i.MX93_1P87f
Mask Set Errata
Mask Set Errata for Mask 1P87f

Revision History
This report applies to mask 1P87f for these products:

• MIMX935xxxxxxAB
• MIMX933xxxxxxAB
• MIMX932xxxxxxAB
• MIMX931xxxxxxAB
• MIMX930xxxxxxAB

Table 1. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Significant Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12/2023</td>
<td>Initial Revision</td>
</tr>
</tbody>
</table>

Errata and Information Summary

Table 2. Errata and Information Summary

<table>
<thead>
<tr>
<th>Erratum ID</th>
<th>Erratum Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR051390</td>
<td>CCM: CCGR doesn't wait for stop ack from the peripherals in low power sequence.</td>
</tr>
<tr>
<td>ERR051051</td>
<td>Core: A partially completed VLLDM might leave Secure floating-point data unprotected</td>
</tr>
<tr>
<td>ERR050505</td>
<td>Core: Access permission faults are prioritized over unaligned Device memory faults</td>
</tr>
<tr>
<td>ERR050504</td>
<td>Core: Sorting of pending interrupts might be wrong when high latency IRQs are pending</td>
</tr>
<tr>
<td>ERR050875</td>
<td>CoreSight: AHB-AP can issue transactions where HADDR[1:0] is not aligned to HSIZE on the AHB</td>
</tr>
<tr>
<td>ERR050839</td>
<td>Cortex-A55: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation</td>
</tr>
<tr>
<td>ERR050838</td>
<td>Cortex-A55: Update of DBM or AP bits without break-before-make might result in incorrect hardware dirty bit update</td>
</tr>
<tr>
<td>ERR051220</td>
<td>DDRC: DDRC Register Access Not Allowed In Half-Speed Mode</td>
</tr>
<tr>
<td>ERR051252</td>
<td>DDRC: Memory controller may not operate properly when per-bank refresh is enabled</td>
</tr>
<tr>
<td>ERR051301</td>
<td>DDRC: Memory controller Performance Degraded During Write Traffic</td>
</tr>
<tr>
<td>ERR051691</td>
<td>DDRC: Memory Select Error Can Cause DDRC Failure</td>
</tr>
<tr>
<td>ERR051554</td>
<td>DDRC: The DDR Controller idle status is not accurate when using PLL bypass mode with data rate ≤ 533MT/s.</td>
</tr>
<tr>
<td>ERR051219</td>
<td>DDRC: The DDRC does not automatically apply derated timing values to some timing parameters</td>
</tr>
<tr>
<td>ERR051241</td>
<td>eDMA4: Channel preemption feature can operate incorrectly</td>
</tr>
<tr>
<td>ERR051776</td>
<td>eDMA4: DMA may fail to catch request when Flexio Root Clock is over 50 MHz</td>
</tr>
</tbody>
</table>

