1 Kinetis EA series

Kinetis EA series provide the highly scalable portfolio of ARM® Cortex®-M0+ MCUs in the automotive industry. With 2.7–5.5 V supply and focus on exceptional EMC/ESD robustness, Kinetis EA series devices are well suited to a wide range of applications in electrical harsh environments, and is optimized for cost-sensitive applications offering low pin-count option. The Kinetis EA series offers a broad range of memory, peripherals, and package options. They share common peripherals and pin counts allowing developers to migrate easily within an MCU family or among the MCU families to take advantage of more memory or feature integration. This scalability allows developers to standardize on the Kinetis EA series for their end product platforms, maximising hardware and software reuse and reducing time-to-market.

Following are the general features of the Kinetis EA series MCUs.

- 32-bit ARM Cortex-M0+ core
- Scalable memory footprints from 8 KB flash / 1 KB SRAM to 128 KB flash / 16 KB SRAM
- Precision mixed-signal capability with on chip analog comparator and 12-bit ADC
- Powerful timers for a broad range of applications including motor control
- Serial communication interfaces such as UART, SPI, I²C, and others.
• High security and safety with internal watchdog and programmable CRC module
• Single power supply (2.7–5.5 V) with full functional flash program/erase/read operations
• Ambient operation temperature range: −40 °C ~ 125 °C

Kinetis EA series MCU families are supported by a market-leading enablement bundle from Freescale and numerous ARM third-party ecosystem partners. The KEA64 sub-family is the entry-point to the Kinetis EA series and is pin-compatible within EA series and with the Freescale's 8-bit S08RN family.

2 KEA64 sub-family introduction

This sub-family includes a powerful array of analog, communication, and timing and control peripherals with specific flash memory size and the pin count.

• Core and architecture:
 • ARM Cortex-M0+ core running up to 40 MHz at 125 °C with zero wait state execution from memories
 • Single-cycle access to I/O: Up to 50 percent faster than standard I/O, improves reaction time to external events allowing bit manipulation and software protocol emulation
 • Two-stage pipeline: Reduced number of cycles per instruction (CPI), enabling faster branch instruction and ISR entry, and reducing power consumption
 • Excellent code density in comparison to 8-bit and 16-bit MCUs: Reduced flash size, system cost, and power consumption
 • Optimized access to program memory: Accesses on alternate cycles reduces power consumption
 • 100 percent compatible with ARM Cortex-M0 and a subset ARM Cortex-M3/M4: Reuse existing compilers and debug tools
 • Simplified architecture: 56 instructions and 17 registers enable easy programming and efficient packaging of 8/16/32-bit data in memory
 • Bus clock running up to 20 MHz
 • BME: Bit manipulation engine reduces code size and cycles for bit-oriented operations to peripheral registers eliminating traditional methods where the core would need to perform read-modify-write operations.

• Power-saving:
 • Low-power ARM Cortex-M0+ core with excellent energy efficiency
 • Supports three power modes: Run, Wait and Stop
 • Supports clock gating for unused modules, and specific peripherals remain working in Stop mode

• Memory:
 • Up to 64 KB program flash, 256 B EEPROM, 4 KB SRAM
 • Embedded 32 B flash cache for optimizing bus bandwidth and flash execution performance

• Clocks
 • Oscillator (OSC) - supports 32.768 kHz crystal or 4 MHz to 20 MHz crystal or ceramic resonator; choice of low power or high gain oscillators
 • Internal clock source (ICS) - internal FLL with internal or external reference, 31.25 kHz pretrimmed internal reference for 40 MHz system clock
 • Internal 1 kHz low-power oscillator (LPO)

• Mixed-signal analog:
 • Up to 16 channels of 12-bit analog-to-digital conversion (ADC) with 2.5 μs conversion time, 1.7 mV/°C temperature sensor, internal bandgap reference channel, supporting automatic compare, optional hardware trigger, and operating in Stop mode
 • Up to two analog comparators (ACMP) with both positive and negative inputs, separately selectable interrupt on rising and falling comparator output

• Human-machine interface (HMI):
 • Up to two 8-bit keyboard interrupt modules (KBI)

