# PTN3222EUK

## eUSB2 to USB2 redriver with 1.2 V IO

Rev. 1.1 — 1 December 2023

Product data sheet

# 1 General description

PTN3222 is a 1-port eUSB2 to USB2 redriver IC that performs translation between eUSB2 and USB2 signaling schemes. It is meant to be used in systems that have eUSB2 interface on one side and USB2 interface on the other side. It supports host repeater, device repeater or dual role repeater function.

PTN3222 implements Repeater mode (eUSB2 to USB2 redriver) and it supports Link Power management features. PTN3222 is targeted to be USB2 compliant and eUSB2 conformant. It supports all three speeds/data rates: Low Speed (1.5 Mbps), Full Speed (12 Mbps) and High Speed (480 Mbps).

PTN3222 provides a target I<sup>2</sup>C register interface to initialize the required functionality and features as per the platform application need. The I<sup>2</sup>C target address is selectable using a quaternary input pin (that selects one of the four addresses). The RST\_N pin is used to reset the IC without power cycling.

It is powered by two power supplies (VDD3V3, VDD1V8) and is available in a small thin WLCSP12 package (1.55 mm x 1.18 mm x 0.455 mm body, 0.35 mm pitch).

This product is meant for use in 1.2 V IO (SCL, SDA, RST N) applications only.

#### 2 Features and benefits

- 1-port eUSB2 to USB2 redriver functionality
- Conforms to USB2 specification along with relevant ECNs
- Conforms to eUSB2 specification v1.1
- · Supports host only repeater, device only repeater and dual mode repeater role
- Supports all USB2.0 data rates
  - Low speed operation (1.5 Mbps)
  - Full speed operation (12 Mbps)
  - High speed operation (480 Mbps)
- Supports RAP accesses for a select set of register accesses
- Integrated and selectable pullup and pulldown resistors on both eUSB2 and USB2 ends
- · Signal Integrity (SI) configurability
  - eUSB2 Tx de-emphasis, Rx equalization, Rx squelch threshold, Tx output swing
  - USB2 HS disconnect detection threshold, Rx squelch threshold, Rx termination, Rx equalization, Tx deemphasis, Tx slew rate, Tx output swing
- Supports BC1.2 power provider CDP configuration capability in host mode
- · Low current consumption
  - Supports eUSB2 and USB2 power management
  - Implements Deep standby mode for lowest power consumption
- · Robustness features
  - USB2 data pins tolerate 5.5 V (DC) for 24 hours
  - USB2 data pins withstand short to GND for 24 hours
  - USB2 data pins withstand collision on DP/DN pins due to faulty USB devices
- · GPIOs and high speed data pins are backpower safe



- I<sup>2</sup>C target interface supports standard mode, fast mode and fast mode plus
- I<sup>2</sup>C pins and RST N pins operate in 1.2 V IO domain (please refer to Section 12 for parametric details)
- Power supplies VDD3V3, VDD1V8
- ESD HBM 2 kV CDM 500 V
- Operating ambient temperature range -40 °C to +85 °C
- Available in WLCSP12 package

# 3 Applications

- eUSB2 to USB2 repeater function in platforms (e.g. hosts, devices, hubs, routers, protocol bridges, etc.) with Standard A/ Standard B/ Micro-B/USB Type-C connector scenarios
  - Host only repeater
  - Device only repeater
  - Dual role repeater (as determined dynamically in the application)

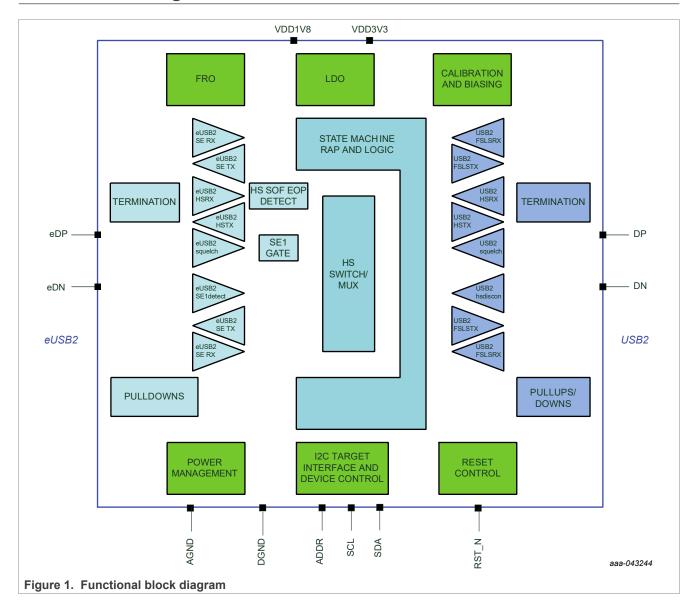
# 4 Ordering information

#### Table 1. Ordering information

| Type number | Package | Package                                                                                                                             |           |  |  |  |  |  |  |
|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
|             | Name    | Description                                                                                                                         | Version   |  |  |  |  |  |  |
| PTN3222EUK  |         | WLCSP12, wafer level chip scale package, 12 terminals, 0.35 mm pitch, 1.55 mm x 1.18 mm x 0.455 mm body (backside coating included) | SOT2063-1 |  |  |  |  |  |  |

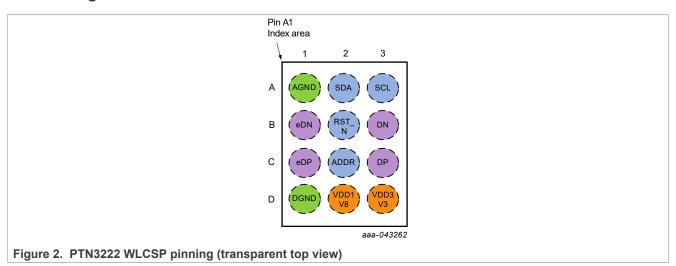
# 4.1 Ordering options

## Table 2. Ordering options


| Type number | Orderable part number | Package | <b>3</b>                                                | Minimum<br>order<br>quantity | Temperature                 |
|-------------|-----------------------|---------|---------------------------------------------------------|------------------------------|-----------------------------|
| PTN3222EUK  | PTN3222EUKZ           | WLCSP12 | Reel dry pack, SMD, 13" Q1 standard product orientation | 8000                         | $T_{amb}$ = -40 °C to 85 °C |

## 4.2 Top side marking

Table 3. Top side marking


| Line number | Character | Content                | Remarks                                    |
|-------------|-----------|------------------------|--------------------------------------------|
| Line A      | 1         | Pin 1 dot              | Pin 1 indication                           |
|             | 2-3       | Product life cycle     | Product status: • "2E": Production silicon |
| Line B      | 1-3       | Production information | Lot ID                                     |
| Line C      | 1-2       | Production information | Lot ID                                     |
|             | 3         | Production information | Wafer number                               |

# 5 Functional diagram



# 6 Pinning information

# 6.1 Pinning



# 6.2 Pin description

Table 4. Pin description

| Pin | Symbol | Direction | Pad power<br>domain | Туре                 | Description                                                                                                                                                                                                                          |
|-----|--------|-----------|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D1  | DGND   | OUT       |                     | Power                | Digital ground. This pin is connected to low noise ground plane and avoids long PCB traces                                                                                                                                           |
| D2  | VDD1V8 | IN        |                     | Power                | 1.8 V power supply. 0.47 µF and 33 pF decoupling capacitors are placed on this pin on the PCB                                                                                                                                        |
| D3  | VDD3V3 | IN        |                     | Power                | 3.3 V power supply. 0.47 µF and 33 pF decoupling capacitors are placed on this pin on the PCB                                                                                                                                        |
| C1  | eDP    | 10        | VDD1V8              | Analog input/output  | Positive terminal of eUSB2 analog transceiver interface                                                                                                                                                                              |
| C2  | ADDR   | IN        | VDD1V8              | Analog input         | Quaternary pin for I <sup>2</sup> C target address selection (sampled once after POR and when power supplies are stable and valid). The external pullup resistor shall be placed close enough to the decoupling capacitors of VDD1V8 |
| С3  | DP     | Ю         | VDD1V8, VDD3V3      | Analog input/output  | Positive terminal of USB2 analog transceiver interface DP pin has an internal 2 M $\Omega$ pulldown resistor enabled under all situations                                                                                            |
| B1  | eDN    | 10        | VDD1V8              | Analog input/output  | Negative terminal of eUSB2 analog transceiver interface                                                                                                                                                                              |
| B2  | RST_N  | IN        |                     | Digital input        | It is Active Low input signal meant to perform IC reset operation.  This pin needs an external 10 kΩ pullup resistor connected to VDD1V2                                                                                             |
| В3  | DN     | IO        | VDD1V8, VDD3V3      | Analog input/output  | Negative terminal of USB2 analog transceiver interface DN pin has an internal 2 M $\Omega$ pulldown resistor enabled under all situations                                                                                            |
| A1  | AGND   | OUT       |                     | Power                | Analog low noise ground. This pin should connect to PCB ground plane, avoid long PCB traces and not be routed near noisy circuits                                                                                                    |
| A2  | SDA    | Ю         | VDD1V8              | Digital input/output | I <sup>2</sup> C data input/output. There is no internal pull up resistor, and an external pull up resistor to I <sup>2</sup> C pullup voltage must be used on the PCB                                                               |
| A3  | SCL    | I         | VDD1V8              | Digital input        | I <sup>2</sup> C clock input. There is no internal pull up resistor, and an external pull up resistor to I <sup>2</sup> C pullup voltage must be used on the PCB                                                                     |

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

# 7 Functional description

PTN3222 consists of the following major functions:

- · eUSB2 repeater
- BC1.2 support
- I<sup>2</sup>C interface
- · Reset schemes

#### 7.1 Reset

PTN3222 supports the following reset schemes:

- POR
- · Software reset
- RST N pin

When in reset, PTN3222's SCL and SDA IO pins are in high impedance state to prevent the I<sup>2</sup>C bus from being altered or corrupted in any way.

All three reset schemes clear I<sup>2</sup>C registers but Software reset and RST\_N pin do not reset digital circuity related to RST\_N pin function itself. PTN3222 remains in the mode specified in OTP after exiting reset. When in reset, PTN3222's SCL and SDA IO pins are in high impedance state such that the I<sup>2</sup>C bus is not altered or corrupted in any way.

## 7.2 Operating modes

PTN3222 has several operating modes: a specific operating mode is selected depending on repeater configuration, link and connection status. <u>Table 5</u> below gives a high level overview of the major building blocks that are kept powered in different modes.

Table 5. Status of design blocks in different power modes

| Power Mode                          | I <sup>2</sup> C interface | FS/LS front ends      | HS Front ends                  |
|-------------------------------------|----------------------------|-----------------------|--------------------------------|
| OFF                                 | OFF                        | OFF                   | OFF                            |
| Deep standby                        | ON                         | OFF                   | OFF                            |
| Connect Detect (Detached condition) | ON                         | ON (SE detector only) | OFF                            |
| L1 sleep                            | ON                         | ON (SE detector only) | HS OFF; only SE detector is ON |
| L2 suspend                          | ON                         | ON (SE detector only) | HS OFF; only SE detector is ON |
| Active LS/FS                        | ON                         | ON                    | OFF                            |
| Active HS                           | ON                         | OFF                   | ON                             |

#### 7.3 eUSB2 repeater

This subsystem includes eUSB2 analog front end circuitry, repeater state machine, USB2 analog front end circuitry and the associated power management circuits. The USB2 DP/DN pin have internal 2 M $\Omega$  pulldown resistors enabled under all situations.

PTN3222 is designed to function as a host repeater or a peripheral repeater. <u>Figure 3</u> illustrates the role transition and associated arcs that enable role change.

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

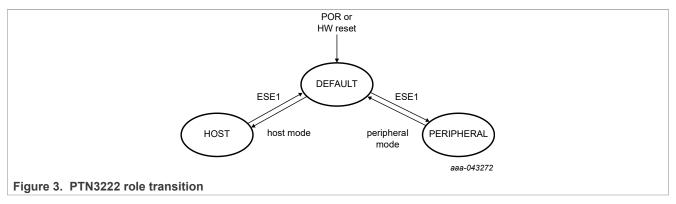



Figure 4 illustrates the eUSB2 Host repeater usage in a typical Host platform application.

On one side, the repeater interfaces with USB2 peripheral (that is either plugged in directly or via cable/channel topology) and on the system side, it interfaces with host controller w/eUSB2 PHY.

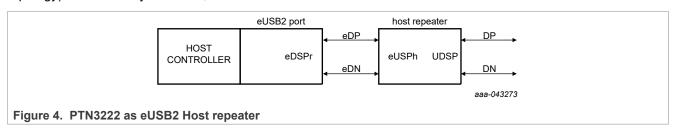
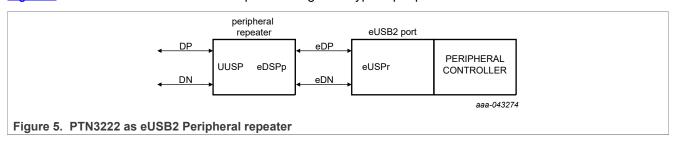




Figure 5 illustrates the eUSB2 Device repeater usage in a typical peripheral environment.



PTN3222 implements aggressive power management to optimize on overall power consumption under the various operating modes. It supports USB Link Power Management and supports L1 and L2 power states.

PTN3222 supports RAP – allowing customer facing registers only. The type of access is controlled via an I<sup>2</sup>C register. There is no built-in arbitration support available if and when same register is being accessed through RAP commands and I<sup>2</sup>C interface. The system application is expected not to issue simultaneous accesses, avoid register overwrites leading to incorrect behavior and response from PTN3222.

PTN3222 accepts RAP messages at any time even though host is expected to issue RAP messages only during initialization. In case, if the host would use RAP messages to read status register(s) or update any control register(s), PTN3222 does not inhibit or put limits on RAP messages as long as it is in the mode wherein customer I<sup>2</sup>C registers are accessible.

## 7.3.1 Over-Voltage Protection on USB2 DP/DN pins

PTN3222 implements Over Voltage Protection (OVP) circuitry, which activates whenever an OV condition occurs on USB2 DP/DN pins, PTN3222 operates autonomously without host software intervention. The following describes a possible sequence of steps that may occur due to OV event:

1. PTN3222 checks DP/DN pin(s) for over voltage condition that is higher than V<sub>OVP,Th</sub> (Low to High Threshold case) and it shuts down the USB2 analog IO as long as the event persists

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

- 2. PTN3222 enables USB2 analog IO path once the pin voltage falls below V<sub>OVP,Th</sub> (High to Low Threshold case)
- 3. The SoC host and eUSB2 redriver would lose communication with the USB2 entity since the analog path has been disabled
- 4. So, the SoC host may try the following options to reestablish the link
  - a. issue CM.Reset in an attempt to issue a USB Bus Reset or,
  - b. issue Port reset to the local redriver and also toggle VBUS to re-establish the connection and restart the data transport.

Note that option (a) may not be successful depending on the nature of the fault but is the fastest and least aggressive error recovery method. Use of Port Reset and toggling of VBUS are guaranteed to work, but comes with a downside of longer time duration to reestablish the link.

#### 7.4 BC1.2 support

PTN3222 has a built-in support for enabling CDP (Charging Downstream Port) feature that allows a mobile device to detect and charge at higher current from the host platform. For the BC1.2 support, this IC implements a controlled voltage source that can be enabled on USB2 DN pin via an I<sup>2</sup>C register bit. The host processor can enable this feature via I<sup>2</sup>C during USB disconnect condition and the PTN3222 can autonomously disable this on a USB connect event and reset this I<sup>2</sup>C configuration bit.

This feature is expected to be applied when in host repeater mode only. However, the PTN3222 does not inhibit enabling of this feature in device repeater mode.

# 7.5 I<sup>2</sup>C operation

PTN3222 is an I<sup>2</sup>C target only device, and it responds to I<sup>2</sup>C commands in any operating mode as long as VDD3V3/VDD1V8 supplies are available. PTN3222 does not support clock stretching but it tolerates other I<sup>2</sup>C targets performing clock stretching under the legal conditions defined by [1]. Also, it does not support I<sup>2</sup>C General call address (and therefore does not issue an acknowledgement too), I<sup>2</sup>C Software reset command nor 10-bit addressing. It acknowledges all 128 register offset addresses though there are certain undefined/reserved locations as indicated in the register map.

Each I<sup>2</sup>C operation involving writing to or reading from one or more consecutive registers is referred to as a transaction. Consecutive registers are defined as a series of incrementing register addresses, regardless of whether a given address has a definition in the register map.

A transaction may be a part of a series of transactions addressed to multiple different targets or to the same target repeatedly with different register address offsets, with each transaction separated by repeated-START conditions. PTN3222 does not inhibit other types of transactions as prescribed in I<sup>2</sup>C specification.

Register address aliasing is not supported in PTN3222. When read or write transactions with multiple consecutive registers are performed, the register address rolls over to 0x00 once the maximum register offset of 0xFF is reached.

When an undefined or invalid register address is being addressed for read or write operation, PTN3222 acknowledges the I<sup>2</sup>C transaction, but returns 0xFF for a read operation, or takes no action for a write operation.