Table continues on the next page...
<table>
<thead>
<tr>
<th>Erratum ID</th>
<th>Erratum Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR051336</td>
<td>eDMA4: Swap feature with 8-bit swap size and 16-bit transfer size does not work</td>
</tr>
<tr>
<td>ERR051325</td>
<td>eDMA4: The feature of cancelling the remaining data transfer is not working effectively</td>
</tr>
<tr>
<td>ERR051337</td>
<td>eDMA4: transfer will fail in one certain case.</td>
</tr>
<tr>
<td>ERR051326</td>
<td>eDMA4: TCDn_CSR[ESDA] and TCDn_CSR[EEOP] are not functional</td>
</tr>
<tr>
<td>ERR051683</td>
<td>ENET_QOS: EQOS SWR cannot be self cleared in RMII mode.</td>
</tr>
<tr>
<td>ERR051029</td>
<td>ENET_QOS: Gate Control List Switching is Incorrect for Intermediate Cycles When CTR is Less Than GCL Execution Time</td>
</tr>
<tr>
<td>ERR051205</td>
<td>FLEXIO: Both PCLK and FCLK must be enabled when it is as a wakeup source.</td>
</tr>
<tr>
<td>ERR011377</td>
<td>FlexSPI: DLL lock status bit not accurate due to timing issue</td>
</tr>
<tr>
<td>ERR051612</td>
<td>Fuse: Limitations for accessing fuse-disabled features</td>
</tr>
<tr>
<td>ERR051186</td>
<td>I3C: Extended data will be lost unexpectedly when I3C is in Slave Mode with EXTDATA set</td>
</tr>
<tr>
<td>ERR051120</td>
<td>I3C: The Not Acknowledge Error bit in the Master Errors and Warnings register (MERRWARN[NACK]) is not set when slave does not acknowledge High Data Rate - Double Data Rate (HDR-DDR) read.</td>
</tr>
<tr>
<td>ERR051608</td>
<td>LPSPI: PRESCALE bits in TCR Register has limitation</td>
</tr>
<tr>
<td>ERR051605</td>
<td>LPUART: Transmit Complete does not set if TX FIFO is flushed when CTS negated</td>
</tr>
<tr>
<td>ERR051421</td>
<td>SAI: Synchronous mode with bypass is not supported</td>
</tr>
<tr>
<td>ERR051709</td>
<td>TRDC: OSC24M cannot be the clock reference selected accessing MEDIAMIX TRDC DAC</td>
</tr>
<tr>
<td>ERR051725</td>
<td>USB: With USB controller device mode, clear RS bit of USBCMD register cannot cause detach event</td>
</tr>
<tr>
<td>ERR052021</td>
<td>uSDHC: Sometimes uSDHC does not work under VDD_SOC low drive mode and nominal mode</td>
</tr>
<tr>
<td>ERR051302</td>
<td>WDOG: Reset delay does not work</td>
</tr>
</tbody>
</table>
Known Errata

ERR051390: CCM: CCGR doesn't wait for stop ack from the peripherals in low power sequence.

Description
In the low power sequence, once CCGR receive the request of LPCG step from GPC to gate off IP clocks, the CCGR will provide lpcg_done to GPC without waiting for IP's stop ack. Then, GPC will execute next low power step, such as shutoff PLLs, which may result in gating off the peripheral IP clock without finishing handshake between ccm and IP.

Workaround
SW need guarantee these peripheral IP (I2C1~8/CAN1/eDMA1/CAN2/ENET1/eDMA2/FlexSPI.) in idle status before system enter low power mode, which can be guaranteed in the linux mechanism.

ERR051051: Core: A partially completed VLLDM might leave Secure floating-point data unprotected

Description
Arm errata 2219175
Affects: Cortex-M33
Fault Type: Programmer Category B
Fault Status: Present in r0p0, r0p1, r0p2, r0p3, r0p4, r1p0. Open.
The VLLDM instruction allows Secure software to restore a floating-point context from memory. Due to this erratum, if this instruction is interrupted or it faults before it completes, then Secure data might be left unprotected in the floating point register file, including the FPSCR.
Configurations affected:
This erratum affects all configurations of the Cortex-M33 processor configured with the Armv8-M Security Extension and the Floating-point Extension.
Conditions:
This erratum occurs when all the following conditions are met:
• There is no active floating-point context, (CONTROL.FPCA==0)
• Secure lazy floating-point state preservation is not active, (FPCCR_S.LSPACT==0)
• The floating-point registers are treated as Secure (FPCCR_S.TS==1)
• Secure floating-point state needs to be restored, (CONTROL_S.SFPA == 1)
• Non-secure state is permitted to access to the floating-point registers, (NSACR.CP10 == 1)
• A VLLDM instruction has loaded at least one register from memory and does not complete due to an interrupt or fault
Implications:
If the floating-point registers contain Secure data, a VLSTM instruction is usually executed before calling a Non-secure function to protect the Secure data. This might cause the data to be transferred to memory (either directly by the VLSTM or indirectly by the triggering of a subsequent lazy state preservation operation). If the data has been transferred to memory, it is restored using VLLDM on return to Secure state. If the VLLDM is interrupted or it faults before it completes and enters a Non-secure handler, the partial register state which has been loaded will be accessible to Non-secure state.
Workaround
To avoid this erratum, software can ensure a floating-point context is active before executing the VLLDM instruction by performing the following sequence:
• Read CONTROL_S.SFPA
• If CONTROL_S.SFPA==1 then execute an instruction which has no functional effect apart from causing context creation (such as VMOV S0, S0)

ERR050505: Core: Access permission faults are prioritized over unaligned Device memory faults

Description
Cortex-M33 1080541-C:
A load or store which causes an unaligned access to Device memory will result in an UNALIGNED UsageFault exception. However, if the region is not accessible because of the MPU access permissions (as specified in MPU_RBAR.AP), then the resulting MemManage fault will be prioritized over the UsageFault.

