
Supports: MCF5207 and MCF5208

Summary of MCF520x Errata
Early MCF5208 devices are marked as M28B mask set. The latest version of the MCF520x is marked as 2M28B.

Table 1. Summary of MCF520x Errata

Revision Affected?Date Errata AddedModule AffectedErrata

2M28BM28B

NoYes8/11/05ClockSECF022

NoYes10/4/05SDRAMCSECF044

YesYes1/23/06CacheSECF005

YesYes1/23/06CacheSECF001

YesYes1/23/06FECSECF010

YesYes1/23/06FlexBusSECF017

NoYes6/14/06SDRAMCSECF045

NoYes6/14/06FlexBusSECF008

YesYes3/20/08DebugSECF014

YesYes8/12/10Interrupt ControllerSECF180

The chip identification register (CIR) can also be used to determine the silicon revision. Table 2 list the CIR[PRN]
field values that correspond to given mask set.

Table 2. CIR[PRN] to mask

Mask setCIR[PRN] value

M28B0

2M28B2

© 2010 Freescale Semiconductor.

MCF5208DEFreescale Semiconductor
Rev. 3, 8/2010Chip Errata

MCF5208 Chip Errata
Silicon Revision: All

Revision History
The table below provides a revision history for this document.

Table 3. Document Revision History

Substantive ChangesDateRev. No.

Initial revision8/20051

Added SECF04410/20051.1

Added SECF005, SECF001, SECF010, and SECF0172/20061.2

Added SECF045 and SECF0086/20061.3

Updated errata to reflect fixed bugs for the 2M28B mask set.10/20061.4

Added SECF0143/20082

Added SECF1808/20103

SECF001: Incorrect Operation of Cache Freeze (CACR[CFRZ])

SiliconErrata type:

Version 2 ColdFire CacheAffected component:

The cache on the V2 ColdFire core is controlled by the cache control register
(CACR). When the CACR[CFRZ] bit is set, the cache freeze function is
enabled and no valid cache array entry is displaced. However, this feature
does not always work as specified, sometimes allowing valid lines to be
displaced when CACR[CFRZ] is enabled.

Description:

This does not cause any corrupted accesses. However, there could be cache
misses for data that was originally loaded into the cache but was subsequently
deallocated, even though the CACR[CFRZ] bit was set.

Also, incoherent cache states are possible when a frozen cache is cleared
via the CACR[CINV] bit.

Unfreeze the cache by clearing CACR[CFRZ] when invalidating the cache
using the CACR[CINV] bit

Workaround:

Use the internal SRAM to store critical code/data if the system cannot handle
a potential cache miss

Workaround:

Currently, there are no plans to fix this.Fix plan:

SECF005: Possible Cache Corruption After Clearing Cache (Setting CACR[CINV])

SiliconErrata type:

Version 2 ColdFire CacheAffected component:

The cache on the V2 ColdFire core may function as either:Description:

• a unified data and instruction cache

MCF5208 Chip Errata, Rev. 3, 8/2010
Freescale Semiconductor2

• an instruction cache
• a data cache

The cache function and organization is controlled by the cache control register
(CACR).The CACR[CINV] bit causes a cache clear. If the cache is configured
as a unified cache and the CINV bit is set, the scope of the cache clear is
controlled by two other bits in the CACR:

• CACR[INVI] invalidates instruction cache only
• CACR[INVD] invalidates data cache only

If a write to the CACR is performed to clear the cache (CACR[CINV] = 1) and
only a partial clear is done (CACR[INVI] or CACR[INVD] set), then cache
corruption may occur.

All loads of the CACR that perform a cache clear operation (CACR[CINV]
set) should be followed immediately by a NOP instruction. This avoids the
cache corruption problem.

Workaround:

Currently, there are no plans to fix this.Fix plan:

SECF008: Programmable Address Hold Does Not Function Correctly

SiliconErrata type:

FlexBusAffected component:

The programmable address hold feature for the FlexBus chip selects does
not function correctly. The address is held for one clock after the chip select
deasserts regardless of the address hold value programmed in the

Description:

CSCR[WRAH] or CSCR[RDAH] fields. The address hold fields creates a
delay at the end of the bus cycle. They can continue to be used to ensure a
minimum delay between bus cycles.

No workarounds.Workaround:

Fixed starting with 2M28B mask set.Fix plan:

SECF010: FEC Interrupts will not Trigger on Consecutive Transmit Frames

SiliconErrata type:

FECAffected component:

The late collision (LC), retry limit (RL), and underrun (UN) interrupts do not
trigger on consecutive transmit frames. For example, if back-to-back frames
cause a transmit underrun, only the first frame generates an underrun interrupt.
No other underrun interrupts are generated until a frame is transmitted that
does not underrun or the FEC is reset.

