TDA8543
2 W BTL audio amplifier

Product specification

1997 Jun 12
2 W BTL audio amplifier

FEATURES
• Flexibility in use
• Few external components
• Low saturation voltage of output stage
• Gain can be fixed with external resistors
• Standby mode controlled by CMOS compatible levels
• Low standby current
• No switch-on/switch-off plops
• High supply voltage ripple rejection
• Protected against electrostatic discharge
• Outputs short-circuit safe to ground, V_{CC} and across the load
• Thermally protected.

GENERAL DESCRIPTION
The TDA8543(T) is a one channel audio power amplifier for an output power of 2 W with an 8 Ω load at a 7.5 V supply. The circuit contains a BTL amplifier with a complementary PNP-NPN output stage and standby/mute logic. The TDA8543T comes in a 16 pin SO package and the TDA8543 in a 16 pin DIP package.

APPLICATIONS
• Portable consumer products
• Personal computers
• Telephony.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>supply voltage</td>
<td></td>
<td>2.2</td>
<td>5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>I_q</td>
<td>quiescent current</td>
<td>$V_{CC} = 5 , V$</td>
<td>–</td>
<td>8</td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>I_{stb}</td>
<td>standby current</td>
<td></td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>P_o</td>
<td>output power</td>
<td>THD = 10%</td>
<td>1</td>
<td>1.2</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 8 , \Omega; , V_{CC} = 5 , V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 8 , \Omega; , V_{CC} = 7.5 , V$</td>
<td>–</td>
<td>2.2</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 16 , \Omega; , V_{CC} = 9 , V$</td>
<td>–</td>
<td>2.0</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td>THD</td>
<td>total harmonic distortion</td>
<td>$P_o = 0.5 , W$</td>
<td>–</td>
<td>0.15</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>SVRR</td>
<td>supply voltage ripple rejection</td>
<td></td>
<td>50</td>
<td>–</td>
<td>–</td>
<td>dB</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDA8543T</td>
<td>SO16 plastic small outline package; 16 leads; body width 3.9 mm</td>
</tr>
<tr>
<td>TDA8543</td>
<td>DIP16 plastic dual in-line package; 16 leads (300 mil); long body</td>
</tr>
</tbody>
</table>
2 W BTL audio amplifier

TDA8543

BLOCK DIAGRAM

Fig.1 Block diagram.

PINNING

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.c.</td>
<td>1</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>2</td>
<td>not connected</td>
</tr>
<tr>
<td>MODE</td>
<td>3</td>
<td>operating mode select (standby, mute, operating)</td>
</tr>
<tr>
<td>SVR</td>
<td>4</td>
<td>half supply voltage, decoupling ripple rejection</td>
</tr>
<tr>
<td>IN+</td>
<td>5</td>
<td>positive input</td>
</tr>
<tr>
<td>IN−</td>
<td>6</td>
<td>negative input</td>
</tr>
<tr>
<td>n.c.</td>
<td>7</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>8</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>9</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>10</td>
<td>not connected</td>
</tr>
<tr>
<td>OUT−</td>
<td>11</td>
<td>negative loudspeaker terminal</td>
</tr>
<tr>
<td>VCC</td>
<td>12</td>
<td>supply voltage</td>
</tr>
<tr>
<td>GND</td>
<td>13</td>
<td>ground</td>
</tr>
<tr>
<td>OUT+</td>
<td>14</td>
<td>positive loudspeaker terminal</td>
</tr>
<tr>
<td>n.c.</td>
<td>15</td>
<td>not connected</td>
</tr>
<tr>
<td>n.c.</td>
<td>16</td>
<td>not connected</td>
</tr>
</tbody>
</table>

Fig.2 Pin configuration.
2 W BTL audio amplifier

FUNCTIONAL DESCRIPTION
The TDA8543(T) is a BTL audio power amplifier capable of delivering an output power between 1 and 2 W, depending on supply voltage, load resistance and package. Using the MODE pin the device can be switched to standby and mute condition. The device is protected by an internal thermal shutdown protection mechanism.

The gain can be set within a range from 6 dB to 30 dB by external feedback resistors.

Power amplifier
The power amplifier is a Bridge Tied Load (BTL) amplifier with a complementary PNP-NPN output stage.