Workaround
There is no workaround.

However, it is expected that no existing software is relying on this behavior since it was permitted in Armv7-M.

ERR050504: Core: Sorting of pending interrupts might be wrong when high latency IRQs are pending

Description
Cortex-M33 1540599-C:
The NVIC contains a pending tree which sorts all pending and enabled interrupts based on priorities. If DHCSR.C_DEBUGEN and DHCSR.C_MASKINTS are 1, DHCSR.S_SDE is 0 and halting debug is allowed, then Nonsecure PendSV, Non-secure SysTick, and Non-secure IRQs should be masked off and they should not affect the sorting of pending and enabled secure interrupts. If multiple high latency IRQs are pending and enabled with different security targets and priorities, then Non-secure IRQs which should be masked off might cause the pending tree output to be a pending Secure interrupt without highest priority. This is because of incorrect masking before doing priority comparisons in the tree.

Workaround
There is no workaround for this erratum.

ERR050875: CoreSight: AHB-AP can issue transactions where HADDR[1:0] is not aligned to HSIZE on the AHB

Description
ARM errata 1624041
This erratum affects the following components:
• AHB Access Port.
The ARM Debug Interface v5 Architecture Specification specifies a TAR (Transfer Address Register) in the MEM-AP that holds the memory address to be accessed.
TAR[1:0] is used to drive HADDR[1:0] when accesses are made using the Data Read/Write register DRW.
When the AHB-AP is programmed to perform a word or half-word sized transaction the AHB-AP does not force HADDR[1:0] to be aligned to the access size. This can result in illegal AHB transactions that are not correctly aligned according to HSIZE if HADDR[1:0] is programmed with an unaligned value.

Conditions:
1) TAR[1:0] programmed with a value that is not aligned with the size programmed in the CSW register of the AHB-AP.
2) An access is initiated by an access to the Data Read/Write Register (DRW) in the AHB-AP.

Implications:
As a result of the programming conditions listed above, AHB-AP erroneously initiates an access on the AHB with HADDR[1:0] not aligned to the size on HSIZE. This might initiate an illegal AHB access.

Workaround
TAR[1:0] must be b00 for word accesses, TAR[0] must be b0 for half-word accesses.
Software program should program TAR with an address value that is aligned to transaction size being made.

ERR050839: Cortex-A55: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation

Description
Arm errata 1530923
Fault Type: Programmer Category B
Fault Status: Present in r0p0, r0p1, r1p0, and r2p0. Open.
A speculative Address Translation (AT) instruction translates using registers that are associated with an out-of-context translation regime and caches the resulting translation in the TLB. A subsequent translation request that is generated when the out-of-context translation regime is current uses the previous cached TLB entry producing an incorrect virtual to physical mapping.

Configurations Affected:
This erratum affects all configurations.

Conditions:
1. A speculative AT instruction performs a table walk, translating a virtual address to a physical address using registers associated with an out-of-context translation regime.
2. Address translation data that is generated during the walk is cached in the TLB.
3. The out-of-context translation regime becomes current and a subsequent memory access is translated using previously cached address translation data in the TLB, resulting in an incorrect virtual to physical mapping.

Implications:
If the above conditions are met, the resulting translation would be incorrect.

Workaround
When context-switching the register state for an out-of-context translation regime, system software at EL2 or above must ensure that all intermediate states during the context-switch would report a level 0 translation fault in response to an AT instruction targeting the out-of-context translation regime. A workaround is only required if the system software contains an AT instruction as part of an executable page.
ERR050838: Cortex-A55: Update of DBM or AP bits without break-before-make might result in incorrect hardware dirty bit update

Description
Arm errata 1024718
Affects: Cortex-A55
Fault Type: Programmer Category B
Fault Status: Present in r0p0, r0p1, r1p0, and r2p0. Open.

