Mask Set Errata for Mask 1N14N

This report applies to mask 1N14N for these products:
- S12ZVM32

Table 1. Errata and Information Summary

<table>
<thead>
<tr>
<th>Erratum ID</th>
<th>Erratum Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>e9318</td>
<td>PMF: Glitch visible in PWM asymmetric operation mode</td>
</tr>
</tbody>
</table>

Table 2. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 January 2016</td>
<td>Initial revision</td>
</tr>
</tbody>
</table>

e9318: PMF: Glitch visible in PWM asymmetric operation mode

Description: When any of the PWM pairs in the PMF module is operating in asymmetric complementary center-aligned mode, with half cycle reload enabled.

PMF configuration:
- Complementary mode: PMFCFG0_INDEP(A,B,C)=0
- Center aligned outputs: PMFCFG0_EDGE(A,B,C)=0
- Asymmetric mode: PMFICCTL_ICC(A,B,C)=1
- Normal pulse edge control: PMFICCTL_PEC(A,B,C)=0
- Half cycle reload enabled: PMFFQC(A,B,C)_HALF(A,B,C)=1

And any of the following two conditions below (A or B) occur, an unexpected pulse with a width of “dead time” will be visible in the corresponding odd PWM channel output (PWM1,3 or 5)

Condition A.
1a. Setting the odd PWM channel to 0 (PMFVAL{1,3,5}=0) and loaded into the internal buffer (LDOKA=1) before next half cycle start, and

2a. Setting the even PWM channel to 0 (PMFVAL{0,2,4}=0)) and loaded into the internal buffer (LDOKA=1) before next full cycle start.

Condition B.

1b. Setting the odd PWM channel to 0 (PMFVAL{1,3,5}=0) and loaded into the internal buffer (LDOKA=1) before next full cycle start, and

2b. Setting the even PWM channel to 0 (PMFVAL{0,2,4}=0)) before next full cycle start and loaded into the internal buffer (LDOKA=1) before next full cycle start

Workaround: Set both VAL registers of each complementary pair, PMFVAL{1,3,5} and PMFVAL{0,2,4}, to zero before the next half cycle start to disable the PMF output and correct the unexpected pulse.
Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.