

KINETIS_K_1N41K

Mask Set Errata

Rev. 2.0 — 6 January 2026

Errata

1 Mask Set Errata for Mask 1N41K

1.1 Revision History

This report applies to mask 1N41K for these products:

- MK21FN1M0AVLQ12, MK21FN1M0AVMC12, MK21FN1M0AVMC12R, MK21FN1M0AVMD12, MK21FX512AVLQ12, MK21FX512AVMC12, MK21FX512AVMD12, MK21FX512AVMD12R
- MK22FN1M0AVLH12, MK22FN1M0AVLK12, MK22FN1M0AVLK12R, MK22FN1M0AVLL12, MK22FN1M0AVLQ12, MK22FN1M0AVMC12, MK22FN1M0AVMD12, MK22FX512AVLH12, MK22FX512AVLH12R, MK22FX512AVLK12, MK22FX512AVLL12, MK22FX512AVLQ12, MK22FX512AVMC12, MK22FX512AVMD12

Table 1. Revision History

Revision	Release Date	Significant Changes
2.0	1/2026	<p>The following errata were added.</p> <ul style="list-style-type: none">• ERR052537• ERR008807• ERR050246 <p>The following errata were revised.</p> <ul style="list-style-type: none">• ERR006940• ERR006939
21 OCT 2014	2/2016	Initial Revision

1.2 Errata and Information Summary

Table 2. Errata and Information Summary

Erratum ID	Erratum Title
ERR052537	ADC: Incorrect ADC conversions when using high speed, long sample time or asynchronous clock configurations
ERR006990	CJTAG: possible incorrect TAP state machine advance during Check Packet
ERR006939	Core: Interrupted loads to SP can cause erroneous behavior
ERR006940	Core: VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
ERR006933	eDMA: Possible misbehavior of a preempted channel when using continuous link mode
ERR050246	FlexCAN: Receive Message Buffers may have its Code Field corrupted if the Receive FIFO function is used
ERR008010	LLWU: CMP flag in LLWU_Fx register cleared by multiple CMP out toggles when exiting LLSx or VLLSx modes.
ERR007993	MCG: FLL frequency may be incorrect after changing the FLL reference clock

Table 2. Errata and Information Summary...continued

Erratum ID	Erratum Title
ERR007735	MCG: IREFST status bit may set before the IREFS multiplexor switches the FLL reference clock
ERR005130	SAI: Under certain conditions, the CPU cannot reenter STOP mode via an asynchronous interrupt wakeup event
ERR003981	SDHC: ADMA fails when data length in the last descriptor is less or equal to 4 bytes
ERR003982	SDHC: ADMA transfer error when the block size is not a multiple of four
ERR004627	SDHC: Erroneous CMD CRC error and CMD Index error may occur on sending new CMD during data transfer
ERR003983	SDHC: Problem when ADMA2 last descriptor is LINK or NOP
ERR004218	SIM/FLEXBUS: SIM_SCGC7[FLEXBUS] bit should be cleared when the FlexBus is not being used.
ERR004647	UART: Flow control timing issue can result in loss of characters if FIFO is not enabled
ERR008169	UART: ISO-7816 T=0 mode loss of characters when UART is switched from transmit to receive mode
ERR008807	USB: In Host mode, transmission errors may occur when communicating with a Low Speed (LS) device through a USB hub

2 Known Errata

ERR052537: ADC: Incorrect ADC conversions when using high speed, long sample time or asynchronous clock configurations

Description

When the ADC is configured to use high speed operation (ADHSC=1), long sample time (LSMP=1), or the asynchronous clock (ADICLK=11), the input comparator of the ADC can fail over time leading to incorrect conversion results.

Workaround

For new unused devices, do not use high speed configuration (ADHSC=1), long sample time (LSMP=1) or the asynchronous clock input (ADICLK=11).

ERR006990: CJTAG: possible incorrect TAP state machine advance during Check Packet

Description

While processing a Check Packet, the IEEE 1149.7 module (CJTAG) internally gates the TCK clock to the CJTAG Test Access Port (TAP) controller in order to hold the TAP controller in the Run-Test-Idle state until the Check Packet completes. A glitch on the internally gated TCK could occur during the transition from the Preamble element to the first Body element of Check Packet processing that would cause the CJTAG TAP controller to change states instead of remaining held in Run-Test-Idle

If the CJTAG TAP controller changes states during the Check Packet due to the clock glitch, the CJTAG will lose synchronization with the external tool, preventing further communication.

