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1. Introduction 
Machine Learning (ML) is a computer science domain 
that has its roots in the 1960s. ML provides algorithms 
capable of finding patterns and rules in data. ML is a 
category of algorithm that allows software applications 
to become more accurate in predicting outcomes 
without being explicitly programmed. The basic 
premise of ML is to build algorithms that can receive 
input data and use statistical analysis to predict an 
output while updating outputs as new data becomes 
available. 
In 2010, the so-called deep learning started. It is a 
fast-growing subdomain of ML, based on Neural 
Networks (NN). Inspired by the human brain, deep 
learning achieved state-of-the-art results in various 
tasks; for example, Computer Vision (CV) and Natural 
Language Processing (NLP). Neural networks are 
capable of learning complex patterns from millions of 
examples. A huge adaptation is expected in the 
embedded world, where NXP is the leader. NXP 
created eIQ machine learning software for i.MX 
applications processors, a set of ML tools which allows 
developing and deploying ML applications on the 
i.MX 8 family of devices. 
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This document provides guidance for the supported ML software for the i.MX family. The document is 
divided into separate sections, starting with the NXP eIQ introduction, the Yocto installation guide, and 
the step-by step guide for running all supported DNN and non-DNN examples. 

NOTE 
This document describes the eIQ Machine Learning Software for the NXP 
L4.14 BSP release. Beginning with the L4.19 BSP, the eIQ software is 
pre-integrated in the BSP release and this document is no longer necessary 
or being maintained. For more information on the eIQ software in these 
releases (L4.19, L5.4, and so on), see the “NXP eIQ Machine Learning” 
chapter in the Linux user’s guide for that specific release. Be sure to join 
the eIQ Machine Learning Software Community 
(https://community.nxp.com/community/eiq), where you will find many 
new demos and sample applications (in addition to great community 
support). 

2. NXP eIQ software introduction 
The NXP eIQ machine learning software development environment provides a set of libraries and 
development tools for machine learning applications targeted at NXP MCUs and application processors. 
The NXP eIQ software is concerned only with neural networks inference and standard machine-learning 
algorithms, leaving neural network training to other specialized software tools and dedicated hardware. 
The NXP eIQ is continuously expanding to include data-acquisition and curation tools and model 
conversion for a wide range of NN frameworks and inference engines, such as TensorFlow, TensorFlow 
Lite, Arm® NN, and Arm Compute Library. 
The current version of NXP eIQ software of i.MX processors delivers advanced and highly optimized 
machine learning enablement by providing ML support in Linux OS BSPs for the i.MX 8 family of 
devices. The NXP eIQ software contains these main Yocto recipes: 

• OpenCV 4.0.1 
• Arm Compute Library 19.02 
• Arm NN 19.02 
• ONNX runtime 0.3.0 
• TensorFlow 1.12 
• TensorFlow Lite 1.12 

For more details about the i.MX 8 family of application processors, see the fact sheet [1]. 
For up-to-date information about NXP machine learning solutions, see the official NXP web page [2] for 
machine learning and artificial intelligence. 

https://community.nxp.com/community/eiq
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Figure 1. NXP eIQ machine learning software 

3. Yocto installation guide 
This chapter provides a step-by-step guide for configuring and building Linux L4.14.98 GA, the Linux 
Yocto BSP release for i.MX 8 family of devices [3], with support for NXP eIQ software.  

NOTE 
This document describes the eIQ Machine Learning Software for the NXP 
L4.14 BSP release. Beginning with the L4.19 BSP, the eIQ software is 
pre-integrated in the BSP release and this document is no longer necessary 
or being maintained. For more information on the eIQ software in these 
releases (L4.19, L5.4, and so on), see the “NXP eIQ Machine Learning” 
chapter in the Linux user’s guide for that specific release. Be sure to join 
the eIQ Machine Learning Software Community 
(https://community.nxp.com/community/eiq), where you will find many 
new demos and sample applications (in addition to great community 
support). 

To enable NXP eIQ machine learning software, the main configuration changes are: 
• Mandatory: select the right machine learning manifest file (*.xml) – see Section 3.2.2, “Yocto 

project metadata downloading”. 
• Optional: modify the machine learning configuration file (*.conf) or layer files (*.bb), depending 

on which special configuration is needed; see Section 3.2.4, “Yocto configuration file 
modifying” or Section 3.2.5, “OpenCV user build modification”. 

For more information about the Linux Yocto BSP setup, see the Linux L4.14.98_2.0.0 
documentation [4]. 

https://community.nxp.com/community/eiq
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3.1. Prerequisites 

3.1.1. Hardware requirements 
• 1 x Linux OS host machine with a minimum of 120 GB HDD space available and internet 

connection 
• 1 x MCIMX8QM-CPU board with internet connection 
• 1 x SDHC card (tested with a 16-GB SDHC Class 10 UHS-I card) 
• 1 x MIPI camera MCIMXCAMERA1MP with de-serializer MX8XMIPI4CAM2 for running 

OpenCV DNN examples using the live camera inputs (optional only) 
• LCD HDMI monitor 

3.1.2. Software requirements 
1. Host OS: Ubuntu (tested with 16.04) 
2. Host packages:  

— The essential Yocto project host packages are: 
$: sudo apt-get install gawk wget git-core diffstat unzip texinfo \ 
   gcc-multilib build-essential chrpath socat libsdl1.2-dev 

— The i.MX layers host packages for the Ubuntu OS host setup are: 
$: sudo apt-get install libsdl1.2-dev xterm sed cvs subversion \ 
   coreutils texi2html docbook-utils python-pysqlite2 help2man gcc \ 
   g++ make desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev \ 
   mercurial autoconf automake groff curl lzop asciidoc u-boot-tools 

3.2. Building NXP eIQ software support using Yocto Project tools 
See the i.MX Yocto Project User’s Guide document [4] or sections 3.2.1 to 3.2.6, and 3.2.9. See the i.MX 
Linux User’s Guide document [4] or sections 3.2.7 to 3.2.8. 

3.2.1. Repo utility installing 
This must be done only once. 
$: mkdir ~/bin 
$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo 
$: chmod a+x ~/bin/repo 
$: PATH=${PATH}:~/bin 

3.2.2. Yocto project metadata downloading 
$: mkdir fsl-arm-yocto-bsp 
$: cd fsl-arm-yocto-bsp 
$: repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-linux-sumo -m 
imx-4.14.98-2.0.0_machinelearning.xml 
$: repo sync 

https://www.nxp.com/part/MCIMX8QM-CPU?lang=en&lang_cd=en&
https://www.nxp.com/part/MCIMXCAMERA1MP?lang=en&lang_cd=en&
https://www.nxp.com/part/MX8XMIPI4CAM2?lang=en&lang_cd=en&
https://storage.googleapis.com/git-repo-downloads/repo
https://source.codeaurora.org/external/imx/imx-manifest
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NOTE 
The imx-4.14.78-1.0.0_machinelearning manifest file can be also used. 

3.2.3.  Yocto build setup 
$: EULA=1 MACHINE=imx8qmmek DISTRO=fsl-imx-xwayland source ./fsl-setup-release.sh -b build-
xwayland 
$: echo "BBLAYERS += \" \${BSPDIR}/sources/meta-imx-machinelearning \"" >> conf/bblayers.conf 

3.2.4. Yocto configuration file modifying 
OpenCV 4.0.1 is available to be built and is already installed in the suggested image. Therefore, the 
local.conf file does not have to be modified to include the OpenCV in the Yocto image. However, it is 
recommended to add some extra packages to this configuration file for a more convenient image. The 
local.conf file is in folder fsl-arm-yocto-bsp/build-xwayland/conf. 
Add basic development capabilities: 
EXTRA_IMAGE_FEATURES = " dev-pkgs debug-tweaks tools-debug tools-sdk ssh-server-openssh" 

Add packages for networking capabilities: 
IMAGE_INSTALL_append = " net-tools iputils dhcpcd" 

Add some generic tools: 
IMAGE_INSTALL_append = " which gzip python python-pip" 
IMAGE_INSTALL_append = " wget cmake gtest git zlib patchelf" 
IMAGE_INSTALL_append = " nano grep vim tmux swig tar unzip" 
IMAGE_INSTALL_append = " parted e2fsprogs e2fsprogs-resize2fs" 

Configure the OpenCV package: 
IMAGE_INSTALL_append = " opencv python-opencv" 
PACKAGECONFIG_remove_pn-opencv_mx8 = "python3" 
PACKAGECONFIG_append_pn-opencv_mx8 = " dnn python2 qt5 jasper openmp test neon" 