• Connectivity and communications:
 • Up to three serial communications interface (UART) modules with optional 13-bit break, full duplex non-return to zero (NRZ) and LIN extension support
• Up to two serial peripheral interface (SPI) modules with full-duplex or single-wire bidirectional and master or slave mode
• One Inter-integrated circuit (I²C) module with support of system management bus
• Reliability, safety and security:
 • Internal watchdog with independent clock source
 • Cyclic redundancy check (CRC) with programmable 16- or 32-bit polynomial generator
• Timing and control:
 • FlexTimer module (FTM) including one 6-channel FTM with deadtime insertion and fault detection, and up to two 2-channel FTMs backward compatible with TPM modules. Each channel can be configured for input capture, output compare, edge- or center-aligned PWM mode.
 • Periodic interrupt timer (PIT) for RTOS task scheduler time base or trigger source for ADC conversion and timer modules
 • 16-bit real timer counter (RTC)
• I/O and package:
 • Up to 57 GPIO pins with interrupt functionality
 • Up to 2 true open-drain output pins
 • Up to 8 high current drive pins supporting 20 mA source/sink current
 • Multiple package options from 32-pin to 64-pin

The family acts as a low-power, high-robustness, and cost-effective microcontroller to provide developers an appropriate entry-level 32-bit solution. The family is next generation MCU solution with enhanced EMC/ESD performance for cost-sensitive, high-reliability devices applications used in high electrical noise environments.

3 Block diagram

The following figure shows a superset block diagram of the device. Other devices within the family have a subset of the features.
4 Features

4.1 Feature summary

All devices within the KEA64 sub-family have a minimum of the following features.

Table 1. Common features among all KEA64 devices

<table>
<thead>
<tr>
<th>Operating characteristics</th>
<th>Core features</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2.7 V to 5.5 V</td>
<td>• Next generation 32-bit ARM Cortex M0+ core</td>
</tr>
<tr>
<td>• Temperature range (T_A) -40 °C to 125 °C</td>
<td>• Supports up to 32 interrupt request sources</td>
</tr>
<tr>
<td>• Three operation modes: Run, Wait, Stop</td>
<td>• Nested vectored interrupt controller (NVIC)</td>
</tr>
<tr>
<td></td>
<td>• 2-pin serial wire debug (SWD) interface</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 1. Common features among all KEA64 devices (continued)

| System and power management | • Watchdog
| | • Integrated bit manipulation engine (BME)
| | • Power management controller with three different
| | power modes
| | • Non-maskable interrupt (NMI)
| | • 64-bit unique identification (ID) number
| Clocks | • External crystal oscillator or resonator
| | • Up to DC–MHz external square wave input clock
| | • Internal clock references
| | • 31.25–39.063 kHz oscillator
| | • 1 kHz oscillator
| | • Frequency-locked loop with the range of
| | • 32–40 MHz
| Memory and memory interfaces | • Up to 64 KB flash memory
| | • Up to 256 B EEPROM
| | • Up to 4 KB SRAM
| Security and integrity | • Watchdog (WDOG)
| | • Cyclic redundancy check (CRC) module
| Analog | • One 12-bit analog-to-digital converter (ADC)
| | • Two analog comparators (ACMP) with internal 6-bit
| | digital-to-analog converter (DAC)
| Timers | • One 6-channel and two 2-channel 16-bit FTM modules
| | • 32-bit programmable interrupt timer (PIT)
| | • Real-time clock (RTC)
| | • System tick timer (SYSTICK)
| Communications | • Two serial peripheral interfaces (SPI)
| | • Two inter-integrated circuit (I2C) modules
| | • Three universal asynchronous receiver/transmitter
| | (UART) modules
| Human-machine interface | • Up to 57 GPIO pins
| | • Up to two keyboard interface (KBI) modules
| | • Interrupt (IRQ)

4.2 Memory and package options

The following table summarizes the memory and package options for the KEA64 family. All devices which share a common package are pin-for-pin compatible.

Table 2. KEA64 family summary

<table>
<thead>
<tr>
<th>Sub-Family</th>
<th>Performance (MHz)</th>
<th>Memory</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Flash (KB)</td>
<td>SRAM (KB)</td>
</tr>
<tr>
<td>KEA64</td>
<td>20</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 2. KEA64 family summary (continued)

<table>
<thead>
<tr>
<th>Sub-Family</th>
<th>Performance (MHz)</th>
<th>Memory</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flash (KB)</td>
<td>SRAM (KB)</td>
<td>32 LQFP (7x7)</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>64</td>
<td>4</td>
<td>+</td>
</tr>
</tbody>
</table>

4.3 Part numbers and packaging

Q KEA A C FFF M T PP (N)