Description:

Because late collision, retry limit, and underrun errors are not directly
correlated to a specific transmit frame, in most cases a workaround for this
problem is not needed. If a workaround is required, there are two independent
workarounds:

Workaround:

MCF5208 Chip Errata, Rev. 3, 8/2010
3Freescale Semiconductor

• Ensure that a correct frame is transmitted after a late collision, retry
limit, or underrun errors are detected.

• Perform a soft reset of the FEC by setting ECR[RESET] when a late
collision, retry limit, or underrun errors are detected.

Currently, there are no plans to fix this.Fix plan:

SECF014: Level 2 Trigger Operation Controlled by TDR[31]

SiliconErrata type:

BDMAffected component:

The TDR[L2T] bit (TDR bit 15) has no effect on the level 2 trigger. Bit 31 of
the TDR register provides both trigger response control and logical operation
of the level 2 trigger.

Description:

Use the TDR[31] bit to control the logical operation for the level 2 trigger as
follows:

Workaround:

• 0 -- Level 2 trigger = PC_condition & Address_range & Data_condition
• 1 -- Level 2 trigger = PC_condition | (Address_range & Data_condition)

Since TDR[31] is also part of the trigger response control, only certain
combinations of trigger responses and logical operations are available as
shown below:

Table 4. TDR[31:30] Definitions

Trigger ResponseLevel 2 TriggerTDR[31:30]

Display on DDATAPC_cond & (Add_range &
Data_cond)

00

Processor halt01

Debug interruptPC_cond | (Add_range &
Data_cond)

10

Reserved11

Currently, there are no plans to fix this.Fix plan:

SECF017: No Bus Monitor or Watchdog Recovery for Hung FlexBus Accesses

SiliconErrata type:

FlexBusAffected component:

This device does not include a bus monitor or watchdog timer capable of
forcing the termination of a hung FlexBus access. There are two possible
cases that could lead to a hung FlexBus access:

Description:

• If an access to one of the FlexBus memory areas
(0x0000_0000–0x3FFF_FFFF or 0xC000_0000–0xDFFF_FFFF) does
not hit in the valid range for one of the chip selects, a 32-bit access with

MCF5208 Chip Errata, Rev. 3, 8/2010
Freescale Semiconductor4

no chip select asserted and no internal acknowledge is generated. The
resulting bus cycle continues indefinitely waiting for the assertion of the
TA signal (external acknowledge).

• If a chip select is configured for external termination, but no termination
is received or a timing problem prevents TA from being recognized, the
bus cycle is hung and continues indefinitely.

There is no on-chip fail-safe to exit from the hung bus state. The system
needs to assert TA to terminate the hung cycle or reset the entire device.

Avoid issuing non-terminated FlexBus accesses. Ideally, a complete system
does not access unused memory areas. This is harder to achieve while
debugging, but as long as the debugger has access to the TA signal on the
BDM header, it should be able to force termination of any hung bus cycles.

Workaround:

Use an external bus monitor circuit that can detect hung bus cycles and
generate a TA to terminate the access. The bus monitor circuit can optionally
assert an external interrupt signal along with TA to indicate the error condition
back to the CPU.

Workaround:

If there are unused chip selects in the system, they can be mapped over
unused memory areas. The only purpose of these chip selects would be to
terminate accesses to addresses that are not used. BDM address breakpoints
can then be used to generate an interrupt error.

Workaround:

Currenty, there are no plans to fix this.Fix plan:

SECF022: PLL Behavior in Stop Mode

SiliconErrata type:

PLLAffected component:

If the PLL is disabled in stop mode, the device exits stop mode with its booted
frequency regardless of the operating frequency prior to entering stop mode.
Entering stop mode with an LPCR[STPMD] setting of 0b10 or 0b11 causes
a hard reset to the PLL module.When stop mode is exited, the PLL re-latches
the reset configuration setting for the PLL. For example:

Description:

1. The device is booted with a 166.67/83.33 MHz frequency selected.
2. The device is placed into limp mode to change the operating frequency

to 144/72 MHz and limp mode is exited.
3. The LPCR is programmed to disable the PLL in stop mode (LPCR =

0xD0 or 0xD8).
4. The stop instruction is executed.
5. An interrupt is generated to exit the processor from stop mode.
6. The device exits stop mode at an operating frequency of 240/80 MHz

instead of 166.67/83.33144/72 MHz.

If the PLL frequency has not been modified since the last reset or if limp mode
is being used, no workaround is needed.

