System Management I2C and SPI Selector Guide

A broad catalog of interface components for all your design needs
I²C-bus: The Serial Revolution

By replacing complex parallel interfaces with a straightforward yet powerful serial structure, the I²C-bus revolutionized chip-to-chip communications.

Invented by NXP (Philips) more than 30 years ago, the I²C bus uses a simple two-wire format to carry data one bit at a time. It performs inter-chip addressing, selection, control and data transfer. Speeds are up to 400 kHz (fast mode), 1 MHz (fast mode plus), 3.4 MHz (high-speed mode), or 5 MHz (ultra-fast mode).

The I²C bus shrinks the IC footprint and leads to lower IC costs. Plus, since far fewer copper traces are needed, it enables a smaller PCB, reduces design complexity, and lowers system cost.

I²C bus devices are available in a wide range of functions. Each slave device has its own I²C bus address, selectable using address pins set high (1) or low (0). Information is transmitted byte by byte, and each byte is acknowledged by the receiver. There can be multiple devices on the same bus, and more than one IC can act as master. The master role is typically played by a microcontroller.

The master always sends the clock
General-Purpose Input-Output (GPIO) expanders
Add different types of inputs and outputs

Black-and-white LCD Display
Drivers Monochrome, character, shapes, dots

Tiny serial ADCs/DACs
Analog control and audio

Bus Buffers and Voltage Translators
Extenders, hubs, and repeaters to support extra devices, longer distances, bus-voltage translation, or hazardous conditions

Bridge ICs, Bus Controllers Add extra, fully featured I²C masters

Sensors and voltage management
Digital temperature information

Clocks / RTCs
Digital time, watchdog and/or calendar

Multiplexers and Switches
Add advanced I²C networking to allow more devices, backup, hot-swap

I²C-controlled DIP switches EEPROMs combined with general-purpose outputs

Intelligent stepper motor controllers
Easy and versatile control

Blinkers, Dimmers, Drivers
For complete LED control, including LCD backlighting

SPI Interface devices are included in the GPIO, LCD Display, Voltage Translators, RTC, Bridge and LED Blinker Categories. More information: www.nxp.com/i2c.
GPIO Expander

