Document information

<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>GFSK, BLE, RF, Tx power, modulation characteristics, frequency offset and drift, frequency deviation, sensitivity, C/I rejection.</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document provides the methods of QN908x RF evaluation test which is used to estimate RF performance for BLE and GFSK application.</td>
</tr>
<tr>
<td>Rev</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>04/2018</td>
</tr>
<tr>
<td>1</td>
<td>05/2018</td>
</tr>
</tbody>
</table>
1. Introduction

This document provides the RF evaluation and certification test of the QN908x MCU for the BLE and GFSK applications. It includes the test setup, test procedure, equipment, and software tools which help to build the performance test. The RF evaluation test is used to estimate the QN908x RF performance.

The whole test case is done using the QN908x DK board. For more information about the QN9080x DK board, see the QN908x DK User’s Guide (document QN908x-DK).

Because the QN908x provides the BLE and generic GFSK for different applications, there are different methods using for the RF test. The s-parameters test includes the return loss and impedance shown in a smith chart.

2. Test summary

2.1 RF test cases

The RF test includes the BLE DTM test, GFSK RF test, and normal RF test. The BLE DTM test includes the Tx transmitting test and Rx receiving test.

Tx transmitting test:
- Tx output power (maximum and average power).
- Carrier frequency offset and drift.
- Modulation characteristics (frequency deviation).
- Tx in-band emissions.

Rx receiving test:
- Rx sensitivity.

The GFSK RF test includes the Tx transmitting test and Rx receiving test.

Tx transmitting test:
- Tx power (maximum and average power).
- Carrier frequency offset.
- Modulation characteristics (frequency deviation).
- FSK error.
- Tx in-band emissions.
- Tx out-of-band spurious.
- Phase noise.

Rx receiving test:
- Rx sensitivity.
- Rx carrier/interferer rejection.
2.2 Test setup

2.2.1 Test condition

- Chip power supply Vcc=3.0 V.
- Crystal frequency: 16 MHz or 32 MHz.
- The test is done under room temperature.

2.2.2 List of equipment

This is the equipment used in the BLE and GFSK RF test procedures:

- Spectrum analyzer.
- MXA signal analyzer (Keysight N9020B).
- RF signal generator (Keysight N5182B).
- Network analyzer (Keysight E5080A).
- CWM270 (R&S)

2.2.3 Test RF cable

The QN908x RF signal is tested by the on-trace RF connector on the DK board. This RF connector is built by Murata and has an RF switch. There is a coaxial connector test probe (part number MXHQ87WJ3000). The insertion loss of the MXHQ87WJ3000 is about 1.5 dB, which must be taken into consideration during the sensitivity and output power tests.

2.2.4 RS232 interface with expansion board

When performing the RF connectivity DTM test using the CMW270 instruments system, there must be an expansion board to match the signal voltage level from the UART to the RS232 interface. The RS232 expansion board is supplied from the QN908x DK board through the connectors. The connection of the two boards is shown in Fig 1.

![Expansion Board](image)

Fig 1. RF DTM test with expansion board
3. RF test for BLE

3.1 Tx test

3.1.1 Tx output power

The Tx output power is measured by the CMW270 equipment in the DTM mode.

Test method:

- Use the “hci-black-box” project in the SDK and download it to the EUT.
- Connect the EUT to the CMW270 equipment and set the CWM270 into the loopback mode.
- Select the “TX Measurement Power vs. Time” option.

Test results:

- The Tx output power test results contain the average power, peak power, delta value between the peak power and the average power, and the leakage power. The test results are shown in Fig 2.

<table>
<thead>
<tr>
<th>TX Measurement Power vs. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Average Power [dBm]</td>
</tr>
<tr>
<td>Peak Power [dBm]</td>
</tr>
<tr>
<td>Peak Power - Average Power [dB]</td>
</tr>
<tr>
<td>Leakage Power [dBm]</td>
</tr>
</tbody>
</table>

Fig 2. Tx output power

3.1.2 Tx modulation measurement

The Tx modulation is measured by the CMW270 equipment in the DTM mode.