Workaround

To prevent the possible loss of JTAG synchronization, when processing a Check Packet, provide a logic 0 value on the TMS pin during the Preamble element to avoid a possible glitch on the internally gated TCK clock.

ERR006939: Core: Interrupted loads to SP can cause erroneous behavior

Description

Arm Errata 752770: Interrupted loads to SP can cause erroneous behavior

This issue is more prevalent for user code written to manipulate the stack. Most compilers will not be affected by this, but please confirm this with your compiler vendor. MQX™ and FreeRTOS™ are not affected by this issue.

Affects: Cortex-M4, Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/R13), erroneous behavior can occur. In all cases, returning from the interrupt will result in the load instruction being executed an additional time. For all instructions performing an update to the base register, the base register will be

erroneously updated on each execution, resulting in the stack-pointer being loaded from an incorrect memory location.

The affected instructions that can result in the load transaction being repeated are:

- 1) LDR SP,[Rn],#imm
- 2) LDR SP,[Rn,#imm]!
- 3) LDR SP,[Rn,#imm]
- 4) LDR SP,[Rn]
- 5) LDR SP,[Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect memory address are:

- 1) LDR SP,[Rn],#imm
- 2) LDR SP,[Rn,#imm]!

Conditions:

- 1) An LDR is executed, with SP/R13 as the destination.
- 2) The address for the LDR is successfully issued to the memory system.
- 3) An interrupt is taken before the data has been returned and written to the stack-pointer.

Implications:

Unless the load is being performed to Device or Strongly-Ordered memory, there should be no implications from the repetition of the load. In the unlikely event that the load is being performed to Device or Strongly-Ordered memory, the repeated read can result in the final stack-pointer value being different than had only a single load been performed.

Interruption of the two write-back forms of the instruction can result in both the base register value and final stack-pointer value being incorrect. This can result in apparent stack corruption and subsequent unintended modification of memory.

Workaround

Most compilers are not affected by this, so a workaround is not required.

However, for hand-written assembly code to manipulate the stack, both issues may be worked around by replacing the direct load to the stack-pointer, with an intermediate load to a general-purpose register followed by a move to the stack-pointer.

If repeated reads are acceptable, then the base-update issue may be worked around by performing the stack pointer load without the base increment followed by a subsequent ADD or SUB instruction to perform the appropriate update to the base register.

ERR006940: Core: VDIV or VSQRT instructions might not complete correctly when very short ISRs are used

Description

Arm Errata 776924: VDIV or VSQRT instructions might not complete correctly when very short ISRs are used

Affects: Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

On Cortex-M4 with FPU, the VDIV and VSQRT instructions take 14 cycles to execute. When an interrupt is taken a VDIV or VSQRT instruction is not terminated, and completes its execution while the interrupt stacking occurs. If lazy context save of floating point state is enabled then the automatic stacking of the floating point context does not occur until a floating point instruction is executed inside the interrupt service routine.

Lazy context save is enabled by default. When it is enabled, the minimum time for the first instruction in the interrupt service routine to start executing is 12 cycles. In certain timing conditions, and if there is only one or two instructions inside the interrupt service routine, then the VDIV or VSQRT instruction might not write its result to the register bank or to the FPSCR.

Workaround

A workaround is only required if the floating point unit is present and enabled. A workaround is not required if the memory system inserts one or more wait states to every stack transaction.

There are two workarounds:

- 1) Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the FPCCR at address 0xE000EF34).
- 2) Ensure that every interrupt service routine contains more than 2 instructions in addition to the exception return instruction.

ERR006933: eDMA: Possible misbehavior of a preempted channel when using continuous link mode

Description

When using continuous link mode (DMA_CR[CLM] = 1) with a high priority channel linking to itself, if the high priority channel preempts a lower priority channel on the cycle before its last read/write sequence, the counters for the preempted channel (the lower priority channel) are corrupted. When the preempted channel is restored, it runs past its "done" point instead of performing a single read/write sequence and retiring.

The preempting channel (the higher priority channel) will execute as expected.

Workaround

Disable continuous link mode (DMA_CR[CLM]=0) if a high priority channel is using minor loop channel linking to itself and preemption is enabled. The second activation of the preempting channel will experience the normal startup latency (one read/write sequence + startup) instead of the shortened latency (startup only) provided by continuous link mode.

ERR050246: FlexCAN: Receive Message Buffers may have its Code Field corrupted if the Receive FIFO function is used

Description

If the Code Field of a Receive Message Buffer is corrupted it may deactivate the Message Buffer, so it is unable to receive new messages. It may also turn a Receive Message Buffer into any type of Message Buffer as defined in the Message buffer structure section in the device documentation.