<table>
<thead>
<tr>
<th>Qualification status</th>
<th>Family</th>
<th>Key attribute</th>
<th>CAN available</th>
<th>Flash size</th>
<th>Tape and Reel (T&R)</th>
<th>Package identifier</th>
<th>Temperature range (°C)</th>
<th>Maskset revision</th>
</tr>
</thead>
</table>

Figure 2. Part numbers diagrams

Table 3. Part number field description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
</table>
| Q | Qualification status | • S = Automotive Qualified
| | | • P = Prequalification |
| KEA | Kinetis E automotive family | • KEA |
| A | Key attribute | • Z = Cortex-M0+ |
| C | CAN availability | • N = CAN not available
| | | • (Blank) = CAN available |
| FFF | Program flash memory size | • 16 = 16 KB
| | | • 32 = 32 KB
| | | • 64 = 64 KB |
| M | Maskset revision | • F0 = 1st Fab version
| | | • F1 = Revision after 1st version |
| T | Temperature range (°C) | • M = –40 to 125 |
| PP | Package identifier | • LC = 32 LQFP (7 mm x 7 mm)
| | | • LH = 64 LQFP (10 mm x 10 mm) |
| N | Packaging type | • R = Tape and reel
| | | • (Blank) = Trays |
4.4 KEA64 family features

The following sections list the differences among the various devices available within the KEA64 family.

The features listed below each part number specify the maximum configuration available on that device. The signal multiplexing configuration determines which modules can be used simultaneously.

4.4.1 KEA64 family features (40 MHz performance)

Table 4. KEA64 40 MHz performance table

<table>
<thead>
<tr>
<th>SC part number</th>
<th>SKEAZN16AML(R)</th>
<th>SKEAZN32AML(R)</th>
<th>SKEAZN64AML(R)</th>
<th>SKEAZN32AMLH(R)</th>
<th>SKEAZN64AMLH(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU frequency</td>
<td>40 MHz</td>
<td>40 MHz</td>
<td>40 MHz</td>
<td>40 MHz</td>
<td>40 MHz</td>
</tr>
<tr>
<td>Pin count</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Package</td>
<td>LQFP</td>
<td>LQFP</td>
<td>LQFP</td>
<td>LQFP</td>
<td>LQFP</td>
</tr>
<tr>
<td>Memories and memory interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash</td>
<td>16 KB</td>
<td>32 KB</td>
<td>64 KB</td>
<td>32 KB</td>
<td>64 KB</td>
</tr>
<tr>
<td>SRAM</td>
<td>2 KB</td>
<td>4 KB</td>
<td>4 KB</td>
<td>4 KB</td>
<td>4 KB</td>
</tr>
<tr>
<td>EEPROM</td>
<td>256 B</td>
<td>256 B</td>
<td>256 B</td>
<td>256 B</td>
<td>256 B</td>
</tr>
<tr>
<td>ROM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debug-SWD</td>
<td>YES</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MTB</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>System modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchdog /w ind. clock</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PMC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DMA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BME (bit manipulation engine)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Clock modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS</td>
<td>FLL</td>
<td>FLL</td>
<td>FLL</td>
<td>FLL</td>
<td>FLL</td>
</tr>
<tr>
<td>Main OSC (32 kHz, 4-20 MHz)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IRC (~32 kHz)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LPO (~1 kHz)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>16-bit RTC</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Security and integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 4. KEA64 40 MHz performance table (continued)

<table>
<thead>
<tr>
<th>SC part number</th>
<th>SKEA2N16AML(R)</th>
<th>SKEA2N32AML(R)</th>
<th>SKEA2N64AML(R)</th>
<th>SKEA2N32AMLH(R)</th>
<th>SKEA2N64AMLH(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Analog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC with 8 buffer entry</td>
<td>12 bit, 1x12 ch</td>
<td>12 bit, 1x12 ch</td>
<td>12bit, 1x12 ch</td>
<td>12 bit, 1x16 ch</td>
<td>12 bit, 1x16 ch</td>
</tr>
<tr>
<td>6-bit DAC</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ACMP</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bandgap Vref (no pin-out)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Timers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit FTM (6-ch)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16-bit FTM (2-ch)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PIT (32-bit)</td>
<td>1x2 ch</td>
<td>1x2 ch</td>
<td>1x2 ch</td>
<td>1x2 ch</td>
<td>1x2 ch</td>
</tr>
<tr>
<td>Communication interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UART (LIN slave capable)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SPI (8-bit)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SPI (16-bit)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I2C (400 kb/s)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CAN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Human-machine interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment LCD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TSI (capacitive touch)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total GPIOs</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>20 mA high-drive GPIO</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>True open-drain</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Operating characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage range</td>
<td>2.7-5.5 V</td>
<td>2.7-5.5 V</td>
<td>2.7-5.5 V</td>
<td>2.7-5.5 V</td>
<td>2.7-5.5 V</td>
</tr>
<tr>
<td>Flash write V</td>
<td>2.7 V</td>
<td>2.7 V</td>
<td>2.7 V</td>
<td>2.7 V</td>
<td>2.7 V</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40 to 125 °C</td>
</tr>
</tbody>
</table>