Test method:

- Use the “hci-black-box” project in the SDK and download it to the EUT.
- Connect the EUT to the CMW270 equipment and set the CWM270 into the loopback mode.
- Select the “TX Measurement Modulation” option.

Test results:

- The Tx modulation measurement test contains the frequency accuracy, frequency offset, and frequency drift frequency deviation ($\Delta f_1$ and $\Delta f_2$), where Freq. Dev. $\Delta f_1$ is tested with a payload of “00001111” 8-bit subsequence, and Freq. Dev. $\Delta f_2$ is tested with a payload of “10101010” 8-bit subsequence. The test result is shown in Fig 3.
The modulation ratio $\Delta f_2$ avg/$\Delta f_1$ avg is the ratio of the smallest measured frequency deviation $\min(\Delta f_2$ avg) to the largest one $\max(\Delta f_1$ avg). This result is not provided for the LE-coded PHY.

### 3.1.3 Tx in-band emission

The Tx in-band emission is measured by the CMW270 equipment in the DTM mode.

**Test method:**
- Use the “hci-black-box” project in the SDK and download it to the EUT.
- Connect the EUT to the CMW270 equipment and set the CWM270 into the loopback mode.
- Select the “Spectrum ACP” option, and select the “All channel” or “ACP +/-5 channel” measurement mode.

**Test results:**
- The Tx in-band emission scans all the LE channels (they are analyzed in 1-MHz half-channels and centered at 2401 MHz, 2402 MHz, ..., 2480 MHz. The test result is shown in Fig 4.
The Tx in-band emission scans the ACP +/-5 channels. The test result is shown in Fig 5.

In the test result, the relative channel number indicates the center frequency offset in relation to the current RF frequency in blocks of 2 MHz. The value of 2 MHz corresponds to the LE channel bandwidth.

### 3.2 Rx test
#### 3.2.1 Rx sensitivity
The Rx sensitivity is measured by the CMW270 equipment in the DTM mode.

Test method:
- Use “hci-black-box” project in SDK and download it to EUT.
- Connect the EUT to the CMW270 equipment and set the CWM270 into the loopback mode.
• Select the “LE RX Measurement” option.

Test results:
• The Rx sensitivity test is the PER measurement for the LE. There are 1500 packages sent from the CWM and received by the EUT. The test result is shown in Fig 6.

![Fig 6. Rx PER test result](image)

4. RF test for GFSK

4.1 Tx test

4.1.1 Test setup

![Fig 7. RF GFSK Tx test with N9020B](image)

4.1.2 Tx output power

The Tx output power is measured by the MXA signal analyzer. The insertion loss of the RF cable is 0.24 dB and it is compensated in the test result.

Test method:
• Use the “QN908x GFSK test” project and download it to the EUT.
• Set the EUT into the Tx continuous mode with modulation signals.
• Set the N9020B into the vector signal analysis mode.
– Trig: free run.
– Digital demodulation:
  – Modulation format: 2-FSK.
  – Sample rate: 1 MHz.
  – Measure filter: none
  – Ref filter: gaussian.
  – BT: 0.5.

- Select and open the “FSK Measure Time(IQ)”, “Demodulation bits”, “Spectrum”, and “Demodulation Results” measurement windows.

Test results:
- The Tx output power measurement result is in the “Demodulation Results” field. The Tx output power measurement with the GFSK data rate of 250 kbit/s is shown in Fig 8.

![Fig 8. Tx output power @ 250 kbit/s](image)

### 4.1.3 Carrier frequency offset

The carrier frequency offset is measured by the MXA signal analyzer.

Test method:
- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Tx continuous mode with modulation signals.
- Set the N9020B into the vector signal analysis mode.
  – Trig: free run.
  – Digital demodulation:
    – Modulation format: 2-FSK.
    – Sample rate: 1 MHz.
    – Measure filter: none.
– Ref filter: gaussian.
– BT: 0.5.

