

© 2020 NXP B.V.

NXP eIQ™ Machine Learning Software
Development Environment for i.MX
Applications Processors

1. Introduction
Machine Learning (ML) is a computer science domain
that has its roots in the 1960s. ML provides algorithms
capable of finding patterns and rules in data. ML is a
category of algorithm that allows software applications
to become more accurate in predicting outcomes
without being explicitly programmed. The basic
premise of ML is to build algorithms that can receive
input data and use statistical analysis to predict an
output while updating outputs as new data becomes
available.
In 2010, the so-called deep learning started. It is a
fast-growing subdomain of ML, based on Neural
Networks (NN). Inspired by the human brain, deep
learning achieved state-of-the-art results in various
tasks; for example, Computer Vision (CV) and Natural
Language Processing (NLP). Neural networks are
capable of learning complex patterns from millions of
examples. A huge adaptation is expected in the
embedded world, where NXP is the leader. NXP
created eIQ machine learning software for i.MX
applications processors, a set of ML tools which allows
developing and deploying ML applications on the
i.MX 8 family of devices.

NXP Semiconductors Document Number: UM11226

User Manual Rev. 4 , 05/2020

Contents

1. Introduction ... 1
2. NXP eIQ software introduction ... 2
3. Yocto installation guide ... 3

3.1. Prerequisites.. 4
3.2. Building NXP eIQ software support using Yocto
Project tools .. 4

4. OpenCV getting started guide .. 8
4.1. OpenCV DNN demos ... 8
4.2. OpenCV standard machine learning demos15

5. Arm Compute Library getting started guide 19
5.1. Running DNN with random weight and inputs19
5.2. Running AlexNet using graph API20

6. TensorFlow getting started guide 20
6.1. Running benchmark application21

7. TensorFlow Lite getting started guide 22
7.1. Running benchmark application22
7.2. Running image classification example23

8. Arm NN getting started guide .. 25
8.1. Running Arm NN tests ..25
8.2. Using Arm NN in a custom C/C++ application33

9. ONNX Runtime getting started guide 34
9.1. Running ONNX Runtime test35

10. Security for machine learning .. 35
10.1. Adversarial examples ...36
10.2. Model cloning ..38
10.3. Model Inversion ...40
10.4. Library Usage ..41

11. References ... 42
12. Revision history ... 43

NXP eIQ software introduction

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
2 NXP Semiconductors

This document provides guidance for the supported ML software for the i.MX family. The document is
divided into separate sections, starting with the NXP eIQ introduction, the Yocto installation guide, and
the step-by step guide for running all supported DNN and non-DNN examples.

NOTE
This document describes the eIQ Machine Learning Software for the NXP
L4.14 BSP release. Beginning with the L4.19 BSP, the eIQ software is
pre-integrated in the BSP release and this document is no longer necessary
or being maintained. For more information on the eIQ software in these
releases (L4.19, L5.4, and so on), see the “NXP eIQ Machine Learning”
chapter in the Linux user’s guide for that specific release. Be sure to join
the eIQ Machine Learning Software Community
(https://community.nxp.com/community/eiq), where you will find many
new demos and sample applications (in addition to great community
support).

2. NXP eIQ software introduction
The NXP eIQ machine learning software development environment provides a set of libraries and
development tools for machine learning applications targeted at NXP MCUs and application processors.
The NXP eIQ software is concerned only with neural networks inference and standard machine-learning
algorithms, leaving neural network training to other specialized software tools and dedicated hardware.
The NXP eIQ is continuously expanding to include data-acquisition and curation tools and model
conversion for a wide range of NN frameworks and inference engines, such as TensorFlow, TensorFlow
Lite, Arm® NN, and Arm Compute Library.
The current version of NXP eIQ software of i.MX processors delivers advanced and highly optimized
machine learning enablement by providing ML support in Linux OS BSPs for the i.MX 8 family of
devices. The NXP eIQ software contains these main Yocto recipes:

• OpenCV 4.0.1
• Arm Compute Library 19.02
• Arm NN 19.02
• ONNX runtime 0.3.0
• TensorFlow 1.12
• TensorFlow Lite 1.12

For more details about the i.MX 8 family of application processors, see the fact sheet [1].
For up-to-date information about NXP machine learning solutions, see the official NXP web page [2] for
machine learning and artificial intelligence.

https://community.nxp.com/community/eiq

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 3

Figure 1. NXP eIQ machine learning software

3. Yocto installation guide
This chapter provides a step-by-step guide for configuring and building Linux L4.14.98 GA, the Linux
Yocto BSP release for i.MX 8 family of devices [3], with support for NXP eIQ software.

NOTE
This document describes the eIQ Machine Learning Software for the NXP
L4.14 BSP release. Beginning with the L4.19 BSP, the eIQ software is
pre-integrated in the BSP release and this document is no longer necessary
or being maintained. For more information on the eIQ software in these
releases (L4.19, L5.4, and so on), see the “NXP eIQ Machine Learning”
chapter in the Linux user’s guide for that specific release. Be sure to join
the eIQ Machine Learning Software Community
(https://community.nxp.com/community/eiq), where you will find many
new demos and sample applications (in addition to great community
support).

To enable NXP eIQ machine learning software, the main configuration changes are:
• Mandatory: select the right machine learning manifest file (*.xml) – see Section 3.2.2, “Yocto

project metadata downloading”.
• Optional: modify the machine learning configuration file (*.conf) or layer files (*.bb), depending

on which special configuration is needed; see Section 3.2.4, “Yocto configuration file
modifying” or Section 3.2.5, “OpenCV user build modification”.

For more information about the Linux Yocto BSP setup, see the Linux L4.14.98_2.0.0
documentation [4].

https://community.nxp.com/community/eiq

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
4 NXP Semiconductors

3.1. Prerequisites

3.1.1. Hardware requirements
• 1 x Linux OS host machine with a minimum of 120 GB HDD space available and internet

connection
• 1 x MCIMX8QM-CPU board with internet connection
• 1 x SDHC card (tested with a 16-GB SDHC Class 10 UHS-I card)
• 1 x MIPI camera MCIMXCAMERA1MP with de-serializer MX8XMIPI4CAM2 for running

OpenCV DNN examples using the live camera inputs (optional only)
• LCD HDMI monitor

3.1.2. Software requirements
1. Host OS: Ubuntu (tested with 16.04)
2. Host packages:

— The essential Yocto project host packages are:
$: sudo apt-get install gawk wget git-core diffstat unzip texinfo \
 gcc-multilib build-essential chrpath socat libsdl1.2-dev

— The i.MX layers host packages for the Ubuntu OS host setup are:
$: sudo apt-get install libsdl1.2-dev xterm sed cvs subversion \
 coreutils texi2html docbook-utils python-pysqlite2 help2man gcc \
 g++ make desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev \
 mercurial autoconf automake groff curl lzop asciidoc u-boot-tools

3.2. Building NXP eIQ software support using Yocto Project tools
See the i.MX Yocto Project User’s Guide document [4] or sections 3.2.1 to 3.2.6, and 3.2.9. See the i.MX
Linux User’s Guide document [4] or sections 3.2.7 to 3.2.8.

3.2.1. Repo utility installing
This must be done only once.
$: mkdir ~/bin
$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$: chmod a+x ~/bin/repo
$: PATH=${PATH}:~/bin

3.2.2. Yocto project metadata downloading
$: mkdir fsl-arm-yocto-bsp
$: cd fsl-arm-yocto-bsp
$: repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-linux-sumo -m
imx-4.14.98-2.0.0_machinelearning.xml
$: repo sync

https://www.nxp.com/part/MCIMX8QM-CPU?lang=en&lang_cd=en&
https://www.nxp.com/part/MCIMXCAMERA1MP?lang=en&lang_cd=en&
https://www.nxp.com/part/MX8XMIPI4CAM2?lang=en&lang_cd=en&
https://storage.googleapis.com/git-repo-downloads/repo
https://source.codeaurora.org/external/imx/imx-manifest

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 5

NOTE
The imx-4.14.78-1.0.0_machinelearning manifest file can be also used.