If the hardware dirty bit update is enabled, and the DBM or AP bits in the translation table descriptor are updated by software without using break-before-make, then it is possible for hardware to incorrectly update the AP bits based on the old value of those bits.

Configurations Affected:
This erratum affects all configurations of the Cortex-A55 processor.

Conditions:
1. The hardware dirty bit update is enabled for stage1 (TCR_ELx.HA and TCR_ELx.HD are both set) or stage2 (VTCR_EL2.HA and VTCR_EL2.HD are both set).
2. A store instruction is executed, which causes a hardware dirty bit update for the translation table descriptor which has DBM=1 and no write permission because of either AP[2]=1 or S2AP[1]=0.
3. At the same time as the store, the OS or hypervisor writes to the same translation table descriptor to update the AP, S2AP, or DBM bits, without using a break-before-make procedure.
4. The new translation table descriptor is a valid translation, but does not require the dirty bit update for the store because either the DBM bit is now clear, or the AP/S2AP bits would still cause a permission fault to occur even after a dirty bit update.

Implications:
The permission checking of the store is performed on the old version of the translation table descriptor, while the AP/S2AP bit is updated in the new version of the translation table descriptor. This could lead to an inconsistent situation where the store is executed but the OS or hypervisor is not expecting the store to have permission to execute.

Workaround
The OS or hypervisor can use a break-before-make procedure if it needs to update the DBM or AP/S2AP bits. Alternatively, it can use software management of the dirty bit update.

ERR051220: DDRC: DDRC Register Access Not Allowed In Half-Speed Mode

Description
After issuing a Hardware Fast Frequency Change (HWFFC) request, the DDRC operates in half-speed mode. While operating in this mode, if a DDRC register read or write is requested, the internal state counters may get corrupted. In addition, some of the fields of TIMING_CFG_12/13/14 are not used during half-speed operation.

Workaround
If a DDRC register access is required while operating at half-frequency after an HWFFC switch, first switch to full-speed via HWFFC before accessing the register.
ERR051252: DDRC: Memory controller may not operate properly when per-bank refresh is enabled

Description
When the DDRC is in per-bank refresh mode, it may violate the tRFCpb timing by issuing a per-bank refresh to the same bank or an all-bank refresh after a prior per-bank refresh. The memory controller guarantees that TIMING_CFG_9[REFTOREF_PB] (programmed to tpbR2pbR) is met between any two per-bank refreshes. However, it does not guarantee the TIMING_CFG_9[REFREC_PB] (tRFCpb) when issuing a per-bank refresh to the same bank or when issuing an all-bank refresh after a per-bank refresh. Per bank refresh is an optional feature.

Workaround
While using per-bank refresh (TIMING_CFG_9[REFREC_PB] != 0x0), program both TIMING_CFG_9[REFTOREF_PB] and TIMING_CFG_9[REFREC_PB] to meet the maximum of (tRFCpb, tpbR2pbR). tRFCpb is expected to be the maximum of those two timing specs.

Another workaround is to disable per-bank refresh by programming TIMING_CFG_9 to 0x0.

ERR051301: DDRC: Memory controller Performance Degraded During Write Traffic

Description
During processing of certain write transactions, the write performance is degraded.

Workaround
To prevent the write performance degradation, set bit 7 (value of 0x80) to register offset 0xf04 within the DDRC register space.

Note: The "*_timing.c" file generated by DDR tool implements the workaround.

ERR051691: DDRC: Memory Select Error Can Cause DDRC Failure

Description
A memory select error (ERR_DETECT[MSE]) can be detected by the DDRC if a memory transaction is received by the DDRC that is outside the programmed CSn_BNDS register(s). This is considered a programming error. Under the most conditions, the DDRC will detect this condition, report the memory select error and continue operating normally. However, if configuring the DDRC for open-page mode and all-bank refresh mode and dynamic refresh rate all at once, a memory select error may cause a DDRC failure. The memory select error will also be reported as expected also in this condition.