- Select and open the “FSK Measure Time(IQ)”, “Demodulation bits”, “Spectrum”, and “Demodulation Results” measurement windows.

Test results:
- The carrier frequency offset measurement result is in the “Demodulation Results” field. The carrier frequency offset measurement with the GFSK data rate of 250 kbit/s is shown in Fig. 9.

![Fig 9. Carrier frequency offset @ 250 kbit/s](image)

The carrier frequency offset measurement with the GFSK data rate of 500 kbit/s is shown in Fig. 10.

![Fig 10. Carrier frequency offset @ 500 kbit/s](image)

4.1.4 Modulation characteristics
The frequency deviation is measured by the MXA signal analyzer with a payload of 0x0F and 0xAA.

Test method:
- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Tx continuous mode with modulation signals.
• Set the N9020B into the vector signal analysis mode.
  – Trig: free run.
  – Digital demodulation:
    – Modulation format: 2-FSK.
    – Sample rate: 1 MHz.
    – Measure filter: none.
    – Ref filter: gaussian.
    – BT: 0.5.
• Select and open the "FSK Measure Time(IQ)", "Demodulation bits", "Spectrum", and "Demodulation Results" measurement windows.

Test results:
• The frequency deviation measurement result is in the “Demodulation Results” field.
• The frequency deviation measurement at the GFSK data rate of 250 kbit/s with the buck on is shown in Fig 11.

![Fig 11. Frequency deviation @ 250 kbit/s with buck on](image)

• There is a definition for the frequency deviation test that the payload of $\Delta f_1$ is 0x0F and $\Delta f_2$ is 0xAA.
• The modulation ratio should be $\frac{\Delta f_2 \text{ avg}}{\Delta f_1 \text{ avg}} \geq 0.8$. 
The modulation ratio with the GFSK data rate of 250 kbit/s is shown in Fig 12.

![Fig 12. Frequency deviation overshoot @ 250 kbit/s](image)

The frequency deviation overshoot with the GFSK data rate of 500 kbit/s is shown in Fig 13.

![Fig 13. Frequency deviation overshoot @ 500 kbit/s](image)
4.1.5 FSK error

The FSK error is measured by the MXA signal analyzer.

Test method:
- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Tx continuous mode with modulation signals.
- Set the N9020B into the vector signal analysis mode.
  - Trig: free run.
  - Digital demodulation:
    - Modulation format: 2-FSK.
    - Sample rate: 1 MHz.
    - Measure filter: none.
    - Ref filter: gaussian.
    - BT: 0.5.
- Select and open the “FSK Measure Time(IQ)”, “Demodulation bits”, “Spectrum”, and “Demodulation Results” measurement windows.

Test results:
- The FSK error measurement result is in the “Demodulation Results” field.
- The FSK error with the GFSK data rate of 250 kbit/s is shown in Fig 14.

![Fig 14. FSK error @ 250 kbit/s](image-url)
• The FSK error with the GFSK data rate of 500 kbit/s is shown in Fig 15.

![FSK Error @ EVB_500k](image)

**Fig 15. FSK error @ 500 kbit/s**

### 4.1.6 Tx in-band emissions

The Tx in-band emissions are measured by the MXA signal analyzer. The EUT is in the burst transmitting mode at 2440 MHz.

Test method:

- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Tx continuous mode with modulation signals.
- Set the N9020B into the BLE in-band emissions mode.
  - Trig: free run.
  - Center frequency: 2440 MHz.
  - Span: 81 MHz.
  - RBW: 100 kHz.

Test results:

- The Tx in-band emissions with the GFSK data rate of 250 kbit/s are shown in Fig 16.
4.1.7 Tx out-of-band spurious

The Tx out-of-band spurious is measured by the MXA signal analyzer with the spectrum analyzing function. The EUT is tested at 2426 MHz.

Test method:
- Use the "QN908x GFSK test" project and download it to the EUT.
- Set the EUT into the Tx continuous mode with modulation signals.
- Set the N9020B into the spectrum analyzer mode.
  - Trig: free run.
  - Span: 30 MHz to 12.75 GHz.
  - RBW: 100 kHz (30 MHz – 1 GHz), 1 MHz (1 GHz – 12.75 GHz).

