The TEA9026T is a controller IC for resonant power supplies with a wide input voltage range. To compensate the frequency variation and the input voltage change, it incorporates a new mains input compensation curve. To reach a high efficiency at all power levels, it introduces a new operating mode: low-power mode. This mode operates in the power region between continuous switching (now called high-power mode) and burst mode. Most LLC resonant converter controllers regulate the output power by adjusting the operating frequency. The TEA9026T regulates the output power by adjusting the voltage across the primary resonant capacitor for accurate state control and a linear power control. External presets can adjust the mains compensation curve and the operating modes. This feature provides flexibility and ease of design for optimizing controller properties to wide input range LLC resonant designs.
Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.1</td>
<td>20220614</td>
<td>Initial version</td>
</tr>
</tbody>
</table>
1 Introduction

The TEA9026T is a fully digital controller for high-efficiency resonant power supplies with a wide input voltage range. Together with the TEA2095T dual SR controller, a complete resonant power supply can be built, which is easy to design and has a very low component count. This power supply meets the efficiency regulations of Energy Star, the Department of Energy (DoE), the Eco-design directive of the European Union, the European Code of Conduct and other guidelines. So, an additional power supply for standby supply is not required.

The TEA9026T is a derivative product of the TEA19161. The functions and external presets of the TEA9026T are optimized for wide input voltage range. This application note describes the related functions and external presets. The "TEA19161 and TEA19162 controller ICs" application note describes the common functions and information for the TEA19161 (Ref. 1).

This document is set up in such a way, that a chapter or paragraph of a specific topic can be read as a standalone description. A minimum number of cross-references to other document parts of the TEA9026T data sheet is used. This document setup leads to repetition of some information within the application note and to descriptions or figures that are similar to the ones published in the data sheet. To enhance readability, only typical values are given in most cases.

1.1 Related products

NXP Semiconductors products that are related to the TEA9026T are:

- **TEA19161:**
 This product is the core product of TEA9026T. For designing applications, the recommendation is to use the TEA19161 with the TEA19162. The TEA19162 is a DCM/QR PFC controller IC.

- **TEA2095T:**
 The newest synchronous rectification controller for resonant converters with dual gate drivers in an SO8 package. This product is optimized for the TEA9026T operating modes.

- **TEA1708:**
 An X-capacitor discharge IC.
2 TEA9026T highlights and features

2.1 Resonant conversion for wide input voltage range

The market of today demands high-quality, reliable, small, light-weight, and efficient power supplies.

A resonant DC-to-DC converter produces sinusoidal currents with low switching losses. It provides the possibility of operating at higher frequencies with excellent efficiency at high power levels.

In recent years, LLC resonant converters have become more popular because of the high efficiency at medium and high output load. The latest generation of resonant controllers that support burst-mode operation have enabled good efficiency from low load to high load. It also enables a good low power consumption in standby, minimizing the losses at no-load operation.

Resonant converters are difficult to design in combination with wide input voltage range. So, they are typically designed with a PFC prestage. Due to the characteristic of a resonant converter, a high input voltage range also implies a wide frequency range. As the output power depends on the input voltage and the frequency, it causes a high variation on the mode transition levels and the overpower protection level.

The TEA9026T incorporates the mains compensation function which compensates not only mains input voltage, but also the frequency variation. This new compensation can achieve more constant operation-mode transition levels and overpower protection levels over mains input voltages.

2.2 TEA9026T key features

- Wide input voltage range
- Integrated high-voltage start-up
- Integrated high-voltage level shifter (LS)
- Fast start-up (< 500 ms)
- Continuous V_{SUPIC} regulation via the SUPHV pin during start-up and protection, allowing minimum SUPIC capacitor values
- Operating frequencies are outside the audible area in all operating modes
- Integrated soft start

2.3 TEA9026T green features

- High efficiency from low load to medium load
- Excellent no-load input power
- Regulated low optocurrent, enabling low no-load power consumption
- Very low supply current during non-switching state in burst mode
- Transitions between modes and power levels adjustable with external presets
- Externally adjustable low-power mode to burst mode transition level
- Adaptive non-overlap time
2.4 TEA9026T protection features

- Safe-restart mode for whole system fault conditions
- Accurate output overvoltage protection (OVP)
- Open-loop protection (OLP)
- Internal overtemperature protection (OTP)
- Supply undervoltage protection (UVP)
- Overpower protection (OPP)
- Capacitive mode protection (CMR)
- Maximum low-side and high-side LLC on-time protection
- Overcurrent protection (OCP)
- Disable input

2.5 TEA9026T typical applications

- TV application
- Printers
- E-bike chargers
3 Application diagram

The application diagram shows LLC resonant converter design with wide input voltage range.