<table>
<thead>
<tr>
<th>GPIO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-bit</td>
<td>PCA9536</td>
<td>4-bit I²C Fm TP GPIO with PU</td>
</tr>
<tr>
<td>PCA9537</td>
<td>4-bit I²C TP GPIO with INT and RST</td>
<td></td>
</tr>
<tr>
<td>PCA9570</td>
<td>4-bit 1 MHz LV TP GPIO</td>
<td></td>
</tr>
<tr>
<td>8-bit</td>
<td>PCA8574</td>
<td>8-bit I²C Sm QB GPIO with INT and PU</td>
</tr>
<tr>
<td>PCF8574</td>
<td>8-bit I²C Fm QB GPIO with INT and PU</td>
<td></td>
</tr>
<tr>
<td>PCA8574A</td>
<td>8-bit I²C Fm QB GPIO with INT and PU (alternate address)</td>
<td></td>
</tr>
<tr>
<td>PCF8574A</td>
<td>8-bit I²C Sm QB GPIO with INT and PU (alternate address)</td>
<td></td>
</tr>
<tr>
<td>PCA9500</td>
<td>8-bit I²C Fm QB GPIO with PU and 2-K EEPROM</td>
<td></td>
</tr>
<tr>
<td>PCA9501</td>
<td>8-bit I²C Fm QB GPIO with INT, PU, and 2-K EEPROM</td>
<td></td>
</tr>
<tr>
<td>PCA9502</td>
<td>8-bit I²C Fm/SP SPI TP GPIO with INT and RST</td>
<td></td>
</tr>
<tr>
<td>PCA9534</td>
<td>8-bit I²C Fm TP GPIO with INT and PU (alternate address)</td>
<td></td>
</tr>
<tr>
<td>PCA9538A</td>
<td>8-bit I²C Fm TP GPIO with INT and RST</td>
<td></td>
</tr>
<tr>
<td>PCA9538B</td>
<td>8-bit I²C Fm LV TP GPIO with INT and RST</td>
<td></td>
</tr>
<tr>
<td>PCA9539A</td>
<td>8-bit I²C Fm LV TP/OD GPIO with INT, RST, latch and PU/ PD</td>
<td></td>
</tr>
<tr>
<td>PCA9539B</td>
<td>8-bit I²C Fm LV TP/OD GPIO with INT, RST, latch and PU/ PD (PU default)</td>
<td></td>
</tr>
<tr>
<td>PCA9540A</td>
<td>8-bit I²C Fm LV TP GPIO with INT and PU (alternate address for PCA9554)</td>
<td></td>
</tr>
<tr>
<td>PCA9542B</td>
<td>8-bit I²C Fm LV TP GPIO with INT and PU</td>
<td></td>
</tr>
<tr>
<td>PCA9544B</td>
<td>8-bit I²C Fm LV TP/OD GPIO with INT, RST, latch and PU/ PD</td>
<td></td>
</tr>
<tr>
<td>PCA9571</td>
<td>8-bit 1 MHz LV TP GPIO</td>
<td></td>
</tr>
<tr>
<td>PCA9702</td>
<td>8-bit SPI 18 V GPO with INT</td>
<td></td>
</tr>
<tr>
<td>PCA9704</td>
<td>8-bit SPI 18 V GPO with maskable INT</td>
<td></td>
</tr>
<tr>
<td>PCA9705</td>
<td>16-bit I²C Fm GB GPIO with INT and PU</td>
<td></td>
</tr>
<tr>
<td>PCF8575</td>
<td>16-bit I²C Fm GB GPIO with INT and PU</td>
<td></td>
</tr>
<tr>
<td>PCF8575C</td>
<td>16-bit I²C Fm OD GPIO with INT</td>
<td></td>
</tr>
<tr>
<td>PCA9535</td>
<td>16-bit I²C Fm TP GPIO with INT</td>
<td></td>
</tr>
<tr>
<td>PCA9535C</td>
<td>16-bit I²C Fm OD GPIO with INT</td>
<td></td>
</tr>
<tr>
<td>PCA9538A</td>
<td>16-bit I²C Fm LV TP GPIO with INT</td>
<td></td>
</tr>
<tr>
<td>PCA9538A</td>
<td>16-bit I²C Fm LV TP/OD GPIO with INT, latch and PU/ PD</td>
<td></td>
</tr>
<tr>
<td>PCA9539A</td>
<td>16-bit I²C Fm LV TP/OD GPIO with INT, RST, latch and PU/ PD</td>
<td></td>
</tr>
<tr>
<td>PCA9539A</td>
<td>16-bit I²C Fm LV TP/OD GPIO with INT, RST, latch and PU/ PD (PU default)</td>
<td></td>
</tr>
<tr>
<td>PCA9550</td>
<td>16-bit I²C Fm TP GPIO with INT and PU</td>
<td></td>
</tr>
<tr>
<td>PCA9550A</td>
<td>16-bit I²C Fm TP GPIO with INT and RST</td>
<td></td>
</tr>
<tr>
<td>PCA9552A</td>
<td>16-bit I²C Fm TP GPIO with INT and PU (state machine only)</td>
<td></td>
</tr>
<tr>
<td>PCA9552A</td>
<td>16-bit I²C Fm TP GPIO with INT and RST</td>
<td></td>
</tr>
<tr>
<td>PCA9552B</td>
<td>16-bit I²C Fm TP GPIO with INT and RST</td>
<td></td>
</tr>
<tr>
<td>PCA9558</td>
<td>24-bit SPI 18 V GPO with INT</td>
<td></td>
</tr>
<tr>
<td>PCA9570</td>
<td>24-bit SPI 18 V GPO with maskable INT</td>
<td></td>
</tr>
<tr>
<td>PCA9570A</td>
<td>40-bit I²C Fm TP GPIO with INT, RST, and OE</td>
<td></td>
</tr>
<tr>
<td>PCA9570B</td>
<td>40-bit I²C Fm TP GPIO with INT, RST, OE and PU</td>
<td></td>
</tr>
</tbody>
</table>