Remove the OpenCL support from packages: 
PACKAGECONFIG_remove_pn-opencv_mx8 = "opencl" 
PACKAGECONFIG_remove_pn-arm-compute-library = "opencl" 

Add CMake for SDK’s cross-compile: 
TOOLCHAIN_HOST_TASK_append = " nativesdk-cmake nativesdk-make" 

Add packages: 
IMAGE_INSTALL_append = " arm-compute-library tensorflow tensorflow-lite armnn onnxruntime" 
PREFERRED_VERSION_opencv = "4.0.1%" 
PREFERRED_VERSION_tensorflow = "1.12.0%" 
PREFERRED_VERSION_tensorflow-lite = "1.12.0%" 

NOTE 
OpenCL is currently not supported in the L4.14.98_2.0.0 and 
L4.14.78_1.0.0 Yocto configurations. 
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3.2.5. OpenCV user build modification 
The OpenCV 4.0.1 is installed with all necessary DNN and ML dependencies in the NXP eIQ software. 
If some special OpenCV build options are required, add them to the OpenCV recipe file to their separate 
PACKAGECONFIG section. The opencv_4.0.1-imx.bb file is located on the Linux OS host PC in this 
folder:  

fsl-arm-yocto-bsp/sources/meta-imx-machinelearning/recipes-graphics/opencv 

3.2.6. Image building 
The image should be built with Qt 5 support, because some OpenCV examples requires Qt 5 to be 
enabled in the image: 
 
$: bitbake fsl-image-qt5 

3.2.7. SD card image flashing 
The result of the build process is a compressed image which can be found in 
tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard.bz2, where 
<timestamp> is the image timestamp (for example: 20180509080732). 

Decompress the image before flashing it to the SD card: 
bunzip2 -k -f tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-
<timestamp>.rootfs.sdcard.bz2 

Flash the SD card (replace “sdX” with the actual SD card device): 
dd if= tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard 
of=/dev/sdX bs=1M && sync 

NOTE 
The Win32DiskImager utility can be also used for the SD card image 
flashing. 

3.2.8. SD card disk space extending 
The ML applications require a lot of disk space to store the input model data. By default, the SD card 
image is created with a small amount of extra space (approximately 500 MB) in the rootfs, which may 
not be enough for all ML applications. 
There are two methods how to extend the SD card free space: 

1. Define additional free disk space before start the building process. It is done using the 
IMAGE_ROOTFS_EXTRA_SPACE variable in the local.conf file. This step is also described in 
the Yocto project manual here: https://www.yoctoproject.org/docs/current/mega-manual/mega-
manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE. 

2. Extend the SD card disk space after the image building. This ex-post method is described in 
more detail in the below section. 

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE
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Print all SD card partitions of the target board: 
$: fdisk -l  
Device         Boot  Start      End  Sectors Size Id Type 
/dev/mmcblk1p1       16384   147455   131072  64M  c W95 FAT32 (LBA) 
/dev/mmcblk1p2      147456 10584063 10436608   5G 83 Linux 

Start the “fdisk” utility: 
$: fdisk /dev/mmcblk1 

Delete the Linux-type partition (second in this case): 
Command (m for help): d 
Partition number (1,2, default 2): 2 
Partition 2 has been deleted. 

Create the new primary partition (second in this case) with the first sector being identical to the original 
partition: 
Command (m for help): n 
Partition type 
   p   primary (1 primary, 0 extended, 3 free) 
   e   extended (container for logical partitions) 
Select (default p): 
 
Using default response p. 
Partition number (2-4, default 2): 
First sector (2048-31116287, default 2048): 147456 
Last sector, +sectors or +size{K,M,G,T,P} (147456-31116287, default 31116287): 

Write the new partition and exit the “fdisk” utility: 
Command (m for help): w 
 
The partition table has been altered. 
Syncing disks. 

Increase the filesystem size of the second partition: 
$: resize2fs /dev/mmcblk1p2 
resize2fs 1.43.8 (1-Jan-2018) 
Filesystem at /dev/mmcblk1p2 is mounted on /; on-line resizing required 
old_desc_blocks = 1, new_desc_blocks = 1 
The filesystem on /dev/mmcblk1p2 is now 3871104 (4k) blocks long. 

NOTE 
You can also use the “parted” Linux OS command to create a new 
partition instead of using the “fdisk” command. 

Finally, check the free disk space after resizing: 
$: df -h 

3.2.9. Generating the Toolchain 
The toolchain created by the Yocto Project tools provides a set of tools (compilers, libraries, and header 
files) to cross-compile the code for the previously-built images. Build the SDK with the Qt 5 support:  
$: bitbake fsl-image-qt5 -c populate_sdk  
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After the build process finishes, it produces an installer script that can be used to install the SDK on the 
developing system. The script is created in the tmp/deploy/sdk/fsl-imx-xwayland-glibc-x86_64-fsl-
image-qt5-aarch64-toolchain-4.14-sumo.sh. 

4. OpenCV getting started guide 
OpenCV is an open-source computer vision library. One of its modules (called ML) provides traditional 
machine learning algorithms. Another important module in the OpenCV is the DNN, which provides 
support for neural network algorithms.  

OpenCV offers a unitary solution for both the neural network inference (DNN module) and the standard 
machine learning algorithms (ML module). It includes many computer vision functions, making it easier 
to build complex machine learning applications in a short amount of time and without being dependent 
on other libraries. 

OpenCV has wide adoption in the computer vision field and is supported by a strong and active 
community. The key algorithms are specifically optimized for various devices and instructions sets. For 
i.MX, OpenCV uses the Arm NEON acceleration. The Arm NEON technology is an advanced SIMD 
(Single Instruction Multiple Data) architecture extension for the Arm Cortex-A series. The Arm NEON 
technology is intended to improve multimedia user experience by accelerating the audio and video 
encoding/decoding, user interface, 2D/3D graphics, or gaming. The Arm NEON can also accelerate the 
signal-processing algorithms and functions to speed up applications such as the audio and video 
processing, voice and facial recognition, computer vision, and deep learning. 

At its core, the OpenCV DNN module implements an inference engine and does not provide any 
functionalities for neural network training. For more details about the supported models and layers, see 
the official OpenCV DNN wiki page [5]. 

On the other hand, the OpenCV ML module contains classes and functions for solving machine learning 
problems such as classification, regression, or clustering. It involves algorithms such as Support Vector 
Machine (SVM), decision trees, random trees, expectation maximization, k-nearest neighbors, classic 
Bayes classifier, logistic regression, and boosted trees. For more information, see the official reference 
manual and machine learning overview. For more details about OpenCV 4.0.1, see the official OpenCV 
change log web page [6]. 

4.1. OpenCV DNN demos 
After creating a bootable SD card using Yocto, all OpenCV DNN demos are in the 
/usr/share/OpenCV/samples/bin/ folder (the default demo location). However, the input data, model 
configurations, and model weights are not located in this folder, because of their size. These files must 
be downloaded to the device before running the demos: 

• Download the opencv_extra.zip package at this link: github.com/opencv/opencv_extra/tree/4.0.1  
• Unpack the file using unzip opencv_extra-4.0.1.zip to the SD card root directory <home_dir>. 

• Go to the <home_dir>/opencv_extra-4.0.1/testdata/dnn/ folder and run python 
download_models.py. The script downloads the NN models, configuration files, and input images 

https://github.com/opencv/opencv_extra/tree/4.0.1
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for some OpenCV examples. This operation may take a while. Copy these dependencies to the 
/usr/share/OpenCV/samples/bin folder (see also the demo dependencies parts of sections 4.1.x in 
this document). 

• Download the configuration model file at this link: 
github.com/opencv/opencv/blob/master/samples/dnn/models.yml  
The model.yml file contains the pre-processing parameters for some DNN examples, which 
accept the “–zoo” parameter. Copy the model file to the /usr/share/OpenCV/samples/bin folder. 

4.1.1. Image classification example 
This demo performs image classification using a pre-trained SqueezeNet network.  
Demo dependencies (taken from the “opencv_extra” package): 

• dog416.png 
• squeezenet_v1.1.caffemodel 
• squeezenet_v1.1.prototxt 

Other demo dependencies: 
• classification_classes_ILSVRC2012.txt from /usr/share/OpenCV/samples/data/dnn 
• models.yml from github 

Running the C++ example with the image input from the default location: 
$: ./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet 

 
Figure 2. Image classification graphics output 

https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml
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Running the C++ example with the live camera input from the default location: 
$: ./example_dnn_classification --zoo=models.yml squeezenet 

4.1.2. YOLO object detection example 
This demo performs the object detection using the You Only Look Once (YOLO) detector 
(arxiv.org/abs/1612.08242). It detects objects in a camera/video/image. 

