
© Motorola, Inc., 2003

EB614/D
Rev. 1, 2/2003

SCI Interrupt Errata
Workaround for HCS12
Family Devices

Engineering Bulletin

By: Gordon Doughman
Field Applications Engineer, Software Specialist
Dayton, Ohio

Introduction

The purpose of this engineering bulletin is to document one possible
workaround associated with the serial communications interface (SCI) interrupt
errata (MUCts00510) in some of the currently available HCS12 Family of
devices. The affected devices and associated mask sets are listed in Table 1.

NOTE: The mask set errata for each particular HCS12 Family device should be
thoroughly examined to determine whether the described errata applies to the
specific device being used in a design. The mask set is identified by a five-
character code consisting of a version number, a letter, two numerical digits,
and a letter, for example 0F74B.

Table 1. Devices Affected by Errata MUCts00510

Device Mask Set

MC9S12DP256B, MC9S12DT256B, MC9S12DJ256B,
MC9S12DG256B, MC9S12A256B

0K36N, 0K79X,
1K79X

MC9S12DT128B, MC9S12DB128B, MC9S12DJ128B,
MC9S12DG128B, MC9S12A128B

0L85D

MC9S12H256, MC9S12H128 0K78X

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D

2 SCI Interrupt Errata Workaround for HCS12 Family Devices MOTOROLA

Symptom

The symptom exhibited by the SCI interrupt errata is a failure of the hardware
logic to assert an interrupt if an even number of unmasked SCI interrupt
sources are asserted. Most often the errata manifests itself when the SCI is
being used in a buffered, interrupt driven manner and the SCI transmit and
receive interrupts are asserted simultaneously. For example, if the TIE and
RIE bits in the SCICR2 control register are both set, enabling transmit and
receive interrupts, and TDRE and RDRF bits become set simultaneously, the
interrupt request to the CPU will not be asserted. This condition can lead to
spurious or missing interrupts. In the case of a spurious interrupt, the request
gets deasserted before the CPU can fetch the SCI vector and the SWI vector
is fetched.

When an interrupt is missed, SCI interrupts will not be recognized unless and
until an odd number of sources are enabled and asserted. In most cases this
will happen when an additional character is received causing an SCI receiver
overrun to occur resulting in the OR bit in the SCISR1 register being set. While
the receiver overrun will cause SCI interrupts to once again be recognized, it
results in a character being lost from the received data stream.

Problem Description

The source of this errata is caused by a logic error in the SCI interrupt structure.
Within the SCI module, five sources of interrupts (RDRF, OR, IDLE, TDRE, TC)
must be OR’d together to generate a single interrupt request to the CPU. The
logic error results from the fact that the interrupts were ‘added’ together rather
than OR’d. Using a one bit adder for all five sources results in an output of ‘1’
from the adder only when an odd number of inputs are equal to one
(i.e., 1 + 1 = 0; 1 + 1 + 1 = 1).

Workaround

While MUCts00510 states that there are no general workarounds for this
errata, it does state that the occurrence can be reduced by the use of slower
baud rates and ensuring that interrupt service routines execute as quickly as
possible. An additional alternative might involve the use of a combination of
interrupts and polling or polling alone, however, either of these two methods
may tend to impose severe constraints on the real-time performance of a
system. Although these suggestions may work for a limited set of applications,
there are numerous situations where these restrictions cannot be tolerated.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D
Workaround

MOTOROLA SCI Interrupt Errata Workaround for HCS12 Family Devices 3

The workaround described here utilizes one of the MCU’s timer channels to
generate interrupts for transmitted data while using the interrupt capability of
the SCI for the reception of data. While this workaround doesn’t provide 100%
immunity against spurious or missed interrupts for received data, it greatly
reduces the possibility of its occurrence during the normal transmission and
reception of SCI data. The manner in which the receive interrupt service routine
is written, there is no possibility of having both the RDRF and OR interrupts
asserted simultaneously since received characters in excess of the receive
buffer size are simply discarded. However, if interrupts remain masked for
more than two character times, it is possible for both the RDRF and OR bits to
become set, inhibiting receiver interrupts until the SCISR1 register is read,
followed by a read of the SCIDRL register.