Stepper Motor Controller
- **1 motor controller**: PCA9629A
 - Improved I²C Fm+ stepper motor controller with TP GPIO with INT and RST

Temp Sensors
- **Local**:
 - LM75B: I²C Fm TS local with ± 2°C accuracy and SMBus timeout
 - SE95: I²C Fm TS local with ± 1°C accuracy
 - SE98A: I²C Fm JEDEC DDR3 TS, no SPD, +/- 1°C accuracy and SMBus time-out
 - PCT2075: I²C Fm + TS with +/- 1°C accuracy and SMBus time-out
 - PCT2020: I²C Fm TS local with ± 1°C accuracy
 - Local and EEPROM: SE978
 - Local and remote: SA56004

LED Controllers
Open Drain or Totem Pole Voltage Source
- **Dimmer (2 PWM, 25 mA/ 5 V)**: PCA9530
 - 2-channel I²C Fm OD LED dimmer with RST
- **Dimmer (2 PWM, 100 mA/ 5 V)**: PCA9531
 - 8-channel I²C Fm OD LED dimmer with RST
- **Controller (PWM/Ch, 25 mA/ 5 V)**: PCA9532
 - 16-channel I²C Fm OD LED dimmer with RST
- **Controller (PWM/Ch, 100 mA/40 V)**: PCA9533
 - 4-channel I²C Fm OD LED dimmer with RST
- **Controller (PWM/Ch, 57 mA/ 20 V)**: PCA9534
 - 4-channel I²C Fm OD LED dimmer with 12-bit PWMs and OE

Open Drain Constant Current
- **Controller (PWM/Ch, 57 mA/ 40 V)**: PCA9535
 - 16-channel I²C Fm+ HV OD LED controller with OE
- **Controller (PWM/Ch, 57 mA/ 20 V)**: PCA9536
 - 16-channel I²C Fm+ HV OD LED controller with OE
- **Controller (PWM/Ch, 57 mA/ 20 V)**: PCA9537
 - 24-channel I²C Fm+ HV OD LED controller with OE
- **Controller (PWM, 57 V)**: PCA9538
 - 24-channel SPI 5V CC LED controller - 32 mA per ch
Low-power
- **PCF2123**: SPI lower power RTC with alarm, timer, and interrupt
- **PCF85063**: I²C 30s, 60s interrupt
- **PCF85063A/B**: I²C 30s, 60s interrupt
- **PCF85263A**: I²C/Tiny RTC with alarms, time stamp and battery back-up +1-byte RAM
- **PCF85363A**: I²C/Tiny RTC with alarms, time stamp and battery back-up switch + 64-byte RAM
- **PCF8523**: I²C FM+ ultra-low-power RTC with loss of main power detection and automatic battery back-up
- **PCF8563**: I²C FM+ low-power clock/calendar

Automotive
- **+PCA21125**: SPI lower power RTC with alarm, timer, and interrupt to 125 °C
- **+PCA85073A**: I²C FM/Tiny RTC with Alarm and 30s, 60s interrupt -40 °C to 105 °C
- **+PCA8565**: I²C FM high-temperature clock/calendar -40 to +125 °C
- **+PCA2129**: I²C FM or SPI high-accuracy, low-voltage RTC with time stamp -40 °C to +85 °C

Temperature compensated
- **PCF2127(A)**: I²C FM or SPI high-accuracy, low-voltage RTC with time stamp 512 x 8 RAM
- **PCF2129(A)**: I²C FM or SPI high-accuracy, low-voltage RTC with time stamp

Muxes and Switches
- **2-channel**: PCA9540B, PCA9542A, PCA9543A
- **2-to-1 demux**: PCA9541A/01, PCA9541A/03
- **4-channel**: PCA9544A, PCA9545A/B, PCA9546A
- **8-channel**: PCA9547, PCA9548
- **Arbiter**: PCA9641

Code
- **5m**: 100 kHz standard-mode I²C bus
- **Fm**: 400 kHz fast-mode I²C bus
- **Fm+**: 1 MHz fast-mode plus I²C bus
- **HSm**: 3.4 MHz high-speed mode I²C bus
- **UiFm**: 5 MHz ultra-fast mode I²C bus
- **+**: AEC-Q100 compliance
- **GPIO**: General-purpose I/O expander
- **TS**: Thermal sensor
- **RTC**: Real-time clock
- **LCD**: Liquid crystal display

