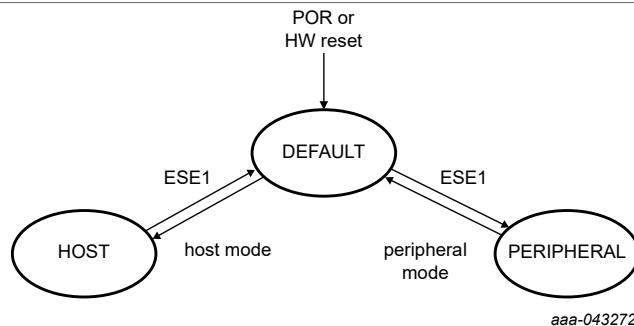
- POR
- Software reset

When in reset, PTN3222DHN's SCL and SDA IO pins are in high-impedance state to prevent the I²C bus from being altered or corrupted in any way.

The RST_N pin is used to put USB DP/DN IO circuitry is put into Hi-Z condition and USB2 pins are pulled down with 2 MΩ resistors. The redriver is also placed in Deep standby condition. The I²C configuration registers are retained except for LINK CONTROL, DEVICE STATUS, and RAP Signature registers. As long as the system asserts this pin low, the IC is held in this state. When RST_N is HIGH, then the redriver is put into repeater mode.

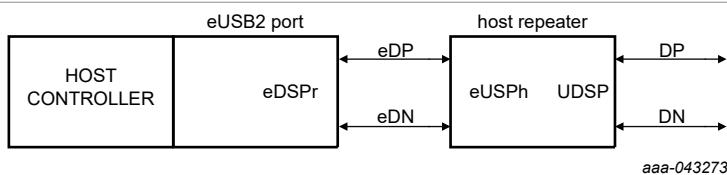
7.2 Operating modes

PTN3222DHN has several operating modes: a specific operating mode is selected depending on repeater configuration, link, and connection status. [Table 5](#) below gives a high-level overview of the major building blocks that are kept powered in different modes.

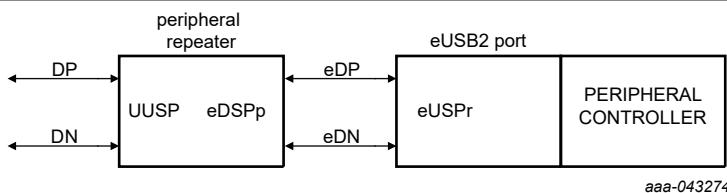

Table 5. Status of design blocks in different power modes

Power mode	I ² C interface	FS/LS front ends	HS front ends
OFF	OFF	OFF	OFF
Deep standby	ON	OFF	OFF
Connect Detect (Detached condition)	ON	ON (SE detector only)	OFF
L1 sleep	ON	ON (SE detector only)	HS OFF; only SE detector is ON
L2 suspend	ON	ON (SE detector only)	HS OFF; only SE detector is ON
Active LS/FS	ON	ON	OFF
Active HS	ON	OFF	ON

7.3 eUSB2 repeater


This subsystem includes eUSB2 analog front end circuitry, repeater state machine, USB2 analog front end circuitry, and the associated power management circuits. The USB2 DP/DN pin has internal 2 MΩ pulldown resistors enabled under all situations.

PTN3222DHN is designed to function as a host repeater or a peripheral repeater. [Figure 3](#) illustrates the role transition and associated arcs that enable role change.


Figure 3. PTN3222DHN role transition

[Figure 4](#) illustrates the eUSB2 host repeater usage in a typical host platform application.

On one side, the repeater interfaces with a USB2 peripheral (that is either plugged in directly or via cable/channel topology). On the system side, it interfaces with the host controller w/eUSB2 PHY.

Figure 4. PTN3222DHN as eUSB2 host repeater

[Figure 5](#) illustrates the eUSB2 Device repeater usage in a typical peripheral environment.

Figure 5. PTN3222DHN as eUSB2 peripheral repeater

PTN3222DHN implements aggressive power management to optimize on overall power consumption under the various operating modes. It supports USB link power management and supports L1 and L2 power states.

PTN3222DHN supports RAP – allowing customer facing registers only. The type of access is controlled via an I²C register. There is no built-in arbitration support available if and when the same register is being accessed through RAP commands and I²C interface. The system application is expected not to issue simultaneous accesses, avoid register overwrites leading to incorrect behavior and response from PTN3222DHN.

PTN3222DHN accepts RAP messages at any time even though host is expected to issue RAP messages only during initialization. If the host would use RAP messages to read status register(s) or update any control register(s), PTN3222DHN does not inhibit or put limits on RAP messages as long as it is in the mode wherein customer I²C registers are accessible.

PTN3222DHN supports Auto resume and asynchronous wake features. Auto resume timeout of 20 ms (typ) has been implemented.

For the Auto resume feature to work, the host software must set bit 1 of LINK CONTROL 2 register (0x03) to b'1.

7.3.1 Overvoltage protection on USB2 DP/DN pins

PTN3222DHN implements overvoltage protection (OVP) circuitry, which activates whenever an OV condition occurs on USB2 DP/DN pins. PTN3222DHN operates autonomously without host software intervention. The following describes a possible sequence of steps that can occur due to an OV event:

1. PTN3222DHN checks DP/DN pin(s) for over voltage condition that is higher than $V_{OVP,Th}$ (Low to High Threshold case). It shuts down the USB2 analog IO as long as the event persists
2. PTN3222DHN enables USB2 analog IO path once the pin voltage falls below $V_{OVP,Th}$ (High to Low Threshold case)
3. The System on Chip (SoC) host and eUSB2 redriver would lose communication with the USB2 entity since the analog path has been disabled
4. So, the SoC host can try the following options to reestablish the link
 - a. issue Control Message (CM). Reset in an attempt to issue a USB Bus Reset or,
 - b. issue Port reset to the local redriver and also toggle VBUS to re-establish the connection and restart the data transport.

Option (a) may not be successful depending on the nature of the fault but is the fastest and least aggressive error recovery method. Use of Port Reset and toggling of VBUS are guaranteed to work, but comes with a downside of longer time duration to reestablish the link.

7.4 BC1.2 support

PTN3222DHN has a built-in support for enabling CDP feature, enabling a mobile device to detect and charge at higher current from the host platform. For the BC1.2 support, this IC implements a controlled voltage source that can be enabled on USB2 DN pin via an I²C register bit. The host processor can enable this feature via I²C during USB disconnect condition. The PTN3222DHN can autonomously disable this on a USB connect event and reset this I²C configuration bit.

This feature is expected to be applied when in host repeater mode only. However, the PTN3222DHN does not inhibit enabling of this feature in device repeater mode.

7.5 I²C operation

PTN3222DHN is an I²C target only device, and it responds to I²C commands in any operating mode as long as VDD3V3/VDD1V8 supplies are available. PTN3222DHN does not support clock stretching but it tolerates other I²C targets performing clock stretching under the legal conditions defined by [1]. Also, it does not support I²C General call address (and therefore does not issue an acknowledgment), I²C Software reset command nor 10-bit addressing. It acknowledges all 128 register-offset addresses though there are certain undefined/reserved locations as indicated in the register map.

Each I²C operation involving writing to or reading from one or more consecutive registers is referred to as a transaction. Consecutive registers are defined as a series of incrementing register addresses, regardless of whether a given address has a definition in the register map.

A transaction can be a part of a series of transactions addressed to multiple different targets or to the same target repeatedly with different register address offsets, with each transaction separated by repeated-START conditions. PTN3222DHN does not inhibit other types of transactions as prescribed in I²C specification.

Register address aliasing is not supported in PTN3222DHN. When read or write transactions with multiple consecutive registers are performed, the register address rolls over to 0x00 once the maximum register offset of 0xFF is reached.

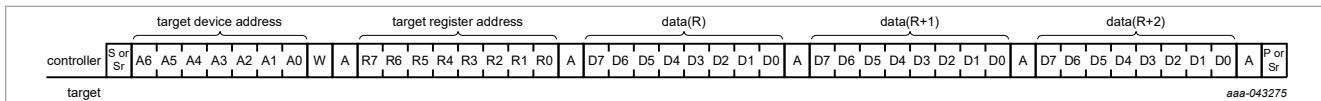
When an undefined or invalid register address is being addressed for read or write operation, PTN3222DHN acknowledges the I²C transaction, but returns 0xFF for a read operation, or takes no action for a write operation.

7.5.1 I²C target address

PTN3222DHN's 7-bit I²C target address is given in [Table 6](#). Bits 3 and 4 can take one of the four possible values based on the quaternary address selection pin (ADDR).

Table 6. PTN3222DHN target address definition

ADDR pin configuration	Bit 7	Bit 6	Bit 5	ADDR		Bit 2	Bit 1	Bit 0
				Bit 4	Bit 3			
Connected to 1.8 V supply directly	1	0	0	0	0	1	1	R/W
Connected to 1.8 V supply via 56 kΩ (+/-10 %) pullup	1	0	0	0	1	1	1	R/W
Connected to 1.8 V supply via 200 kΩ (+/-10 %) pullup	1	0	0	1	0	1	1	R/W
Connected to GND directly	1	0	0	1	1	1	1	R/W


7.5.2 Example of writing one or more registers

PTN3222DHN recognizes the following procedure as a request to write to one or more registers:

1. An I²C controller asserts the START condition or repeated-START condition
2. Controller addresses PTN3222DHN target interface with R/W bit set as "Write"
3. Target acknowledges the request by asserting an ACK
4. The controller writes the desired starting register address
5. Target acknowledges the register address with ACK, even if the register address is not part of the defined register map
6. The controller writes the data for that register address and the target updates the register value once all 8 bits of data have been written
7. Target acknowledges the data with an ACK
8. If the controller wishes to write to the next consecutive register address, it supplies another data byte, which the target ACKs. The controller can continue writing data bytes for consecutive registers. If the controller writes to more consecutive registers than what exists in the register map, the target discards the extra data bytes, but ACKs for each such write

When the controller has finished writing the desired register(s), it issues either a STOP condition or a repeated-START condition.

[Figure 6](#) provides an illustrative example where the controller chooses to write to three consecutive registers starting with register "R".

Figure 6. Writing one or more consecutive registers

7.5.3 Example of reading one or more registers

The target recognizes the following procedure as a request to read one or more registers:

1. Controller asserts START condition or repeated-START condition
2. Controller addresses PTN3222DHN's target address with R/W bit set as "Write"
3. Target acknowledges the request by asserting ACK
4. The controller writes the desired starting register address

5. Target acknowledges the register address with ACK, even if the register address is not part of the defined register map
6. The controller issues a repeated-START condition
7. Controller addresses PTN3222DHN's target address with R/W bit set as "Read"
8. In the following clock pulses, the target clocks out the value of the requested register
9. If the controller wishes to read the next consecutive register, it issues an ACK and then provides another set of clock pulses, whereby the target supplies the value of the next register. As long as the controller continues to issue ACK and supply additional clock pulses, the target continues to supply the value of consecutive registers. If the controller attempts to read consecutive registers that do not exist in the defined register space, the target can return an undefined data value of 0xFF.
10. When the controller does not wish to read additional consecutive registers, it supplies a NACK in response to the final register value it wishes to read and then issues a STOP or repeated-START condition.

[Figure 7](#) provides an illustrative example where the controller chooses to read from two consecutive registers starting with register "R".

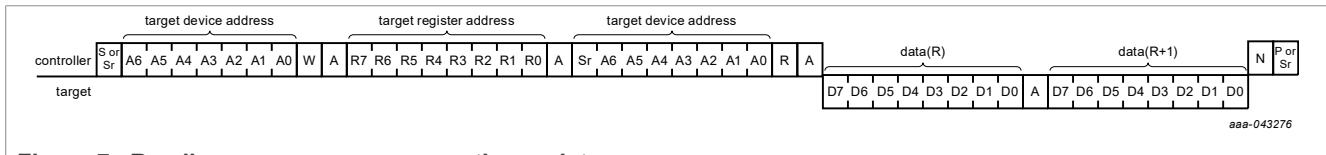


Figure 7. Reading one or more consecutive registers

8 System application

This section covers the following aspects of the PTN3222DHN:

- Use cases
- Power supply requirement
- Ground requirement
- ESD requirements
- Application support

8.1 Use cases

PTN3222DHN is targeted used in various USB interface application cases. It interfaces to a host or device controller with eUSB2 PHY interface and on the other side, it interfaces directly to a connector/cable topology or another interface IC. Different connector configurations are possible: custom, USB Standard A/Standard B, USB Micro-B, USB-Type C, and so on. For all use cases, it is not necessary for the host to initialize the I²C registers after the POR or reset event. On the contrary, PTN3222DHN functions without any I²C configuration by relying on registers getting initialized after POR event.

A few use case illustrations are shown in [Figure 8](#) through [Figure 11](#); these figures do not capture all components (supply decoupling capacitors, ESD, Common-Mode Filter (CMF), and so on) in the channel topology.

1. **Direct interface to connectors:** This connectivity scheme is a straightforward topology and it can be relevant for generic IOT and certain computing applications. In certain applications, the I²C interface may not be connected and the repeater is expected to start operating after POR based on POR/default register settings.

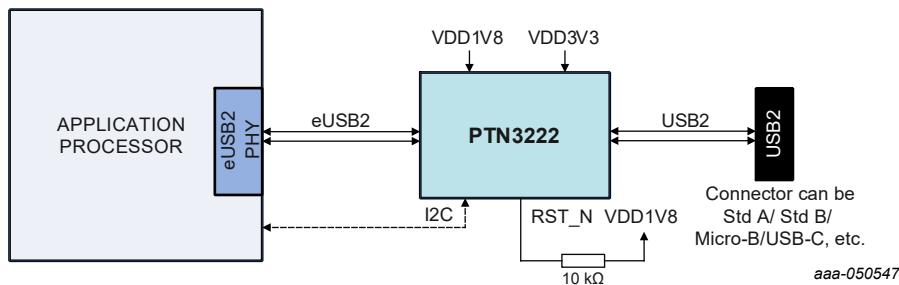


Figure 8. Use case 1 – Direct interfacing

2. **Interface via USB protection IC:** This connectivity scheme is relevant for applications where there is a risk/chance of high voltage appearing on the USB data pins (for example, USB-C). In certain applications, the I²C interface may not be connected and the repeater is expected to start operating after POR based on POR/default register settings. Care must be taken to select a suitable protection IC that has certain USB2 signal attenuation/Rdson. Also, the default power up scenario must be analyzed.