The Code Field of the FlexCAN Receive Message Buffers (MB) may get corrupted if the following sequence occurs.

- 1- A message is received and transferred to an MB (i.e. MBx)
- 2- MBx is locked by software for more than 20 CAN bit times (time determines the probability of erratum to manifest).
- 3- SMB0 (Serial Message Buffer 0) receives a message (i.e. message1) intended for MBx, but destination is locked by the software (as depicted in point 2 above) and therefore NOT transferred to MBx.
- 4- A subsequent incoming message (i.e. message2) is being loaded into SMB1 (as SMB0 is full) and is evaluated by the FlexCAN hardware as being for the FIFO.
- 5- During the message2, the MBx is unlocked. Then, the content of SMB0 is transferred to MBx and the CODE field is updated with an incorrect value.

The problem does not occur in cases when only Rx FIFO or only a dedicated MB is used (i.e. either RX MB or Rx FIFO is used). The problem also does not occur when the Enhanced Rx FIFO and dedicated MB are used in the same application. The problem only occurs if the FlexCAN is programmed to receive in the Legacy FIFO and dedicated MB at the same application.

Workaround

This defect only applies if the Receive FIFO (Legacy Rx FIFO) is used. This feature is enabled by RFEN bit in the Module Control Register (MCR). If the Rx FIFO is not used, the Receive Message Buffer Code Field is not corrupted.

If available on the device, use the enhanced Rx FIFO feature instead of the Legacy Rx FIFO. The Enhanced Rx FIFO is enabled by the ERFEN bit in the Enhanced Rx FIFO Control Register (ERFCR).

The defect does not occur if the Receive Message Buffer lock time is less than or equal to the time equivalent to 20 x CAN bit time.

The recommended way for the CPU to service (read) the frame received in a mailbox is by the following procedure:

1. Read the Control and Status word of that mailbox.
2. Check if the BUSY bit is deasserted, indicating that the mailbox is not locked. Repeat step 1) while it is asserted.
3. Read the contents of the mailbox.
4. Clear the proper flag in the IFLAG register.
5. Read the Free Running Timer register (TIMER) to unlock the mailbox

In order to guarantee that this procedure occurs in less than 20 CAN bit times, the MB receive handling process in software (step 1 to step 5 above) should be performed as a 'critical code section' (interrupts disabled before execution) and should ensure that the MB receive handling occurs in a deterministic number of cycles.

ERR008010: LLWU: CMP flag in LLWU_Fx register cleared by multiple CMP out toggles when exiting LLSx or VLLSx modes.

Description

The comparator's corresponding wakeup flag in the LLWU_Fx register is cleared prematurely if:

1. The CMP output is toggled more than one time during the LLSx wakeup sequence and the comparator's corresponding flag in the LLWU_Fx register is cleared.

Or

2. The CMP output is toggled more than one time during the VLLSx wakeup sequence, PMC_REGSC[ACKISO] is cleared, and the comparator's corresponding flag in the LLWU_Fx register is cleared.

Workaround

When MCU is waking up from LLS, code can implement a software flag to retain the wakeup source, if required by software.

When MCU is waking up from VLLSx, code can implement a software flag prior to clearing PMC_REGSC[ACKISO] to retain the wakeup source, if required by software.

ERR007993: MCG: FLL frequency may be incorrect after changing the FLL reference clock

Description

When the FLL reference clock is switched between the internal reference clock and the external reference clock, the FLL may jump momentarily or lock at a higher than configured frequency. The higher FLL frequency can affect any peripheral using the FLL clock as its input clock. If the FLL is being used as the system clock source, FLL Engaged Internal (FEI) or FLL Engaged External (FEE), the maximum system clock frequency may be exceeded and can cause indeterminate behavior.

Only transitions from FLL External reference (FBE, FEE) to FLL Internal reference (FBI, FEI) modes and vice versa are affected. Transitions to and from BLPI, BLPE, or PLL clock modes (if supported) are not affected because they disable the FLL. Transitions between the external reference modes or between the internal reference modes are not affected because the reference clock is not changed.

Workaround

To prevent the occurrence of this jump in frequency either the MCG_C4[DMX32] bit must be inverted or the MCG_C4[DRST_DRST] bits must be modified to a different value immediately before the change in reference clock is made and then restored back to their original value after the MCG_S[IREFST] bit reflects the selected reference clock.

If you want to change the MCG_C4[DMX32] or MCG_C4[DRST_DRST] to new values along with the reference clock, the sequence described above must be performed before setting these values to the new value(s).