Code
- **DAC**: Digital analog converter
- **ADC**: Analog digital converter
- **LV**: Supply voltage < 2.3 V
- **VLV**: Supply voltage < 1.65 V
- **ULV**: Supply voltage < 1.0 V
- **HV**: Outputs > 10 V
- **VLT**: Voltage level translator – 2 supplies
- **QP**: Quasi-bidirectional
- **OD**: Open drain

Code
- **CC**: Constant Current
- **INT**: Interrupt
- **RST**: Reset
- **OE**: Output enable
- **Latch**: Input latch
- **PU**: Pull-up resistors
- **PU/PD**: Pull-up/pull-down resistors
- **COG**: Chip on glass
- **SPI**: Serial peripheral interface
- **SPMI**: System Power Management Interface
Graphic Drivers
- **PCF8531**: 34 x 128-pixel COG LCD driver with charge pump, VLCD temperature compensation
- **PCF8578**: 5 x 8 x 32 dot matrix LCD driver
- **PCF8579**: 3 x 5, up to 40,960 dots when combined with 32 x PCF8579

Segment Drivers
- **+PCF8561A/B**: I/F Sm 8 x 32 dot matrix LCD driver
- **PCF8566**: I/F Sm 72-segment low-power LCD driver in HVQFN32 package
- **+PCF85162**: I/F Sm 128-segment LCD driver in TSSOP48 package
- **+PCF85262**: I/F Sm 128-segment LCD driver with higher frame frequency in TSSOP48 package
- **+PCF8551A/B**: I/F Sm 144-segment low-power LCD driver with programmable frame frequency in TSSOP48 package
- **+PCF8547A/B**: I/F Sm 160-segment LCD driver with programmable frame frequency, charge pump, VLCD temperature compensation in TQFP64 package
- **+PCF85134**: I/F Sm 240-segment LCD driver in LQFP100 package
- **PCF8543**: I/F Sm 240-segment LCD driver with programmable frame frequency, charge pump, VLCD temperature compensation in LQFP100 package
- **PCF8545A/B**: I/F Sm 320-segment LCD driver with programmable frame frequency in TQFP64 package
- **+PCF8536A/B**: I/F Sm 320-segment LCD driver with programmable frame frequency and LED backlight PWM control in TQFP64 package
- **+PCF8537A/B**: I/F Sm 352-segment LCD driver with programmable frame frequency, charge pump, VLCD temperature compensation in LQFP100 package
- **PCF8539**: I/F Sm 18 x 100-pixel COG LCD driver with programmable frame frequency, charge pump, VLCD temperature compensation
- **+PCF8540**: I/F Sm 480-segment LCD driver with programmable frame frequency, charge pump, VLCD temperature compensation in LQFP100 package
- **+PCF8540A/B**: I/F Sm 160-segment COG LCD driver
- **+PCF856F**: I/F Sm 160-segment COG LCD driver with higher frame frequency and higher VLCD
- **+PCF85133**: I/F Sm 320-segment COG LCD driver with selectable frame frequency
- **+PCF85233**: I/F Sm 320-segment COG LCD driver with higher selectable frame frequency
- **+PCF85232**: I/F Sm 640-segment COG LCD driver with higher programmable frame frequency

Character Drivers
- **PCF2119**: I/F Sm or parallel bus 2 x 16 characters + 160-icon COG LCD driver with charge pump, VLCD temperature compensation
- **PCF21219**: I/F Sm or parallel bus 2 x 16 characters + 160-icon COG LCD driver with higher frame frequency, charge pump, VLCD temperature compensation
- **PCA2117**: I/F Sm 2 x 20 characters + 200-icon COG LCD driver with programmable frame frequency, charge pump, VLCD temperature compensation