3.2.3. Yocto build setup
$: EULA=1 MACHINE=imx8qmmek DISTRO=fsl-imx-xwayland source ./fsl-setup-release.sh -b build-
xwayland
$: echo "BBLAYERS += \" \${BSPDIR}/sources/meta-imx-machinelearning \"" >> conf/bblayers.conf

3.2.4. Yocto configuration file modifying
OpenCV 4.0.1 is available to be built and is already installed in the suggested image. Therefore, the
local.conf file does not have to be modified to include the OpenCV in the Yocto image. However, it is
recommended to add some extra packages to this configuration file for a more convenient image. The
local.conf file is in folder fsl-arm-yocto-bsp/build-xwayland/conf.
Add basic development capabilities:
EXTRA_IMAGE_FEATURES = " dev-pkgs debug-tweaks tools-debug tools-sdk ssh-server-openssh"

Add packages for networking capabilities:
IMAGE_INSTALL_append = " net-tools iputils dhcpcd"

Add some generic tools:
IMAGE_INSTALL_append = " which gzip python python-pip"
IMAGE_INSTALL_append = " wget cmake gtest git zlib patchelf"
IMAGE_INSTALL_append = " nano grep vim tmux swig tar unzip"
IMAGE_INSTALL_append = " parted e2fsprogs e2fsprogs-resize2fs"

Configure the OpenCV package:
IMAGE_INSTALL_append = " opencv python-opencv"
PACKAGECONFIG_remove_pn-opencv_mx8 = "python3"
PACKAGECONFIG_append_pn-opencv_mx8 = " dnn python2 qt5 jasper openmp test neon"

Remove the OpenCL support from packages:
PACKAGECONFIG_remove_pn-opencv_mx8 = "opencl"
PACKAGECONFIG_remove_pn-arm-compute-library = "opencl"

Add CMake for SDK’s cross-compile:
TOOLCHAIN_HOST_TASK_append = " nativesdk-cmake nativesdk-make"

Add packages:
IMAGE_INSTALL_append = " arm-compute-library tensorflow tensorflow-lite armnn onnxruntime"
PREFERRED_VERSION_opencv = "4.0.1%"
PREFERRED_VERSION_tensorflow = "1.12.0%"
PREFERRED_VERSION_tensorflow-lite = "1.12.0%"

NOTE
OpenCL is currently not supported in the L4.14.98_2.0.0 and
L4.14.78_1.0.0 Yocto configurations.

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
6 NXP Semiconductors

3.2.5. OpenCV user build modification
The OpenCV 4.0.1 is installed with all necessary DNN and ML dependencies in the NXP eIQ software.
If some special OpenCV build options are required, add them to the OpenCV recipe file to their separate
PACKAGECONFIG section. The opencv_4.0.1-imx.bb file is located on the Linux OS host PC in this
folder:

fsl-arm-yocto-bsp/sources/meta-imx-machinelearning/recipes-graphics/opencv

3.2.6. Image building
The image should be built with Qt 5 support, because some OpenCV examples requires Qt 5 to be
enabled in the image:

$: bitbake fsl-image-qt5

3.2.7. SD card image flashing
The result of the build process is a compressed image which can be found in
tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard.bz2, where
<timestamp> is the image timestamp (for example: 20180509080732).

Decompress the image before flashing it to the SD card:
bunzip2 -k -f tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-
<timestamp>.rootfs.sdcard.bz2

Flash the SD card (replace “sdX” with the actual SD card device):
dd if= tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard
of=/dev/sdX bs=1M && sync

NOTE
The Win32DiskImager utility can be also used for the SD card image
flashing.

3.2.8. SD card disk space extending
The ML applications require a lot of disk space to store the input model data. By default, the SD card
image is created with a small amount of extra space (approximately 500 MB) in the rootfs, which may
not be enough for all ML applications.
There are two methods how to extend the SD card free space:

1. Define additional free disk space before start the building process. It is done using the
IMAGE_ROOTFS_EXTRA_SPACE variable in the local.conf file. This step is also described in
the Yocto project manual here: https://www.yoctoproject.org/docs/current/mega-manual/mega-
manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE.

2. Extend the SD card disk space after the image building. This ex-post method is described in
more detail in the below section.

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 7

Print all SD card partitions of the target board:
$: fdisk -l
Device Boot Start End Sectors Size Id Type
/dev/mmcblk1p1 16384 147455 131072 64M c W95 FAT32 (LBA)
/dev/mmcblk1p2 147456 10584063 10436608 5G 83 Linux

Start the “fdisk” utility:
$: fdisk /dev/mmcblk1

Delete the Linux-type partition (second in this case):
Command (m for help): d
Partition number (1,2, default 2): 2
Partition 2 has been deleted.

Create the new primary partition (second in this case) with the first sector being identical to the original
partition:
Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p):

Using default response p.
Partition number (2-4, default 2):
First sector (2048-31116287, default 2048): 147456
Last sector, +sectors or +size{K,M,G,T,P} (147456-31116287, default 31116287):

Write the new partition and exit the “fdisk” utility:
Command (m for help): w

The partition table has been altered.
Syncing disks.

Increase the filesystem size of the second partition:
$: resize2fs /dev/mmcblk1p2
resize2fs 1.43.8 (1-Jan-2018)
Filesystem at /dev/mmcblk1p2 is mounted on /; on-line resizing required
old_desc_blocks = 1, new_desc_blocks = 1
The filesystem on /dev/mmcblk1p2 is now 3871104 (4k) blocks long.

NOTE
You can also use the “parted” Linux OS command to create a new
partition instead of using the “fdisk” command.

Finally, check the free disk space after resizing:
$: df -h

3.2.9. Generating the Toolchain
The toolchain created by the Yocto Project tools provides a set of tools (compilers, libraries, and header
files) to cross-compile the code for the previously-built images. Build the SDK with the Qt 5 support:
$: bitbake fsl-image-qt5 -c populate_sdk

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
8 NXP Semiconductors

After the build process finishes, it produces an installer script that can be used to install the SDK on the
developing system. The script is created in the tmp/deploy/sdk/fsl-imx-xwayland-glibc-x86_64-fsl-
image-qt5-aarch64-toolchain-4.14-sumo.sh.

4. OpenCV getting started guide
OpenCV is an open-source computer vision library. One of its modules (called ML) provides traditional
machine learning algorithms. Another important module in the OpenCV is the DNN, which provides
support for neural network algorithms.

OpenCV offers a unitary solution for both the neural network inference (DNN module) and the standard
machine learning algorithms (ML module). It includes many computer vision functions, making it easier
to build complex machine learning applications in a short amount of time and without being dependent
on other libraries.

OpenCV has wide adoption in the computer vision field and is supported by a strong and active
community. The key algorithms are specifically optimized for various devices and instructions sets. For
i.MX, OpenCV uses the Arm NEON acceleration. The Arm NEON technology is an advanced SIMD
(Single Instruction Multiple Data) architecture extension for the Arm Cortex-A series. The Arm NEON
technology is intended to improve multimedia user experience by accelerating the audio and video
encoding/decoding, user interface, 2D/3D graphics, or gaming. The Arm NEON can also accelerate the
signal-processing algorithms and functions to speed up applications such as the audio and video
processing, voice and facial recognition, computer vision, and deep learning.

At its core, the OpenCV DNN module implements an inference engine and does not provide any
functionalities for neural network training. For more details about the supported models and layers, see
the official OpenCV DNN wiki page [5].

On the other hand, the OpenCV ML module contains classes and functions for solving machine learning
problems such as classification, regression, or clustering. It involves algorithms such as Support Vector
Machine (SVM), decision trees, random trees, expectation maximization, k-nearest neighbors, classic
Bayes classifier, logistic regression, and boosted trees. For more information, see the official reference
manual and machine learning overview. For more details about OpenCV 4.0.1, see the official OpenCV
change log web page [6].

4.1. OpenCV DNN demos
After creating a bootable SD card using Yocto, all OpenCV DNN demos are in the
/usr/share/OpenCV/samples/bin/ folder (the default demo location). However, the input data, model
configurations, and model weights are not located in this folder, because of their size. These files must
be downloaded to the device before running the demos:

• Download the opencv_extra.zip package at this link: github.com/opencv/opencv_extra/tree/4.0.1
• Unpack the file using unzip opencv_extra-4.0.1.zip to the SD card root directory <home_dir>.

• Go to the <home_dir>/opencv_extra-4.0.1/testdata/dnn/ folder and run python
download_models.py. The script downloads the NN models, configuration files, and input images

https://github.com/opencv/opencv_extra/tree/4.0.1

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 9

for some OpenCV examples. This operation may take a while. Copy these dependencies to the
/usr/share/OpenCV/samples/bin folder (see also the demo dependencies parts of sections 4.1.x in
this document).

• Download the configuration model file at this link:
github.com/opencv/opencv/blob/master/samples/dnn/models.yml
The model.yml file contains the pre-processing parameters for some DNN examples, which
accept the “–zoo” parameter. Copy the model file to the /usr/share/OpenCV/samples/bin folder.

4.1.1. Image classification example
This demo performs image classification using a pre-trained SqueezeNet network.
Demo dependencies (taken from the “opencv_extra” package):

• dog416.png
• squeezenet_v1.1.caffemodel
• squeezenet_v1.1.prototxt

Other demo dependencies:
• classification_classes_ILSVRC2012.txt from /usr/share/OpenCV/samples/data/dnn
• models.yml from github

Running the C++ example with the image input from the default location:
$: ./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

Figure 2. Image classification graphics output

https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
10 NXP Semiconductors

Running the C++ example with the live camera input from the default location:
$: ./example_dnn_classification --zoo=models.yml squeezenet

4.1.2. YOLO object detection example
This demo performs the object detection using the You Only Look Once (YOLO) detector
(arxiv.org/abs/1612.08242). It detects objects in a camera/video/image.

For more information about this demo, see the “Loading Caffe framework models” OpenCV tutorial:
docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html.

