Applications

- High-brightness LED
- Lighting systems control
- Toys
- Small handheld devices
- Space-constrained applications
- Small appliances
- AC line voltage monitoring
- Simple logic replacement
- Analog driver replacement
- ASIC replacement

Overview

The MC9RS08KA2 extends the advantages of Freescale Semiconductor’s 8-bit microcontrollers into the ultra low-end marketplace. Based on the RS08 reduced instruction set architecture, the cost-effective KA2, in either 6- or 8-pin packaging, features more flash memory than its nearest competitor plus a wide range of operating voltages to efficiently power all kinds of consumer goods, from children’s toys and electronic toothbrushes to speakers and lighting systems.

Simple implementation and ease of integration can help even novice designers cut the design cycle down from several months to just a few weeks. Through Freescale’s extensive support ecosystem that includes Fast Track™ services, designers have online access to hardware and software development tools, training modules, a quick-start guide and a broad number of design examples to help launch new products faster.

The KA2 pushes the boundary of Freescale’s existing low-end 8-bit portfolio and brings new opportunities to life.

Features and Benefits

Features

8-bit RS08 Central Processor Unit (CPU)

- Up to 10 MHz (bus frequency) RS08 CPU at 1.8V for 100 ns minimum instruction time

- RS08 instruction set—a subset of the powerful HC08 instruction set

- Supports tiny/short address mode

- Index addressing scheme through memory mapped registers X and D[X] within the tiny address range

- 14B code-efficient RAM
- X and D[X] mapped within code-efficient tiny address space
- 16B code-efficient peripheral register space

- Page window

- Simplified interrupt mechanism

- Subroutine call/return mechanism

Integrated Third-Generation Flash

- Extremely fast, byte-writable programming—up to 20 µs/byte

- Offers 1 KB write/erase cycles minimum over temperature

Overview

The MC9RS08KA2 extends the advantages of Freescale Semiconductor’s 8-bit microcontrollers into the ultra low-end marketplace. Based on the RS08 reduced instruction set architecture, the cost-effective KA2, in either 6- or 8-pin packaging, features more flash memory than its nearest competitor plus a wide range of operating voltages to efficiently power all kinds of consumer goods, from children’s toys and electronic toothbrushes to speakers and lighting systems.

Simple implementation and ease of integration can help even novice designers cut the design cycle down from several months to just a few weeks. Through Freescale’s extensive support ecosystem that includes Fast Track™ services, designers have online access to hardware and software development tools, training modules, a quick-start guide and a broad number of design examples to help launch new products faster.

The KA2 pushes the boundary of Freescale’s existing low-end 8-bit portfolio and brings new opportunities to life.

Features

8-bit RS08 Central Processor Unit (CPU)

- Up to 10 MHz (bus frequency) RS08 CPU at 1.8V for 100 ns minimum instruction time

- RS08 instruction set—a subset of the powerful HC08 instruction set

- Supports tiny/short address mode

- Index addressing scheme through memory mapped registers X and D[X] within the tiny address range

- 14B code-efficient RAM
- X and D[X] mapped within code-efficient tiny address space
- 16B code-efficient peripheral register space

- Page window

- Simplified interrupt mechanism

- Subroutine call/return mechanism

Integrated Third-Generation Flash

- Extremely fast, byte-writable programming—up to 20 µs/byte

- Offers 1 KB write/erase cycles minimum over temperature

Overview

The MC9RS08KA2 extends the advantages of Freescale Semiconductor’s 8-bit microcontrollers into the ultra low-end marketplace. Based on the RS08 reduced instruction set architecture, the cost-effective KA2, in either 6- or 8-pin packaging, features more flash memory than its nearest competitor plus a wide range of operating voltages to efficiently power all kinds of consumer goods, from children’s toys and electronic toothbrushes to speakers and lighting systems.

Simple implementation and ease of integration can help even novice designers cut the design cycle down from several months to just a few weeks. Through Freescale’s extensive support ecosystem that includes Fast Track™ services, designers have online access to hardware and software development tools, training modules, a quick-start guide and a broad number of design examples to help launch new products faster.