ERR007735: MCG: IREFST status bit may set before the IREFS multiplexor switches the FLL reference clock

Description

When transitioning from MCG clock modes FBE or FEE to either FBI or FEI, the MCG_S[IREFST] bit will set to 1 before the IREFS clock multiplexor has actually selected the slow IRC as the reference clock. The delay before the multiplexor actually switches is:

2 cycles of the slow IRC + 2 cycles of OSCERCLK

In the majority of cases this has no effect on the operation of the device.

Workaround

In the majority of applications no workaround is required. If there is a requirement to know when the IREFS clock multiplexor has actually switched, and OSCERCLK is no longer being used by the FLL, then wait the equivalent time of:

2 cycles of the slow IRC + 2 cycles of OSCERCLK
after MCG_S[IREFST] has been set to 1.

ERR005130: SAI: Under certain conditions, the CPU cannot reenter STOP mode via an asynchronous interrupt wakeup event

Description

If the SAI generates an asynchronous interrupt to wake the core and it attempts to reenter STOP mode, then under certain conditions the STOP mode entry is blocked and the asynchronous interrupt will remain set.

This issue applies to interrupt wakeups due to the FIFO request flags or FIFO warning flags and then only if the time between the STOP mode exit and subsequent STOP mode reentry is less than 3 asynchronous bit clock cycles.

Workaround

Ensure that at least 3 bit clock cycles elapse following an asynchronous interrupt wakeup event, before STOP mode is reentered.

ERR003981: SDHC: ADMA fails when data length in the last descriptor is less or equal to 4 bytes

Description

A possible data corruption or incorrect bus transactions on the internal AHB bus, causing possible system corruption or a stall, can occur under the combination of the following conditions:

1. ADMA2 or ADMA1 type descriptor
2. TRANS descriptor with END flag
3. Data length is less than or equal to 4 bytes (the length field of the corresponding descriptor is set to 1, 2, 3, or 4) and the ADMA transfers one 32-bit word on the bus
4. Block Count Enable mode

Workaround

The software should avoid setting ADMA type last descriptor (TRANS descriptor with END flag) to data length less than or equal to 4 bytes. In ADMA1 mode, if needed, a last NOP descriptor can be appended to the descriptors list. In ADMA2 mode this workaround is not feasible due to ERR003983.

ERR003982: SDHC: ADMA transfer error when the block size is not a multiple of four

Description

Issue in eSDHC ADMA mode operation. The eSDHC read transfer is not completed when block size is not a multiple of 4 in transfer mode ADMA1 or ADMA2. The eSDHC DMA controller is stuck waiting for the IRQSTAT[TC] bit in the interrupt status register.

The following examples trigger this issue:

1. Working with an SD card while setting ADMA1 mode in the eSDHC

2. Performing partial block read
3. Writing one block of length 0x200
4. Reading two blocks of length 0x22 each. Reading from the address where the write operation is performed. Start address is 0x512 aligned. Watermark is set as one word during read. This read is performed using only one ADMA1 descriptor in which the total size of the transfer is programmed as 0x44 (2 blocks of 0x22).

Workaround

When the ADMA1 or ADMA2 mode is used and the block size is not a multiple of 4, the block size should be rounded to the next multiple of 4 bytes via software. In case of write, the software should add the corresponding number of bytes at each block end, before the write is initialized. In case of read, the software should remove the dummy bytes after the read is completed.

For example, if the original block length is 22 bytes, and there are several blocks to transfer, the software should set the block size to 24. The following data is written/stored in the external memory:

4 Bytes valid data
2 Bytes valid data + 2 Byte dummy data
4 Bytes valid data
2 Bytes valid data + 2 Byte dummy data

In this example, 48 (24 x 2) bytes are transferred instead of 44 bytes. The software should remove the dummy data.

ERR004627: SDHC: Erroneous CMD CRC error and CMD Index error may occur on sending new CMD during data transfer

Description

When sending new, non data CMD during data transfer between the eSDHC and EMMC card, the module may return an erroneous CMD CRC error and CMD Index error. This occurs when the CMD response has arrived at the moment the FIFO clock is stopped. The following bits after the start bit of the response are wrongly interpreted as index, generating the CRC and Index errors.

The data transfer itself is not impacted.

The rate of occurrence of the issue is very small, as there is a need for the following combination of conditions to occur at the same cycle:

- The FIFO clock is stopped due to FIFO full or FIFO empty
- The CMD response start bit is received

Workaround

The recommendation is to not set FIFO watermark level to a too small value in order to reduce frequency of clock pauses.

