MCF5251 Product Brief
ColdFire® 32-Bit Processor

The MCF5251 is a system controller/decoder for compressed audio music players addressing both portable and automotive solutions that support CD, HDD, and USB-based systems. The 32-bit ColdFire core with an enhanced multiply and accumulate (eMAC) unit provides optimum performance and code density for the combination of control code and signal processing required for compressed audio decode, file management, and system control.

Low-power features include flexible PLL (with power down mode) with dynamic clock switching, a hardwired CD ROM decoder, advanced 0.13 μm CMOS process technology, 1.2 V core power supply, and an on-chip 128-Kbyte SRAM.

Additional features of the MCF5251 microprocessor include USB 2.0 On-The-Go (OTG) technology with integrated high-speed physical layer (PHY), real-time clock (RTC), dedicated advanced technology attachment (ATA) hard disk interface supporting ATA-66 and two controller area network (CAN) modules for automotive control bus support in a single solution.

This document contains preview information on a new product that may be in a design phase or under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2006. All rights reserved.
1 Application Examples

The MCF5251 processor is designed for portable consumer audio applications and automotive audio solutions. The MCF5251 is an excellent general purpose system controller with over 125 Dhrystone 2.1 MIPS @ 140 MHz performance. The integrated peripherals and eMAC allow the MCF5251 to replace both the microcontroller and the DSP in certain applications. Most peripheral pins can be remapped as General Purpose I/O pins.

For additional information regarding software drivers and for additional applications, refer to www.freescale.com/coldfire.

Consumer Applications

The MCF5251 is designed for the following consumer applications:

- Portable multimedia players
- Boom boxes
- Mini-systems
- MP3 docking stations
- USB thumb drive players
- Jukeboxes

Figure 1 illustrates the MCF5251 HDD reference design.

Figure 1. MCF5251 HDD Reference Design
Automotive Applications

The MCF5251 is designed for the following automotive applications:

- Car radios
- CD or hard disc drives (HDD) compressed audio players
- USB Thumb drive players
- Virtual CD-changer

Figure 2 illustrates an example of a car radio architecture design using the MCF5251 processor.

Figure 3 illustrates an example of a virtual CD-changer design using the MCF5251 processor.
2 Features

The MCF5251 is a third generation 32-bit microprocessor which builds upon the features of the SCF5250 which provided more memory and improved power management over the SCF5249.

Distinguishing features of the MCF5251 are:

- USB 2.0 high-speed on-the-go (OTG) with integrated PHY
- Dedicated ATA hard disk interface
- Dedicated USB and ATA 16K SRAM with DMA support
- Digital audio interface (I²S and SPDIF)
- SmartMedia interface (including IDE and compact flash)
- Three UARTs
- NOR flash interface
- Twin controller area network module (FlexCAN)
- Embedded BDM debug port
- On-chip real-time clock that works with a 32.768 kHz crystal. Real-time clock has tamper detection functionality.
- 225-pin MAPBGA package
- SD/MMC interface
- Keypad/battery level monitor ADC
- Two I²C interfaces (400 KHz)
2.1 Block Diagram

Figure 4. MCF5251 Block Diagram

2.2 Critical Performance Parameters

The following list provides the performance parameters of the MCF5251 processor.

- An internal 1.2 V regulator to supply the CPU and PLL
- Maximum 140 MHz operating core frequency
- Operating temperature range of -40° – +85° C
- Packaged in a 225 MAPBGA, 14 × 14 mm 0.8 mm pitch
- MP3 decode requires less than 20 MHz CPU bandwidth and runs using an on-chip SRAM

2.3 Chip-Level Features

This section summarizes the features of the MCF5251 processor.

2.3.1 ColdFire CF2 Core

The ColdFire processor Version 2 (V2) core consists of two independent, decoupled, pipeline structures to maximize performance while minimizing core size. The instruction fetch pipeline (IFP) is a two-stage pipeline for prefetching instructions. The prefetched instruction stream is then gated into the two-stage operand execution pipeline (OEP), which decodes the instruction, fetches the required operands, and then executes the required function. Because the IFP and OEP pipelines are decoupled by an instruction buffer that serves as a FIFO queue, the IFP can prefetch instructions in advance of their actual use by the OEP, which minimizes time stalled waiting for instructions. The OEP is implemented in a two-stage pipeline featuring a traditional RISC data path with a dual-read-ported register feeding an arithmetic/logic unit (ALU).