Demo dependencies (taken from the “opencv_extra” package):
• dog416.png
• yolov3.weights
• yolov3.cfg

Other demo dependencies:
• models.yml
• object_detection_classes_yolov3.txt from /usr/share/OpenCV/samples/data/dnn

Running the C++ example with the image input from the default location:
$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -input=dog416.png -
rgb -zoo=models.yml yolo

Figure 3. YOLO object detection graphics output

Running the C++ example with the live camera input from the default location:

https://arxiv.org/abs/1612.08242

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 11

$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -rgb -
zoo=models.yml yolo

NOTE
Running this example with the live camera input is very slow, because this
example runs only on the CPU.

4.1.3. Image segmentation example
The image segmentation means dividing the image into groups of pixels based on some criteria. You can
do this grouping based on color, texture, or some other criteria that you choose.

Demo dependencies (taken from the “opencv_extra” package):
• dog416.png
• fcn8s-heavy-pascal.caffemodel
• fcn8s-heavy-pascal.prototxt

Other demo dependencies:
• models.yml

Running the C++ example with the image input from the default location:
$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png --
zoo=models.yml fcn8s

Figure 4. Image segmentation graphics output

Running the C++ example with the live camera input from the default location:
$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --zoo=models.yml fcn8s

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
12 NXP Semiconductors

NOTE
Running this example with the live camera input is very slow, because this
example runs only on the CPU.

4.1.4. Image colorization example
This example demonstrates the recoloring of grayscale images using DNN. The demo supports input
images only, not the live camera input.

Demo dependencies (taken from the “opencv_extra” package):
• colorization_release_v2.caffemodel
• colorization_deploy_v2.prototxt

Other demo dependencies:
• basketball1.png

Running the C++ example with the image input from the default location:
$: ./example_dnn_colorization --model=colorization_release_v2.caffemodel --
proto=colorization_deploy_v2.prototxt --image=../data/basketball1.png

Figure 5. Image colorization demo graphics output

4.1.5. Human pose estimation example
This application demonstrates the human or hand pose detection with a pretrained OpenPose DNN. The
demo supports only input images, not the live camera input.

Demo dependencies (taken from the “opencv_extra” package):
• grace_hopper_227.png
• openpose_pose_coco.caffemodel

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 13

• openpose_pose_coco.prototxt

Running the C++ example with the image input from the default location:
$: ./example_dnn_openpose --model=openpose_pose_coco.caffemodel --
proto=openpose_pose_coco.prototxt --image=grace_hopper_227.png --width=227 --height=227

Figure 6. Human pose estimation graphics output

4.1.6. Object detection example
This demo performs object detection using SqueezeDet. The demo supports only input images, not the
live camera input.

Demo dependencies:
• Download the model definition and model weight files from:

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
• SqueezeDet.caffemodel
• SqueezeDet_deploy.prototxt
• Download the input image from:

github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane
.jpg

Running the C++ example with the image input from the default location:
$: ./example_dnn_objdetect_obj_detect SqueezeDet_deploy.prototxt SqueezeDet.caffemodel
aeroplane.jpg

Running the model on the aeroplane.jpg image produces the following text results in the console:

Class: aeroplane
Probability: 0.845181
Co-ordinates: 41 116 415 254

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
14 NXP Semiconductors

Figure 7. Object detection graphics output

4.1.7. CNN image classification example
This demo performs image classification using a pre-trained SqueezeNet network. The demo supports
only input images, not the live camera input.
Demo dependencies (taken from the “opencv_extra” package):

• space_shuttle.jpg

Other demo dependencies:
• Download the SqueezeNet.caffemodel model weight file from:

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
• Download the SqueezeNet_deploy.prototxt model definition file from:

github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data

Running the C++ example with the image input from the default location:
$: ./example_dnn_objdetect_image_classification SqueezeNet_deploy.prototxt
SqueezeNet.caffemodel space_shuttle.jpg

Running the model on the space_shuttle.jpg image produces the following text results in the console:
Best class Index: 812
Time taken: 0.649153
Probability: 15.8467

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 15

4.1.8. Text detection example
This demo is used for text detection in the image using the EAST algorithm.

Demo dependencies (taken from the opencv_extra package):
• frozen_east_text_detection.pb

Other demo dependencies:
• imageTextN.png

Running the C++ example with the image input from the default location:
$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb --
input=../data/imageTextN.png

Figure 8. Text detection graphics output

NOTE
This example accepts only the PNG image format.

Running the C++ example with the live camera input from the default location:
$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb

4.2. OpenCV standard machine learning demos
After deploying OpenCV on the target device, the non-neural-network demos are installed in the
“rootfs” in the /usr/share/OpenCV/samples/bin/ folder. To display the results, a Yocto image with Qt 5
support is required.

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
16 NXP Semiconductors

4.2.1. Introduction to SVM
This example demonstrates how to create and train an SVM model using training data. When the model
is trained, the labels for test data are predicted. The full description of the example is in
tutorial_introduction_to_svm.

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):
$: ./example_tutorial_introduction_to_svm

Result:
1. The code opens an image and shows the training examples of both classes. The points of one

class are represented with white circles and the other class uses black points.

2. The SVM is trained and used to classify all the pixels of the image. This results in the division of

image into blue and green regions. The boundary between both regions is the optimal separating
hyperplane.

3. Finally, the support vectors are shown using gray rings around the training examples.

Figure 9. SVM introduction graphics output

https://docs.opencv.org/4.0.1/d1/d73/tutorial_introduction_to_svm.html

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 17

4.2.2. SVM for non-linearly separable data
This example deals with non-linearly-separable data and shows how to set the parameters of the SVM
with linear kernel for these data. For more details, see SVM_non_linearly_separable_data.

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):
$: ./example_tutorial_non_linear_svms

Result:
1. The code opens an image and shows the training data of both classes. The points of one class are

represented by a light-green color and the other class is shown as light-blue points.
2. The SVM is trained and used to classify all pixels of the image. This divides the image into blue

and green regions. The boundary between both regions is the separating hyperplane. Because the
training data is non-linearly separable, some examples of both classes are misclassified; some
green points lay in the blue region and some blue points lay in the green one.

3. The support vectors are shown with gray rings around the training examples.

Figure 10. SVM non-linearity graphics output

https://docs.opencv.org/4.0.1/d0/dcc/tutorial_non_linear_svms.html

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
18 NXP Semiconductors

4.2.3. Introduction to PCA
The Principal Component Analysis (PCA) is a statistical method that extracts the most important
features of a dataset. In this tutorial, it is shown how to use the PCA to calculate the orientation of an
object. For more details, see the OpenCV tutorial: Introduction_to_PCA.

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):
$: ./example_tutorial_introduction_to_pca

Result:
• The code opens an image (loaded from ../data/pca_test1.jpg), finds the orientation of the

detected objects of interest, and visualizes the result by drawing the contours of the detected
objects of interest, the center point, and the x-axis and y-axis regarding the extracted orientation.

Figure 11. PCA graphics output

4.2.4. Logistic regression
In this example, logistic regression is used to predict two characters (0 or 1) from an image. Every image
matrix is reshaped from its original size of 28 x 28 to 1 x 784. A logistic regression model is created and
trained on 20 images. After the training, the model can predict the labels of test images. The source code
is at this link and can be run using the below command.

Demo dependencies (preparing the train data files):
$: wget raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):
$: ./example_cpp_logistic_regression

Result:
• The training and test data and the comparison between the original and predicted labels are

shown. The trained model reaches 95 % accuracy. The console text output is as follows:
original vs predicted:

https://docs.opencv.org/4.0.1/d1/dee/tutorial_introduction_to_pca.html
https://github.com/opencv/opencv/blob/4.0.1/samples/cpp/logistic_regression.cpp
https://raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml

Arm Compute Library getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 19

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
accuracy: 95%
saving the classifier to NewLR_Trained.xml
loading a new classifier from NewLR_Trained.xml
predicting the dataset using the loaded classifier...done!
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]

accuracy:
95%

Figure 12. Logistic regression graphics output

5. Arm Compute Library getting started guide
The Arm Compute Library [7] is a collection of low-level functions optimized for the Arm CPU and
GPU architectures targeted at image processing, computer vision, and machine learning. It is a
convenient repository of optimized functions that developers can source either individually or as a part
of complex pipelines to accelerate algorithms and applications. The Arm compute library also supports
NEON acceleration.

Two types of examples are described in the following sub-sections:
• Example based on the DNN models with random weights and inputs
• Example based on the AlexNet using the graph API

5.1. Running DNN with random weight and inputs
The Arm Compute Library contains examples for most common DNN architectures, such as
AlexNet, MobileNet, ResNet, Inception v3, Inception v4, Squeezenet, and others.
All available examples are at this example build location:

• /usr/share/arm-compute-library/build/examples

Each model architecture can be tested using the “graph_[dnn_model]” application.
Here is an example of running the required DNN model with a random weight (run the example
application without any arguments):

TensorFlow getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
20 NXP Semiconductors

$: ./graph_mobilenet_v2

The application creates the required network model with random weights and predicts the random
inputs. If all components work, the “Test passed” message is printed.