4.5 Module-by-module feature list

The following sections describe the high-level module features for the family's superset device. See KEA64 family features (40 MHz performance) for differences among the subset devices.
4.5.1 Core modules

4.5.1.1 ARM Cortex-M0+ core
- Up to 40 MHz core frequency from 2.7 V to 5.5 V across temperature range of –40 °C to 125 °C
- Supports up to 32 interrupt request sources
- 2-stage pipeline microarchitecture for reduced power consumption and improved architectural performance (cycles per instruction)
- Binary compatible instruction set architecture with the Cortex-M0 core
- Thumb instruction set combines high code density with 32-bit performance
- Serial wire debug (SWD) reduces the number of pins required for debugging
- Single cycle 32 bits by 32 bits multiply

4.5.1.2 Nested Vectored Interrupt Controller (NVIC)
Following are the features of the NVIC module.
- Up to 32 interrupt sources
- Includes a single non-maskable interrupt

4.5.1.3 Asynchronous Wake-up Interrupt Controller (AWIC)
The features of the AWIC module are given below.
- Supports interrupt handling when system clocking is disabled in low-power modes
- Takes over and emulates the NVIC behavior when correctly primed by the NVIC on entry to very deep sleep mode.
- A rudimentary interrupt masking system with no prioritization logic signals for wake-up as soon as a non-masked interrupt is detected
- Contains no programmer’s model visible state and is therefore invisible to end users of the device other than through the benefits of reduced power consumption while sleeping

4.5.1.4 Debug controller
- 2-pin serial wire debug (SWD) provides external debugger interface

4.5.2 System modules

4.5.2.1 Power Management Control (PMC) unit
The features of the PMC module are listed below.
- Separate digital (regulated) and analog (referenced to digital) supply outputs
- Programmable power saving modes
- No output supply decoupling capacitors required
- Available wake-up from power saving modes via RTC and external inputs
- Integrated power-on-reset (POR)
- Integrated low voltage detect (LVD) with reset (brownout) capability
- Selectable LVD trip points
- Programmable low-voltage warning (LVW) interrupt capability
- Buffered bandgap reference voltage output
memories and memory interfaces

- Factory programmed trim for bandgap and LVD
- 1 kHz low-power oscillator (LPO)

4.5.2.2 Watchdog (WDOG) module

The features of the Watchdog module are described as follows.

- Independent clock source input (independent from CPU/bus clock)
- Choice between clock sources
 - 1 kHz internal low-power oscillator (LPOCLK)
 - Internal 32 kHz reference clock (ICSIRCLK)
 - External clock (OSCERCLK)
 - Bus clock

4.5.2.3 System clocks

The following clock sources can be used as system clocks.

- System oscillator (OSC)—Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 to 39.0625 kHz (low-range mode) or 32-40 MHz (high-range mode)
- Internal clock source (ICS)
 - Frequency-locked loop (FLL) controlled by internal or external reference
 - FLL output
 - Internal reference clocks—Can be used as a clock source for the other on-chip peripherals
 - On-chip RC oscillator range of 31.25 to 39.0625 kHz oscillator as the reference of FLL input.

4.5.3 Memories and memory interfaces

4.5.3.1 On-chip memory

- 40 MHz performance devices
 - Up to 64 KB flash memory
 - Up to 256 B EEPROM memory
 - Up to 4 KB SRAM
- Security circuitry to prevent unauthorized access to RAM and flash contents

4.5.4 Analog

4.5.4.1 Analog-to-Digital Converter (ADC)

The features of the ADC module are given below.

- Linear successive approximation algorithm with 8-, 10-, or 12-bit resolution
- Up to 16 external analog inputs, and 5 internal analog inputs including internal bandgap, temperature sensor, and references
- Output formatted in 8-, 10-, or 12-bit right-justified unsigned format
- Single or continuous conversion (automatic return to idle after single conversion)
- Supports up to eight result FIFO with selectable FIFO depth
- Configurable sample time and conversion speed/power
- Conversion complete flag and interrupt
• Input clock selectable from up to four sources
• Operation in Wait or Stop modes for lower noise operation
• Asynchronous clock source for lower noise operation
• Selectable asynchronous hardware conversion trigger
• Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value

4.5.4.2 Analog Comparator (ACMP)

The ACMP module has the following features.

