The MPC564xL family is specifically designed to support actuator control applications for vehicle electrification. Enabled by the new cross-triggering unit, the device allows control of up to two brushless DC motors or multiple valves with only minimum interrupt load. Additional features include the fault collection unit, FlexRay™ protocol, two 12-bit ADCs, eTimer units and a built-in hardware self test.
System Challenges	MPC564xL Solution
Reduce system costs and simplify design | • Reduces design complexity and component count by putting key functional safety features on a single chip
• Dual processing spheres, including CPU, DMA, interrupt controller, crossbar and MPU for logic level fault detection
• Dual 4 CPU architecture provides performance to address real-time applications and cross-checking functions common in many safety strategies, which reduces hardware and software complexity used in multiple MCU designs. The architecture can be run in two statically configurable modes of operation
 ◦ Lockstep operation provides a software environment for redundant processing and calculations
 ◦ Independent core operation (dual parallel mode) provides a software environment for diverse processing and calculations to increase performance or to cross check for reliable operation
• Built-in flexible hardware self-test capabilities provide diagnostic coverage both at logic and memory level
• Fault collection and control unit manages MCU behavior in the event of internal MCU logic faults and signals these to external system components
• FlexRay protocol and safety ports for robust communications
• Probability of undetected failure per hour (PFH) = 0.1 FIT (one failure per every 10 billion hours)
• Designed to address safety requirements outlined in IEC61508 and ISO26262, which reduces system cost and effort

Precise and deterministic control timing for real-time applications, such as motor control | • e200 dual-issue 4 CPU at 120 MHz provides computational performance targeted at vector-oriented control of motor applications
• Dual-core architecture provides computation ability for complex applications or cross-checking requirements of safety applications
• Precise control of integrated electric motor control periphery
 ◦ Advanced PWM for specialized multi-phase motor control requirements
 ◦ Configurable alignment
 ◦ High frequency above 100 MHz
 ◦ Dead time insertion
 ◦ Skew correction
• Cross-triggering unit coordinates ADC, timer and PWM generation and minimizes CPU interrupt load
• eTimer units handle rotor position and speed acquisition and offer six dual-action IC/OC channels with incremental/quadrature encoder mode
• Two 12-bit ADCs offer precise conversion for improved driving experience
• FlexRay protocol for fault tolerant communications with other networked modules within the vehicle
• Up to 1 MB flash
• Up to 128K SRAM
• Motor control library of common functions
• Ability to control two 3-phase motors, ideal for electrical steering applications

Package Options
<table>
<thead>
<tr>
<th>Temp Ranges (Ta)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40ºC to +125ºC</td>
<td>144 LQFP</td>
</tr>
</tbody>
</table>

Learn more at freescale.com/Qorivva

Freescale, the Freescale logo, CodeWarrior and Qorivva are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. SafeAssure and the SafeAssure logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. All other product or service names are the property of their respective owners. © 2005, 2010, 2012 Freescale Semiconductor, Inc.