5.2. Running AlexNet using graph API
In 2012, AlexNet became famous when it won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), an annual challenge that aims to evaluate algorithms for object detection and image
classification. AlexNet is made up of eight trainable layers (five convolution layers and three
fully-connected layers). All the trainable layers are followed by the ReLu activation function, except for
the last fully-connected layer, where the Softmax function is used.
The C++ AlexNet example implementation [8] uses the graph API in this folder:

• /usr/share/arm-compute-library/build/examples

Demo dependencies:
• Download the archive file to the example location folder from:

developer.arm.com//-/media/developer/technologies/Machine learning on
Arm/Tutorials/Running AlexNet on Pi with Compute
Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01

• Create new sub-folder and unzip the file:
$: mkdir assets_alexnet
$: unzip compute_library_alexnet.zip -d assets_alexnet

• Set the environment variables for execution:
$: export LD_LIBRARY_PATH=/usr/share/arm-compute-library/build/examples/
$: export PATH_ASSETS=/usr/share/arm-compute-library/build/examples/assets_alexnet/

• Run the example with the command-line arguments from the default location:
$: ./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --
labels=$PATH_ASSETS/labels.txt

• The output of the successful classification is as follows:
---------- Top 5 predictions ----------

0.9736 - [id = 573], n03444034 go-kart
0.0118 - [id = 518], n03127747 crash helmet
0.0108 - [id = 751], n04037443 racer, race car, racing car
0.0022 - [id = 817], n04285008 sports car, sport car
0.0006 - [id = 670], n03791053 motor scooter, scooter

Test passed

6. TensorFlow getting started guide
TensorFlow [9] is an end-to-end open-source platform for machine learning. It has a comprehensive,
flexible ecosystem of tools, libraries, and community resources that enable the researchers to push the
state-of-the-art in ML and give the developers the ability to easily build and deploy ML-powered
applications.

https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01

TensorFlow getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 21

TensorFlow provides a collection of workflows [13] with intuitive, high-level APIs for both beginners
and experts to create machine learning models in numerous languages. TensorFlow provides a variety of
different toolkits that enable you to construct models at your preferred level of abstraction. Use the
lower-level APIs to build models by defining a series of mathematical operations. Alternatively, you can
use higher-level APIs to specify pre-defined architectures, such as linear regressors or neural networks.

6.1. Running benchmark application
This simple example is pre-installed by default on the prepared Yocto image with machine learning
enablement. It performs simple TensorFlow benchmarking using the pre-defined model. The graph
model file is not included in the target image due to its size. The benchmark binary file location is:

• /usr/bin/tensorflow-1.12.0/examples
Demo dependencies:

• Download the inception graph model:
$: wget storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

• Unzip the model file to the example target location:
$: unzip inception5h.zip

• Run the example with command-line arguments from the default location:
$: ./benchmark --graph=tensorflow_inception_graph.pb --max_num_runs=10

The benchmark application outputs lots of useful information, such as:
• Run order
• Top by computation time
• Top by memory use
• Summary by node type

For example, the summary node output of the TensorFlow benchmarking is as follows:
[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]

Conv2D 22 171.150 64.825% 64.825% 10077.888 22
MatMul 2 35.295 13.368% 78.194% 8.128 2
MaxPool 6 23.723 8.985% 87.179% 3562.496 6
LRN 2 18.823 7.129% 94.309% 3211.264 2
BiasAdd 24 8.475 3.210% 97.519% 0.000 24
Relu 14 3.847 1.457% 98.976% 0.000 14
Concat 3 1.303 0.494% 99.469% 2706.368 3
Const 50 0.619 0.234% 99.704% 0.000 50
AvgPool 1 0.544 0.206% 99.910% 32.512 1
Softmax 1 0.097 0.037% 99.947% 0.000 1
NoOp 1 0.082 0.031% 99.978% 0.000 1
_Retval 1 0.022 0.008% 99.986% 0.000 1
Reshape 1 0.013 0.005% 99.991% 0.000 1
_Arg 1 0.012 0.005% 99.995% 0.000 1
Identity 1 0.012 0.005% 100.000% 0.000 1

Timings (microseconds): count=10 first=281154 curr=242529 min=240048 max=291365 avg=264068
std=19523

https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

TensorFlow Lite getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
22 NXP Semiconductors

7. TensorFlow Lite getting started guide
TensorFlow Lite is a light-weight version of and a next step from TensorFlow. TensorFlow Lite is an
open-source software library focused on running machine learning models on mobile and embedded
devices (available at www.tensorflow.org/lite). It enables on-device machine learning inference with
low latency and small binary size. TensorFlow Lite also supports hardware acceleration using
Android™ OS neural network APIs.
TensorFlow Lite supports a set of core operators (both quantized and float) tuned for mobile platforms.
They incorporate pre-fused activations and biases to further enhance the performance and quantized
accuracy. Additionally, TensorFlow Lite also supports the use of custom operations in models.
TensorFlow Lite defines a new model file format, based on FlatBuffers [10]. FlatBuffers is an
open-source, efficient, cross-platform serialization library. It is similar to protocol buffers, but the
primary difference is that FlatBuffers does not need a parsing/unpacking step for a secondary
representation before you can access the data, often coupled with per-object memory allocation. Also,
the code footprint of FlatBuffers is an order of magnitude smaller than protocol buffers.
TensorFlow Lite has a new mobile-optimized interpreter, which has the key goal to keep apps lean and
fast. The interpreter uses static graph ordering and a custom (less-dynamic) memory allocator to ensure
minimal load, initialization, and execution latency.

7.1. Running benchmark application
This simple example is pre-installed by default on the prepared Yocto image with machine learning
enablement. Its name is “benchmark_model”. It performs simple TensorFlow Lite benchmarking using
the pre-defined models. The model file is not included in the target image, because of its size. The
example binary file location is:

• /usr/bin/tensorflow-lite-1.12.0/examples
Demo dependencies:

• Download the model file [12] using this command:
$: wget
download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

• Unpack the model file:
$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz

• Run the example with the command-line arguments from the default location:
$: ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite

The output of a successful TensorFlow Lite benchmarking is as follows:
STARTING!
Num runs: [50]
Inter-run delay (seconds): [-1]
Num threads: [1]
Benchmark name: []
Output prefix: []
Warmup runs: [1]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
Input layers: []
Input shapes: []
Use nnapi : [0]

http://www.tensorflow.org/lite
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

TensorFlow Lite getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 23

Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter
Initialized session in 44.687ms
Running benchmark for 1 iterations
count=1 curr=180071
Running benchmark for 50 iterations
count=50 first=128160 curr=128079 min=127643 max=128319 avg=127944 std=138
Average inference timings in us: Warmup: 180071, Init: 44687, no stats: 127944

7.2. Running image classification example
This simple example classifies images of clothing, such as hats, shirts, and others. The “grace_hopper”
input image (see Figure 13) is used as a typical sample for the image classification. By default, a proper
model file for this example is not included in the target image due to its size. It should be downloaded
by the user to the target image.

Figure 13. Image classification input picture

Two different approaches for running this example are used. The simplest way is to use the pre-installed
binary application with minimum subsequent steps (see Section 7.2.1, “Using pre-installed example”).
The second approach is intended for users who want to create (build) a custom application using sources
(see Section 7.2.2, “Building example from sources”).

7.2.1. Using pre-installed example
The example is pre-installed by default in the prepared Yocto image with the machine-learning
enablement. Its name is “label_image”. The example binary file location is:

• /usr/bin/tensorflow-lite-1.12.0/examples
Demo dependencies:

• Download the TensorFlow model file to the example folder. It can be the model file used by the
previous benchmark example (see Section 7.1, “Running benchmark application”):
$ wget
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan
t.tgz

• Unpack the model file to the example binary location:

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

TensorFlow Lite getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
24 NXP Semiconductors

$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz
• Run the example with the command-line arguments from the default location:

$: ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l
labels.txt

The output of a successful classification for the “grace_hopper” input image (see Figure 13) is as
follows:
Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter
invoked
average time: 330.473 ms
0.780392: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit

7.2.2. Building example from sources
The image classification example can be downloaded from the TensorFlow repository[13] and built from
these sources on the target image.

Demo dependencies:
• Download and make the TensorFlow sources:

$ git clone https://github.com/tensorflow/tensorflow.git
$ cd tensorflow
$ git checkout r1.12
$./tensorflow/contrib/lite/tools/make/download_dependencies.sh
$ make -f tensorflow/contrib/lite/tools/make/Makefile
$ cd tensorflow/contrib/lite/examples/label_image

• Build the “label_image” example using the GNU C++ compiler:
$ g++ --std=c++11 -O3 bitmap_helpers.cc label_image.cc -I ../../../.. -I
../../tools/make/downloads/flatbuffers/include -L
../../tools/make/gen/linux_aarch64/lib -ltensorflow-lite -lpthread -ldl -o label_image

• Download the TensorFlow model file to the current directory. It is the model file used by the
pre-installed example (see Section 7.2.1, “Using pre-installed example”):
$ wget
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan
t.tgz

• Unpack the model file to the current directory:
$ tar -xzvf mobilenet_v1_1.0_224_quant.tgz

• Run the example with the command-line arguments from the default location:
$./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i testdata/grace_hopper.bmp
-l ../../java/ovic/src/testdata/labels.txt

The output of a successful classification for the “grace_hopper” input image (see Figure 13) is the same
as for the pre-installed application (see Section 7.2.1, “Using pre-installed example”):
Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 25

invoked
average time: 229.14 ms
0.780392: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit

8. Arm NN getting started guide
Arm NN is an open-source inference engine framework developed by Arm and supporting a wide range
of neural-network model formats, such as Caffe, TensorFlow, TensorFlow Lite, and ONNX. For
i.MX 8, Arm NN runs on the CPU with NEON and has multi-core support. Arm NN does not currently
support the i.MX 8 GPUs due to the Arm NN OpenCL requirements, which are not met by i.MX 8
GPUs. For more details about Arm NN, check the Arm NN SDK webpage.
To build Arm NN 19.02 using the Yocto Project tools, follow the steps describes in Section 3, “Yocto
installation guide”. Make sure to perform the additional modifications needed for Arm NN, as described
in Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” instruction).

