
Freescale Semiconductor
Mask Set Errata

MAC7101MSE1
Rev. 7, 04/2005

MAC71x1 Microcontroller Device 
Mask Set Errata
This document identifies implementation differences (summarized in Table 1) between specific 
MAC7100 family microcontroller mask sets and the functional descriptions contained in the MAC7100 
Microcontroller Family Reference Manual (MAC7100RM). Refer to http://www.freescale.com for the 
latest updates.
1 Introduction
This errata provides information applicable to the following MCU mask set devices:

• 0L49P mask of MAC7101, MAC7111, MAC7121, MAC7131, MAC7141
• 1L49P mask of MAC7101, MAC7111, MAC7121, MAC7131, MAC7141
• 0L47W mask of MAC7101, MAC7111, MAC7121, MAC7131, MAC7141
• 1L47W mask of MAC7101, MAC7111, MAC7121, MAC7131, MAC7141

When contacting a Motorola representative for assistance, please have the MCU device mask set and date 
code information (described below) available.

1.1 MCU Device Part Number Prefixes
All MAC7100 family devices are marked with a PAC, MAC or SAC prefix. These prefixes denote the 
following:

PAC Devices that have been tested, but are not fully characterized or qualified over the full range 
of normal manufacturing process variations.

MAC Fully characterized and qualified standard devices.
SAC Fully characterized and qualified special or custom devices.
© Freescale Semiconductor, Inc., 2004–2005. All rights reserved.

• Preliminary

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

http://www.freescale.com


Errata Summary  
1.2 MCU Device Mask Set Identification
The mask set of a device is identified by a four-character code consisting of a letter, two numerical digits, 
and a letter, for example L49P. Slight variations to the mask set identification code may result in an 
optional numerical digit preceding the standard four-character code, for example 0L49P.

1.3 MCU Device Date Codes
In addition to the part number and mask set markings, each device is marked to indicate the week of 
manufacture. The date is coded as four numerical digits where the first two digits indicate the year and the 
last two digits indicate the work week. For example, the date code “0412” indicates that the device was 
manufactured during the 12th week of the year 2004.

1.4 Errata System Tracking Numbers
MUCts0xxxx is the tracking number for MAC7100 family device errata. An errata number can be used 
with the mask set and date code to identify a specific errata to a Motorola representative.

2 Errata Summary
Table 1. Summary of MAC71x1 Mask Set Errata

Errata
Number

Brief Description
Module(s)
Affected

Mask Set 
Affected

0L
49

P

1L
49

P

0L
47

W

1L
47

W

MUCts01045 RESET Timing Restricted CRG Yes Yes — —

MUCts01057, 
MUCts01109

Read to CFM DACC Registers Returns Incorrect Value CFM Yes Yes — —

MUCts01058 eDMA Bus Error On The Last Read/Write Is Not Recorded eDMA Yes Yes — —

MUCts01059 FlexCAN May Fail To Reset The Error Status Bits After CPU Reads ESR FlexCAN Yes Yes — —

MUCts01060 FlexCAN May Transmit a Malformed Frame After Bus Off FlexCAN Yes Yes — —

MUCts01061 FlexCAN Requires Delay Before Attempting Consecutive Writes to Error Counter FlexCAN Yes Yes — —

MUCts01062 FlexCAN Resets DOZE Bit On Wake-up From Stop Mode FlexCAN Yes Yes — —

MUCts01063 FlexCAN Generates Wake-up Interrupt Before Finishing Exit From Doze Mode FlexCAN Yes Yes — —

MUCts01065 Deactivation of a Tx Buffer During the Reception of Remote Request Frame FlexCAN Yes Yes — —

MUCts01067, 
MUCts01110

Additional Block Programmed Due to Pipeline Issue / Protection Violation CFM Yes Yes — —

MUCts01074 LIN Physical Bus Error Detection Fails eSCI Yes Yes — —

MUCts01075 System Services Module WAKEUP Register Bit 1 Is Never Set SSM Yes Yes — —

MUCts01076 eMIOS Wrong Internal Counter Enable eMIOS Yes Yes — —

MUCts01091 Incorrect Nexus Messages When Exiting Debug Into Thumb State CPU Core 
/ Nexus

Yes Yes — —

MUCts01107 Floating TA Signal On Some Package Variations Causes Increased Current EIM Yes Yes — —

MUCts01108 Unable to Reset Debug Logic After Power On JTAG /
Nexus

Yes Yes — —
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor2



Errata Summary  
MUCts01114 Slave Timeout in LIN Mode Occurs Too Early At Lower Baud Rates eSCI Yes Yes — —

MUCts01115 Nexus EVTI Debug Request Does Not Work CPU Core 
/ Nexus

Yes Yes — —

MUCts01134 Cannot Read FlexCAN Timer and Error Counters Reliably Out of Freeze Mode FlexCAN Yes Yes — —

MUCts01165 FlexCAN May Transmit The Wrong ID FlexCAN Yes Yes — —

MUCts01195 FlexCAN Intermittent Tx/Rx Failures When Using the Oscillator Clock FlexCAN Yes Yes — —

MUCts01247 No Wake-up From Doze Mode Using an Interrupt INTC Yes Yes — —

MUCts01248 DMA Request Not De-asserted When Channel is De-activated DMA Mux Yes Yes — —

MUCts01249 Incorrect External Bus Address Incrementing Using TA in Auto-Acknowledge 
Mode

EIM Yes Yes — —

MUCts01257 LIN Slave Timeout Flagged When Data Not Read eSCI Yes Yes — —

MUCts01347, 
MUCts01374

MB Deactivation in Bus Off Holds Arbitration Until Reception FlexCAN Yes Yes Yes Yes

MUCts01364 Link Register Not Properly Updated On Data Aborts in Thumb State CPU Core Yes Yes Yes Yes

MUCts01460 Incorrect ADDR[1:0] and BS1 Outputs for Thumb Mode Instruction Fetches EIM Yes Yes Yes —

MUCts01474, 
MUCts01476

Limitations of DSPI Continuous Chip Select Mode DSPI Yes Yes Yes Yes

MUCts01515 Wake-up From Pseudo-Stop May Cause System Failure VREG, 
CRG

— — Yes —

MUCts01526 Writes to eMIOS B Register May Cause Match Ignore in OPWM Mode eMIOS — — Yes Yes

MUCts01527 Flash Programming Overwrites PIM Registers CFM, PIM — — Yes —

MUCts01593 Rx MB Receives Data and ID Transmitted By Tx MB FlexCAN Yes Yes — —

MUCts01642 
to 
MUCts01651

Writing Undefined Address Causes Bus Abort But Writes Register ATD, 
CRG, 

DMA Mux, 
DSPI, 

eMIOS, 
eSCI, I2C, 
PIT, VREG

— — Yes Yes

MUCts01832, 
MUCts01833

Deactivating A Receive MB May Corrupt Another Active Receive MB FlexCAN Yes Yes Yes Yes

MUCts01849, 
MUCts01855

Changing CTARs Between Frames in Continuous PCS Mode May Cause Error DSPI Yes Yes Yes Yes

MUCts01888, 
MUCts01889

IPM/IPWM Modes, Value Read From UCAn May Be Incorrect eMIOS Yes Yes Yes Yes

MUCts01916 VREG High Temperature Control Register (VREGHTCL) For Factory Use Only VREG — — Yes Yes

MUCts01931, 
MUCts01932, 
MUCts01933

Clock Monitor Reset Causes System Lock-up CRG Yes Yes Yes Yes

MUCts02084, 
MUCts02282

MCM Reset Status Register (MRSR) Always Reads 0x80 MCM Yes Yes Yes Yes

MUCts02092 FlexCAN Transmit Buffers May Freeze or Indicate Missing Frame FlexCAN — — Yes Yes

MUCts02511 Debug Status Port Mode 2 Incorrect Signal Assignments in Documentation SSM — — Yes Yes

Table 1. Summary of MAC71x1 Mask Set Errata (continued)

Errata
Number

Brief Description
Module(s)
Affected

Mask Set 
Affected

0L
49

P

1L
49

P

0L
47

W

1L
47

W

MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 3



Errata Details  
3 Errata Details
This section provides a detailed description of each errata and a description of a possible work-around, 
where appropriate.