For more information about this demo, see the “Loading Caffe framework models” OpenCV tutorial: 
docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html.  

Demo dependencies (taken from the “opencv_extra” package): 
• dog416.png 
• yolov3.weights 
• yolov3.cfg 

Other demo dependencies: 
• models.yml 
• object_detection_classes_yolov3.txt from /usr/share/OpenCV/samples/data/dnn 

Running the C++ example with the image input from the default location: 
$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -input=dog416.png -
rgb -zoo=models.yml yolo 

 
Figure 3. YOLO object detection graphics output 

Running the C++ example with the live camera input from the default location: 

https://arxiv.org/abs/1612.08242
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$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -rgb -
zoo=models.yml yolo 

NOTE 
Running this example with the live camera input is very slow, because this 
example runs only on the CPU. 

4.1.3. Image segmentation example 
The image segmentation means dividing the image into groups of pixels based on some criteria. You can 
do this grouping based on color, texture, or some other criteria that you choose. 

Demo dependencies (taken from the “opencv_extra” package): 
• dog416.png 
• fcn8s-heavy-pascal.caffemodel 
• fcn8s-heavy-pascal.prototxt 

Other demo dependencies: 
• models.yml 

Running the C++ example with the image input from the default location: 
$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png --
zoo=models.yml fcn8s 

 
Figure 4. Image segmentation graphics output 

Running the C++ example with the live camera input from the default location: 
$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --zoo=models.yml fcn8s 
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NOTE 
Running this example with the live camera input is very slow, because this 
example runs only on the CPU. 

4.1.4. Image colorization example 
This example demonstrates the recoloring of grayscale images using DNN. The demo supports input 
images only, not the live camera input. 

Demo dependencies (taken from the “opencv_extra” package): 
• colorization_release_v2.caffemodel 
• colorization_deploy_v2.prototxt 

Other demo dependencies: 
• basketball1.png 

Running the C++ example with the image input from the default location: 
$: ./example_dnn_colorization --model=colorization_release_v2.caffemodel --
proto=colorization_deploy_v2.prototxt --image=../data/basketball1.png 

 
Figure 5. Image colorization demo graphics output 

4.1.5. Human pose estimation example 
This application demonstrates the human or hand pose detection with a pretrained OpenPose DNN. The 
demo supports only input images, not the live camera input. 

Demo dependencies (taken from the “opencv_extra” package): 
• grace_hopper_227.png 
• openpose_pose_coco.caffemodel  
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• openpose_pose_coco.prototxt 

Running the C++ example with the image input from the default location: 
$: ./example_dnn_openpose --model=openpose_pose_coco.caffemodel --
proto=openpose_pose_coco.prototxt --image=grace_hopper_227.png --width=227 --height=227 

 
Figure 6. Human pose estimation graphics output 

4.1.6. Object detection example 
This demo performs object detection using SqueezeDet. The demo supports only input images, not the 
live camera input. 

Demo dependencies: 
• Download the model definition and model weight files from:  

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto  
• SqueezeDet.caffemodel  
• SqueezeDet_deploy.prototxt  
• Download the input image from: 

github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane
.jpg 

Running the C++ example with the image input from the default location: 
$: ./example_dnn_objdetect_obj_detect SqueezeDet_deploy.prototxt SqueezeDet.caffemodel 
aeroplane.jpg 

Running the model on the aeroplane.jpg image produces the following text results in the console: 
------ 
Class: aeroplane 
Probability: 0.845181 
Co-ordinates: 41 116 415 254 
------ 

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg
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Figure 7. Object detection graphics output 

4.1.7. CNN image classification example 
This demo performs image classification using a pre-trained SqueezeNet network. The demo supports 
only input images, not the live camera input. 
Demo dependencies (taken from the “opencv_extra” package): 

• space_shuttle.jpg 

Other demo dependencies: 
• Download the SqueezeNet.caffemodel model weight file from: 

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto  
• Download the SqueezeNet_deploy.prototxt model definition file from: 

github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data  

Running the C++ example with the image input from the default location: 
$: ./example_dnn_objdetect_image_classification SqueezeNet_deploy.prototxt 
SqueezeNet.caffemodel space_shuttle.jpg 

Running the model on the space_shuttle.jpg image produces the following text results in the console: 
Best class Index: 812 
Time taken: 0.649153 
Probability: 15.8467 

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data
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4.1.8. Text detection example 
This demo is used for text detection in the image using the EAST algorithm. 

Demo dependencies (taken from the opencv_extra package): 
• frozen_east_text_detection.pb 

Other demo dependencies: 
• imageTextN.png 

Running the C++ example with the image input from the default location: 
$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb --
input=../data/imageTextN.png 

 
Figure 8. Text detection graphics output 

NOTE 
This example accepts only the PNG image format. 

Running the C++ example with the live camera input from the default location: 
$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb 

4.2. OpenCV standard machine learning demos  
After deploying OpenCV on the target device, the non-neural-network demos are installed in the 
“rootfs” in the /usr/share/OpenCV/samples/bin/ folder. To display the results, a Yocto image with Qt 5 
support is required. 
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4.2.1. Introduction to SVM 
This example demonstrates how to create and train an SVM model using training data. When the model 
is trained, the labels for test data are predicted. The full description of the example is in 
tutorial_introduction_to_svm. 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  
$: ./example_tutorial_introduction_to_svm 

Result: 
1. The code opens an image and shows the training examples of both classes. The points of one 

class are represented with white circles and the other class uses black points. 

 
 
2. The SVM is trained and used to classify all the pixels of the image. This results in the division of 

image into blue and green regions. The boundary between both regions is the optimal separating 
hyperplane. 

3. Finally, the support vectors are shown using gray rings around the training examples. 

 
Figure 9. SVM introduction graphics output 

https://docs.opencv.org/4.0.1/d1/d73/tutorial_introduction_to_svm.html
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4.2.2. SVM for non-linearly separable data 
This example deals with non-linearly-separable data and shows how to set the parameters of the SVM 
with linear kernel for these data. For more details, see SVM_non_linearly_separable_data. 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  
$: ./example_tutorial_non_linear_svms  

Result: 
1. The code opens an image and shows the training data of both classes. The points of one class are 

represented by a light-green color and the other class is shown as light-blue points. 
2. The SVM is trained and used to classify all pixels of the image. This divides the image into blue 

and green regions. The boundary between both regions is the separating hyperplane. Because the 
training data is non-linearly separable, some examples of both classes are misclassified; some 
green points lay in the blue region and some blue points lay in the green one. 

3. The support vectors are shown with gray rings around the training examples. 

 
Figure 10. SVM non-linearity graphics output 

https://docs.opencv.org/4.0.1/d0/dcc/tutorial_non_linear_svms.html
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4.2.3. Introduction to PCA 
The Principal Component Analysis (PCA) is a statistical method that extracts the most important 
features of a dataset. In this tutorial, it is shown how to use the PCA to calculate the orientation of an 
object. For more details, see the OpenCV tutorial: Introduction_to_PCA. 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  
$: ./example_tutorial_introduction_to_pca 

Result: 
• The code opens an image (loaded from ../data/pca_test1.jpg), finds the orientation of the 

detected objects of interest, and visualizes the result by drawing the contours of the detected 
objects of interest, the center point, and the x-axis and y-axis regarding the extracted orientation. 

 
Figure 11. PCA graphics output 

4.2.4. Logistic regression 
In this example, logistic regression is used to predict two characters (0 or 1) from an image. Every image 
matrix is reshaped from its original size of 28 x 28 to 1 x 784. A logistic regression model is created and 
trained on 20 images. After the training, the model can predict the labels of test images. The source code 
is at this link and can be run using the below command. 

Demo dependencies (preparing the train data files): 
$: wget raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  
$: ./example_cpp_logistic_regression 

Result: 
• The training and test data and the comparison between the original and predicted labels are 

shown. The trained model reaches 95 % accuracy. The console text output is as follows: 
original vs predicted: 

https://docs.opencv.org/4.0.1/d1/dee/tutorial_introduction_to_pca.html
https://github.com/opencv/opencv/blob/4.0.1/samples/cpp/logistic_regression.cpp
https://raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml
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[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] 
accuracy: 95% 
saving the classifier to NewLR_Trained.xml 
loading a new classifier from NewLR_Trained.xml 
predicting the dataset using the loaded classifier...done! 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] 

accuracy: 
95% 

 

Figure 12. Logistic regression graphics output 

5. Arm Compute Library getting started guide 
The Arm Compute Library [7] is a collection of low-level functions optimized for the Arm CPU and 
GPU architectures targeted at image processing, computer vision, and machine learning. It is a 
convenient repository of optimized functions that developers can source either individually or as a part 
of complex pipelines to accelerate algorithms and applications. The Arm compute library also supports 
NEON acceleration. 