Workaround:

If the PLL was reprogrammed after reset, the PLL needs to be reprogrammed
after exiting stop mode. The following steps show how this can be done:

1. Program the LPCR register to disable the PLL in stop mode (LPCR =
0xD0 or 0xD8).

MCF5208 Chip Errata, Rev. 3, 8/2010
5Freescale Semiconductor

2. Save the values of the PLL registers.
3. Place the device into limp mode by clearing the MISCCR[LIMP] bit.
4. Execute the STOP instruction.
5. After exiting stop mode, reload the PLL with the register values saved

in step 2.
6. Exit limp mode by clearing the MISCCR[LIMP] bit.

Fixed starting with 2M28B mask set.Fix plan:

SECF044: SDRAMC Incorrect Operation After Exiting Limp Mode

SiliconErrata type:

SDRAM controllerAffected component:

The circuitry that controls the SDRAMC’s SD_DQS signals attempts to lock
to the clock when the device is in limp mode. The large difference in clock
speeds between limp mode and normal operation causes the SD_DQS logic
to become unsynchronized when limp mode is exited.

Description:

After exiting limp mode, the value of 0x4000_0000 should be written to address
0xFC0B_8080 before attempting to initialize the SDRAMC or exit the SDRAM
from self-refresh mode.

Workaround:

Fixed starting with 2M28B mask set.Fix plan:

SECF045: Potential Boot Failure Using 32-Bit Wide SDRAM

SiliconErrata type:

SDRAM controllerAffected component:

If the SD_CKE signal to the SDRAM deasserts while one or more banks are
active, the SDRAM enters a clock suspend state. If the SDRAM was driving
the data lines before entering the clock suspend state, the buffers continue
to drive.

Description:

During a reset, the processor deasserts SD_CKE without any graceful stop
period to ensure that the SDRAM banks are all in an IDLE state. In some
cases, the SDRAM could be driving the data bus during and immediately
after reset. This can lead to possible bus contention while latching reset
configuration (RCON) values and/or while reading boot code from flash, and
that could cause the processor to enter an undefined state.

Use a split bus mode configuration with DDR SDRAM or SDR SDRAM. This
creates a dedicated 16-bit port for the SDRAM on D[31:16]. In this
configuration, the SDRAM does not share data lines with other devices, so
bus contention is not an issue.

Workaround:

Additional workarounds TBD. We are investigating workarounds that can be
used for 32-bit wide SDRAM configurations.

Workaround:

Fixed starting with 2M28B mask set.Fix plan:

MCF5208 Chip Errata, Rev. 3, 8/2010
Freescale Semiconductor6

SECF180: Spurious Interrupts Can Cause Incorrect Vector Fetch

SiliconErrata type:

INTCAffected component:

In rare cases the interrupt controller's spurious detection logic can cause a
fetch to an incorrect vector number. This can occur when the core is starting
the IACK for a spurious interrupt. During this small window of time, if a second

Description:

interrupt at a different level arrives, the second interrupt causes the interrupt
controller logic to clear the spurious request.Therefore, the interrupt controller
sees no valid interrupt pending at the requested level and returns vector
number 0 for INTC0.

The second interrupt can be at any level other than the level that caused the
spurious interrupt (it can even be a lower priority than the spurious interrupt).
If the second interrupt is at the same level as the spurious interrupt, then the
correct vector number for the second interrupt is returned.

In many systems spurious interrupts represent error conditions in and of
themselves. So, it is always a good design practice to eliminate potential
causes of spurious interrupts during product development. Proper interrupt

Workaround:

management can help to prevent or reduce the possibility of spurious interrupts
(and the potential occurrence of this errata).The correct procedure for masking
an interrupt in the INTC or inside the module is:

1. Write the interrupt level mask in the core’s status register (SR[I]) to a
value higher than the priority level of the interrupt you want to mask.

2. Mask the interrupt using the INTC’s IMR and/or an interrupt mask register
inside the module.

3. Write the original value back to the core’s status register.

Even when steps are taken to remove spurious interrupts, it is still desirable
to have a spurious interrupt handler to help manage unexpected events and
glitches in a system. A workaround to allow for correct spurious interrupt
handling is to:

1. After boot, copy the vector table to RAM
2. Modify the vector 0 entries so that they point to the spurious interrupt

handler.

This way the system performs the same for any potential spurious interrupt
vectors. Vectors 0 and 24 (the correct spurious interrupt vector) should point
to the same handler.

Currently, there are no plans to fix this.Fix plan:

MCF5208 Chip Errata, Rev. 3, 8/2010
7Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5208DE
Rev. 3, 8/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor.

	Errata-List
	SECF001
	SECF005
	SECF008
	SECF010
	SECF014
	SECF017
	SECF022
	SECF044
	SECF045
	SECF180