Test results:
- The Tx out-of-band spurious with the GFSK data rate of 250 kbit/s and frequency band from 30 MHz to 1 GHz is shown in Fig 17.
The Tx out-of-band spurious with the GFSK data rate of 250 kbit/s and frequency band from 1 GHz to 12.75 GHz is shown in Fig 18.

Fig 17. Tx out-of-band spurious @ 250 kbit/s

Fig 18. Tx out-of-band spurious @ 250 kbit/s
4.1.8 Tx phase noise

The Tx phase noise is measured by the MXA signal analyzer. The EUT is tested at 2426 MHz.

Test method:
- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Tx continuous mode with unmodulated signals.
- Set the N9020B into the phase noise mode.
  - Trig: free run.
  - Start offset: 1 kHz.
  - Stop offset: 10 MHz.

Test results:
- The Tx phase noise with the GFSK data rate of 250 kbit/s is shown in Fig 19.

Fig 19. Phase noise @ 250 kbit/s
4.2 Rx test

4.2.1 Test setup

Fig 20. GFSK Rx sensitivity test with N5182B

Fig 21. GFSK Rx interfere test with N5182B
4.2.2 Rx sensitivity

The Rx sensitivity is measured by reading the internal register value of "VALID_PCK_NUM" which is a counter for receiving the validated package. The GFSK signal is generated and modulated by the RF generator before it is output to the EUT. For both the 250 kbit/s and 500 kbit/s data rates, one of the source GFSK data files contains 50 packages of the GFSK data. Trigger the generator for 30 times to send 1500 packages and calculate the PER rate for the EUT. The criteria is 30.8% for 1500 packages.

Test method:

- Use the "QN908x GFSK test" project and download it to the EUT.
- Set the EUT into the Rx mode with different data rates (250 kbit/s or 500 kbit/s).
- Set the N5182B into the ARB mode.
  - Frequency: 2401 MHz (channel frequency: 1 MHz).
  - Amplitude: -95 dBm (Decrease the receiving power level until you reach the PER threshold of 30.8% with 1500 packages).
  - ARB settings:
    - Waveform: the GFSK REP2 file for the 500 kbit/s data rate and the GFSK REP4 file for the 250 kbit/s data rate.
    - Sample rate: 8 MHz.
    - Trig: single trig.
    - Trig source: EXT.

Test results:

- The Rx sensitivity test result contains channel 0, channel 19, and channel 39 (three-channel testing data). The PER rate is shown in the RFCLASSM software and the Rx sensitivity power level is taken from the N5189B. The PER rate is shown in Fig 22.

![Fig 22. Rx sensitivity PER rate](image)

The Rx sensitivity with the GFSK data rate of 250 kbit/s is shown in Fig 23.
The Rx sensitivity with the GFSK data rate of 500 kbit/s is shown in **Fig 24**.
4.2.3 Rx carrier/interfere rejection

The Rx carrier/interfere rejection is measured by two N5182B RF generators. One generator is used to send the wanted GFSK signal and the second one is used to send the interfering signal. The tested channel is 2426 MHz.

Test method:

- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Rx mode with different data rates (250 kbit/s or 500 kbit/s).
- Set the wanted N5182B signal generator into the ARB mode.
  - Frequency: 2425 MHz (channel frequency: 1 MHz).
  - Amplitude: -67 dBm (the wanted signal power is set to -67 dBm).
  - ARB settings:
    - Waveform: GFSK REP2 file for the 500 kbit/s data rate and GFSK REP4 file for the 250 kbit/s data rate.
    - Sample rate: 8 MHz.
    - Trig: single trig.
    - Trig source: EXT.
- Set the interfering signal generator N5182B into the ARB mode.
  - Frequency: 2424 MHz (channel frequency offset=[fTx +/- n MHz], n=1,2,3,4,5).
  - Amplitude: increase the interfering signal power level until you reach the PER threshold of 30.8 % for 1500 packages.
  - ARB settings:
    - Waveform: GFSK REP2 file for the 500 kbit/s data rate and GFSK REP4 file for the 250 kbit/s data rate.
    - Sample rate: 8 MHz.
    - Trig: single trig.
    - Trig source: EXT, controlled by LabView or manual operation.

