
Freescale Semiconductor
Engineering Bulletin

EB687
Rev. 0, 01/2008

Table of Contents
1 Overview ...1
1.1 Variable Length Encoding (VLE)1
1.2 16-Bit vs. 32-Bit Instructions..............................2
2 VLE Configuration Requirements........................3
3 VLE Only Applications...4
3.1 RCHW and Boot Assist Module (BAM)4
3.2 Source Code..5
3.3 Linker and Alignment Requirements5
4 Mixed VLE and Non-VLE Applications6
4.1 RCHW and BAM..6
4.2 Source Code..8
4.3 Linker and Alignment Requirements9
5 Summary ...10

Creating VLE Applications
For the MPC5500 Family
by: Bill Terry

32-Bit Automotive Applications
1 Overview
Some processor cores used in the MPC5500 family of
microprocessors incorporate the variable length
encoding (VLE) extension of the Power Architecture
instruction set. VLE allows greater code density with
minimal or no loss of system performance by using a mix
of 32-bit and 16-bit instructions. This application note
provides an overview of VLE, and specific details for
creating a new VLE application, or for porting an
existing Power Architecture application to a VLE
implementation. Certain members of the MPC5500
family are dual core processors that support VLE. While
many of the principles in this document apply to dual
core VLE operation, only a single core implementation is
discussed.

1.1 Variable Length Encoding
(VLE)

VLE allows Power Architecture Book E
implementations to support a more efficient binary
representation of an application. This can be particularly
important for the embedded processor spaces where code

Overview
density plays a major role in affecting overall system cost. VLE is a supplemental feature that may be
applied to a portion of an application, or to the entire application. VLE code is typically generated by
setting a compiler switch. Most compilers allow for conditional VLE compilation, selectable on a file by
file or sub-project basis. See the documentation for the VLE compiler that you use for specific details.

See Table 1 for a list of the current MPC5500 devices that support VLE.

1.2 16-bit vs. 32-bit Instructions
The VLE extension uses the same semantics as traditional Book E, but due to the limited instruction
encoding formats, VLE instructions typically support reduced immediate fields and displacements. VLE
instructions are encoded in either a 16-bit or 32-bit format, and these may be intermixed. Note that some,
but not all, Power Architecture instructions assemble in a VLE image, with identical syntax as used in a
normal non-VLE Power Architecture application. The signal processing engine (SPE) instructions
available as part of the classic Power Architecture are also available for use within VLE code.

VLE instructions are 16-bit aligned, however 16-bit VLE instructions may be freely intermixed with 32-bit
VLE instructions without penalty. VLE and non-VLE code spaces are completely compatible and
intercallable, with the restriction that VLE function or routine start addresses must be 32-bit aligned to be
callable and linkable from non-VLE code space.

Complete information on the implementation of the VLE instruction set and programming Book E
processors may be found in the following references available at www.freescale.com.

• Variable-Length Encoding (VLE) Extension Programming Interface Manual (VLEPIM)
• Addendum to the e200z6 Power ArchitectureTM Core Reference Manual, Rev. 0 e200z6 with VLE
• EREF: A Programmer's Reference Manual for Freescale Book E Processors
• e200z6 Power ArchitectureTM Core Reference Manual

Table 1. MPC5500 VLE Support

Device Core VLE Support

MPC5514
MPC5516

 MPC55171

NOTES:
1 MPC5514, MPC5516 and MPC5517 are dual core devices

e200z0 Yes2

2 z0 core supports VLE only. It does not support the classic Power
Architecture instruction set.

e200z1 Yes

MPC5533 e200z3 Yes

MPC5534 e200z3 Yes

MPC5553 e200z6 No

MPC5554 e200z6 No

MPC5561 e200z6 Yes

MPC5565 e200z6 Yes

MPC5566 e200z6 Yes

MPC5567 e200z6 Yes
Creating VLE Applications, Rev. 0

Freescale Semiconductor2

VLE Configuration Requirements
• e200z3 Power ArchitectureTM Core Reference Manual

2 VLE Configuration Requirements
The VLE extension may be used globally within an application, or applied only to specific sections of the
application. The e200z0 core is an exception, it supports only the VLE instruction set. Additionally,
pre-compiled Power Architecture libraries or object files may be linked in with VLE applications as most
compiler vendors provide VLE versions of the standard ANSI C libraries. The following sections explain
how the application memory space must be planned, and the general device configuration procedure that
must be followed when using VLE in an application. This application note assumes internal boot mode,
with code executing from the flash memory. External and serial boot modes are not discussed.