Workaround
Occurrence of memory select errors is not expected in production software as system developers should ensure that memory transactions do not occur outside the programmed CSn_BNDS register(s). In the event where a memory access is attempted outside of the programmed CSn_BNDS register(s) the possibility of a DDRC failure condition can be eliminated by applying any of the following settings:

* Auto pre-charge mode is set (DDR_SDRAM_INTERVAL[BSTOPRE] = 0)
* The per bank refresh mode is set (TIMING_CFG_9)
* The dynamic refresh rate is disabled (DDR_SDRAM_CFG_3[DYN_REF_RATE_EN] = 0)
* Disable the memory select error (ERR_DISABLE[MSED] = 1)

If none of the above settings are used to avoid the potential failure condition, then the DDRC can be tested after a memory select error is detected. If it is non-functional, then a reset is required.
ERR051554: DDRC: The DDR Controller idle status is not accurate when using PLL bypass mode with data rate ≤ 533MT/s.

Description
The DDR Controller idle status flag is not accurate when using the PLL bypass mode with data rates ≤ 533MT/s. As a result when using the Software Fast Frequency Change (SWFFC) routine to switch from the PLL bypass mode with data rates ≤ 533MT/s, instead of polling for the DDRC idle state, a timeout should be used to make sure that the DDR Controller has finished all transactions and can enter self-refresh mode.

In addition, when in PLL bypass mode with data rates ≤ 533MT/s, the automatic clock gating feature cannot be enabled.

Workaround
If the Software Fast Frequency Change (SWFFC) routine is used to switch from the PLL bypass mode, a delay timeout is required to ensure the DDR controller is idle.

Before resetting the DDRC;
3 micro second delay; //this delay to ensure DDRC is in Idle state.
then Reset the DDRC (DDR_SDRAM_CFG_3[31]= 1);

ERR051219: DDRC: The DDRC does not automatically apply derated timing values to some timing parameters

Description
While using the dynamic refresh rate feature (via DDR_SDRAM_CFG_3[DYN_REF_RATE_EN], the DDRC automatically adjusts the refresh rate based on the temperature of the DRAM. This works correctly. When the LPDDR4/4X MR4 provides a refresh rate of the value 3'b110 to the controller, the DDRC should use the values in TIMING_CFG_2[DERATE_VAL] to derate the following timing parameter configurations:

- {TIMING_CFG_3[EXT_PRETOACT], TIMING_CFG_1[PRETOACT]}
- {TIMING_CFG_3[EXT_ACTTOPRE], TIMING_CFG_1[ACTTOPRE]}
- {TIMING_CFG_3[EXT_ACTTORW], TIMING_CFG_1[ACTTORW]}
- {TIMING_CFG_3[EXT_ACTTOACT], TIMING_CFG_1[ACTTOACT]}
- TIMING_CFG_8[PRE_ALL_REC]

However, the derating for these specs are not applied correctly within the DDRC. Note that this erratum does not affect the dynamic refresh interval updates.

Workaround
1. If the application is specified to operate at a temperature less than 85 °C, you can enable or disable DDR_SDRAM_CFG_3[DYN_REF_RATE_EN]. In this case, no timing parameters require derating and if DDR_SDRAM_CFG_3[DYN_REF_RATE_EN] is enabled, the refresh rate will automatically adjust per feedback from the LPDDR4/4X device.

2. If the application is specified to operate at a temperature higher than 85 °C, apply the derating value as a fixed delay for all temperatures and also enable DDR_SDRAM_CFG_3[DYN_REF_RATE_EN] to ensure that the refresh rate is automatically adjusted based on the temperature of the DRAM.

While using the workaround #2, apply the derated timing values to the following register configurations when programming the DDRC:

- {TIMING_CFG_3[EXT_PRETOACT], TIMING_CFG_1[PRETOACT]}
- {TIMING_CFG_3[EXT_ACTTOPRE], TIMING_CFG_1[ACTTOPRE]}
• \{TIMING_CFG_3[EXT_ACTTORW], TIMING_CFG_1[ACTTORW]\}
• \{TIMING_CFG_3[EXT_ACTTOACT], TIMING_CFG_1[ACTTOACT]\}
• TIMING_CFG_8[PRE_ALL_REC]

Note that the derating for these is typically 1.875 ns, but the DRAM vendor datasheet should be referenced.

