CodeWarrior™
Development Tools

IDE 5.9 Windows®
Automation Guide

freescalp"

Revised: June 25,2008 o on ductor

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2005-2008 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Getting Started 7
Overviewof ThisManual i 7

Related Documentation. i 8

IDE Command-Line TOOIS 8

TCl SCHPtING . . oo 8

Perl SCripting. oo 8

VBSCript SCripting 9

Microsoft COM Automation. i, 9

2 |IDE Batch-Mode Processing 11
L T T 11

Running the IDE Command-Line Tool., 11

IDE Command-Line Tool Reference 12

Startup Operations.t 12

Build Operationso 13

SCript OpPeration 14

Extended Commands. 14

Help FUnction oo e 14

3 Command Window Scripting 15
Migrating from TCLD 2.0 to Command Window 3.0 16

Migrating from Command Window 3.0t03.1............ 16

Command Window Interface i, 17

Running TCl SCHIptSot 19
TelBuilt-inCommands 20
CodeWarrior Commandscoiriri i 20

ADOUL . L e 20

AliaS . . . e 21

attaCh 21

0] o 22

Ch . 23

Change o 24

IDE 5.9 Windows Automation Guide 3

Table of Contents

OIS 29
CMAIEGISTIY . oo 30
CONfIg. . oo 30
CONMEBCE. . . ot 37
COPY ettt 37
debUg . ..o 38
il 39
disassemble 39
display . ..o e 41
BPIIPAUSE .« . .o 46
BPIISC It ot 48
evaluate 49
BXI . L 50
fiNiSh .o e 51
0711 o] [51
00 . ot 51
Rl 52
RIStOrY . 52
Kill 53
l0g . 53
MAKE. . . 53
0T 0 54
XL .o e 57
MEXEE . v e e e 57
0] £0] 1= o1 58
W 58
QUILIDE . . 59
FAdIX. .. 59
=T 60
FEMOVEOD] .« o\ttt et 62
TS . ettt 62
TS At . . . o 63
=T (0] 64
AV L i 64
setvisible 65

4 IDE 5.9 Windows Automation Guide

Table of Contents

SOURCEAISPIaY. . o\t e e 66
StaCK. . o 66
STAUS . o 67

] (= 0 67

] (= 0 68

] (0] o 69
SWItChtarget 69

Sy S M . o 69
VAl e 70
WAL . 71
WaLtChPOINt. .. oo 71
WINAOW . . o 72

4 Microsoft COM Automation 73
Viewing OLE/COM Objects.ot e 73
Creating a CodeWarrior Instancet 77
Managing Files in Projects 78
Manipulating Projects. o 80
Removing Object Code From Projects i, 80
RemoveObjectCode.t 81
RemoveObjectCodeWithOptions 81
Building Projects. oo 82
Build 82
BuildWithOptions 83
BuildAndWaitToComplete 84
BuildAndWaitToCompleteWithOptions, 86

A Combined Example. 88
Compiling Projectso 90
Compiling From Projectst 90
Compiling FromBuild Targets oo 92
CompileFiles. 92
CompileFilesAndWaitToComplete.o, 93
CompileFilesWithChoice i 95
Linking Projectso 97
GetLinkerName.o e 97

IDE 5.9 Windows Automation Guide 5

Table of Contents

Linking Against Sub-Targets.o 98
LinkAgainstSubTarget.t 98

Linking Against Sub-Projects 99
LinkAgainstSubProjectTarget 100

Generating Debugger OUtput oo 101

DEbUg. . oo e 101

Displaying IDE MESSAQES oo vttt et e e 104

Using Version Control Systemo 105
VersionControl. 105

Index 109

6 IDE 5.9 Windows Automation Guide

Getting Started

This manual describes how to use external applications and scripting environments to
automate the CodeWarrior™ IDE to perform certain tasks, such as manipulating
CodeWarrior projects, building targets, compiling and linking project files, debugging
projects, displaying IDE messages, and using version control features in the IDE.

This chapter has these sections:
¢ Overview of This Manual

¢ Related Documentation

Overview of This Manual

This manual contains information specific to CodeWarrior IDE automation on a Windows
host. For unix, refer to the IDE Unix Automation Guide. Table 1.1 describes the
information contained in each chapter in this manual.