Bus Controllers
- **SC1615740**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA
- **SC1616741**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA
- **SC1616750**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA and GPIO
- **SC1616752**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA and GPIO
- **SC1616756**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA and GPIO
- **SC1616762**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA and GPIO
- **SC1815700/5B**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA and GPIO
- **SC1815600/5B**: Bridge: I/F Sm master bridge, 4 M with GPIO
- **PCF8669**: Bridge: I/F Sm slave to SPI master bridge

Analog-to-Digital Converters
- **8-bit ADC**: PCF8591
- **8-bit I/F Sm 4-channel ADC and 1-channel DAC**: PCF8591

DIP Switches
- 24-bit I/F Sm: PCA9500
- 8-bit I/F Sm: PCA9501
- 8-bit I/F Sm: PCA9550
- 3-bit I/F Sm: PCA9559
- 2 x 5-bitmux: PCA95560
- 4 x 6-bitmux: PCA95561

Level Translators
- **GTL to LVTTLS**: 4-bit GTL/GTL+ to LVTTL/TTL bi-directional non-latched translator
- **GTL to LVTTLS**: 13-bit GTL/–GTL+ to LVTTL translator
- **GTL to LVTTLS**: 12-bit GTL to LVTTL translator high-impedance LVTTL and GTL outputs
- **GTL to LVTTLS**: 2-bit LVTTL to GTL transceiver
- **GTL to LVTTLS**: 4-bit LVTTL to GTL transceiver
- **GTL to LVTTLS**: 8-bit LVTTL to GTL transceiver
- **GTL to LVTTLS**: 4-bit GTL to GTL buffer
- **GTL to LVTTLS**: 12-bit GTL/–GTL+ to LVTTL translator

DIP Switch
- **PCF8584**: Bridge: I/F Sm bus controller with bus snooping
- **PCF8564**: Bridge: I/F Sm bus controller with 4 KB buffer per channel
- **PCF8665**: Bridge: I/F Sm bus controller with 68-byte buffer and 4-byte buffer
- **PCF8665A**: Bridge: I/F Sm bus controller with 68-byte buffer and 4-byte buffer and restart condition
- **PCU9669**: Bridge: I/F Sm 32-bit bus controller with 4 KB buffer per channel

Level Specifiers
- **PCF8521**: Level Specifier: GTL to LVTTL
- **PCF8523**: Level Specifier: LVTTL to GTL
- **PCF8521**: Level Specifier: GTL to LVTTL
- **PCF8523**: Level Specifier: LVTTL to GTL
- **PCF8521**: Level Specifier: GTL to LVTTL
- **PCF8523**: Level Specifier: LVTTL to GTL