The problem is identified by receiving the CMD CRC error and CMD Index error. Once this issue occurs, one can send the same CMD again until operation is successful.

ERR003983: SDHC: Problem when ADMA2 last descriptor is LINK or NOP

Description

ADMA2 mode in the eSDHC is used for transfers to/from the SD card. There are three types of ADMA2 descriptors: TRANS, LINK or NOP. The eSDHC has a problem when the last descriptor (which has the End bit '1') is a LINK descriptor or a NOP descriptor.

In this case, the eSDHC completes the transfers associated with this descriptor set, whereas it does not even start the transfers associated with the new data command. For example, if a WRITE transfer operation is performed on the card using ADMA2, and the last descriptor of the WRITE descriptor set is a LINK descriptor, then the WRITE is successfully finished. Now, if a READ transfer is programmed from the SD card using ADMA2, then this transfer does not go through.

Workaround

Software workaround is to always program TRANS descriptor as the last descriptor.

ERR004218: SIM/FLEXBUS: SIM_SCGC7[FLEXBUS] bit should be cleared when the FlexBus is not being used.

Description

The SIM_SCGC7[FLEXBUS] bit is set by default. This means that the FlexBus will be enabled and come up in global chip select mode.

With some code sequence and register value combinations the core could attempt to prefetch from the FlexBus even though it might not actually use the value it prefetched. In the case where the FlexBus is unconfigured, this can result in a hung bus cycle on the FlexBus.

Workaround

If the FlexBus is not being used, disabled the clock to the FlexBus during chip initialization by clearing the SIM_SCGC7[FLEXBUS] bit.

If the FlexBus will be used, then enable at least one chip select as early in the chip initialization process as possible.

ERR004647: UART: Flow control timing issue can result in loss of characters if FIFO is not enabled

Description

On UARTx modules with FIFO depths greater than 1, when the /RTS flow control signal is used in receiver request-to-send mode, the /RTS signal is negated if the number of characters in the Receive FIFO is equal to or greater than the receive watermark. The /RTS signal will not negate until after the last character (the one

that makes the condition for /RTS negation true) is completely received and recognized. This creates a delay between the end of the STOP bit and the negation of the /RTS signal. In some cases this delay can be long enough that a transmitter will start transmission of another character before it has a chance to recognize the negation of the /RTS signal (the /CTS input to the transmitter).

Workaround

Always enable the RxFIFO if you are using flow control for UARTx modules with FIFO depths greater than 1. The receive watermark should be set to seven or less. This will ensure that there is space for at least one more character in the FIFO when /RTS negates. So in this case no data would be lost.

Note that only UARTx modules with FIFO depths greater than 1 are affected. The UARTs that do not have the RxFIFO feature are not affected. Check the Reference Manual for your device to determine the FIFO depths that are implemented on the UARTx modules for your device.

ERR008169: UART: ISO-7816 T=0 mode loss of characters when UART is switched from transmit to receive mode

Description

When operating in ISO-7816 T=0 mode, S1[TC] sets to indicate end of transmission after 12 ETUs and software then switches the UART to receive mode by setting C2[RE]. Delay between the transmit and receive transition may cause the start bit of an incoming character to be missed resulting in a missed character.

Workaround

Software should switch the UART to receive mode by setting C2[RE] within 0.3 ETUs of S1[TC] being set. No workaround is required for EMV card applications because the maximum turnaround time for EMV-compliant cards is 15 ETUs, per the EMV L1 test specification (1CF.004.00).

ERR008807: USB: In Host mode, transmission errors may occur when communicating with a Low Speed (LS) device through a USB hub

Description

In Host mode, if the required 48 MHz USB clock is not derived from the same clock source used by the core, transmission errors may occur when communicating with a Low Speed (LS) device through a USB hub. A typical example that causes this issue is when an external 48 MHz clock is used for the USB module via the USB_CLKIN pin, and a separate external clock on XTAL/EXTAL is used to generate the system/core clock.

This issue does not occur when in USB Device mode or if the LS device is not connected through a USB hub.

Workaround

In Host mode, ensure the 48 MHz USB clock is derived from the same clock source that the system clock uses. The two clocks, while they do not need to be the same frequency, both need to come from the same source so that they are in sync. For example, generate the 48 MHz USB clock by dividing down the PLL clock used by the core/system via the SIM_CLKDIV2[USBFRAC] and SIM_CLKDIV2[USBDIV] bit fields.

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Contents

1	Mask Set Errata for Mask 1N41K	1
1.1	Revision History	1
1.2	Errata and Information Summary	1
2	Known Errata	3
	Legal information	12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.