Table 1.1 Contents of chapters

Chapter Description
Getting Started describes changes in TCLD 2.0 command

window commands to Command Window
3.0 commands, and related documentation

IDE Batch-Mode Processing describes use of the CodeWarrior IDE
command-line executable program, and
provides a reference to command-line
switches

IDE 5.9 Windows Automation Guide 7

Getting Started
Related Documentation

Table 1.1 Contents of chapters (continued)

Chapter Description

Command Window Scripting describes how to control the CodeWarrior
IDE using the Tcl scripting language,
describes the CodeWarrior Command
Window, and provides a reference of
Command Window options

Microsoft COM Automation describes how to use Component Object
Model (COM) objects that the IDE exposes
and the methods you can call to work with
those objects using the OLE/COM Object
Viewer

Related Documentation

This section describes the supplementary CodeWarrior documentation, third-party
documentation, and references to helpful code examples and web sites.

IDE Command-Line Tools

This manual only describes one of many components of the CodeWarrior command-line
tool set. For information about other CodeWarrior command-line tools, refer to the Build
Tools Referencmanual and the CodeWarrior IDE User's Guide

Tcl Scripting

For in-depth information about the Tcl scripting language, refer to the Tcl8.3/Tk8.3
Manualin the CodeWarrior help system or the Tcl web site:

http://www.tcl.tk

NOTE Command hints and short command forms are not available for built-in Tcl
commands.

Perl Scripting

For in-depth information about the Perl scripting language, refer the Perl web site:
http://www.perl.org

You can find the latest version of Perl at:

8 IDE 5.9 Windows Automation Guide

http://www.tcl.tk
http://www.perl.org

Getting Started
Related Documentation

http://www.cpan.org/src

VBScript Scripting
For in-depth information about the \VBScript scripting language, refer this URL:
http://msdn.microsoft.com/en-us/library/t0aew7h6(VS.85).aspx

Microsoft COM Automation

To control the IDE, your Perl/\/BScript scripts must manipulate the IDE’s COM objects.
To get a copy of Microsoft’s OLE/COM Object Viewer, download and install
oleview_setup.exe , Which is a part of the Windows Resource Kit Tool, from the
Microsoft web site.

NOTE To open OLE/COM Object Viewer after installing it, double-click
oleview.exe in c:\Program Files\Resource Kit

Also, to manipulate COM objects through Perl, you need the Win32::OLE module. You
might also want to use the other WIN32::OLE modules (such as Win32::OLE::Enum).
You can get these modules at:

http://www.cpan.org/

IDE 5.9 Windows Automation Guide 9

http://www.cpan.org/src
http://www.cpan.org/
http://msdn.microsoft.com/en-us/library/t0aew7h6(VS.85).aspx

Getting Started
Related Documentation

10 IDE 5.9 Windows Automation Guide

2
IDE Batch-Mode Processing

This chapter describes how to control the CodeWarrior™ IDE with the command-line
executable program.

This chapter has these sections:
e Qverview

¢ Running the IDE Command-Line Tool

« IDE Command-Line Tool Reference

Overview

The CodeWarrior IDE provides command-line access to different components of the IDE.
You access the components by executing command-line tools. This chapter focuses
specifically on the CodeWarrior IDE command-line tool.

The CodeWarrior IDE command-line tool allows you to instruct the IDE to manipulate
and build projects, compare source files, run Tcl scripts, and obtain the version of the IDE.
The IDE command-line tool for the Windows host is an executable program named
cmdIDE.exe , and is located in the directory where you install the CodeWarrior
development tools.

NOTE Command-line compiler, linker, and debugger tools may be available on your
particular platform. Refer to the Build Tools Referenamanual for information
about other command-line tools available on your platform.

You interact with command-line tools through a text-based console or terminal rather than
a graphical user interface. You can also specify command-line tool options (also called
switche$ on the command line.

Running the IDE Command-Line Tool

The IDE command-line tool performs operations on files you specify on the command
line. If the tool successfully finishes its operation, a new prompt appears on the command
line. Otherwise, it reports any problems as text messages on the command line before a
new prompt appears.

IDE 5.9 Windows Automation Guide 11

IDE Batch-Mode Processing
IDE Command-Line Tool Reference

You can also write scripts that automate the process to build your software. Scripts contain
a list of commands and command-line tools to invoke, one after another.

For example, the make tool, a common software development tool, uses scripts to manage
dependencies among source code files and invoke command-line compilers, assemblers,
and linkers as needed, much like the CodeWarrior project manager.

IDE Command-Line Tool Reference

This section lists the various operations and switches you can use to have the IDE perform
certain tasks.

The syntax for invoking the IDE command-line tool on Windows is:
cmdIDE [[files ..][function [options ..]..]]

The files parameter is a list of zero or more files on which the IDE should operate. The
IDE processes files in the order you specify them on the command line. If you specify one
or more CodeWarrior project files, the first project file on the command line is the
CodeWarrior default project.