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>supply voltage</td>
<td>operating</td>
<td>-0.3</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>V1</td>
<td>input voltage</td>
<td></td>
<td>-0.3</td>
<td>VCC + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>IORM</td>
<td>repetitive peak output current</td>
<td></td>
<td>1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Tstg</td>
<td>storage temperature</td>
<td>non-operating</td>
<td>-55</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Tamb</td>
<td>operating ambient temperature</td>
<td></td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Vpsc</td>
<td>AC and DC short-circuit safe voltage</td>
<td></td>
<td>10</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Ptot</td>
<td>total power dissipation</td>
<td>SO16</td>
<td></td>
<td>1.2</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIP16</td>
<td></td>
<td>2.2</td>
<td>W</td>
</tr>
</tbody>
</table>

QUALITY SPECIFICATION
In accordance with “SNW-FQ-611-E”. The number of the quality specification can be found in the “Quality Reference Handbook”. The handbook can be ordered using the code 9397 750 00192.

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rthj-a</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air</td>
<td>100</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td>TDA8543T (SO16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDA8543 (DIP16)</td>
<td></td>
<td>55</td>
<td>K/W</td>
</tr>
</tbody>
</table>
2 W BTL audio amplifier

Table 1

<table>
<thead>
<tr>
<th>VCC (V)</th>
<th>RL (Ω)</th>
<th>P0 (W)(1)</th>
<th>CONTINUOUS SINE WAVE DRIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pmax (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SO16</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>7.5</td>
<td>8</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>7.5</td>
<td>16</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>2.0</td>
<td>1.3</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>1.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Note
1. At THD = 10%; BTL.

Fig.3 Power derating curve.
DC CHARACTERISTICS

\(V_{CC} = 5 \text{ V}; \ T_{amb} = 25 ^\circ \text{C}; \ R_L = 8 \ \Omega; \ V_{MODE} = 0 \ \text{V}; \ G = 20 \ \text{dB}; \) measured in test circuit Fig.4; unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>supply voltage</td>
<td>operating</td>
<td>2.2</td>
<td>5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>(I_q)</td>
<td>quiescent current</td>
<td>(R_L = \infty;) note 1</td>
<td>–</td>
<td>8</td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{stb}})</td>
<td>standby current</td>
<td>(V_{MODE} = V_{CC})</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(V_O)</td>
<td>DC output voltage</td>
<td>note 2</td>
<td>–</td>
<td>2.2</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>(</td>
<td>V_{\text{OUT+}} - V_{\text{OUT-}}</td>
<td>)</td>
<td>differential output voltage offset</td>
<td>–</td>
<td>–</td>
<td>50</td>
</tr>
<tr>
<td>(I_{\text{IN+}}, I_{\text{IN-}})</td>
<td>input bias current</td>
<td>–</td>
<td>–</td>
<td>500</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>(V_{MODE})</td>
<td>input voltage mode select</td>
<td>operating</td>
<td>0</td>
<td>–</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mute</td>
<td>1.5</td>
<td>–</td>
<td>(V_{CC} - 1.5 \text{ V})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>standby</td>
<td>(V_{CC} - 0.5)</td>
<td>–</td>
<td>(V_{CC})</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{MODE}})</td>
<td>input current mode select</td>
<td>(0 < V_{MODE} < V_{CC})</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>(\mu \text{A})</td>
</tr>
</tbody>
</table>

Notes
1. With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the DC output offset voltage divided by \(R_L \).
2. The DC output voltage with respect to ground is approximately \(0.5 \times V_{CC} \).