8.1. Running Arm NN tests
The Arm NN SDK provides a set of tests, which can also be considered as demos, showing what the
Arm NN does and how to use it. They load neural network models of various formats (Caffe,
TensorFlow, TensorFlowLite, ONNX), run the inference on a specified input data, and output the
inference result. The Arm NN tests are built by default when building the rootfs image and installed in
the /usr/bin folder.
Note that the input data, model configurations, and model weights are not distributed with Arm NN.
Download them separately and make sure they are available on the device before running the tests.
However, the Arm NN tests do not have documentation. Moreover, the input file names are hardcoded,
so you must investigate the code to find out what input file names are expected.
To get started with Arm NN, the following sections explain how to prepare the input data and how to
run the Arm NN tests. All of them use well-known neural network models. With only few exceptions,
such pre-trained networks are available to download from the internet. The input image files and their
name, format, and content are deduced by analyzing the code. However, this was not possible for all the
tests. It is recommended to prepare the data on the host and then deploy them on the i.MX 8 board,
where the current Arm NN tests are run.
The following sections assume that the neural network model files are stored in a folder called models,
and the input image files are stored in a folder called data. Both of them are created inside a folder
called ArmnnTests. Create this folder structure on the larger partition using the following commands:
$: mkdir ArmnnTests
$: cd ArmnnTests
$: mkdir data
$: mkdir models

https://developer.arm.com/products/processors/machine-learning/arm-nn

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
26 NXP Semiconductors

8.1.1. Caffe tests
The Arm NN 19.02 SDK provides the following set of tests for the Caffe models:
/usr/bin/CaffeAlexNet-Armnn
/usr/bin/CaffeCifar10AcrossChannels-Armnn
/usr/bin/CaffeInception_BN-Armnn
/usr/bin/CaffeMnist-Armnn
/usr/bin/CaffeResNet-Armnn
/usr/bin/CaffeVGG-Armnn
/usr/bin/CaffeYolo-Armnn

Two important limitations might require a pre-processing of the Caffe model file before running the
Arm NN Caffe test. Firstly, the Arm NN tests require the batch size to be set to 1. Secondly, the Arm
NN does not support all Caffe syntaxes, so some previous neural-network model files require updates to
the latest Caffe syntax. How to perform these pre-processing steps is described at the Arm NN GitHub
page. Note that you should install Caffe on the host. See also [15].
For example, supposing you have a Caffe model that either has the batch size different than 1 or uses
another Caffe defined by files model_name.prototxt and model_name.caffemodel, create a copy of the
*.prototxt file (new_model_name.prototxt), modify this file to use the new Caffe syntax, change the
batch size to 1, and finally run this Python script:
import caffe

net = caffe.Net('model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net = caffe.Net('new_model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net.save('new_model_name.caffemodel')

The following sections explain how to run each of the tests, except for
“CaffeCifar10AcrossChannels-Armnn” and “CaffeYolo-Armnn”. For the first one, a publicly available
pre-trained model was not found. For the second one, there is no way to deduce the exact content of the
input image originally used by this test.

8.1.1.1. CaffeAlexNet-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files from:
raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.
3. Rename bvlc_alexnet.caffemodel to bvlc_alexnet_1.caffemodel.
4. Copy the bvlc_alexnet_1.caffemodel file to the models folder on the device.
5. Find a *.jpg file that contains a shark. Rename it to shark.jpg and copy it to the data folder on

the device.
6. Run the test:

$: cd ArmnnTests
$: CaffeAlexNet-Armnn --data-dir=data --model-dir=models

https://github.com/ARM-software/armnn/issues/7
https://github.com/ARM-software/armnn/issues/7
http://caffe.berkeleyvision.org/install_apt.html
https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 27

8.1.1.2. CaffeInception_BN-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files from:
raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.
3. Rename the Inception21k.caffemodel file to Inception-BN-batchsize1.caffemodel.
4. Copy the Inception-BN-batchsize1.caffemodel file to the models folder on the device.
5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: CaffeInception_BN-Armnn --data-dir=data --model-dir=models

8.1.1.3. CaffeMnist-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files from:
raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
github.com/ARM-software/ML-examples/blob/master/armnn-
mnist/model/lenet_iter_9000.caffemodel

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.

3. Download these two archives and unpack them:
yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy the lenet_iter_9000.caffemodel file to the models folder on the device.
5. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: CaffeMnist-Armnn --data-dir=data --model-dir=models

8.1.1.4. CaffeResNet-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model file for ResNet50 from:
onedrive.live.com/?authkey=%21AAFW2-
FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB

https://raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
http://www.dlsi.ua.es/%7Epertusa/deep/Inception21k.caffemodel
https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
28 NXP Semiconductors

8476FF777%2117887&o=OneUp

2. Rename the RestNet-50-model.caffemodel file to ResNet_50_ilsvrc15_model.caffemodel.
3. Copy the ResNet_50_ilsvrc15_model.caffemodel file to the models folder on the device.
4. Download this image file and copy it to the data folder on the device:

raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_s
amples/ILSVRC2012_val_00000018.JPEG

5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: CaffeResNet-Armnn --data-dir=data --model-dir=models

8.1.1.5. CaffeVGG-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files for VGG19 from:
www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d
5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.
3. Rename the VGG_ILSVRC_19_layers.caffemodel file to VGG_CNN_S.caffemodel.
4. Copy the VGG_CNN_S.caffemodel file to the models folder on the device.
5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: CaffeVGG-Armnn --data-dir=data --model-dir=models

8.1.2. TensorFlow tests
The Arm NN 19.02 SDK provides the following set of tests for the TensorFlow models:
/usr/bin/TfCifar10-Armnn
/usr/bin/TfInceptionV3-Armnn
/usr/bin/TfMnist-Armnn
/usr/bin/TfMobileNet-Armnn
/usr/bin/TfResNext-Armnn

Before running the tests, the TensorFlow models must be prepared for inference. This process is
TensorFlow-specific and uses TensorFlow tools. Therefore, TensorFlow must be installed on your host
machine.

https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 29

The following sections explain how to run each of the tests, except for “TfResNext-Armnn” and
“TfCifar10-Armnn”, for which the publicly available pre-trained models were not found.

8.1.2.1. TfInceptionV3-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, generate the graph definition for the Inception model:
model preparation
$: mkdir checkpoints
clone the models repository
$: git clone https://github.com/tensorflow/models.git
$: cd models/research/slim/
export the inference graph
$: python export_inference_graph.py --model_name=inception_v3 --
output_file=../../../checkpoints/inception_v3_inf_graph.pb

2. From your host machine, download the pre-trained model and use the TensorFlow tools to
prepare it for inference. Note that <path_to_tensorflow_repo> refers to the path where you
cloned or downloaded the TensorFlow repo.
$: cd ../../../checkpoints
download and extract the checkpoint
$: wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz -qO- | tar
-xvz
freeze the model
$: python <path_to_tensorflow_repo>/tensorflow/python/tools/freeze_graph.py --
input_graph=inception_v3_inf_graph.pb --input_checkpoint=inception_v3.ckpt --
input_binary=true --output_graph=inception_v3_2016_08_28_frozen.pb --
output_node_names=InceptionV3/Predictions/Reshape_1

3. Copy the inception_v3_2016_08_28_frozen.pb file to the models folder on the device.
4. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
5. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.
6. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

7. Run the test:
$: cd ArmnnTests
$: TfInceptionV3-Armnn --data-dir=data --model-dir=models

8.1.2.2. TfMnist-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model file from:
raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-
mnist/model/simple_mnist_tf.prototxt

2. Copy the simple_mnist_tf.prototxt file to the models folder on the device.

https://github.com/tensorflow/models.git
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
30 NXP Semiconductors

3. Download these two archives and unpack them:
yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the
device.

5. Run the test:
$: cd ArmnnTests
$: TfMnist-Armnn --data-dir=data --model-dir=models

8.1.2.3. TfMobileNet-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:
download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz

2. Copy the mobilenet_v1_1.0_224_frozen.pb file to the models folder on the device.
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: TfMobileNet-Armnn --data-dir=data --model-dir=models