Bridge and Bus Controllers
- **SC1815700/5B**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA
- **SC1616756**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA and GPIO
- **SC1616762**: Bridge: I/F Sm 32-bit SPI to UART bridge with IrDA and GPIO
- **SC1815700/5B**: Bridge: I/F Sm master bridge, 4 M with GPIO
- **PCF8669**: Bridge: I/F Sm slave to SPI master bridge
<table>
<thead>
<tr>
<th>Diagrams</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM13318</td>
<td>NVT2002DP LED demo board</td>
</tr>
<tr>
<td>OM13321</td>
<td>PCA9956B 24, Non-Isolated Output LED Driver demo board</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demo Boards</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges</td>
<td>OM6270 SPI/PC to UART bridge demo board (SC16IS750 / SC16IS760)</td>
</tr>
<tr>
<td>OM6273 SPI/PC to dual UART/IRDA/GPIO demo board (SC16IS752/ SC16IS762)</td>
<td></td>
</tr>
<tr>
<td>Fm+ universal</td>
<td>OM13257 Universal temperature sensor daughter card for Fm+ demo board</td>
</tr>
<tr>
<td>OM13488 Fm+ demonstration kit universal 8-bit GPIO daughter card</td>
<td></td>
</tr>
<tr>
<td>OM13489 Fm+ demonstration kit universal 16-bit GPIO daughter card</td>
<td></td>
</tr>
<tr>
<td>OM13529 Fm+ demonstration kit universal 24-bit GPIO daughter card</td>
<td></td>
</tr>
<tr>
<td>OM13491 Breakout board panel A VSSOP8, QFN8, HWSON8, MSOP8</td>
<td></td>
</tr>
<tr>
<td>OM13492 Breakout board panel B various 6-, 8-, & 10-pin packages</td>
<td></td>
</tr>
<tr>
<td>OM13493 Breakout board panel C DHVQFN 24, 20, 16, 14</td>
<td></td>
</tr>
<tr>
<td>OM13494 Breakout board panel D HVQFN 14, 16, 20, 24</td>
<td></td>
</tr>
<tr>
<td>OM13495 Breakout board panel E TSSOP 14, 16, 20, 24</td>
<td></td>
</tr>
<tr>
<td>OM13496 Breakout board panel F TSSOP28, QFN16, QSOP16, XFBGA16</td>
<td></td>
</tr>
<tr>
<td>OM13497 Breakout board panel G HTSSOP28, VFBGA24, XFBGA24</td>
<td></td>
</tr>
<tr>
<td>LCD display</td>
<td>OM13500A PCF8537 and PCA8537 demo board</td>
</tr>
<tr>
<td>OM11059A PCF85063TP & PCF85063ATL evaluation board</td>
<td></td>
</tr>
<tr>
<td>OM13510 PCF85263 evaluation board</td>
<td></td>
</tr>
<tr>
<td>OM13511 PCF8523 evaluation board</td>
<td></td>
</tr>
<tr>
<td>OM13513 PCF2127 & PCF2129AT evaluation board</td>
<td></td>
</tr>
<tr>
<td>OM13514 PCF85363 evaluation board</td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td>OM13523 PCA9616PW demo board</td>
</tr>
<tr>
<td>OM6277 PCA9564 evaluation board</td>
<td></td>
</tr>
<tr>
<td>Voltage-level translator</td>
<td>OM13317 NVT2008PW demo board, 8-channel bi-directional voltage-level translator</td>
</tr>
<tr>
<td>OM13318 NVT2002DP demo board, dual-channel bi-directional voltage-level translator</td>
<td></td>
</tr>
<tr>
<td>OM13319 NVT2003DP demo board, 3-channel bi-directional voltage-level translator</td>
<td></td>
</tr>
<tr>
<td>OM13322 NVT2006PW demo board, 6-channel bi-directional voltage-level translator</td>
<td></td>
</tr>
<tr>
<td>OM13324 NVT2010PW demo board, 10-channel bi-directional voltage-level translator</td>
<td></td>
</tr>
<tr>
<td>LED controller</td>
<td>OM13269 PCA9632 LED 4-channel demo board</td>
</tr>
<tr>
<td>OM13321 PCA9956B LED dimmer 24-channel constant current demo board I²C Fm+</td>
<td></td>
</tr>
<tr>
<td>OM13327 PCA9634 LED 8-channel demo board</td>
<td></td>
</tr>
<tr>
<td>OM13329 PCA9952 demo board, LED dimmer 16-channel constant current demo board I²C Fm+ (with output enable)</td>
<td></td>
</tr>
<tr>
<td>OM13330 PCA9955 demo board, LED dimmer 16-channel constant current demo board I²C Fm+</td>
<td></td>
</tr>
<tr>
<td>OM13332 PCA9685 demo board, 16-channel voltage source with 12-bit PWM demo board I²C Fm+</td>
<td></td>
</tr>
<tr>
<td>OM13333 PCA9635 demo board, 16-channel voltage source with 8-bit PWM demo board I²C Fm+</td>
<td></td>
</tr>
<tr>
<td>OM13483 PCA9955B 16-channel I²C Fm+ constant current LED driver demo board</td>
<td></td>
</tr>
<tr>
<td>OM13528 PCA9532 16-channel LED dimmer voltage switch demo board</td>
<td></td>
</tr>
<tr>
<td>OM13524 PCA9745B SPI 16-CH LED demo board</td>
<td></td>
</tr>
</tbody>
</table>
Our I2C bus website (www.nxp.com/i2c) is a valuable resource for device information and training programs. It gives you direct access to a comprehensive handbook, application notes, information about evaluation kits and training materials, links to application and design support, and more. The I2C development boards and daughter cards make it easy to program new peripherals and are a quick way to learn about the I2C bus protocol.

Samples and demo boards are available on request, please contact a local NXP distributor.