The KA2 pushes the boundary of Freescale’s existing low-end 8-bit portfolio and brings new opportunities to life.
Cost-Effective Development Tools

For more information on development tools, please refer to the Freescale Development Tool Selector Guide (SG1011)

DEMO9RS08KA2 $50*
Cost-effective demonstration board with potentiometer, LEDs, serial port and built-in USB-BDM cable for debugging and programming

M68CYCLONEPROE $499*
RS08/HC08/HCS08/HC12/HCS12 stand-alone flash programmer or in-circuit emulator, debug tool, flash programmer; USB, serial or Ethernet interface options

USBMULTILINKBDM $99*
Universal HCS08/RS08 in-circuit debug tool and Flash programmer; USB PC interface

USBSPYDER08 $29*
Cost-effective USB debug tool for use with 8-pin PDIP package

CWX-H80-SE Free**
CodeWarrior™ Special Edition for HC(S)08/RS08 MCUs. Includes integrated development environment (IDE), linker, debug tool, unlimited assembler, Processor Expert™ auto-code generator and full-chip simulation. 16 KB C Compiler included for HC(S)08 MCUs.

*Prices indicated are MSRP
**Subject to license agreement and registration

Data Sheets

MC9RS08KA2 Data Sheet for KA2/KA1

Package Options

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC9RS08KA2CD</td>
<td>6-pin DFN</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>MC9RS08KA2CSC</td>
<td>8-pin SOIC-NB</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>MC9RS08KA2CPC</td>
<td>8-pin PDIP</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>MC9RS08KA1CDB</td>
<td>6-pin DFN</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>MC9RS08KA1CSC</td>
<td>8-pin SOIC-NB</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>MC9RS08KA1CPC</td>
<td>8-pin PDIP</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Flexible Clock Options

- Internal clock source module (ICS) contains a frequency-locked loop (FLL) controlled by internal reference
- Precision trimming of internal reference allows typical 0.1% resolution and +0.5% to -1% deviation over operating temperature and voltage
- Internal reference can be trimmed from 31.25 kHz to 39.065 kHz, allowing for 8 MHz to 10 MHz FLL output
- Helps eliminate the cost of all external clock components
- Reduces board space
- Increases system reliability
- Provides one of the most accurate internal clock sources on the market for the money
- Allows for trimming to adjust bus clock in specific applications

Timer

- 8-bit modulo timer with 8-bit prescaler
- Allows external timer clock source
- Generates periodic trigger for time-based software loops using timer overflow interrupt
- Utilizes TCLK input as event trigger; the timer can be used as an 8-bit event counter

Analog Comparator

- Option to compare to internal reference
- Option to route comparator output directly to pin
- Allows operation in MCU STOP mode
- Requires only a single pin for input signal
- Allows other components in system to see result of comparator with minimal delay
- Offers function to wake up the MCU from WAIT/STOP

Real-Time Interrupt

- Real-time interrupt trigger with 3-bit prescaler
- Built-in low power 1 kHz clock source
- Options to use low power 1 kHz internal clock to drive the RTI
- Minimizes power consumption in MCU STOP

Four Bidirectional Input/Output (I/O) Lines; One Input-Only Line and One Output-Only Line

- Software selectable pull-ups on ports when used as input (internal pull-up on RESET)
- Software selectable slew rate control on ports when used on output
- 5-pin keyboard interrupt module with software selectable polarity on edge or edge/level modes
- Eliminates need for external resistors to help reduce customer system cost
- Configures ports for slower slew rate to help minimize noise emissions from the MCU
- Helps to virtually eliminate external glue logic when interfacing to simple keypads using keyboard scan with programmable pull-up/pull-down functionality

System Protection

- Watchdog computer operating properly (CDP) reset with option to run from dedicated 1 kHz internal clock source or bus clock
- Low-voltage detection with reset or interrupt
- Illegal opcode and illegal address detection with reset
- Security feature for flash memory
- Resets device in instance of runaway or corrupted code
- Helps protect in case of clock loss with independent clock source
- Allows system to write/save important variables before voltage drops to low
- Holds devices in reset until reliable voltage levels are reapplied to the part
- Resets device in instance of runaway or corrupted code
- Helps prevent unauthorized access to memory to protect valuable software intellectual property

Background Debugging System

- On-chip BDM
- Provides single-wire debugging and emulation interface
- Eliminates need for expensive emulation tools
- Provides circuit emulation without the need for additional, expensive development hardware

Learn More: For more information about Freescale, please visit www.freescale.com.