2.1 Planning the Application
As discussed previously, the application image may be either classic Power Architecture, VLE, or a
combination of the two. As in standard classic Power Architecture applications (where the core provides
an MMU), the MMU is used to configure memory regions for both VLE and non-VLE code space via the
TLB entries written through the MMU assist registers (MAS0-4 and MAS6). On most VLE enabled cores,
VLE code space has the same configurable attributes as non-VLE code space, example: page size, physical
and virtual page addresses, and cache attributes to mention a few. However, in VLE enabled cores, there
is a new bit added to the MAS2 register that identifies the page defined by the MMU TLB entry as either
VLE or non-VLE code space.

The necessary memory layout must be determined so that the appropriate VLE and non-VLE memory
spaces are established by MMU configuration during initialization (if necessary). Modification to the
linker map as defined by a linker descriptor file or in a makefile may also be required. This is discussed in
later sections.

2.2 General Considerations
In summary, the main software design criteria that must be considered when creating a VLE application
are:

• Is the application VLE only, or a combination of VLE and classic Power Architecture?
• Are there any existing libraries or object files to be linked in that are non-VLE code?
• If the application is mixed VLE/non-VLE, will boot code be VLE or classic Power Architecture?
• What functions or routines may require minimal execution time?1

The following sections detail the setup required for both VLE and mixed VLE non-VLE applications.

1. While compiling as VLE code may have a slight adverse affect on execution time in some cases, VLE code may actually execute in less
time under certain conditions.
Creating VLE Applications, Rev. 0

Freescale Semiconductor 3

VLE Only Applications
3 VLE Only Applications
In some cases, the entire application is compiled with VLE, and is linked with classic Power Architecture
libraries also compiled with the VLE option. Because all code is VLE in this case, device initialization is
straightforward. The following steps generalize the sequence:

• Configure the Reset Config Halfword (RCHW) to enable VLE mode.
• Depending on the application memory partitioning and layout, modify MMU if required.
• Execute all other initialization code, FMPLL setup, and any other low level tasks.
• Go to main()

3.1 RCHW and Boot Assist Module (BAM)
The RCHW for VLE enabled cores has a new VLE bit defined. The RCHW VLE bit definition is shown
in Figure 1.

Figure 1. Reset Configuration Half Word

At reset the BAM executes and searches for a valid RCHW at the lowest 32-bit address in certain defined
memory spaces. For a full explanation of BAM operation see the MPC55xx Reference Manual for your
device. If the BAM locates a valid RCHW as indicated by a Boot ID value of 0x5A, the WTE, PS0, and
VLE bits are read to determine further conditional BAM program operation.

Under a normal non-VLE boot, the BAM configures the MMU to a default configuration that is suitable
for use by many applications without modification. If the RCHW VLE bit is read as 1 by the BAM, the
default MMU configuration is changed to support a VLE application. The default MMU configuration
with and without the VLE bit set is illustrated in Table 2. TLB entries 1, 2, and 3 are defined as VLE code
space when the RCHW[VLE] bit is set.

ADDRESS
0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved WTE PS0 VLE Boot ID

Table 2. MMU Settings by BAM at Reset

RCHW[VLE] = 0 RCHW[VLE] = 1

Region TLB VADDR PADDR VLE SIZE TLB VADDR PADDR VLE SIZE

Peripheral Bridge B and BAM 0 0xFFF0_0000 0xFFF0_0000 no 1MB 0 0xFFF0_0000 0xFFF0_0000 no 1MB

Internal flash 1 0x0000_0000 0x0000_0000 no 16MB 1 0x0000_0000 0x0000_0000 yes 16MB

