'
NXP Semiconductors S32K146_0N73V
Mask Set Errata Rev. 20/APR/2020

Mask Set Errata for Mask ON73V

This report applies to mask ON73V for these products:

* S32K146
Table 1. Errata and Information Summary
Erratum ID Erratum Title
ERRO006939 Core: Interrupted loads to SP can cause erroneous behavior
ERR009004 Core: ITM can deadlock when global timestamping is enabled
ERR009005 Core: Store immediate overlapping exception return operation might vector to incorrect interrupt
ERR006940 Core: VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
ERR011543 FlexCAN: Nominal Phase SJW incorrectly applied at CRC Delimiter
ERR050443 FlexCAN: Receive Message Buffers may have its CODE Field corrupted if the Receive FIFO function
is used in Classical CAN mode (CAN 2.0 version B)
ERR011097 LPSPI: Command word not loaded correctly when TXMSK=1
ERR011089 LPSPI: In Continuous transfer mode with CPHA =1, WCF bit is not set for every word.
ERR010777 SCG: Corrupted status when the system clock is switching.
ERR011063 SMC: An asynchronous wakeup event during VLPS mode entry may result in possible system hang
scenario.
ERRO11114 SMC: invalid data might be fetched while accessing Flash in VLP modes
Table 2. Revision History
Revision Changes
06/Mar/2019 |Initial revision
20/APR/2020 |The following erratum was revised.
* ERRO011063

h
P




ERR006939: Core: Interrupted loads to SP can cause erroneous behavior

Description: Arm Errata 752770: Interrupted loads to SP can cause erroneous behavior

This issue is more prevalent for user code written to manipulate the stack. Most compilers will
not be affected by this, but please confirm this with your compiler vendor. MQX™ and
FreeRTOS™ are not affected by this issue.

Affects: Cortex-M4, Cortex-M4F
Fault Type: Programmer Category B
Fault Status: Present in: rOp0, rOp1 Open.

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/
R13), erroneous behavior can occur. In all cases, returning from the interrupt will result in the
load instruction being executed an additional time. For all instructions performing an update to
the base register, the base register will be erroneously updated on each execution, resulting in
the stack-pointer being loaded from an incorrect memory location.

The affected instructions that can result in the load transaction being repeated are:
1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

3) LDR SP,[Rn,#imm]

4) LDR SP,[Rn]

5) LDR SP,[Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect
memory address are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

Conditions:

1) An LDR is executed, with SP/R13 as the destination.

2) The address for the LDR is successfully issued to the memory system.

3) An interrupt is taken before the data has been returned and written to the stack-pointer.
Implications:

Unless the load is being performed to Device or Strongly-Ordered memory, there should be no
implications from the repetition of the load. In the unlikely event that the load is being
performed to Device or Strongly-Ordered memory, the repeated read can result in the final
stack-pointer value being different than had only a single load been performed.

Interruption of the two write-back forms of the instruction can result in both the base register
value and final stack-pointer value being incorrect. This can result in apparent stack corruption
and subsequent unintended modification of memory.

Workaround: Most compilers are not affected by this, so a workaround is not required.

However, for hand-written assembly code to manipulate the stack, both issues may be worked
around by replacing the direct load to the stack-pointer, with an intermediate load to a general-
purpose register followed by a move to the stack-pointer.

Mask Set Errata for Mask ON73V, Rev. 20/APR/2020

2 NXP Semiconductors



If repeated reads are acceptable, then the base-update issue may be worked around by
performing the stack pointer load without the base increment followed by a subsequent ADD or
SUB instruction to perform the appropriate update to the base register.

ERR009004: Core: ITM can deadlock when global timestamping is enabled
Description: ARM ERRATA 806422

The Cortex-M4 processor contains an optional Instrumentation Trace Macrocell (ITM). This
can be used to generate trace data under software control, and is also used with the Data
Watchpoint and Trace (DWT) module which generates event driven trace. The processor
supports global timestamping. This allows count values from a system-wide counter to be
included in the trace stream.

When connected directly to a CoreSight funnel (or other component which holds ATREADY
low in the idle state), the ITM will stop presenting trace data to the ATB bus after generating a
timestamp packet. In this condition, the ITM_TCR.BUSY register will indicate BUSY.