More features of the ColdFire V2 Processor Core include:

- Clock-doubled Version 2 microprocessor core
- 32-bit internal data bus, 16 bit external data bus
- 16 user-visible, 32-bit general-purpose registers
- Supervisor/user modes for system protection
- Vector base register to relocate exception-vector table
- Optimized for high-level language constructs

2.3.2 Module Features

Table 1 shows an alphabetical listing of the modules in the processor.

MCF5251 Product Brief, Rev. 0

6

Freescale Semiconductor
Table 1. Digital and Analog Modules

<table>
<thead>
<tr>
<th>Block Mnemonic</th>
<th>Block Name</th>
<th>Functional Grouping</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATA</td>
<td>Advanced Technology Attachment Controller</td>
<td>Connectivity Peripheral</td>
<td>The ATA block is an AT attachment host interface. Its main use is to interface with IDE hard disc drives and ATAPI optical disc drives.</td>
</tr>
<tr>
<td>ADC</td>
<td>Battery Level/Keypad Analog/Digital Converter</td>
<td>Analog Input</td>
<td>The six-channel ADC is based on the Sigma-Delta concept with 12-bit resolution. Both the analog comparator and digital sections are integrated in the MCF5251.</td>
</tr>
<tr>
<td>AB</td>
<td>Audio Bus</td>
<td>Audio Interface</td>
<td>The audio interfaces connect to an internal bus that carries all audio data. Each receiver places its received data on the audio bus and each transmitter takes data from the audio bus for transmission.</td>
</tr>
<tr>
<td>AIM</td>
<td>Audio Interface</td>
<td>Audio Interface</td>
<td>The audio interface module provides the necessary input and output features to receive and transmit digital audio signals over serial audio interfaces (IIS/EIAJ) and over digital audio interfaces (IEC958).</td>
</tr>
<tr>
<td>BROM</td>
<td>Bootloader</td>
<td>Boot ROM</td>
<td>The MCF5251 incorporates a ROM Bootloader, which enables booting from UART, I2C, SPI, or IDE devices.</td>
</tr>
<tr>
<td>FlexCAN</td>
<td>Twin Controller Area Network 2.0B Communication Unit</td>
<td>Connectivity Peripheral</td>
<td>The FlexCan module is a full implementation of the Bosch CAN protocol specification 2.0B, which supports both standard and extended message frames.</td>
</tr>
<tr>
<td>CSM</td>
<td>Chip Select Module</td>
<td>Connectivity Peripheral</td>
<td>Three programmable chip-select outputs (CS0/CS4, CST, and CS2) provide signals that enable glueless connection to external memory and peripheral circuits.</td>
</tr>
<tr>
<td>DMAC</td>
<td>Direct Memory Access Controller Module</td>
<td>Connectivity Peripheral</td>
<td>There are four fully programmable DMA channels for quick data transfer.</td>
</tr>
<tr>
<td>eMAC</td>
<td>enhanced Multiply Accumulate Module</td>
<td>Core</td>
<td>The integrated eMAC unit provides a common set of DSP operations and enhances the integer multiply instructions in the ColdFire architecture.</td>
</tr>
<tr>
<td>MBUS</td>
<td>Memory Bus Interface</td>
<td>Bus Operation</td>
<td>The bus interface controller transfers data between the ColdFire core or DMA and memory, peripherals, or other devices on the external bus.</td>
</tr>
<tr>
<td>MMC/SD</td>
<td>Multimedia Card/Secure Digital Card Interface</td>
<td>Flash Memory Card Interface</td>
<td>The interface is Sony® Memory Stick®, SecureDigital, and Multi-Media card compatible. Note: The Sony Memory Interface does not support Sony MagicGate™.</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose I/O Interface</td>
<td>System integration</td>
<td>GPIO signals are multiplexed with various other signals.</td>
</tr>
<tr>
<td>GPT</td>
<td>General Timer Module</td>
<td>Timer peripheral</td>
<td>The timer module includes two general-purpose timers, each of which contains a free-running 16-bit timer.</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Drive Electronics</td>
<td>Connectivity peripheral</td>
<td>The IDE hardware consists of bus buffers for address and data and are intended to reduce the load on the bus and prevent SDRAM and Flash accesses from propagating to the IDE bus.</td>
</tr>
<tr>
<td>INC</td>
<td>Instruction Cache</td>
<td>Core</td>
<td>The instruction cache improves system performance by providing cached instructions to the execution unit in a single clock cycle.</td>
</tr>
<tr>
<td>I²C</td>
<td>Inter IC Communication Module</td>
<td>Connectivity peripheral</td>
<td>The two-wire I²C bus interfaces, compliant with the Philips I²C bus standard, are bidirectional serial buses that exchange data between devices.</td>
</tr>
</tbody>
</table>
Table 1. Digital and Analog Modules (continued)