3.1 MUCts01045 — RESET Timing Restricted

Description
If the external RESET line is held low, and released within 64 clock cycles after the CRG stops driving it, 
the JTAG/Nexus modules will remain in reset for a further 64 clock cycles. 

Work-Around
The problem can be avoided by these methods: 

1. External resets are applied to the RESET pin for less than 256 clock cycles 
2. External resets are applied to the RESET pin for more than 320 clock cycles 
3. No restriction on asserting the RESET pin, but JTAG or Nexus commands will not be applied 

before 321 clock cycles since assertion of the RESET pin have passed. 

3.2 MUCts01057, MUCts01109 — Read to CFM DACC 
Registers Returns Incorrect Value

Description
The DACC registers for the Instruction and Data Flash (CFMDACC and CFMDFDACC) return incorrect 
values when read after writing. The value written into the registers will be correctly written. However, the 
value read back will be the bitwise inversion of the value written. The description of the bits is as follows:

• DACC[M] = 0: Program Flash logical sector M is placed in data address space. 
• DACC[M] = 1: Program Flash logical sector M is placed in data and instruction address space.

In summary, the values read will be: 
1. If the Flash is erased (i.e., programmed to all 1’s), the corresponding DACC register will contain 

all 1’s, meaning that all logical sectors are placed in both data and instruction address space. 
2. If a ‘1’ is written to DACC[M], the value read back for that bit will be ‘0’. The corresponding 

logical sector will be placed in both data and instruction address space. 
3. If a ‘0’ is written to DACC[M], the value read back for that bit will be ‘1’. The corresponding 

logical sector will be placed only in data address space. 

Work-Around
When reading the DACC register for either the Instruction or Data Flash, always perform a bitwise 
inversion of the value read in order to determine the value actually stored in the register. For future 
compatibility, this inversion should be conditional. Future members of the MAC7100 family will return 
correct values when the DACC registers are read.
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor4



Errata Details  
3.3 MUCts01058 — eDMA Bus Error On The Last Read/
Write Is Not Recorded

Description
The eDMA records a bus error in the programmer's model via the DMAES and DMAERR registers. The 
DMAES register records the source of the error and the DMAERR indicates an error status on a per 
channel basis. The DMAERR has the ability to generate an error interrupt if properly enabled. A bus error 
on the last read/write before a channel is retired or preempted is not captured in the DMAES or DMAERR 
registers. The dma_engine recognizes the error and cancels any remaining transfers but the error status 
registers are not updated in the programmer's model. The TCD.done status is correct. The TCD.done bit 
is not asserted if the major loop is exhausted and a bus error occurs during the last read/write. Typically, a 
bus error occurs during application software development in response to an access to a reserved or illegal 
location. For example, an address that accesses an unused portion of the memory map generates a bus 
error.

Work-Around
1. Verify the eDMA does not use any illegal addresses, or
2. Configure the channel's TCD.biter = TCD citer = 1 and verify the TCD.done bit is set after the 

channel completes. 

3.4 MUCts01059 — FlexCAN May Fail To Reset The Error 
Status Bits After CPU Reads ESR

Description
When the CPU reads the Error and Status Register (ESR), FlexCAN should reset the error status bits 
(BIT1_ERR, BIT0_ERR, ACK_ERR, CRC_ERR, FRM_ERR), but it may fail to do so if the read 
operation is done shortly after the time in which the error was detected. To be able to reset the error bits, 
FlexCAN needs one CAN domain clock cycle before attempting to read the ESR Register. 

Work-Around
A general solution is to repeat the read operation until ESR is reset. If errors are handled by servicing the 
error interrupt, then the time it takes from the error detection until the CPU is able to read ESR should be 
large enough, unless the difference between the CAN and bus clock frequencies is high. The required time 
between error interrupt and ESR reading is one CAN domain clock cycle (normally the crystal oscillator 
clock period).
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 5



Errata Details  
3.5 MUCts01060 — FlexCAN May Transmit a Malformed 
Frame After Bus Off

Description
In Bus Off state, the Error Counter counts sequences of 11 recessive bits. During Bus Off, if Freeze Mode 
is entered when the Error Counter is at 127, or is written to 127 when already in Freeze Mode, and if there 
was a pending frame to be transmitted, then upon leaving Bus Off FlexCAN will transmit the pending 
frame with a wrong DLC. 

Work-Around
If Freeze Mode is entered during Bus Off, read the value of the Error Counter. If it is 127, something else 
should be written to it, for example 126. Care should be taken when writing to the Error Counter, as it 
should only be decremented. If the Error Counter is incremented, then FlexCAN will break the CAN 
protocol by sending a frame before 128 sequences of 11 recessive bits have passed, as required by the CAN 
standard. 

3.6 MUCts01061 — FlexCAN Requires Delay Before 
Attempting Consecutive Writes to Error Counter

Description
After writing to the Error Counter in Freeze Mode, the CPU should keep reading the Error Counter to 
discover when the write operation finished. After reading the Error Counter and confirming that the write 
operation has finished, if the CPU attempts to write again immediately to the Error Counter, the new write 
operation may fail because FlexCAN did not finish yet processing the previous write operation. 

Work-Around
After confirming the first write operation by successfully reading the Error Counter, if it is desired to write 
the Error Counter again, a delay should be inserted. The required delay is 3 CAN clock cycles plus 3 bus 
clock cycles. The CAN clock is the clock applied to the CAN engine. The bus clock is the clock applied 
to the peripheral bus.

3.7 MUCts01062 — FlexCAN Resets DOZE Bit On Wake-
up From Stop Mode

Description
When FlexCAN wakes-up from Stop Mode due to CAN bus activity, the DOZE bit in the MCR Register 
is automatically reset. This should only happen upon wake-up from Doze Mode. 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor6



Errata Details  
Work-Around
Re-program the DOZE bit after wake-up from Stop Mode due to CAN bus activity. 

3.8 MUCts01063 — FlexCAN Generates Wake-up Interrupt 
Before Finishing Exit From Doze Mode

Description
Upon wake-up from Doze Mode, an interrupt is generated as soon as activity is detected on the CAN bus. 
When this happens FlexCAN resets the DOZE bit in MCR and exits Doze Mode. The wake-up interrupt is 
generated before FlexCAN completes the exit from Doze Mode procedure. If the CPU clears the interrupt 
flag before FlexCAN exits Doze Mode, the interrupt flag may be set again by activity on the CAN bus. 

Work-Around
Upon receiving a wake-up from Doze Mode interrupt, make sure to clear the interrupt flag only after 
FlexCAN exits Doze Mode. This information can be obtained by reading the LPM_ACK bit in the MCR 
Register.