Figure 1. TEA9026T application diagram
4 Wide input voltage range LLC design and TEA9026T functions

4.1 Wide range input LLC design

The input power of an LLC resonant converter can be calculated with Equation 1.

\[P_{in} = \frac{P_{out}}{\eta} = V_{in} \times \Delta V \times C_r \times f_{sw} \]

Equation 1 shows that the output power is related to the input voltage \(V_{in} \). As the input voltage changes, the frequency varies as well. To compensate this input voltage influence, a controller IC must compensate the input voltage and the frequency variation.

Typically, the application which requires LLC resonant design with wide input voltage is separated to the low mains input range (for example, 85 V (AC) to 135 V (AC)) or the high mains input range (for example, 150 V (AC) to 264 V (AC)). Although there is a large capacitor after the bridge rectifier, the minimum LLC input voltage is lower than the peak level of a minimum AC input voltage because of the voltage ripple on the capacitor. So, the LLC input voltage range depends on the system AC mains voltage range and the input capacitor design. In addition, the frequency variation is related to resonant tank design. To satisfy various system requirements, the TEA9026T offers extended input voltage compensation setting options.

4.2 Mains input voltage compensation of the TEA9026T

The TEA9026T incorporates mains input voltage compensation. The SNSBOOST pin, which is connected to the input capacitor with an external resistor divider, detects the input voltage \(V_{SNSBOOST} \). The \(f(SNSBOOST) \) is an internal compensation related to \(V_{SNSBOOST} \). The \(f(SNSBOOST) \) also compensates for the switching frequency, which depends on the input voltage.

Since the \(f(SNSBOOST) \) compensates the input voltage and the switching frequency, the internal Ctrl_P signal is only related to the output power. The OPP level and the mode transition levels are derived from the Ctrl_P.

Figure 2 shows the relation between Ctrl_P, \(f(SNSBOOST) \), and \(\Delta V_{SNSCAP} \).

To support various design requirements, the TEA9026T has several compensation options. Figure 3 shows \(f(SNSBOOST) \) versus \(V_{SNSBOOST} \) for different options.

\[\Delta V_{Cr} = \frac{P_{out}}{\eta V_{in} C_r f_{sw}} \]

\[\Delta V_{SNSCAP} = Ctrl_P \times f(SNSBOOST) \]
Figure 2. Relation between Ctrl_P, f(SNSBOOST), and ΔV_{SNSCAP}

Figure 3. Mains compensation curves versus SNSBOOST pin voltage

(1) Compensation curve 1
(2) Compensation curve 2
(3) Compensation curve 3
(4) Compensation curve 4
Example with compensation curve 4:

- SNSBOOST voltage range: 1.4 V to 2.6 V
- f(SNSBOOST) at $V_{\text{SNSBOOST}} = 1.4$ V with compensation curve 4: 2.3
- f(SNSBOOST) at $V_{\text{SNSBOOST}} = 2.6$ V with compensation curve 4: 0.45
- Ratio of V_{SNSBOOST} variation: 2.6 V / 1.4 V = 1.86
- Ratio of f(SNSBOOST) variation: 2.3 / 0.45 = 5.11
- Compensation amount for frequency change: 5.11 / 1.86 = 2.75

4.3 V_{SNSCAP} levels for different power levels

When calculating the output power levels for OPP or HP-LP transition, the ΔV_{SNSCAP} value is required. Equation 4 shows the relationship between the ΔV_{SNSCAP} level, f(SNSBOOST), and the power level.

$$\Delta V_{\text{SNSCAP}} = 1.2 \, V \times \frac{P_{\text{out}}[\%]}{125 \%} \times f\left(\text{SNSBOOST}\right)$$ \hspace{1cm} (4)