Two types of examples are described in the following sub-sections: 
• Example based on the DNN models with random weights and inputs 
• Example based on the AlexNet using the graph API 

5.1. Running DNN with random weight and inputs 
The Arm Compute Library contains examples for most common DNN architectures, such as 
AlexNet, MobileNet, ResNet, Inception v3, Inception v4, Squeezenet, and others. 
All available examples are at this example build location: 

• /usr/share/arm-compute-library/build/examples 

Each model architecture can be tested using the “graph_[dnn_model]” application.  
Here is an example of running the required DNN model with a random weight (run the example 
application without any arguments): 
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$: ./graph_mobilenet_v2 

The application creates the required network model with random weights and predicts the random 
inputs. If all components work, the “Test passed” message is printed. 

5.2. Running AlexNet using graph API 
In 2012, AlexNet became famous when it won the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC), an annual challenge that aims to evaluate algorithms for object detection and image 
classification. AlexNet is made up of eight trainable layers (five convolution layers and three 
fully-connected layers). All the trainable layers are followed by the ReLu activation function, except for 
the last fully-connected layer, where the Softmax function is used. 
The C++ AlexNet example implementation [8] uses the graph API in this folder: 

• /usr/share/arm-compute-library/build/examples 

Demo dependencies: 
• Download the archive file to the example location folder from: 

developer.arm.com//-/media/developer/technologies/Machine learning on 
Arm/Tutorials/Running AlexNet on Pi with Compute 
Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01 

• Create new sub-folder and unzip the file: 
$: mkdir assets_alexnet 
$: unzip compute_library_alexnet.zip -d assets_alexnet 

• Set the environment variables for execution: 
$: export LD_LIBRARY_PATH=/usr/share/arm-compute-library/build/examples/ 
$: export PATH_ASSETS=/usr/share/arm-compute-library/build/examples/assets_alexnet/ 

• Run the example with the command-line arguments from the default location:  
$: ./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --
labels=$PATH_ASSETS/labels.txt 

• The output of the successful classification is as follows: 
---------- Top 5 predictions ---------- 
 
0.9736 - [id = 573], n03444034 go-kart 
0.0118 - [id = 518], n03127747 crash helmet 
0.0108 - [id = 751], n04037443 racer, race car, racing car 
0.0022 - [id = 817], n04285008 sports car, sport car 
0.0006 - [id = 670], n03791053 motor scooter, scooter 
 
Test passed 

6. TensorFlow getting started guide 
TensorFlow [9] is an end-to-end open-source platform for machine learning. It has a comprehensive, 
flexible ecosystem of tools, libraries, and community resources that enable the researchers to push the 
state-of-the-art in ML and give the developers the ability to easily build and deploy ML-powered 
applications. 

https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
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TensorFlow provides a collection of workflows [13] with intuitive, high-level APIs for both beginners 
and experts to create machine learning models in numerous languages. TensorFlow provides a variety of 
different toolkits that enable you to construct models at your preferred level of abstraction. Use the 
lower-level APIs to build models by defining a series of mathematical operations. Alternatively, you can 
use higher-level APIs to specify pre-defined architectures, such as linear regressors or neural networks. 

6.1. Running benchmark application 
This simple example is pre-installed by default on the prepared Yocto image with machine learning 
enablement. It performs simple TensorFlow benchmarking using the pre-defined model. The graph 
model file is not included in the target image due to its size. The benchmark binary file location is: 

• /usr/bin/tensorflow-1.12.0/examples 
Demo dependencies: 

• Download the inception graph model:  
$: wget storage.googleapis.com/download.tensorflow.org/models/inception5h.zip 

• Unzip the model file to the example target location: 
$: unzip inception5h.zip 

• Run the example with command-line arguments from the default location: 
$: ./benchmark --graph=tensorflow_inception_graph.pb --max_num_runs=10 

The benchmark application outputs lots of useful information, such as: 
• Run order 
• Top by computation time 
• Top by memory use 
• Summary by node type 

For example, the summary node output of the TensorFlow benchmarking is as follows: 
[Node type]    [count]  [avg ms]     [avg %]   [cdf %]   [mem KB]    [times called] 
----------------------------------------------------------------------------------- 
Conv2D           22      171.150    64.825%   64.825%    10077.888          22 
MatMul            2       35.295    13.368%   78.194%        8.128           2 
MaxPool           6       23.723     8.985%   87.179%     3562.496           6 
LRN               2       18.823     7.129%   94.309%     3211.264           2 
BiasAdd          24        8.475     3.210%   97.519%        0.000          24 
Relu             14        3.847     1.457%   98.976%        0.000          14 
Concat            3        1.303     0.494%   99.469%     2706.368           3 
Const            50        0.619     0.234%   99.704%        0.000          50 
AvgPool           1        0.544     0.206%   99.910%       32.512           1 
Softmax           1        0.097     0.037%   99.947%        0.000           1 
NoOp              1        0.082     0.031%   99.978%        0.000           1 
_Retval           1        0.022     0.008%   99.986%        0.000           1 
Reshape           1        0.013     0.005%   99.991%        0.000           1 
_Arg              1        0.012     0.005%   99.995%        0.000           1 
Identity          1        0.012     0.005%   100.000%       0.000           1 
 
Timings (microseconds): count=10 first=281154 curr=242529 min=240048 max=291365 avg=264068 
std=19523 

https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
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7. TensorFlow Lite getting started guide 
TensorFlow Lite is a light-weight version of and a next step from TensorFlow. TensorFlow Lite is an 
open-source software library focused on running machine learning models on mobile and embedded 
devices (available at www.tensorflow.org/lite). It enables on-device machine learning inference with 
low latency and small binary size. TensorFlow Lite also supports hardware acceleration using 
Android™ OS neural network APIs. 
TensorFlow Lite supports a set of core operators (both quantized and float) tuned for mobile platforms. 
They incorporate pre-fused activations and biases to further enhance the performance and quantized 
accuracy. Additionally, TensorFlow Lite also supports the use of custom operations in models. 
TensorFlow Lite defines a new model file format, based on FlatBuffers [10]. FlatBuffers is an 
open-source, efficient, cross-platform serialization library. It is similar to protocol buffers, but the 
primary difference is that FlatBuffers does not need a parsing/unpacking step for a secondary 
representation before you can access the data, often coupled with per-object memory allocation. Also, 
the code footprint of FlatBuffers is an order of magnitude smaller than protocol buffers. 
TensorFlow Lite has a new mobile-optimized interpreter, which has the key goal to keep apps lean and 
fast. The interpreter uses static graph ordering and a custom (less-dynamic) memory allocator to ensure 
minimal load, initialization, and execution latency. 

7.1. Running benchmark application 
This simple example is pre-installed by default on the prepared Yocto image with machine learning 
enablement. Its name is “benchmark_model”. It performs simple TensorFlow Lite benchmarking using 
the pre-defined models. The model file is not included in the target image, because of its size. The 
example binary file location is: 

• /usr/bin/tensorflow-lite-1.12.0/examples 
Demo dependencies: 

• Download the model file [12] using this command:  
$: wget 
download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz  

• Unpack the model file: 
$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz   

• Run the example with the command-line arguments from the default location: 
$: ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite 

The output of a successful TensorFlow Lite benchmarking is as follows: 
STARTING! 
Num runs: [50] 
Inter-run delay (seconds): [-1] 
Num threads: [1] 
Benchmark name: [] 
Output prefix: [] 
Warmup runs: [1] 
Graph: [mobilenet_v1_1.0_224_quant.tflite] 
Input layers: [] 
Input shapes: [] 
Use nnapi : [0] 

http://www.tensorflow.org/lite
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
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Loaded model mobilenet_v1_1.0_224_quant.tflite 
resolved reporter 
Initialized session in 44.687ms 
Running benchmark for 1 iterations 
count=1 curr=180071 
Running benchmark for 50 iterations 
count=50 first=128160 curr=128079 min=127643 max=128319 avg=127944 std=138 
Average inference timings in us: Warmup: 180071, Init: 44687, no stats: 127944 

7.2. Running image classification example 
This simple example classifies images of clothing, such as hats, shirts, and others. The “grace_hopper” 
input image (see Figure 13) is used as a typical sample for the image classification. By default, a proper 
model file for this example is not included in the target image due to its size. It should be downloaded 
by the user to the target image. 