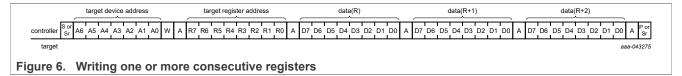
# 7.5.1 I<sup>2</sup>C target address

PTN3222's 7-bit I<sup>2</sup>C target address is given in <u>Table 6</u>. Bits 3 and 4 can take one of the four possible values based on the quaternary address selection pin (ADDR).

PTN3222EUK

Table 6. PTN3222 target address definition

| ADDR pin configuration                                         | Bit 7 | Bit 6 | Bit 5 | AI    | DDR   | Bit 2 | Bit 1 | Bit 0 |
|----------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                                |       |       |       | Bit 4 | Bit 3 |       |       |       |
| Connected to 1.8 V supply directly                             | 1     | 0     | 0     | 0     | 0     | 1     | 1     | R/W   |
| Connected to 1.8 V supply via 56 kΩ (+/-10 %) pull up          | 1     | 0     | 0     | 0     | 1     | 1     | 1     | R/W   |
| Connected to 1.8 V supply via 200 k $\Omega$ (+/-10 %) pull up | 1     | 0     | 0     | 1     | 0     | 1     | 1     | R/W   |
| Connected to GND directly                                      | 1     | 0     | 0     | 1     | 1     | 1     | 1     | R/W   |


#### 7.5.2 Example of writing one or more registers

PTN3222 recognizes the following procedure as a request to write to one or more registers:

- 1. I<sup>2</sup>C controller asserts START condition or repeated-START condition
- 2. Controller addresses PTN3222 target interface with R/W bit set as "Write"
- 3. Target acknowledges the request by asserting an ACK
- 4. Controller writes the desired starting register address
- 5. Target acknowledges the register address with ACK, even if register address is not part of the defined register map
- 6. Controller writes the data for that register address and the target updates the register value once all 8 bits of data have been written
- 7. Target acknowledges the data with an ACK
- 8. If the controller wishes to write to the next consecutive register address, it supplies another data byte, which the target ACKs. The controller can continue writing data bytes for consecutive registers. If the controller writes to more consecutive registers than what exists in the register map, the target discards the extra data bytes, but ACKs for each such write

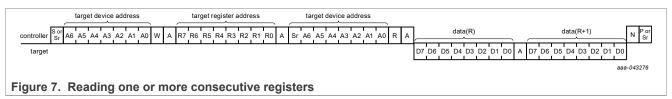
When the controller has finished writing the desired register(s), it issues either a STOP condition or a repeated-START condition.

<u>Figure 6</u> provides an illustrative example where the controller chooses to write to three consecutive registers starting with register "R".



#### 7.5.3 Example of reading one or more registers

The target recognizes the following procedure as a request to read one or more registers:


- 1. Controller asserts START condition or repeated-START condition
- 2. Controller addresses PTN3222's target address with R/W bit set as "Write"
- 3. Target acknowledges the request by asserting ACK
- 4. Controller writes the desired starting register address
- 5. Target acknowledges the register address with ACK, even if the register address is not part of the defined register map
- 6. Controller issues a repeated-START condition
- 7. Controller addresses PTN3222's target address with R/W bit set as "Read"

PTN3222EUK

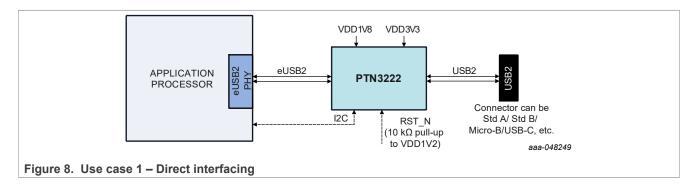
All information provided in this document is subject to legal disclaimers.

- 8. In the following clock pulses, the target clocks out the value of the requested register
- 9. If controller wishes to read the next consecutive register, it issues an ACK and then provides another set of clock pulses, whereby the target supplies the value of the next register. As long as the controller continues to issue ACK and supply additional clock pulses, the target continues to supply the value of consecutive registers. If the controller attempts to read consecutive registers that do not exist in the defined register space, the target can return undefined data value of 0xFF.
- 10. When the controller does not wish to read additional consecutive registers, it supplies a NACK in response to the final register value it wishes to read and then issues a STOP or repeated-START condition.

<u>Figure 7</u> provides an illustrative example where the controller chooses to read from two consecutive registers starting with register "R".



# 8 System application


#### 8.1 Use cases

PTN3222 is targeted to be used in various USB interface application cases. It interfaces to a host or device controller with eUSB2 PHY interface and on the other side, it interfaces directly to a connector/cable topology or another interface IC. Different connector configurations are possible: custom, USB Standard A/Standard B, USB Micro-B, USB Type-C, etc. For all use cases, it is not necessary for the host to initialize the I<sup>2</sup>C registers after POR or reset event. On the contrary, PTN3222 functions without any I<sup>2</sup>C configuration by relying on registers getting initialized after POR event.

A few use case illustrations are shown in <u>Figure 8</u> through <u>Figure 10</u>; these figures do not capture all components (supply decoupling capacitors, ESD, CMF, etc.) in the channel topology.

#### 1. Direct interface to connector

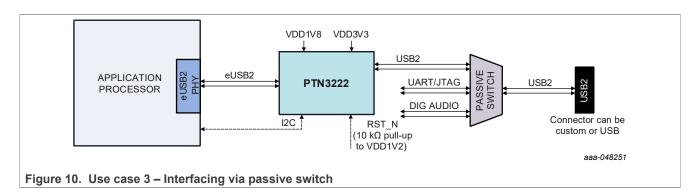
This connectivity scheme is a straightforward topology and it may be relevant for generic IOT and certain computing applications. In certain applications, I<sup>2</sup>C interface may not be connected and the repeater is expected to start operating after POR based on POR/default register settings.




#### 2. Interface via USB protection IC

This connectivity scheme is relevant for applications where there is a risk/chance of high voltage appearing on the USB data pins (e.g. USB-C). In certain applications, I<sup>2</sup>C interface may not be connected and the repeater is expected to start operating after POR based on POR/default register settings. Care must be

PTN3222EUK


All information provided in this document is subject to legal disclaimers

taken to select suitable protection IC that has certain USB2 signal attenuation/Rdson. Also, the default power-up scenario must be analyzed.



3. Interface to connector via passive signal switch

This connectivity scheme provides the option to switch various debug and communication signals on to the same connector. In certain applications, I<sup>2</sup>C interface may not be connected and the repeater is expected to start operating after POR based on POR/default register settings. The passive signal switch must be selected to ensure low signal attenuation and also the power-up scenario must be carefully analyzed.



#### 8.2 Power supply requirement

PTN3222 requires two power supplies (VDD3V3 and VDD1V8) to operate. It does not function until both supplies have ramped up and reached valid operating range. There is no specific power on or off sequencing requirement. In addition, the two supplies can follow different ramp-up and ramp down rates. The supply ramp limits are specified in Section 11.

PTN3222 does not suffer from backpower issue (VDD node getting powered via a non-power pin).

The power supply decoupling capacitors shall be soldered close to power pins.

#### 8.3 Ground requirement

PTN3222 has two ground pins, AGND and DGND.

Both pins provide connection to GND plane with low ground noise in the application PCB.

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

# 8.4 ESD requirements

PTN3222 supports 2 kV HBM and 500 V CDM on all pins. To achieve system level ESD protection (e.g. IEC61000-4-2 Level 4 8 kV contact discharge, 15 kV air discharge) on DP/DN pins, dedicated and matched ESD diodes shall be used near the connector. Matching of diodes is important to minimize DP/DN skew.

# 9 Register set

The device is controlled and monitored by registers accessible via the I<sup>2</sup>C bus. All registers can be accessed in standard mode or fast mode using single or sequential reads or writes. Register bit field types are defined in Table 7.

Table 7. Register type definitions

| Access Type     | Description                                                                                                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RW              | Bit field can be read from and written to                                                                                                                     |
| RO              | Bit field value can only be read                                                                                                                              |
| WO              | Bit field value is write only. Reading value has no meaning, and results in no action being taken                                                             |
| RAZ             | Bit field contents are read as zero. Writes do not have any effect                                                                                            |
| R/W1, W0 Ignore | Bit field value is readable, and writing 'b1 to each bit in the bit field sets value to 'b1. Writing 'b0 to a this bit field results in no action being taken |

# 9.1 Register overview

Table 8 lists all the registers used for PTN3222. Default POR values of registers are also shown in this table.

Table 8. Register overview

| Address        | Register Name                        | Access | RESET |                                | Default        |              |                              |                              |             |                           |             |                      |                   |
|----------------|--------------------------------------|--------|-------|--------------------------------|----------------|--------------|------------------------------|------------------------------|-------------|---------------------------|-------------|----------------------|-------------------|
|                |                                      |        | Re    | Software<br>Reset (or<br>RST_N | Value<br>(Hex) | 7            | 6                            | 5                            | 4           | 3                         | 2           | 1                    | 0                 |
| 0x00           | RESERVED                             | RAZ    |       |                                | 00             |              |                              |                              |             |                           |             |                      |                   |
| 0x01           | RESET<br>CONTROL                     | RW     | •     |                                | 00             |              |                              |                              |             |                           |             |                      | Software<br>Reset |
| 0x02           | LINK<br>CONTROL 1                    | RW     | •     | •                              | 00             | Speed contro | ol                           | Role control                 |             |                           | Operational | mode                 |                   |
| 0x03           | LINK<br>CONTROL 2                    | RW     | •     | •                              | 00             |              |                              |                              |             |                           |             |                      | Force<br>ESE1     |
| 0x04           | eUSB2 RX<br>CONTROL                  | RW     | •     | •                              | 20             |              |                              | eUSB2 HS R<br>detection thre |             |                           | eUSB2 HS    | Rx equalization      | on                |
| 0x05           | eUSB2 TX<br>CONTROL                  | RW     | •     | •                              | 10             |              |                              | eUSB2 HS T<br>swing          | x output    |                           |             | eUSB2 HS<br>emphasis | Tx De-            |
| 0x06           | USB2 RX<br>CONTROL                   | RW     | •     | •                              | 40             |              | USB2 Rx so                   | quelch detectior             | threshold   |                           | USB2 HS R   | x equalizatior       | 1                 |
| 0x07           | USB2 TX<br>CONTROL 1                 | RW     | •     | •                              | 00             |              |                              | USB2 HS Tx<br>emphasis bit   |             | on USB2 HS Tx De-emphasis |             | is                   |                   |
| 0x08           | USB2 TX<br>CONTROL 2                 | RW     | •     | •                              | 62             |              | USB2 FS<br>rise/fall<br>time | USB2 HS ris                  | e/fall time |                           | USB2 HS T   | x output swin        | 9                 |
| 0x09           | USB2 HS TER<br>MINATION              | RW     | •     | •                              | 02             |              |                              |                              |             |                           | USB2 HS te  | ermination cor       | ntrol             |
| 0x0A           | USB2 HS DIS<br>CONNECT THR<br>ESHOLD | RW     | •     | •                              | 00             |              |                              |                              |             |                           |             | USB2 HS detection th |                   |
| 0x0B           | RESERVED                             | RO     |       |                                | XX             |              |                              |                              |             |                           |             |                      |                   |
| 0x0D           | RAP_Signature                        | RW     |       |                                | 00             | RAP_Signat   | ure                          | '                            | '           | 1                         | '           | -                    | '                 |
| 0x0E           | VDX_<br>CONTROL                      | RW     | •     | •                              | 00             |              |                              |                              |             |                           |             |                      | VDx_<br>enable    |
| 0x0F           | DEVICE<br>STATUS                     | RO     | •     | •                              |                |              |                              |                              |             | Speed of or<br>status     | peration    | Repeater s           | tatus             |
| 0x10           | LINK STATUS                          | RO     | •     | •                              |                |              |                              |                              |             |                           | Device and  | Link status          |                   |
| 0x11 -<br>0x12 | RESERVED                             | RAZ    |       |                                | xx             |              |                              |                              |             |                           |             |                      |                   |
| 0x13           | REVISION_ID                          | RO     |       |                                | A2             | BASE = b'10  | 10                           |                              |             | METAL_= b                 | 0010        |                      |                   |
| 0x14           | CHIP_ID_0                            | RO     |       |                                | 22             | CHIP_ID[7:0  | ]=0x22                       |                              |             |                           |             |                      |                   |
| 0x15           | CHIP_ID_1                            | RO     |       |                                | 32             | CHIP_ID[15:  | 8]=0x32                      |                              |             |                           |             |                      |                   |
| 0x16           | CHIP_ID_2                            | RO     |       |                                | 02             | p,0000       |                              |                              |             |                           |             | b'11                 |                   |
|                | RESERVED                             | RO     |       |                                | XX             | Reserved re  | gister space                 |                              |             |                           | -           |                      |                   |

# 9.2 I<sup>2</sup>C registers and descriptions

# 9.2.1 Functional registers

The offset addresses with defined bit definitions are meant for functional registers, and can be accessed by the I<sup>2</sup>C controller at any time after POR. For normal operation, these registers are sufficient to setup the IC to known working conditions. Customers are advised not to write reserved values into the register bit fields. Read from the reserved bit field(s) need not match with what's written. Functional behavior is not guaranteed if such an operation is performed.

Table 9. Register 0x00 - Reserved

| Regist | er offset | Register Name |         |            | Register Description |
|--------|-----------|---------------|---------|------------|----------------------|
| 0x00   |           | RESEF         | ESERVED |            |                      |
| Bit    | Bit Name  |               | R/W     | Reset      | Description          |
| 7:0    | RSVD      |               | RAZ     | p,00000000 | Reserved             |

#### Table 10. Register 0x01 - RESET CONTROL

| Regist | egister offset Register Name |       |         | Register Description |                                                                                                                                                                                                                                         |
|--------|------------------------------|-------|---------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01   |                              | Reset | Control |                      | This register is meant to initiate reset of the chip via I <sup>2</sup> C write                                                                                                                                                         |
| Bit    | Bit Name                     |       | R/W     | Reset                | Description                                                                                                                                                                                                                             |
| 7:1    | RSVD                         |       | RAZ     | p,0000000            | Reserved                                                                                                                                                                                                                                |
| 0      | Software Reset               |       | R/W     | b'0                  | This is a Self-clearing bit. The host writes '1' to this bit to initiate software reset and this bit automatically clears to '0'.  All R/W registers are reset to POR settings.  Writing '0' does not have any effect. Reads return '0' |

# Table 11. Register 0x02 - LINK CONTROL 1

| Registe | r offset      | Register Name  | )     | Register Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|---------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x02    |               | Link Control 1 |       | This register is meant to force the repeater role and speed of operation to fixed settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bit     | Bit Name      | R/W            | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7:6     | Speed control | RW             | b'00  | The bitfield determines the POR setting of USB2 speed: 00– Manage the speed via Auto negotiation 01– LS/FS only 10-11- Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5:4     | Role control  | RW             | p,00  | Determines the redriver role  00 – Dual role  Support both host and device eUSB2 Port Configuration negotiation. This is the expected normal operating setting managed via Host eUSB2 exchanges.  01 - Force Host role  When bits are '01', it forces the repeater into USB Host role irrespective of any configuration command getting received via eUSB2. But the repeater would acknowledge the configuration message from the host.  10- Force Device role  When the bits are '10', it forces the repeater into USB Device/Peripheral role irrespective of any configuration command getting received via eUSB2. But the repeater would acknowledge the configuration message from the host.  11- Reserved  Forced host/device role setting is used in conjunction only with setting '2' of Link Control 2[2:0] bits |
| 3       | RSVD          | RAZ            | b'0   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table 11. Register 0x02 - LINK CONTROL 1...continued

| Register o | ffset          | Regist | er Name |       | Register Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|----------------|--------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:0 C      | perational Mod | e      | RW      | p,000 | The bits set the operational mode of the repeater 0=Auto negotiation on the link (mode determined via control messages and link negotiation)  1= Deep standby mode (eUSB2 pins are pulled down, USB2 pins are held in weak pulldown condition and I²C register contents are preserved)  2 - Connect.Detect state. Used for force the repeater into its Connect.Detect state (refer to eUSB specification) This is acted upon only at the time the write occurs to this register. If an overriding condition is present, such as RST_N=0, then writing to this register with this setting is ignored, even when the overriding condition goes away  Note that in this case Role Control field (in register 0x02) must have only a single bit set. Those bits are used to tell the repeater which role to jump into - This command places the repeater into the appropriate Connect.Detect state (based on specified role in Role Control). After the state transition occurs, the repeater automatically reacts from there as appropriate to the eUSB/USB2 bus conditions.  3 - Compliance Mode (HS L0 condition). This is equivalent to the reception of the Control Message CM.Test. It allows the system to force the repeater into HS.L0 state. The role is defined by the Role Control bits. Note that in this case, Role Control setting must have only a single bit set. If both or neither bit is set, then this command is ignored |

