Mask Set Errata for 08AZ32A, Mask 4L52H

Introduction

This mask set errata applies to this 08AZ32A MCU mask set:

- 4L52H

MCU Device Mask Set Identification

The mask set is identified by a 5 -character code consisting of a version number, a letter, two numerical digits, and a letter, for example 4L52H. All standard devices are marked with a mask set number and a date code.

MCU Device Date Codes

Device markings indicate the week of manufacture and the mask set used. The date is coded as four numerical digits where the first two digits indicate the year and the last two digits indicate the work week. For instance, the date code "0201" indicates the first week of the year 2002.

MCU Device Part Number Prefixes

Some MCU samples and devices are marked with an SC, PC, or XC prefix. An SC prefix denotes special/custom device. A PC prefix indicates a prototype device which has undergone basic testing only. An XC prefix denotes that the device is tested but is not fully characterized or qualified over the full range of normal manufacturing process variations. After full characterization and qualification, devices will be marked with the MC or SC prefix.

MSCAN Extended ID Rejected if STUFF Bit Between ID16 and ID15

SE17-MSCAN

For 32-bit and 16-bit identifier acceptance modes, an extended ID CAN frame with a stuff bit between ID16 and ID15 can be erroneously rejected, depending on IDAR0, IDAR1, and IDMR1.

Extended IDs (ID28-ID0) which generate a stuff bit between ID16 and ID15:

Table 4.

IDAR0	IDAR1	IDAR2	IDAR3
$* * * * * * * *$	$* * * 1111 \mathrm{x}$	xxxxxxxx	xxxxxxxx

where $\quad \mathrm{x}=0$ or 1 (don't care)

* = pattern for ID28 to ID18 (see following).

Affected extended IDs (ID28-ID18) patterns:
a) $\operatorname{xxxxxxxxx01}$ exceptions: 00000000001 01111100001 xxxx1000001 except 11111000001
b) $\mathrm{xxxxx100000}$ exception: 01111100000
c) xxxx 0111111 exception: 00000111111
d) x 0111110000
e) 10000000000
f) 11111111111
g) 10000011111

When an affected ID is received, an incorrect value is compared to the 2nd byte of the filter (IDAR1 and IDAR5, plus IDAR3 and IDAR7 in 16-bit mode). This incorrect value is the shift register contents before ID15 is shifted in (i.e. right shifted by 1).

Workaround

If the problematic IDs cannot be avoided, the workaround is to mask certain bits with IDMR1 (and IDMR5, plus IDMR3 and IDMR7 in 16-bit mode).

Example 1: to receive the message IDs
xxxx xxxx x011 111x xxxx xxxx xxxx xxxx
IDMR1 etc. must be 111x xxx1, i.e. ID20,19,18,15 must be masked.
Example 2: to receive the message IDs xxxx 0111 1111 111x xxxx xxxx xxxx xxxx
IDMR1 etc. must be 1xxx xxx1, i.e. ID20 and ID15 must be masked.
In general, using IDMR1 etc. 1111 xxx1, i.e. masking ID20,19,18,SRR,15, hides the problem.

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217

1-800-521-6274 or 480-768-2130

Japan:

Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:

Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:

For more information about Freescale Semiconductor products, please visit http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ${ }^{\text {TM }}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