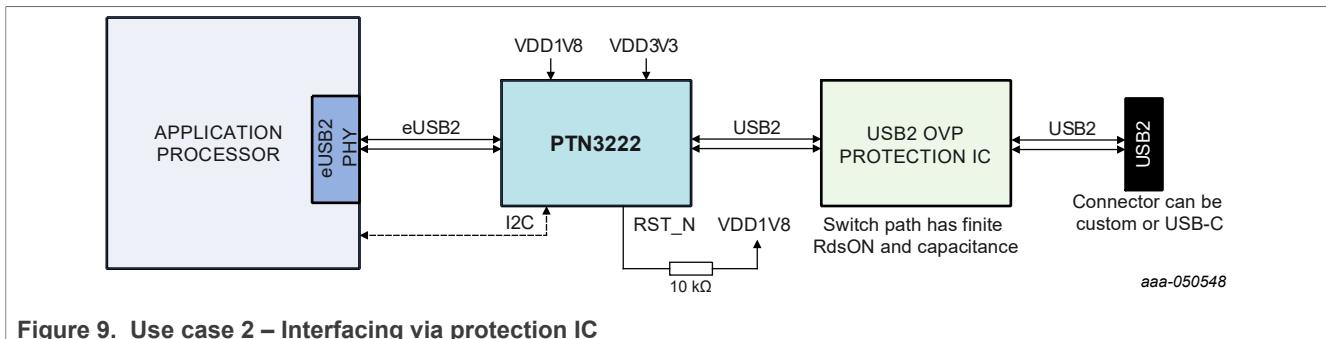


Figure 9. Use case 2 – Interfacing via protection IC

3. **Interface with parallel connection to PMIC:** This interfacing scheme is relevant for mobile applications (smartphone, tablets, and so on), where there is a high chance of system integrator using an interface PMIC to support various platform-specific functions. Since there are two ICs connected to USB DP/DN data pins, the RST_N pin allows the system to put PTN3222's DP/DN IO circuitry to Hi-Z condition and connect 2 MΩ pulldown resistors on DP/DN pins so that the interface PMIC can use the DP/DN pins for other purposes. In certain applications, the I²C interface may not be connected and the repeater is expected to start operating after POR based on POR/default register settings.

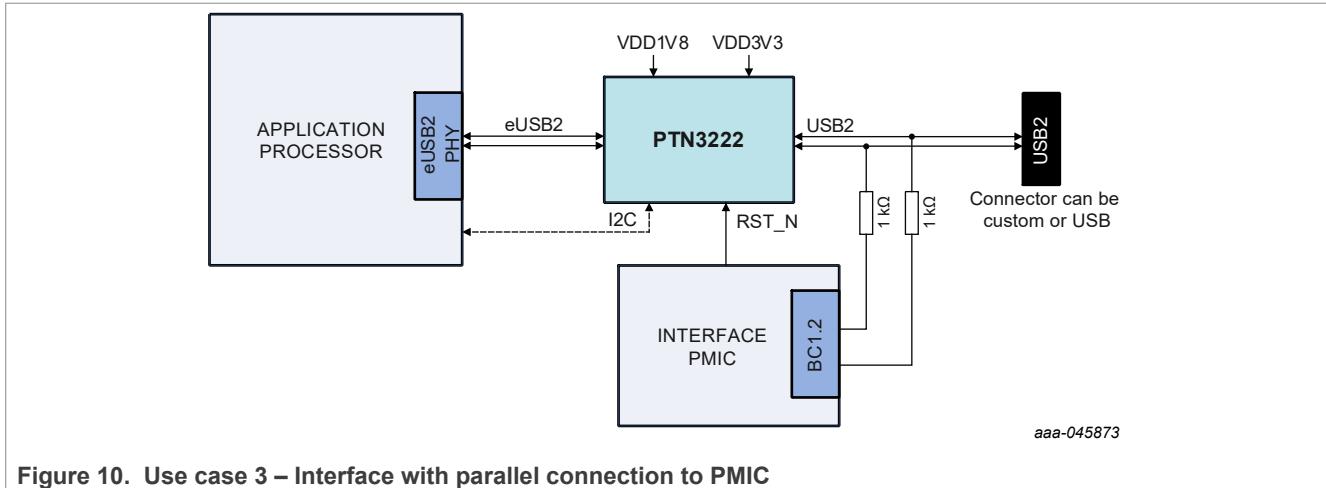


Figure 10. Use case 3 – Interface with parallel connection to PMIC

4. **Interface to connector via passive signal switch:** This connectivity scheme provides the option to switch on various debug and communication signals to the same connector. In certain applications, the I²C interface may not be connected and the repeater is expected to start operating after POR based on POR/default register settings. The passive signal switch must be selected to ensure low signal attenuation and also the power up scenario must be carefully analyzed. The RST_N pin shall be pulled up with 10 kΩ resistor externally either in the SoC or on the PCB.

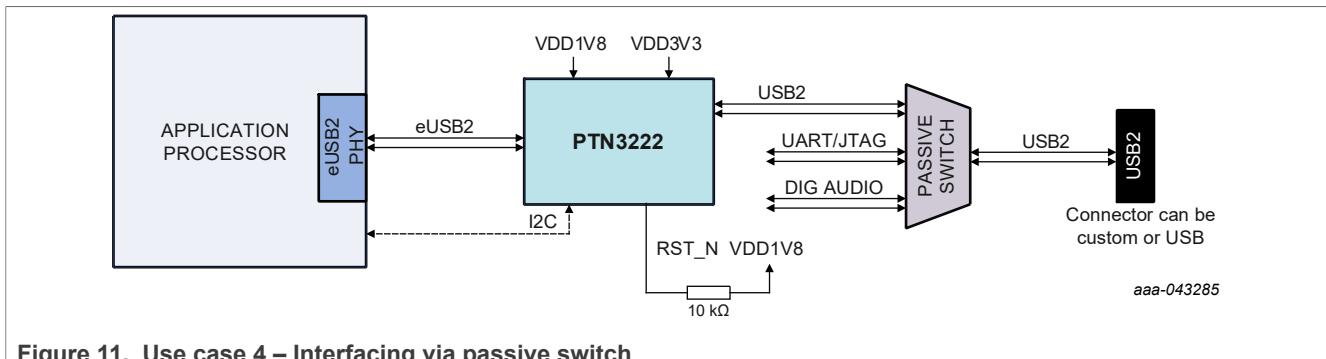


Figure 11. Use case 4 – Interfacing via passive switch

8.2 Power supply requirement

PTN3222DHN requires two power supplies (VDD3V3 and VDD1V8) to operate. It does not function until both supplies have ramped up and reached valid operating range. There is no specific power on or off sequencing requirement. In addition, the two supplies can follow different ramp-up and ramp-down rates. The supply ramp limits are specified in [Section 11](#).

PTN3222DHN does not suffer from backpower issue (VDD node getting powered via a non-power pin).

The power supply decoupling capacitors shall be soldered close to power pins.

8.3 Ground requirement

PTN3222DHN has two ground pins, AGND, and DGND.

Both pins provide connection to GND plane with low ground noise in the application PCB.

8.4 ESD requirements

PTN3222DHN supports 2 kV HBM and 500 V CDM on all pins. To achieve system level ESD protection (for example, IEC61000-4-2 Level 4 8 kV contact discharge, 15 kV air discharge) on DP/DN pins, dedicated and matched ESD diodes shall be used near the connector. Matching of diodes is important to minimize DP/DN skew.

8.5 Application support

NXP can deliver PTN3222DHN customer support documentation and IBIS-AMI model for system level signal integrity simulation. The documentation includes Application note and layout guidelines (see [Section 16](#)). Contact NXP support teams for further details.

9 Register set

The device is controlled and monitored by registers accessible via the I²C bus. All registers can be accessed in standard mode or fast mode using single or sequential reads or writes. Register bit field types are defined in [Table 7](#).

Table 7. Register type definitions

Access type	Description
RW	Bit field can be read from and written to
RO	Bit field value can only be read
WO	Bit field value is write only. Reading value has no meaning, and results in no action being taken
RAZ	Bit field contents are read as zero. Writes do not have any effect
R/W1, W0 Ignore	Bit field value is readable, and writing 'b1 to each bit in the bit field sets the value to 'b1. Writing 'b0 to this bit field results in no action being taken

9.1 Register overview

[Table 8](#) lists all the registers used for PTN3222DHN. Default POR values of registers are also shown in this table.

Table 8. Register overview

Address	Register name	Access	RESET		Default Value (Hex)	Information of individual bits											
			POR	Software Reset (or RST_N)		7	6	5	4	3	2	1	0				
0x00	RESERVED	RAZ			00												
0x01	RESET CONTROL	RW	•		00								Software Reset				
0x02	LINK CONTROL 1	RW	•	•	00	Speed control		Role control			Operational mode						
0x03	LINK CONTROL 2	RW	•	•	00							Auto_resume_en	Force ESE1				
0x04	eUSB2 RX CONTROL	RW	•	•	20			eUSB2 HS RX squelch detection threshold			eUSB2 HS RX equalization						
0x05	eUSB2 TX CONTROL	RW	•	•	10			eUSB2 HS TX output swing				eUSB2 HS TX De-emphasis					
0x06	USB2 RX CONTROL	RW	•	•	40	USB2 RX squelch detection threshold					USB2 HS RX equalization						
0x07	USB2 TX CONTROL 1	RW	•	•	22			USB2 HS TX de-emphasis bit duration			USB2 HS TX de-emphasis						
0x08	USB2 TX CONTROL 2	RW	•	•	63		USB2 FS rise/fall time	USB2 HS rise/fall time			USB2 HS TX output swing						
0x09	USB2 HS TERMINATION	RW	•	•	02						USB2 HS termination control						
0x0A	USB2 HS DISCONNECT THRESHOLD	RW	•	•	00							USB2 HS disconnect detection threshold					
0x0B - 0x0C	RESERVED	RO			XX												
0x0D	RAP_Signature	RW	•	•	00	RAP_Signature											
0x0E	VDX_CONTROL	RW	•	•	00								VDX_enable				
0x0F	DEVICE STATUS	RO	•	•							Speed of operation status		Repeater status				
0x10	LINK STATUS	RO	•	•							Device and Link status						
0x11 - 0x12	RESERVED	RAZ			XX												
0x13	REVISION_ID	RO			A4	BASE = b'1010				METAL_ = b'0100							
0x14	CHIP_ID_0	RO			22	CHIP_ID[7:0]=0x22											
0x15	CHIP_ID_1	RO			32	CHIP_ID[15:8]=0x32											
0x16	CHIP_ID_2	RO			01	b'0000							b'01				
	RESERVED	RO			XX	Reserved register space											

9.2 I²C registers and descriptions

This section provides an overview of the various registers used in the PTN3222DHN, along with their descriptions.

9.2.1 Functional registers

The offset addresses with defined bit definitions are meant for functional registers, and can be accessed by the I²C controller at any time after POR. For normal operation, these registers are sufficient to set up the IC to known working conditions. Customers are advised not to write reserved values into the register bit fields. Read from the reserved bit field(s) need not match the value written. Functional behavior is not guaranteed if such an operation is performed.

Table 9. Register 0x00 – Reserved

Register offset	Register name	Register description		
0x00	RESERVED			
Bit	Bit name	R/W	Reset	Description
7:0	RSVD	RAZ	b'00000000	Reserved

Table 10. Register 0x01 – RESET CONTROL

Register offset	Register name	Register description		
0x01	RESET CONTROL	This register is meant to initiate reset of the chip via I ² C write		
Bit	Bit name	R/W	Reset	Description
7:1	RSVD	RAZ	b'00000000	Reserved
0	Software Reset	R/W	b'0	This is a Self-clearing bit. The host writes '1' to this bit to initiate software reset and this bit automatically clears to '0'. All R/W registers are reset to POR settings. Writing '0' does not have any effect. Reads return '0'

Table 11. Register 0x02 – LINK CONTROL 1

Register offset	Register name	Register description		
0x02	LINK CONTROL 1	This register is meant to force the repeater role and speed of operation to fixed settings		
Bit	Bit name	R/W	Reset	Description
7:6	Speed control	RW	b'00	The bit field determines the POR setting of USB2 speed: 00: Manage the speed via auto negotiation 01: LS/FS only 10-11: Reserved
5:4	Role control	RW	b'00	Determines the redriver role 00: Dual role Support both host and device eUSB2 Port Configuration negotiation. This is the expected normal operating setting managed via Host eUSB2 exchanges. 01: Force Host role When bits are '01', it forces the repeater into the USB Host role irrespective of any configuration command getting received via eUSB2. But the repeater would acknowledge the configuration message from the host. 10: Force Device role When the bits are '10', it forces the repeater into the USB Device/peripheral role irrespective of any configuration command getting received via eUSB2. But the repeater would acknowledge the configuration message from the host. 11: Reserved Forced host/device role setting is used in conjunction only with setting '2' of Link Control 2[2:0] bits
3	RSVD	RAZ	b'0	Reserved

Table 11. Register 0x02 – LINK CONTROL 1...continued

Register offset	Register name	Register description	
2:0	Operational mode	RW	b'000