8.1.3. TensorFlow Lite tests
The Arm NN 19.02 SDK provides the following test for the TensorFlow Lite models:
/usr/bin/TfLiteInceptionV3Quantized-Armnn
/usr/bin/TfLiteInceptionV4Quantized-Armnn
/usr/bin/TfLiteMnasNet-Armnn
/usr/bin/TfLiteMobileNetSsd-Armnn
/usr/bin/TfLiteMobilenetQuantized-Armnn
/usr/bin/TfLiteMobilenetV2Quantized-Armnn
/usr/bin/TfLiteResNetV2-Armnn
/usr/bin/TfLiteVGG16Quantized-Armnn

The following sections explain how to run some of the tests. Some of the tests are excluded, because it
was not possible to find a publicly available model or they need more resources than available on the
i.MX 8 embedded application processors.

http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 31

8.1.3.1. TfLiteInceptionV3Quantized-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:
download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz

2. Copy the inception_v3_quant.tflite file to the models folder on the device.
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:
$: cd ArmnnTests
$: TfLiteInceptionV3Quantized-Armnn --data-dir=data --model-dir=models

8.1.3.2. TfLiteMnasNet-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:
download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz

2. Copy the mnasnet_1.3_224/mnasnet_1.3_224.tflite file to the models folder on the device.
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: TfLiteMnasNet-Armnn --data-dir=data --model-dir=models

8.1.3.3. TfLiteMobilenetQuantized-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download the model file:
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan
t.tgz

http://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
http://download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
32 NXP Semiconductors

2. Copy the mobilenet_v1_1.0_224_quant.tflite file to the models folder on the device.
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:
$: cd ArmnnTests
$: TfLiteMobilenetQuantized-Armnn --data-dir=data --model-dir=models

8.1.3.4. TfLiteMobilenetV2Quantized-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download the model file:
download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz

2. Copy the mobilenet_v2_1.0_224_quant.tflite file to the models folder on the device.
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: TfLiteMobilenetV2Quantized-Armnn --data-dir=data --model-dir=models

8.1.4. ONNX tests
The Arm NN provides the following set of tests for ONNX models:
/usr/bin/OnnxMnist-Armnn
/usr/bin/OnnxMobileNet-Armnn

The following sections explain how to run each of the tests.

8.1.4.1. OnnxMnist-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:
onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz

2. Rename the model.onnx file to mnist_onnx.onnx and copy it to the models folder on the device.

http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 33

3. Download the following two archives and unpack them (after unpacking, rename the files to use
dots instead of hyphens: t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte, respectively):
yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the
device.

5. Run the test:
$: cd ArmnnTests
$: OnnxMnist-Armnn --data-dir=data --model-dir=models

8.1.4.2. OnnxMobileNet-Armnn
To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:
s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz

2. Copy the unpacked mobilenetv2-1.0.onnx file to the models folder on the device.
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.
6. Run the test:

$: cd ArmnnTests
$: OnnxMobileNet-Armnn --data-dir=data --model-dir=models -i 3

8.2. Using Arm NN in a custom C/C++ application
You can create your own C/C++ applications for the i.MX 8 family of devices using Arm NN
capabilities. This requires writing the code using the Arm NN API, setting up the build dependencies,
building the code, and deploying your application. Below is a detailed description for each of these
steps. Note that the scenario is cross-compiling a C/C++ application on a Linux OS machine for an
i.MX 8 family device board.

1. Write the code.
A good starting point to understand how to use Arm NN API in your own application is the
armnn-mnist example provided by Arm. It includes two applications; one shows how to load and
run inference for a MNIST TensorFlow model, and the second one shows how to load and run
inference for a MNSIT Caffe model. See the Arm tutorial Deploying a TensorFlow MNIST
model on Arm NN.

2. Set up the build dependencies.

http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/

ONNX Runtime getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
34 NXP Semiconductors

From a software developer’s perspective, Arm NN is a library. Therefore, create and build an
application which uses the Arm NN features, set of Arm NN headers, and set of Arm NN
libraries for the target device. The Arm NN headers and libraries are all available within the
SDK. Build the SDK when building the Yocto image and install it on your local machine, as
described in Section 3.2, “Building NXP eIQ support using Yocto Project tools”. When this is
done, find:

— Arm NN headers in:
<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/include

— Arm NN libraries in:
<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/lib

3. Build the code.
To build the “armnn-mnist” example provided by Arm, use the Makefile included in the project
with a few minor changes:

— Remove the definition of “ARMNN_INC” and all its uses. The Arm NN headers are
already available in the default include directories.

— Remove the definition of “ARMNN_LIB” and all its uses. The Arm NN libraries are
already available in the default linker search path.

— Replace “g++” by “${CXX}”.
Build the example:

— Source the SDK environment:
$: source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux

— Run make:
$: make

4. Deploy the applications.
At this point, you have two binaries ready to be deployed on the i.MX 8 family device board. All you
need to take care of are the runtime dependencies. Regarding the input data, these dependencies are
described at the “armnn-mnist” example page. The suggested image described in this document requires
Arm NN library dependencies already available on the board and you can run your Arm NN application
on the i.MX 8 family device board.

9. ONNX Runtime getting started guide
ONNX Runtime is an open-source inference engine framework developed by Microsoft, supporting the
ONNX model format. ONNX Runtime runs on the CPU with NEON and has multi-core support. ONNX
Runtime does not currently support the i.MX 8 GPUs due to the lack of OpenCL support. For more
details about ONNX Runtime, see the official ONNX Runtime project webpage.
To build Yocto with ONNX Runtime, follow the steps described in Section 3, “Yocto installation
guide”. Make sure to perform the additional modifications needed for ONNX Runtime, as described in
Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” part).

https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist

Security for machine learning

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 35

9.1. Running ONNX Runtime test
ONNX Runtime provides a tool that runs a collection of standard tests provided in the ONNX model
Zoo. The tool named “onnx_test_runner” is installed in the /usr/bin folder.
The ONNX tests are available at github.com/onnx/models and consist of various models in the ONNX
format with associated input and expected output data.

Here is an example with the steps required to run the “squeezenet” test:
1. Download and unpack the latest release of the “squeezenet” test archive:

github.com/onnx/models/tree/master/squeezenet
s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz

2. Copy the squeezenet folder containing the model and test data on the device; for example, to the

/home/root folder.
3. Run the “onnx_test_runner” tool, providing the squeezenet folder path as the command-line

parameter:
$: ls /home/root/squeezenet/
model.onnx test_data_set_11 test_data_set_5 test_data_set_9
test_data_set_0 test_data_set_2 test_data_set_6
test_data_set_1 test_data_set_3 test_data_set_7
test_data_set_10 test_data_set_4 test_data_set_8
$: onnx_test_runner /home/root/squeezenet/
result:
 Models: 1
 Total test cases: 12
 Succeeded: 12
 Not implemented: 0
 Failed: 0
 Stats by Operator type:
 Not implemented(0):
 Failed:
Failed Test Cases:
$:

10. Security for machine learning
With the wide-scale deployment of machine learning models, both the safety and security issues become
a significant threat. This section describes some of these issues and the countermeasures made available
in eIQ to mitigate their impact.
Users concerned about security should also consider the i.MX security features available at the SoC
level. Enabling such features can benefit the general system security. For further details, see the
processor security reference manual document available in the SoC documentation page at
www.nxp.com.

https://github.com/onnx/models
https://github.com/onnx/models/tree/master/squeezenet
https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz
http://www.nxp.com/

Security for machine learning

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
36 NXP Semiconductors

10.1. Adversarial examples
One example of a security and safety issue in the practical large-scale deployment of machine learning is
that of adversarial examples (Biggio, et al.), (Szegedy, et al. 2013). These are “inputs formed by
applying small but intentionally worst-case perturbations to examples from the dataset, such that the
perturbed input results in the model outputting an incorrect answer with high confidence” (Goodfellow,
Shlens and Szegedy 2014). Hence, one can create specifically crafted inputs (video-images or sounds
examples) which try to mislead the machine-learning model such that it misclassifies a road-sign (safety
concern) or circumvent authentication when using your voice or face as the authentication (security
concern).
For example, Figure 14 and Figure 15 are classified differently by an inception v3 network trained for
the ImageNet dataset.