3.9 MUCts01065 — Deactivation of a Tx Buffer During the 
Reception of Remote Request Frame

Description
When FlexCAN receives a remote request frame, the code field and RTR bit of matched message buffer 
are changed (at 6th bit of EOF) to make it a Tx MB and allow it to participate in the next arbitration 
process. If the user writes to the CODE field of the highest priority Tx MB during the reception of a remote 
request frame, the RTR bit may not be reset, therefore this MB may be transmitted as remote frame and 
not data frame. 

Work-Around
Do not write to the CODE field of active Tx MBs (transmission pending) when not in Freeze Mode. If it 
is necessary to abort the transmission of an MB, go to Freeze Mode first and then write to the CODE field. 
Note that there is no restriction to writing to inactive MBs to initiate a new Tx or Rx. 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 7



Errata Details  
3.10 MUCts01067, MUCts01110 — Additional Block 
Programmed Due to Pipeline Issue / Protection 
Violation

Description
After pipelining a CFM command (interlocked or not), if another command to a different block follows, 
the command will be executed on both the new and the previously pipelined block(s). Generating a 
protection violation on one block, clearing the violation and writing to a different block will result on both 
blocks having the current command executed on them. This is due to an internal register not being cleared 
during the pipelined operation or after a protection violation. 

Work-Around
To get around this issue, an access error must be generated after pipelining or a protection violation must 
be generated, and then the access error may immediately be cleared. This forces a clear of the internal 
register. The recommended way to generate an access error is by initiating a command sequence which 
writes to the same block twice (no command needs to be written). The access error and protection flags 
must be cleared separately.

3.11 MUCts01074 — LIN Physical Bus Error Detection Fails

Description
For LIN operation, the eSCI may incorrectly flag a physical bus error. For baud rates with a prescaler 
greater than one, it will flag physical bus errors despite the LIN bus behaving correctly. This error causes 
a reset to the LIN FSM, which aborts the current frame.

Work-Around
If the LDBG bit is set, detected errors will not cause the LIN FSM to reset. This should work fine for 
normal operation, and LIN will work as intended for all baud rates. In addition the physical bus error flag 
must be masked out.

Genuine physical bus errors must be detected by software. In some cases a physical bus error will cause 
large numbers of bit errors and can thus be detected. If the bus is stuck at a constant value, however the 
transmitted byte can not be read back, and thus bit errors will not be flagged.

For TX frames this can be solved using an external reference (for example, a timer or periodic calls to the 
driver routines). If after the normal timeout period the frame has not completed (FRC not set) then this 
indicates a physical bus error.

For RX frames an external reference is also required. If after the timeout period the RX header has not 
been transmitted (i.e. TXRDY flag is not set - see MUCts01114 – Slave-Timeout in LIN mode occurs too 
early at lower baud rates), then this indicates a physical bus error. If the header has been transmitted, but 
the frame is not completed, then a slave timeout error has occurred. 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor8



Errata Details  
3.12 MUCts01075 — System Services Module WAKEUP 
Register Bit 1 Is Never Set

Description
In the WAKEUP register in the System Services Module, bit [1] corresponds to a wake-up from the 
interrupt controller. This bit will never get set, even if the interrupt controller causes the wake-up event. 
Although this bit is never set, the wake-up functionality is unaffected, and the system will wake-up as 
specified when an interrupt source is used. 

Work-Around
The source(s) for a system wake-up event can not be determined solely by reading the WAKEUP register 
in the SSM. In order to determine all sources for a wake-up from either STOP or DOZE, the following 
steps must be taken: 

1. Read the WAKEUP register in the SSM. If no bits are set, then the wake-up source must have come 
from the interrupt controller. In either case, proceed to step 2.

2. Read the IPRL/IPRH registers in the INTC to determine interrupt sources that may have caused a 
wakeup event.

Note that there may be multiple wake-up sources active at any one time.

If any interrupt source is pending when the system wakes up, then that interrupt will be taken immediately. 
Therefore, it is also possible to determine whether an interrupt source was active at wake-up from STOP 
mode by examining the flow of code execution following the write to the SDMCTL register. If a service 
routine associated with an interrupt wake-up source is entered immediately after the write to the STOP 
command, then at least one interrupt source caused the wake-up. The following steps illustrates this:

1. Clear a software flag ‘INT_WAKEUP’ (for example) 
2. Write the SDMCTL[STOP] bit (enter STOP/pseudo-STOP mode) 
3. Execute a NOP command (ensures next command will not be executed before the interrupt is 

serviced) 
4. Is ‘INT_WAKEUP’ set? Yes: interrupt must have been serviced. No: no interrupt wake-up 

sources were pending after wake-up.
5. In the ISR(s) for any interrupt sources that are used as wake-ups, set the ‘INT_WAKEUP’ flag 

Note that this procedure will not work for DOZE mode, as the core continues to execute commands after 
the SDMCTL register is written.

3.13 MUCts01076 — eMIOS Wrong Internal Counter Enable

Description
The Unified Channel ignores the prescaler divide ratio when running the WPTA mode. The increment ratio 
of the internal counter is always 1 when running this mode, regardless of the prescaler divide ratio 
programmed by GPRE and UCPRE values. When running the QDEC mode, if the divide ratio is not set 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 9



Errata Details  
to “divide by 1” (GPRE and UCPRE cleared) then the Unified Channel operating in QDEC mode may lose 
input events because the channel counter is operating at the prescaler rate (with less resolution).

Work-Around
When running the WPTA mode, reduce the time window programmed by MTSA and MTSB registers, in 
order to avoid a premature internal counter overflow. Prior to running the QDEC mode, write 0 to GPRE 
field (MTSMCR register) and 0 to UCPRE (MTSC register of the Unified Channel running QDEC). Note 
that GPRE = 0 will affect other channel that may have been configured assuming a global prescaler divide 
ratio greater than 1.

3.14 MUCts01091 — Incorrect Nexus Messages When 
Exiting Debug Into Thumb State

Description
If a program is running in 0-wait-state and debug mode is exited to Thumb state and Nexus program trace 
is enabled, the fields of the first Nexus messages will contain the following information which deviates 
from Nexus Spec:

• The first message since returning from Debug which has a history field will have one extra history 
bit in the most significant bit following the stop bit (this message should be either a HIST/s or a 
RFM)

• The first instruction count of the first message, since returning from Debug, will have 1 less count 
if there was no direct branch preceding this message (In other words if the first message is a 
history message, the history field must be 0x3 or 0x2 (1 bit extra because of the error in the first 
history field)) (this first message should be either an IBM/s, DBM/s or HIST/s).

Work-Around
One of the following: 

1. Program the memory to response with at least one wait state, if possible 
2. Avoid exiting into Thumb state from debug. 
3. Ignore the first history field and the first count field. Use the sync address for reconstruction
4. After message Debug exit, take out 1 bit following the stop bit in the first HIST/s or RFM 

message. Also add 1 to the instruction count if the first message is an IBM/s or a DBM/s or a 
HIST/s with a history of 0x3 or 0x2. 

Note: These work-arounds only apply to exiting debug mode into Thumb state when executing from 0-
wait-state memory. 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor10



Errata Details  
3.15 MUCts01107 — Floating TA Signal On Some Package 
Variations Causes Increased Current

Description
On mask set L49P MAC7101, MAC7121 and MAC7141 devices, where the TA signal is not bonded out, 
this signal is left internally floating, which can cause increased current drain on the device.

Work-Around
There is no work-around available on mask set L49P devices. Mask set L47W and later devices implement 
programmable pull-up/down devices that may be enabled to prevent signal float.