Table 12. Register 0x03 – LINK CONTROL 2

Register offset	Register Name	Register Description		
0x03	LINK CONTROL 2	This register programs specific feature of the repeater		
Bit	Bit Name	R/W	Reset	Description
7:2	RSVD	RAZ	b'0000000	Reserved
1	Auto Resume Enable	RW	b'0	Auto Resume Enable: This is a Host side repeater feature 0: Auto Resume Feature Disabled 1: Auto Resume Feature Enabled: Host side repeater handles the Remote Wake/Resume sequence (during wake, the repeater drives USB and eUSB interfaces with 'K' signaling until the host controller's Start of Resume ends, then it passes the host controller's Resume signaling to the USB2 bus)
0	Force ESE1	RW	b'0	Bit to force Extended SE1 signaling 0: No action 1: Self Clearing bit. When written to 1, Repeater generates extended SE1 onto the eUSB pins. Normally, only the Host Repeater performs this action upon an HS disconnect detection. But this feature allows the system to force an extended SE1 as needed via the I ² C interface

Table 13. Register 0x04 – eUSB2 RX CONTROL

Register offset		Register name		Register description
0x04		eUSB2 RX CONTROL		This register programs the eUSB2 RX equalization and squelch detection threshold settings
Bit	Bit name	R/W	Reset	Description
7:6	RSVD	RAZ	b'00	Reserved
5:4	eUSB2 HS RX squelch detection threshold	RW	b'10	<p>The bits determine the squelch detector (Low to High transition) threshold level for HS signaling on eUSB2 pins</p> <p>00: 50 mV 01: 65 mV 10: 85 mV 11: 95 mV</p> <p>All settings are within +/-25 mV of nominal value mentioned above. To improve noise immunity, squelch detector implements hysteresis of 10 mV</p>
3	RSVD	RAZ	b'0	Reserved
2:0	eUSB2 HS RX equalization	RW	b'000	<p>The bits determine the nominal eUSB2 receive equalization gain (@ 240 MHz) with respect to DC gain. All settings are within +/-1 dB of nominal value mentioned below</p> <p>000: 0 dB 001: 1 dB 010: 2 dB 011: 3 dB 100: 4 dB 101 to 111: Reserved</p>

Table 14. Register 0x05 – eUSB2 TX CONTROL

Register offset		Register name		Register description
0x05		eUSB2 TX CONTROL		This register configures the transmitted side settings – output signal swing and de-emphasis level on the eUSB2 side
Bit	Bit name	R/W	Reset	Description
7:6	RSVD	RAZ	b'00	Reserved
5:4	eUSB2 HS TX output swing	RW	b'01	<p>The bits set the output signal swing for HS signaling on eUSB2 TX side (when the interface is terminated)</p> <p>00: 180 mV 01: 200 mV 10: 220 mV 11: 240 mV</p> <p>All settings are within +/-40 mV of the nominal value mentioned above</p>
3:2	RSVD	RAZ	b'00	Reserved
1:0	eUSB2 HS TX de-emphasis	RW	b'00	<p>The bits determine the TX de-emphasis (nominal) level for HS signaling on eUSB2 pins. The de-emphasis duration is between 0.75 to 1 HS bit time.</p> <p>00: 0 dB 01: 1 dB 10: 2 dB</p>

Table 14. Register 0x05 – eUSB2 TX CONTROL...continued

Register offset	Register name	Register description
		11: 3 dB All settings other than '00' are within +/-1 dB of the nominal value mentioned below

Table 15. Register 0x06 – USB2 RX CONTROL

Register offset	Register name	Register description		
0x06	USB2 RX CONTROL	The register programs the RX equalization and squelch detection threshold levels on USB2 pins (applicable for HS signaling only)		
Bit	Bit name	R/W	Reset	Description
7	RSVD	RAZ	b'0	Reserved
6:4	USB2 HS RX squelch detection threshold	RW	b'100	<p>The 3 bits determine the squelch detector (low to high transition) threshold level for HS signaling at USB2 pins</p> <p>000: Reserved; not for use</p> <p>001: 65 mV</p> <p>010: 85 mV</p> <p>011: 95 mV</p> <p>100: 110 mV</p> <p>101: 125 mV</p> <p>110: 140 mV</p> <p>111: 155 mV</p> <p>All settings are within +/-25 mV of nominal value mentioned above</p> <p>Squelch detector implements hysteresis of 10 mV to improve noise immunity.</p>
3	RSVD	RAZ	b'0	Reserved
2:0	USB2 HS RX equalization	RW	b'000	<p>The 3 bits determine the nominal USB2 receive equalization gain (@ 240 MHz) with respect to DC gain. All settings are within +/-1 dB of the nominal value mentioned below</p> <p>000: 0 dB</p> <p>001: 1 dB</p> <p>010: 2 dB</p> <p>011: 3 dB</p> <p>100: 4 dB</p> <p>101 to 111: Reserved</p>

Table 16. Register 0x07 – USB2 TX CONTROL 1

Register offset		Register name		Register description
0x07		USB2 TX CONTROL 1		This register configures the transmitted side settings – output signal swing and de-emphasis level on the USB2 side
Bit	Bit name	R/W	Reset	Description
7:6	RSVD	RAZ	b'00	Reserved
5:4	USB2 HS TX de-emphasis bit duration	RW	b'10	<p>The bits set the de-emphasis bit time (UI) for HS signaling on the USB2 TX side</p> <p>00: 0</p> <p>01: 0.5UI</p> <p>10: 0.8UI</p> <p>11: Reserved</p> <p>All settings are within +/-0.2UI of the nominal value mentioned above</p>
3	RSVD	RAZ	b'0	Reserved
2:0	USB2 HS TX de-emphasis	RW	b'010	<p>The bits determine the TX de-emphasis (nominal) level for HS signaling on USB2 pins</p> <p>000: 0 dB</p> <p>001: 1 dB</p> <p>010: 2 dB</p> <p>011: 3 dB</p> <p>100: 4 dB</p> <p>101: 5 dB</p> <p>110: 6 dB</p> <p>All settings other than '000' are within +/-1 dB of the nominal value mentioned above</p>

PTN3222 implements a de-emphasis feature for channel loss compensation of high frequency content of both eUSB2 and USB2 signals.

Figure 12 illustrates the difference between pre-emphasis and de-emphasis functions.

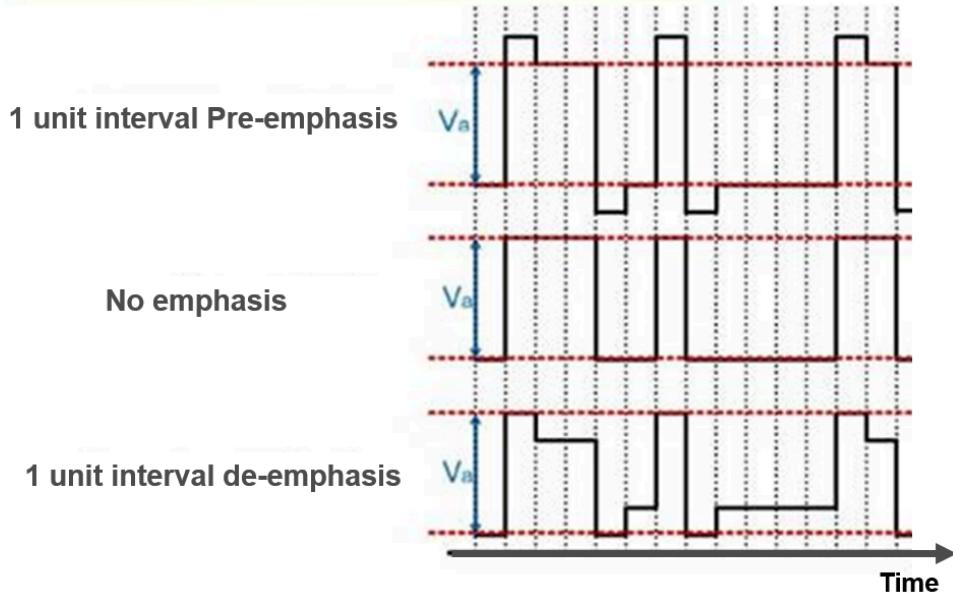


Figure 12. Difference between pre-emphasis and de-emphasis functions

With de-emphasis, when a steady pattern of 0s or 1s is being redriven, the transmit signal swing is reduced as per the de-emphasis level. For an alternating pattern of 0s and 1s, the full signal swing is transmitted as per the transmit signal swing level.

On the other hand, with pre-emphasis function, the full signal amplitude is retained when a steady pattern of 0s or 1s is being redriven. For an alternating pattern of 0s and 1s, the transmit signal swing is boosted as per pre-emphasis level.

The de-emphasis settings map to specific output current drive level as illustrated in [Table 17](#). The current drive level is with reference to 17.78 mA current considering 45 Ω terminations at both connection ends and 400 mV output swing level.

Table 17. De-emphasis level to USB2 TX output swing level

USB2 TX de-emphasis = 0.8UI (typical)															
USB2 TX output swing non-transition voltage (mV)		TX de-emphasis setting = 0		TX de-emphasis setting = 1		TX de-emphasis setting = 2		TX de-emphasis setting = 3		TX de-emphasis setting = 4		TX de-emphasis setting = 5		TX de-emphasis setting = 6	
		Transition level (mV)	Non-transition level (mV)												
Setting= 0	350	352	352	347	304	347	270	347	237	347	212	347	194	340	169
Setting= 1	400	399	399	394	344	394	309	390	267	390	239	390	219	385	190
Setting= 2	450	451	451	447	388	447	352	442	305	442	279	442	244	442	220
Setting= 3	500	498	498	492	434	492	390	487	337	487	305	487	269	487	244
Setting= 4	550	551	551	546	473	544	427	544	375	544	337	538	301	538	269
Setting= 5	600	600	600	595	520	595	469	595	416	584	366	584	330	580	295
Setting= 6	650	656	656	649	566	645	509	645	454	634	398	634	355	618	310
Setting= 7	700	703	703	702	613	692	537	680	474	680	423	675	372	675	344

Table 18. Register 0x08 – USB2 TX CONTROL 2

Register offset		Register name		Register description
0x08		USB2 TX CONTROL 2		This register configures the transmitted side settings – TX output driver slew rate and output signal swing on the USB2 side
Bit	Bit name	R/W	Reset	Description
7	RSVD	RAZ	b'0	Reserved
6	USB2 FS rise/fall time	RW	b'1	<p>This bit determines the FS TX driver rise/fall time on USB2 pins</p> <p>0: 8 ns to 20 ns</p> <p>1: 4 ns to 10 ns</p> <p>Load conditions are as defined in the USB standard</p>
5:4	USB2 HS rise/fall time	RW	b'10	<p>The 2 bits determine the TX driver slew rate for HS signaling on USB2 pins.</p> <p>00: 500 ps to 900 ps</p> <p>01: 400 ps to 800 ps</p> <p>10: 300 ps to 700 ps</p> <p>11: Reserved</p> <p>Load conditions are as defined in the USB standard</p>
3	RSVD	RAZ	0	Reserved
2:0	TX output signal swing	RW	b'011	<p>The 3 bits determine the TX output signal swing level for HS signaling on USB2 pins (when the interface is terminated)</p> <p>000: 350 mV</p> <p>001: 400 mV</p> <p>010: 450 mV</p> <p>011: 500 mV</p> <p>100: 550 mV</p> <p>101: 600 mV</p> <p>110: 650 mV</p> <p>111: 700 mV</p> <p>All settings are within +/-10% of the nominal value mentioned above</p>

Table 19. Register 0x09 – USB2 HS TERMINATION

Register offset		Register name		Register description
0x09		USB2 HS TERMINATION CONTROL		This register sets the HS termination values on USB2 pins
Bit	Bit name	R/W	Reset	Description
7:3	RSVD	RAZ	b'000000	Reserved
2:0	USB2 HS Termination control	RW	b'010	<p>The bits determine the HS termination on USB2 pins (differential impedance is specified here)</p> <p>000: 100 Ω differential 001: 95 Ω differential 010: 90 Ω differential 011: 85 Ω differential 100: 80 Ω differential 101 to 111: Reserved</p> <p>All settings are within +/-10% of the nominal value mentioned above</p>

Table 20. Register 0x0A – USB2 HS DISCONNECT THRESHOLD

Register offset		Register name		Register description
0x0A		USB2 HS DISCONNECT THRESHOLD		This register sets the HS disconnect threshold level on USB2 pins
Bit	Bit name	R/W	Reset	Description
7:2	RSVD	RAZ	b'0000000	Reserved
1:0	HS disconnect threshold level	RW	b'00	<p>The bits determine the HS disconnect detector threshold level on USB2 pins</p> <p>00: 575 mV 01: 675 mV 10: 775 mV 11: 875 mV</p> <p>All settings are within ±50 mV of nominal value mentioned above.</p> <p>The detector implements hysteresis of 30 mV to improve noise immunity</p>

Table 21. Register 0x0D – RAP Signature

Register offset		Register name		Register description
0x0D		RAP Signature		eUSB RAP Signature: Controls/limits RAP Command Access to the registers of the redriver
Bit	Bit name	R/W	Reset	Description
7:0	RAP_Signature	RW	b'00000000	<p>0x00: No RAP Access to PTN3222DHN I²C Registers 0x37: RAP allowed read-only access to Status, REVISION_ID, and Chip ID registers 0x92: RAP allowed read-only access to I²C customer registers 0x21: RAP allowed write/read access to I²C customer registers All others: No RAP Access to registers</p>