The SNSCAP pin is internally biased to 2.5 V. $V_{\text{hs(SNSCAP)}}$ and $V_{\text{ls(SNSCAP)}}$ can be calculated with Equation 5 and Equation 6. Where, $V_{\text{hs(SNSCAP)}}$ is an internal threshold which turns off the high-side gate and $V_{\text{ls(SNSCAP)}}$ is an internal threshold which turns off the low-side gate.

$$V_{\text{hs(SNSCAP)}} = 2.5 \, V + 0.6 \, V \times \frac{P_{\text{out}}[\%]}{125 \%} \times f\left(\text{SNSBOOST}\right)$$ \hspace{1cm} (5)

$$V_{\text{ls(SNSCAP)}} = 2.5 \, V - 0.6 \, V \times \frac{P_{\text{out}}[\%]}{125 \%} \times f\left(\text{SNSBOOST}\right)$$ \hspace{1cm} (6)

P_{out} is a percentage of the nominal output power. The P_{out} levels of the overpower protection and the power limit are 125 % and 150 %. The maximum ΔV_{SNSCAP} level ($\Delta V_{\text{th(max)}\text{SNSCAP}}$) is 3 V. Although the result of Equation 4 is a higher value than the $\Delta V_{\text{th(max)SNSCAP}}$, the ΔV_{SNSCAP} value is clamped to 3 V.

Figure 4 shows the ΔV_{SNSCAP} curves of the overpower protection (OPP) versus V_{SNSBOOST} for the different compensation options. It is derived from Equation 4 with f(SNSBOOST) information. Equation 4, Equation 5, and Equation 6 and the information of Figure 4 are valid without a voltage offset to the SNSCAP. When applying a voltage offset to the SNSCAP, the calculated levels change. Section 5.5 gives a more detailed explanation of adding an offset to the SNSCAP.
If ΔV_{SNSCAP} must be calculated at different V_{SNSBOOST} levels, f(SNSBOOST) information is required. Table 1 shows the f(SNSBOOST) levels for the different options.

Table 1. f(SNSBOOST) value at V_{SNSBOOST} for different compensation options

<table>
<thead>
<tr>
<th>V_{SNSBOOST} condition</th>
<th>f(SNSBOOST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensation 1</td>
<td></td>
</tr>
<tr>
<td>V_{SNSBOOST} > 1.85 V</td>
<td>2.582 – 0.682 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>1.85 V > V_{SNSBOOST} > 1.67 V</td>
<td>5.226 – 2.111 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>1.85 V > V_{SNSBOOST} > 1.67 V</td>
<td>9.178 – 4.478 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>Compensation 2</td>
<td></td>
</tr>
<tr>
<td>V_{SNSBOOST} > 1.95 V</td>
<td>2.389 – 0.656 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>1.95 V > V_{SNSBOOST} > 1.48 V</td>
<td>5.217 – 2.106 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>V_{SNSBOOST} > 1.48 V</td>
<td>8.678 – 4.444 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>Compensation 3</td>
<td></td>
</tr>
<tr>
<td>V_{SNSBOOST} > 1.96 V</td>
<td>2.464 – 0.725 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>1.96 V > V_{SNSBOOST} > 1.42 V</td>
<td>5.472 – 2.259 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>V_{SNSBOOST} > 1.42 V</td>
<td>7.870 – 3.948 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>Compensation 4</td>
<td></td>
</tr>
<tr>
<td>V_{SNSBOOST} > 2.06 V</td>
<td>2.236 – 0.688 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>2.06 V > V_{SNSBOOST} > 1.19 V</td>
<td>5.366 – 2.207 × V_{SNSBOOST} × [1 / V]</td>
</tr>
<tr>
<td>V_{SNSBOOST} > 1.19 V</td>
<td>7.500 – 4.000 × V_{SNSBOOST} × [1 / V]</td>
</tr>
</tbody>
</table>

Figure 4. ΔV_{SNSCAP} curves versus SNSBOOST pin voltage for OPP (125 %)
4.3.1 Time delay V_{SNSCAP}-to-HB transition

The level of transition depends on an internal SNSCAP target level and a time delay until the HB transition. The time delay includes:

- Time between the moment SNSCAP reaches the target level (A) and the moment the GATE switches off (B). This time is internally fixed: 150 ns.
- Time between the moment the GATE switches off (B) and the moment HB reaches half of its maximum value (C). This time depends on the application properties. In this document, 300 ns is assumed.