EBI 2 0x2000_0000 0x0000_0000 no 16MB 2 0x2000_0000 0x0000_0000 yes 16MB

Internal SRAM 3 0x4000_0000 0x4000_0000 no 256K 3 0x4000_0000 0x4000_0000 yes 256K

Peripheral Bridge A 4 0xC3F0_0000 0xC3F0_0000 no 1MB 4 0xC3F0_0000 0xC3F0_0000 no 1MB
Creating VLE Applications, Rev. 0

Freescale Semiconductor4

VLE Only Applications
NOTES
Attempting to execute VLE code in memory that is configured by the MMU
as a non-VLE page causes the core to generate an exception. Similarly,
attempting to execute non-VLE code in memory that is configured by the
MMU as a VLE page also causes the core to generate an exception.
Peripheral memory space is never defined as VLE memory.

3.2 Source Code
There are no changes required to any C files when compiling an application for VLE. However, if the
application includes any Power Architecture assembler code, that code will likely not assemble with the
VLE option enabled. There are two possible solutions to this problem. Either the assembler files must be
ported to use the VLE compatible instruction set, or a separate non-VLE memory region for location of
this code must be created by modifying the MMU. The assembler files may then be assembled without the
VLE option enabled and relocated to the non-VLE region. This mixed VLE and non-VLE application is
completely described in Section 4, on page 6.

3.3 Linker and Alignment Requirements
Linking VLE code requires the definition of a new section in the linker command file or script. This new
section name may vary depending on the compiler that is used. In most cases, the compiler has command
line switches or GUI configurable compile options. Consult the documentation for your compiler and set
the VLE compile option for all files in the application. This causes VLE code to be generated for all C
source files, and generally causes the linker to link in VLE versions of any required ANSI C libraries.

Unless a change to the default MMU settings that are configured by the BAM is required, your linker file
or script must define a section for the VLE code that starts at 0x0000_0000. In the case of the Green Hills
MULTI tools, that section is called .vletext by default. Consult the documentation for your tools to
determine what the VLE text section is called. Optionally, you can modify the source code using #pragma
or .org compiler/assembler directives to force the linker to place it in a user defined section at
0x0000_0000.

A simple example linker file that uses the default MMU settings as configured by the BAM is shown
below. In this example, the normal .text section has been replaced by .vletext for use with the Green
Hills compiler. This example does not necessarily include all linker directives that may be necessary for
actual application code.
MEMORY
{

/* 2M Internal Flash */
flash_rchw : org = 0x00000000, LENGTH = 0x8
int_flash : org = 0x00000008, LENGTH = 1M - 0x8

/* 64K Internal SRAM */
int_sram : org = 0x40000000, LENGTH = 64k

}
SECTIONS
{

/* Flash data */
.rchw : { *(.rchw) } > flash_rchw

 .vletext : {} > int_flash
 .rodata : {} > int_flash
Creating VLE Applications, Rev. 0

Freescale Semiconductor 5

Mixed VLE and Non-VLE Applications
.ctors : {} > int_flash
 .dtors : {} > int_flash
 .syscall : > int_flash
 .fixaddr : > int_flash
 .fixtype : > int_flash

/* SRAM data */
 .data : {} > int_sram
 .sdata : {} > int_sram

.sbss : {} > int_sram
 .sdata2 : {} > int_sram
 .sbss2 : {} > int_sram
 .heap : {} > int_sram
 .bss : {} > int_sram
}

In the case of a VLE only application, there are no special code alignments required, other than those that
are always required for Book E processors, such as interrupt vectors.

4 Mixed VLE and Non-VLE Applications
In some applications it may be desirable to mix non-VLE compiled code with VLE compiled code. In this
case, the default MMU configuration shown in Table 2 must be modified. The basic initialization code
must do all the necessary device configuration, including modifying the MMU TLB entries before the
application begins actual execution. The following steps generalize the sequence:

• If the boot code space is VLE, configure the Reset Config Halfword (RCHW) to enable VLE
mode. If the boot code space is non-VLE, configure the RCHW with the RCHW[VLE] bit
cleared.

• Modify or add MMU TLB entries to support the application memory partitioning and layout.
Specifically, set up memory pages for both VLE and non-VLE code.