Table 22. Register 0x0E – VDX_CONTROL

Register offset		Register name		Register description
0x0E		VDX_CONTROL		PTN3222 can be used to indicate that the host system is a USB BC 1.2 charging downstream port (CDP) to a USB peripheral. This involves activating a current source on USB DN pin (refer to USB BC 1.2 spec VDM_SRC definition).
Bit	Bit name	R/W	Reset	Description
7:1	RSVD	RAZ	b'00000000	Reserved
0	VDX_Ctrl	RW	b'0	<p>VDX Control - Host Side Repeater Function</p> <p>0: Disable VDX_SRC</p> <p>1: Enable VDX_SRC</p> <p>The host shall enable VDX_SRC within 200 ms of a disconnect and PTN3222 VDX_SRC circuitry is automatically disabled upon detection of the next connection.</p>

Table 23. Register 0x0F – DEVICE STATUS

Register offset		Register name		Register description
0x0F		DEVICE STATUS		The register indicates the current state of repeater functionality. This register can only be read and writes don't have any effect
Bit	Bit name	R/W	Reset	Description
7:4	RSVD	RAZ		Reserved
3:2	Speed of operation	RO		<p>This bit shows the current state of repeater speed of operation</p> <p>00: LS</p> <p>01: FS</p> <p>10: HS</p>
1:0	Repeater role	RO		<p>This bit shows the current role played by the repeater</p> <p>00: No role determined yet</p> <p>01: Device side repeater</p> <p>10: Host side repeater</p>

Table 24. Register 0x10 – LINK STATUS

Register offset		Register name		Register description
0x10		LINK STATUS		This status register reflects the current state of the repeater device and the link. This register can only be read and writes don't have any effect
Bit	Bit name	R/W	Reset	Description
7:3	RSVD	RAZ		Reserved
2:0	Device Link status	RO		<p>The status bits reflect the device and link state</p> <p>000: Deep standby</p> <p>001: Connect detect</p> <p>010: L1</p> <p>011: L2</p> <p>101: Active HS (L0)</p> <p>110: Active HS (L0) forced due to USB2 compliance mode</p> <p>111: This setting represents a transitioning condition between different states (for example, Suspend to Resume to L0)</p>

Table 25. Register 0x13 – REVISION_ID

Register offset		Register name		Register description
0x13		REVISION_ID		The REVISION_ID register provides the silicon revision number. The Rev ID is a read only register whose value never changes
Bit	Bit name	R/W	Reset	Description
7:4	BASE_STEP	RO	b'1010	Base layer version A0 stands for 1 st version
3:0	METAL_STEP	RO	b'0100	Metal layer version 0 stands for the A0 version, '01' for A1 version and '100' for A4 version

Table 26. Register 0x14 – CHIP_ID_0

Register offset		Register name		Register description
0x14		CHIP_ID_0		This ID register provides the lower 8 bits of the 16-bit chip part number (3222). The ID register is a read-only register whose value never changes
Bit	Bit Name	R/W	Reset	Description
7:0	CHIP_ID_0	RO	0x22	Lower 8-bit CHIP ID (0x22)

Table 27. Register 0x15 – CHIP_ID_1

Register offset		Register name		Register description
0x15		CHIP_ID_1		The ID register provides the upper 8 bits of the 16-bit chip part number (3222). The ID register is a read-only register whose value never changes
Bit	Bit name	R/W	Reset	Description
7:0	CHIP_ID_1	RO	0x32	Higher 8-bit CHIP ID (0x32)

Table 28. Register 0x16 – CHIP_ID_2

Register offset		Register name		Register description
0x16		CHIP_ID_2		The ID register provides the Configuration image information 4 bits and CHIP type (2 bits). The ID register is a read-only register whose value never changes
Bit	Bit name	R/W	Reset	Description
7:4	Configuration	RO	b'0000	Fixed configuration
3:2	RSVD	RAZ		Reserved
1:0	CHIP Type	RO	b'01	CHIP type

10 Limiting values

Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. These are stress ratings only and do not imply functional operation of the device at these or beyond recommended conditions. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability. Within these ratings, damage to the part must not occur, and all characteristics must still be met after the part is returned to recommended operating conditions.

Typical (Typ) values are based on typical PVT (nominal process, VDD3V = 3 V, VDD1V8 = 1.8 V, and 25 °C). Min/Max values are based on all valid PVT ranges.

[Table 29](#) describes the limiting values of PTN3222DHN.

Table 29. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134); all voltage values are with respect to network ground terminal.

Symbol	Parameter	Condition	Spec. guar. by ^[1]	Min	Typ	Max	Unit	Unique identifier
VDD1V8	1V8 Supply voltage		Design	-0.5		2.4	V	LTC-VOL-PRI01-001
VDD3V3	3V3 Supply voltage		Design	-0.5		4	V	LTC -VOL-PRI01-002
V _I	Input voltage	SCL, SDA	Design	-0.5		2.4	V	LTC -VOL-PRI01-003
		RST_N	Design	-0.5		2.4	V	LTC -VOL-PRI01-004
		eDP, eDN	Design	-0.5		2.4	V	LTC -VOL-PRI01-005
		DP, DN	Design	-0.5		5.5	V	LTC -VOL-PRI01-006
		ADDR	Design	-0.5		2.4	V	LTC -VOL-PRI01-007
T _{stg}	Storage temperature		Design	-60		+150	°C	LTC -TMP-PRI01-008
V _{ESD}	Electrostatic discharge voltage	Human Body Model (HBM) ^[2]	Design	2			kV	LTC -VOL-PRI01-008
		Charged Device Model (CDM) ^[3]	Design	500			V	LTC -VOL-PRI01-009
I _{LATCHUP}	Latch-up current		Design	100			mA	LTC -CUR-PRI01-012

[1] 'Spec. guar. by' stands for 'Specification Guaranteed By'.

[2] HBM: ANSI/ESD/ESD-S5.1-1994, standard for ESD sensitivity testing, human body model – component level; electrostatic discharge association, Rome, NY, USA.

[3] CDM: ANSI/ESD/ESD-S5.3-1-1999, standard for ESD sensitivity testing, charged device model – component level; electrostatic discharge association, Rome, NY, USA.

11 Recommended operating conditions

[Table 30](#) describes the recommended operation conditions for PTN3222DHN.

Table 30. Operating conditions

Within these ratings, all characteristics in the following sections must be met unless noted otherwise. V_{PULLUP} is used to refer to I^2C pullup voltage in the following sections. $VDD1V8$ refers to internal voltage reference used by PTN3222DHN for determining the logic levels of SCL/SDA pins.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
VDD3V3	3V3 Supply voltage		ATE	2.85	3	3.63	V	ROC-VOL-PRI01-001
VDD1V8	1V8 Supply voltage		ATE	1.62	1.8	1.98	V	ROC-VOL-PRI01-002
t_{VDD_rampup}	Supply voltage ramp-up time	Between 0V and VDD3V3min/VDD1V8min	Bench	0.01		10	ms	ROC-TIM-PRI01-003
VDD1V8	I^2C interface pullup voltage	1.8 V voltage reference used for I^2C pins (same as VDD1V8 supply)	ATE	VDD1V8, min	VDD1V8	VDD1V8, max	V	ROC-VOL-PRI01-004
V_I	Input voltage	SCL, SDA	ATE	-0.3		1.98	V	ROC-VOL-PRI01-006
		RST_N	ATE	-0.3		1.98	V	ROC-VOL-PRI01-007
		eDP, eDN	ATE	-0.3		1.32	V	ROC-VOL-PRI01-008
		DP, DN	ATE	-0.3		3.63	V	ROC-VOL-PRI01-009
		ADDR	ATE	-0.3		1.98	V	ROC-VOL-PRI01-010
T_{amb}	Ambient temperature	Operating in standing air environment – automotive/industrial market	Bench	-40		105	°C	ROC-TMP-PRI01-012
$T_j^{[1]}$	Junction temperature	Captured mainly to ensure that simulation is carried out in this temp corner		-40		125	°C	ROC-TMP-PRI01-013

[1] PTN3222DHN is simulated for functionality up to junction temperature of 125 °C, but it is not guaranteed to meet the power/current consumption specifications.

[Table 31](#) describes the thermal resistance of PTN3222DHN.

Table 31. Thermal resistance

Symbol	Parameter	Conditions	Max	Unit	Unique identifier
$R_{\theta JA}$	Thermal resistance from junction to ambient ^[1]	JESD51-7, 2s2p	81.4	°C/W	THR-RES-PRI01-005
Ψ_{JT}	Junction-to-Top of Package Thermal Characterization Parameter ^[2]	JESD51-7, 2s2p	6.2	°C/W	THR-RES-PRI01-006

[1] Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standard specified environment. It is not meant to predict the performance of a package in an application-specific environment.

[2] The thermal test board meets JEDEC specification for this package (JESD51-7).

12 Characteristics

This section provides an overview of the characteristics of the following:

- Device characteristics
- USB2 and eUSB2 characteristics
- I²C dynamic/static characteristics
- ADDR pin characteristics
- RST_N pin characteristics

12.1 Device characteristics

[Table 32](#) provides details of the device characteristics.

Table 32. Device characteristics

Applicable across operating temperature and power supply ranges as mentioned under Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
t _{Startup}	Device startup time	Time for device operation including I ² C accesses once both supply voltages are within recommended operating levels	Bench			1	ms	DEV-TIM-PRI01-001
t _{SW_reset}	Time for software reset to complete	Supply voltages are valid	Bench			0.5	ms	DEV-TIM-PRI01-002
t _{Cfg}	Device parameter (re)configuration time	Time for parameter (re)configuration values to take effect after I ² C programming (or RAP initialization)	Bench			0.5	ms	DEV-TIM-PRI01-003
t _{DPSS_Exit}	Time duration that host has to wait before issuing further commands when PTN3222DHN is exiting deep standby		Bench			275	μs	DEV-TIM-PRI01-033
t _{PD}	Pin to pin differential propagation delay between eUSB2 and USB2 pins	Parameter configured for maximum signal path latency for USB2 HS data	Bench			3	ns	DEV-TIM-PRI01-004
I _{supply,3V3}	VDD3V3 supply current (applicable for temperature range -40 °C to 105 °C)	Deep standby	ATE			7	μA	DEV-CUR-PRI01-005
		Connect Detect substate	ATE			10	μA	DEV-CUR-PRI01-006
		L2 suspend	ATE			10	μA	DEV-CUR-PRI01-007
		L1 sleep	ATE			10	μA	DEV-CUR-PRI01-008
		Active LS/FS mode (w/10 pF load @ USB2 and 2.5 pF load @ eUSB2	ATE			6.5	mA	DEV-CUR-PRI01-009
		Active HS mode (eUSB to USB direction); no de-emphasis; only RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 pins and 80 Ω on eUSB2 pins, 400 mV USB2 output swing	ATE			8	mA	DEV-CUR-PRI01-010
		Active HS mode (eUSB to USB direction) de-emphasis 3 dB on USB2; RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 side and 80 Ω termination on eUSB2 side, 400 mV USB2 output swing	ATE			11	mA	DEV-CUR-PRI01-011
		Active HS mode (USB to eUSB direction); no de-emphasis; only RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 pins and 80 Ω on eUSB2 pins, 200 mV eUSB2 output swing	ATE			3	mA	DEV-CUR-PRI01-037
		Active HS mode (USB to eUSB direction); de-emphasis 3 dB on eUSB2; RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 side and 80 Ω termination on eUSB2 side, 200 mV eUSB2 output swing	ATE			4	mA	DEV-CUR-PRI01-038
		Deep standby	ATE			60	μA	DEV-CUR-PRI01-012a
I _{supply,1V8}	VDD1V8 supply current (applicable for temperature range -40 °C to 105 °C)	Connect Detect substate	ATE			110	μA	DEV-CUR-PRI01-013a
		L2 suspend	ATE			95	μA	DEV-CUR-PRI01-014a
		L1 sleep	ATE			0.8	mA	DEV-CUR-PRI01-015

Table 32. Device characteristics...continued

Applicable across operating temperature and power supply ranges as mentioned under Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
		Active LS/FS mode (w/10 pF load @ USB2 and 2.5 pF load @ eUSB2	ATE			3.7	mA	DEV-CUR-PRI01-016
		Active HS mode (eUSB to USB direction); no de-emphasis; only RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 side and 80 Ω on eUSB2 side, 400 mV USB2 output swing	ATE			47.5	mA	DEV-CUR-PRI01-017
		Active HS mode (eUSB to USB direction); de-emphasis 3 dB on USB2; RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 pins and 80 Ω termination on eUSB2 pins, 400 mV USB2 output swing	ATE			55	mA	DEV-CUR-PRI01-018
		Active HS mode (USB to eUSB direction); no de-emphasis; only RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 side and 80 Ω on eUSB2 side, 200 mV eUSB2 output swing	ATE			28	mA	DEV-CUR-PRI01-039
		Active HS mode (USB to eUSB direction); de-emphasis 3 dB on eUSB2; RX EQ enabled on eUSB2 / USB2 pins; 90 Ω termination on USB2 pins and 80 Ω termination on eUSB2 pins, 200 mV eUSB2 output swing	ATE			40	mA	DEV-CUR-PRI01-040
I _{backpower, 3V3}	Back power current when VDD3V3 pin is shorted to GND (applicable for temperature range -40 °C to 105 °C)	Current going into SCL pin when SCL is tied to VDD1V8 max	ATE			1	µA	DEV-CUR-PRI01-019
		Current going into SDA pin when SDA is tied to VDD1V8 max	ATE			1	µA	DEV-CUR-PRI01-020
		Current into RST_N pin when RST_N is tied to VDD1V8 max	ATE			1	µA	DEV-CUR-PRI01-021
I _{backpower, 1V8}	Back power current when VDD1V8 pin is shorted to GND (applicable for temperature range -40 °C to 105 °C)	Current going into SCL pin when SCL is tied to VDD1V8 max	ATE			1	µA	DEV-CUR-PRI01-022
		Current going into SDA pin when SDA is tied to VDD1V8 max	ATE			1	µA	DEV-CUR-PRI01-023
		Current into RST_N pin when RST_N is tied to VDD1V8 max	ATE			1	µA	DEV-CUR-PRI01-024
I _{INRUSH_3V3}	Inrush current when VDD3V3 ramp up from 0 V to final value		Bench			10	mA	DEV-CUR-PRI01-031
I _{INRUSH_1V8}	Inrush current when VDD1V8 ramp up from 0 V to final value		Bench			4	mA	DEV-CUR-PRI01-032

12.2 USB2 and eUSB2 characteristics

[Table 33](#) provides details of the USB2 and eUSB2 characteristics.