AC CHARACTERISTICS

\(V_{CC} = 5 \text{ V}; \ T_{amb} = 25 ^\circ \text{C}; \ R_L = 8 \ \Omega; \ f = 1 \ \text{kHz}; \ V_{MODE} = 0 \ \text{V}; \ G = 20 \ \text{dB}; \) measured in test circuit Fig.4; unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_o)</td>
<td>output power</td>
<td>THD = 10%;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 5 \text{ V}; \ R_L = 8 \ \Omega)</td>
<td>1</td>
<td>1.2</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 7.5 \text{ V}; \ R_L = 8 \ \Omega)</td>
<td>–</td>
<td>2.2</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 9 \text{ V}; \ R_L = 16 \ \Omega)</td>
<td>–</td>
<td>2.0</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>THD = 0.5%;</td>
<td>(V_{CC} = 5 \text{ V}; \ R_L = 8 \ \Omega)</td>
<td>0.6</td>
<td>0.9</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 7.5 \text{ V}; \ R_L = 8 \ \Omega)</td>
<td>–</td>
<td>1.7</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 9 \text{ V}; \ R_L = 16 \ \Omega)</td>
<td>–</td>
<td>1.4</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td>(\text{THD})</td>
<td>total harmonic distortion</td>
<td>(P_o = 0.5 \text{ W})</td>
<td>–</td>
<td>0.15</td>
<td>0.3</td>
<td>%</td>
</tr>
<tr>
<td>(G_v)</td>
<td>closed loop voltage gain</td>
<td>note 1</td>
<td>6</td>
<td>–</td>
<td>30</td>
<td>dB</td>
</tr>
<tr>
<td>(Z_i)</td>
<td>differential input impedance</td>
<td>note 1</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>k\Omega</td>
</tr>
<tr>
<td>(V_{no})</td>
<td>noise output voltage</td>
<td>note 2</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>(\mu \text{V})</td>
</tr>
<tr>
<td>SVRR</td>
<td>supply voltage ripple rejection</td>
<td>note 3</td>
<td>50</td>
<td>–</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>note 4</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>(V_o)</td>
<td>output voltage in mute condition</td>
<td>note 5</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>(\mu \text{V})</td>
</tr>
</tbody>
</table>
Notes to the AC characteristics

1. Gain of the amplifier is \(2 \times \frac{R_2}{R_1} \) in test circuit of Fig.4.

2. The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a source impedance of \(R_S = 0 \, \Omega \) at the input.

3. Supply voltage ripple rejection is measured at the output, with a source impedance of \(R_S = 0 \, \Omega \) at the input. The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.

4. Supply voltage ripple rejection is measured at the output, with a source impedance of \(R_S = 0 \, \Omega \) at the input. The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.

5. Output voltage in mute position is measured with an input voltage of 1 V (RMS) in a bandwidth of 20 kHz, so including noise.

TEST AND APPLICATION INFORMATION

Test conditions

Because the application can be either Bridge Tied Load (BTL) or Single-Ended (SE), the curves of each application are shown separately.

The thermal resistance = 55 K/W for the DIP16 envelope; the maximum sine wave power dissipation for \(T_{\text{amb}} = 25 \, ^\circ \text{C} \) is:

\[
\frac{150 - 25}{55} = 2.27 \, \text{W}
\]

For \(T_{\text{amb}} = 60 \, ^\circ \text{C} \) the maximum total power dissipation is:

\[
\frac{150 - 60}{55} = 1.63 \, \text{W}
\]

See the power derating curve illustrated in Fig.3.

BTL application

\(T_{\text{amb}} = 25 \, ^\circ \text{C} \) if not specially mentioned, \(V_{\text{CC}} = 5 \, \text{V} \), \(f = 1 \, \text{kHz} \), \(R_L = 8 \, \Omega \), \(G_v = 20 \, \text{dB} \), audio band-pass 22 Hz to 22 kHz.

The BTL application diagram is shown in Fig.4.

The quiescent current has been measured without any load impedance. The total harmonic distortion as a function of frequency was measured with a low-pass filter of 80 kHz. The value of capacitor C2 influences the behaviour of the SVRR at low frequencies, increasing the value of C2 increases the performance of the SVRR.

General remark

The frequency characteristic can be adapted by connecting a small capacitor across the feedback resistor. To improve the immunity of HF radiation in radio circuit applications, a small capacitor can be connected in parallel with the feedback resistor; this creates a low-pass filter.
BTL APPLICATION

Gain = \(2 \times \frac{R_2}{R_1} \)

Fig. 4 BTL application.

Fig. 5 \(I_q \) as a function of \(V_{CC} \).

Fig. 6 THD as a function of \(P_o \).

RL = \(\infty \).

f = 1 kHz, \(G_v = 20 \text{ dB} \).