 
Figure 13. Image classification input picture 

Two different approaches for running this example are used. The simplest way is to use the pre-installed 
binary application with minimum subsequent steps (see Section 7.2.1, “Using pre-installed example”). 
The second approach is intended for users who want to create (build) a custom application using sources 
(see Section 7.2.2, “Building example from sources”). 

7.2.1. Using pre-installed example 
The example is pre-installed by default in the prepared Yocto image with the machine-learning 
enablement. Its name is “label_image”. The example binary file location is:  

• /usr/bin/tensorflow-lite-1.12.0/examples  
Demo dependencies:  

• Download the TensorFlow model file to the example folder. It can be the model file used by the 
previous benchmark example (see Section 7.1, “Running benchmark application”):  
$ wget  
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan
t.tgz  

• Unpack the model file to the example binary location: 

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
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$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz  
• Run the example with the command-line arguments from the default location:  

$: ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l 
labels.txt 

 
 
The output of a successful classification for the “grace_hopper” input image (see Figure 13) is as 
follows:  
Loaded model mobilenet_v1_1.0_224_quant.tflite  
resolved reporter  
invoked  
average time: 330.473 ms  
0.780392: 653 military uniform  
0.105882: 907 Windsor tie  
0.0156863: 458 bow tie  
0.0117647: 466 bulletproof vest  
0.00784314: 835 suit 

7.2.2. Building example from sources 
The image classification example can be downloaded from the TensorFlow repository[13] and built from 
these sources on the target image. 

Demo dependencies:  
• Download and make the TensorFlow sources:  

$ git clone https://github.com/tensorflow/tensorflow.git  
$ cd tensorflow  
$ git checkout r1.12  
$ ./tensorflow/contrib/lite/tools/make/download_dependencies.sh  
$ make -f tensorflow/contrib/lite/tools/make/Makefile  
$ cd tensorflow/contrib/lite/examples/label_image 

• Build the “label_image” example using the GNU C++ compiler:  
$ g++ --std=c++11 -O3 bitmap_helpers.cc label_image.cc -I ../../../.. -I 
../../tools/make/downloads/flatbuffers/include -L 
../../tools/make/gen/linux_aarch64/lib -ltensorflow-lite -lpthread -ldl -o label_image  

• Download the TensorFlow model file to the current directory. It is the model file used by the 
pre-installed example (see Section 7.2.1, “Using pre-installed example”):  
$ wget  
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan
t.tgz  

• Unpack the model file to the current directory:  
$ tar -xzvf mobilenet_v1_1.0_224_quant.tgz  

• Run the example with the command-line arguments from the default location: 
$ ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i testdata/grace_hopper.bmp 
-l ../../java/ovic/src/testdata/labels.txt 

The output of a successful classification for the “grace_hopper” input image (see Figure 13) is the same 
as for the pre-installed application (see Section 7.2.1, “Using pre-installed example”):  
Loaded model mobilenet_v1_1.0_224_quant.tflite 
resolved reporter 
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invoked 
average time: 229.14 ms 
0.780392: 653 military uniform 
0.105882: 907 Windsor tie 
0.0156863: 458 bow tie 
0.0117647: 466 bulletproof vest 
0.00784314: 835 suit 

8. Arm NN getting started guide 
Arm NN is an open-source inference engine framework developed by Arm and supporting a wide range 
of neural-network model formats, such as Caffe, TensorFlow, TensorFlow Lite, and ONNX. For 
i.MX 8, Arm NN runs on the CPU with NEON and has multi-core support. Arm NN does not currently 
support the i.MX 8 GPUs due to the Arm NN OpenCL requirements, which are not met by i.MX 8 
GPUs. For more details about Arm NN, check the Arm NN SDK webpage. 
To build Arm NN 19.02 using the Yocto Project tools, follow the steps describes in Section 3, “Yocto 
installation guide”. Make sure to perform the additional modifications needed for Arm NN, as described 
in Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” instruction). 

8.1. Running Arm NN tests 
The Arm NN SDK provides a set of tests, which can also be considered as demos, showing what the 
Arm NN does and how to use it. They load neural network models of various formats (Caffe, 
TensorFlow, TensorFlowLite, ONNX), run the inference on a specified input data, and output the 
inference result. The Arm NN tests are built by default when building the rootfs image and installed in 
the /usr/bin folder. 
Note that the input data, model configurations, and model weights are not distributed with Arm NN. 
Download them separately and make sure they are available on the device before running the tests. 
However, the Arm NN tests do not have documentation. Moreover, the input file names are hardcoded, 
so you must investigate the code to find out what input file names are expected. 
To get started with Arm NN, the following sections explain how to prepare the input data and how to 
run the Arm NN tests. All of them use well-known neural network models. With only few exceptions, 
such pre-trained networks are available to download from the internet. The input image files and their 
name, format, and content are deduced by analyzing the code. However, this was not possible for all the 
tests. It is recommended to prepare the data on the host and then deploy them on the i.MX 8 board, 
where the current Arm NN tests are run. 
The following sections assume that the neural network model files are stored in a folder called models, 
and the input image files are stored in a folder called data. Both of them are created inside a folder 
called ArmnnTests. Create this folder structure on the larger partition using the following commands: 
$: mkdir ArmnnTests 
$: cd ArmnnTests 
$: mkdir data 
$: mkdir models 

https://developer.arm.com/products/processors/machine-learning/arm-nn
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8.1.1. Caffe tests 
The Arm NN 19.02 SDK provides the following set of tests for the Caffe models: 
/usr/bin/CaffeAlexNet-Armnn 
/usr/bin/CaffeCifar10AcrossChannels-Armnn 
/usr/bin/CaffeInception_BN-Armnn 
/usr/bin/CaffeMnist-Armnn 
/usr/bin/CaffeResNet-Armnn 
/usr/bin/CaffeVGG-Armnn 
/usr/bin/CaffeYolo-Armnn 

Two important limitations might require a pre-processing of the Caffe model file before running the 
Arm NN Caffe test. Firstly, the Arm NN tests require the batch size to be set to 1. Secondly, the Arm 
NN does not support all Caffe syntaxes, so some previous neural-network model files require updates to 
the latest Caffe syntax. How to perform these pre-processing steps is described at the Arm NN GitHub 
page. Note that you should install Caffe on the host. See also [15].   
For example, supposing you have a Caffe model that either has the batch size different than 1 or uses 
another Caffe defined by files model_name.prototxt and model_name.caffemodel, create a copy of the 
*.prototxt file (new_model_name.prototxt), modify this file to use the new Caffe syntax, change the 
batch size to 1, and finally run this Python script: 
import caffe 
 
net = caffe.Net('model_name.prototxt', 'model_name.caffemodel', caffe.TEST) 
new_net = caffe.Net('new_model_name.prototxt', 'model_name.caffemodel', caffe.TEST) 
new_net.save('new_model_name.caffemodel') 

The following sections explain how to run each of the tests, except for 
“CaffeCifar10AcrossChannels-Armnn” and “CaffeYolo-Armnn”. For the first one, a publicly available 
pre-trained model was not found. For the second one, there is no way to deduce the exact content of the 
input image originally used by this test. 