Note: Verify with DRAM vendor about the high temperature, which is 85 °C

Note: The "*_timing.c" file generated by DDR tool implements the workaround.

ERR051241: eDMA4: Channel preemption feature can operate incorrectly

Description
Channel preemption can cause incorrect behavior under the following conditions:
• The preempted channel has CHx_PRI[ECP]=1
• The preempting channel has a higher priority than the preempted channel based on the setting of CHx_PRI[APL]
• The preempting channel is activated while the preempted channel has an active transfer on the AXI bus

Workaround
Do not use the preemption feature. For all channels, the TCD register CHn_PRI[31:30] must have at least one of the two settings:
1. Keep CHn_PRI[ECP] = 1'b0 - The channel cannot be suspended by a higher priority channel's service request (default).
2. Set CHn_PRI[DPA] = 1'b1 - The channel can be temporarily suspended by the service request of a higher priority channel.

ERR051776: eDMA4: DMA may fail to catch request when Flexio Root Clock is over 50 MHz

Description
The working sequence of a use case is as follows:
1. The eDMA4 moves data to shifter buffer
2. Once the shifter buffer is full, the timer0 (for example) is detected
3. Then, the timer0 sends pulse to the shifter
4. The pulse triggers the data loading from shifter buffer to the corresponding shifter
5. Since the shifter buffer is empty, the request to DMA goes high. But if the Flexio Root Clock is too fast, the eDMA4 may miss the request.

Workaround
Use an extra timer2 (for example) between buffer and timer0 to add delay:
1. The eDMA4 moves data to shifter buffer
2. Once the shifter buffer is full, the timer2 is detected
3. Timer2 generates pulses to timer0
4. Timer0 sends pulse to the shifter. The delay is added here
5. The pulse triggers the data loading from shifter buffer to the corresponding shifter
6. Since the shifter buffer is empty, the request to DMA goes high and the eDMA4 catches the request.
ERR051336: eDMA4: Swap feature with 8-bit swap size and 16-bit transfer size does not work

Description
The DMA SWAP function that allows software to select data portions to be swapped between the read data to the write data is not working in the following cases:
1. CHn_CSR[15:12]=0001 and SSIZE=001
2. CHn_CSR[15:12]=1001 and DSIZE=001

Workaround
Do not use SWAP function for the described cases.

ERR051325: eDMA4: The feature of cancelling the remaining data transfer is not working effectively

Description
eDMA4 does not cancel the current bus activity. Bus transactions will continue normally and complete the transfer size requested by the NBYTES parameter.

Workaround
Do not use the cancel feature.

ERR051337: eDMA4: transfer will fail in one certain case.

Description
eDMA4 transfer can go wrong if both of the following conditions are true:
1. If the transfers are unaligned with the transfer sizes for Transfer Control Descriptor (TCD) source or destination addresses.
2. If the minor loop crosses the 4K bytes boundary.

Workaround
Make sure TCD source and destination addresses alignment.

ERR051326: eDMA4:TCDn_CSR[ESDA] and TCDn_CSR[EEOP] are not functional

Description
If Store Destination Address is enabled (ESDA = 1) and End of Packet Processing is enabled (EEOP = 1), the address stored will be invalid if the EOP signal is triggered. It will not correspond correctly to the last address transferred when EOP is signalled.

Workaround
TCDn_CSR[EEOP] must be disabled.

ERR051683: ENET_QOS: EQOS SWR cannot be self cleared in RMII mode.

Description
After EQOS SWR bit is set, EQOS should start reset procedure, and clear the SWR bit itself after reset is finished.
However, due to the defect, part of the reset procedure remains unfinished and the SWR bit cannot be cleared automatically.

Workaround
Setting PS and FES bits after the SWR bit was set, and polling SWR to ensure the reset procedure is finished.

ERR051029: ENET_QOS: Gate Control List Switching is Incorrect for Intermediate Cycles When CTR is Less Than GCL Execution Time

Description
Impacted Configurations:
DWC_ether_qos configurations in which you select Enable Enhancements to Scheduling Traffic (EST) feature.