3.16 MUCts01108 — Unable to Reset Debug Logic After 
Power On

Description
Once the device has been powered on, it is not possible to reset the EICE and Nexus, including all 
programmable registers.

Work-Around
The work-around is to write the reset value of each EICE and Nexus register into the registers and put the 
TAP controller into the Test-Logic Reset state (by holding TMS high for the required number of cycles).

3.17 MUCts01114 — Slave Timeout in LIN Mode Occurs 
Too Early At Lower Baud Rates

Description
For baud rates with a prescaler greater than one, the eSCI slave timeout detection will flag timeout errors 
even if a slave responds within the required time frame. This causes LIN RX frames to be aborted after the 
header has been transmitted.

Work-Around
In the LINCTRL register, set STIE to 0, which prevents an STO timeout interrupt from being generated 
automatically by the LIN protocol controller. With this interrupt disabled, slave timeouts must be detected 
in a different manner. This can be done by using an external time reference (for example, a timer or 
periodic calls to the driver routines).

Although the timeout interrupt will not be generated and the header for RX frames will be transmitted 
normally, the frame will be aborted immediately after the header transmission. The end of the header 
transmission is indicated by a raised TXRDY flag, however, any byte arriving from a LIN slave node will 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 11



Errata Details  
be judged to be an unrequested byte because the LIN protocol controller believes the timeout period has 
expired. This caused a Bit Error and hence raises a BERR flag as well as an RXRDY flag. BERR flags 
which are header related occur before TXRDY is set, the work-around must therefore ignore BERR flags 
after the header transmission. 

Checksum and CRC checking must be handled in software for RX frames.

3.18 MUCts01115 — Nexus EVTI Debug Request Does Not 
Work

Description
Using the EVTI pin on the Nexus interface to trigger an external debug request to the ARM7™ core does 
not work. All alternate EVTI functionality works as specified.

Work-Around
There is no work-around available.

3.19 MUCts01134 — Cannot Read FlexCAN Timer and 
Error Counters Reliably Out of Freeze Mode

Description
If the CLK_SRC bit is negated, meaning that CPU and protocol engine will have different clock domains, 
it is not possible to read the Timer and the Error Counter Register reliably when not in Freeze Mode. If the 
read operation catches the counter value when it is transitioning, inconsistent data may be obtained 
because of different delays among individual counter bits.

Work-Around
Only read the Error Counter Register when the module is in Freeze Mode. When reading the Timer for the 
purpose of unlocking Message Buffers, the actual timer contents must be ignored.

3.20 MUCts01165 — FlexCAN May Transmit The Wrong ID

Description
When a Tx Message Buffer is activated for transmission when the CAN bus is idle, FlexCAN may 
sporadically transmit a frame with the wrong ID. This problem can only happen when:

• Bus clock is applied to the CAN engine (CTRL[CLK_SRC]=1) and PRESDIV is programmed 
with a value < 2 (which results in a CPI-to-S clock ratio < 3).

• Oscillator clock is applied to the CAN engine (CTRL[CLK_SRC]=0) and the CAN time quanta 
frequency is ≤ 4 times the bus frequency (which is the CPU frequency ÷ 2).
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor12



Errata Details  
Work-Around
Method 1 — When setting the CAN timing parameters, the following restrictions must be observed: 

• Set the CTRL[CLK_SRC] bit (select bus clock).
• Set the CTRL[PRESDIV] field to a value ≥ 2 (which results in a CPI-to-S clock ratio ≥ 3).

With the above settings, the module will be fully functional but will have the following limitations:
• To operate at a 1 MHz CAN frequency, it is necessary to run the CPU at 48 MHz.
• The jitter performance of the CAN bus will be limited by the jitter performance of the PLL.

Method 2 — Before activating a Tx MB for transmission (by writing to C/S word), follow this procedure 
(may be used regardless of the CTRL[CLK_SRC] setting (oscillator or bus clock)):

1. Read the IDLE bit in ESR
2. If IDLE is set, read the timer once, then keep reading the timer until it changes
3. Write to the C/S word of the MB to activate the transmission

3.21 MUCts01195 — FlexCAN Intermittent Tx/Rx Failures 
When Using the Oscillator Clock

Description
When the CAN engine is programmed to operate with the oscillator clock (CLK_SRC=1), there is a race 
condition between clock domains that may cause two sporadic anomalous behaviors:

1. Tx messages may get retransmitted, and 
2. Rx messages may not be stored in a message buffer that has a valid matching ID. 

In both cases, a successful transmission or reception is not properly communicated by the CAN engine to 
the message buffer control logic, so the corresponding interrupt flag will not be generated, and false error 
flags may be set in the Error and Status Register. In case of a Tx frame, when a new arbitration is initiated 
(new transmission or reception in another MB), then the frame is retransmitted because the code field 
indicates a transmission is still pending.

Work-Around
Use the bus clock to feed the CAN engine by setting the MCR[CLK_SRC] bit.

3.22 MUCts01247 — No Wake-up From Doze Mode Using 
an Interrupt

Description
When the system is put into Doze mode, only the following wake-up sources will cause a wake-up:

• PIT (RTI)
• FlexCan A/B/C/D 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 13



Errata Details  
All other wake-up sources, including all other peripherals and external interrupts will not cause the system 
to leave Doze mode.

Work-Around
When the system is in Doze mode, the CPU and interrupt controller are still running. Therefore, the system 
will still correctly service any interrupts. In order to emulate the correct behavior, all Interrupt Service 
Routines (ISRs) should check whether the system is in Doze mode, and if desired, wake up the system by 
clearing the DOZE bit in the CRG. 

3.23 MUCts01248 — DMA Request Not De-asserted When 
Channel is De-activated

Description
If a dynamic channel switch is attempted in the DMA Channel Mux while the eDMA is servicing requests 
on the channel, the DMA request may not get properly de-asserted. This may result in an errant request for 
the new channel.

Work-Around
In order to dynamically switch DMA channels in the DMA Channel Mux, perform the following series of steps: 

1. Ensure all pending requests are finished by reading the appropriate register(s) in the eDMA
2. Disable the DMA channel in the eDMA
3. Switch the channel in the DMA Channel Mux 
4. Re-enable the DMA channel in the eDMA

3.24 MUCts01249 — Incorrect External Bus Address 
Incrementing Using TA in Auto-Acknowledge Mode

Description
If the external bus is used and set to auto-acknowledge mode (by driving pin PA15 high during reset), then 
the address presented on the external bus may not be correct in the following situation:

1. External bus set to Auto Ack mode (by driving pin PA15 high during Reset)
2. External TA signal asserted (for “early” termination of the Auto Ack)
3. Decomposed transfer (in other words, a 32-bit access with a 16- or 8-bit port size, a 16-bit access 

with an 8-bit port size)
If all of the above conditions are met, then the address presented on the external bus will not be 
incremented during the course of a single transfer. For example, on a 32-bit access to address 0x00_0000, 
with burst inhibit set and a 16-bit port size, the address on the external bus should be presented as 
0x00_000 for the first acknowledge, and as 0x00_0002 for the second acknowledge. If the above 
conditions are met, then only address 0x00_0000 will be presented for both acknowledges.
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor14



Errata Details  
Work-Around
There is no work-around available.