The time delay leads to a difference in power level between the control of mode transition level and reality. This difference can lead to a substantial difference in (mode transition) power levels. When the application-depending delay (B-C) is different from the 300 ns used in this document, the estimated power levels are different as well.

![Diagram of Time delay V_{SNSCAP}-to-HB transition](image)

To measure ΔV_{SNSCAP} without the application-depending delay (B-C), V_{SNSCAP} must be measured at the starting of falling edges of the GateLS pin voltage and the GateHS pin voltage. However, the measured ΔV_{SNSCAP} can be higher than the internal threshold levels of the IC, because of the IC propagation delay (A-B).
4.4 SNSBOOST voltage levels and SNSBOOST pin design guideline

The SNSBOOST pin has two threshold levels, the start level ($V_{\text{start(SNSBOOST)}}$) and the undervoltage protection level ($V_{\text{uvp(SNSBOOST)}}$). When the V_{SNSBOOST} exceeds $V_{\text{start(SNSBOOST)}}$ (1.4 V) with satisfying other start-up conditions ($V_{\text{SUPIC}} > V_{\text{start(SUPIC)}}$ and $V_{\text{SUPREG}} > V_{\text{uvp(SUPREG)}}$ and success of readout settings), the TEA9026T starts switching. When V_{SNSBOOST} drops to below $V_{\text{uvp(SNSBOOST)}}$ the TEA9026T stops switching. The external resistor divider on the SNSBOOST pin can be designed based on the brownin requirements.

Example of SNSBOOST resistor calculation:

- AC mains voltage range: 150 V (AC) to 264 V (AC)
 - Maximum LLC input voltage at 150 V (AC): $150\sqrt{2} = 212$ V
 - Minimum LLC input voltage at 150 V (AC) with a 94 μF input capacitor: 141 V
- Target brownin level: 140 V (AC)
- The selected upper side resistor on SNSBOOST pin: 6 MΩ
- The calculated lower side resistor on SNSBOOST pin: $\frac{6 \text{ MΩ}}{140 \sqrt{2} - 1} = 43 \text{ kΩ}$

- Check that the minimum V_{SNSBOOST} at 150 V (AC) exceeds $V_{\text{uvp(SNSBOOST)}}$ (0.8 V):
 $$141 \text{ V} \times \frac{43 \text{ kΩ}}{6 \text{ MΩ} + 43 \text{ kΩ}} = 1 \text{ V}$$

For real-time compensation over the input voltage, use a capacitor on the SNSBOOST pin of < 1 nF.
5 Presetting TEA9026T functionality for wide range input voltage

Before the system starts operation, it reads the external settings. Several internal settings can be defined with specific values for resistors at GATELS, SNSSET, and SNSOUT. These settings cannot be changed during operation. They are refreshed at each start or restart. The resistors are:

- GATELS resistor (R_{GATELS})
- SNSSET resistor (R_1)
- SNSSET resistor (R_2)
- SNSOUT resistor (R_{SNSOUT})

![Diagram of TEA9026T](image)

Figure 6. Presetting TEA9026T using values of four resistors

5.1 Setting the soft start power level (RGATELS)

To limit the power in each cycle at start-up, the V_{SNSCP} control switching levels are given an offset. During start-up, the slope compensation makes a sweep of 12 ms. The maximum start-up time is 12 ms. However, under normal conditions, the start-up time is much shorter. The compensation that is used at start-up can be optimized with the value of resistor R_{GATELS}. The range of values for resistor R_{GATELS} is: $100 \text{ k}\Omega \leq R_{\text{GATELS}} \leq 300 \text{ k}\Omega$.
Any value within this range can be applied. The value is sampled in 255 steps accuracy which approaches an analog setting. At 100 kΩ, the energy in the first cycle is lowest. At 300 kΩ, it is highest.