1. \(V_{CC} = 5 \text{ V}, R_L = 8 \Omega \).
2. \(V_{CC} = 7.5 \text{ V}, R_L = 8 \Omega \).
3. \(V_{CC} = 9 \text{ V}, R_L = 16 \Omega \).
2 W BTL audio amplifier

TDA8543

Fig. 7 THD as a function of frequency.

\[
\text{THD} = 10\%.
\]

1. \(V_{CC} = 5\ V, R_L = 8\ \Omega\).
2. \(V_{CC} = 7.5\ V, R_L = 8\ \Omega\).
3. \(V_{CC} = 9\ V, R_L = 16\ \Omega\).

Fig. 8 SVRR as a function of frequency.

\[
\text{SVRR} = 20\ \text{dB}.
\]

1. \(V_{CC} = 5\ V, 8\ \Omega, R_s = 0\ \Omega, V_r = 100\ \text{mV}.
2. \(G_v = 30\ \text{dB}.
3. \(G_v = 20\ \text{dB}.
4. \(G_v = 6\ \text{dB}.

Fig. 9 \(P_o\) as a function of \(V_{CC}\).

\[
\begin{align*}
P_o &= 0.5\ W, G_v = 20\ \text{dB}.
\end{align*}
\]

1. \(V_{CC} = 5\ V, R_L = 8\ \Omega\).
2. \(V_{CC} = 7.5\ V, R_L = 8\ \Omega\).
3. \(V_{CC} = 9\ V, R_L = 16\ \Omega\).

Fig. 10 Worst case power dissipation as a function of \(V_{CC}\).

\[
\begin{align*}
P &= 2\ W
\end{align*}
\]

1. \(R_L = 8\ \Omega\).
2. \(R_L = 16\ \Omega\).
3. \(R_L = 25\ \Omega\).
2 W BTL audio amplifier

Fig. 11 P as a function of P_o.

Sine wave of 1 kHz.
(1) $V_{CC} = 9$ V, $R_L = 16$ Ω.
(2) $V_{CC} = 5$ V, $R_L = 8$ Ω.
(3) $V_{CC} = 7.5$ V, $R_L = 8$ Ω.

Fig. 12 V_o as a function of V_{ms}.

Band-pass = 22 Hz to 22 kHz.
(1) $V_{CC} = 3$ V.
(2) $V_{CC} = 5$ V.
(3) $V_{CC} = 12$ V.

Fig. 13 V_{ms} as a function of V_P.

Band-pass = 22 Hz to 22 kHz.
(1) $V_{CC} = 3$ V.
(2) $V_{CC} = 5$ V.
(3) $V_{CC} = 12$ V.

1997 Jun 12
SE APPLICATION

Fig. 14 SE application.

Fig. 15 THD as a function of P_o.

\[f = 1 \text{ kHz}, \quad G_v = 20 \text{ dB}. \]

(1) $V_{CC} = 7.5 \text{ V}, \quad R_L = 4 \text{ } \Omega$.

(2) $V_{CC} = 9 \text{ V}, \quad R_L = 8 \text{ } \Omega$.

(3) $V_{CC} = 12 \text{ V}, \quad R_L = 16 \text{ } \Omega$.

Fig. 16 THD as a function of frequency.

$P_o = 0.5 \text{ W}, \quad G_v = 20 \text{ dB}$.

(1) $V_{CC} = 7.5 \text{ V}, \quad R_L = 4 \text{ } \Omega$.

(2) $V_{CC} = 9 \text{ V}, \quad R_L = 8 \text{ } \Omega$.

(3) $V_{CC} = 12 \text{ V}, \quad R_L = 16 \text{ } \Omega$.

Gain $= \frac{R_2}{R_1}$
NXP Semiconductors
Product specification

2 W BTL audio amplifier TDA8543

V_{CC} = 7.5 V, R_L = 4 \Omega, R_s = 0 \Omega, V_i = 100mV.
(1) G_v = 24 dB.
(2) G_v = 20 dB.
(3) G_v = 0 dB.

Fig.17 SVRR as a function of frequency.

V_{CC} = 7.5 V, R_L = 4 \Omega.
(1) THD = 10%, R_L = 4 \Omega.
(2) THD = 10%, R_L = 8 \Omega.
(3) THD = 10%, R_L = 16 \Omega.