Table 12. Register 0x03 - LINK CONTROL 2

| Regis | ster offset | Register Name  |     |           | Register Description                                                                                                                                                                                                                                                                                                                          |  |  |
|-------|-------------|----------------|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0x03  |             | Link Control 2 |     |           | This register programs specific feature of the repeater                                                                                                                                                                                                                                                                                       |  |  |
| Bit   | Bit Name    | -              | R/W | Reset     | Description                                                                                                                                                                                                                                                                                                                                   |  |  |
| 7:1   | 7:1 RSVD    |                | RAZ | p,0000000 | Reserved                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0     | Force ESE1  |                | RW  | b'0       | Bit to force Extended SE1 signaling 0 => No action 1 => Self Clearing bit. When written to 1, Repeater generates extended SE1 onto the eUSB pins.  Normally, only the Host Repeater performs this action upon a HS disconnect detection. But this feature allows the system to force an extended SE1 as needed via I <sup>2</sup> C interface |  |  |

Table 13. Register 0x04 - eUSB2 RX CONTROL

| Regis | ster offset                             | Register | r Name           |       | Register Description                                                                                                                                                                                                                                                                                     |  |  |
|-------|-----------------------------------------|----------|------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0x04  | 0x04                                    |          | eUSB2 Rx Control |       | This register programs the eUSB2 Rx equalization and squelch detection threshold settings                                                                                                                                                                                                                |  |  |
| Bit   | Bit Name                                |          | R/W              | Reset | Description                                                                                                                                                                                                                                                                                              |  |  |
| 7:6   | RSVD                                    |          | RAZ              | b'00  | Reserved                                                                                                                                                                                                                                                                                                 |  |  |
| 5:4   | eUSB2 HS Rx Squelch detection threshold |          |                  |       | The bits determine the squelch detector (Low to High transition) threshold level for HS signaling on eUSB2 pins 00 = 50 mV 01 = 65 mV 10 = 85 mV 11 = 95 mV All settings are within +/-25 mV of nominal value mentioned above Squelch detector implements hysteresis of 10 mV to improve noise immunity. |  |  |
| 3     | RSVD                                    |          | RAZ              | b'0   | Reserved                                                                                                                                                                                                                                                                                                 |  |  |
| 2:0   | eUSB2 HS Rx<br>equalization             |          | RW               | p.000 | The bits determine the nominal eUSB2 receive equalization gain (@ 240 MHz) with respect to DC gain. All settings are within +/-1 dB of nominal value mentioned below 000 = 0 dB 001 = 1 dB 010 = 2 dB 011 = 3 dB 100 = 4 dB 101 to 111 = Reserved                                                        |  |  |

Table 14. Register 0x05 – eUSB2 TX CONTROL

| Regis | ster offset                 | Regis | ter Nam  | е     | Register Description                                                                                                                                                                                                             |  |  |
|-------|-----------------------------|-------|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0x05  | 0x05                        |       | 2 Tx Con | trol  | This register configures the Transmit side settings – output signal swing and de-emphasis level on eUSB2 side                                                                                                                    |  |  |
| Bit   | Bit Name                    |       | R/W      | Reset | Description                                                                                                                                                                                                                      |  |  |
| 7:6   | RSVD                        |       | RAZ      | b'00  | Reserved                                                                                                                                                                                                                         |  |  |
| 5:4   | eUSB2 HS Tx output<br>swing |       | RW       | b'01  | The bits set the output signal swing for HS signaling on eUSB2 Tx side (when the interface is terminated)  00 = 180 mV  01 = 200 mV  10 = 220 mV  11 = 240 mV  All settings are within +/-40 mV of nominal value mentioned above |  |  |
| 3:2   | RSVD                        |       | RAZ      | b'00  | Reserved                                                                                                                                                                                                                         |  |  |
| 1:0   | eUSB2 HS Tx De-<br>emphasis |       | RW       | p,00  | The bits determine the Tx de-emphasis (nominal) level for HS signaling on eUSB2 pins. The de-emphasis duration is between 0.75 to 1 HS bit time.  00 = 0 dB  01 = 1 dB  10 = 2 dB                                                |  |  |

PTN3222EUK

Product data sheet

All information provided in this document is subject to legal disclaimers.

Table 14. Register 0x05 - eUSB2 TX CONTROL...continued

| Register offset | Register Name | Register Description                             |                                 |
|-----------------|---------------|--------------------------------------------------|---------------------------------|
|                 |               | 11 = 3 dB                                        |                                 |
|                 |               | All settings other than '00' are mentioned below | within +/-1 dB of nominal value |

# Table 15. Register 0x06 – USB2 RX CONTROL

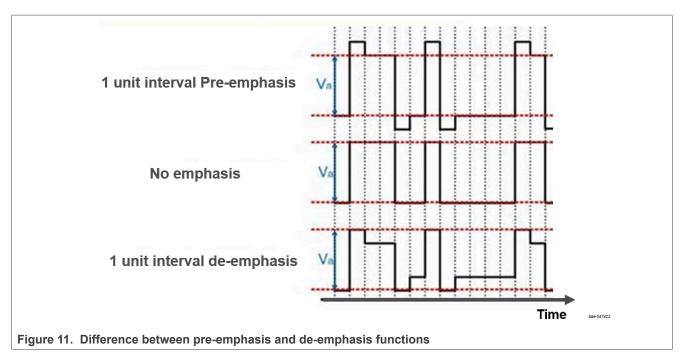

| Regis | ter offset                             | Register        | Name |       | Register Description                                                                                                                                                                                                                                                                                                                                                                           |
|-------|----------------------------------------|-----------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x06  |                                        | USB2 Rx Control |      |       | The register programs the Rx equalization and squelch detection threshold levels on USB2 pins (applicable for HS signaling only)                                                                                                                                                                                                                                                               |
| Bit   | Bit Name                               |                 | R/W  | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                    |
| 7     | RSVD                                   |                 | RAZ  | b'0   | Reserved                                                                                                                                                                                                                                                                                                                                                                                       |
| 6:4   | USB2 HS Rx squelch detection threshold |                 | RW   | b'100 | The 3 bits determine the squelch detector (low to high transition) threshold level for HS signaling at USB2 pins 000 = Reserved; not for use 001 = 65 mV 010 = 85 mV 011 = 95 mV 100 = 110 mV 101 = 125 mV 110 = 140 mV 111 = 155 mV 111 = 155 mV All settings are within +/-25 mV of nominal value mentioned above Squelch detector implements hysteresis of 10 mV to improve noise immunity. |
| 3     | RSVD                                   |                 | RAZ  | b'0   | Reserved                                                                                                                                                                                                                                                                                                                                                                                       |
| 2:0   | USB2 HS Rx equalization                |                 | RW   | p,000 | The 3 bits determine the nominal USB2 receive equalization gain (@ 240 MHz) with respect to DC gain. All settings are within +/-1 dB of nominal value mentioned below 000 = 0 dB 001 = 1 dB 010 = 2 dB 011 = 3 dB 100 = 4 dB 101 to 111 = Reserved                                                                                                                                             |

Table 16. Register 0x07 - USB2 TX CONTROL 1

| Regis | ster offset                             | Regist            | ter Name | 9     | Register Description                                                                                                                                                                                                                               |
|-------|-----------------------------------------|-------------------|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x07  |                                         | USB2 Tx Control 1 |          |       | This register configures the Transmit side settings – output signal swing and de-emphasis level on USB2 side                                                                                                                                       |
| Bit   | Bit Name                                |                   | R/W      | Reset | Description                                                                                                                                                                                                                                        |
| 7:6   | RSVD                                    |                   | RAZ      | b'00  | Reserved                                                                                                                                                                                                                                           |
| 5:4   | USB2 HS Tx De-<br>emphasis bit duration |                   | RW       | b'00  | The bits set the de-emphasis bit time (UI) for HS signaling on USB2  Tx side  00 = 0  01 = 0.5UI  10 = 0.8UI  11 = Reserved  All settings are within +/-0.2UI of nominal value mentioned above                                                     |
| 3     | RSVD                                    |                   | RAZ      | b'0   | Reserved                                                                                                                                                                                                                                           |
| 2:0   | USB2 HS Tx De-<br>emphasis              |                   | RW       | b'000 | The bits determine the Tx de-emphasis (nominal) level for HS signaling on USB2 pins 000 = 0 dB 001 = 1 dB 010 = 2 dB 011 = 3 dB 100 = 4 dB 101 = 5 dB 110 = 6 dB All settings other than '000' are within +/-1 dB of nominal value mentioned above |

PTN3222 implements de-emphasis feature for channel loss compensation of high frequency content of both eUSB2 and USB2 signals.

Figure 11 illustrates the difference between pre-emphasis and de-emphasis functions.



With de-emphasis, when a steady pattern of 0s or 1s is being redriven, the transmit signal swing is reduced as per de-emphasis level and for an alternating pattern of 0s and 1s, the full signal swing is transmitted as per transmit signal swing level.

On the other hand, with pre-emphasis function, the full signal amplitude is retained when a steady pattern of 0s or 1s is being redriven and for an alternating pattern of 0s and 1s, the transmit signal swing is boosted as per pre-emphasis level.

The de-emphasis settings map to specific output current drive level as illustrated in <u>Table 17</u>. The current drive level is with reference to 17.78 mA current considering 45  $\Omega$  terminations at both ends of the connection and 400 mV output swing level.

Table 17. De-emphasis level to USB2 Tx output swing level

| USB2 Tx De-                                                | emphasi | s = 0.8UI (ty               | ypical)                             |                             |                                     |                             |                                     |                             |                                     |                             |                                     |                             |                                     |                             |                                     |
|------------------------------------------------------------|---------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|
| USB2 Tx output<br>swing Non-<br>transition Voltage<br>(mV) |         |                             |                                     | Tx De-emphasis setting = 1  |                                     | Tx De-emphasis setting = 2  |                                     | Tx De-emphasis setting = 3  |                                     | Tx De-emphasis setting = 4  |                                     | Tx De-emphasis setting = 5  |                                     | Tx De-emphasis setting = 6  |                                     |
|                                                            |         | Transition<br>level<br>(mV) | Non-<br>Transition<br>level<br>(mV) |
| Setting= 0                                                 | 350     | 352                         | 352                                 | 347                         | 304                                 | 347                         | 270                                 | 347                         | 237                                 | 347                         | 212                                 | 347                         | 194                                 | 340                         | 169                                 |
| Setting= 1                                                 | 400     | 399                         | 399                                 | 394                         | 344                                 | 394                         | 309                                 | 390                         | 267                                 | 390                         | 239                                 | 390                         | 219                                 | 385                         | 190                                 |
| Setting= 2                                                 | 450     | 451                         | 451                                 | 447                         | 388                                 | 447                         | 352                                 | 442                         | 305                                 | 442                         | 279                                 | 442                         | 244                                 | 442                         | 220                                 |
| Setting= 3                                                 | 500     | 498                         | 498                                 | 492                         | 434                                 | 492                         | 390                                 | 487                         | 337                                 | 487                         | 305                                 | 487                         | 269                                 | 487                         | 244                                 |
| Setting= 4                                                 | 550     | 551                         | 551                                 | 546                         | 473                                 | 544                         | 427                                 | 544                         | 375                                 | 544                         | 337                                 | 538                         | 301                                 | 538                         | 269                                 |
| Setting= 5                                                 | 600     | 600                         | 600                                 | 595                         | 520                                 | 595                         | 469                                 | 595                         | 416                                 | 584                         | 366                                 | 584                         | 330                                 | 580                         | 295                                 |
| Setting= 6                                                 | 650     | 656                         | 656                                 | 649                         | 566                                 | 645                         | 509                                 | 645                         | 454                                 | 634                         | 398                                 | 634                         | 355                                 | 618                         | 310                                 |
| Setting= 7                                                 | 700     | 703                         | 703                                 | 702                         | 613                                 | 692                         | 537                                 | 680                         | 474                                 | 680                         | 423                                 | 675                         | 372                                 | 675                         | 344                                 |

Table 18. Register 0x08 – USB2 TX CONTROL 2

| Regis | ster offset            | Regist | er Name   | Э     | Register Description                                                                                                                                                                                                                                                                      |
|-------|------------------------|--------|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x08  |                        | USB2   | Tx Contr  | ol 2  | This register configures the Transmit side settings – Tx output driver slew rate and output signal swing on USB2 side                                                                                                                                                                     |
| Bit   | Bit Name               |        | R/W Reset |       | Description                                                                                                                                                                                                                                                                               |
| 7     | RSVD                   |        | RAZ       | b'0   | Reserved                                                                                                                                                                                                                                                                                  |
| 6     | USB2 FS rise/fall time |        | RW        | b'1   | This bit determines the FS Tx driver rise/fall time on USB2 pins 0 = 8 to 20 ns 1 = 4 to 10 ns Load conditions are as defined in USB standard                                                                                                                                             |
| 5:4   | USB2 HS rise/fall time |        | RW        | b'10  | The 2 bits determine the Tx driver slew rate for HS signaling on USB2 pins.  00 = 500 to 900 ps  01 = 400 to 800 ps  10 = 300 to 700 ps  11 = Reserved  Load conditions are as defined in USB standard                                                                                    |
| 3     | RSVD                   |        | RAZ       | 0     | Reserved                                                                                                                                                                                                                                                                                  |
| 2:0   | Tx output signal swing |        | RW        | b'010 | The 3 bits determine the Tx output signal swing level for HS signaling on USB2 pins (when the interface is terminated)  000 = 350 mV  001 = 400 mV  010 = 450 mV  011 = 500 mV  100 = 550 mV  101 = 600 mV  111 = 700 mV  All settings are within +/-10% of nominal value mentioned above |

Table 19. Register 0x09 - USB2 HS TERMINATION

| 0   |                         | Regist                      | er Name | •       | Register Description                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------|-----------------------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                         | USB2 HS Termination control |         |         | This register sets the HS termination values on USB2 pins                                                                                                                                                                                                                                                                                                                 |
| Bit | Bit Name                |                             | R/W     | Reset   | Description                                                                                                                                                                                                                                                                                                                                                               |
| 7:3 | RSVD                    |                             | RAZ     | p,00000 | Reserved                                                                                                                                                                                                                                                                                                                                                                  |
| 2:0 | USB2 HS Term<br>control | ination                     | RW      | b'010   | The bits determine the HS termination on USB2 pins (differential impedance is specified here) $000 = 100 \ \Omega \ differential$ $001 = 95 \ \Omega \ differential$ $010 = 90 \ \Omega \ differential$ $011 = 85 \ \Omega \ differential$ $100 = 80 \ \Omega \ differential$ $101 \ to \ 111 = Reserved$ All settings are within +/-10% of nominal value mentioned above |

Table 20. Register 0x0A - USB2 HS DISCONNECT THRESHOLD

| Regis | ter offset                       | Register Na | me       | Register Description                                                                                                                                                                                                                                                   |  |  |
|-------|----------------------------------|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0x0A  |                                  | USB2 HS dis |          | This register sets the HS disconnect threshold level on USB2 pins                                                                                                                                                                                                      |  |  |
| Bit   | Bit Name R/W Reset               |             | Reset    | Description                                                                                                                                                                                                                                                            |  |  |
| 7:2   | RSVD                             | RAZ         | p,000000 | Reserved                                                                                                                                                                                                                                                               |  |  |
| 1:0   | HS Disconnect<br>threshold level | RW          | p,00     | The bits determine the HS Disconnect detector threshold level on USB2 pins  00 = 575 mV  01 = 675 mV  10 = 775 mV  11 = 875 mV  All settings are within ±50 mV of nominal value mentioned above The detector implements hysteresis of 30 mV to improve noise immunity. |  |  |

#### Table 21. Register 0x0D - RAP Signature

|                    | Table 21. Register 0.00 - Ital Orginature |   |         |             |                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|--------------------|-------------------------------------------|---|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Register offset Re |                                           |   | er Name |             | Register Description                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 0x0D               |                                           |   |         |             | eUSB RAP Signature - Controls/limits RAP Command Access to the registers of the redriver.                                                                                                                                                                                                                                                   |  |  |  |  |
| Bit                | Bit Name R/W Re                           |   | Reset   | Description |                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 7:0                | RAP_Signature                             | ; | RW      |             | 0x00 - No RAP Access to PTN3222 I <sup>2</sup> C Registers 0x37 - RAP allowed read only access to Status, REVISION_ID, and Chip ID registers 0x92 - RAP allowed read only access to I <sup>2</sup> C customer registers 0x21 - RAP allowed write/read access to I <sup>2</sup> C customer registers All others - No RAP Access to registers |  |  |  |  |

#### Table 22. Register 0x0E - VDX\_CONTROL

| Regis | ter offset | Regist      | er Name |            | Register Description                                                                                                                                                                                                                             |
|-------|------------|-------------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0E  |            | VDX_CONTROL |         |            | PTN3222 can be used to indicate that the host system is a USB BC 1.2 CDP (Charging Downstream Port) to an USB peripheral. This involves activating a current source on USB DN pin (refer to USB BC 1.2 spec VDM_SRC definition).                 |
| Bit   | Bit Name   |             | R/W     | Reset      | Description                                                                                                                                                                                                                                      |
| 7:1   | RSVD       |             | RAZ     | p,00000000 | Reserved                                                                                                                                                                                                                                         |
| 0     | VDX_Ctrl   |             | RW      | b'0        | VDX Control - Host Side Repeater Function  0 => Disable VDX_SRC  1 => Enable VDX_SRC  The host shall enable VDX_SRC within 200 ms of a disconnect and PTN3222 VDX_SRC circuitry is automatically disabled upon detection of the next connection. |