Table 33. USB2 and eUSB2 characteristics

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
V _{RX_CM_USB2}	USB2 RX common mode voltage		ATE	-100		500	mV	USB-VOL-PRI01-001
V _{IH_LF_USB2}	USB2 Low/Full Speed High-level input voltage		ATE	2			V	USB-VOL-PRI01-002
V _{IL_LF_USB2}	USB2 Low/Full Speed Low-level input voltage		ATE			0.8	V	USB-VOL-PRI01-003
V _{IHZ_LF_USB2}	USB2 Low/Full speed Hi-Z input level		ATE	2.7		3.7	V	USB-VOL-PRI01-004
V _{OL_LF_USB2}	USB2 Low/Full speed Low-level output voltage		ATE			0.3	V	USB-VOL-PRI01-005
V _{OH_LF_USB2}	USB2 Low/Full speed High-level output voltage		ATE	2.8		3.7	V	USB-VOL-PRI01-006
Z _{SO_LF_USB2}	USB2 Transmit output series resistance		ATE	40.5		49.5	Ω	USB-RES-PRI01-007

Table 33. USB2 and eUSB2 characteristics...continued

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
V _{OP_TX_USB2}	USB2 HS TX output signal swing	Measured on DP/DN pin with no de-emphasis with 90 Ω (nominal) differential termination; I ² C register offset address 0x08 I ² C setting = 0	ATE	315	350	405	mV	USB-VOL-PRI01-008a
		I ² C setting = 1	Char	360	400	460	mV	USB-VOL-PRI01-009a
		I ² C setting = 2	Char	405	450	515	mV	USB-VOL-PRI01-010a
		I ² C setting = 3	ATE	450	500	570	mV	USB-VOL-PRI01-011a
		I ² C setting = 4	Char	495	550	630	mV	USB-VOL-PRI01-012a
		I ² C setting = 5	Char	540	600	680	mV	USB-VOL-PRI01-013a
		I ² C setting = 6	Char	585	650	735	mV	USB-VOL-PRI01-014a
		I ² C setting = 7	ATE	630	700	790	mV	USB-VOL-PRI01-015a
G _{DE_TX_USB2}	USB2 HS TX output signal de-emphasis	Measurement on DP/DN pin @ 480 Mbit/s; with 90 Ω nominal differential termination; with 1 UI de-emphasis option; I ² C register offset address 0x07						
		I ² C setting = 1	Char	0	1	2	dB	USB-DB-PRI01-017
		I ² C setting = 2	ATE	1	2	3	dB	USB-DB-PRI01-018
		I ² C setting = 3	Char	2	3	4	dB	USB-DB-PRI01-019
		I ² C setting = 4	Char	3	4	5	dB	USB-DB-PRI01-020
		I ² C setting = 5	ATE	4	5	6	dB	USB-DB-PRI01-021
		I ² C setting = 6	Char	5	6	7	dB	USB-DB-PRI01-022
t _{DE_TX_USB2}	USB2 HS TX output signal de-emphasis bit duration	Measurement on DP/DN pin @ 480 Mbit/s; with 90 Ω nominal differential termination; (UI ~2.08ns); I ² C register offset address 0x07						
		I ² C setting = 1	Char	0.3	0.5	0.7	UI	USB-TIM-PRI01-024
		I ² C setting = 2	ATE	0.6	0.8	1	UI	USB-TIM-PRI01-025
t _{Rise_TX_HS_USB2}	USB2 HS TX Rise/fall time	Measurement on DP/DN pin @ 480 Mbit/s (10 % to 90 % of final output level); with 90 Ω nominal differential termination and 10pF load capacitance; I ² C register offset address 0x08; I ² C setting = 0	Bench	500		900	ps	USB-TIM-PRI01-026
		I ² C setting = 1	Bench	400		800	ps	USB-TIM-PRI01-027
		I ² C setting = 2	Bench	300		700	ps	USB-TIM-PRI01-028
G _{EQ_RX_USB2}	USB2 HS RX input equalization	Measurement at 240 MHz with reference to DC to 1 MHz; I ² C register offset address 0x06 I ² C setting = 0	Bench	-1	0	1	dB	USB-DB-PRI01-029
		I ² C setting = 1	Bench	0	1	2	dB	USB-DB-PRI01-030
		I ² C setting = 2	Bench	1	2	3	dB	USB-DB-PRI01-031
		I ² C setting = 3	Bench	2	3	4	dB	USB-DB-PRI01-032
		I ² C setting = 4	Bench	3	4	5	dB	USB-DB-PRI01-033
R _{RCV_DIF_USB2}	USB2 HS RX differential receiver termination	Measured on DP/DN pin; I ² C register offset address 0x09 I ² C setting = 4	Char	72	80	88	Ω	USB-RES-PRI01-034
		I ² C setting = 3	Char	75	85	95	Ω	USB-RES-PRI01-035
		I ² C setting = 2	ATE	80	90	100	Ω	USB-RES-PRI01-036
		I ² C setting = 1	Char	85	95	105	Ω	USB-RES-PRI01-037
		I ² C setting = 0	ATE	90	100	110	Ω	USB-RES-PRI01-038
V _{SQ_RX_USB2}	USB2 HS RX squelch detection threshold	Measured on DP/DN pin; with 90 Ω nominal differential termination; I ² C register offset address 0x06 I ² C setting = 0	ATE	25	50	75	mV	USB-VOL-PRI01-039
		I ² C setting = 1	Char	40	65	90	mV	USB-VOL-PRI01-040
		I ² C setting = 2	ATE	60	85	110	mV	USB-VOL-PRI01-041
		I ² C setting = 3	ATE	70	95	120	mV	USB-VOL-PRI01-042

Table 33. USB2 and eUSB2 characteristics...continued

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
		I ² C setting = 4	ATE	85	110	135	mV	USB-VOL-PRI01-043
		I ² C setting = 5	ATE	100	125	150	mV	USB-VOL-PRI01-044
		I ² C setting = 6	Char	115	140	165	mV	USB-VOL-PRI01-045
		I ² C setting = 7	Char	130	155	180	mV	USB-VOL-PRI01-046
V _{DIS_HS_USB2}	USB2 HS RX disconnect detection threshold	Low to High amplitude transition measured on DP/DN pin under disconnect condition; I ² C register offset address 0x0A	ATE	525	575	625	mV	USB-VOL-PRI01-047
		I ² C setting = 0	Char	625	675	725	mV	USB-VOL-PRI01-048
		I ² C setting = 1	Char	725	775	825	mV	USB-VOL-PRI01-049
		I ² C setting = 2	ATE	825	875	925	mV	USB-VOL-PRI01-050
V _{RISE_TX_FS_USB2}	USB2 FS TX Rise/Fall time control	Measured on DP/DN pin (10-90% of final voltage level), with 90 Ω nominal differential termination; I ² C register offset address 0x08	Bench	8		20	ns	USB-TIM-PRI01-051
		I ² C setting = 0	Bench	4		10	ns	USB-TIM-PRI01-052
t _{JITTER_USB2}	Total added jitter on USB2 HS	Measured on DP/DN pin with 90 Ω nominal differential termination with BER 1e-12 reference; PRBS HS input data payload with USB2 bit stuffing; clean input signal level 75 mV;	Bench		25	40	ps	USB-TIM-PRI01-053
t _{JITTER_eUSB2}	Total added jitter on eUSB2 HS	Measured on eDP/eDN pin with 80 Ω nominal differential termination with BER 1e-12 reference; PRBS HS input data payload with USB2 bit stuffing; clean input signal level 100 mV;	Bench		25	40	ps	USB-TIM-PRI01-088
V _{RX_CM_eUSB2}	eUSB2 HS RX DC common mode voltage range		ATE	120		280	mV	USB-VOL-PRI01-054
C _{RX_CM_eUSB2}	eUSB2 HS center tapped capacitance		Bench	15		50	pF	USB-CAP-PRI01-055
V _{RX_DIF_SENS_eUSB2}	eUSB2 HS RX sensitivity		Bench	25	50		+/-mV	USB-VOL-PRI01-056
R _{RCV_DIF_eUSB2}	eUSB2 HS RX differential receiver termination	Measured on eDP/eDN pin;	ATE	72	80	88	Ω	USB-RES-PRI01-057
V _{OP_TX_eUSB2}	eUSB2 HS TX output signal swing	Measured on eDP/eDN pin with no de-emphasis with 80 Ω (nominal) differential termination; I ² C register offset address 0x05	Char	140	180	220	mV	USB-VOL-PRI01-058
		I ² C setting = 0	ATE	160	200	240	mV	USB-VOL-PRI01-059
		I ² C setting = 1	ATE	180	220	260	mV	USB-VOL-PRI01-060
		I ² C setting = 2	Char	200	240	280	mV	USB-VOL-PRI01-061
GT _{X_DE_eUSB2}	eUSB2 HS TX de-emphasis as measured on eDP/eDN pin	Measurement at 240 MHz with reference to DC- 1 MHz; referenced to 200 mV (terminated) TX signaling; I ² C register offset address 0x05						
		I ² C setting = 1	Char	0	1	2	dB	USB-DB-PRI01-063
		I ² C setting = 2	Char	1	2	3	dB	USB-DB-PRI01-064
		I ² C setting = 3	ATE	2	3	4	dB	USB-DB-PRI01-065
GR _{X_EQ_eUSB2}	eUSB2 HS RX equalization as measured on eDP/eDN pin	Measurement at 240 MHz with reference to DC- 1 MHz; I ² C register offset address 0x04	Bench	-1	0	1	dB	USB-DB-PRI01-066
		I ² C setting = 0	Bench	0	1	2	dB	USB-DB-PRI01-067
		I ² C setting = 1	Bench	1	2	3	dB	USB-DB-PRI01-068
		I ² C setting = 2	Bench	2	3	4	dB	USB-DB-PRI01-069
		I ² C setting = 3	Bench	3	4	5	dB	USB-DB-PRI01-070
V _{SQ_RX_eUSB2}	eUSB2 HS RX squelch threshold as measured on eDP/eDN pin	Measured on eDP/eDN pin; with 80 Ω nominal differential termination; I ² C register offset address 0x04	Char	25	50	75	mV	USB-VOL-PRI01-071
		I ² C setting = 0	ATE	40	65	90	mV	USB-VOL-PRI01-072
		I ² C setting = 1	ATE	60	85	110	mV	USB-VOL-PRI01-073

Table 33. USB2 and eUSB2 characteristics...continued

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
		I ² C setting = 3	Char	70	95	120	mV	USB-VOL-PRI01-074
V _{CM_RX_AC_eUSB2}	eUSB2 HS RX AC common mode voltage	CM noise band (50 MHz to 480 MHz)	Bench			60	+/-m Vpeak	USB-VOL-PRI01-075
V _{OL_LF_eUSB2}	eUSB2 LS/FS Low-level output voltage	(0.15 x internally derived 1.2 V reference from VDD1V8)	ATE			0.18	V	USB-VOL-PRI01-076
V _{OH_LF_eUSB2}	eUSB2 LS/FS High-level output voltage	(0.85 x internally derived 1.2 V reference from VDD1V8)	ATE	1.02			V	USB-VOL-PRI01-077
V _{IL_LF_eUSB2}	eUSB2 LS/FS Low-level input voltage	(0.35 x internally derived 1.2 V reference from VDD1V8)	ATE	-0.1		0.42	V	USB-VOL-PRI01-078
V _{IH_LF_eUSB2}	eUSB2 LS/FS High-level input voltage	(0.65 x internally derived 1.2 V reference from VDD1V8)	ATE	0.78			V	USB-VOL-PRI01-079
V _{Hysteresis_eUSB2}	eUSB2 LS/FS RX Hysteresis	(0.04 x internally derived 1.2 V reference from VDD1V8min)	Bench	32		130	mV	USB-VOL-PRI01-080
Z _{TXSRC_LF_eUSB2}	eUSB2 LS/FS Transmit output impedance		ATE	28		60	Ω	USB-RES-PRI01-081
V _{CM_TX_AC_USB2}	USB2 HS TX AC common mode voltage (measured when 400mV USB2 HS TX signaling level is selected and with 90 Ω termination) at USB2 pins	Measured spectral content from 800 MHz to 2 GHz frequency band	Bench			22	mVrms	USB-VOL-PRI01-082
V _{CM_TX_AC_RF_USB2}	USB2 HS TX AC common mode voltage at specific harmonic frequency (measured when 400 mV USB2 HS TX signaling level is selected and with 90 Ω termination) at USB2 pins; all dB level referenced to signal level at Nyquist frequency of 240 MHz	Freq = 720 MHz	Bench		-57	-49	dBV	USB-DB-PRI01-083
		Freq = 960 MHz	Bench		-41	-35	dBV	USB-DB-PRI01-084
		Freq = 1.2 GHz	Bench		-59	-51	dBV	USB-DB-PRI01-085
		Freq = 1.44 GHz	Bench		-43	-38	dBV	USB-DB-PRI01-086
tresponse	Response time to wake up and activate redriver data path for USB2 packet transmission		Bench			4	UI	USB-TIM-PRI01-087
V _{OVP.Th}	VBUS overvoltage detector on DP and DN pins	Low to high transition	ATE	4.2	4.4	4.9	V	USB-VOL-PRI01-089
		High to low transition	ATE	3.9	4.2	4.9	V	USB-VOL-PRI01-090
V _{CRS}	USB2 LS cross-over voltage		ATE	1.3	-	2	V	USB-VOL-PRI01-103

12.3 I²C dynamic/static characteristics

[Section 12.3](#) provides details of the I²C dynamic/static characteristics.