• Execute all other initialization code, FMPLL setup and any other low level tasks.
• Go to main()

4.1 RCHW and BAM
The RCHW must be configured appropriately, as described in Section 3.1, on page 4. In the case of mixed
VLE and non-VLE code, the RCHW may be located in what is configured as either a VLE or non-VLE
memory region. The restriction is that the code located at the address specified immediately following the
RCHW must be appropriate for the defined page. Example: VLE code on a VLE page or non-VLE code
on a non-VLE page.

Once the BAM finds a valid RCHW, it sets up the MMU depending on the RCHW[VLE] bit and ultimately
branches to the address specified by the next value above the RCHW in memory. Typically, that address
is the beginning of the application initialization code. If the RCHW[VLE] bit is set, that branch to the
initialization code must be to a VLE enabled memory page, or if the VLE bit is cleared, that branch must
be to a non-VLE enabled memory page.
Creating VLE Applications, Rev. 0

Freescale Semiconductor6

Mixed VLE and Non-VLE Applications
An example of how the BAM handles VLE and non-VLE boot code is shown in Figure 2 and Figure 3.

Figure 2. BAM and RCHW Operation — VLE Boot Code

0x0000_0000

0x001F_FFFF

0x0010_0000
0x000F_FFFF

0x0000_0004
_bootcode

0x015A_xxxx

32-bits address

In this example, the code has been partitioned by
the linker to execute from two sections of flash
memory, one that is VLE and one that is non-VLE.
The _bootcode routine is compiled as VLE and is lo-
cated at address 0x0000_0008.

1) The Flash is programmed with all VLE code in the
memory region 0x0000_0000 - 0x000F_FFF, and
non VLE code in the region 0x0010_0000 -
0x001F_FFFF.

2) BAM executes at reset and finds the RCHW at
0x0000_0000.

3) The RCHW[VLE] bit is 1, so the BAM configures
the address space 0x0000_0000-0x00FF_FFFF as
a 16MByte VLE page.

4) The BAM then branches to _bootcode at
0x0000_0008.

5) The _bootcode reconfigured the MMU to set up a
1MByte VLE page from 0x0000_0000 -
0x000F_FFFF, and a 1MByte non-VLE page from
0x0010_0000 - 0x001F_FFFF

VLE code

non-VLE code

0x0000_0008
 0x0000_0008

data

address of _bootcode
RCHW

description
Creating VLE Applications, Rev. 0

Freescale Semiconductor 7

Mixed VLE and Non-VLE Applications
Figure 3. BAM and RCHW Operation — non-VLE Boot Code

In both cases above the partitioning of VLE and non-VLE code, may be configured for multiple memory
spaces with sizes determined by the MAS1[TSIZ] bit field.

4.2 Source Code

4.2.1 C Source Files
Source files that are coded in C do not need modification. The compiler is configured to generate VLE
code for the parts of the application that are to be programmed into VLE code space. Any C files that
contain inline assembler may require modification. That requirement is discussed in Section 4.2.3, on
page 9.

4.2.2 Assembly Source Files
As in the case of VLE only applications discussed in Section 2, on page 2, any assembly code intended to
be programmed into VLE code space must be coded with the VLE instruction set. A short example of how
the port to VLE code may look is shown in Figure 4. Typically, there is a corresponding VLE instruction
for each Power Architecture instruction.

0x001F_FFFF

0x0010_0000
0x000F_FFFF

_bootcode

32-bits

In this example, the code has been partitioned by
the linker to execute from two sections of flash
memory, one that is VLE and one that is non-VLE.
The _bootcode routine is compiled as non-VLE and
is located at address 0x0010_0000.

1) The Flash is programmed with all VLE code in the
memory region 0x0000_0000 - 0x000F_FFF, and
non VLE code in the region 0x0010_0000 -
0x001F_FFFF.

2) BAM executes at reset and finds the RCHW at
0x0000_0000.

3) The RCHW[VLE] bit is 0, so the BAM configures
the address space 0x0000_0000-0x00FF_FFFF as
a 16MByte non-VLE page.

4) The BAM then branches to _bootcode at
0x0010_0000.