8.1.1.1. CaffeAlexNet-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files from: 
raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt 
dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 
3. Rename bvlc_alexnet.caffemodel to bvlc_alexnet_1.caffemodel. 
4. Copy the bvlc_alexnet_1.caffemodel file to the models folder on the device. 
5. Find a *.jpg file that contains a shark. Rename it to shark.jpg and copy it to the data folder on 

the device. 
6. Run the test: 

$: cd ArmnnTests 
$: CaffeAlexNet-Armnn --data-dir=data --model-dir=models 

https://github.com/ARM-software/armnn/issues/7
https://github.com/ARM-software/armnn/issues/7
http://caffe.berkeleyvision.org/install_apt.html
https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
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8.1.1.2. CaffeInception_BN-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files from: 
raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt 
www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 
3. Rename the Inception21k.caffemodel file to Inception-BN-batchsize1.caffemodel. 
4. Copy the Inception-BN-batchsize1.caffemodel file to the models folder on the device. 
5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: CaffeInception_BN-Armnn --data-dir=data --model-dir=models 

8.1.1.3. CaffeMnist-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files from: 
raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt 
github.com/ARM-software/ML-examples/blob/master/armnn-
mnist/model/lenet_iter_9000.caffemodel 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 

3. Download these two archives and unpack them: 
yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 
yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 

4. Copy the lenet_iter_9000.caffemodel file to the models folder on the device. 
5. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: CaffeMnist-Armnn --data-dir=data --model-dir=models 

8.1.1.4. CaffeResNet-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model file for ResNet50 from: 
onedrive.live.com/?authkey=%21AAFW2-
FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB

https://raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
http://www.dlsi.ua.es/%7Epertusa/deep/Inception21k.caffemodel
https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
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8476FF777%2117887&o=OneUp 

2. Rename the RestNet-50-model.caffemodel file to ResNet_50_ilsvrc15_model.caffemodel. 
3. Copy the ResNet_50_ilsvrc15_model.caffemodel file to the models folder on the device. 
4. Download this image file and copy it to the data folder on the device: 

raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_s
amples/ILSVRC2012_val_00000018.JPEG  

 
5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: CaffeResNet-Armnn --data-dir=data --model-dir=models 

8.1.1.5. CaffeVGG-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files for VGG19 from: 
www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel 
gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d
5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 
3. Rename the VGG_ILSVRC_19_layers.caffemodel file to VGG_CNN_S.caffemodel. 
4. Copy the VGG_CNN_S.caffemodel file to the models folder on the device. 
5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: CaffeVGG-Armnn --data-dir=data --model-dir=models 

8.1.2. TensorFlow tests 
The Arm NN 19.02 SDK provides the following set of tests for the TensorFlow models: 
/usr/bin/TfCifar10-Armnn 
/usr/bin/TfInceptionV3-Armnn 
/usr/bin/TfMnist-Armnn 
/usr/bin/TfMobileNet-Armnn 
/usr/bin/TfResNext-Armnn  

Before running the tests, the TensorFlow models must be prepared for inference. This process is 
TensorFlow-specific and uses TensorFlow tools. Therefore, TensorFlow must be installed on your host 
machine. 

https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
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The following sections explain how to run each of the tests, except for “TfResNext-Armnn” and 
“TfCifar10-Armnn”, for which the publicly available pre-trained models were not found. 

8.1.2.1. TfInceptionV3-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, generate the graph definition for the Inception model: 
# model preparation  
$: mkdir checkpoints  
# clone the models repository 
$: git clone https://github.com/tensorflow/models.git  
$: cd models/research/slim/ 
# export the inference graph 
$: python export_inference_graph.py --model_name=inception_v3 --
output_file=../../../checkpoints/inception_v3_inf_graph.pb  

2. From your host machine, download the pre-trained model and use the TensorFlow tools to 
prepare it for inference. Note that <path_to_tensorflow_repo> refers to the path where you 
cloned or downloaded the TensorFlow repo. 
$: cd ../../../checkpoints  
# download and extract the checkpoint 
$: wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz -qO- | tar 
-xvz 
# freeze the model 
$: python <path_to_tensorflow_repo>/tensorflow/python/tools/freeze_graph.py --
input_graph=inception_v3_inf_graph.pb --input_checkpoint=inception_v3.ckpt --
input_binary=true --output_graph=inception_v3_2016_08_28_frozen.pb --
output_node_names=InceptionV3/Predictions/Reshape_1 

3. Copy the inception_v3_2016_08_28_frozen.pb file to the models folder on the device. 
4. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
5. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 
6. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

7. Run the test: 
$: cd ArmnnTests 
$: TfInceptionV3-Armnn --data-dir=data --model-dir=models 

8.1.2.2. TfMnist-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model file from: 
raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-
mnist/model/simple_mnist_tf.prototxt 

2. Copy the simple_mnist_tf.prototxt file to the models folder on the device. 

https://github.com/tensorflow/models.git
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
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3. Download these two archives and unpack them: 
yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 
yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the 
device. 

5. Run the test: 
$: cd ArmnnTests 
$: TfMnist-Armnn --data-dir=data --model-dir=models 

8.1.2.3. TfMobileNet-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 
download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz 

2. Copy the mobilenet_v1_1.0_224_frozen.pb file to the models folder on the device. 
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: TfMobileNet-Armnn --data-dir=data --model-dir=models 

8.1.3. TensorFlow Lite tests 
The Arm NN 19.02 SDK provides the following test for the TensorFlow Lite models: 
/usr/bin/TfLiteInceptionV3Quantized-Armnn 
/usr/bin/TfLiteInceptionV4Quantized-Armnn 
/usr/bin/TfLiteMnasNet-Armnn 
/usr/bin/TfLiteMobileNetSsd-Armnn 
/usr/bin/TfLiteMobilenetQuantized-Armnn 
/usr/bin/TfLiteMobilenetV2Quantized-Armnn 
/usr/bin/TfLiteResNetV2-Armnn 
/usr/bin/TfLiteVGG16Quantized-Armnn  

The following sections explain how to run some of the tests. Some of the tests are excluded, because it 
was not possible to find a publicly available model or they need more resources than available on the 
i.MX 8 embedded application processors. 

http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz


Arm NN getting started guide 

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 4, 05/2020 
NXP Semiconductors  31 

 

8.1.3.1. TfLiteInceptionV3Quantized-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 
download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz 

2. Copy the inception_v3_quant.tflite file to the models folder on the device. 
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

 
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 
$: cd ArmnnTests 
$: TfLiteInceptionV3Quantized-Armnn --data-dir=data --model-dir=models 

8.1.3.2. TfLiteMnasNet-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 
download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz 

2. Copy the mnasnet_1.3_224/mnasnet_1.3_224.tflite file to the models folder on the device. 
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: TfLiteMnasNet-Armnn --data-dir=data --model-dir=models 

8.1.3.3. TfLiteMobilenetQuantized-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download the model file: 
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan
t.tgz  

http://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
http://download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
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2. Copy the mobilenet_v1_1.0_224_quant.tflite file to the models folder on the device. 
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 
$: cd ArmnnTests 
$: TfLiteMobilenetQuantized-Armnn --data-dir=data --model-dir=models 

8.1.3.4. TfLiteMobilenetV2Quantized-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download the model file: 
download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz 

2. Copy the mobilenet_v2_1.0_224_quant.tflite file to the models folder on the device. 
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: TfLiteMobilenetV2Quantized-Armnn --data-dir=data --model-dir=models 

8.1.4. ONNX tests 
The Arm NN provides the following set of tests for ONNX models: 
/usr/bin/OnnxMnist-Armnn 
/usr/bin/OnnxMobileNet-Armnn 

The following sections explain how to run each of the tests. 

8.1.4.1. OnnxMnist-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 
onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz 

2. Rename the model.onnx file to mnist_onnx.onnx and copy it to the models folder on the device. 

http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz
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3. Download the following two archives and unpack them (after unpacking, rename the files to use 
dots instead of hyphens: t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte, respectively): 
yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 
yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the 
device. 

5. Run the test: 
$: cd ArmnnTests 
$: OnnxMnist-Armnn --data-dir=data --model-dir=models 

8.1.4.2. OnnxMobileNet-Armnn 
To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 
s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz 

2. Copy the unpacked mobilenetv2-1.0.onnx file to the models folder on the device. 
3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 
4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 
5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 
6. Run the test: 

$: cd ArmnnTests 
$: OnnxMobileNet-Armnn --data-dir=data --model-dir=models -i 3 

8.2. Using Arm NN in a custom C/C++ application 
You can create your own C/C++ applications for the i.MX 8 family of devices using Arm NN 
capabilities. This requires writing the code using the Arm NN API, setting up the build dependencies, 
building the code, and deploying your application. Below is a detailed description for each of these 
steps. Note that the scenario is cross-compiling a C/C++ application on a Linux OS machine for an 
i.MX 8 family device board. 

1. Write the code. 
A good starting point to understand how to use Arm NN API in your own application is the 
armnn-mnist example provided by Arm. It includes two applications; one shows how to load and 
run inference for a MNIST TensorFlow model, and the second one shows how to load and run 
inference for a MNSIT Caffe model. See the Arm tutorial Deploying a TensorFlow MNIST 
model on Arm NN. 