Table 23. Register 0x0F - DEVICE STATUS

| Regis    | ster offset     | Register Name | е     | Register Description                                                                                                                 |  |  |  |  |  |
|----------|-----------------|---------------|-------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0x0F Dev |                 | Device Status |       | The register indicates the current state of repeater functionality. This register can only be read and writes don't have any effect  |  |  |  |  |  |
| Bit      | Bit Bit Name R  |               | Reset | Description                                                                                                                          |  |  |  |  |  |
| 7:4      | 7:4 RSVD        |               |       | Reserved                                                                                                                             |  |  |  |  |  |
| 3:2      | Speed of operat | tion RO       |       | This bit shows the current state of repeater speed of operation 00 = LS 01 = FS 10 = HS                                              |  |  |  |  |  |
| 1:0      | Repeater role   | RO            |       | This bit shows the current role played by the repeater 00 = No role determined yet 01 = Device side repeater 10 = Host side repeater |  |  |  |  |  |

## Table 24. Register 0x10 - LINK STATUS

| Regi      | ster offset     | Register Nam | е     | Register Description                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-----------|-----------------|--------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0x10 Link |                 | Link Status  |       | This status register reflects the current state of the repeater device and the link. This register can only be read and writes don't have any effect                                                                                                                                                                                   |  |  |  |  |  |
| Bit       | Bit Name        | R/W          | Reset | Description                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 7:3       | RSVD            | RAZ          |       | Reserved                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 2:0       | Device Link sta | atus RO      |       | The status bits reflect the device and link state  000 = Deep standby  001 = Connect detect  010 = L1  011 = L2  100 = Active LS/FS (L0)  101 = Active HS (L0)  110 = Active HS (L0) forced due to USB2 compliance mode  111 = This setting represents transitioning condition between different states (e.g. Suspend to Resume to L0) |  |  |  |  |  |

# Table 25. Register 0x13 - REVISION\_ID

| Register offset Register Name |                |       | er Name                                                                                                                      |        | Register Description                                        |  |
|-------------------------------|----------------|-------|------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------|--|
| 0x13 REVISION_ID              |                |       | The REVISION ID register provides the silicon revision number. The Rev ID is a read only register whose value never changes. |        |                                                             |  |
| Bit Bit Name R/W              |                | Reset | Description                                                                                                                  |        |                                                             |  |
| 7:4                           | :4 BASE_STEP   |       | RO                                                                                                                           | b'1010 | Base layer version<br>A0 stands for 1 <sup>st</sup> version |  |
| 3:0                           | 3:0 METAL_STEP |       | RO                                                                                                                           | b'0010 | Metal layer version<br>0 stands for 1 <sup>st</sup> version |  |

#### Table 26. Register 0x14 - CHIP\_ID\_0

| Register offset Register Name |           |  |     |       | Register Description                                                                                                                            |  |  |  |  |
|-------------------------------|-----------|--|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0x15                          |           |  |     |       | This ID register provides lower 8 bits of the 16-bit chip part number (3222). The ID register is a read-only register whose value never changes |  |  |  |  |
| Bit                           | Bit Name  |  | R/W | Reset | Description                                                                                                                                     |  |  |  |  |
| 7:0                           | CHIP_ID_0 |  | RO  | 0x22  | Lower 8-bit CHIP ID (0x22)                                                                                                                      |  |  |  |  |

#### Table 27. Register 0x15 - CHIP\_ID\_1

| Regist | er offset              | Register Na | me    | Register Description                                                                                                                               |  |  |  |  |  |
|--------|------------------------|-------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0x15   |                        | CHIP_ID_1   |       | The ID register provides the upper 8 bits of the 16-bit chip part number (3222). The ID register is a read-only register whose value never changes |  |  |  |  |  |
| Bit    | Bit Bit Name R/W Reset |             | Reset | Description                                                                                                                                        |  |  |  |  |  |
| 7:0    | :0 CHIP_ID_1 RO 0x32   |             |       | Higher 8-bit CHIP ID (0x32)                                                                                                                        |  |  |  |  |  |

#### Table 28. Register 0x16 - CHIP\_ID\_2

|                  |                | Regist | er Name                    |                                                                                                                                                             | Register Description |  |  |  |  |  |
|------------------|----------------|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| 0x16             | Ox16 CHIP_ID_2 |        |                            | The ID register provides the Configuration image information 4 bits and CHIP type (2 bits). The ID register is a read-only register who value never changes |                      |  |  |  |  |  |
| Bit              | Bit Name       |        | R/W                        | Reset                                                                                                                                                       | Description          |  |  |  |  |  |
| 7:4              | Configuration  |        | RO                         | b'0000                                                                                                                                                      | Fixed configuration  |  |  |  |  |  |
| 3:2              | 3:2 RSVD RAZ   |        |                            | Reserved                                                                                                                                                    |                      |  |  |  |  |  |
| 1:0 CHIP Type RO |                | b'11   | 11 = General configuration |                                                                                                                                                             |                      |  |  |  |  |  |

# 10 Limiting values

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Within these ratings, damage to the part must not occur, and all characteristics must still be met after the part is returned to recommended operating conditions.

Typical (Typ) values are based on typical PVT (nominal process, VDD3V = 3 V, VDD1V8 = 1.8 V, and 25 °C) and Min/Max values are based on all valid PVT ranges.

Table 29. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134); all voltage values are with respect to network ground terminal.

| Symbol               | Parameter           | Condition                       | Spec guar by | Min  | Тур | Max  | Unit | Unique Identifier  |
|----------------------|---------------------|---------------------------------|--------------|------|-----|------|------|--------------------|
| VDD1V8               | 1V8 Supply voltage  |                                 | Design       | -0.5 |     | 2.4  | V    | LTC-VOL-PRIO1-001  |
| VDD3V3               | 3V3 Supply voltage  |                                 | Design       | -0.5 |     | 4    | V    | LTC -VOL-PRIO1-002 |
| VI                   | Input voltage       | SCL, SDA                        | Design       | -0.5 |     | 2.4  | V    | LTC -VOL-PRIO1-003 |
|                      |                     | RST_N                           | Design       | -0.5 |     | 2.4  | V    | LTC -VOL-PRIO1-004 |
|                      |                     | eDP, eDN                        | Design       | -0.5 |     | 2.4  | V    | LTC -VOL-PRIO1-005 |
|                      |                     | DP, DN                          | Design       | -0.5 |     | 5.5  | V    | LTC -VOL-PRIO1-006 |
|                      |                     | ADDR                            | Design       | -0.5 |     | 2.4  | V    | LTC -VOL-PRIO1-007 |
| T <sub>stg</sub>     | Storage temperature |                                 | Design       | -60  |     | +150 | ° C  | LTC -TMP-PRIO1-008 |
| V <sub>ESD</sub>     | Electrostatic       | Human-Body Model <sup>[1]</sup> | Design       | 2    |     |      | kV   | LTC -VOL-PRIO1-008 |
|                      | discharge voltage   | Charged-Device Model [2]        | Design       | 500  |     |      | V    | LTC -VOL-PRIO1-009 |
| I <sub>LATCHUP</sub> | Latch-up current    |                                 | Design       | 100  |     |      | mA   | LTC -CUR-PRIO1-012 |

<sup>[1]</sup> Human Body Model: ANSI/EOS/ESD-S5.1-1994, standard for ESD sensitivity testing, Human Body Model – Component level; Electrostatic Discharge Association, Rome, NY, USA.

# 11 Recommended operating conditions

#### Table 30. Operating conditions

Within these ratings, all characteristics in the following sections must be met unless noted otherwise.  $V_{PULLUP}$  is used to refer to  $f^2C$  pullup voltage in the following sections. VDD1V8 refers to internal voltage reference used by PTN3222 for determining the logic levels of SCL/SDA pins.

| Symbol                  | Parameter                                 | Condition                                                           | Spec<br>guar by | Min  | Тур | Max  | Unit | Unique Identifier |
|-------------------------|-------------------------------------------|---------------------------------------------------------------------|-----------------|------|-----|------|------|-------------------|
| VDD3V3                  | 3V3 Supply voltage                        |                                                                     | ATE             | 2.85 | 3   | 3.63 | ٧    | ROC-VOL-PRIO1-001 |
| VDD1V8                  | 1V8 Supply voltage                        |                                                                     | ATE             | 1.62 | 1.8 | 1.98 | ٧    | ROC-VOL-PRIO1-002 |
| t <sub>VDD_rampup</sub> | Supply voltage ramp-up time               | Between 0V and VDD3V3min/VDD1<br>V8min                              | Bench           | 0.01 |     | 10   | ms   | ROC-TIM-PRIO1-003 |
| VDD1V2                  | I <sup>2</sup> C interface pullup voltage | 1.2 V voltage reference used for I <sup>2</sup> C pins              | ATE             | 1.08 | 1.2 | 1.32 | V    | ROC-VOL-PRIO1-005 |
| VI                      | Input voltage                             | SCL, SDA                                                            | ATE             | -0.3 |     | 1.98 | V    | ROC-VOL-PRIO1-006 |
|                         |                                           | RST_N                                                               | ATE             | -0.3 |     | 1.98 | V    | ROC-VOL-PRIO1-007 |
|                         |                                           | eDP, eDN                                                            | ATE             | -0.3 |     | 1.32 | V    | ROC-VOL-PRIO1-008 |
|                         |                                           | DP, DN                                                              | ATE             | -0.3 |     | 3.63 | ٧    | ROC-VOL-PRIO1-009 |
|                         |                                           | ADDR                                                                | ATE             | -0.3 |     | 1.98 | ٧    | ROC-VOL-PRIO1-010 |
| T <sub>amb</sub>        | Ambient temperature                       | Operating in standing air environment – mobile/computing IOT market | Bench           | -40  |     | 85   | °C   | ROC-TMP-PRIO1-011 |

PTN3222EUK

All information provided in this document is subject to legal disclaimers

<sup>[2]</sup> Charged Device Model: ANSI/EOS/ESD-S5.3-1-1999, standard for ESD sensitivity testing, Charged Device Model – Component level; Electrostatic Discharge Association, Rome, NY, USA.

#### Table 30. Operating conditions...continued

Within these ratings, all characteristics in the following sections must be met unless noted otherwise. V<sub>PULLUP</sub> is used to refer to f<sup>2</sup>C pullup voltage in the following sections. VDD1V8 refers to internal voltage reference used by PTN3222 for determining the logic levels of SCL/SDA pins.

| Symbol            | Parameter            | Condition                                                               | Spec<br>guar by | Min | Тур | Max | Unit | Unique Identifier |
|-------------------|----------------------|-------------------------------------------------------------------------|-----------------|-----|-----|-----|------|-------------------|
| Tj <sup>[1]</sup> | Junction temperature | Captured mainly to ensure simulation is carried out in this temp corner |                 | -40 |     | 125 | ° C  | ROC-TMP-PRIO1-013 |

PTN3222 is simulated for functionality up to junction temperature of 125 °C, but it is not guaranteed to meet the power/current consumption specifications.

#### Table 31. Thermal resistance

| Symbol                    | Parameter                                                                       | Conditions                    | Max  | Unit | Unique identifier |
|---------------------------|---------------------------------------------------------------------------------|-------------------------------|------|------|-------------------|
| R <sub>th(j-a), CSP</sub> | Thermal resistance from junction to ambient [1]                                 | JESD51-9                      | 70   | °C/W | THR-RES-PRIO1-001 |
| Ψ <sub>JT, CSP</sub>      | Junction-to-Top of Package Thermal<br>Characterization Parameter <sup>[2]</sup> | JESD51-9, 2s2p <sup>[3]</sup> | 0.25 | °C/W | THR-RES-PRIO1-002 |

- Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standard specified environment. It is not meant to predict the performance of a package in an application-specific environment.
  Thermal test board meets JEDEC specification for this package (JESD51-9)
- Junction-to-Case thermal resistance determined using an isothermal cold plate. Case is defined as the bottom of the packages

### 12 Characteristics

#### 12.1 Device characteristics

#### Table 32. Device characteristics

Applicable across operating temperature and power supply ranges as mentioned under Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol                  | Parameter                                                                                                            | Condition                                                                                                                                                                          | Spec guar by | Min | Тур | Max | Unit | Unique Identifier |
|-------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|-----|------|-------------------|
| t <sub>Startup</sub>    | Device start-up time                                                                                                 | Time for device operation including I <sup>2</sup> C accesses once both supply voltages are within recommended operating levels                                                    | Bench        |     |     | 1   | ms   | DEV-TIM-PRIO1-001 |
| t <sub>SW_reset</sub>   | Time for software reset to complete                                                                                  | Supply voltages are valid                                                                                                                                                          | Bench        |     |     | 0.5 | ms   | DEV-TIM-PRIO1-002 |
| $t_{Cfg}$               | Device parameter (re)configuration time                                                                              | Time for parameter (re)configuration values to take effect after I <sup>2</sup> C programming (or RAP initialization)                                                              | Bench        |     |     | 0.5 | ms   | DEV-TIM-PRIO1-003 |
| t <sub>DPSS_Exit</sub>  | Time duration that host<br>has to wait before issuing<br>further commands when<br>PTN3222 is exiting deep<br>standby |                                                                                                                                                                                    | Bench        |     |     | 275 | μs   | DEV-TIM-PRIO1-033 |
| t <sub>PD</sub>         | Pin to pin differential<br>propagation delay<br>between eUSB2 and<br>USB2 pins                                       | Parameter configured for maximum signal path latency for USB2 HS data                                                                                                              | Bench        |     |     | 3   | ns   | DEV-TIM-PRIO1-004 |
| I <sub>supply,3V3</sub> | VDD3V3 Supply current                                                                                                | Deep standby                                                                                                                                                                       | ATE          |     |     | 7   | μA   | DEV-CUR-PRIO1-005 |
|                         |                                                                                                                      | Connect Detect substate                                                                                                                                                            | ATE          |     |     | 10  | μA   | DEV-CUR-PRIO1-006 |
|                         |                                                                                                                      | L2 suspend                                                                                                                                                                         | ATE          |     |     | 10  | μA   | DEV-CUR-PRIO1-007 |
|                         |                                                                                                                      | L1 sleep                                                                                                                                                                           | ATE          |     |     | 10  | μA   | DEV-CUR-PRIO1-008 |
|                         |                                                                                                                      | Active LS/FS mode (w/10 pF load @ USB2 and 2.5 pF load @ eUSB2                                                                                                                     | ATE          |     |     | 6.5 | mA   | DEV-CUR-PRIO1-009 |
|                         |                                                                                                                      | Active HS mode (eUSB to USB direction); no de-emphasis; only Rx EQ enabled on eUSB2 / USB2 pins; 90 $\Omega$ termination on USB2 pins and 80 $\Omega$ on eUSB2 pins                | ATE          |     |     | 8   | mA   | DEV-CUR-PRIO1-010 |
|                         |                                                                                                                      | Active HS mode (eUSB to USB direction) deemphasis 3 dB on USB2; Rx EQ enabled on eUSB2 / USB2 pins; 85 $\Omega$ termination on USB2 side and 80 $\Omega$ termination on eUSB2 side | ATE          |     |     | 11  | mA   | DEV-CUR-PRIO1-011 |
|                         |                                                                                                                      | Active HS mode (USB to eUSB direction); no de-emphasis; only Rx EQ enabled on eUSB2 /                                                                                              | ATE          |     |     | 3   | mA   | DEV-CUR-PRIO1-037 |