5) The _bootcode reconfigured the MMU to set up a
1MByte VLE page from 0x0000_0000 -
0x000F_FFFF, and a 1MByte non-VLE page from
0x0010_0000 - 0x001F_FFFF

VLE code

non-VLE code

0x0000_0000
0x0000_0004

0x015A_xxxx
address

0x0000_0008
 0x0000_0008

data

address of _bootcode
RCHW

description
Creating VLE Applications, Rev. 0

Freescale Semiconductor8

Mixed VLE and Non-VLE Applications
Figure 4. Converting Power Architecture Assembler Code to VLE — Example

Additionally, the assembly source file may require identification for the assembler regarding the type of
code on the page and any alignment requirements. As an example, a typical required assembler directive
for a Green Hills assembler file is shown below:

.section ".text", "axv"

.text

.vle
reset_vector:

mfmsr r3
 e_or2is r3, 0x0200
 mtmsr r3

. . .

VLE code that is called from a non-VLE function must also be word (32-bit) aligned to avoid an alignment
exception condition. Refer to the documentation for your particular compiler/assembler to find the correct
assembler directive.

4.2.3 Inline Assembly Code
Many times an application requires inline assembly code for performance reasons, or to facilitate control
of low level resources. This is generally done within a C file by use of compiler syntax to designate that
the code is assembler. If the C file containing the inline assembly code is to be compiled with the VLE
option, the inline assembly must also be coded in the VLE instruction set.

4.3 Linker and Alignment Requirements
Mixing VLE and non-VLE code requires that the code be linked to the appropriate memory areas as
determined by the MMU settings in the application initialization code. The following is an example linker
directive file that would match the example shown in Figure 4.
MEMORY
{

/* 2M Internal Flash */
flash_rchw : org = 0x00000000, LENGTH = 0x8
int_flash_vle : org = 0x00000008, LENGTH = 1M - 0x8
int_flash_novle: org = 0x00100000, LENGTH = 1M

/* 64K Internal SRAM */
int_sram : org = 0x40000000, LENGTH = 64k

SECTIONS
{

/* ROM data */
.rchw : { *(.rchw) } > flash_rcw
.vletext : {} > int_flash_vle
.flash_data : {} > .

Assembly Code - Classic Power Architecture Equivalent Assembly Code - VLE

lis r3, IRQ_Svc_Count@h
ori r3, r3, IRQ_Svc_Count@l
lwz r4, 0(r3)
addi r4, r4, 1"
stw r4, 0(r3)

e_lis r3, IRQ_Svc_Count@h
e_or2i r3, IRQ_Svc_Count@l
e_lwz r4, 0(r3)
se_addi r4, 1
e_stw r4, 0(r3)
Creating VLE Applications, Rev. 0

Freescale Semiconductor 9

Summary
.rodata : {} > .

.ctors : {} > .

.dtors : {} > .

.syscall : > .

.fixaddr : > .

.fixtype : > .

.text : {} > int_flash_novle
}

Any VLE coded functions that are called from non-VLE code space must be aligned on a 32-bit boundary
to avoid an alignment exception. There are various ways to achieve this required alignment. Refer to the
documentation for your compiler/linker.

5 Summary
When creating or modifying an application to use VLE code, the following points must be kept in mind:

• VLE and non-VLE code must be segregated in memory as defined by the memory management
unit (MMU).

• The reset config half-word (RCHW) must be configured appropriately, depending on whether the
boot/initialization code is in VLE or non-VLE code space (assuming boot mode is from internal
Flash).

• VLE code sections must be 16-bit aligned, with the exception that any function that can be called
from code executing in non-VLE code space must be 32-bit aligned.

• Any existing assembler source code that is intended to execute in VLE code space may require
porting to the VLE instruction set.

• The source code may require specific #pragmas and/or assembler and compiler directives for the
toolset to correctly generate the VLE sections of code. Additionally, the linker directive file may
require additional sections or modifications to the existing sections. Refer to the documentation
for your tools for the correct procedure.
Creating VLE Applications, Rev. 0

Freescale Semiconductor10

Summary
Creating VLE Applications, Rev. 0

Freescale Semiconductor 11

EB687
Rev. 0, 01/2008

HOW TO REACH US:
USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008.