<table>
<thead>
<tr>
<th>Block Mnemonic</th>
<th>Block Name</th>
<th>Functional Grouping</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>Internal 128-KB SRAM</td>
<td>Internal memory</td>
<td>The 128-Kbyte on-chip SRAM is split over two banks, SRAM0 (64K) and SRAM1 (64K). It provides single clock-cycle access for the ColdFire core.</td>
</tr>
<tr>
<td>LIN</td>
<td>Internal Voltage Regulator</td>
<td>Linear regulator</td>
<td>An internal 1.2 V regulator is used to supply the CPU and PLL sections of the MCF5251, reducing the number of external components required and allowing operation from a single supply rail, typically 3.3 volts.</td>
</tr>
<tr>
<td>JTAG</td>
<td>Joint Test Action Group</td>
<td>Test and debug</td>
<td>To help with system diagnostics and manufacturing testing, the MCF5251 includes dedicated user-accessible test logic that complies with the IEEE 1149.1A standard for boundary scan testability, often referred to as Joint Test Action Group, or JTAG.</td>
</tr>
<tr>
<td>QSPI</td>
<td>Queued Serial Peripheral Interface</td>
<td>Connectivity Interface</td>
<td>The QSPI module provides a serial peripheral interface with queued transfer capability.</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-Time Clock</td>
<td>Timer Peripheral</td>
<td>The RTC is a clock that keeps track of the current time even if the clock is turned off.</td>
</tr>
<tr>
<td>BDM</td>
<td>Background Debug Interface</td>
<td>Test and debug</td>
<td>A background-debug mode (BDM) interface provides system debug.</td>
</tr>
<tr>
<td>SDRAMC</td>
<td>Synchronous DRAM Memory Controller</td>
<td>Peripheral Interface</td>
<td>The SDRAM controller provides a glueless interface for one bank of SDRAM, and can address up to 32MB. The controller supports a 16-bit data bus. The controller operates in page mode, non-page mode, and burst-page mode and supports SDRAMs.</td>
</tr>
<tr>
<td>SIM</td>
<td>System Integration Module</td>
<td>System Integration</td>
<td>The SIM provides overall control of the internal and external buses and serves as the interface between the ColdFire core and the internal peripherals or external devices. The SIM is responsible for the two interrupt controllers (setting priorities and levels). And it also configures the GPIO ports.</td>
</tr>
<tr>
<td>PLL</td>
<td>System Oscillator and Phase Lock Loop</td>
<td>System Clocking</td>
<td>The oscillator operates from an external crystal connected across CRIN and CROUT. The circuit can also operate from an external clock connected to CRIN. The on-chip programmable PLL, which generates the processor clock, allows the use of almost any low frequency external clock (5–35 MHz).</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver /Transmitter Module</td>
<td>Connectivity Peripheral</td>
<td>Three UARTs handle asynchronous serial communication.</td>
</tr>
<tr>
<td>USBOTG</td>
<td>USB 2.0 High-Speed On-The-Go</td>
<td>Connectivity Peripheral</td>
<td>The USB module is used for communication to a PC or communication to slave devices; for example, to download data from a hard disc player to a flash player, and to other devices.</td>
</tr>
</tbody>
</table>

3 Developer Environment

Development tools for the MCF5251 processor include the Freescale ColdFire Core simulator. Additionally, the M5251C3 evaluation board provides an excellent vehicle for embarking on a high-performance embedded design. With 16 Mbytes of SDRAM, 2 Mbytes of Flash, one serial port, one CAN port, SD card slot, Audio ADC (for analog input), Audio DAC with Headphone driver, simple keyboard, QCIF color display and IDE/ATA connectors and access to the best-in-class ColdFire debug
module, this complete package includes all the components for realizing an MCF5251 design quickly and easily.

The MCF5251 comes with a complete audio reference software package supporting the following:

- Windows Media Audio (WMA)
- MP3 decode
- MP3 encode
- mp3PRO
- Advanced Audio Coding (AAC)
- Ogg Vorbis
- SRS-WOW
- JPEG
- MPEG-4 decode
- Microsoft DRM (WMADRM10)
- ADPCM Voice Record
- PlaysForSure and PlaysFromDevice
- FAT16 and FAT32 file system
- Proprietary RTOS (FlexOS)
- USB Host MSC support
- SD/MMC Card support

On request, Freescale provides schematics, layout files and component lists for a 1.8-inch, 20 Gbyte HDD reference design that includes a color liquid crystal display (LCD) and support for JPEG, MPEG-4, and USB 2.0 OTG.

4 Document Revision History

Revision 0 is the first release of this document.