Figure 1 through Figure 6 present the C source code for buffered, interrupt-
driven SCI routines that use XOn/XOff handshaking for data flow control.
Listing 1 contains the SCI initialization function InitSCI() which accepts a
single unsigned long integer value representing the desired baud rate. Before
initializing the SCI and timer hardware, the variables used to manage the
transmit and receive queues must be initialized. Initialization of the SCI
hardware is simply a matter of writing the baud rate register with the proper
value, enabling the transmitter and receiver and enabling SCI receiver
interrupts. Notice that the value for the baud rate register is calculated based
on the value of SysClk, which is equal to the MCUs bus clock frequency.

Configuring the timer system in the SCI initialization code is not necessarily the
correct location for an application using the timer for other functions, however,
it helps to illustrate the required timer settings for this example. In this example,
the timer system is enabled and the prescaler is configured to divide the bus
clock by eight. A prescaler value of eight was chosen to allow communication
rates as low as 600 baud to be supported. If other system timer functions
require a different prescaler value, the range of supported baud rates will
change.

Note that the TFFCA bit in the TCSR1 register is set to enable automatic output
compare flag clearing in the transmit interrupt service routine. If this setting is
incompatible with the requirements of other system timer functions, the
transmit data interrupt service routine will have to be modified to manually clear
the timer channel 1 interrupt flag.

Finally, a value is calculated for the variable OCVal. This value contains the
number of timer ticks equal to one character time at the specified baud rate.
The constant value of 8 in the equation is the divisor value of the timer
prescaler. A change in the timer prescaler divisor ratio will require a change in
this value. The value of 1 added at the end of the equation is used to
compensate for integer math truncation and ensures that the output compare
delay time is slightly longer than one character time. This prevents the transmit
interrupt service routine from having to check the TDRE bit before writing a
character to the transmit data register.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D

4 SCI Interrupt Errata Workaround for HCS12 Family Devices MOTOROLA

Figure 1InitSCI() Function

Figure 2 contains the source code for the putchar() function. As the first
statement of the function shows, if the transmit queue is full, the routine waits
until space is available before returning. While this ensures that no data is lost
from the transmitted data stream, it can have a detrimental effect on the rest of
the system, especially if the host has halted the transmission of data by sending
an XOff character. A careful analysis of the communications requirements of
both the host and HCS12 must be performed to ensure that a deadlock
situation cannot occur. If space in the transmit queue is available, the character
is placed in the next available location and the queue index is updated. If the
character was placed in the last location of the queue, the index is set to zero
so that the next character is placed in the first location.

If an XOff has not been received from the host, the timer channel 1 interrupt is
enabled, causing the character to be transmitted. Notice that if the TDRE bit in
the SCI status register is set, indicating that the character just placed in the
queue may be immediately transmitted, the timer output compare one register
is written with a value that is two greater than the current value of the TCNT
register. This causes an output compare interrupt to occur shortly after the
output compare register is written. Note that the value added to the TCNT value,
two, was chosen based on the setting of the timer prescaler. This value

void InitSCI(ulong Baud)
 {

 /* Variable Declarations */

 /* Begin Function InitSCI() */

 RxIn = RxOut = TxIn = TxOut = 0; /* set the Rx & Tx queue indexes to zero */
 RxBAvail = RxBufSize; /* the receive buffer is empty */
 TxBAvail = TxBufSize; /* the transmit buffer is empty */
 XOffSent = 0;
 XOffRcvd = 0;

 SCI0.Baud = (SysClk / 16) / Baud; /* calculate the SCI Baud register value */
 /* using the system clock rate */
 SCI0.CR2 = TE + RE + RIE; /* enable both the transmitter & receiver */

 TSCR1 = 0x90; /* enable timer system, fast flag clear option */
 TSCR2 = 0x03; /* set timer prescaler to /8 */
 TIOS |= 0x02; /* configure timer channel 1 as an OC */

 OCVal = ((SysClk / 8) / (Baud / 10)) + 1; /* sets the OC1 tic count (using /8 prescaler)
 /* to generate a 1 character time interrupt */

 return; /* return */

 } /* end InitSCI */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D
Workaround

MOTOROLA SCI Interrupt Errata Workaround for HCS12 Family Devices 5

provides a maximum delay of 16 bus clocks (2 * 8) and a minimum delay of
eight bus clocks, which is more than enough time for the compiled code to read
the TCNT register, add two to the value and write the result to the TC1 register
before the value of TCNT catches up. If a smaller prescaler divisor ratio is used,
this constant value will need to be increased.