Parameter:
DWC_EQOS_AV_EST == 1

Versions Affected: 5.00a and later

Defect Summary:
The EST (Enhancements to Scheduled Traffic) scheduler switches to the next Gate Control List (GCL) after executing the current Gate-Control List (GCL) regardless of the difference between the Cycle Time Register (CTR) value, and sum of the Base Time Register (BTR) and Time Intervals (TI) of the GCL rows whose execution is complete. If the GCL execution takes longer than the cycle time, the GCL is truncated at the cycle time, and the subsequent loop begins at

\[\text{BTR} + N \times \text{Cycle Time} \]

where \(N \) represents the iteration number, an integer.

However due to the defect, in the following situations, the GCL incorrectly updates the internal BTR twice. As a result, the GCL skips the execution of the next GCL loop:

- CTR value is less or greater than GCL loop execution time.
- The difference between the CTR and the sum of the BTR and Time Intervals of completely executed GCL rows is less than 8 PTP clock periods expressed in ns.

Impacted Use Cases:
The CTR value that you programmed is not equal to GCL execution time. GCL execution time is as follows:

\[\text{BTR} + N \times \text{sum of time intervals of valid GCL rows} \]

Workaround
Program the CTR, BTR, and Time Intervals of the GCL rows such that the difference between the CTR and the sum of the BTR and time intervals of fully executed GCL rows is greater than 8 PTP clock periods expressed in ns.

Alternatively, the CTR must be equal to the sum of the BTR and Time Intervals of the fully executed GCL rows.

ERR051205: FLEXIO: Both PCLK and FCLK must be enabled when it is as a wakeup source.

Description
FlexIO has two channel interfaces, and FlexIO can support low power modes with bus clock (PCLK) disabled and functional clocks (FCLK) enabled. It requires the two channels to assert based on the mode being entered, but currently the two channels are driven the same. So, both PCLK and FCLK have to be enabled when FLEXIO is a wakeup source.

Workaround
Both PCLK and FCLK should be enabled when it is as a wakeup source.
ERR011377: FlexSPI: DLL lock status bit not accurate due to timing issue

Description
After configuring DLL and the lock status bit is set, still may get wrong data if immediately read/write from FLEXSPI based external flash due to timing issue.

Workaround
Adding a delay time (equal or more than 512 FlexSPI root clock cycle) after the DLL lock status is set.

ERR051612: Fuse: Limitations for accessing fuse-disabled features

Description
When the system tries to access those modules on parts that disable the NPU, USB2, PXP, CSI, DSI, or LVDS fuse, it results into the following behavior:

- Parts with the NPU and PXP fuses are disabled; accessing them causes the core to hang.
- Parts with the CSI and DSI fuses are disabled; accessing them causes the read register to return all 0x00000000.
- Parts with the USB2 and LVDS (LVDS register is in mediamix GPR) fuses are disabled; accessing them still lets the register to be accessible.

Workaround
Do not access the IP that is fuse disabled or use the TRDC SW workaround to block register access for a disabled IP.

ERR051186: I3C: Extended data will be lost unexpectedly when I3C is in Slave Mode with EXTDATA set

Description
When I3C in slave mode, async mode 0 (TIMECTRL bits in SSTATUS register) and EXTDATA (EXTDATA bit in SCTRL register) are both set, data transmission appears to end after the async mode 0 timestamp, but it will continue on and confuse the I3C controller.

T bit goes to 0 but it should stay 1/High-Z after the 3rd item (the timestamp) and then continues emitting the extended data.
The I3C controller receives data 0 from T bit and thinks data transmission is done. So, extended data will be lost unexpectedly.

Workaround
Do not use EXTDATA (data past the MDB) or enable async mode 0 at the same time.
Since async mode 0 is only intended for MEMS sensors but not normal IBIs, so the EXTDATA is more commonly used.

ERR051120: I3C: The Not Acknowledge Error bit in the Master Errors and Warnings register (MERRWARN[NACK]) is not set when slave does not acknowledge High Data Rate - Double Data Rate (HDR-DDR) read.

Description
I3C: The Master Errors and Warnings register (MERRWARN) is used to debug I3C/I2C errors and warnings in Master mode. The MERRWARN[NACK] bit does not set when slave does not accept read while HDR-DDR mode is used. This bit is set to 1 in Single Data Rate (SDR) mode when slave does not acknowledge.
Workaround
If a slave does not accept HDR-DDR read and master side is not able to debug, the slave availability/readiness can be checked by sending SDR read request. The MERRWARN[NACK] will reflect the slave response.