Fig.18 P_o as a function of V_{CC}.

(1) R_L = 4 \Omega.
(2) R_L = 8 \Omega.
(3) R_L = 16 \Omega.

Fig.19 Worst case power dissipation as a function of V_{CC}.

(1) V_{CC} = 7.5 V, R_L = 4 \Omega.
(2) V_{CC} = 12 V, R_L = 16 \Omega.
(3) V_{CC} = 9 V, R_L = 8 \Omega.

Fig.20 P as a function of P_o.
Fig. 21 Printed-circuit board layout (BTL and SE).

a. Top view.

b. Component side.
PACKAGING OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body

SOT38-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max. (mm)</th>
<th>A1 min. (mm)</th>
<th>A2 max. (mm)</th>
<th>b</th>
<th>b1</th>
<th>c</th>
<th>D (1)</th>
<th>E (1)</th>
<th>e</th>
<th>e1</th>
<th>L</th>
<th>ME</th>
<th>MH</th>
<th>w</th>
<th>Z (1) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.7</td>
<td>0.51</td>
<td>3.7</td>
<td>1.40</td>
<td>1.04</td>
<td>0.53</td>
<td>0.32</td>
<td>21.8</td>
<td>6.48</td>
<td>2.54</td>
<td>7.62</td>
<td>3.9</td>
<td>8.25</td>
<td>9.5</td>
<td>0.254</td>
</tr>
<tr>
<td>inches</td>
<td>0.19</td>
<td>0.02</td>
<td>0.15</td>
<td>0.055</td>
<td>0.045</td>
<td>0.021</td>
<td>0.013</td>
<td>0.86</td>
<td>0.26</td>
<td>0.1</td>
<td>0.3</td>
<td>0.15</td>
<td>0.32</td>
<td>0.37</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.
2 W BTL audio amplifier

SO16: plastic small outline package; 16 leads; body width 3.9 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>bP</th>
<th>c</th>
<th>D(1)</th>
<th>E(1)</th>
<th>e</th>
<th>HE</th>
<th>L</th>
<th>LP</th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>Z(1)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.75</td>
<td>0.25</td>
<td>1.45</td>
<td>0.25</td>
<td>0.49</td>
<td>0.25</td>
<td>10.0</td>
<td>4.0</td>
<td>4.0</td>
<td>6.2</td>
<td>1.05</td>
<td>0.7</td>
<td>0.25</td>
<td>0.1</td>
<td>0.7</td>
<td>0.3</td>
<td>8°</td>
<td></td>
</tr>
<tr>
<td>inches</td>
<td>0.069</td>
<td>0.010</td>
<td>0.049</td>
<td>0.01</td>
<td>0.019</td>
<td>0.014</td>
<td>0.0075</td>
<td>0.38</td>
<td>0.16</td>
<td>0.041</td>
<td>0.039</td>
<td>0.028</td>
<td>0.01</td>
<td>0.004</td>
<td>0.028</td>
<td>0.012</td>
<td>8°</td>
<td></td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

<table>
<thead>
<tr>
<th>OUTLINE</th>
<th>REFERENCES</th>
<th>EUROPEAN PROJECTION</th>
<th>ISSUE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT109-1</td>
<td>IEC 076E07</td>
<td>JEDEC MS-012</td>
<td>03-02-19</td>
</tr>
</tbody>
</table>
SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

SO

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
2 W BTL audio amplifier

DATA SHEET STATUS

<table>
<thead>
<tr>
<th>DOCUMENT STATUS(1)</th>
<th>PRODUCT STATUS(2)</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective data sheet</td>
<td>Development</td>
<td>This document contains data from the objective specification for product development.</td>
</tr>
<tr>
<td>Preliminary data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

Notes

1. Please consult the most recently issued document before initiating or completing a design.

2. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

DISCLAIMERS

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications.
NXP Semiconductors

provides High Performance Mixed Signal and Standard Product solutions that leverage its leading RF, Analog, Power Management, Interface, Security and Digital Processing expertise

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content, except for package outline drawings which were updated to the latest version.

Contact information

For additional information please visit: http://www.nxp.com
For sales offices addresses send e-mail to: salesaddresses@nxp.com