The NXP MBDT includes an integrated Simulink-embedded target supporting NXP MCUs for direct rapid prototyping and built-in support for software- and processor-in-the-loop (SIL and PIL) development workflows, systems and peripherals device interface blocks and drivers, a target-optimized Math and Motor Control library set (AMMCLib) for efficient execution on the target MCU, and bit-accurate simulation results in the Simulink simulation environment.

The NXP MBDT helps to generate all the code required automatically (including initialization routines and device drivers) to start up the MCU and run complex applications such as motor control algorithms and sensor-based and communication protocols while supporting builds with multiple compilers. The NXP MBDT supports a wide range of applications development and helps enable control engineer and embedded developers to shorten project life cycles.

The NXP MBDT generates all the code required to start up the MCU and run the application code, while supporting builds with multiple compilers.

The NXP MBDT includes:

- Integrated Simulink-embedded target supporting NXP MCUs for direct rapid prototyping and PIL workflows
- Systems and peripherals device interface blocks and drivers
- Target-optimized math and motor control algorithm blocks for efficient execution on the target MCU
- Bit-accurate simulation results in the Simulink simulation environment

Edit, simulate, compile and deploy designs with MATLAB® for computation-intensive applications. The NXP® Model-Based Design Toolbox (MBDT) is a comprehensive collection of tools that plug into the MATLAB and Simulink® model-based design environment to support fast prototyping, verification and validation for real targets based on NXP microcontrollers.
TARGET APPLICATIONS
- Embedded system development
- Industrial automation
- Automotive control design
- Machinery real-time systems
- Aerospace and defense

FEATURES
- Built-in support for direct code download to the target MCU through the RAppID Boot Loader utility
- Out-of-the-box applications for a wide set of MCU peripherals
- Complete cost-free build toolchain for embedded applications
- Built-in support for NXP FreeMASTER—a real-time debug monitor and data visualization tool interface. It provides visibility into the target MCU for algorithm calibration and tuning, making it suitable for advanced control systems and those required by motor control development, with:
 - Monitor signals in real time on the embedded target
 - Data logging
 - Signal capture
 - Parameter tuning

PRODUCT REQUIREMENTS
MATLAB
MATLAB coder
Simulink
Simulink coder
Embedded coder

SUPPORTED NXP MICROCONTROLLERS/DRIVER BLOCKS
*Earlier released products only support 32-bit

<table>
<thead>
<tr>
<th>SUPPORTED NXP MICROCONTROLLERS/DRIVER BLOCKS</th>
<th>CORE AND SYSTEMS</th>
<th>COMMUNICATION</th>
<th>MOTOR CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S32K1xx</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MPC57xx (MPC57Bx, MPC57Cx, MPC57Gx, MPC57Px)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MPC56xx (MPC56Lx/MPC56Kx)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>S12 MagniV®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kinetis® V (1x/3x/4x/5x)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
AUTOMOTIVE MATH AND MOTOR CONTROL LIBRARIES (AMMCLIB)

Embedded Software and Motor Control Libraries

GENERAL TRIGONOMETRIC AND BASIC FUNCTIONS (GFLIB)
- Trigonometric functions
- Limitation functions
- PI controller functions
- Linear interpolation
- Hysteresis function
- Signal integration function
- Sign function
- Signal ramp function

GENERAL MOTOR CONTROL FUNCTIONS (GMCLIB)
- Clark transformation
- Park transformation
- Duty cycle calculation
- Elimination of DC ripples
- Decoupling of PMSM motors

GENERAL DIGITAL FILTERS FUNCTIONS (GDFLIB)
- Finite impulse filter
- Moving average filter
- First order infinite impulse filter
- Second order infinite impulse filter

MATHEMATICAL FUNCTION LIBRARY (MLIB)
- Absolute value
- Add
- Convert
- Divide
- Multiply, multiple accumulate, multiply-subtract, multiply-subtract-from
- Negative
- Normalize
- Shift, bit shift
- Subtract
- Vector multiply accumulate