Figure 14. Top 3 Classes: 90.5% Porcupine/Hedgehog, 2.1% Marmot, 1.0% Beaver

Figure 15. Top 3 Classes: 99.0% Banana, 0.1% Pineapple, 0.05% Porcupine/Hedgehog

Source (public domain): https://commons.wikimedia.org/wiki/File:Erinaceus_roumanicus_2013_G5.jpg
Figure 15 is intentionally modified to be misclassified as a banana. Even though the changes are not
visible to the naked eye, the neural net even has a higher confidence that the second image is a banana
than that the original image was a hedgehog.
In our package, we have hardening functionality which makes these types of attacks significantly more
difficult. This functionality has the advantage that it can harden a model against such carefully selected
perturbations without modifying the trained machine learning model. The main idea is to transform the
input in specific ways which ensure that the outcome on real input remains unchanged, while the

https://commons.wikimedia.org/wiki/File:Erinaceus_roumanicus_2013_G5.jpg

Security for machine learning

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 37

adversarial perturbations of an attack no longer work. By computing multiple of such input
transformations and combining the model outputs, it becomes harder to mislead the target system.
Such transformations are application-specific. The code for models which have images as inputs is
provided. Specifically, the transformations provided are blurring, rotation, adding noise, and JPEG
compression. A detailed description of the API is available in the Doxygen documentation in the
subfolder /api-docs. A complete example can be found in examples/ax_hardening.cpp.
Classifying Figure 15 (the adversarial example) with a model, which performs both input rotation and
adding noise as the transformations, and voting on the correct result (including the original Figure 15
output) correctly identifies this image as a hedgehog. The rotated version is correctly identified with a
93 % confidence, which is even higher than the unmodified image.
It is necessary to carefully select the right parameters for these transformations. The radius of the
blurring must depend on the size of the images and the objects in the image, the angle of rotation must
depend on the rotation tolerance of the model, and so on. Even with this additional hardening, it is still
possible to create adversarial examples. However, it does require more time to construct them and the
search space must be increased when compared to the model that does not employ this technique.
The ml-security package includes an example of hardening against adversarial examples. Two
transformations are applied to the inputs: rotation by 3 degrees and blurring. The original image and the
transformed images are classified by the network and followed by a voting of the most occurring class.
In this example, we use the same Hedgehog images as above, class 335 is a porcupine/hedgehog and
class 955 is a banana.
This example runs on the i.MX8QXP board and both images could be classified as a
porcupine/hedgehog after applying the techniques mentioned in this section:
./ax_sample
Using hedgehog image
Top 3 for original image
1: Class 335, Confidence: 0.905243
2: Class 337, Confidence: 0.0213407
3: Class 338, Confidence: 0.0109267
Top 3 for rotated image
1: Class 335, Confidence: 0.947023
2: Class 337, Confidence: 0.0062071
3: Class 338, Confidence: 0.00346831
Top 3 for blurred (bilateral) image
1: Class 335, Confidence: 0.812905
2: Class 338, Confidence: 0.0487511
3: Class 337, Confidence: 0.043767
Classification by votes: 335
Using adversarial example
Top 3 for original image
1: Class 955, Confidence: 0.990323
2: Class 954, Confidence: 0.00107823
3: Class 335, Confidence: 0.000476602
Top 3 for rotated image
1: Class 335, Confidence: 0.935247
2: Class 337, Confidence: 0.0106328
3: Class 338, Confidence: 0.0096081
Top 3 for blurred (bilateral) image
1: Class 335, Confidence: 0.719883
2: Class 337, Confidence: 0.0393073
3: Class 338, Confidence: 0.0233211

Security for machine learning

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
38 NXP Semiconductors

Classification by votes: 335

10.2. Model cloning
Machine learning models are susceptible to model extraction using retraining attacks (Tramèr et al.
2016, Correia-Silva et al. 2018), where an adversary exploits the information gained by querying the
model for selected inputs and uses that as training data for a counterfeit model. Model extraction attacks
enable an adversary to copy the functional behavior of the model into a clone, which can then be used to
undermine pay-per-query mechanisms or the competitive edge of the creator of the original model. In
addition, the attack can also be used to create a copy which can be inspected to gather additional
information for other attacks, like the adversarial examples attack described in Section 10.1,
“Adversarial examples”.
Our package hardens machine learning models against model extraction by perturbing the fine-grained
confidence information included in model output. Perturbing the confidence values produced by the
model reduces the information that is leaked about the model’s functional behavior. Therefore, an
adversary must perform an increased number of queries to the model to gain sufficient information
about the model to reproduce it. Since a successful model extraction attack requires more queries, the
attack becomes more invasive and hence increases the spent effort of the adversary. Additionally, it
becomes easier to detect and to subsequently take effective measures upon.
There are several strategies to perturb the confidence information produced by the machine-learning
model. All strategies keep the top-1 accuracy unchanged by keeping the number 1 rank, that means the
output class with the highest confidence, intact. The strategies add a small amount of noise to the
confidence levels of the predictions, such that model extraction attacks become as effective as when they
are performed on only the top label, while some useful information about the remaining ranks is
preserved for the legitimate user.
There are two functions that perturb the predicted confidence levels without affecting the rank of the
class which has the highest confidence: addNoise and addPseudoNoiseSin. The former adds random
noise to each of the confidence values, the latter adds noise according to the sine function

), plotted in Figure 2,
which results in a considerable increase in the number of queries required for successful model
extraction. Although this comes at the cost of a reduced precision of the model’s prediction confidence,
this reduction is limited. If the addition of noise caused the first ranked class to change, this class is
swapped back into the top position. Therefore neither addNoise nor addPseudoNoiseSin affects
the top-1 accuracy. The functions support normalization, which scales the new confidence levels such
that they sum to 1.

Security for machine learning

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 39

Figure 16. Remapping of the original confidence levels to confidence levels with addPseudoNoiseSin

An additional function for perturbing the confidence levels is roundConfidenceLevels that
rounds the confidence levels to the nearest given step. Contrary to the other two functions, this function
may affect the top-1 accuracy as the highest confidence level may be shared by multiple classes.
All three of these functions can be used as follows:
// calculate confidence levels with the neural network
cv::Mat confidences = googleNet.forward();
bool applyNormalization = true;

// add noise to the confidence levels with a range of [-0.1, 0.1]
addNoise(confidences, 0.2f, applyNormalization);

// add pseudo noise to the confidence levels
addPseudoNoiseSin(confidences, applyNormalization);

// round the confidences to quarters precision
roundConfidenceLevels(confidences, 0.25f);

The effectiveness of each of the offered perturbation functions is shown in Figure 3. This table shows
the loss in top-1 accuracy of a model cloned using the attack by (Correia-Silva, et al. 2018) compared to
the top-1 accuracy of the oracle model. The loss is given for attacks with 125,000, 250,000, and
1,000,000 queries to the oracle that the clone is trained on. Labels only is added as a reference and
shows the loss in top-1 accuracy for the clone if the confidence levels are disregarded and only the label
of the first ranked class is used for the model extraction attack. This shows that the described
countermeasure offers some protection against the attack without removing all information given to a
legitimate user about the remaining confidence levels, as is the case for a model that would output only
the top-1 label.

Security for machine learning

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
40 NXP Semiconductors

Table 1. Loss of clone top-1 accuracy compared to oracle model top-1 accuracy

H
ar

de
ni

ng

 m
et

ho
d

N
o

ha
rd

en
in

g

To
p-

1
la

be
l o

nl
y

r
o
u
n
d
C
o
n
f
i
d
e
n
c
e
L
e
v
e
l
s

(
c
o
n
f
,

0
,
2
5
f
)

a
d
d
P
s
e
u
d
o
N
o
i
s
e
S
i
n

(
c
o
n
f
,

t
r
u
e
)

a
d
d
N
o
i
s
e

(
c
o
n
f
,

0
.
2
f
,

t
r
u
e
)

Number
of queries

125,000 8.4% 16.6% 10.6% 16.3% 19.0%

250,000 5.4% 10.7% 7.2% 9.8% 12.4%

1,000,000 2.1% 8.2% 2.8% 3.8% 6.6%

The choice of which hardening method to use or to use no method depends on the use-case in which a
model is deployed. We identify a tradeoff between the protection against model extraction and the
precision of the model. If precision of the confidence levels is not a requirement, then a model is best

protected with the addNoise method with a large parameter for the range (e.g.). If a use-case
requires higher precision of the confidence levels, then the methods addPseudoNoiseSin,

addNoise with a small range (e.g.) or roundConfidenceLevels with a small range (e.g.

) can suffice. The parameter range of the noise for addPseudoNoiseSin is limited to the

interval .

10.3. Model Inversion
When machine learning is used for privacy-sensitive applications or when the data used for training
contains privacy-sensitive information, this sensitive information can be learned by the model. This
means that private information can be contained inside the trained model as part of the learned internal
parameters. Therefore, model inversion attacks (Fredrikson, et al. 2015) may become an issue. In such
an attack an adversary uses information obtained by querying the model to extract privacy-sensitive
information from the model.
One example application for model inversion attacks is an adversary attempting to extract the faces of
individuals from a model used for face recognition. Another example application is an adversary trying
to infer sensitive medical information about a person based on some easily available attributes and a
machine learning model trained to predict medical conditions or drug dosages (Fredrikson, et al. 2014).
To counter the threat of exposing privacy-sensitive information, the literature recommends limiting the
accuracy of confidence values returned by the model. Generally, that means that similar
countermeasures can be used to harden a model against model inversion attacks as the ones
recommended to harden a model against the model extraction attack (as shown in Section 7.2 Model
Cloning), because both types of attacks are based on information leaked through fine-grained confidence
output.

Security for machine learning

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 41

Our package allows to harden pre-trained machine learning models against these attacks by rounding the
confidence levels included in the output of the model to a given step size. Experimental results (from
Fredrikson, et al. 2015) show that these types of attacks can be mitigated in this way, while it keeps the
confidence levels accurate enough to be useful for the intended application of the model. We note
however that model inversion has not been the focus of as much research and as many academic
publications as the other threats detailed in this chapter. It is therefore possible that stronger attacks
(using more queries or combined model extraction-inversion attacks) will allow an attacker to extract
confidential information even from a hardened model.