Finally, if XOn/XOff handshaking support is not desired, the if (XOffRcvd
== 0) statement and associated open and close braces may simply be
removed.

Figure 2. putchar() Function

int putchar(int c)

 {

 /* Variable Declarations */

 /* Begin Function putchar() */

 while (TxBAvail == 0) /* if there's no room in the xmit queue */
 ; /* wait here */

 TxBuff[TxIn++] = c; /* put the char in the buffer, inc buffer index */
 if (TxIn == TxBufSize) /* buffer index go past the end of the buffer? */
 TxIn = 0; /* yes. wrap around to the start */
 TxBAvail--; /* one less character available in the buffer */
 if (XOffRcvd == 0) /* if an XOff has not been received... */
 {
 SEI(); /* mask interrupts */
 if ((SCI0.SR1 & TDRE) != 0) /* if Xmit data register is empty... */
 TC1 = TCNT + 2; /* generate an 'immediate' TxD interrupt */
 TIE |= 0x02; /* enable TC1 interrupts */
 CLI(); /* enable global interrupts */
 }

 return(c); /* return the character we sent */

 } /* end putchar */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D

6 SCI Interrupt Errata Workaround for HCS12 Family Devices MOTOROLA

The getchar() function, shown in Figure 3, begins by comparing the number
of bytes remaining in the receive queue with the size of the queue. If the two
are equal, it indicates there is no data in the receive queue. In this case, the
while() loop is repeated until a character is received. When a character is
received, the RxBAvail variable is decremented in the receive interrupt
service routine, causing the compare to fail. At this point, the character is
removed from the receive queue and placed in a local variable. Before
returning the character to the calling routine, a check is performed to determine
if an XOn character needs to be sent to the host. If an XOff has previously been
sent and the number of characters in the receive queue is greater than or equal
to XOnCount, the SendXOn flag is set to a non-zero value so that an XOn
character will be sent to the host the next time a transmit interrupt occurs. Note
that if the TDRE bit is set, indicating that the XOn character may immediately
be transmitted, the timer output compare one register is written with a value that
is two greater than the current value of the TCNT register. This causes an output
compare interrupt to occur shortly after the output compare register is written.

One of the problems with standard getchar() function is the fact that if it is
called with no characters in the receive queue, the function will simply wait until
a character is received before returning to the calling program. For many
embedded applications, this behavior would prove to be unacceptable. In an
effort to enhance the usability of getchar() in the embedded environment, an
additional routine, SCIcharsAvail(), is also included in Figure 3. This
routine returns the number of characters in the receive queue by subtracting
the number of available bytes in the receive queue from the receive queue size.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D
Workaround

MOTOROLA SCI Interrupt Errata Workaround for HCS12 Family Devices 7

Figure 3. getchar() and SCIcharsAvail() Functions

The SCI receive interrupt service routine, presented in Figure 4, contains the
code necessary to manage the data and flow control characters received from
a host computer. Notice that much of the interrupt service routine involves the
management of data flow from the host. After reading the SCI status register
and retrieving the byte from the data register, the character is examined to
determine whether it is one of the two flow control characters. If the received
byte is an XOff, timer TC1 interrupts are disabled and the variable XOffRcvd
is set to a non-zero value. This prevents any additional characters from being

int getchar(void)
 {

 /* Variable Declarations */

 uchar c; /* holds the character we'll return */

 /* Begin Function getchar() */

 while (RxBAvail == RxBufSize) /* if there's no characters in the Rx buffer */
 ; /* just wait here */

 c = RxBuff[RxOut++]; /* get a character from the Rx buffer & advance the Rx index */
 if (RxOut == RxBufSize) /* index go past the physical end of the buffer? */
 RxOut = 0; /* yes wrap around to the start */
 RxBAvail++; /* 1 more byte available in the receive buffer */

 if ((XOffSent != 0) && (RxBAvail >= XOnCount)) /* OK for host to send data again? */
 {
 SEI(); /* mask interrupts */
 SendXOn = 1;
 if ((SCI0.SR1 & TDRE) != 0) /* if Xmit data register is empty... */
 TC1 = OTCNT + 2; /* generate an 'immediate' TxD interrupt */
 TIE |= 0x02; /* enable TC1 interrupts */
 CLI(); /* enable global interrupts */
 }

 return(c); /* return the character retrieved from receive buffer */

 } /* end getchar */

uint SCIcharsAvail(void)