Test results:

- The Rx carrier/interfere rejection with the GFSK data rate of 250 kbit/s is shown in Fig 25.
Fig 25. Rx carrier/interfere rejection test @ 250 kbit/s

The Rx carrier/interfere rejection with the GFSK data rate of 250 kbit/s is shown in Fig 26.

Fig 26. Rx carrier/interfere rejection test @ 500 kbit/s
5. S-parameters

5.1 Test setup

![Test setup diagram]

Fig 27. Rx S-parameters with smith chart

5.2 S-parameters for RX

The Rx S-parameters are measured by network analyzer E5080A.

Test method:
- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Rx mode.
- Set the E5080A into the S11 measurement mode.
  - Frequency: 2 GHz to 3 GHz.
  - Format: smith chart.
Test results:
- The Rx S-parameters test result is shown in Fig 28.

![Fig 28. Rx return loss with smith chart](image)

### 5.3 S-parameters for TX

The Tx S-parameters are measured by network analyzer E5080A.

Test method:
- Use the “QN908x GFSK test” project and download it to the EUT.
- Set the EUT into the Tx mode.
- Set the E5080A into the S11 measurement mode.
  - Frequency: 2 GHz to 3 GHz.
  - Format: smith chart.
Test results:

- The Tx S-parameters test result is shown in **Fig 29**.

![Fig 29. Tx return loss with smith chart](image-url)
6. Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out of the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers is limited to the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

6.3 Licenses

Purchase of NXP <xxxx> components

License statement text

6.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

Patent ID — owned by <Company name>

6.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

Trademark — is a trademark of NXP Semiconductors N.V.
## Contents

1. Introduction ......................................................... 3
2. Test summary ......................................................... 3
   2.1 RF test cases .................................................. 3
   2.2 Test setup ..................................................... 4
     2.2.1 Test condition ........................................... 4
     2.2.2 List of equipment ...................................... 4
     2.2.3 Test RF cable ............................................ 4
     2.2.4 RS232 interface with expansion board ............... 4
3. Tx test .............................................................. Error! Bookmark not defined.
   3.1.1 Tx output power ............................................ 5
   3.1.2 Tx modulation measurement ................................ 5
   3.1.3 Tx in-band emission ....................................... 6
   3.2 Rx test .......................................................... 7
     3.2.1 Rx sensitivity ............................................ 7
4. RF test for GFSK .................................................... 8
   4.1 Tx test .......................................................... 8
     4.1.1 Test setup ................................................. 8
     4.1.2 Tx output power .......................................... 8
     4.1.3 Carrier frequency offset ................................ 9
     4.1.4 Modulation characteristics ............................ 10
     4.1.5 FSK error .................................................. 13
     4.1.6 Tx in-band emissions .................................... 14
     4.1.7 Tx out-of-band spurious ................................. 15
     4.1.8 Tx phase noise ............................................ 17
     4.2 Rx test .......................................................... 18
     4.2.1 Test setup ................................................. 18
     4.2.2 Rx sensitivity ............................................ 19
     4.2.3 Rx carrier/interfere rejection ......................... 21
5. S-parameters ........................................................ 23
   5.1 Test setup ..................................................... 23
   5.2 S-parameters for RX .......................................... 23
   5.3 S-parameters for TX .......................................... 24
6. Legal information .................................................. 26
   6.1 Definitions ................................................... 26
   6.2 Disclaimers .................................................... 26

Be aware that important notices concerning this document and the product(s) described herein, have been included in the section ‘Legal information’.

© NXP Semiconductors N.V. 2018. All rights reserved.
For more information, visit: http://www.nxp.com
Date of release: May 2018
Document identifier: AN12165