Once this condition occurs, a reset of the Cortex-M4 is necessary before new trace data can
be generated by the ITM.

Timestamp packets which require a 5 byte GTS1 packet, or a GTS2 packet do not trigger this
erratum. This generally only applies to the first timestamp which is generated.

Devices which use the Cortex-M optimized TPIU (CoreSight ID register values 0x923 and
0x9A1) are not affected by this erratum.

Workaround: There is no software workaround for this erratum. If the device being used is susceptible to this
erratum, you must not enable global timestamping.

ERR009005: Core: Store immediate overlapping exception return operation might
vector to incorrect interrupt

Description: Arm Errata 838869: Store immediate overlapping exception return operation might vector to
incorrect interrupt

Affects: Cortex-M4, Cortex-M4F
Fault Type: Programmer Category B Rare
Fault Status: Present in: rOp0, rOp1 Open.

The Cortex-M4 includes a write buffer that permits execution to continue while a store is
waiting on the bus. Under specific timing conditions, during an exception return while this
buffer is still in use by a store instruction, a late change in selection of the next interrupt to be
taken might result in there being a mismatch between the interrupt acknowledged by the
interrupt controller and the vector fetched by the processor.

Configurations Affected
This erratum only affects systems where writeable memory locations can exhibit more than
one wait state.

Workaround: For software not using the memory protection unit, this erratum can be worked around by
setting DISDEFWBUF in the Auxiliary Control Register.

Mask Set Errata for Mask ON73V, Rev. 20/APR/2020

NXP Semiconductors 3




In all other cases, the erratum can be avoided by ensuring a DSB occurs between the store
and the BX instruction. For exception handlers written in C, this can be achieved by inserting
the appropriate set of intrinsics or inline assembly just before the end of the interrupt function,
for example:

ARMCC:

__schedule_barrier();
__asm{DSB};
__schedule_barrier();

}
GCC:

__asm volatile (“dsb Oxf’ ::: “memory”);

}

ERR006940: Core: VDIV or VSQRT instructions might not complete correctly when
very short ISRs are used

Description: Arm Errata 776924: VDIV or VSQRT instructions might not complete correctly when very short
ISRs are used
Affects: Cortex-M4F
Fault Type: Programmer Category B
Fault Status: Present in: rOp0, rOp1 Open.

On Cortex-M4 with FPU, the VDIV and VSQRT instructions take 14 cycles to execute. When
an interrupt is taken a VDIV or VSQRT instruction is not terminated, and completes its
execution while the interrupt stacking occurs. If lazy context save of floating point state is
enabled then the automatic stacking of the floating point context does not occur until a floating
point instruction is executed inside the interrupt service routine.

Lazy context save is enabled by default. When it is enabled, the minimum time for the first
instruction in the interrupt service routine to start executing is 12 cycles. In certain timing
conditions, and if there is only one or two instructions inside the interrupt service routine, then
the VDIV or VSQRT instruction might not write its result to the register bank or to the FPSCR.

Workaround: A workaround is only required if the floating point unit is present and enabled. A workaround is
not required if the memory system inserts one or more wait states to every stack transaction.
There are two workarounds:

1) Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address OXEOOOEF34).

2) Ensure that every interrupt service routine contains more than 2 instructions in addition to
the exception return instruction.

Mask Set Errata for Mask ON73V, Rev. 20/APR/2020

4 NXP Semiconductors



ERRO011543:

FlexCAN: Nominal Phase SJW incorrectly applied at CRC Delimiter

Description: During the reception of a CAN-FD frame when the Bit Rate Switch (BRS) is enabled, the

Synchronization Jump Width (SJW) for the CRC Delimiter bit is incorrectly defined by the
Nominal Phase SJW. The CAN specification stipulates that the CRC Delimiter bit should have
a SJW set by the Data Phase SJW.

When a resynchronization event is triggered for the CRC delimiter bit (recessive in correct
operation), the sample point will be adjusted by an amount as defined by the Nominal Phase
SJW rather than the specified Data Phase SJW. This may result in the incorrect detection of a
dominant bit leading to a CAN error frame. However, as the CRC delimiter bit position will only
apply the SJW upon the detection of an unexpected dominant bit on the CAN bus, an error
frame is already likely. For the case the SJW is applied at the CRC delimiter and a recessive
bit is not detected, the receiving node will issue an error frame.