3.25 MUCts01257 — LIN Slave Timeout Flagged When Data 
Not Read

Description
The eSCI will raise a slave-timeout flag when a LIN frame is not completely received by the specified 
timeout period. When the last byte of the frame is received but not read by the CPU the slave-timeout 
counter will continue counting. This will cause a slave-timeout error if the data is not read before the 
counter expires. Since the slave already sent the data, flagging a slave-timeout is not correct.

Work-Around
The LIN driver must be written so that the last data byte of a frame can be read from the eSCI before the 
timeout period expires. If necessary, the timeout period can be increased to make this possible.

3.26 MUCts01347, MUCts01374 — MB Deactivation in Bus 
Off Holds Arbitration Until Reception

Description
If all Tx Message Buffers (MB) are deactivated while the module is in Bus Off state, and then upon exiting 
Bus Off one or more Tx MBs are activated while the bus is Idle, the frames will not be transmitted until 
FlexCAN detects a frame on the bus. In other words, after Bus Off it will not take the initiative to be the 
first to transmit, unless at least one Tx MB was activated during Bus Off, or already programmed Tx MBs 
were not deactivated during Bus Off. 

Work-Around
If FlexCAN is required to take the initiative to be the first to transmit after Bus Off, the following 
alternatives (one of them) must be considered: 

1. Do not deactivate all Tx MBs during Bus Off 
2. Activate the Tx MBs before exiting Bus Off 
3. After Bus Off, put the module in Freeze Mode before programming the Tx MBs
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 15



Errata Details  
3.27 MUCts01364 — Link Register Not Properly Updated 
On Data Aborts in Thumb State

Description
The following information is from the ARM7TDMI-S Errata List (document FR002-PRDC-002719 3.0):

Work-Around
The work-around is to ensure that a STR, STMIA or PUSH cannot precede a PC-relative load. One method 
for this is to add a NOP before any PC-relative load instruction. However this is not something currently 
supported by ARM™ software tools, and would have to be done manually.

This erratum will be fixed in r4p3.

3.28 MUCts01460 — Incorrect ADDR[1:0] and BS1 Outputs 
for Thumb Mode Instruction Fetches

Description
If the ARM7 core is executing code in Thumb mode, and this code is stored in an external memory, the 
instructions fetches to that memory will have an incorrect address and possible incorrect byte strobes. In 
particular, the expected value of ADDR[1:0] and BS[1:0] should be as follows:

Summary
If the processor is in Thumb state and executing the code sequence STR, STMIA or PUSH followed by a PCrelative 
load, and the STR, STMIA or PUSH is aborted, the PC is saved to the abort link register in only word resolution, 
instead of half-word resolution.

Conditions
The processor must be in Thumb state, and the following sequence must occur:

<any instruction>
<STR, STMIA, PUSH> <---- data abort on this instruction
LDR rn, [pc,#offset]

In this case the PC is saved to the link register R14_abt in only word resolution, not half-word resolution. The effect 
is that the link register holds an address that could be #2 less than it should be, so any abort handler could return to 
one instruction earlier than intended.

Implications
 • In a system that does not use Thumb state, there will be no problem. 
 • In a system that uses Thumb state but does not use data aborts, or does not try to use data aborts in a recoverable 

manner, there will be no problem. 
 • In a system that uses Thumb state, and uses data aborts in a recoverable manner, such as in a demand paging 

environment, where the STR, STMIA or PUSH aborts for paging reasons, the code will patch up the MMU and 
reexecute the STR, STMIA or PUSH. What matters in this case is the instruction preceding the STR etc, and 
whether this can be re-executed harmlessly. As this cannot be predicted with certainty, it is likely to be a problem.

Impacted revisions
This erratum impacts all revisions of ARM7TDMI-S up to and including r4p2.
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor16



Errata Details  
However, due to the fact that the ARM7 core sets bit 0 of its internal address bus to 1 for Thumb mode 
instruction fetches, the actual address and byte strobes that will appear on the external bus is:

Note that the BS[1:0] signals are correct for all cases except a 16-bit port size to addresses ending with 2, 
6, A, E. All data reads and data writes work as specified; only Thumb mode instructions fetches are 
affected.

Work-Around
If a 16-bit port size is used, it may safely connected to a 16-bit program memory if it does not require the 
ADDR0 address signal or BS1 read strobe. If the BS1 read strobe is required, then it must be qualified such 
that it is always driven low (asserted) when the R/W output is negated (read).

BS1' = ~R/W && BS1
This will allow the use of any external memory with a 16-bit interface to a 16-bit port size.

Because it is impossible to distinguish between an instruction fetch and a data read on the external bus, it 
is not possible to interface program memories of any width using an 8-bit port size. Only instruction 
fetches in Thumb mode with an 8-bit port size are incorrect. All other combinations, including the 
following examples, work as expected:

• External memories for any data reads/writes with any port size.
• External memories for instruction fetches in non-Thumb mode with any port size.
• External memories for instruction fetches in any mode with 16-bit port size (if the ADDR0 output 

is unused and the BS1 output is either unused or qualified as described above). 
• Any internal memory for instruction fetches in any mode.

Address Ends 
With

ADDR[1:0]
8-bit Access 16-bit Access

BS1 BS0 BS1 BS0
0, 4, 8, C 00 0 1 0 0

01 0 1 — —

2, 6, A, E 10 0 1 0 0

11 0 1 — —

Address Ends 
With

ADDR[1:0]
8-bit Access 16-bit Access

BS1 BS0 BS1 BS0
0, 4, 8, C 01 0 1 0 0

10 0 1 — —
2, 6, A, E 11 0 1 1 0

00 0 1 — —
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 17



Errata Details  
3.29 MUCts01474, MUCts01476 — Limitations of DSPI 
Continuous Chip Select Mode

Description
If transmit FIFO fill DMA requests are enabled (DSPIx_RSER[TFFF_RE, TFFF_DIRS] = 0b11) and the 
eDMA is busy servicing other DMA requests, a scenario may occur where the TX FIFO becomes empty. 
In this circumstance, the associated chip select state will be negated. The effect of negating PCSn_x 
between words in a multi-word continuous transfer will depend on the external serial device; it can cause 
the second word to overwrite the previous word transfered. 

Work-Around
There is no workaround available

3.30 MUCts01515 — Wake-up From Pseudo-Stop May 
Cause System Failure

Description
After waking up from pseudo-stop mode, the CRG releases all enabled modules to resume execution 
before the VREG has returned to full-performance mode. Thus, the system may draw too much power 
before the regulator is able to provide it, and a system failure may result.

Work-Around
No work-around available, do not use pseudo-stop mode.

3.31 MUCts01526 — Writes to eMIOS B Register May 
Cause Match Ignore in OPWM Mode

Description
When using the double-buffered capabilities of an eMIOS unified channel in OPWM mode, the output of 
the OPWM channel may remain asserted when it is expected to be negated, depending on the timing of the 
write to the B register. The problem sequence is: 

1. OPWM output is asserted when A match occurs.
2. The A match triggers a software event (normally via an interrupt) to update the B register. B is 

double buffered in this mode, such that while the host writes a new compare value to B, the 
OPWM output negates when the timer matches the original value of B, then the new value is 
copied to the comparator to be used in the next PWM cycle.

3. If the write to B occurs on the same system clock that B match occurs, the match will not be 
recognized.

4. The OPWM output remains asserted until the next B match following the next A match.
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor18



Errata Details  
Work-Around
Follow one of the following procedures:

1. Read the UCCNTn register before performing the B register write. If the counter value is “just 
below” the previous B value, then the B register update should be delayed.

