1. Abstract
This Engineering Note attempts to clarify documentation on the TouCAN Receive Process.

2. TouCAN Receive Process
To be able to receive CAN frames, the CPU must prepare one or more Message Buffers for reception by executing the following steps:

- Write ‘0000’ to the Code field of the Control and Status word to keep the MB inactive
- Write the ID word
- Write ‘0100’ to the Code field of the Control and Status word to activate the MB

The first and last steps are mandatory. The first write to the Control and Status word is important in case there was a pending reception or transmission. The write operation immediately deactivates the MB, removing it from any currently ongoing arbitration or matching process, giving time for the CPU to program the rest of the MB. Once the MB is activated in the third step, it will be able to receive CAN frames that match the programmed ID. At the end of a successful reception, the MB is updated by the MBM as follows:

- The value of the Free Running Timer is written into the Time Stamp field.
- The received ID, Data (8 bytes at most) and Length fields are stored.
- The Code field in the Control and Status word is updated.
- A status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed by the corresponding Interrupt Mask Register bit.
Upon receiving the MB interrupt, the CPU should service the received frame using the following procedure:

- Read the Control and Status word (mandatory – activates an internal lock for this buffer)
- Read the ID field (optional – needed only if a mask was used)
- Read the Data field
- Read the Free Running Timer (optional – releases the internal lock)

Upon reading the Control and Status word, if the BUSY bit is set in the Code field, then the CPU should defer the access to the MB until this bit is negated. Reading the Free Running Timer is not mandatory. If not executed the MB remains locked, unless the CPU reads the C/S word of another MB. Note that only a single MB is locked at a time. The only mandatory CPU read operation is the one on the Control and Status word to assure data coherency.

Once an MB is read, a new frame that arrives will not set the code to OVERRUN. It will remain FULL. There is no need to write to the C/S word to detect overrun.

If the MB is FULL and a new frame is overwritten to this MB before the CPU had time to read it, the code is automatically updated to OVERRUN.

If the code indicates OVERRUN but the CPU reads the C/S word and then unlocks the MB, when a new frame is written to the MB the code returns to FULL.

If the code already indicates OVERRUN, and yet another new frame must be written, the MB will be overwritten again, and the code will remain OVERRUN.

The CPU should synchronize to frame reception by the status flag bit for the specific MB in one of the IFLAG Registers and not by the Code field of that MB.

Polling the Code field does not work because once a frame was received and the CPU services the MB (by reading the C/S word followed by unlocking the MB), the Code field will not return to EMPTY. It will remain FULL. If the CPU tries to workaround this behavior by writing to the C/S word to force an EMPTY code after reading the MB, the MB is actually deactivated from any currently
ongoing matching process. As a result, a newly received frame matching the ID of that MB may be lost. In summary: *never do polling by reading directly the C/S word of the MBs. Instead, read the IFLAG registers.*

Note that the received ID field is always stored in the matching MB, thus the contents of the ID field in an MB may change if the match was due to masking.

See flow in Figure 1 for TouCAN receive process polling technique sample.
Toucan Receive Process Polling Technique Example

Figure 1