Table 34. Standard mode I²C characteristics

Applicable across operating temperature and power supply ranges as recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

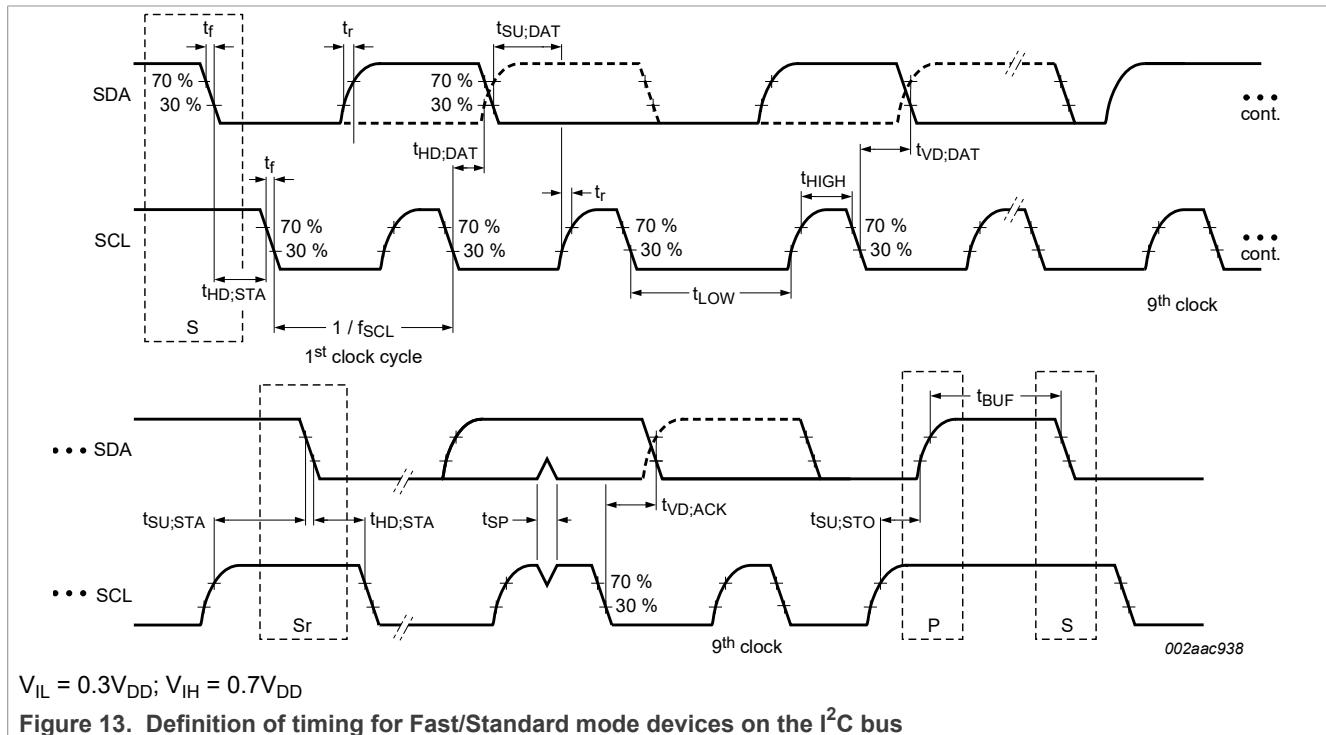
Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
f _{I2C}	I ² C clock frequency	Standard mode	ATE	0		100	kHz	STD-FRQ-PRI01-001
R _{PULLUP}	I ² C interface pull-up resistors on SCL/SDA lines	System requirement		0.567	2.2	2.83	kΩ	STD-RES-PRI01-002
V _{IH}	High-level input voltage	Standard mode; 1.8 V	ATE	0.7 x VDD1V8			V	STD-VOL-PRI01-003
V _{IL}	Low-level input voltage	Standard mode; 1.8 V	ATE	-0.3		0.3 x VDD1V8	V	STD-VOL-PRI01-004
V _{hys}	Hysteresis of Schmitt trigger inputs	Standard mode: 1.8 V	Bench	0.05 x VDD1V8			V	STD-VOL-PRI01-005
V _{OL}	Low-level output voltage	Standard mode, 2mA sink current; VDD1V8 < 2 V	ATE	0		0.2 x VDD1V8	V	STD-VOL-PRI01-006
I _{OL}	Low-level output current	Standard mode, V _{OL} = 0.4 V;	ATE	3			mA	STD-CUR-PRI01-007

Table 34. Standard mode I²C characteristics...continued

Applicable across operating temperature and power supply ranges as recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
I _{IL}	Low-level input current	Standard mode, Pin voltage = 0.1V _{PULLUP} to 0.9V _{PULLUP, max}	ATE	-10		10	µA	STD-CUR-PRI01-008
C _I	Capacitance of I/O pins	Standard mode	Bench			10	pF	STD-CAP-PRI01-009
t _{HD,STA}	Hold time (repeated-START) condition	Standard mode	ATE	4			µs	STD-TIM-PRI01-010
t _{LOW}	Low period of I ² C clock	Standard mode	ATE	4.7			µs	STD-TIM-PRI01-011
t _{HIGH}	High period of I ² C clock	Standard mode	ATE	4			µs	STD-TIM-PRI01-012
t _{SU,STA}	Setup time (REPEAT) START condition	Standard mode	ATE	4.7			µs	STD-TIM-PRI01-013
t _{HD, DAT}	Data hold time	Standard mode	ATE	0			µs	STD-TIM-PRI01-014
t _{SU, DAT}	Data setup time	Standard mode	ATE	250			ns	STD-TIM-PRI01-015
t _{SU, STO}	Setup time for STOP condition	Standard mode	ATE	4			µs	STD-TIM-PRI01-016
t _{BUF}	Bus free time between STOP and START condition	Standard mode	ATE	4.7			µs	STD-TIM-PRI01-017
t _r	Rise time of SCL/SDA signals	Standard mode	Bench	20		1000	ns	STD-TIM-PRI01-018
t _f	Fall time of SCL/SDA signals	Standard mode	Bench	20 x (VDD1V8 / 5.5)		300	ns	STD-TIM-PRI01-019
t _{VD,DAT}	Data valid time	Standard mode	ATE			3.45	µs	STD-TIM-PRI01-020
t _{VD,ACK}	Data valid acknowledge time	Standard mode	ATE			3.45	µs	STD-TIM-PRI01-021
t _{SP}	Pulse width of spikes that must be suppressed by the input filter	Standard mode	ATE	0		50	ns	STD-TIM-PRI01-022
V _{nL}	Noise margin at the LOW level ¹	Standard mode, for each connected device (including hysteresis)	Bench	0.1 x VDD1V8			V	STD-VOL-PRI01-023
V _{nH}	Noise margin at the HIGH level	Standard mode, for each connected device (including hysteresis)	Bench	0.2 x VDD1V8			V	STD-VOL-PRI01-024
C _b	Capacitive load for each bus line	Standard mode, system requirement	System			400	pF	STD-CAP-PRI01-025

Table 35. Fast mode I²C characteristics


Applicable across operating temperature and power supply ranges as mentioned in Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
f _{I2C}	I ² C clock frequency	Fast mode	ATE	0		400	kHz	FST-FRQ-PRI01-001
R _{PULLUP}	I ² C interface pull-up resistors on SCL/SDA lines	System requirement		0.567	2.2	2.83	kΩ	FST-RES-PRI01-002
V _{IH}	High-level input voltage	Fast mode; 1.8 V	ATE	0.7 x VDD1V8			V	FST-VOL-PRI01-003
V _{IL}	Low-level input voltage	Fast mode; 1.8 V	ATE	-0.3		0.3 x VDD1V8	V	FST-VOL-PRI01-004
V _{hys}	Hysteresis of Schmitt trigger inputs	Fast mode; 1.8 V	Bench	0.05 x VDD1V8			V	FST-VOL-PRI01-005
V _{OL}	Low-level output voltage	Fast mode, 2mA sink current; VDD1V8 < 2 V	ATE	0		0.2 x VDD1V8	V	FST-VOL-PRI01-006
I _{OL}	Low-level output current	Fast mode, V _{OL} = 0.4 V;	ATE	3			mA	FST-CUR-PRI01-007
I _{IL}	Low-level input current	Fast mode, Pin voltage = 0.1V _{PULLUP} to 0.9V _{PULLUP, max}	ATE	-10		10	µA	FST-CUR-PRI01-008
C _I	Capacitance of I/O pins	Fast mode	Bench			10	pF	FST-CAP-PRI01-009
t _{HD,STA}	Hold time (repeated-START) condition	Fast mode	ATE	0.6			µs	FST-TIM-PRI01-010

Table 35. Fast mode I²C characteristics...continued

Applicable across operating temperature and power supply ranges as mentioned in Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
t_{LOW}	Low period of I ² C clock	Fast mode	ATE	1.3			μs	FST-TIM-PRI01-011
t_{HIGH}	High period of I ² C clock	Fast mode	ATE	0.6			μs	FST-TIM-PRI01-012
$t_{SU,STA}$	Setup time (REPEAT) START condition	Fast mode	ATE	0.6			μs	FST-TIM-PRI01-013
$t_{HD, DAT}$	Data hold time	Fast mode	ATE	0			μs	FST-TIM-PRI01-014
$t_{SU, DAT}$	Data setup time	Fast mode	ATE	100			ns	FST-TIM-PRI01-015
$t_{SU, STO}$	Setup time for STOP condition	Fast mode	ATE	0.6			μs	FST-TIM-PRI01-016
t_{BUF}	Bus free time between STOP and START condition	Fast mode	ATE	1.3			μs	FST-TIM-PRI01-017
t_r	Rise time of SCL/SDA signals	Fast mode	Bench	20		300	ns	FST-TIM-PRI01-018
t_f	Fall time of SCL/SDA signals	Fast mode	Bench	20 x (VDD1V8 / 5.5)		300	ns	FST-TIM-PRI01-019
$t_{VD,DAT}$	Data valid time	Fast mode	ATE			0.9	μs	FST-TIM-PRI01-020
$t_{VD,ACK}$	Data valid acknowledge time	Fast mode	ATE			0.9	μs	FST-TIM-PRI01-021
t_{SP}	Pulse width of spikes that must be suppressed by the input filter	Fast mode	ATE	0		50	ns	FST-TIM-PRI01-022
V_{nL}	Noise margin at the LOW level	Fast mode, for each connected device (including hysteresis)	Bench	0.1 x VDD1V8			V	FST-VOL-PRI01-023
V_{nH}	Noise margin at the HIGH level	Fast mode, for each connected device (including hysteresis)	Bench	0.2 x VDD1V8			V	FST-VOL-PRI01-024
C_b	Capacitive load for each bus line	Fast mode, system requirement	System			400	pF	FST-CAP-PRI01-025

Table 36. Fast-mode Plus I²C characteristics

Applicable across operating temperature and power supply ranges as recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
f _{I²C}	I ² C clock frequency	Fast-mode Plus	ATE	0		1000	kHz	FMPLUS-FRQ-PRI01-001
R _{PULLUP}	I ² C interface pull-up resistors on SCL/SDA lines	System requirement		0.567	2.2	2.83	kΩ	FMPLUS-RES-PRI01-002
V _{IH}	High-level input voltage	Fast-mode Plus; 1.8 V	ATE	0.7 x VDD1V8			V	FMPLUS-VOL-PRI01-003
V _{IL}	Low-level input voltage	Fast-mode Plus; 1.8 V	ATE	-0.3		0.3 x VDD1V8	V	FMPLUS-VOL-PRI01-004
V _{hys}	Hysteresis of Schmitt trigger inputs	Fast-mode Plus; 1.8 V	Bench	0.05 x VDD1V8			V	FMPLUS-VOL-PRI01-005
V _{OL}	Low-level output voltage	2mA sink current; VDD1V8 < 2 V	ATE	0		0.2 x VDD1V8	V	FMPLUS-VOL-PRI01-006
I _{OL}	Low-level output current	V _{OL} = 0.4 V; Fast-mode Plus	ATE	20			mA	FMPLUS-CUR-PRI01-007
I _{IL}	Low-level input current	Pin voltage = 0.1V _{PULLUP} to 0.9V _{PULLUP, max}	ATE	-10		10	μA	FMPLUS-CUR-PRI01-008
C _I	Capacitance of I/O pins		Bench			10	pF	FMPLUS-CAP-PRI01-009
t _{HD,STA}	Hold time (repeated-START) condition	Fast-mode Plus	ATE	0.26			μs	FMPLUS-TIM-PRI01-010
t _{LOW}	Low period of I ² C clock	Fast-mode Plus	ATE	0.5			μs	FMPLUS-TIM-PRI01-011
t _{HIGH}	High period of I ² C clock	Fast-mode Plus	ATE	0.26			μs	FMPLUS-TIM-PRI01-012
t _{SU,STA}	Setup time (REPEAT) START condition	Fast-mode Plus	ATE	0.26			μs	FMPLUS-TIM-PRI01-013
t _{HD, DAT}	Data hold time		ATE	0			μs	FMPLUS-TIM-PRI01-014
t _{SU, DAT}	Data setup time	Fast-mode Plus	ATE	50			ns	FMPLUS-TIM-PRI01-015
t _{SU, STOP}	Setup time for STOP condition	Fast-mode Plus	ATE	0.26			μs	FMPLUS-TIM-PRI01-016
t _{BUF}	Bus free time between STOP and START condition	Fast-mode Plus	ATE	0.5			μs	FMPLUS-TIM-PRI01-017
t _r	Rise time of SCL/SDA signals	Fast-mode Plus	Bench	0		120	ns	FMPLUS-TIM-PRI01-018
t _f	Fall time of SCL/SDA signals	Fast-mode Plus	Bench	20 x(VDD1V8 /5.5)		120	ns	FMPLUS-TIM-PRI01-019
t _{VD,DAT}	Data valid time	Fast-mode Plus	ATE			0.45	μs	FMPLUS-TIM-PRI01-020
t _{VD,ACK}	Data valid acknowledge time	Fast-mode Plus	ATE			0.45	μs	FMPLUS-TIM-PRI01-021
t _{SP}	Pulse width of spikes that must be suppressed by the input filter		ATE	0		50	ns	FMPLUS-TIM-PRI01-022
V _{nL}	Noise margin at the LOW level	Fast-mode Plus, for each connected device (including hysteresis)	Bench	0.1 x VDD1V8			V	FMPLUS-VOL-PRI01-023
V _{nH}	Noise margin at the HIGH level	Fast-mode Plus, for each connected device (including hysteresis)	Bench	0.2 x VDD1V8			V	FMPLUS-VOL-PRI01-024

Table 36. Fast-mode Plus I²C characteristics...continued

Applicable across operating temperature and power supply ranges as recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
C _b	Capacitive load for each bus line	System requirement				400	pF	FMPLUS-CAP-PRI01-025

12.4 ADDR pin characteristics

[Table 37](#) provides details of the ADDR pin characteristics.