This optimization function depends on the application converter properties and behavior. So, when the behavior of the primary current and the output voltage increase is monitored, experimenting must determine the value. A typical value is 180 kΩ.

During the start-up slope, functions that are also active during normal operation can influence the behavior:

- SNSBOOST pin: Compensation for lower input voltage
- Symmetry regulation to keep the duty cycle close to 50%
- SNSFB: Start regulation when the nominal output voltage is reached

5.2 SNSSET resistor R1

The value of resistor R1 on the SNSSET pin presets the mains compensation curve and the burst frequency. Table 2 shows the R_{SNSSET1} values and options.

<table>
<thead>
<tr>
<th>R_{SNSSET1}</th>
<th>Mains compensation curve</th>
<th>Burst frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>No start-up</td>
<td></td>
</tr>
<tr>
<td>53.6</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>61.9</td>
<td>2</td>
<td>800</td>
</tr>
<tr>
<td>71.5</td>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>82.5</td>
<td>4</td>
<td>800</td>
</tr>
<tr>
<td>95.3</td>
<td>1</td>
<td>1600</td>
</tr>
<tr>
<td>110</td>
<td>2</td>
<td>1600</td>
</tr>
<tr>
<td>127</td>
<td>3</td>
<td>1600</td>
</tr>
<tr>
<td>147</td>
<td>4</td>
<td>1600</td>
</tr>
</tbody>
</table>

The TEA9026T incorporates the four mains compensation curves. Figure 3 shows the compensation versus the SNSBOOST voltage for different curve options. The compensation curve can be selected based on the overpower protection performance. Related to the selected compensation curve, the HP-LP transition power and the LP-BM transition power are compensated as well. The sections below introduce options for the HP-LP transition level and the LP-BM transition level.

5.3 SNSSET resistor R2 and SNSOUT resistor

The SNSSET resistor R2 and the SNSOUT resistor preset the following option:

- R_{SNSSET2}:
 - HP-LP transition level. The possible options are 20 % and 30 %
 - R_{SNSSET2}:
 - LP-BM transition level at $V_{\text{SNSBOOST}} = 2.5$ V
- R_{SNSOUT1}:
 - LP-BM transition level at $V_{\text{SNSBOOST}} = 1.3$ V

The HP-LP transition level has two options, 20 % and 30 %. This transition level is constant as the input voltage.

At lower load conditions, the internal Ctrl_P signal becomes less accurate because the frequency as function of the input voltage is different with higher load condition. In...
addition, the delays are more significant at lower loads. So, as the input voltage changes, the LP-BM transition level changes as well.

The TEA9026T can adjust the LP-BM transition levels as function of the input voltage. The SNSSET resistor R2 determines the HP-LP transition level at $V_{\text{SNSBOOST}} = 2.5$ V. The LP-BM transition level at $V_{\text{SNSBOOST}} = 1.3$ V can be selected via another preset resistor, R_{SNSOUT1}. Figure 7 shows the overall LP-BM transition curve to one selected setting.

Table 3. Settings of SNSSET resistor R2

<table>
<thead>
<tr>
<th>R_{SNSSET2} (kΩ)</th>
<th>LP-BM transition level at $V_{\text{SNSBOOST}} = 2.5$ V (%)</th>
<th>HP-LP transition level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>6.8</td>
<td>7.5</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>27</td>
<td>12.5</td>
<td>30</td>
</tr>
<tr>
<td>47</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>82</td>
<td>7.5</td>
<td>20</td>
</tr>
<tr>
<td>180</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>open</td>
<td></td>
<td>12.5</td>
</tr>
</tbody>
</table>

Table 4. Mains compensation curve and burst frequency settings

<table>
<thead>
<tr>
<th>R_{SNSOUT1} (kΩ)</th>
<th>LP-BM transition level at $V_{\text{SNSBOOST}} = 1.3$ V (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>12.5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>

The R_{SNSOUT1} resistor value is used for internal calibration as well. An accurate resistor of 1 % required (see Table 4). The output overvoltage protection level can be adjusted using the upper-side resistor (R_{SNSOUT2}).
Figure 7. LP-BM transition curve versus SNSBOOST pin voltage