2. Set up the build dependencies. 

http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/
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From a software developer’s perspective, Arm NN is a library. Therefore, create and build an 
application which uses the Arm NN features, set of Arm NN headers, and set of Arm NN 
libraries for the target device. The Arm NN headers and libraries are all available within the 
SDK. Build the SDK when building the Yocto image and install it on your local machine, as 
described in Section 3.2, “Building NXP eIQ support using Yocto Project tools”. When this is 
done, find: 

— Arm NN headers in: 
<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/include 

— Arm NN libraries in: 
<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/lib 

3. Build the code. 
To build the “armnn-mnist” example provided by Arm, use the Makefile included in the project 
with a few minor changes: 

— Remove the definition of “ARMNN_INC” and all its uses. The Arm NN headers are 
already available in the default include directories. 

— Remove the definition of “ARMNN_LIB” and all its uses. The Arm NN libraries are 
already available in the default linker search path. 

— Replace “g++” by “${CXX}”. 
Build the example: 

— Source the SDK environment: 
$: source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux 

— Run make: 
$: make 

4. Deploy the applications. 
At this point, you have two binaries ready to be deployed on the i.MX 8 family device board. All you 
need to take care of are the runtime dependencies. Regarding the input data, these dependencies are 
described at the “armnn-mnist” example page. The suggested image described in this document requires 
Arm NN library dependencies already available on the board and you can run your Arm NN application 
on the i.MX 8 family device board. 

9. ONNX Runtime getting started guide 
ONNX Runtime is an open-source inference engine framework developed by Microsoft, supporting the 
ONNX model format. ONNX Runtime runs on the CPU with NEON and has multi-core support. ONNX 
Runtime does not currently support the i.MX 8 GPUs due to the lack of OpenCL support. For more 
details about ONNX Runtime, see the official ONNX Runtime project webpage.  
To build Yocto with ONNX Runtime, follow the steps described in Section 3, “Yocto installation 
guide”. Make sure to perform the additional modifications needed for ONNX Runtime, as described in 
Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” part). 

https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
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9.1. Running ONNX Runtime test 
ONNX Runtime provides a tool that runs a collection of standard tests provided in the ONNX model 
Zoo. The tool named “onnx_test_runner” is installed in the /usr/bin folder. 
The ONNX tests are available at github.com/onnx/models and consist of various models in the ONNX 
format with associated input and expected output data. 

Here is an example with the steps required to run the “squeezenet” test: 
1. Download and unpack the latest release of the “squeezenet” test archive: 

github.com/onnx/models/tree/master/squeezenet 
s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz 

 
2. Copy the squeezenet folder containing the model and test data on the device; for example, to the 

/home/root folder. 
3. Run the “onnx_test_runner” tool, providing the squeezenet folder path as the command-line 

parameter: 
$: ls /home/root/squeezenet/ 
model.onnx        test_data_set_11  test_data_set_5  test_data_set_9 
test_data_set_0   test_data_set_2   test_data_set_6 
test_data_set_1   test_data_set_3   test_data_set_7 
test_data_set_10  test_data_set_4   test_data_set_8 
$: onnx_test_runner /home/root/squeezenet/ 
result: 
        Models: 1 
        Total test cases: 12 
                Succeeded: 12 
                Not implemented: 0 
                Failed: 0 
        Stats by Operator type: 
                Not implemented(0): 
                Failed: 
Failed Test Cases: 
$:  

10. Security for machine learning 
With the wide-scale deployment of machine learning models, both the safety and security issues become 
a significant threat. This section describes some of these issues and the countermeasures made available 
in eIQ to mitigate their impact. 
Users concerned about security should also consider the i.MX security features available at the SoC 
level. Enabling such features can benefit the general system security. For further details, see the 
processor security reference manual document available in the SoC documentation page at 
www.nxp.com. 

https://github.com/onnx/models
https://github.com/onnx/models/tree/master/squeezenet
https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz
http://www.nxp.com/
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10.1. Adversarial examples 
One example of a security and safety issue in the practical large-scale deployment of machine learning is 
that of adversarial examples (Biggio, et al.),  (Szegedy, et al. 2013). These are “inputs formed by 
applying small but intentionally worst-case perturbations to examples from the dataset, such that the 
perturbed input results in the model outputting an incorrect answer with high confidence” (Goodfellow, 
Shlens and Szegedy 2014). Hence, one can create specifically crafted inputs (video-images or sounds 
examples) which try to mislead the machine-learning model such that it misclassifies a road-sign (safety 
concern) or circumvent authentication when using your voice or face as the authentication (security 
concern). 
For example, Figure 14 and Figure 15 are classified differently by an inception v3 network trained for 
the ImageNet dataset. 

 
Figure 14. Top 3 Classes: 90.5% Porcupine/Hedgehog, 2.1% Marmot, 1.0% Beaver 

 
Figure 15. Top 3 Classes: 99.0% Banana, 0.1% Pineapple, 0.05% Porcupine/Hedgehog 

Source (public domain): https://commons.wikimedia.org/wiki/File:Erinaceus_roumanicus_2013_G5.jpg 
Figure 15 is intentionally modified to be misclassified as a banana. Even though the changes are not 
visible to the naked eye, the neural net even has a higher confidence that the second image is a banana 
than that the original image was a hedgehog. 
In our package, we have hardening functionality which makes these types of attacks significantly more 
difficult. This functionality has the advantage that it can harden a model against such carefully selected 
perturbations without modifying the trained machine learning model. The main idea is to transform the 
input in specific ways which ensure that the outcome on real input remains unchanged, while the 

https://commons.wikimedia.org/wiki/File:Erinaceus_roumanicus_2013_G5.jpg
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adversarial perturbations of an attack no longer work. By computing multiple of such input 
transformations and combining the model outputs, it becomes harder to mislead the target system. 
Such transformations are application-specific. The code for models which have images as inputs is 
provided. Specifically, the transformations provided are blurring, rotation, adding noise, and JPEG 
compression. A detailed description of the API is available in the Doxygen documentation in the 
subfolder /api-docs. A complete example can be found in examples/ax_hardening.cpp. 
Classifying Figure 15 (the adversarial example) with a model, which performs both input rotation and 
adding noise as the transformations, and voting on the correct result (including the original Figure 15 
output) correctly identifies this image as a hedgehog. The rotated version is correctly identified with a 
93 % confidence, which is even higher than the unmodified image. 
It is necessary to carefully select the right parameters for these transformations. The radius of the 
blurring must depend on the size of the images and the objects in the image, the angle of rotation must 
depend on the rotation tolerance of the model, and so on. Even with this additional hardening, it is still 
possible to create adversarial examples. However, it does require more time to construct them and the 
search space must be increased when compared to the model that does not employ this technique. 
The ml-security package includes an example of hardening against adversarial examples. Two 
transformations are applied to the inputs: rotation by 3 degrees and blurring. The original image and the 
transformed images are classified by the network and followed by a voting of the most occurring class. 
In this example, we use the same Hedgehog images as above, class 335 is a porcupine/hedgehog and 
class 955 is a banana. 
This example runs on the i.MX8QXP board and both images could be classified as a 
porcupine/hedgehog after applying the techniques mentioned in this section: 
# ./ax_sample 
Using hedgehog image 
Top 3 for original image 
1: Class 335, Confidence: 0.905243 
2: Class 337, Confidence: 0.0213407 
3: Class 338, Confidence: 0.0109267 
Top 3 for rotated image 
1: Class 335, Confidence: 0.947023 
2: Class 337, Confidence: 0.0062071 
3: Class 338, Confidence: 0.00346831 
Top 3 for blurred (bilateral) image 
1: Class 335, Confidence: 0.812905 
2: Class 338, Confidence: 0.0487511 
3: Class 337, Confidence: 0.043767 
Classification by votes: 335 
Using adversarial example 
Top 3 for original image 
1: Class 955, Confidence: 0.990323 
2: Class 954, Confidence: 0.00107823 
3: Class 335, Confidence: 0.000476602 
Top 3 for rotated image 
1: Class 335, Confidence: 0.935247 
2: Class 337, Confidence: 0.0106328 
3: Class 338, Confidence: 0.0096081 
Top 3 for blurred (bilateral) image 
1: Class 335, Confidence: 0.719883 
2: Class 337, Confidence: 0.0393073 
3: Class 338, Confidence: 0.0233211 
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Classification by votes: 335 