• Operational over the whole supply range of 2.7–5.5 V
• On-chip 6-bit resolution DAC with selectable reference voltage from \(V_{DD} \) or internal bandgap
• Configurable hysteresis
• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output
• Selectable inversion on comparator output
• Up to four selectable comparator inputs; one of these is fixed and connected to built-in DAC output while the others are externally mapped on pinouts.
• Operational in Stop mode

4.5.5 Timer

4.5.5.1 FlexTimers (FTM)

The FlexTimer module exhibits the following features.

• Selectable FTM source clock
• Programmable prescaler
• 16-bit counter supporting free-running or initial/final value, and counting is up or up-down
• Input capture, output compare, and edge-aligned and center-aligned PWM modes
• Input capture and output compare modes
• Operation of FTM channels as pairs with equal outputs, pairs with complimentary outputs, or independent channels with independent outputs
• Deadtime insertion is available for each complementary pair
• Generation of hardware triggers
• Software control of PWM outputs
• Up to four fault inputs for global fault control
• Configurable channel polarity
• Programmable interrupt on input capture, reference compare, overflowed counter, or detected fault condition

4.5.5.2 Periodic Interrupt Timer (PIT)

The features of the PIT module are given below.

• Two general-purpose interrupt timers
• One interrupt timer for triggering ADC conversions
• 32-bit counter resolution
• Clocked by bus clock frequency

4.5.5.3 Real-Time Clock (RTC)

Following are the features of the real-time clock.

• 16-bit up-counter
4.5.6 Communication interfaces

4.5.6.1 Inter-Integrated Circuit (I²C)

The features of the I²C module are as follows.

- Compatible with I²C bus standard
- Up to 100 kbit/s with maximum bus loading
- Multimaster operation
- Software programmable for one of 64 different serial clock frequencies
- Programmable slave address and glitch input filter
- Interrupt-driven byte-by-byte data transfer
- Arbitration lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- Bus busy detection broadcast and 10-bit address extension
- Address matching causes wake-up when processor is in low-power mode.

4.5.6.2 Universal Asynchronous Receiver/Transmitter (UART)

The UART module has the following features.

- Full-duplex, standard non-return-to-zero (NRZ) format
- Double-buffered transmitter and receiver with separate enables
- Programmable baud rates (13-bit modulo divider)
- Interrupt-driven or polled operation:
 - Transmit data register empty and transmission complete
 - Receive data register full
 - Receive overrun, parity error, framing error, and noise error
 - Idle receiver detect
 - Active edge on receive pin
 - Break detect supporting LIN
- Hardware parity generation and checking
- Programmable 8-bit or 9-bit character length
- Programmable 1-bit or 2-bit stop bits
- Receiver wake-up by idle-line or address-mark
- Optional 13-bit break character generation / 11-bit break character detection
- Selectable transmitter output polarity

4.5.6.3 Serial Peripheral Interface (SPI)

The features of the SPI module are listed below.

- Master and slave mode
- Full-duplex, three-wire synchronous transfers
- Programmable transmit bit rate
• Double-buffered transmit and receive data registers
• Serial clock phase and polarity options
• Slave select output
• Mode fault error flag with CPU interrupt capability
• Control of SPI operation during Wait mode
• Selectable MSB-first or LSB-first shifting
• Receive data buffer hardware match feature

4.5.7 Human machine interface

4.5.7.1 General-Purpose Input/Output (GPIO)

The features of the GPIO module are listed below.

• Hysteresis and configurable pull up device on all input pins
• Configurable drive strength on some output pins
• Independent pin value register to read logic level on digital pin
• Fast IO access in single-cycle core clock

4.5.7.2 Keyboard Interrupts (KBI)

The KBI features include:

• Up to eight keyboard interrupt pins with individual pin enable bits
• Each keyboard interrupt pin is programmable as:
 • falling-edge sensitivity only
 • rising-edge sensitivity only
 • both falling-edge and low-level sensitivity
 • both rising-edge and high-level sensitivity
• One software-enabled keyboard interrupt
• Exit from low-power modes
Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

©2013-2014 Freescale Semiconductor, Inc.