2. Write to the B register and then check if the value of the the UCCNTn register is bigger than the 
old B value. If so, the pin value must be forced to the correct state via the UCCRn[FORCMB] bit.

3. When using an interrupt service routine to update the B register, verify that the PWM pulse width 
is larger than the interrupt latency.

4. Keep the B value constant and only perform writes to the A register to alter the pulse width. In 
this case, the value of A is updated after an interrupt from a previous channel A match. For this to 
work the pulse period must be greater than the interrupt latency, so that the new A value is written 
before the next A channel compare is enabled (note that the A register is not double buffered).

3.32 MUCts01527 — Flash Programming Overwrites PIM 
Registers

Description
Because the PIM module does not correctly generate the an internal enable signal, all IPS writes to a 
specific address range will result in writes to global control registers in the PIM (refer to Table 18-3 of the 
MAC7100 Microcontroller Family Reference Manual). Specifically, all IPS writes to the following address 
ranges will map into writes to the global control registers:

As an example, writing to the Flash programming interface at any of the following addresses will write 
both the Flash (as intended) and the PIM CONFIG_TA register (not intended) with the value intended for 
the Flash:

0xxxxx_03C0 - 0xxxxx_03CF 0xxxxx_83C0 - 0xxxxx_83CF
0xxxxx_43C0 - 0xxxxx_43CF 0xxxxx_C3C0 - 0xxxxx_C3CF

0xFC10_03CC 0xFC11_03CC
0xFC10_43CC 0xFC11_43CC
0xFC10_83CC 0xFC11_83CC
0xFC10_C3CC 0xFC11_C3CC
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 19



Errata Details  
The full range of affected addresses are: 

Note that this is not a symmetric situation (i.e., writing the PIM registers will not write the Flash contents).

Work-Around
In the Flash programming routine, perform the following steps when programming a word into the 
program or data Flash

1. Logical AND the 32-bit address and 0x0000_3FFF
2. Compare new address to 0x0000_03C0 - 0x0000_03CF
3. If a hit occurs within the above range, save the values of the PIM registers (starting at address 

0xFC0E_83C0) before performing the programming routine, execute the programming, and then 
write the previous values of the global control registers back into the PIM.

3.33 MUCts01593 — Rx MB Receives Data and ID 
Transmitted By Tx MB

Description
When all of the following conditions are present on the FlexCAN module:

• There are Rx and Tx buffers (at least one each),
• Two clock domains (CTRL[CLK_SRC] = 1) or one clock domain with fIPS < 20 MHz,
• The application activates a Tx MB to transmit a frame (writing to the C/S word of the MB) near 

the start bit of an incoming frame.

Program Flash

0xFC10_03C2 - 0xFC10_03CD 0xFC12_03C2 - 0xFC12_03CD
0xFC14_03C2 - 0xFC14_03CD 0xFC16_03C2 - 0xFC16_03CD
0xFC10_43C2 - 0xFC10_43CD 0xFC12_43C2 - 0xFC12_43CD
0xFC14_43C2 - 0xFC14_43CD 0xFC16_43C2 - 0xFC16_43CD
0xFC10_83C2 - 0xFC10_83CD 0xFC12_83C2 - 0xFC12_83CD
0xFC14_83C2 - 0xFC14_83CD 0xFC16_83C2 - 0xFC16_83CD
0xFC10_C3C2 - 0xFC10_C3CD 0xFC12_C3C2 - 0xFC12_C3CD
0xFC14_C3C2 - 0xFC14_C3CD 0xFC16_C3C2 - 0xFC16_C3CD
0xFC11_03C2 - 0xFC11_03CD 0xFC13_03C2 - 0xFC13_03CD
0xFC15_03C2 - 0xFC15_03CD 0xFC17_03C2 - 0xFC17_03CD
0xFC11_43C2 - 0xFC11_43CD 0xFC13_43C2 - 0xFC13_43CD
0xFC15_43C2 - 0xFC15_43CD 0xFC17_43C2 - 0xFC17_43CD
0xFC11_83C2 - 0xFC11_83CD 0xFC13_83C2 - 0xFC13_83CD
0xFC15_83C2 - 0xFC15_83CD 0xFC17_83C2 - 0xFC17_83CD
0xFC11_C3C2 - 0xFC11_C3CD 0xFC13_C3C2 - 0xFC13_C3CD
0xFC15_C3C2 - 0xFC15_C3CD 0xFC17_C3C2 - 0xFC17_C3CD

Data Flash

0xFE00_03C2 - 0xFE00_03CD 0xFE00_43C2 - 0xFE00_43CD
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor20



Errata Details  
Under these conditions, there is a probability that the Rx MB receives the frame stored on the Tx MB, even 
if the ID does not match, and the Tx MB transmits only its ID in the data field.

Work-Around
Program the module to operate with one clock domain and set fIPS ≥ 20 MHz (fSYS ≥ 40 MHz).

3.34 MUCts01642 to MUCts01651 — Writing Undefined 
Address Causes Bus Abort But Writes Register

Description
When writing to registers above the defined register space, but within the 16 Kbyte address range of a 
peripheral module, a bus abort will be produced but a write to one of the valid registers may still occur. 
For example, writing to offset 0xFC09_0001, 0xFC09_1001, 0xFC09_2001 and 0xFC09_3001 
are all decoded to the same register within the VREG module. If the bus abort error is enabled, writing to 
0xFC09_1001, 0xFC09_2001 or 0xFC09_3001 will trigger a bus abort, but the register at offset 
0xFC09_0001 will be written.

The following modules are affected by this errata:

Work-Around
There is no work-around available.

NOTE
Previous versions of this document identified this errata as MUCts01366,
which did not fully define the error conditions.

Errata Number Module Module Address Range Undefined Register Space Offsets

MUCts01645 DMA Mux 0xFC08_4000 to 0xFC08_7FFF 0x0010 to 0x3FFF
MUCts01647, 
MUCts01648

CRG 0xFC08_8000 to 0xFC08_BFFF 0x0009 to 0x3FFF

MUCts01646 PIT 0xFC08_C000 to 0xFC08_FFFF 0x0114 to 0x3FFF
MUCts01642 VREG 0xFC09_0000 to 0xFC09_3FFF 0x0004 to 0x3FFF
MUCts01649 I2C 0xFC0A_C000 to 0xFC0A_FFFF 0x0005 to 0x3FFF
MUCts01650 DSPI 0xFC0B_4000 to 0xFC0B_7FFF

0xFC0B_8000 to 0xFC0B_BFFF
0x008C to 0x3FFF

MUCts01644 eSCI 0xFC0C_4000 to 0xFC0C_7FFF
0xFC0C_8000 to 0xFC0C_BFFF
0xFC0C_C000 to 0xFC0C_FFFF
0xFC0D_0000 to 0xFC0D_3FFF

0x001A to 0x3FFF

MUCts01651 eMIOS 0xFC0D_C000 to 0xFC0D_FFFF 0x0220 to 0x3FFF
MUCts01643 ATD 0xFC0E_0000 to 0xFC0E_3FFF

0xFC0E_4000 to 0xFC0E_7FFF
0x0018 to 0x3FFF
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 21



Errata Details  
3.35 MUCts01832, MUCts01833 — Deactivating A Receive 
MB May Corrupt Another Active Receive MB

Description
Deactivating a FlexCAN receive message buffer (MB) may cause corruption of another active receive MB 
if the following sequence occurs:

1. A receive MB is locked via reading the Control/Status word, and has a pending message in the 
temporary receive serial message buffer (SMB). 