The following code example shows how the rounding function can be applied to the output of a model:
// calculate confidence levels with the neural network
cv::Mat confidences = googleNet.forward();

// round the confidence levels
roundConfidenceLevels(confidences, 0.05f);

As previously indicated, the countermeasure of adding small perturbations to the confidence output (as
recommended to harden models against model extraction in Section 7.2 Model Cloning) can also be
used to harden models against model inversion.
The following example code shows how these output transformations can be applied to the output of a
model:
// calculate confidence levels with the neural network
cv::Mat confidences = googleNet.forward();
bool applyNormalization = true;

// add noise to the confidence levels with a range of [-0.1, 0.1]
addNoise(confidences, 0.2f, applyNormalization);

// add pseudo noise to the confidence levels
addPseudoNoiseSin(confidences, applyNormalization);

For further details on these countermeasures see Section 7.2 Model Cloning.

10.4. Library Usage
The library can be included in an image by adding IMAGE_INSTALL_append = " ml-
security-staticdev" to conf/local.conf, assuming that the appropriate layers and recipes are
available.
In that case it should be available for static linking from both, the toolchain and the final image. It is
unlikely that the static library in the image will be used but it might be useful for rapid development and
it is not very large.
For description on how to create the toolchain see Section 3.2.7 Build the Yocto SDK Toolchain.
On an image that includes the package the library should be found in /usr/lib/libml-security.a and the
include files in /usr/include/ml-security/. The pre-built examples and their source should be located in
/usr/share/ml-security/examples.
Using the Yocto SDK Toolchain for a supporting image should allow re-building the examples as
follows:
mkdir /home/user/examples-build

References

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
42 NXP Semiconductors

cd /home/user/examples-build
cmake $SDK_SYSROOT/usr/share/ml-security/examples
make

This should result in a binary which works on a device running the accompanying image. Using the
examples requires the test_images folder from the examples directory and test_model/inception_v3.pb.
This model can be downloaded and converted using the get_model.sh script in the examples folder but it
requires Bash, Python and Tensorflow and is intended for use on a Ubuntu host.

11. References
1. NXP eIQ Software

2. NXP eIQ Software Support Community

3. i.MX8 family of Application processor fact sheet:

4. i.MX Software and development tools

5. L4.14.98_2.0.0_LINUX_DOCS documentation

6. Deep learning in OpenCV

7. OpenCV Change Logs

8. ARM Compute library

9. Running Alexnet on Rapsberry PI with Compute Library

10. TensorFlow

11. FlatBuffers

12. What is the difference between TensorFlow and TensorFlow lite

13. TensorFlow Hosted Models

14. TensorFlow sources

15. https://searchenterpriseai.techtarget.com/definition/machine-learning-ML

16. Arm NN documentation for caffe support
17. Biggio, Battista, Igino Corona, Davide Maiorca, Blaine Nelson, Pavel Laskov Nedim Srndic,

Giorgio Giacinto, and Fabio Roli. 2013. "Evasion attacks against machine learning at test time."
Machine Learning and Knowledge Discovery in Databases – European Conference, ECML
PKDD 2013. Springer. 387-402.

18. Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014. "Explaining and harnessing
adversarial examples." International Conference on Learning Representations.

19. Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. 2013. "Intriguing properties of neural networks." International
Conference on Learning Representations.

20. Jacson Rodrigues Correia-Silva, Rodrigo F. Berriel, Claudine Badue, Alberto F. de Souza, and
Thiago Oliveira-Santos. 2018. “Copycat CNN: Stealing Knowledge by Persuading Confession

http://www.nxp.com/eiq
https://community.nxp.com/community/eiq
https://www.nxp.com/docs/en/fact-sheet/IMX8FAMFS.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors/i.mx-software-and-development-tool:IMX_SW
https://www.nxp.com/webapp/Download?colCode=imx-yocto-L4.14.98_2.0.0_ga
https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
https://github.com/opencv/opencv/wiki/ChangeLog
https://www.arm.com/why-arm/technologies/compute-library
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/running-alexnet-on-raspberry-pi-with-compute-library?CommentId=f770a894-7656-4c8c-be45-0de16a01c9ff
https://opensource.google.com/projects/tensorflow
https://google.github.io/flatbuffers/
https://www.quora.com/What-is-the-difference-between-TensorFlow-and-TensorFlow-lite
https://www.tensorflow.org/lite/guide/hosted_models
https://github.com/tensorflow/tensorflow
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://github.com/ARM-software/armnn/blob/master/src/armnnCaffeParser/CaffeSupport.md

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020
NXP Semiconductors 43

with Random Non-Labeled Data” 2018 International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, 2018, pp. 1-8. DOI:https://doi.org/10.1109/IJCNN.2018.8489592

21. Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2016.
“Stealing Machine Learning Models via Prediction APIs.” 25th USENIX Secur. Symp. USENIX
Secur. 16, Austin, TX, USA, August 10-12, 2016. Ml (2016).
DOI:https://doi.org/10.1103/PhysRevC.94.034301

22. Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. “Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures”. CCS '15 Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Pages 1322-1333,
Denver, Colorado, USA, October 12-16, 2015. DOI: https://doi.org/10.1145/2810103.2813677

23. Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page and Thomas Ristenpart.
2014. “Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin
Dosing”. Proceedings of the 23rd USENIX Security Symposium, Pages 17-32 , San Diego, CA,
USA, August 20–22, 2014.

12. Revision history
Table summarizes the changes done to this document since the initial release.

Table 2. Revision history
Revision number Date Substantive changes

0 05/2019 Initial release.

1 06/2019 Updated Section 7.2, “Running image
classification example”.

2 06/2019 Minor formatting changes.

3 09/2019 Added Section 10, “Security for
machine learning”.

4 05/2020 Added two notes

https://doi.org/10.1109/IJCNN.2018.8489592
https://doi.org/10.1103/PhysRevC.94.034301
https://doi.org/10.1145/2810103.2813677

Document Number: UM11226
Rev. 4

05/2020

How to Reach Us:

Home Page:
www.nxp.com
Web Support:
www.nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further
notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of
the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in NXP data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions
of sale, which can be found at the following address:
www.nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of
their applications and products to reduce the effect of these vulnerabilities on
customer’s applications and products, and NXP accepts no liability for any vulnerability
that is discovered. Customers should implement appropriate design and operating
safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the
Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware,
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the
SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,
CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,
Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All rights
reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© 2020 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	1. Introduction
	2. NXP eIQ software introduction
	3. Yocto installation guide
	3.1. Prerequisites
	3.1.1. Hardware requirements
	3.1.2. Software requirements

	3.2. Building NXP eIQ software support using Yocto Project tools
	3.2.1. Repo utility installing
	3.2.2. Yocto project metadata downloading
	3.2.3. Yocto build setup
	3.2.4. Yocto configuration file modifying
	3.2.5. OpenCV user build modification
	3.2.6. Image building
	3.2.7. SD card image flashing
	3.2.8. SD card disk space extending
	3.2.9. Generating the Toolchain

	4. OpenCV getting started guide
	4.1. OpenCV DNN demos
	4.1.1. Image classification example
	4.1.2. YOLO object detection example
	4.1.3. Image segmentation example
	4.1.4. Image colorization example
	4.1.5. Human pose estimation example
	4.1.6. Object detection example
	4.1.7. CNN image classification example
	4.1.8. Text detection example

	4.2. OpenCV standard machine learning demos
	4.2.1. Introduction to SVM
	4.2.2. SVM for non-linearly separable data
	4.2.3. Introduction to PCA
	4.2.4. Logistic regression

	5. Arm Compute Library getting started guide
	5.1. Running DNN with random weight and inputs
	5.2. Running AlexNet using graph API

	6. TensorFlow getting started guide
	6.1. Running benchmark application

	7. TensorFlow Lite getting started guide
	7.1. Running benchmark application
	7.2. Running image classification example
	7.2.1. Using pre-installed example
	7.2.2. Building example from sources

	8. Arm NN getting started guide
	8.1. Running Arm NN tests
	8.1.1. Caffe tests
	8.1.1.1. CaffeAlexNet-Armnn
	8.1.1.2. CaffeInception_BN-Armnn
	8.1.1.3. CaffeMnist-Armnn
	8.1.1.4. CaffeResNet-Armnn
	8.1.1.5. CaffeVGG-Armnn

	8.1.2. TensorFlow tests
	8.1.2.1. TfInceptionV3-Armnn
	8.1.2.2. TfMnist-Armnn
	8.1.2.3. TfMobileNet-Armnn

	8.1.3. TensorFlow Lite tests
	8.1.3.1. TfLiteInceptionV3Quantized-Armnn
	8.1.3.2. TfLiteMnasNet-Armnn
	8.1.3.3. TfLiteMobilenetQuantized-Armnn
	8.1.3.4. TfLiteMobilenetV2Quantized-Armnn

	8.1.4. ONNX tests
	8.1.4.1. OnnxMnist-Armnn
	8.1.4.2. OnnxMobileNet-Armnn

	8.2. Using Arm NN in a custom C/C++ application

	9. ONNX Runtime getting started guide
	9.1. Running ONNX Runtime test

	10. Security for machine learning
	10.1. Adversarial examples
	10.2. Model cloning
	10.3. Model Inversion
	10.4. Library Usage

	11. References
	12. Revision history