The CAN protocol is designed to handle resynchronization errors and hence the CAN bus will
recover from the insertion of the incorrect SUW at the CRC delimiter. Upon detecting the error
frame the transmitting node will re-transmit the frame.

The following FlexCAN configurations are not affected:

Classical CAN frames (CAN 2.0B)

CAN FD frames with bit rate switch disabled (BRS = 0)

CAN FD frames with Nominal Phase SJW equal to Data Phase SJW
CAN FD transmissions

Configuration for the FlexCAN:

* Nominal Phase SJW is configured by the Resync Jump Width bit in the CAN Control
Register 1 (CAN_CTRL1[RJW]) or by the Extended Resync Jump Width bit in the CAN
Bit Timing Register (CAN_CBT[ERJW])

¢ Data Phase SJW is configured by the Fast Resync Jump Width bit in the CAN FD Bit
Timing Register (CAN_FDCBT[FRJW])

Workaround: The robustness of the CAN protocol ensures that the receiver automatically recovers from the

ERR050443:

application of the incorrect SUW. The CAN protocol is designed to recover from
resynchronization errors and hence any frame that is not correctly received will be re-sent by
the transmitting node.

FlexCAN: Receive Message Buffers may have its CODE Field corrupted if
the Receive FIFO function is used in Classical CAN mode (CAN 2.0
version B)

Description: If the CODE Field of a Receive Message Buffer is corrupted it may deactivate the Message

Buffer, so it is unable to receive new messages. It may also turn a Receive Message Buffer
into any type of Message Buffer as defined in the Message buffer structure section in the
device documentation.

The CODE Field of the FlexCAN Receive Message Buffers (MB) may get corrupted if the
following sequence occurs.

1- A message is received and transferred to an MB (i.e. MBx)

2- A new message start being received (i.e. message1), SMBO (Serial Message Buffer 0)
receives the messagei intended for MBx

Mask Set Errata for Mask ON73V, Rev. 20/APR/2020

NXP Semiconductors



3- Before SMBO being moved to MBx, MBXx is locked by software for more than 20 CAN bit
times (time determines the probability of erratum to manifest), therefore SMBO is NOT
transferred to MBY, it remains with message1.

4- A subsequent incoming message (i.e. message?2) is being loaded into SMB1 (as SMBO is
full) and is evaluated by the FlexCAN hardware as being for the FIFO.

5- During the message2, the MBx is unlocked. Then, the content of SMBO is transferred to
MBx and the CODE field is updated with an incorrect value.

In case a customer does use Rx FIFO only or dedicated MB only, (i.e. either Rx MB or Rx
FIFO is used) the problem doesn’t occur. In case a customer does use Flexible Data Rate
CAN (CAN FD), the problem does not occur also. So bottom line the problem does only occur
if the FlexCAN is programmed to receive in the FIFO and dedicated MB at the same
application.

Workaround: This defect only applies if the Receive FIFO is used. This feature is enabled by RFEN bit in the
Module Control Register (MCR[RFEN)]). If the Rx FIFO is not used, the Receive Message
Buffer CODE Field is not corrupted.

The defect does not occur if the Receive Message Buffer lock time is less than or equal to the
time equivalent to 20 x CAN bit time.

After receiving the Interrupt Flag for the corresponding MB (BUFx bit on the IFLAGXx register)
set by the hardware, the recommended way for the CPU to service (read) the frame received
in a mailbox is by the following procedure:

1. Read the Control and Status word of that mailbox.

2. Check if the BUSY bit (CODEI0]) is deasserted, indicating that the mailbox is not locked.
Repeat step 1) while it is asserted.

3. Read the contents of the mailbox.
4. Clear the proper flag in the IFLAG register.
5. Read the Free Running Timer register (TIMER) to unlock the mailbox

In order to guarantee that this procedure occurs in less than 20 CAN bit times the MB receive
handling process in software (step 1 to step 5 above) should be performed as a ‘critical code
section’ (interrupts disabled before execution) and should ensure that the MB receive handling
occurs in a deterministic number of cycles.