2. A message is received that matches a second receive MB, and is queued in the second SMB.
3. The first MB is unlocked during the time between the CRC field and the 6th bit of EOF.
4. The second MB is deactivated within 9 fIPS clock cycles of the first MB being unlocked, resulting 

in corruption of the first MB.

Work-Around
Do not write to the Control/Status word after initializing a receive MB, and use the IFLAG status bit to 
determine reception of a new frame, as the Control/Status field will always indicate FULL or OVERRUN 
after receiving the first frame.

If a write (deactivation) is required to the Control/Status field of an active receive MB, a delay of 25 CAN 
bit times plus 9 fIPS clock cycles between unlocking one MB and deactivating another MB will avoid 
corruption, however frames may still be lost.

3.36 MUCts01849, MUCts01855 — Changing CTARs 
Between Frames in Continuous PCS Mode May Cause 
Error

Description
Under some conditions in continuous operation mode (CONT = 1), the command word associated with the 
data frame is not always executed properly. An incorrect transfer may occur when multiple frames are 
transferred in continuous PCS mode and the frames use different CTAR registers. For example, if an 
application tries to transmit a 12-bit frame and a 16-bit frame without negating PCS, two 12-bit frames are 
transferred. This has been observed in simulations where CPHA = 0. The two frames are transmitted 
correctly if CPHA = 1.

Work-Around
When CPHA = 0 and continuous PCS mode is used, extended length (> 16 bits) frames may be created 
only by using two frames of equal size. This means that certain frame sizes cannot be constructed (prime 
numbers > 16).
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor22



Errata Details  
3.37 MUCts01888, MUCts01889 — IPM/IPWM Modes, Value 
Read From UCAn May Be Incorrect

Description
When reading the UCAn register in Input Pulse Width Measurement (IPWM) or Input Period 
Measurement (IPM) modes, if the IPS bus cycle starts on the same clock cycle as an A2 capture, the data 
read will not be coherent with the one at the next UCBn read.

• In IPWM mode, data read from UCBn will be greater than UCAn (UCBn minus UCAn will be the 
pulse width measurement of the polarity opposite that defined by EDPOL).

• In IPM mode, data read from UCAn and UCBn will be the same.

The expected scenario is that UCAn will be greater than UCBn for both modes. Note that coherency is 
guaranteed in a sequence of several measurements only if the combined UCAn / UCBn reads for each new 
measurement are performed after the correspondent new flag event.

Work-Around
After reading UCAn and UCBn, if UCAn is not greater than UCBn, discard this pulse measurement and 
read both registers again in the usual order: first read UCAn, then read UCBn.

3.38 MUCts01916 — VREG High Temperature Control 
Register (VREGHTCL) For Factory Use Only

Description
Although information describing the VREGHTCL register is included in the MAC7100 Microcontroller 
Family Reference Manual (MAC7100RM) revisions 0.6, 0.6.1 and 1.0, the functions provided by this 
register are not fully characterized for customer use. Thus, VREGHTCL is reserved for factory testing 
during manufacturing processes, and is not suitable for application use.

Work-Around
There is no work-around available, nor are there plans to characterize this circuitry for customer use. 
Future versions of the MAC7100RM will remove the descriptions of the high temperature functions.

3.39 MUCts01931, MUCts01932, MUCts01933 — Clock 
Monitor Reset Causes System Lock-up

Description
If the clock monitor reset function is enabled and a clock monitor time-out occurs, the chip will be placed 
into a reset state, but it will never exit that state. In order to trigger this errata all of the following conditions 
must be true:
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 23



Errata Details  
• Clock monitor is enabled (CRG PLLCTL[CME] = 0b1)
• Loss of clock is detected
• Self-clock mode is disabled (CRG PLLCTL[SCME] = 0b0)

The only way to recover from this error is via an external or low-voltage reset sequence.

Work-Around
The default values of the CRG PLLCTL[CME] and PLLCTL[SCME] bits are 0b1, and thus the error is 
avoided if the clock monitor reset mode is never enabled. In order to prevent inadvertent enabling of the 
clock monitor reset function, PLLCTL[SCME] should be written with 0b1 during the first write to the 
PLLCTL register following a reset. Since the PLLCTL[SCME] bit is write once, this will prevent the 
enabling of clock monitor reset.

There is no plan to correct this function, as will be reflected in future revisions of the MAC7100 
Microcontroller Family Reference Manual (MAC7100RM).

3.40 MUCts02084, MUCts02282 — MCM Reset Status 
Register (MRSR) Always Reads 0x80

Description
The reset status register (MRSR) in the MCM module, which is intended to provide a read-only status of 
the last reset event, returns an incorrect status. In particular, the functionality of the MRSR reporting is 
limited such that all reset events are reported as power-on resets, regardless of the actual source of the reset. 
As a result, all reads of the MRSR return a data value of 0x80.

Work-Around
There is no work-around available.

3.41 MUCts02092 — FlexCAN Transmit Buffers May Freeze 
or Indicate Missing Frame

Description
If a received frame is serviced during reception of a second frame identified for that same MB (message 
buffer) and a new Tx frame is also initiated during this time, the Tx MB can become frozen and will not 
transmit while the bus is idle. The MB remains frozen until a new frame appears on the bus.

If the new frame is a received frame, the frozen MB is released and will arbitrate for external transmission. 
If the new frame is a transmitted frame from another Tx MB, the frozen MB changes its C/S (control status 
word) and IFLAG to indicate that transmission has occurred, although no frame was actually transmitted.

The frozen MB occurs if lock, unlock and initiate Tx events all occur at specific times during reception of 
two frames. The timing of the lock event affects the timing window of the unlock event as follows:
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor24



Errata Details  
Situation A: Rx MB is locked during the second frame.

A frozen Tx MB occurs if: 
1. Both of these events occur in either a-then-b or b-then-a order:

a) A new transmission is initiated by writing its C/S sometime between CRC3 (third bit of CRC 
field) and EOF7 (seventh bit of end of frame) of the second frame.

b) The Rx MB is locked by reading its C/S word sometime after EOF6 of first frame and before 
EOF6 of second frame.

2. The Rx MB is unlocked between EOF7 and intermission at end of the second frame.
Notice in this situation that if the lock / unlock combination happens close together, the lock must have 
been just before EOF6 of the second frame, and therefore the system is very close to having an overrun 
condition due to the delayed handling of received frames.

Situation B: Rx MB was locked before EOF6 of the first frame; in other words, before its IFLAG is set.

This is a less likely situation but provides a larger window for the unlock event. A frozen Tx MB occurs if: 
1. The Rx MB is locked by reading its C/S word before EOF6 of the first frame.
2. Both of these events occur in either a-then-b or b-then-a order:

a) A new transmission is initiated by writing its C/S word sometime between CRC3 and EOF7 
of the second frame.

b) The Rx MB is unlocked between CRC3 and intermission at end of the second frame.
Notice in this situation that if the unlock occurs after EOF6, the first frame would be lost and the second 
frame would be moved to the Rx MB due to the delayed handling of received frames.

Situation C: Rx unlocked during bus idle.

A frozen/missing Tx occurs if:
1. An Rx MB is locked before EOF6 of an incoming frame with matching ID and remains locked at 

least until intermission. This situation would usually occur only if the received frame was serviced 
after reception of a second frame.