 {

 /* Begin Function SCIcharsAvail() */

 return(RxBufSize - RxBAvail); /* return the number of bytes in the receive buffer */

 } /* end SCIcharsAvail */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D

8 SCI Interrupt Errata Workaround for HCS12 Family Devices MOTOROLA

sent to the host computer while allowing calls to the putchar() function to
continue to fill the transmit queue. If an XOn character is received, indicating
that the host is once again able to accept data, a check is made to see whether
any data remains in the transmit queue. If data is available for transmission, the
TDRE bit in the SCI status register is examined and if set, the TC1 register is
written with a value causing an output compare to occur shortly after the output
compare register is written. After TC1 interrupts are enabled, the XOffRcvd
variable is written to zero, allowing TC1 interrupts to be enabled each time a
character is placed in the transmit queue. Notice that neither of the flow control
characters is placed in the receive queue, making the XOn/XOff flow control
completely transparent to the application.

To allow XOn/XOff flow control handshaking to accommodate hardware FIFOs
that may be part of the host’s serial communications system, an XOff character
must be sent to the host while there is still enough room in the receive queue
to accept data the size of the FIFO without losing any data. So, before placing
the received byte into the queue, the space remaining in the queue is compared
to the value XOffCount. If the remaining space is less than or equal to this
value, the necessary actions are taken to have the XOff character transmitted
to the host. Notice that two different variables, SendXOff and XOffSent, are
necessary to accomplish this. The SendXOff variable is used to signal the
transmit interrupt service routine to send an XOff to the host even if there are
characters in the transmit queue waiting to be sent. The XOffSent variable is
primarily used by the getchar() function to determine whether an XOn must
be sent to the host. In addition, notice that the state of XOffSent is part of the
equation used in determining whether an XOff must be sent to the host.
Including this as part of the logic ensures that only a single XOff character is
sent to the host.

The final action of the receive interrupt service routine is to place the received
character into the receive queue. However, notice that a check is first made to
ensure that there is room in the queue. If the queue is full, the character is
simply discarded.

The concluding piece of code, presented in Figure 5, is the transmit interrupt
service routine. Like the receive interrupt service routine, much of the code is
dedicated to management of the XOn/XOff flow control. After reading the SCI
status register, a check is made to determine whether a request is pending to
send an XOn or XOff character to the host system. If neither request is pending,
a character is removed from the transmit queue and written to the SCI data
register. The final action performed by the transmit interrupt service routine is
to configure timer channel 1 to generate an output compare in one character
time. Notice that the timer is setup to generate the output compare regardless
of whether any additional characters remain in the transmit queue. If the
transmit queue is empty, TC1 interrupts are disabled, preventing the output
compare from generating an interrupt.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D
Workaround

MOTOROLA SCI Interrupt Errata Workaround for HCS12 Family Devices 9

Figure 4. SCI Receive Interrupt Service routine

ISR RxISR(void)
 {

 /* Variable Declarations */

 uchar c;

 /* Begin Function RxISR() */

 /* code to check for receive data errors (NF, OR, etc.) can be inserted here */

 c = SCI0.SR1; /* read the SR so RDRF will clear when we read DRL */
 c = SCI0.DRL; /* get the received character */

 if (c == XOff) /* host want us to stop sending data? */
 {
 TIE &= ~0x02; /* yes. disable transmit interrupts */
 XOffRcvd = 1; /* continue to place chars in xmit queue but don't send them */
 return;
 }
 else if (c == XOn) /* host want us to start sending data? */
 {
 if (TxBAvail != TxBufSize) /* anything left in the Tx buffer? */
 {
 if ((SCI0.SR1 & TDRE) != 0) /* if Xmit data register is empty... */
 TC1 = TCNT + 2; /* generate an 'immediate' TxD interrupt */
 TIE |= 0x02; /* enable TC1 interrupts */
 }
 XOffRcvd = 0;
 return;
 }