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

Table 32. Device characteristics...continued

Applicable across operating temperature and power supply ranges as mentioned under Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol        | Parameter                                                  | Condition                                                                                                                                                                                              | Spec guar by | Min | Тур | Max  | Unit | Unique Identifier |
|---------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|------|------|-------------------|
|               |                                                            | USB2 pins; 90 $\Omega$ termination on USB2 pins and 80 $\Omega$ on eUSB2 pins                                                                                                                          |              |     |     |      |      |                   |
|               |                                                            | Active HS mode (USB to eUSB direction); deemphasis 3 dB on USB2; Rx EQ enabled on eUSB2 /USB2 pins; 85 $\Omega$ termination on USB2 side and 80 $\Omega$ termination on eUSB2 side                     | ATE          |     |     | 4    | mA   | DEV-CUR-PRIO1-038 |
| supply,1V8    | VDD1V8 Supply current                                      | Deep standby                                                                                                                                                                                           | ATE          |     |     | 50   | μA   | DEV-CUR-PRIO1-012 |
|               |                                                            | Connect Detect substate                                                                                                                                                                                | ATE          |     |     | 85   | μA   | DEV-CUR-PRIO1-013 |
|               |                                                            | L2 suspend                                                                                                                                                                                             | ATE          |     |     | 85   | μA   | DEV-CUR-PRIO1-014 |
|               |                                                            | L1 sleep                                                                                                                                                                                               | ATE          |     |     | 0.8  | mA   | DEV-CUR-PRIO1-015 |
|               |                                                            | Active LS/FS mode (w/10 pF load @ USB2 and 2.5 pF load @ eUSB2                                                                                                                                         | ATE          |     |     | 3.7  | mA   | DEV-CUR-PRIO1-016 |
|               |                                                            | Active HS mode (eUSB to USB direction); no de-emphasis; only Rx EQ enabled on eUSB2 / USB2 pins; $90~\Omega$ termination on USB2 side and $80~\Omega$ on eUSB2 side, $400~\text{mV}$ USB2 output swing | ATE          |     |     | 47.5 | mA   | DEV-CUR-PRIO1-017 |
|               |                                                            | Active HS mode (eUSB to USB direction); deemphasis 3 dB on USB2; Rx EQ enabled on eUSB2 / USB2 pins; 85 $\Omega$ termination on USB2 pins and 80 $\Omega$ termination on eUSB2 pins                    | ATE          |     |     | 55   | mA   | DEV-CUR-PRIO1-018 |
|               |                                                            | Active HS mode (USB to eUSB direction); no de-emphasis; only Rx EQ enabled on eUSB2 / USB2 pins; 90 $\Omega$ termination on USB2 side and 80 $\Omega$ on eUSB2 side, 400 mV USB2 output swing          | ATE          |     |     | 28   | mA   | DEV-CUR-PRIO1-039 |
|               |                                                            | Active HS mode (USB to eUSB direction); deemphasis 3 dB on USB2; Rx EQ enabled on eUSB2 / USB2 pins; 85 $\Omega$ termination on USB2 pins and 80 $\Omega$ termination on eUSB2 pins                    | ATE          |     |     | 40   | mA   | DEV-CUR-PRIO1-040 |
| ackpower, 3V3 | Back power current when VDD3V3 pin is shorted to           | Current going into SCL pin when SCL is tied to VDD1V8 max                                                                                                                                              | ATE          |     |     | 1    | μА   | DEV-CUR-PRIO1-019 |
|               | GND                                                        | Current going into SDA pin when SDA is tied to VDD1V8 max                                                                                                                                              | ATE          |     |     | 1    | μА   | DEV-CUR-PRIO1-020 |
|               |                                                            | Current into RST_N pin when RST_N is tied to VDD1V8 max                                                                                                                                                | ATE          |     |     | 1    | μА   | DEV-CUR-PRIO1-021 |
| ackpower, 1V8 | Back power current when VDD1V8 pin is shorted to GND       | Current going into SCL pin when SCL is tied to VDD1V8 max                                                                                                                                              | ATE          |     |     | 1    | μА   | DEV-CUR-PRIO1-022 |
|               | UND                                                        | Current going into SDA pin when SDA is tied to VDD1V8 max                                                                                                                                              | ATE          |     |     | 1    | μА   | DEV-CUR-PRIO1-023 |
|               |                                                            | Current into RST_N pin when RST_N is tied to VDD1V8 max                                                                                                                                                | ATE          |     |     | 1    | μА   | DEV-CUR-PRIO1-024 |
| NRUSH_3V3     | Inrush current when VDD3V3 ramp up from 0 V to final value |                                                                                                                                                                                                        | Bench        |     |     | 1    | mA   | DEV-CUR-PRIO1-031 |
| NRUSH_1V8     | Inrush current when VDD1V8 ramp up from 0 V to final value |                                                                                                                                                                                                        | Bench        |     |     | 1    | mA   | DEV-CUR-PRIO1-032 |

# 12.2 USB2 and eUSB2 characteristics

#### Table 33. USB2 and eUSB2 characteristics

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol                   | Parameter                                        | Condition | Spec guar by | Min  | Тур | Max | Unit | Unique Identifier |
|--------------------------|--------------------------------------------------|-----------|--------------|------|-----|-----|------|-------------------|
| V <sub>RX_CM_USB2</sub>  | USB2 Rx common mode voltage                      |           | ATE          | -100 |     | 500 | mV   | USB-VOL-PRIO1-001 |
| V <sub>IH_LF_USB2</sub>  | USB2 Low/Full Speed High-<br>level input voltage |           | ATE          | 2    |     |     | V    | USB-VOL-PRIO1-002 |
| V <sub>IL_LF_USB2</sub>  | USB2 Low/Full Speed Low-<br>level input voltage  |           | ATE          |      |     | 0.8 | V    | USB-VOL-PRIO1-003 |
| V <sub>IHZ_LF_USB2</sub> | USB2 Low/Full speed Hi-Z input level             |           | ATE          | 2.7  |     | 3.7 | V    | USB-VOL-PRIO1-004 |

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

Table 33. USB2 and eUSB2 characteristics...continued

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol                       | Parameter                                         | Condition                                                                                                                                                                                                                          | Spec guar<br>by | Min  | Тур | Max  | Unit | Unique Identifier |
|------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-----|------|------|-------------------|
| V <sub>OL_LF_USB2</sub>      | USB2 Low/Full speed Low-<br>level output voltage  |                                                                                                                                                                                                                                    | ATE             |      |     | 0.3  | V    | USB-VOL-PRIO1-005 |
| V <sub>OH_LF_USB2</sub>      | USB2 Low/Full speed High-<br>level output voltage |                                                                                                                                                                                                                                    | ATE             | 2.8  |     | 3.7  | V    | USB-VOL-PRIO1-006 |
| Z <sub>SO_LF_USB2</sub>      | USB2 Transmit output series resistance            |                                                                                                                                                                                                                                    | ATE             | 40.5 |     | 49.5 | Ω    | USB-RES-PRIO1-007 |
| V <sub>OP_TX_USB2</sub>      | USB2 HS Tx output signal swing                    | Measured on DP/DN pin with no deemphasis with 90 $\Omega$ (nominal) differential termination; $I^2C$ register offset address 0x08 $I^2C$ setting = 0                                                                               | ATE             | 315  | 350 | 385  | mV   | USB-VOL-PRIO1-008 |
|                              |                                                   | I <sup>2</sup> C setting = 1                                                                                                                                                                                                       | Char            | 360  | 400 | 440  | mV   | USB-VOL-PRIO1-009 |
|                              |                                                   | I <sup>2</sup> C setting = 2                                                                                                                                                                                                       | Char            | 405  | 450 | 495  | mV   | USB-VOL-PRIO1-010 |
|                              |                                                   | I <sup>2</sup> C setting = 3                                                                                                                                                                                                       | ATE             | 450  | 500 | 550  | mV   | USB-VOL-PRIO1-011 |
|                              |                                                   | I <sup>2</sup> C setting = 4                                                                                                                                                                                                       | Char            | 495  | 550 | 610  | mV   | USB-VOL-PRIO1-012 |
|                              |                                                   | I <sup>2</sup> C setting = 5                                                                                                                                                                                                       | Char            | 540  | 600 | 660  | mV   | USB-VOL-PRIO1-013 |
|                              |                                                   | I <sup>2</sup> C setting = 6                                                                                                                                                                                                       | Char            | 585  | 650 | 715  | mV   | USB-VOL-PRIO1-014 |
|                              |                                                   | I <sup>2</sup> C setting = 7                                                                                                                                                                                                       | ATE             | 630  | 700 | 770  | mV   | USB-VOL-PRIO1-015 |
| G <sub>DE_TX_USB2</sub>      | USB2 HS Tx output signal de-emphasis              | Measurement on DP/DN pin @ 480 Mbps; with 90 Ω nominal differential termination; with 1 UI de-emphasis option; I <sup>2</sup> C register offset address 0x07                                                                       |                 |      |     |      |      |                   |
|                              |                                                   | I <sup>2</sup> C setting = 1                                                                                                                                                                                                       | Char            | 0    | 1   | 2    | dB   | USB-DB-PRIO1-017  |
|                              |                                                   | I <sup>2</sup> C setting = 2                                                                                                                                                                                                       | ATE             | 1    | 2   | 3    | dB   | USB-DB-PRIO1-018  |
|                              |                                                   | I <sup>2</sup> C setting = 3                                                                                                                                                                                                       | Char            | 2    | 3   | 4    | dB   | USB-DB-PRIO1-019  |
|                              |                                                   | I <sup>2</sup> C setting = 4                                                                                                                                                                                                       | Char            | 3    | 4   | 5    | dB   | USB-DB-PRIO1-020  |
|                              |                                                   | I <sup>2</sup> C setting = 5                                                                                                                                                                                                       | ATE             | 4    | 5   | 6    | dB   | USB-DB-PRIO1-021  |
|                              |                                                   | I <sup>2</sup> C setting = 6                                                                                                                                                                                                       | Char            | 5    | 6   | 7    | dB   | USB-DB-PRIO1-022  |
| t <sub>DE_TX_USB2</sub>      | USB2 HS Tx output signal de-emphasis bit duration | Measurement on DP/DN pin @ 480 Mbps; with 90 Ω nominal differential termination; (UI ~2.08ns); I <sup>2</sup> C register offset address 0x07                                                                                       |                 |      |     |      |      |                   |
|                              |                                                   | I <sup>2</sup> C setting = 1                                                                                                                                                                                                       | Char            | 0.3  | 0.5 | 0.7  | UI   | USB-TIM-PRIO1-024 |
|                              |                                                   | I <sup>2</sup> C setting = 2                                                                                                                                                                                                       | ATE             | 0.6  | 0.8 | 1    | UI   | USB-TIM-PRIO1-025 |
| t <sub>Rise_TX_HS_USB2</sub> | USB2 HS Tx Rise/fall time                         | Measurement on DP/DN pin @ 480 Mbps (10 % to 90 % of final output level); with 90 $\Omega$ nominal differential termination and 10pF load capacitance; I <sup>2</sup> C register offset address 0x08; I <sup>2</sup> C setting = 0 | Bench           | 500  |     | 900  | ps   | USB-TIM-PRIO1-026 |
|                              |                                                   | I <sup>2</sup> C setting = 1                                                                                                                                                                                                       | Bench           | 400  |     | 800  | ps   | USB-TIM-PRIO1-027 |
|                              |                                                   | I <sup>2</sup> C setting = 2                                                                                                                                                                                                       | Bench           | 300  |     | 700  | ps   | USB-TIM-PRIO1-028 |
| G <sub>EQ_RX_USB2</sub>      | USB2 HS Rx input equalization                     | Measurement at 240 MHz with reference to DC to 1 MHz; I <sup>2</sup> C register offset address 0x06 I <sup>2</sup> C setting = 0                                                                                                   | Bench           | -1   | 0   | 1    | dB   | USB-DB-PRIO1-029  |
|                              |                                                   | I <sup>2</sup> C setting = 1                                                                                                                                                                                                       | Bench           | 0    | 1   | 2    | dB   | USB-DB-PRIO1-030  |
|                              |                                                   | I <sup>2</sup> C setting = 2                                                                                                                                                                                                       | Bench           | 1    | 2   | 3    | dB   | USB-DB-PRIO1-031  |
|                              |                                                   | I <sup>2</sup> C setting = 3                                                                                                                                                                                                       | Bench           | 2    | 3   | 4    | dB   | USB-DB-PRIO1-032  |
|                              |                                                   | I <sup>2</sup> C setting = 4                                                                                                                                                                                                       | Bench           | 3    | 4   | 5    | dB   | USB-DB-PRIO1-033  |
| R <sub>RCV_DIF_USB2</sub>    | USB2 HS Rx differential receiver termination      | Measured on DP/DN pin; I <sup>2</sup> C register offset address 0x09<br>I <sup>2</sup> C setting = 4                                                                                                                               | Char            | 72   | 80  | 88   | Ω    | USB-RES-PRIO1-034 |
|                              |                                                   | I <sup>2</sup> C setting = 3                                                                                                                                                                                                       | Char            | 75   | 85  | 95   | Ω    | USB-RES-PRIO1-035 |
|                              |                                                   | I <sup>2</sup> C setting = 2                                                                                                                                                                                                       | ATE             | 80   | 90  | 100  | Ω    | USB-RES-PRIO1-036 |
|                              |                                                   | I <sup>2</sup> C setting = 1                                                                                                                                                                                                       | Char            | 85   | 95  | 105  | Ω    | USB-RES-PRIO1-037 |
|                              |                                                   | I <sup>2</sup> C setting = 0                                                                                                                                                                                                       | ATE             | 90   | 100 | 110  | Ω    | USB-RES-PRIO1-038 |

Table 33. USB2 and eUSB2 characteristics...continued

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol                       | Parameter                                                 | Condition                                                                                                                                                                               | Spec guar<br>by | Min | Тур | Max | Unit  | Unique Identifier |
|------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----|-----|-------|-------------------|
| V <sub>SQ_RX_USB2</sub>      | USB2 HS Rx squelch<br>detection threshold                 | Measured on DP/DN pin; with 90 $\Omega$ nominal differential termination; $I^2C$ register offset address 0x06 $I^2C$ setting = 0                                                        | ATE             | 25  | 50  | 75  | mV    | USB-VOL-PRIO1-039 |
|                              |                                                           | I <sup>2</sup> C setting = 1                                                                                                                                                            | Char            | 40  | 65  | 90  | mV    | USB-VOL-PRIO1-040 |
|                              |                                                           | I <sup>2</sup> C setting = 2                                                                                                                                                            | ATE             | 60  | 85  | 110 | mV    | USB-VOL-PRIO1-041 |
|                              |                                                           | I <sup>2</sup> C setting = 3                                                                                                                                                            | ATE             | 70  | 95  | 120 | mV    | USB-VOL-PRIO1-042 |
|                              |                                                           | I <sup>2</sup> C setting = 4                                                                                                                                                            | ATE             | 85  | 110 | 135 | mV    | USB-VOL-PRIO1-043 |
|                              |                                                           | I <sup>2</sup> C setting = 5                                                                                                                                                            | ATE             | 100 | 125 | 150 | mV    | USB-VOL-PRIO1-044 |
|                              |                                                           | I <sup>2</sup> C setting = 6                                                                                                                                                            | Char            | 115 | 140 | 165 | mV    | USB-VOL-PRIO1-045 |
|                              |                                                           | I <sup>2</sup> C setting = 7                                                                                                                                                            | Char            | 130 | 155 | 180 | mV    | USB-VOL-PRIO1-046 |
| DIS_HS_USB2                  | USB2 HS Rx disconnect<br>detection detection<br>threshold | Low to High amplitude transition measured on DP/DN pin under disconnect condition; I <sup>2</sup> C register offset address 0x0A I <sup>2</sup> C setting = 0                           | ATE             | 525 | 575 | 625 | mV    | USB-VOL-PRIO1-047 |
|                              |                                                           | I <sup>2</sup> C setting = 1                                                                                                                                                            | Char            | 625 | 675 | 725 | mV    | USB-VOL-PRIO1-048 |
|                              |                                                           | I <sup>2</sup> C setting = 2                                                                                                                                                            | Char            | 725 | 775 | 825 | mV    | USB-VOL-PRIO1-049 |
|                              |                                                           | I <sup>2</sup> C setting = 3                                                                                                                                                            | ATE             | 825 | 875 | 925 | mV    | USB-VOL-PRIO1-050 |
| / <sub>RISE_TX_FS_USB2</sub> | USB2 FS Tx Rise/Fall time control                         | Measured on DP/DN pin (10-90% of final voltage level); with 90 $\Omega$ nominal differential termination; I <sup>2</sup> C register offset address 0x08 I <sup>2</sup> C setting = 0    | Bench           | 8   |     | 20  | ns    | USB-TIM-PRIO1-051 |
|                              |                                                           | I <sup>2</sup> C setting = 1                                                                                                                                                            | Bench           | 4   |     | 10  | ns    | USB-TIM-PRIO1-052 |
|                              | Total added jitter on USB2<br>HS                          | Measured on DP/DN pin with 90 $\Omega$ nominal differential termination with BER 1e-12 reference; PRBS HS input data payload with USB2 bit stuffing; clean input signal level 75 mV;    | Bench           |     | 25  | 40  | ps    | USB-TIM-PRIO1-053 |
| JITTER_eUSB2                 | Total added jitter on eUSB2<br>HS                         | Measured on eDP/eDN pin with 80 $\Omega$ nominal differential termination with BER 1e-12 reference; PRBS HS input data payload with USB2 bit stuffing; clean input signal level 100 mV; | Bench           |     | 25  | 40  | ps    | USB-TIM-PRIO1-088 |
| RX_CM_eUSB2                  | eUSB2 HS Rx DC common mode voltage range                  |                                                                                                                                                                                         | ATE             | 120 |     | 280 | mV    | USB-VOL-PRIO1-054 |
| RX_CM_eUSB2                  | eUSB2 HS center tapped capacitance                        |                                                                                                                                                                                         | Bench           | 15  |     | 50  | pF    | USB-CAP-PRIO1-055 |
| /RX_DIF_SENS_eUSB2           | eUSB2 HS Rx sensitivity                                   |                                                                                                                                                                                         | Bench           | 25  | 50  |     | +/-mV | USB-VOL-PRIO1-056 |
| RCV_DIF_eUSB2                | eUSB2 HS Rx differential receiver termination             | Measured on eDP/eDN pin;                                                                                                                                                                | ATE             | 72  | 80  | 88  | Ω     | USB-RES-PRIO1-057 |
| OP_TX_eUSB2                  | eUSB2 HS Tx output signal swing                           | Measured on eDP/eDN pin with no deemphasis with 80 $\Omega$ (nominal) differential termination; $I^2C$ register offset address 0x05 $I^2C$ setting = 0                                  | Char            | 140 | 180 | 220 | mV    | USB-VOL-PRIO1-058 |
|                              |                                                           | I <sup>2</sup> C setting = 1                                                                                                                                                            | ATE             | 160 | 200 | 240 | mV    | USB-VOL-PRIO1-059 |
|                              |                                                           | I <sup>2</sup> C setting = 2                                                                                                                                                            | ATE             | 180 | 220 | 260 | mV    | USB-VOL-PRIO1-060 |
|                              |                                                           | I <sup>2</sup> C setting = 3                                                                                                                                                            | Char            | 200 | 240 | 280 | mV    | USB-VOL-PRIO1-061 |
| ST <sub>X_DE_eUSB2</sub>     | eUSB2 HS Tx de-emphasis<br>as measured on eDP/eDN<br>pin  | Measurement at 240 MHz with reference to DC- 1 MHz; referenced to 200 mV (terminated) Tx signaling; I <sup>2</sup> C register offset address 0x05                                       |                 |     |     |     |       |                   |
|                              |                                                           | I <sup>2</sup> C setting = 1                                                                                                                                                            | Char            | 0   | 1   | 2   | dB    | USB-DB-PRIO1-063  |
|                              |                                                           | I <sup>2</sup> C setting = 2                                                                                                                                                            | Char            | 1   | 2   | 3   | dB    | USB-DB-PRIO1-064  |
|                              |                                                           | I <sup>2</sup> C setting = 3                                                                                                                                                            | ATE             | 2   | 3   | 4   | dB    | USB-DB-PRIO1-065  |
| PRX_EQ_eUSB2                 | eUSB2 HS Rx equalization as measured on eDP/eDN pin       | Measurement at 240 MHz with reference to DC- 1 MHz; I <sup>2</sup> C register offset address 0x04 I <sup>2</sup> C setting = 0                                                          | Bench           | -1  | 0   | 1   | dB    | USB-DB-PRIO1-066  |
|                              |                                                           | I <sup>2</sup> C setting = 1                                                                                                                                                            | Bench           | 0   | 1   | 2   | dB    | USB-DB-PRIO1-067  |
|                              |                                                           | I <sup>2</sup> C setting = 2                                                                                                                                                            | Bench           | 1   | 2   | 3   | dB    | USB-DB-PRIO1-068  |
|                              | 1                                                         | I <sup>2</sup> C setting = 3                                                                                                                                                            | Bench           | 2   | 3   | 4   | dB    | USB-DB-PRIO1-069  |

