Mask Set Errata for Mask 0N22J

Introduction
This report applies to mask 0N22J for these products:
- KE02Z

<table>
<thead>
<tr>
<th>Errata ID</th>
<th>Errata Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6946</td>
<td>Core: A debugger write to the I/O port might be corrupted during a processor write</td>
</tr>
<tr>
<td>6945</td>
<td>Core: Processor executing at HardFault priority might enter Lockup state if an NMI occurs during a waited debugger transaction</td>
</tr>
<tr>
<td>7331</td>
<td>IO: High current drive pins not in high-Z state during power up</td>
</tr>
<tr>
<td>7040</td>
<td>SOC: Slow VDD ramp-up might cause unstable startup on some devices during power up at cold temperatures</td>
</tr>
</tbody>
</table>

e6946: Core: A debugger write to the I/O port might be corrupted during a processor write

Errata type: Errata
Description: A debugger can perform memory accesses through the Cortex-M0+ processor bus matrix while the processor is running.

Because of this erratum, a debugger write to the I/O port might be corrupted if it occurs while the processor is executing a write. The processor write completes successfully. However, under specific timing conditions, the matrix might incorrectly replace the debugger write data with the value zero.

This erratum does not affect debugger writes outside the I/O port region of the memory map, or debugger reads.

Conditions:

The following timing-specific conditions must all be met:

- The processor is running (not halted in Debug state).
- The debugger performs a write within the I/O port region of the memory map.
The processor performs a write.

Implications:
The debugger might corrupt the targeted memory or configure the targeted device incorrectly.

Workaround: The debugger can work around this erratum by halting the processor in Debug state before performing writes to the I/O port region of the memory map.

e6945: Core: Processor executing at HardFault priority might enter Lockup state if an NMI occurs during a waited debugger transaction

Errata type: Errata
Description: A debugger can perform memory accesses through the Cortex-M0+ processor bus matrix while the processor is running.

Because of this erratum, the processor might erroneously enter Lockup state if a debugger-initiated access on the AHBLite master port is subject to wait states while the processor is running, executing at HardFault priority and taking a Non Maskable Interrupt (NMI). Under very specific timing conditions, the processor might incorrectly stack a ReturnAddress of 0xFFFFFE on NMI entry. On NMI return, the processor unstacks the incorrectly stacked ReturnAddress and enters Lockup state at HardFault priority.

Conditions:
The following timing-specific conditions must all be met:
- The processor is running (not halted in Debug state) and is executing at HardFault priority.
- The processor executes a single-cycle instruction at a word-aligned address.
- The debugger performs an access through the AHB-Lite master port that is subject to wait states.
- An NMI becomes pending.

Implications:
The processor stops executing the code in the HardFault handler and enters Lockup state at HardFault priority as if a fault had occurred.

Workaround: The debugger can work around this erratum by halting the processor in Debug state before performing accesses outside the Private Peripheral Bus (PPB) region of the memory map.

e7331: IO: High current drive pins not in high-Z state during power up

Errata type: Errata
Description: The high current drive pins on the chip are unexpectedly driven low for a short period during power up. All other I/O pins are high impedance. The issue happens only before VDD reaches the power-on reset voltage. After power up the normal I/O functions on the high current drive pins are not impacted.

Workaround: Use one or more combination of the following methods to avoid possible issues:
- Use high current drive pins as current source for LED connection, but keep total IDD < 120mA (refer to device data sheet for IDD)
• Configure the corresponding Flextimer channel output polarity as active high which are muxed with high current drive pins
• Use high current drive pins with NPN transistor (active high) to drive relays
• Keep VDD ramp-up time greater than or equal to 1KVs and less than or equal to 10KVs to disable LED and/or driver action during power up

e7040: SOC: Slow VDD ramp-up might cause unstable startup on some devices during power up at cold temperatures

Errata type: Errata
Description: Some devices may not start up when both conditions are met: cold temperature (between -40°C and about -20°C) and slow VDD ramp up time (less than or equal to 900 V/s). The unstable startup is occasional and recoverable after an uncertain period of time.

Workaround: In order to avoid such startup issue either of these conditions shall be met:

- Temperature above -20°C;
- VDD ramp up time >=1K V/s and <= 10K V/s

This erratum will be fixed in the next revision.