 if ((RxBAvail <= XOffCount) && (XOffSent == 0)) /* send an XOff? */
 {
 SendXOff = 1; /* set flag so Tx ISR sends an XOff */
 XOffSent = 1; /* set the flag showing that an XOff's been sent */
 if ((SCI0.SR1 & TDRE) != 0) /* if Xmit data register is empty... */
 TC1 = TCNT + 2; /* generate an 'immediate' TxD interrupt */
 TIE |= 0x02; /* enable TC1 interrupts */
 }

 if (RxBAvail != 0) /* if there are bytes available in the Rx buffer */
 {
 RxBAvail--; /* reduce the count by 1 */
 RxBuff[RxIn++] = c; /* place the received byte in the buffer */
 if (RxIn == RxBufSize) /* reached the physical end of the buffer? */
 RxIn = 0; /* yes. wrap around to the start */
 }

 } /* end RxISR */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D

10 SCI Interrupt Errata Workaround for HCS12 Family Devices MOTOROLA

Figure 5. SCI Transmit Interrupt Service Routine

ISR void TxISR(void)
 {

 /* Variable Declarations */

 uchar c;

 /* Begin Function TxISR() */

 c = SCI0.SR1; /* read status register so the Xmit hardware works properly */

 if (SendXOn != 0) /* request to send an XOn to the host? */
 {
 SendXOn = 0;
 XOffSent = 0; /* reset the XOff flag */
 SCI0.DRL = XOn; /* send the character */
 if ((TxBAvail == TxBufSize) || (XOffRcvd != 0)) /* Tx buffer empty, */
 /* or host sent an XOFF? */
 TIE &= ~0x02; /* yes. disable transmit interrupts */
 }
 else if (SendXOff != 0) /* request to send an XOff to the host? */
 {
 SendXOff = 0; /* yes, clear the request */
 SCI0.DRL = XOff; /* send the character */
 if ((TxBAvail == TxBufSize) || (XOffRcvd != 0)) /* Tx buffer empty, */
 /* or host sent an XOFF? */
 TIE &= ~0x02; /* yes. disable transmit interrupts */
 }
 else
 {
 SCI0.DRL = TxBuff[TxOut++]; /* remove a byte from the buffer & send it */
 if (TxOut == TxBufSize) /* reached the physical end of the buffer? */
 TxOut = 0; /* yes. wrap around to the start */
 if (++TxBAvail == TxBufSize) /* anything left in the Tx buffer? */
 TIE &= ~0x02; /* no. disable transmit interrupts */
 }

 TC1 = TCNT + OCVal; /* character delay to generate the next TxD interrupt */

 } /* end TxISR */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EB614/D
Workaround

MOTOROLA SCI Interrupt Errata Workaround for HCS12 Family Devices 11

Figure 6. Includes, Defines and Variables

#include <ctype.h>
#include "DP256Regs.h"

#define uchar unsigned char
#define ulong unsigned long

#define TDRE 0x80
#define RDRF 0x20
#define RIE 0x20
#define TC 0x40
#define TE 0x08
#define RE 0x04
#define OR 0x08

#define XOn 0x11
#define XOff 0x13

#define RxBufSize 64
#define TxBufSize 32

#define XOnCount RxBufSize - 8
#define XOffCount 18

#define SEI() _asm(" sei")
#define CLI() _asm(" cli")

uint OCVal; /* Output Compare timer value for 1 character time */

uchar RxBuff[RxBufSize]; /* receive queue */
uchar TxBuff[TxBufSize]; /* transmit queue */
uchar RxIn; /* next available location in the Rx queue */
uchar RxOut; /* next character to be removed from the Rx queue */
uchar TxIn; /* next available location in the Tx queue */
uchar TxOut; /* next character to be sent from the Tx queue */
volatile uchar RxBAvail; /* number of bytes left in the Rx queue */
volatile uchar TxBAvail; /* number of bytes left in the Tx queue */
uchar XOffSent; /* !=0, an XOff was sent to the host */
uchar XOffRcvd; /* !=0, an XOff was received */
uchar SendXOff; /* !=0, TxISR should send XOff the next time it's called */
uchar SendXOn; /* !=0, TxISR should send XOn the next time it's called */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

EB614/D
Rev. 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