ERR051608: LPSPI: PRESCALE bits in TCR Register has limitation

Description
LPSPI TCR[PRESCALE] can only be configured to be 0 or 1, other values are not valid and will cause LPSPI to not work.
All 8 LPSPI instances are the same.

Workaround
Driver can use CCR1 register to divide SCK, whose biggest div rate is 512. Software workaround integrated in Linux BSP codebase starting in release imx_5.15

ERR051605: LPUART: Transmit Complete does not set if TX FIFO is flushed when CTS negated

Description
If TX FIFO is flushed by software when CTS is enabled (MODIR[TXCTSE] field is set) and its value is negated and the transmitter is idle waiting for CTS to assert, but Transmit Complete (STAT[TC]) bit is not set.

Workaround
Do not use TC bit to check the TX status.

ERR051421: SAI: Synchronous mode with bypass is not supported

Description
The SAI does not receive or transmit when:

Scenario 1. The transmitter is configured for synchronous mode (TCR2[SYNC] = 0b1), in the Transmit Configuration 2 register, and the receiver is in bypass (RCR2[BYP]=0b1), in the Receiver Configuration 2 register, then there will not be a bit clock as it is the source of the BCLK.

Scenario 2. The receiver is configured for synchronous mode (RCR2[SYNC] = 0b1) in the Receiver Configuration 2 register and the transmitter is in bypass (TCR2[BYP]=0b1), in the Transmit Configuration 2 register, then there will not be a bit clock as it is the source of the BCLK.

Workaround
If scenario 1, then set the TCR2[BCI] = 0b1, in the Transmit Configuration 2 register.
If scenario 2, then set the RCR2[BCI] = 0b1, in the Receiver Configuration 2 register.

ERR051709: TRDC: OSC24M cannot be the clock reference selected accessing MEDIAMIX TRDC DAC

Description
When programming the Media Subsystem's TRDC components, OSC24M cannot be the clock reference selected for "media_axi_clk_root" or "media_apb_clk_root" during TRDC parameter programming, which will introduce unpredictable results.
Workaround
"media_axi_clk_root" or "media_apb_clk_root" should be sourced from "sys_pll_pfd1" and "sys_pll_pfd1_div2" respectfully.

ERR051725: USB: With USB controller device mode, clear RS bit of USBCMD register cannot cause detach event

Description
1. USB controller working as high speed device mode with USB gadget function enabled
2. Cable plugged into USB host
3. Use case is software-controlled detach from USB device side

The expected result is device side terminations removed, increase in USB signal amplitude, USB host detect device is detached. But the issue is that the clear RS bit of USBCMD register cannot cause device detach event.

Workaround
Use the below steps to detach from the host:
write CTRL2[7:6] = 01b
write USBCMD.RS = 0b
write CTRL2[8] = 1b
As CTRL2[8] is set at detach case, so attach the steps should add clear CTRL2[8]:
write CTRL2[8] = 0b
write USBCMD.RS = 1b

ERR052021: uSDHC: Sometimes uSDHC does not work under VDD_SOC low drive mode and nominal mode

Description
uSDHC PADs have an integration issue.

When the direction of CMD/DATA lines changes from output to input, the uSDHC controller begins sampling, the integration issue makes input enable signal from uSDHC propagated to the PAD with a long delay. Thus the new input value on the pad comes to uSDHC lately. The uSDHC samples the old input value and the sampling result is wrong.

Workaround
Set uSDHC CMD/DATA PADs iomux register SION bit to 1, then PADs will propagate input to uSDHC with no delay, so correct value is sampled.

Linux BSP patch has been integrated into release.

ERR051302: WDOG: Reset delay does not work

Description
The WDOG reset delay does not work in either warm reset or cold reset (WDOG_ANY pin), this gives no time to WDOG interrupt for execution.

Workaround
Board level reset (cold reset) should guarantee delay time after WDOG_ANY pin assert.
Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as “Critical Applications”), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys’ fees) that NXP may incur related to customer’s incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.
Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.