White-filled circles: Possible LP-BM transition selections
Orange-filled circles: Selected transition level. 5 % at \(V_{\text{SNSBOOST}} = 1.3 \) V via \(R_{\text{SNSOUT1}} \) and 7.5 % at \(V_{\text{SNSBOOST}} = 2.5 \) V via \(R_{\text{SNSSET2}} \)

5.4 Capacitor value selection for the SNSSET pin

To measure the values for resistors R1 and R2 on the SNSSET pin, a capacitor is used in series with resistor R2. For reliable measurement, the value of this capacitor must be a value shown in Table 5.

Table 5. SNSSET capacitor (\(C_{\text{SNSSET}} \) (nF)) value versus resistor values

<table>
<thead>
<tr>
<th>R1 (kΩ)</th>
<th>1</th>
<th>6.8</th>
<th>15</th>
<th>27.0</th>
<th>47</th>
<th>82.0</th>
<th>180</th>
<th>open</th>
<th>R2 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.4</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>22</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>53.6</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>22</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>61.9</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>22</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>71.5</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>82.5</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>95.3</td>
<td>33</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>12</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>12</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>n.c.</td>
<td></td>
</tr>
</tbody>
</table>
5.5 Transition power level modification by adding an offset to the SNSCAP signal

Normally, R_{SNSSET2} and R_{SNSOUT1} are chosen to set the mode transition levels. However, in some cases, the options in the table do not meet the requirements. For example, when transitions must be set at a very low power level. When a voltage offset is added to SNSCAP, the values can be changed to meet the requirements. This offset shifts the total power range. However, it has a greater effect on the lower power region (near LP-to-BM transition) than on the higher power region (100 % level).

The SNSCAP pin can be connected to the voltage on the auxiliary winding using resistor R_{OFFSET} and capacitor C_{OFFSET}. It adds a voltage to the SNSCAP signal for both polarities of the SNSCAP signal. The winding direction of the auxiliary winding determines if an offset is added or subtracted.

The value of the auxiliary voltage and the value of R_{OFFSET} determine the amount of offset on SNSCAP. Capacitor C_{OFFSET} provides the AC coupling of the offset signal. The value of C_{OFFSET} must allow correct timing for the function.

Although it has less effect on the higher power region, the overpower level must be double-checked after adding an offset.

![Figure 8. Addition an offset on SNSCAP to modify mode transition power levels](image-url)
6 Presetting optimization example

6.1 Mains compensation curve design example

The mains compensation curve is selected based on overpower protection requirement. Figure 9 shows a practical design example for overpower protection level. Where the overpower protection curve with the compensation curve 3 must still improve the compensation, compensation curve 4 can achieve a better overpower protection curve versus the mains input voltage.

![Graph showing mains compensation curves](image)

Figure 9. Practical example of overpower protection level with different curves

Figure 10 shows the influence of the mode transition levels (HP-LP transition and LP-BM transition) on different mains compensation curves. Regarding the overpower protection compensation result, curve 4 is the more compensated option for mode transition levels.
6.2 LP-BM transition optimization example

Section 6.1 shows that a compensation curve option compensates the LP-BM transition level. If the compensated LP-BM transition level must still optimize for less input voltage influence, the transition level can be adjusted with \(R_{\text{SNSOUT1}} \) and \(R_{\text{SNSSET2}} \). Figure 11 shows LP-BM transition level example with different options. The option which is 7.5% at \(V_{\text{SNSBOOST}} = 1.3 \text{ V} \) and 5% at \(V_{\text{SNSBOOST}} = 2.5 \text{ V} \) shows the most optimized LP-BM transition level curve. When selecting an LP-BM transition level, the standby power consumption and the audible noise in burst mode must be considered as well.
The LP-BM transition power level is closely related to standby power consumption. Figure 12 shows a practical example where the standby power consumption is improved with different LP-BM transition options. The 22 kΩ value of $R_{SNSOUT1}$ sets a 5 % LP-BM transition level at $V_{SNSBOOST} = 1.3$ V. The practical LP-BM transition power level at 150 V (AC) is much lower than 1 W. So, the standby power consumption at 150 V (AC) is much higher than other mains input conditions. After the LP-BM transition level at $V_{SNSBOOST} = 1.3$ V is increased to 7.5 % with $R_{SNSOUT1} = 15$ kΩ, the standby power consumption is improved.
6.3 Audible noise

The LLC transformer is the main source of audible noise. Audible noise does not happen in high-power mode because the switching frequency well exceeds the audible frequency. However, in burst mode, the repetition frequency of the bursts is in the audible frequency range. The TEA9026T can be set to a steady repetition frequency of 1600 Hz or 800 Hz. This operation can generate audible noise.