10.2. Model cloning 
Machine learning models are susceptible to model extraction using retraining attacks (Tramèr et al. 
2016, Correia-Silva et al. 2018), where an adversary exploits the information gained by querying the 
model for selected inputs and uses that as training data for a counterfeit model. Model extraction attacks 
enable an adversary to copy the functional behavior of the model into a clone, which can then be used to 
undermine pay-per-query mechanisms or the competitive edge of the creator of the original model. In 
addition, the attack can also be used to create a copy which can be inspected to gather additional 
information for other attacks, like the adversarial examples attack described in Section 10.1, 
“Adversarial examples”. 
Our package hardens machine learning models against model extraction by perturbing the fine-grained 
confidence information included in model output. Perturbing the confidence values produced by the 
model reduces the information that is leaked about the model’s functional behavior. Therefore, an 
adversary must perform an increased number of queries to the model to gain sufficient information 
about the model to reproduce it. Since a successful model extraction attack requires more queries, the 
attack becomes more invasive and hence increases the spent effort of the adversary. Additionally, it 
becomes easier to detect and to subsequently take effective measures upon. 
There are several strategies to perturb the confidence information produced by the machine-learning 
model. All strategies keep the top-1 accuracy unchanged by keeping the number 1 rank, that means the 
output class with the highest confidence, intact. The strategies add a small amount of noise to the 
confidence levels of the predictions, such that model extraction attacks become as effective as when they 
are performed on only the top label, while some useful information about the remaining ranks is 
preserved for the legitimate user. 
There are two functions that perturb the predicted confidence levels without affecting the rank of the 
class which has the highest confidence: addNoise and addPseudoNoiseSin. The former adds random 
noise to each of the confidence values, the latter adds noise according to the sine function 

), plotted in Figure 2, 
which results in a considerable increase in the number of queries required for successful model 
extraction. Although this comes at the cost of a reduced precision of the model’s prediction confidence, 
this reduction is limited. If the addition of noise caused the first ranked class to change, this class is 
swapped back into the top position. Therefore neither addNoise nor addPseudoNoiseSin affects 
the top-1 accuracy. The functions support normalization, which scales the new confidence levels such 
that they sum to 1. 
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Figure 16. Remapping of the original confidence levels to confidence levels with addPseudoNoiseSin 

An additional function for perturbing the confidence levels is roundConfidenceLevels that 
rounds the confidence levels to the nearest given step. Contrary to the other two functions, this function 
may affect the top-1 accuracy as the highest confidence level may be shared by multiple classes. 
All three of these functions can be used as follows: 
// calculate confidence levels with the neural network 
cv::Mat confidences = googleNet.forward(); 
bool applyNormalization = true; 
 
// add noise to the confidence levels with a range of [-0.1, 0.1] 
addNoise(confidences, 0.2f, applyNormalization); 
 
// add pseudo noise to the confidence levels 
addPseudoNoiseSin(confidences, applyNormalization); 
 
// round the confidences to quarters precision 
roundConfidenceLevels(confidences, 0.25f); 

 
The effectiveness of each of the offered perturbation functions is shown in Figure 3. This table shows 
the loss in top-1 accuracy of a model cloned using the attack by (Correia-Silva, et al. 2018) compared to 
the top-1 accuracy of the oracle model. The loss is given for attacks with 125,000, 250,000, and 
1,000,000 queries to the oracle that the clone is trained on. Labels only is added as a reference and 
shows the loss in top-1 accuracy for the clone if the confidence levels are disregarded and only the label 
of the first ranked class is used for the model extraction attack. This shows that the described 
countermeasure offers some protection against the attack without removing all information given to a 
legitimate user about the remaining confidence levels, as is the case for a model that would output only 
the top-1 label. 
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Table 1. Loss of clone top-1 accuracy compared to oracle model top-1 accuracy 
 

H
ar

de
ni

ng
 

 m
et

ho
d 

N
o 

ha
rd

en
in

g 

To
p-

1 
la

be
l o

nl
y 

r
o
u
n
d
C
o
n
f
i
d
e
n
c
e
L
e
v
e
l
s
 

(
c
o
n
f
,
 
0
,
2
5
f
)
 

a
d
d
P
s
e
u
d
o
N
o
i
s
e
S
i
n
 

(
c
o
n
f
,
 
t
r
u
e
)
 

a
d
d
N
o
i
s
e
 

(
c
o
n
f
,
 
0
.
2
f
,
 
t
r
u
e
)
 

Number  
of queries 

125,000 8.4% 16.6% 10.6% 16.3% 19.0% 

250,000 5.4% 10.7% 7.2% 9.8% 12.4% 

1,000,000 2.1% 8.2% 2.8% 3.8% 6.6% 

The choice of which hardening method to use or to use no method depends on the use-case in which a 
model is deployed. We identify a tradeoff between the protection against model extraction and the 
precision of the model. If precision of the confidence levels is not a requirement, then a model is best 

protected with the addNoise method with a large parameter for the range (e.g. ). If a use-case 
requires higher precision of the confidence levels, then the methods addPseudoNoiseSin, 

addNoise with a small range (e.g. ) or roundConfidenceLevels with a small range (e.g. 

) can suffice. The parameter range of the noise for addPseudoNoiseSin is limited to the 

interval . 

10.3. Model Inversion 
When machine learning is used for privacy-sensitive applications or when the data used for training 
contains privacy-sensitive information, this sensitive information can be learned by the model. This 
means that private information can be contained inside the trained model as part of the learned internal 
parameters. Therefore, model inversion attacks (Fredrikson, et al. 2015) may become an issue. In such 
an attack an adversary uses information obtained by querying the model to extract privacy-sensitive 
information from the model. 
One example application for model inversion attacks is an adversary attempting to extract the faces of 
individuals from a model used for face recognition. Another example application is an adversary trying 
to infer sensitive medical information about a person based on some easily available attributes and a 
machine learning model trained to predict medical conditions or drug dosages (Fredrikson, et al. 2014). 
To counter the threat of exposing privacy-sensitive information, the literature recommends limiting the 
accuracy of confidence values returned by the model. Generally, that means that similar 
countermeasures can be used to harden a model against model inversion attacks as the ones 
recommended to harden a model against the model extraction attack (as shown in Section 7.2 Model 
Cloning), because both types of attacks are based on information leaked through fine-grained confidence 
output. 
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Our package allows to harden pre-trained machine learning models against these attacks by rounding the 
confidence levels included in the output of the model to a given step size. Experimental results (from 
Fredrikson, et al. 2015) show that these types of attacks can be mitigated in this way, while it keeps the 
confidence levels accurate enough to be useful for the intended application of the model. We note 
however that model inversion has not been the focus of as much research and as many academic 
publications as the other threats detailed in this chapter. It is therefore possible that stronger attacks 
(using more queries or combined model extraction-inversion attacks) will allow an attacker to extract 
confidential information even from a hardened model. 

The following code example shows how the rounding function can be applied to the output of a model: 
// calculate confidence levels with the neural network 
cv::Mat confidences = googleNet.forward(); 
 
// round the confidence levels 
roundConfidenceLevels(confidences, 0.05f); 

As previously indicated, the countermeasure of adding small perturbations to the confidence output (as 
recommended to harden models against model extraction in Section 7.2 Model Cloning) can also be 
used to harden models against model inversion. 
The following example code shows how these output transformations can be applied to the output of a 
model: 
// calculate confidence levels with the neural network 
cv::Mat confidences = googleNet.forward(); 
bool applyNormalization = true; 
 
// add noise to the confidence levels with a range of [-0.1, 0.1] 
addNoise(confidences, 0.2f, applyNormalization); 
 
// add pseudo noise to the confidence levels 
addPseudoNoiseSin(confidences, applyNormalization); 

For further details on these countermeasures see Section 7.2 Model Cloning. 

10.4. Library Usage 
The library can be included in an image by adding IMAGE_INSTALL_append = " ml-
security-staticdev" to conf/local.conf, assuming that the appropriate layers and recipes are 
available. 
In that case it should be available for static linking from both, the toolchain and the final image. It is 
unlikely that the static library in the image will be used but it might be useful for rapid development and 
it is not very large. 
For description on how to create the toolchain see Section 3.2.7 Build the Yocto SDK Toolchain. 
On an image that includes the package the library should be found in /usr/lib/libml-security.a and the 
include files in /usr/include/ml-security/. The pre-built examples and their source should be located in 
/usr/share/ml-security/examples. 
Using the Yocto SDK Toolchain for a supporting image should allow re-building the examples as 
follows: 
mkdir /home/user/examples-build 
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cd /home/user/examples-build 
cmake $SDK_SYSROOT/usr/share/ml-security/examples 
make 

This should result in a binary which works on a device running the accompanying image. Using the 
examples requires the test_images folder from the examples directory and test_model/inception_v3.pb. 
This model can be downloaded and converted using the get_model.sh script in the examples folder but it 
requires Bash, Python and Tensorflow and is intended for use on a Ubuntu host. 
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