Table 37. ADDR characteristics

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
V _{IH1}	High-level input voltage	Pin connected to VDD1V8	ATE	0.9 x VDD1V8		VDD1V8+0.3	V	QAT-VOL-PRI01-001
V _{IH2}	High-level input voltage	Rext = 56 kΩ (10 % resistor) pullup to VDD1V8	ATE	0.575 x VDD1V8		0.725 x VDD1V8	V	QAT-VOL-PRI01-009
V _{IM}	High-level input voltage	Rext = 200 kΩ (10 % resistor) pullup to VDD1V8	ATE	0.275 x VDD1V8		0.425 x VDD1V8	V	QAT-VOL-PRI01-010
V _{IL}	Low-level input voltage	Pin connected to GND	ATE			0.1 x VDD1V8	V	QAT-VOL-PRI01-002
I _{bckcur}	Back current on the pin when there is no power	VDD1V8=0 (no power supply to RST_N Input pad)	ATE			1	µA	QAT-CUR-PRI01-003
I _{IL}	Pin leakage current	Pin connected directly to GND	ATE			5	µA	QAT-CUR-PRI01-004
C _{pin}	Pin capacitance		Bench			10	pF	QAT-CAP-PRI01-007
R _{pd}	Internal pulldown resistor		ATE	86	105	122	kΩ	QAT-RES-PRI01-008

12.5 RST_N pin characteristics

[Table 38](#) provides details of the RST_N pin characteristics.

Table 38. RST_N characteristics

Symbol	Parameter	Condition	Spec. guar. by	Min	Typ	Max	Unit	Unique identifier
V _{IH}	High-level input voltage	1.8 V IO operation	ATE	1.2			V	BIN-VOL-PRI01-001
V _{IL}	Low-level input voltage	1.8 V IO operation	ATE			0.3	V	BIN-VOL-PRI01-002
I _{bckcur}	Back current on the pin when there is no power	VDD1V8=0 (no power supply to RST_N Input pad)	ATE			1	µA	BIN-CUR-PRI01-003
I _{IL}	Pin Leakage current	Pin connected directly to GND	ATE			5	µA	BIN-CUR-PRI01-004
t _{RST_N_SP}	Minimum Deglitch duration		Bench	200			ns	BIN-TIM-PRI01-005
C _{pin}	Pin capacitance		Bench			10	pF	BIN-CAP-PRI01-006

13 Package outline

This section shows the package outline for PTN3222DHN.

13.1 SOT2225-1(DD) (PQFN-12)

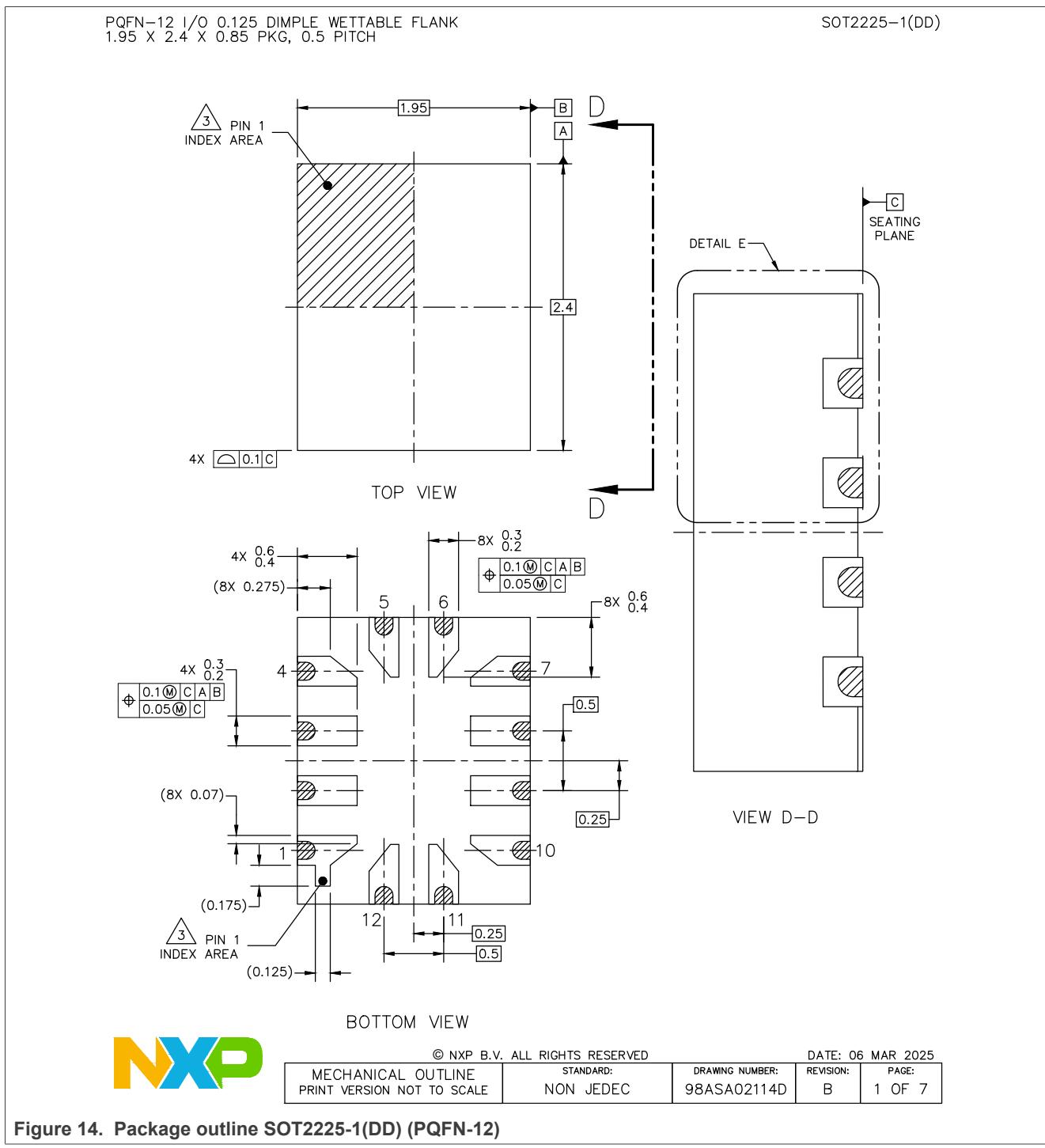
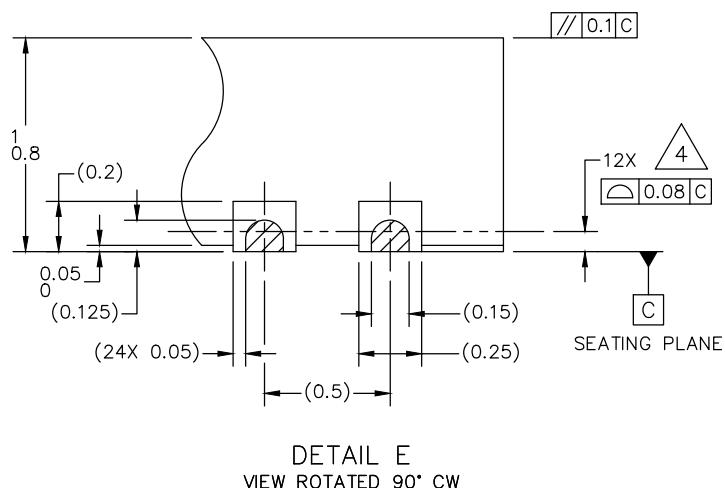



Figure 14. Package outline SOT2225-1(DD) (PQFN-12)

PQFN-12 I/O 0.125 DIMPLE WETTABLE FLANK
1.95 X 2.4 X 0.85 PKG, 0.5 PITCH

SOT2225-1(DD)

