Mask Set Errata for Mask 3N40J

Introduction
This report applies to mask 3N40J for these products:
- KINETIS_E

<table>
<thead>
<tr>
<th>Errata ID</th>
<th>Errata Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6946</td>
<td>Core: A debugger write to the I/O port might be corrupted during a processor write</td>
</tr>
<tr>
<td>6945</td>
<td>Core: Processor executing at HardFault priority might enter Lockup state if an NMI occurs during a waited debugger transaction</td>
</tr>
<tr>
<td>6749</td>
<td>I2C: The I2C_C1[MST] bit is not automatically cleared when arbitration is lost</td>
</tr>
</tbody>
</table>

e6946: Core: A debugger write to the I/O port might be corrupted during a processor write

Errata type: Errata
Description: A debugger can perform memory accesses through the Cortex-M0+ processor bus matrix while the processor is running.

Because of this erratum, a debugger write to the I/O port might be corrupted if it occurs while the processor is executing a write. The processor write completes successfully. However, under specific timing conditions, the matrix might incorrectly replace the debugger write data with the value zero.

This erratum does not affect debugger writes outside the I/O port region of the memory map, or debugger reads.

Conditions:

The following timing-specific conditions must all be met:

- The processor is running (not halted in Debug state).
- The debugger performs a write within the I/O port region of the memory map.
- The processor performs a write.
Implications:
The debugger might corrupt the targeted memory or configure the targeted device incorrectly.

Workaround: The debugger can work around this erratum by halting the processor in Debug state before performing writes to the I/O port region of the memory map.

e6945: Core: Processor executing at HardFault priority might enter Lockup state if an NMI occurs during a waited debugger transaction

Errata type: Errata
Description: A debugger can perform memory accesses through the Cortex-M0+ processor bus matrix while the processor is running.

Because of this erratum, the processor might erroneously enter Lockup state if a debugger-initiated access on the AHB-Lite master port is subject to wait states while the processor is running, executing at HardFault priority and taking a Non Maskable Interrupt (NMI). Under very specific timing conditions, the processor might incorrectly stack a ReturnAddress of 0xFFFFFFFE on NMI entry. On NMI return, the processor unstacks the incorrectly stacked ReturnAddress and enters Lockup state at HardFault priority.

Conditions:
The following timing-specific conditions must all be met:

• The processor is running (not halted in Debug state) and is executing at HardFault priority.
• The processor executes a single-cycle instruction at a word-aligned address.
• The debugger performs an access through the AHB-Lite master port that is subject to wait states.
• An NMI becomes pending.

Implications:
The processor stops executing the code in the HardFault handler and enters Lockup state at HardFault priority as if a fault had occurred.

Workaround: The debugger can work around this erratum by halting the processor in Debug state before performing accesses outside the Private Peripheral Bus (PPB) region of the memory map.

e6749: I2C: The I2C_C1[MST] bit is not automatically cleared when arbitration is lost

Errata type: Errata
Description: When the I2C module is used as a master device and loses bus arbitration, it correctly switches to be a slave device. The I2C_C1[MST] bit is not automatically cleared when this occurs but it does correctly operate as a slave.

Workaround: When the I2C module has been configured as a master device and the I2C_S[ARB] bit is set, indicating arbitration has been lost, the I2C_C1[MST] bit must be cleared by software before the I2C_S[ARB] bit is cleared.
Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo and Kinetis are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited.

© 2014 Freescale Semiconductor, Inc.