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

Table 33. USB2 and eUSB2 characteristics...continued

Applicable across operating temperature and power supply ranges as Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol                        | Parameter                                                                                                                                             | Condition                                                                                                                          | Spec guar<br>by | Min  | Тур | Max  | Unit          | Unique Identifier                                                                                                                                                            |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-----|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                                                                       | I <sup>2</sup> C setting = 4                                                                                                       | Bench           | 3    | 4   | 5    | dB            | USB-DB-PRIO1-070                                                                                                                                                             |
| Vsq_rx_eusb2                  | eUSB2 HS Rx squelch<br>threshold as measured on<br>eDP/eDN pin                                                                                        | Measured on eDP/eDN pin; with 80 $\Omega$ nominal differential termination; $l^2C$ register offset address 0x04 $l^2C$ setting = 0 | Char            | 25   | 50  | 75   | mV            | USB-VOL-PRIO1-071                                                                                                                                                            |
|                               |                                                                                                                                                       | I <sup>2</sup> C setting = 1                                                                                                       | ATE             | 40   | 65  | 90   | mV            | USB-VOL-PRIO1-072                                                                                                                                                            |
|                               |                                                                                                                                                       | I <sup>2</sup> C setting = 2                                                                                                       | ATE             | 60   | 85  | 110  | mV            | USB-VOL-PRIO1-073  USB-VOL-PRIO1-074  USB-VOL-PRIO1-075  k  USB-VOL-PRIO1-076  USB-VOL-PRIO1-077  USB-VOL-PRIO1-078  USB-VOL-PRIO1-079  USB-VOL-PRIO1-080  USB-RES-PRIO1-081 |
|                               |                                                                                                                                                       | I <sup>2</sup> C setting = 3                                                                                                       | Char            | 70   | 95  | 120  | mV            | USB-VOL-PRIO1-074                                                                                                                                                            |
| V <sub>CM_RX_AC_eUSB2</sub>   | eUSB2 HS RX AC common mode voltage                                                                                                                    | CM noise band (50 MHz to 480 MHz)                                                                                                  | Bench           |      |     | 60   | +/-m<br>Vpeak | USB-VOL-PRIO1-075                                                                                                                                                            |
| V <sub>OL_LF_eUSB2</sub>      | eUSB2 LS/FS Low-level output voltage                                                                                                                  | (0.15 x internally derived 1.2 V reference from VDD1V8)                                                                            | ATE             |      |     | 0.18 | V             | USB-VOL-PRIO1-076                                                                                                                                                            |
| V <sub>OH_LF_eUSB2</sub>      | eUSB2 LS/FS High-level output voltage                                                                                                                 | (0.85 x internally derived 1.2 V reference from VDD1V8)                                                                            | ATE             | 1.02 |     |      | V             | USB-VOL-PRIO1-077                                                                                                                                                            |
| V <sub>IL_LF_eUSB2</sub>      | eUSB2 LS/FS Low-level input voltage                                                                                                                   | (0.35 x internally derived 1.2 V reference from VDD1V8)                                                                            | ATE             | -0.1 |     | 0.42 | V             | USB-VOL-PRIO1-078                                                                                                                                                            |
| V <sub>IH_LF_eUSB2</sub>      | eUSB2 LS/FS High-level input voltage                                                                                                                  | (0.65 x internally derived 1.2 V reference from VDD1V8)                                                                            | ATE             | 0.78 |     |      | V             | USB-VOL-PRIO1-079                                                                                                                                                            |
| V <sub>Hysteresis_eUSB2</sub> | eUSB2 LS/FS Rx<br>Hysteresis                                                                                                                          | (0.04 x internally derived 1.2 V reference from VDD1V8min)                                                                         | Bench           | 32   |     | 130  | mV            | USB-VOL-PRIO1-080                                                                                                                                                            |
| Z <sub>TXSRC_LF_eUSB2</sub>   | eUSB2 LS/FS Transmit output impedance                                                                                                                 |                                                                                                                                    | ATE             | 28   |     | 60   | Ω             | USB-RES-PRIO1-081                                                                                                                                                            |
| V <sub>CM_TX_AC_USB2</sub>    | USB2 HS TX AC common<br>mode voltage (measured<br>when 400mV USB2<br>HS Tx signaling level is<br>selected and with 900hm<br>termination) at USB2 pins | Measured spectral content from 800 MHz to 2 GHz frequency band                                                                     | Bench           |      |     | 22   | mVrms         | USB-VOL-PRIO1-082                                                                                                                                                            |
| V <sub>CM_TX_AC_RF_USB2</sub> | USB2 HS TX AC common                                                                                                                                  | Freq = 720 MHz                                                                                                                     | Bench           |      | -57 | -49  | dBV           | USB-DB-PRIO1-083                                                                                                                                                             |
|                               | mode voltage at specific harmonic frequency                                                                                                           | Freq = 960 MHz                                                                                                                     | Bench           |      | -41 | -35  | dBV           | USB-DB-PRIO1-084                                                                                                                                                             |
|                               | (measured when 400 mV<br>USB2 HS Tx signaling level                                                                                                   | Freq = 1.2 GHz                                                                                                                     | Bench           |      | -59 | -51  | dBV           | USB-DB-PRIO1-085                                                                                                                                                             |
|                               | is selected and with 90 Ω termination) at USB2 pins; all dB level referenced to signal level at Nyquist frequency of 240 MHz                          | Freq = 1.44 GHz                                                                                                                    | Bench           |      | -43 | -38  | dBV           | USB-DB-PRIO1-086                                                                                                                                                             |
| tresponse                     | Response time to wake<br>up and activate redriver<br>data path for USB2 packet<br>transmission                                                        |                                                                                                                                    | Bench           |      |     | 4    | UI            | USB-TIM-PRIO1-087                                                                                                                                                            |
| V <sub>OVP,Th</sub>           | VBUS Over voltage                                                                                                                                     | Low to high transition                                                                                                             | ATE             | 4.2  | 4.4 | 4.9  | V             | USB-VOL-PRIO1-089                                                                                                                                                            |
|                               | detector on DP and DN pins                                                                                                                            | High to low transition                                                                                                             | ATE             | 3.9  | 4.2 | 4.9  | V             | USB-VOL-PRIO1-090                                                                                                                                                            |
| V <sub>CRS</sub>              | USB2 LS cross-over voltage                                                                                                                            |                                                                                                                                    | ATE             | 1.3  | -   | 2    | V             | USB-VOL-PRIO1-103                                                                                                                                                            |
|                               |                                                                                                                                                       |                                                                                                                                    |                 |      |     |      |               |                                                                                                                                                                              |

# 12.3 I<sup>2</sup>C dynamic/static characteristics

#### Table 34. Standard mode I<sup>2</sup>C characteristics

Applicable across operating temperature and power supply ranges as recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| notou.              |                                                               |                                     |              |       |     |      |      |                   |  |
|---------------------|---------------------------------------------------------------|-------------------------------------|--------------|-------|-----|------|------|-------------------|--|
| Symbol              | Parameter                                                     | Condition                           | Spec guar by | Min   | Тур | Max  | Unit | Unique Identifier |  |
| f <sub>I2C</sub>    | I <sup>2</sup> C clock frequency                              | Standard mode                       | ATE          | 0     |     | 100  | kHz  | STD-FRQ-PRIO1-001 |  |
| R <sub>PULLUP</sub> | I <sup>2</sup> C interface pull up resistors on SCL/SDA lines | System Requirement                  |              | 0.567 | 2.2 | 2.83 | kΩ   | STD-RES-PRIO1-002 |  |
| V <sub>IH</sub>     | High level input voltage                                      | Standard mode; 1.2 V pullup voltage | ATE          | 0.92  |     |      | V    | STD-VOL-PRIO1-026 |  |
| V <sub>IL</sub>     | Low level input voltage                                       | Standard mode; 1.2 V pullup voltage | ATE          | -0.3  |     | 0.28 | V    | STD-VOL-PRIO1-027 |  |
| V <sub>hys</sub>    | Hysteresis of Schmitt trigger inputs                          | Standard mode; 1.2 V pullup voltage | Bench        | 60    |     |      | mV   | STD-VOL-PRIO1-028 |  |

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

Table 34. Standard mode I<sup>2</sup>C characteristics...continued

Applicable across operating temperature and power supply ranges as recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol               | Parameter                                                              | Condition                                                                          | Spec guar by | Min                   | Тур | Max  | Unit | Unique Identifier |
|----------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|-----------------------|-----|------|------|-------------------|
| V <sub>OL</sub>      | Low level output voltage                                               | Standard mode, 2 mA sink current; I <sup>2</sup> C pullup voltage < 2 V            | ATE          | 0                     |     | 0.36 | V    | STD-VOL-PRIO1-006 |
| I <sub>OL</sub>      | Low level output current                                               | Standard mode, V <sub>OL</sub> = 0.4 V;                                            | ATE          | 3                     |     |      | mA   | STD-CUR-PRIO1-007 |
| I <sub>IL</sub>      | Low level input current                                                | Standard mode, Pin voltage = 0.1V <sub>PULLUP</sub> to 0.9V <sub>PULLUP, max</sub> | ATE          | -10                   |     | 10   | uA   | STD-CUR-PRIO1-008 |
| Cı                   | Capacitance of I/O pins                                                | Standard mode                                                                      | Bench        |                       |     | 10   | pF   | STD-CAP-PRIO1-009 |
| t <sub>HD,STA</sub>  | Hold time (repeated-<br>START) condition                               | Standard mode                                                                      | ATE          | 4                     |     |      | us   | STD-TIM-PRIO1-010 |
| t <sub>LOW</sub>     | Low period of I <sup>2</sup> C clock                                   | Standard mode                                                                      | ATE          | 4.7                   |     |      | us   | STD-TIM-PRIO1-011 |
| t <sub>HIGH</sub>    | High period of I <sup>2</sup> C clock                                  | Standard mode                                                                      | ATE          | 4                     |     |      | us   | STD-TIM-PRIO1-012 |
| t <sub>SU,STA</sub>  | Setup time (REPEAT)<br>START condition                                 | Standard mode                                                                      | ATE          | 4.7                   |     |      | us   | STD-TIM-PRIO1-013 |
| t <sub>HD, DAT</sub> | Data hold time                                                         | Standard mode                                                                      | ATE          | 0                     |     |      | us   | STD-TIM-PRIO1-014 |
| t <sub>SU, DAT</sub> | Data setup time                                                        | Standard mode                                                                      | ATE          | 250                   |     |      | ns   | STD-TIM-PRIO1-015 |
| t <sub>SU, STO</sub> | Setup time for STOP condition                                          | Standard mode                                                                      | ATE          | 4                     |     |      | us   | STD-TIM-PRIO1-016 |
| t <sub>BUF</sub>     | Bus free time between<br>STOP and START<br>condition                   | Standard mode                                                                      | ATE          | 4.7                   |     |      | us   | STD-TIM-PRIO1-017 |
| t <sub>r</sub>       | Rise time of SCL/SDA signals                                           | Standard mode                                                                      | Bench        | 20                    |     | 1000 | ns   | STD-TIM-PRIO1-018 |
| t <sub>f</sub>       | Fall time of SCL/SDA signals                                           | Standard mode                                                                      | Bench        | 20 x (VDD1V8/5.<br>5) |     | 300  | ns   | STD-TIM-PRIO1-019 |
| t <sub>VD,DAT</sub>  | Data valid time                                                        | Standard mode                                                                      | ATE          |                       |     | 3.45 | us   | STD-TIM-PRIO1-020 |
| t <sub>VD,ACK</sub>  | Data valid acknowledge time                                            | Standard mode                                                                      | ATE          |                       |     | 3.45 | us   | STD-TIM-PRIO1-021 |
| t <sub>SP</sub>      | Pulse width of<br>spikes that must be<br>suppressed by input<br>filter | Standard mode                                                                      | ATE          | 0                     |     | 50   | ns   | STD-TIM-PRIO1-022 |
| V <sub>nL</sub>      | Noise margin at the LOW level                                          | Standard mode, for each connected device (including hysteresis)                    | Bench        | 0.1                   |     |      | V    | STD-VOL-PRIO1-029 |
| V <sub>nH</sub>      | Noise margin at the HIGH level                                         | Standard mode, for each connected device (including hysteresis)                    | Bench        | 0.2                   |     |      | V    | STD-VOL-PRIO1-030 |
| Сь                   | Capacitive load for each bus line                                      | Standard mode, system requirement                                                  | System       |                       |     | 400  | pF   | STD-CAP-PRIO1-025 |
|                      |                                                                        |                                                                                    |              |                       |     |      |      |                   |

## Table 35. Fast mode I<sup>2</sup>C characteristics

Applicable across operating temperature and power supply ranges as mentioned in Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol              | Parameter                                                           | Condition                                                                      | Spec guar by | Min   | Тур | Max  | Unit | Unique Identifier |
|---------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|-------|-----|------|------|-------------------|
| f <sub>I2C</sub>    | I <sup>2</sup> C clock frequency                                    | Fast mode                                                                      | ATE          | 0     |     | 400  | kHz  | FST-FRQ-PRIO1-001 |
| R <sub>PULLUP</sub> | I <sup>2</sup> C interface pull up<br>resistors on SCL/SDA<br>lines | System Requirement                                                             |              | 0.567 | 2.2 | 2.83 | kΩ   | FST-RES-PRIO1-002 |
| V <sub>IH</sub>     | High level input voltage                                            | Fast mode; 1.2 V pullup voltage                                                | ATE          | 0.92  |     |      | V    | FST-VOL-PRIO1-026 |
| V <sub>IL</sub>     | Low level input voltage                                             | Fast mode; 1.2 V pullup voltage                                                | ATE          | -0.3  |     | 0.28 | V    | FST-VOL-PRIO1-027 |
| V <sub>hys</sub>    | Hysteresis of Schmitt trigger inputs                                | Fast mode; 1.2 V pullup voltage                                                | Bench        | 60    |     |      | mV   | FST-VOL-PRIO1-028 |
| V <sub>OL</sub>     | Low level output voltage                                            | Fast mode, 2 mA sink current; I <sup>2</sup> C pullup voltage < 2 V            | ATE          | 0     |     | 0.36 | V    | FST-VOL-PRIO1-006 |
| I <sub>OL</sub>     | Low level output current                                            | Fast mode, V <sub>OL</sub> = 0.4 V;                                            | ATE          | 3     |     |      | mA   | FST-CUR-PRIO1-007 |
| I <sub>IL</sub>     | Low level input current                                             | Fast mode, Pin voltage = 0.1V <sub>PULLUP</sub> to 0.9V <sub>PULLUP, max</sub> | ATE          | -10   |     | 10   | uA   | FST-CUR-PRIO1-008 |
| Cı                  | Capacitance of I/O pins                                             | Fast mode                                                                      | Bench        |       |     | 10   | pF   | FST-CAP-PRIO1-009 |
| t <sub>HD,STA</sub> | Hold time (repeated-<br>START) condition                            | Fast mode                                                                      | ATE          | 0.6   |     |      | us   | FST-TIM-PRIO1-010 |