2. An internal arbitration period is triggered by writing a C/S field of an MB.
3. The locked Rx MB is unlocked within two internal arbitration periods (defined below) of step 2.
4. 0xC is written to the C/S field of a Tx MB within these same two arbitration periods. This step is 

optional if a 0xC was written in step 2 above.
Two internal arbitration periods are calculated as:

Eqn. 1

The number of MBs can be reduced by writing to the FlexCAN MCR[MAXMB] field. The fIPS clock 
frequency is used in this calculation regardless of the CTRL[CLK_SRC] setting.

Additional Notes:
• The received frames can be transmitted from the same node, but they must be received into an Rx 

MB.
• When the frozen Tx MB's IFLAG becomes set, an interrupt will occur if enabled.

2 number of MBs×( ) 16+
fIPS

-------------------------------------------------------------------- tARB=
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 25



Errata Details  
• The timestamp of the missing Tx will be set to the same timestamp value as the last reception 
before it was frozen.

• If the user software locks the Rx MB before a frame is received, situation A can occur with a 
single received frame.

• The issue does not occur if there were any additional pending Tx MBs before CRC3.
• If multiple Tx MBs are initiated within the CRC3/EOF7 window (situation A and B) or two 

internal arbitration windows (situation C), they all become frozen.

Work-Around
If received frames can be handled (lock/unlocked) before EOF6 of the next frame, situations A and C are 
avoided. If they are handled before CRC3, or lock times are below 23 CAN bit times, situation B is 
avoided.

If these conditions cannot be guaranteed by the existing system design, situations A and B are avoided by 
inserting a delay of at least 28 CAN bit times between initiating a transmission and unlocking an Rx MB 
and vice versa. Typically a system will use a mechanism to selectively add the necessary delay. For 
example, software might use a global variable to record an external timer value (the FlexCAN timer can’t 
be used, as that would unlock) when initiating a new Tx or unlocking an Rx, and then add the required 
delay before performing the second action.

Situation C can also be avoided by inserting a delay of at least two internal arbitration periods between 
writing 0xC and unlocking the locked Rx MB.

3.42 MUCts02511 — Debug Status Port Mode 2 Incorrect 
Signal Assignments in Documentation

Description
The signal assignments listed for Debug Status Port Mode 2 in Chapter 26, “System Services Module 
(SSM),” of the MAC7100 Microcontroller Family Reference Manual (MAC7100RM) v 1.0 are incorrect. 
The table below shows the incorrect and correct signal assignments.
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

Preliminary Freescale Semiconductor26

http://www.freescale.com/files/32bit/doc/ref_manual/MAC7100RM.pdf


THIS PAGE INTENTIONALLY LEFT BLANK

Work-Around
Use the correct signals as shown above.

Table 2. Port F Debug Status Mode 2 Correct Signal Assignments

Port F Pin
Mode 2 Function

Incorrect Correct

PF0 System is entering STOP mode System is entering STOP mode

PF1 Platform has entered STOP mode Platform has entered STOP mode

PF2 ATD A has entered STOP mode ATD B has entered STOP mode
PF3 ATD B has entered STOP mode ATD A has entered STOP mode

PF4 SCI A has entered STOP mode PIT has entered STOP mode

PF5 SCI B has entered STOP mode I2C has entered STOP mode
PF6 SCI C has entered STOP mode CAN D has entered STOP mode

PF7 SCI D has entered STOP mode CAN C has entered STOP mode

PF8 CAN A has entered STOP mode CAN B has entered STOP mode
PF9 CAN B has entered STOP mode CAN A has entered STOP mode

PF10 CAN C has entered STOP mode SPI B has entered STOP mode

PF11 CAN D has entered STOP mode SPI A has entered STOP mode
PF12 PIT has entered STOP mode SCI D has entered STOP mode

PF13 I2C has entered STOP mode SCI C has entered STOP mode

PF14 SPI A has entered STOP mode SCI B has entered STOP mode
PF15 SPI B has entered STOP mode SCI A has entered STOP mode 
MAC71x1 Microcontroller Device Mask Set Errata, Rev. 7

PreliminaryFreescale Semiconductor 27



Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and 
software implementers to use Freescale Semiconductor products. There are 
no express or implied copyright licenses granted hereunder to design or 
fabricate any integrated circuits or integrated circuits based on the 
information in this document.

Freescale Semiconductor reserves the right to make changes without further 
notice to any products herein. Freescale Semiconductor makes no warranty, 
representation or guarantee regarding the suitability of its products for any 
particular purpose, nor does Freescale Semiconductor assume any liability 
arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in Freescale 
Semiconductor data sheets and/or specifications can and do vary in different 
applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer 
application by customer’s technical experts. Freescale Semiconductor does 
not convey any license under its patent rights nor the rights of others. 
Freescale Semiconductor products are not designed, intended, or authorized 
for use as components in systems intended for surgical implant into the body, 
or other applications intended to support or sustain life, or for any other 
application in which the failure of the Freescale Semiconductor product could 
create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended 
or unauthorized application, Buyer shall indemnify and hold Freescale 
Semiconductor and its officers, employees, subsidiaries, affiliates, and 
distributors harmless against all claims, costs, damages, and expenses, and 
reasonable attorney fees arising out of, directly or indirectly, any claim of 
personal injury or death associated with such unintended or unauthorized 
use, even if such claim alleges that Freescale Semiconductor was negligent 
regarding the design or manufacture of the part. 

Freescale™ and the Freescale logo are trademarks of Freescale 
Semiconductor, Inc. All other product or service names are the property
of their respective owners. The ARM POWERED logo is a registered 
trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited.

© Freescale Semiconductor, Inc. 2004–2005. All rights reserved.

MAC7101MSE1
Rev. 7
04/2005

http://www.freescale.com
mailto:support@freescale.com
mailto:support@freescale.com
mailto:support@freescale.com
goto:support.japan@freescale.com
mailto:support.asia@freescale.com
mailto:LDCForFreescaleSemiconductor@hibbertgroup.com

	1 Introduction
	1.1 MCU Device Part Number Prefixes
	1.2 MCU Device Mask Set Identification
	1.3 MCU Device Date Codes
	1.4 Errata System Tracking Numbers

	2 Errata Summary
	3 Errata Details
	3.1 MUCts01045
	3.2 MUCts01057, MUCts01109
	3.3 MUCts01058
	3.4 MUCts01059
	3.5 MUCts01060
	3.6 MUCts01061
	3.7 MUCts01062
	3.8 MUCts01063
	3.9 MUCts01065
	3.10 MUCts01067, MUCts01110
	3.11 MUCts01074
	3.12 MUCts01075
	3.13 MUCts01076
	3.14 MUCts01091
	3.15 MUCts01107
	3.16 MUCts01108
	3.17 MUCts01114
	3.18 MUCts01115
	3.19 MUCts01134
	3.20 MUCts01165
	3.21 MUCts01195
	3.22 MUCts01247
	3.23 MUCts01248
	3.24 MUCts01249
	3.25 MUCts01257
	3.26 MUCts01347, MUCts01374
	3.27 MUCts01364
	3.28 MUCts01460
	3.29 MUCts01474, MUCts01476
	3.30 MUCts01515
	3.31 MUCts01526
	3.32 MUCts01527
	3.33 MUCts01593
	3.34 MUCts01642 to MUCts01651
	3.35 MUCts01832, MUCts01833
	3.36 MUCts01849, MUCts01855
	3.37 MUCts01888, MUCts01889
	3.38 MUCts01916
	3.39 MUCts01931, MUCts01932, MUCts01933
	3.40 MUCts02084, MUCts02282
	3.41 MUCts02092
	3.42 MUCts02511