If the MB receive handling process can’t be guaranteed in a time, less than or equal to 20 CAN
bit times, Rx FIFO should not be used together with the receive Message Buffers in a Classical
CAN application.

ERR011097: LPSPI: Command word not loaded correctly when TXMSK=1

Description: When the Transmit Command Register is written with TCR[TXMSK]=1 and the next write to
the TX FIFO is another command, then the first command may not load correctly.

Workaround: When writing the Transmit Command Register with TCR[TXMSK]=1, wait for the TX FIFO to

go empty (FSR[TXCOUNT] = 0) before writing another command to the Transmit Command
Register.

Mask Set Errata for Mask ON73V, Rev. 20/APR/2020

6 NXP Semiconductors



ERR011089: LPSPI: In Continuous transfer mode with CPHA =1, WCF bit is not set for
every word.

Description: When Transmit Command Register is written with TCR[CONT]=1 and TCR[CPHA]=1,
SR[WCF] bit flag is not set after data is transferred. Therefore polling for SR[WCF] flag to
identify if data has been sent can cause MCU to be stuck.

Workaround: When using continuous transfer mode TCR[CONT]=1 and TCR[CPHA]=1, do not use
SR[WCF] flag to determine if data has been sent, fill up instead transmit FIFO with the
following data without waiting for SR[WCF] flag to be set.

ERR010777: SCG: Corrupted status when the system clock is switching.

Description: The SCG_RCCR[SCS] and SCG_HCCR[SCS] may have a corrupted status during the interval
when the system clock is switching

Workaround: The SCS field should be read twice by the software to ensure the system clock switch has
completed.

ERR011063: SMC: An asynchronous wakeup event during VLPS mode entry may
result in possible system hang scenario.

Description: When the bus clock is same system clock and an asynchronous wakeup occurs during a mode
transition from RUN to VLPS or VLPR to VLPS, the MCU may hang in an undetermined state,
which can only be recovered by a power-on reset event or a watchdog reset.

Workaround: Before executing the transition to VLPS ensure that the PREDIV_SYS_CLK frequency /
BUS_CLK frequency configuration for RUN/VLPR mode is greater than or equal to 2.

For example: Assuming a PREDIV_SYS_CLK of 8 MHz and SCG_RCCR[DIVCORE] =
0b0001 (divider of 2) and SCG_RCCR[DIVBUS] = 0b0000 (divider of 1), (PREDIV_SYS_CLK
=8 MHz) / (BUS_CLK =4 MHz) , a ratio of 1:2.

ERR011114: SMC: invalid data might be fetched while accessing Flash in VLP modes

Description: VLPR and VLPS Low power modes are documented to work at System Clock and Core Clock
at 4 Mhz and the Bus Clock at 4 MHz and DMA enabled from or to Flash memory. However
any simultaneous access from any master (Core or DMA) to Dflash and Pflash may get invalid
data while being in VLP modes and System clock, Core Clock and Bus Clock are above 1 Mhz

Workaround: There are two workarounds:

1. Restrict software to use either only Pflash or only Dflash only at a time in VLP modes for all
masters (CPU,DMA) . When switching from Pflash only access to Dflash only access let
current DMA transactions accessing flash to complete and jump to SRAM location , wait for 40
cycles for the ongoing accesses to complete on the current flash before accessing dflash.

When switching from dflash only accesses to pflash only accesses let the current DMA
transactions accessing dflash to complete

and wait for 40 cycles for accesses to complete on the dflash before accessing the pflash.

Mask Set Errata for Mask ON73V, Rev. 20/APR/2020
NXP Semiconductors 7




2. If both Pflash and Dflash needs to be accessed simultaneously, the VLP modes must be run
with System Clock, Core Clock and Bus Clock of 1 MHz.

Mask Set Errata for Mask ON73V, Rev. 20/APR/2020

8 NXP Semiconductors




How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customer’s technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer's applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure,
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.

© 2020 NXP B.V.

h o
P


http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Known Errata
	ERR006939
	ERR009004
	ERR009005
	ERR006940
	ERR011543
	ERR050443
	ERR011097
	ERR011089
	ERR010777
	ERR011063
	ERR011114