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

Table 35. Fast mode I<sup>2</sup>C characteristics...continued

Applicable across operating temperature and power supply ranges as mentioned in Recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol           | Parameter                                                              | Condition                                                   | Spec guar by | Min                   | Тур | Max | Unit | Unique Identifier |
|------------------|------------------------------------------------------------------------|-------------------------------------------------------------|--------------|-----------------------|-----|-----|------|-------------------|
| t <sub>LOW</sub> | Low period of I <sup>2</sup> C clock                                   | Fast mode                                                   | ATE          | 1.3                   |     |     | us   | FST-TIM-PRIO1-011 |
| HIGH             | High period of I <sup>2</sup> C clock                                  | Fast mode                                                   | ATE          | 0.6                   |     |     | us   | FST-TIM-PRIO1-012 |
| SU,STA           | Setup time (REPEAT)<br>START condition                                 | Fast mode                                                   | ATE          | 0.6                   |     |     | us   | FST-TIM-PRIO1-013 |
| HD, DAT          | Data hold time                                                         | Fast mode                                                   | ATE          | 0                     |     |     | us   | FST-TIM-PRIO1-014 |
| SU, DAT          | Data setup time                                                        | Fast mode                                                   | ATE          | 100                   |     |     | ns   | FST-TIM-PRIO1-015 |
| SU, STO          | Setup time for STOP condition                                          | Fast mode                                                   | ATE          | 0.6                   |     |     | us   | FST-TIM-PRIO1-016 |
| BUF              | Bus free time between<br>STOP and START<br>condition                   | Fast mode                                                   | ATE          | 1.3                   |     |     | us   | FST-TIM-PRIO1-017 |
| r                | Rise time of SCL/SDA signals                                           | Fast mode                                                   | Bench        | 20                    |     | 300 | ns   | FST-TIM-PRIO1-018 |
| t <sub>f</sub>   | Fall time of SCL/SDA signals                                           | Fast mode                                                   | Bench        | 20 x (VDD1V8/5.<br>5) |     | 300 | ns   | FST-TIM-PRIO1-019 |
| VD,DAT           | Data valid time                                                        | Fast mode                                                   | ATE          |                       |     | 0.9 | us   | FST-TIM-PRIO1-020 |
| VD,ACK           | Data valid acknowledge time                                            | Fast mode                                                   | ATE          |                       |     | 0.9 | us   | FST-TIM-PRIO1-021 |
| SP               | Pulse width of<br>spikes that must be<br>suppressed by input<br>filter | Fast mode                                                   | ATE          | 0                     |     | 50  | ns   | FST-TIM-PRIO1-022 |
| V <sub>nL</sub>  | Noise margin at the LOW level                                          | Fast mode, for each connected device (including hysteresis) | Bench        | 0.1                   |     |     | V    | FST-VOL-PRIO1-029 |
| $I_{nH}$         | Noise margin at the HIGH level                                         | Fast mode, for each connected device (including hysteresis) | Bench        | 0.2                   |     |     | V    | FST-VOL-PRIO1-030 |
| Сь               | Capacitive load for each bus line                                      | Fast mode, system requirement                               | System       |                       |     | 400 | pF   | FST-CAP-PRIO1-025 |

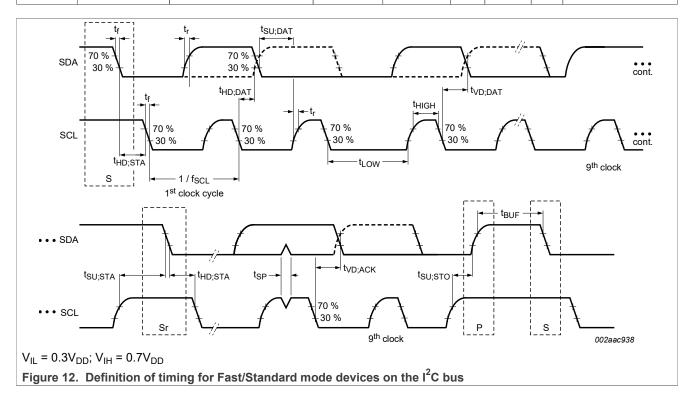



Table 36. Fast mode plus I<sup>2</sup>C characteristics

Applicable across operating temperature and power supply ranges as recommended operating conditions unless otherwise noted. Typical values are specified at 25 °C unless otherwise noted.

| Symbol               | Parameter                                                              | Condition                                                            | Spec guar by | Min                   | Тур | Max  | Unit | Unique Identifier    |
|----------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--------------|-----------------------|-----|------|------|----------------------|
| f <sub>I2C</sub>     | I <sup>2</sup> C clock frequency                                       | Fast mode plus                                                       | ATE          | 0                     |     | 1000 | kHz  | FMPLUS-FRQ-PRIO1-001 |
| R <sub>PULLUP</sub>  | I <sup>2</sup> C interface pull up resistors on SCL/SDA lines          | System Requirement                                                   |              | 0.567                 | 2.2 | 2.83 | kΩ   | FMPLUS-RES-PRIO1-002 |
| V <sub>IH</sub>      | High level input voltage                                               | Fast mode plus; 1.2 V pullup voltage                                 | ATE          | 0.92                  |     |      | V    | FMPLUS-VOL-PRIO1-026 |
| V <sub>IL</sub>      | Low level input voltage                                                | Fast mode plus; 1.2 V pullup voltage                                 | ATE          | -0.3                  |     | 0.28 | V    | FMPLUS-VOL-PRIO1-027 |
| V <sub>hys</sub>     | Hysteresis of Schmitt trigger inputs                                   | Fast mode plus; 1.2 V pullup voltage                                 | Bench        | 60                    |     |      | mV   | FMPLUS-VOL-PRIO1-028 |
| V <sub>OL</sub>      | Low level output voltage                                               | 2 mA sink current; I <sup>2</sup> C pullup voltage < 2 V             | ATE          | 0                     |     | 0.36 | V    | FMPLUS-VOL-PRIO1-006 |
| I <sub>OL</sub>      | Low level output current                                               | V <sub>OL</sub> = 0.4 V; Fast mode plus                              | ATE          | 20                    |     |      | mA   | FMPLUS-CUR-PRIO1-007 |
| I <sub>IL</sub>      | Low level input current                                                | Pin voltage = 0.1V <sub>PULLUP</sub> to 0.9V <sub>PULLUP</sub> , max | ATE          | -10                   |     | 10   | uA   | FMPLUS-CUR-PRIO1-008 |
| Cı                   | Capacitance of I/O pins                                                |                                                                      | Bench        |                       |     | 10   | pF   | FMPLUS-CAP-PRIO1-009 |
| t <sub>HD,STA</sub>  | Hold time (repeated-<br>START) condition                               | Fast mode plus                                                       | ATE          | 0.26                  |     |      | us   | FMPLUS-TIM-PRIO1-010 |
| t <sub>LOW</sub>     | Low period of I <sup>2</sup> C clock                                   | Fast mode plus                                                       | ATE          | 0.5                   |     |      | us   | FMPLUS-TIM-PRIO1-011 |
| t <sub>HIGH</sub>    | High period of I <sup>2</sup> C clock                                  | Fast mode plus                                                       | ATE          | 0.26                  |     |      | us   | FMPLUS-TIM-PRIO1-012 |
| t <sub>SU,STA</sub>  | Setup time (REPEAT)<br>START condition                                 | Fast mode plus                                                       | ATE          | 0.26                  |     |      | us   | FMPLUS-TIM-PRIO1-013 |
| t <sub>HD, DAT</sub> | Data hold time                                                         |                                                                      | ATE          | 0                     |     |      | us   | FMPLUS-TIM-PRIO1-014 |
| t <sub>SU, DAT</sub> | Data setup time                                                        | Fast mode plus                                                       | ATE          | 50                    |     |      | ns   | FMPLUS-TIM-PRIO1-015 |
| t <sub>SU, STO</sub> | Setup time for STOP condition                                          | Fast mode plus                                                       | ATE          | 0.26                  |     |      | us   | FMPLUS-TIM-PRIO1-016 |
| t <sub>BUF</sub>     | Bus free time between<br>STOP and START<br>condition                   | Fast mode plus                                                       | ATE          | 0.5                   |     |      | us   | FMPLUS-TIM-PRIO1-017 |
| t <sub>r</sub>       | Rise time of SCL/SDA signals                                           | Fast mode plus                                                       | Bench        | 0                     |     | 120  | ns   | FMPLUS-TIM-PRIO1-018 |
| t <sub>f</sub>       | Fall time of SCL/SDA signals                                           | Fast mode plus                                                       | Bench        | 20 x (VDD1V8/5.<br>5) |     | 120  | ns   | FMPLUS-TIM-PRIO1-019 |
| t <sub>VD,DAT</sub>  | Data valid time                                                        | Fast mode plus                                                       | ATE          |                       |     | 0.45 | us   | FMPLUS-TIM-PRIO1-020 |
| t <sub>VD,ACK</sub>  | Data valid acknowledge time                                            | Fast mode plus                                                       | ATE          |                       |     | 0.45 | us   | FMPLUS-TIM-PRIO1-021 |
| t <sub>SP</sub>      | Pulse width of<br>spikes that must be<br>suppressed by input<br>filter |                                                                      | ATE          | 0                     |     | 50   | ns   | FMPLUS-TIM-PRIO1-022 |
| V <sub>nL</sub>      | Noise margin at the LOW level                                          | Fast mode plus, for each connected device (including hysteresis)     | Bench        | 0.1                   |     |      | V    | FMPLUS-VOL-PRIO1-029 |
| V <sub>nH</sub>      | Noise margin at the HIGH level                                         | Fast mode plus, for each connected device (including hysteresis)     | Bench        | 0.2                   |     |      | V    | FMPLUS-VOL-PRIO1-030 |
| Сь                   | Capacitive load for each bus line                                      | System Requirement                                                   |              |                       |     | 400  | pF   | FMPLUS-CAP-PRIO1-025 |

# 12.4 ADDR pin characteristics

#### Table 37. ADDR characteristics

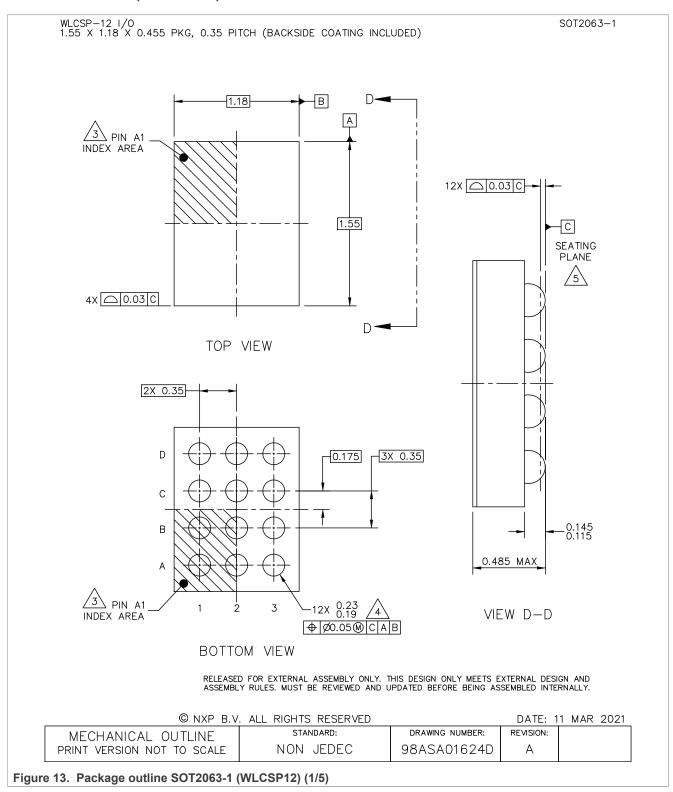
| Symbol           | Parameter                | Condition                                      | Spec guar by | Min               | Тур | Max               | Unit | Unique Identifier |  |
|------------------|--------------------------|------------------------------------------------|--------------|-------------------|-----|-------------------|------|-------------------|--|
| V <sub>IH1</sub> | High level input voltage | Pin connected to VDD1V8                        | ATE          | 0.9 x<br>VDD1V8   |     | VDD1V8+0.<br>3    | V    | QAT-VOL-PRIO1-001 |  |
| V <sub>IH2</sub> | High level input voltage | Rext = 56 kΩ (10 % resistor) pullup to VDD1V8  | ATE          | 0.575 x<br>VDD1V8 |     | 0.725 x<br>VDD1V8 | V    | QAT-VOL-PRIO1-009 |  |
| V <sub>IM</sub>  | High level input voltage | Rext = 200 kΩ (10 % resistor) pullup to VDD1V8 | ATE          | 0.275 x<br>VDD1V8 |     | 0.425 x<br>VDD1V8 | V    | QAT-VOL-PRIO1-010 |  |
| V <sub>IL</sub>  | Low level input voltage  | Pin connected to GND                           | ATE          |                   |     | 0.1 x<br>VDD1V8   | V    | QAT-VOL-PRIO1-002 |  |

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

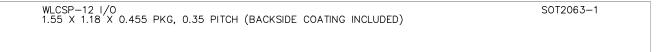
Table 37. ADDR characteristics...continued

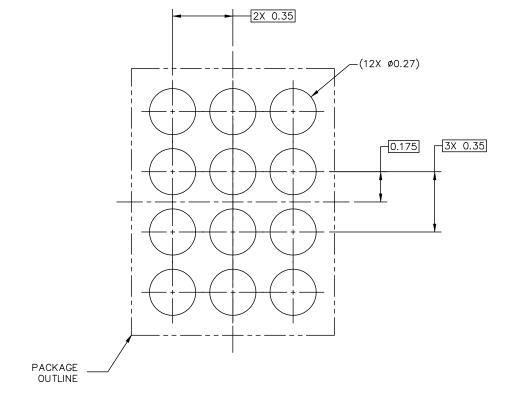
| Symbol              | Parameter                                  | Condition                                           | Spec guar by | Min | Тур | Max | Unit | Unique Identifier |
|---------------------|--------------------------------------------|-----------------------------------------------------|--------------|-----|-----|-----|------|-------------------|
| I <sub>bckcur</sub> | Back current on pin when there is no power | VDD1V8=0<br>(no power supply to<br>RST_N Input pad) | ATE          |     |     | 1   | μΑ   | QAT-CUR-PRIO1-003 |
| I <sub>IL</sub>     | Pin Leakage current                        | Pin connected directly to GND                       | ATE          |     |     | 5   | μА   | QAT-CUR-PRIO1-004 |
| Cpin                | Pin capacitance                            |                                                     | Bench        |     |     | 10  | pF   | QAT-CAP-PRIO1-007 |
| Rpd                 | Internal pulldown resistor                 |                                                     | ATE          | 86  | 105 | 122 | kΩ   | QAT-RES-PRIO1-008 |


# 12.5 RST\_N pin characteristics

#### Table 38. RST\_N characteristics

| Symbol                | Parameter                                  | Condition                                           | Spec guar by | Min  | Тур | Max  | Unit | Unique Identifier |
|-----------------------|--------------------------------------------|-----------------------------------------------------|--------------|------|-----|------|------|-------------------|
| V <sub>IH</sub>       | High level input voltage                   | 1.2 V IO operation                                  | ATE          | 0.92 |     |      | V    | BIN-VOL-PRIO1-007 |
| V <sub>IL</sub>       | Low level input voltage                    | 1.2 V IO operation                                  | ATE          |      |     | 0.28 | V    | BIN-VOL-PRIO1-008 |
| I <sub>bckcur</sub>   | Back current on pin when there is no power | VDD1V8=0<br>(no power supply to<br>RST_N Input pad) | ATE          |      |     | 1    | uA   | BIN-CUR-PRIO1-003 |
| I <sub>IL</sub>       | Pin Leakage current                        | Pin connected directly to GND                       | ATE          |      |     | 5    | uA   | BIN-CUR-PRIO1-004 |
| t <sub>RST_N_SP</sub> | Minimum De-glitch duration                 |                                                     | Bench        | 200  |     |      | ns   | BIN-TIM-PRIO1-005 |
| C <sub>pin</sub>      | Pin capacitance                            |                                                     | Bench        |      |     | 10   | pF   | BIN-CAP-PRIO1-006 |


# 13 Package outline


# 13.1 SOT2063-1 (WLCSP12)



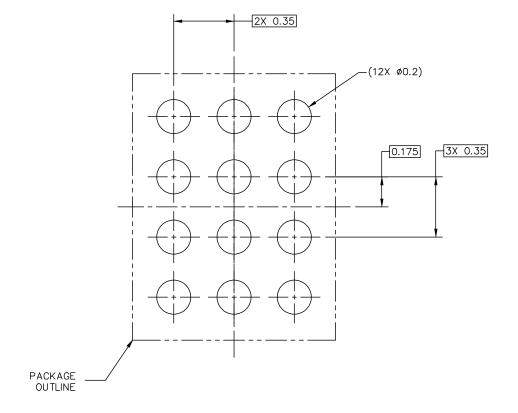
PTN3222EUI

All information provided in this document is subject to legal disclaimers.





#### PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN


THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| © NXP B.V                  | . ALL RIGHTS RESERVED |                 | DATE: 1   | 1 MAR 2021 |
|----------------------------|-----------------------|-----------------|-----------|------------|
| MECHANICAL OUTLINE         | STANDARD:             | DRAWING NUMBER: | REVISION: |            |
| PRINT VERSION NOT TO SCALE | NON JEDEC             | 98ASA01624D     | Α         |            |

Figure 14. Package outline SOT2063-1 (WLCSP12) (2/5)

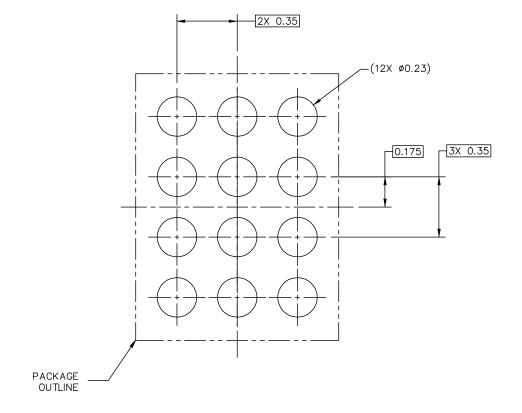
WLCSP-12 I/O  $1.55 \times 1.18 \times 0.455$  PKG, 0.35 PITCH (BACKSIDE COATING INCLUDED)

SOT2063-1



# PCB DESIGN GUIDELINES - I/O PADS AND SOLDERABLE AREA

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.


© NXP B.V. ALL RIGHTS RESERVED

DATE: 11 MAR 2021

| MECHANICAL OUTLINE         | STANDARD: | DRAWING NUMBER: | REVISION: |  |
|----------------------------|-----------|-----------------|-----------|--|
| PRINT VERSION NOT TO SCALE | NON JEDEC | 98ASA01624D     | А         |  |

Figure 15. Package outline SOT2063-1 (WLCSP12) (3/5)





RECOMMENDED STENCIL THICKNESS 0.08

PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| © NXP B.V                  |           | DATE: 1         | 1 MAR 2021 |  |
|----------------------------|-----------|-----------------|------------|--|
| MECHANICAL OUTLINE         | STANDARD: | DRAWING NUMBER: | REVISION:  |  |
| PRINT VERSION NOT TO SCALE | NON JEDEC | 98ASA01624D     | Α          |  |

Figure 16. Package outline SOT2063-1 (WLCSP12) (4/5)

WLCSP-12 I/O 1.55  $\times$  1.18  $\times$  0.455 PKG, 0.35 PITCH (BACKSIDE COATING INCLUDED)

S0T2063-1

#### NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. PIN A1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4. Maximum solder ball diameter measured parallel to datum c. 5. Datum c, the seating plane, is determined by the spherical crowns of the solder balls.

6. THIS PACKAGE HAS A BACK SIDE COATING THICKNESS OF 0.025.

© NXP B.V. ALL RIGHTS RESERVED

DATE: 11 MAR 2021

| MECHANICAL OUTLINE         | STANDARD: | DRAWING NUMBER: | REVISION: |  |
|----------------------------|-----------|-----------------|-----------|--|
| PRINT VERSION NOT TO SCALE | NON JEDEC | 98ASA01624D     | А         |  |

Figure 17. Package outline SOT2063-1 (WLCSP12) (5/5)

# 13.2 UBM stack-up information

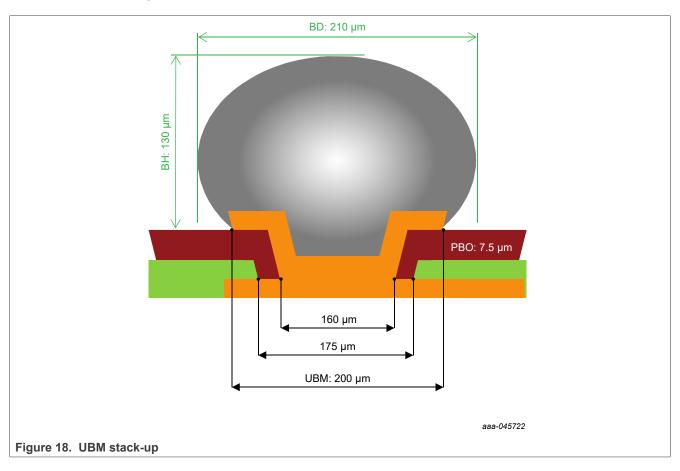



Table 39. UBM stack-up parameters

| Parameter                    | Description (typical)     |
|------------------------------|---------------------------|
| Package size                 | 1.55mm x 1.18mm x 0.455mm |
| Ball matrix                  | 4 x 3                     |
| Ball pitch                   | 350um                     |
| Ball diameter (after reflow) | 210um                     |
| Ball height (after reflow)   | 130um                     |

# 14 Packing information

14.1 SOT2063-1 WLCSP12, wafer level chip scale package, 12 terminals, 0.35 mm pitch, 1.55 mm x 1.18 mm x 0.455 mm body (backside coating included)

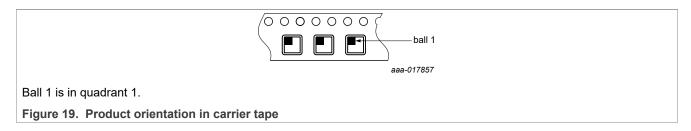
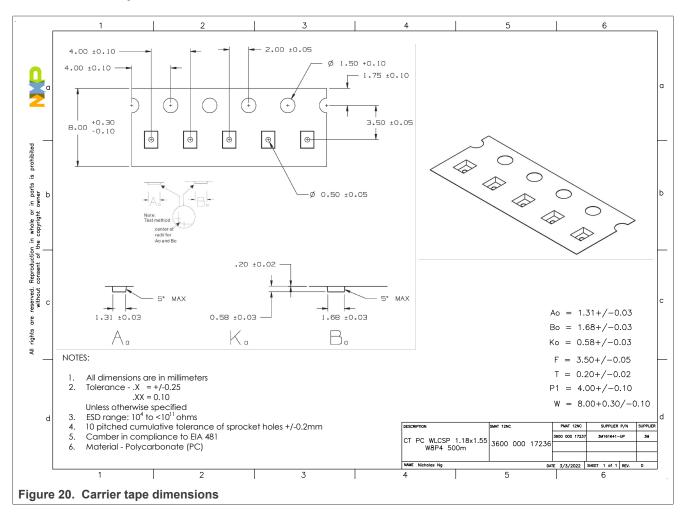

## 14.1.1 Dimensions and quantities

Table 40. Dimension and quantities


| Reel dimensions<br>d x w (mm) <sup>[1]</sup> | SPQ/PQ (pcs) | Reels per box |
|----------------------------------------------|--------------|---------------|
| 330 x 8                                      | 8000         | 1             |

[1] d = reel diameter; w = tape width

#### 14.1.2 Product orientation



## 14.1.3 Carrier tape dimensions



# 15 Abbreviations

#### Table 41. Abbreviations

| Acronym | Description                                      |
|---------|--------------------------------------------------|
| AFE     | Analog Front End                                 |
| CDM     | Charged Device Model                             |
| НВМ     | Human Body Model                                 |
| TX      | Transmitter                                      |
| RX      | Receiver                                         |
| eUSB    | Embedded USB                                     |
| LS      | Low Speed mode of USB2 specification (1.5 Mbps)  |
| FS      | Full Speed mode of USB2 specification (12 Mbps)  |
| HS      | High Speed mode of USB2 specification (480 Mbps) |
| SE0     | Single Ended Zero                                |
| SE1     | Single Ended One                                 |
| DSP     | Downstream port                                  |
| USP     | Upstream port                                    |
| SE      | Single Ended                                     |
| SI      | Signal Integrity                                 |
| EQ      | Equalization                                     |
| LPM     | Link Power Management                            |
| ESE1    | Extended SE1                                     |
| SCM     | Start of Control Message                         |
| СМ      | Control Message                                  |
| RAP     | Register Access Protocol                         |
| DRD     | Dual Role Device                                 |
| SOP     | Start of Packet                                  |
| EOP     | End of Packet                                    |

# 16 References

| [1] | <u>UM10204</u>                                                  | _ | I <sup>2</sup> C-bus specification and user manual, NXP Semiconductors                                                                     |
|-----|-----------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|
| [2] | USB-IF organization document repository for eUSB2 specification | _ | Embedded USB2 Physical Layer Supplement to USB Revision 2.0 specification, Revision 1.1, November 3, 2018                                  |
| [3] | USB-IF organization document repository for USB2 specification  | _ | Universal Serial Bus Specification, Rev 2.0, April 27, 2000 and approved ECNs as per USB2.0 document package release (usb_20_20190524.zip) |
| [4] | USB BC1.2 specification                                         | _ | USB Battery Charging (BC1.2) specification from USB-IF                                                                                     |

**PTN3222EUK** 

eUSB2 to USB2 redriver with 1.2 V IO

# 17 Revision history

## **Revision history**

| Document ID      | Release Date     | Description                                                                             |
|------------------|------------------|-----------------------------------------------------------------------------------------|
| PTN3222EUK v1.1  | 1 December 2023  | Changed "PTN3222" to "PTN3222EUK" in document header; removed underscore in document ID |
| PTN3222_EUK v1.0 | 23 February 2023 | Initial version                                                                         |

# Legal information

#### Data sheet status

| Document status <sup>[1][2]</sup> | Product status <sup>[3]</sup> | Definition                                                                            |
|-----------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet      | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet    | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet        | Production                    | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="https://www.nxp.com">https://www.nxp.com</a>.

#### **Definitions**

**Draft** — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PTN3222EUK

All information provided in this document is subject to legal disclaimers.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <a href="PSIRT@nxp.com">PSIRT@nxp.com</a>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

**NXP B.V.** — NXP B.V. is not an operating company and it does not distribute or sell products.

#### **Trademarks**

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

# **PTN3222EUK**

# eUSB2 to USB2 redriver with 1.2 V IO

# **Tables**

| Tab 1        | Ordering information                           | Tab 21   | Register OvOD - DAD Signature       | 20 |
|--------------|------------------------------------------------|----------|-------------------------------------|----|
| Tab. 1.      | Ordering information                           | Tab. 21. | Register 0x0D – RAP Signature       |    |
| Tab. 2.      | Ordering options                               | Tab. 22. | Register 0x0E – VDX_CONTROL         |    |
| Tab. 3.      | Top side marking                               | Tab. 23. | Register 0x0F – DEVICE STATUS       |    |
| Tab. 4.      | Pin description                                | Tab. 24. | Register 0x10 – LINK STATUS         |    |
| Tab. 5.      | Status of design blocks in different power     | Tab. 25. | Register 0x13 – REVISION_ID         |    |
| T-1- 0       | modes5                                         | Tab. 26. | Register 0x14 – CHIP_ID_0           |    |
| Tab. 6.      | PTN3222 target address definition8             | Tab. 27. | Register 0x15 – CHIP_ID_1           |    |
| Tab. 7.      | Register type definitions11                    | Tab. 28. | Register 0x16 – CHIP_ID_2           |    |
| Tab. 8.      | Register overview12                            | Tab. 29. | Limiting values                     |    |
| Tab. 9.      | Register 0x00 – Reserved                       | Tab. 30. | Operating conditions                |    |
| Tab. 10.     | Register 0x01 – RESET CONTROL13                | Tab. 31. | Thermal resistance                  |    |
| Tab. 11.     | Register 0x02 – LINK CONTROL 1 13              | Tab. 32. | Device characteristics              |    |
| Tab. 12.     | Register 0x03 – LINK CONTROL 2 14              | Tab. 33. | USB2 and eUSB2 characteristics      |    |
| Tab. 13.     | Register 0x04 – eUSB2 RX CONTROL 15            | Tab. 34. | Standard mode I2C characteristics   |    |
| Tab. 14.     | Register 0x05 – eUSB2 TX CONTROL15             | Tab. 35. | Fast mode I2C characteristics       |    |
| Tab. 15.     | Register 0x06 – USB2 RX CONTROL16              | Tab. 36. | Fast mode plus I2C characteristics  |    |
| Tab. 16.     | Register 0x07 – USB2 TX CONTROL 117            | Tab. 37. | ADDR characteristics                |    |
| Tab. 17.     | De-emphasis level to USB2 Tx output            | Tab. 38. | RST_N characteristics               |    |
|              | swing level18                                  | Tab. 39. | UBM stack-up parameters             | 38 |
| Tab. 18.     | Register 0x08 – USB2 TX CONTROL 219            | Tab. 40. | Dimension and quantities            | 39 |
| Tab. 19.     | Register 0x09 – USB2 HS TERMINATION19          | Tab. 41. | Abbreviations                       | 41 |
| Tab. 20.     | Register 0x0A – USB2 HS DISCONNECT             |          |                                     |    |
|              | THRESHOLD20                                    |          |                                     |    |
| Figur        | es                                             |          |                                     |    |
| Fig. 1.      | Functional block diagram                       | Fig. 13. | Package outline SOT2063-1 (WLCSP12) |    |
| Fig. 2.      | PTN3222 WLCSP pinning (transparent top         | F: 44    | (1/5)                               | 33 |
| <b>-</b> : 0 | view)4                                         | Fig. 14. | Package outline SOT2063-1 (WLCSP12) |    |
| Fig. 3.      | PTN3222 role transition6                       |          | (2/5)                               | 34 |
| Fig. 4.      | PTN3222 as eUSB2 Host repeater6                | Fig. 15. | Package outline SOT2063-1 (WLCSP12) |    |
| Fig. 5.      | PTN3222 as eUSB2 Peripheral repeater 6         |          | (3/5)                               | 35 |
| Fig. 6.      | Writing one or more consecutive registers 8    | Fig. 16. | Package outline SOT2063-1 (WLCSP12) |    |
| Fig. 7.      | Reading one or more consecutive registers9     |          | (4/5)                               | 36 |
| Fig. 8.      | Use case 1 – Direct interfacing9               | Fig. 17. | Package outline SOT2063-1 (WLCSP12) |    |
| Fig. 9.      | Use case 2 – Interfacing via Protection IC 10  |          | (5/5)                               |    |
| Fig. 10.     | Use case 3 – Interfacing via passive switch 10 | Fig. 18. | UBM stack-up                        |    |
| Fig. 11.     | Difference between pre-emphasis and de-        | Fig. 19. | Product orientation in carrier tape |    |
|              | emphasis functions18                           | Fig. 20. | Carrier tape dimensions             | 40 |
| Fig. 12.     | Definition of timing for Fast/Standard mode    |          |                                     |    |
|              | devices on the I2C bus30                       |          |                                     |    |

# **Contents**

| 1        | General description                      |          |
|----------|------------------------------------------|----------|
| 2        | Features and benefits                    |          |
| 3        | Applications                             | 2        |
| 4        | Ordering information                     |          |
| 4.1      | Ordering options                         |          |
| 4.2      | Top side marking                         |          |
| 5        | Functional diagram                       |          |
| 6        | Pinning information                      |          |
| 6.1      | Pinning                                  |          |
| 6.2      | Pin description                          |          |
| 7        | Functional description                   |          |
| 7.1      | Reset                                    |          |
| 7.2      | Operating modes                          |          |
| 7.3      | eUSB2 repeater                           | 5        |
| 7.3.1    | Over-Voltage Protection on USB2 DP/DN    |          |
|          | pins                                     |          |
| 7.4      | BC1.2 support                            |          |
| 7.5      | I2C operation                            |          |
| 7.5.1    | I2C target address                       |          |
| 7.5.2    | Example of writing one or more registers |          |
| 7.5.3    | Example of reading one or more registers |          |
| 8        | System application                       |          |
| 8.1      | Use cases                                |          |
| 8.2      | Power supply requirement                 | 10       |
| 8.3      | Ground requirement                       | 10       |
| 8.4      | ESD requirements                         |          |
| 9        | Register set                             |          |
| 9.1      | Register overview                        | 12       |
| 9.2      | I2C registers and descriptions           |          |
| 9.2.1    | Functional registers                     | 12       |
| 10       | Limiting values                          | 23       |
| 11       | Recommended operating conditions         | 23       |
| 12       | Characteristics                          |          |
| 12.1     | Device characteristics                   |          |
| 12.2     | USB2 and eUSB2 characteristics           |          |
| 12.3     | I2C dynamic/static characteristics       | 28       |
| 12.4     | ADDR pin characteristics                 |          |
| 12.5     | RST_N pin characteristics                |          |
| 13       | Package outline                          | 33       |
| 13.1     | SOT2063-1 (WLCSP12)                      |          |
| 13.2     | UBM stack-up information                 |          |
| 14       | Packing information                      | 39       |
| 14.1     | SOT2063-1 WLCSP12, wafer level chip      |          |
|          | scale package, 12 terminals, 0.35 mm     |          |
|          | pitch, 1.55 mm x 1.18 mm x 0.455 mm      | 00       |
| 4444     | body (backside coating included)         |          |
| 14.1.1   | Dimensions and quantities                |          |
| 14.1.2   | Product orientation                      |          |
| 14.1.3   | Carrier tape dimensions                  | 40       |
| 15<br>16 | AbbreviationsReferences                  |          |
| 16<br>47 |                                          |          |
| 17       | Revision history                         | 43<br>44 |
|          | regar information                        | 44       |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.