The LP mode enables the system to keep switching above the audible frequency even at low output power levels. Since the minimum low-power mode repetition frequency is 28 kHz, this frequency value does not generate audible noise. However, unstable low-power repetition frequency because of jumping between a different number of peaks can generate audible noise.
The wide input voltage range results in a longer turn-on time at lower input voltages. It increases the magnetizing current and so the level of audible noise in burst mode and low-power mode.

The sections below introduce possible improvements in burst mode and LP mode. However, improvement for audible noise often results in more power consumption at low output power and higher output voltage ripple. Sometimes, a compromise for acceptable performance on related subjects must be found. The TEA9026T offers many options to optimize mode operation transitions that can help to achieve the best performance-combination in all working conditions.

6.3.1 Audible noise improvement in burst mode

When audible noise occurs in burst mode, several possible improvements can be considered.

Lowering the LP-BM transition level reduces the energy level in each burst-mode cycle, which improves audible noise. Resistors $R_{SNSOUT1}$ and $R_{SNSSET2}$ adjust the LP-BM transition level (see Section 6.2). If the options on $R_{SNSOUT1}$ and $R_{SNSSET2}$ are not sufficient to optimize audible noise (see Section 5.5), the adding offset level on SNSCAP can adjust the LP-BM transition level more accurately. Typically, the R_{OFFSET} value decides the level of offset. Using this method, the LP-BM transition values that are best suited for the application to be designed can be created.

The main mechanism for producing noise is the interruption of magnetization current sequences (bursts), which leads to a mechanical force. The core of the resonant transformer is especially susceptible and starts acting like a loudspeaker. The noise amplitude is highest at the (mechanical) resonant frequency of the transformer. Normally, the resonant frequency of the transformer is a higher frequency than the burst repetition frequency.

Harmonics of the burst repetition frequency produce the audible noise. A lower repetition burst frequency reduces the energy in the harmonics at the resonant frequency of the transformer. So, the lower burst repetition frequency improves the audible noise. Throughout $R_{SNSSET1}$, 800 Hz or 1600 Hz burst frequency can be selected.

6.3.2 Audible noise improvement in low-power mode

When the LP repetition frequency is unstable in combination with higher magnetizing current, audible noise happens in low-power mode. Likewise, in burst mode, audible noise is the most critical at the lowest input voltage level. A reduction of input voltage requirement can improve audible noise.

Lowering the HP-LP mode transition level and reducing the LP operation power range can improve audible noise. $R_{SNSSET2}$ presets the HP-LP transition level between 30 % and 20 %. If the 20 % HP-LP mode transition level option is not sufficient, adding an offset level on SNSCAP can adjust the HP-LP transition level.
7 Abbreviations

Table 6. Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFET</td>
<td>metal-oxide semiconductor field-effect transistor</td>
</tr>
<tr>
<td>PCB</td>
<td>printed-circuit board</td>
</tr>
<tr>
<td>PFC</td>
<td>power factor correction</td>
</tr>
<tr>
<td>THD</td>
<td>total harmonic distortion</td>
</tr>
<tr>
<td>UVLO</td>
<td>undervoltage lockout</td>
</tr>
</tbody>
</table>

8 References

[1] AN11801 application note — TEA19161 and TEA19162 controller ICs, revision 2.1; 2021, NXP Semiconductors
[2] TEA9026T data sheet — Digital LLC controller for power supplies providing wide input voltage range and low standby; 2022, NXP Semiconductors
9 Legal information

9.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including — without limitation — lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products of or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

9.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

GreenChip — is a trademark of NXP B.V.