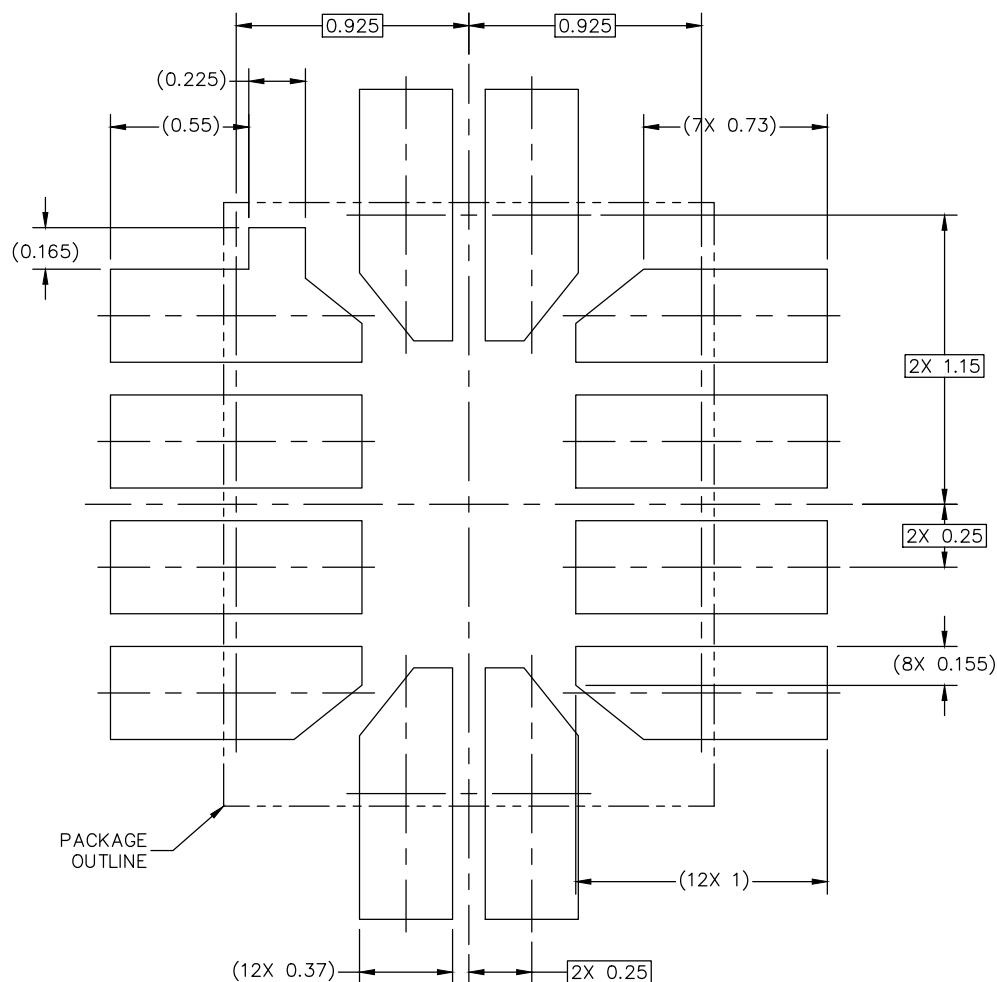
© NXP B.V. ALL RIGHTS RESERVED

DATE: 06 MAR 2025

MECHANICAL OUTLINE
PRINT VERSION NOT TO SCALE

STANDARD:
NON JEDEC

DRAWING NUMBER:
98ASA02114D

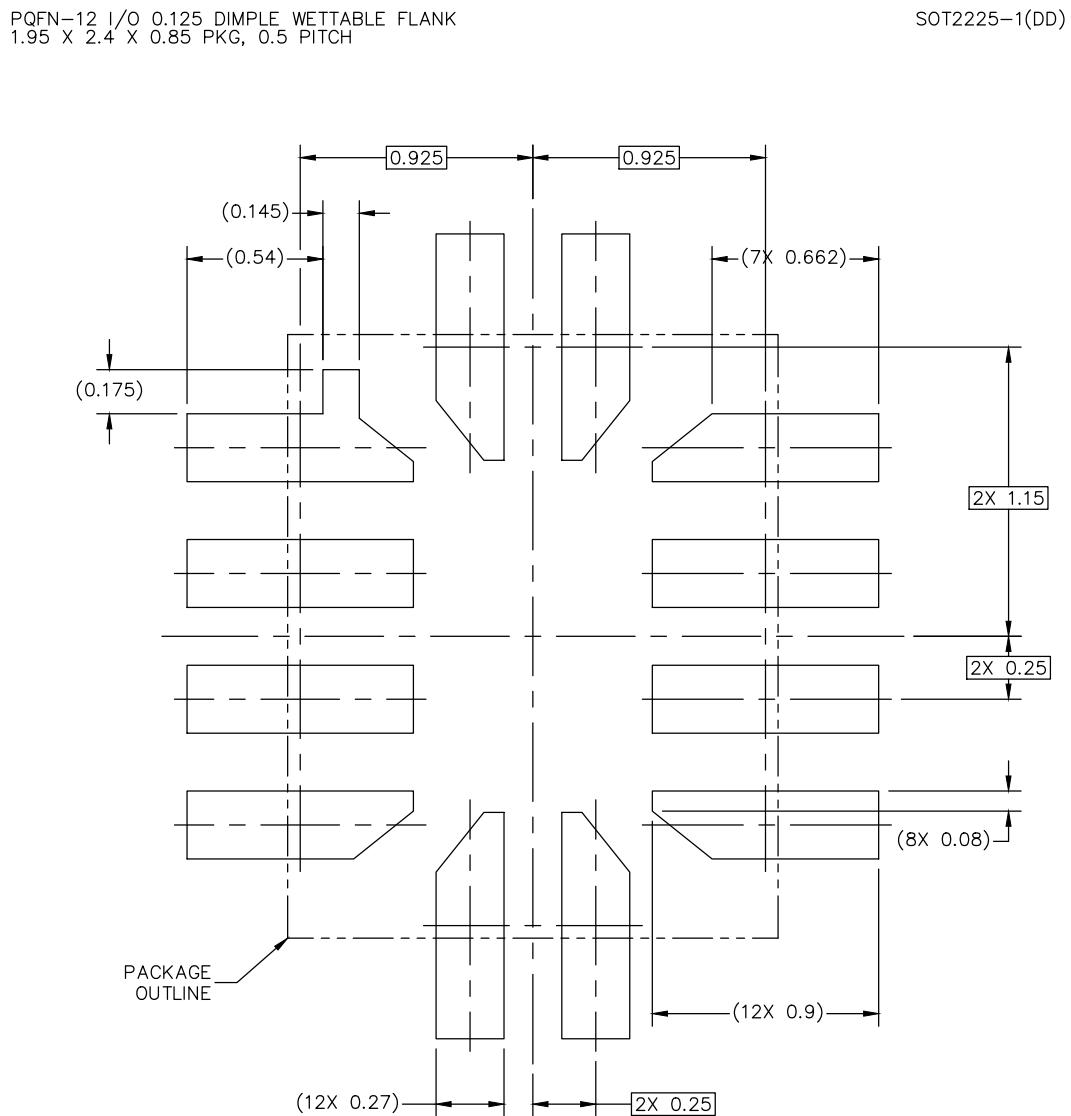

REVISION:
B

PAGE:
2

Figure 15. Package outline SOT2225-1(DD) (PQFN-12) detail E

PQFN-12 I/O 0.125 DIMPLE WETTABLE FLANK
1.95 X 2.4 X 0.85 PKG, 0.5 PITCH

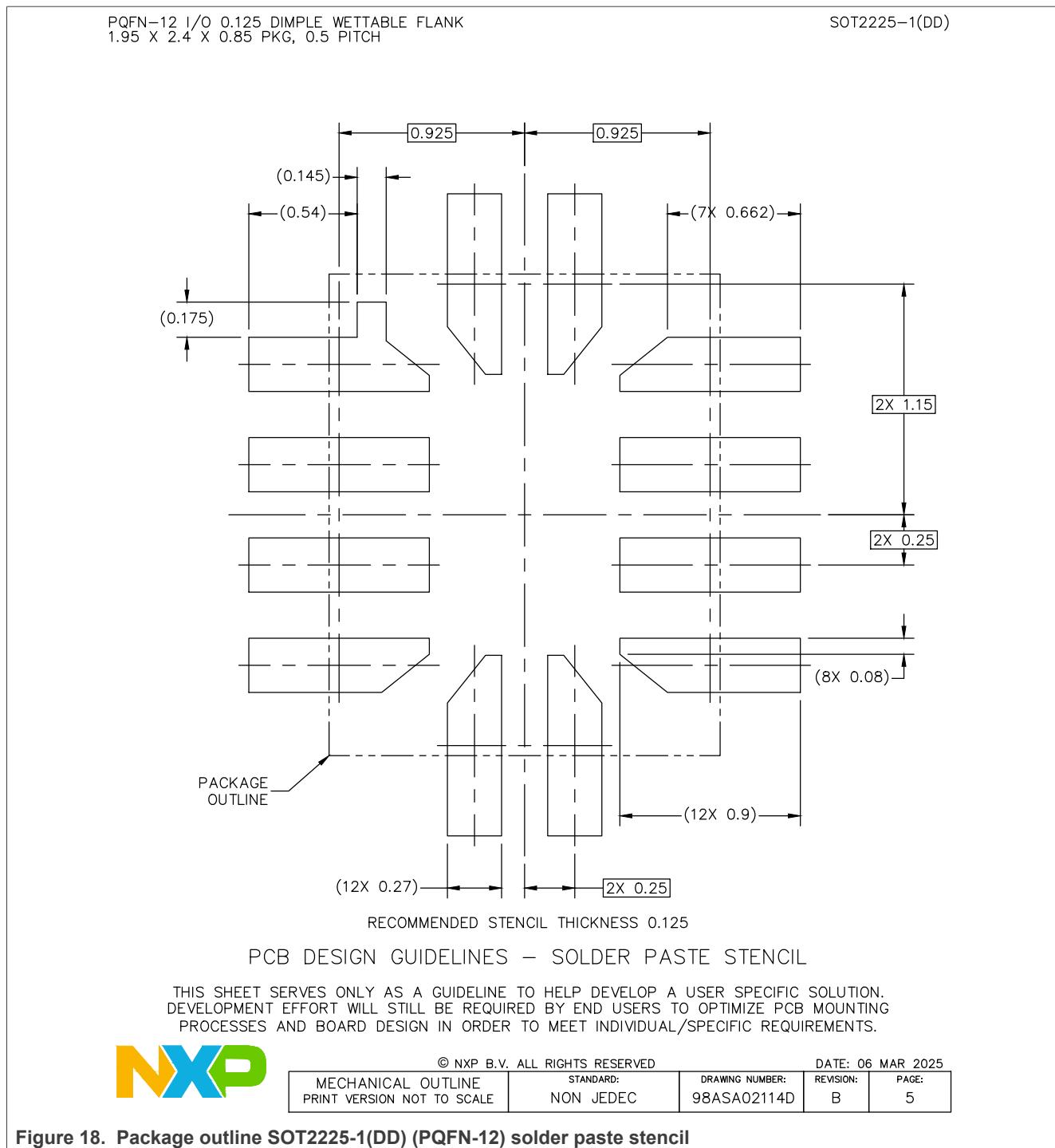
SOT2225-1(DD)


PCB DESIGN GUIDELINES – SOLDER MASK OPENING PATTERN

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP B.V. ALL RIGHTS RESERVED DATE: 06 MAR 2025
 MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVISION: PAGE:
 PRINT VERSION NOT TO SCALE NON JEDEC 98ASA02114D B 3

Figure 16. Package outline SOT2225-1(DD) (PQFN-12) solder mask opening pattern


PCB DESIGN GUIDELINES – I/O PADS AND SOLDERABLE AREA

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP B.V. ALL RIGHTS RESERVED DATE: 06 MAR 2025
 MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVISION: PAGE:
 PRINT VERSION NOT TO SCALE NON JEDEC 98ASA02114D B 4

Figure 17. Package outline SOT2225-1(DD) (PQFN-12) I/O pads and solderable area

PQFN-12 I/O 0.125 DIMPLE WETTABLE FLANK
1.95 X 2.4 X 0.85 PKG, 0.5 PITCH

SOT2225-1(DD)

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.
4. COPLANARITY APPLIES TO LEADS.
5. MIN. METAL GAP SHOULD BE 0.2 MM.

© NXP B.V. ALL RIGHTS RESERVED

DATE: 06 MAR 2025

MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE	STANDARD: NON JEDEC	DRAWING NUMBER: 98ASA02114D	REVISION: B	PAGE: 6
--	------------------------	--------------------------------	----------------	------------

Figure 19. Package outline SOT2225-1(DD) (PQFN-12) notes

14 Packing information

This section details the product dimensions, orientation, and carrier tape specifications.

14.1 SOT2225-1(DD) PQFN-12, Dimple wettable flank quad no-lead package, 12 terminals, 0.5 mm pitch, 1.95 mm x 2.4 mm x 0.85 mm

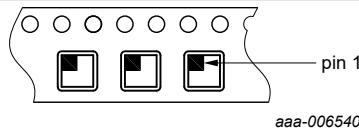
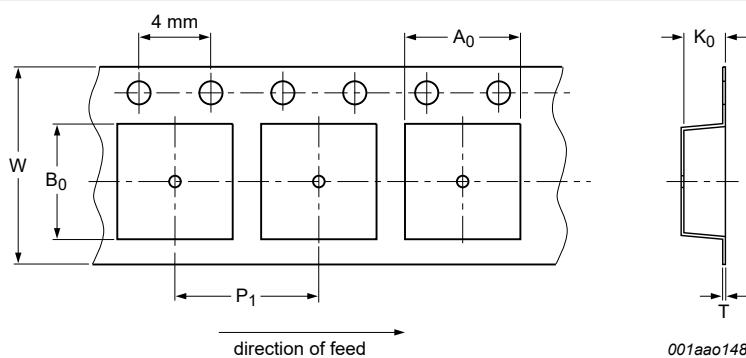

14.1.1 Dimensions and quantities

Table 39. Dimension and quantities

Reel dimensions d x w (mm) ^[1]	SPQ/PQ (pcs)	Reels per box
180 x 8	3000	1

[1] d = reel diameter; w = tape width


14.1.2 Product orientation

Pin 1 is in quadrant 1.

Figure 20. Product orientation in carrier tape

14.1.3 Carrier tape dimensions

In accordance with IEC 60286-3/EIA-481

Table 40. Carrier tape dimensions

A ₀ (mm)	B ₀ (mm)	K ₀ (mm)	T (mm)	P ₁ (mm)	W (mm)
2.25 ± 0.10	2.70 ± 0.10	1.08 ± 0.05	0.30 ± 0.03	4.00 ± 0.10	8.0+0.30/-0.10

Figure 21. Carrier tape dimensions

15 Acronyms

This section lists acronyms used in this document.

Table 41. Acronyms

Acronym	Description
AFE	Analog Front-End
CDM	Charged Device Model
CDP	Charging Downstream Port
CM	Control Message
CMF	Common-Mode Filter
DRD	Dual Role Device
DSP	Downstream Port
EOP	End of Packet
ESE1	Extended SE1
ESD	Electrostatic Discharge
EQ	Equalization
eUSB	Embedded USB
FS	Full Speed Mode of USB2 Specification (12 Mbit/s)
HBM	Human Body Model
HS	High-Speed Mode of USB2 Specification (480 Mbit/s)
IC	Integrated Circuit
LS	Low-Speed Mode of USB2 Specification (1.5 Mbit/s)
LPM	Link Power Management
PCB	Printed-Circuit Board
POR	Power-on Reset
RAP	Register Access Protocol
RX	Receiver
SCM	Start of Control Message
SCL	Serial Clock Line
SDL	Serial Data Line
SE	Single Ended
SE0	Single Ended Zero
SE1	Single Ended One
SI	Signal Integrity
SoC	System on Chip
SOP	Start of Packet
TX	Transmitter
USP	Upstream Port

16 References

This section lists the references used to supplement this document.

- [1] [UM10204](#) — I²C-bus specification and user manual, NXP Semiconductors
- [2] USB-IF organization document repository for eUSB2 specification — Embedded USB2 Physical Layer Supplement to USB Revision 2.0 specification, Revision 1.1, November 3, 2018
- [3] USB-IF organization document repository for USB2 specification — Universal Serial Bus Specification, Rev 2.0, April 27, 2000 and approved ECNs as per USB2.0 document package release (usb_20_20190524.zip)
- [4] USB BC1.2 specification — USB Battery Charging (BC1.2) specification from USB-IF

17 Revision history

[Table 42](#) summarizes revisions to this document.

Revision history

Document ID	Release date	Description
PTN3222DHN v.1.0	13 January 2026	Initial public release

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <https://www.nxp.com>.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Contents

1	General description	2
2	Features and benefits	3
3	Applications	4
4	Ordering information	5
4.1	Ordering options	5
4.2	Top side marking	5
5	Functional diagram	6
6	Pinning information	7
6.1	Pinning	7
6.2	Pin description	7
7	Functional description	9
7.1	Reset	9
7.2	Operating modes	9
7.3	eUSB2 repeater	9
7.3.1	Overvoltage protection on USB2 DP/DN pins	11
7.4	BC1.2 support	11
7.5	I2C operation	11
7.5.1	I2C target address	12
7.5.2	Example of writing one or more registers	12
7.5.3	Example of reading one or more registers	12
8	System application	14
8.1	Use cases	14
8.2	Power supply requirement	16
8.3	Ground requirement	16
8.4	ESD requirements	16
8.5	Application support	16
9	Register set	17
9.1	Register overview	18
9.2	I2C registers and descriptions	18
9.2.1	Functional registers	18
10	Limiting values	30
11	Recommended operating conditions	31
12	Characteristics	32
12.1	Device characteristics	32
12.2	USB2 and eUSB2 characteristics	33
12.3	I2C dynamic/static characteristics	36
12.4	ADDR pin characteristics	40
12.5	RST_N pin characteristics	40
13	Package outline	41
13.1	SOT2225-1(DD) (PQFN-12)	41
14	Packing information	47
14.1	SOT2225-1(DD) PQFN-12, Dimple wettable flank quad no-lead package, 12 terminals, 0.5 mm pitch, 1.95 mm x 2.4 mm x 0.85 mm	47
14.1.1	Dimensions and quantities	47
14.1.2	Product orientation	47
14.1.3	Carrier tape dimensions	47
15	Acronyms	48
16	References	49
17	Revision history	50
	Legal information	51

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.