The function parameter is the operation you want the IDE to perform. You may
specify multiple functions in a single command line for the IDE to perform.

The options parameter is a list of zero or more command-line switches that tell the IDE
how to perform the specified operation. If you use a switch that is inappropriate for an
operation, the IDE ignores the switch and completes processing of all other switches.

The files, options, and switches you specify on the command line depends on the
operation you want the IDE to perform. The rest of this section describes the various
functions and corresponding switches the IDE understands.

Startup Operations

The startup operations lets you instruct the IDE to start the CodeWarrior IDE and run the
specified script. Table 2.1 describes the parameters for the startup operations.

12

IDE 5.9 Windows Automation Guide

IDE Batch-Mode Processing
IDE Command-Line Tool Reference

Table 2.1 Startup Operations Command-Line Parameters

Switch Description
If makes the IDE the front window
options:

¢ y -focuses to IDE (default)
¢ n - starts minimized

Is forces the command line to be processed in a new instance
of the IDE instead of using the current IDE instance

Ix <project.xml> specifies an XML project file to import

/wn starts the IDE with no workspace

Build Operations

The build parameters lets you instruct the IDE to build projects. Table 2.2 describes the
build function parameters.

Table 2.2 Build Operations Command-Line Parameters

Switch Description
v converts the project on opening
options:

* y - converts without asking
* n-do not convert
» a - asks before converting

It targetname switches the default target to the target named targetname
/b builds the current target

Ir removes object code from the default build target

lc closes the default project after the build is complete

lq quits the IDE after the build is complete

IDE 5.9 Windows Automation Guide 13

IDE Batch-Mode Processing
IDE Command-Line Tool Reference

Script Operation

The debug parameters lets you instruct the IDE to start the Command Window and run the
specified script.

Syntax
cmdIDE /d scriptfile

Parameters
scriptfile

Supply the name or fully-qualified path to a Command Window script file (see
“Command Window Scripting”).

Extended Commands

You can use extended commands to add/ remove a source tree or turn on/off black-box
recording. Table 2.3 describes the extended commands:

Table 2.3 Extended Commands

Command Description

/addabsolute | /addenv | /addregkey adds source tree entry
<name> <source>
parameters:

« name: specifies the source tree to
be added

« source: specifes absolute path,
environment variable or register

key
/removetree <name> removes the source tree entry named name
/bbrecon|/bbrecoff turns on/off black-box recording (on by

default). Provides additional information in
crash dumps

Help Function

The help function tells the IDE to print a summary of all command-line arguments to the
terminal.

Syntax
cmdIDE /?

14

IDE 5.9 Windows Automation Guide

Command Window
Scripting

You can control IDE functions with Tcl commands and Tcl-based CodeWarrior
commands.

You can run these commands in one of three ways:
« directly through the IDE Command Window

« from a script file that you invoke with the “source” command in the Command
Window

« or from a script file that you specify as an IDE command-line parameter (as shown in
the section “Syntax”).

This chapter has these sections:
¢ Migrating from TCLD 2.0 to Command Window 3.0
¢ Migrating from Command Window 3.0 to 3.1

¢ Command Window Interface

¢ Running Tcl Scripts

Tcl Built-in Commands

¢ CodeWarrior Commands

IDE 5.9 Windows Automation Guide 15

Command Window Scripting
Migrating from TCLD 2.0 to Command Window 3.0

Migrating from TCLD 2.0 to Command
Window 3.0

Table 3.1 Command Window 3.0 Commands

Command Comment

run The run command is no longer supported.
Instead, use the Tcl built-in command
source .

load This command has been replaced by:
project -open for loading a project

use restore for loading target memory
from a file created by the save command.

close This command has been replaced by

project -close

break This command has been replaced by the
command bp.

input, output These StarCore® commands have been
removed.

Migrating from Command Window 3.0 to 3.1

The IDE Command Window 3.1 has the following improvements as compared to 3.0:

improved Multi-Core

maintains its own thread context, instead of relying on which thread window had
focus last

new option config AutoThreadSwitch allows you to select an automatic thread
switch behavior, including no switch

improved Command Synchronization
improved the synchronization of commands like debug, restart, make, step, and go

new option config runControlSync command to specify different synchronization
behaviors

new option config DebugTimeoutto help with fine-tuning synchronization
problems

improved memory, register, and variable Access

16

IDE 5.9 Windows Automation Guide

Command Window Scripting
Command Window Interface

« improved memory space handling

« does not require a defined memory space if only one exists

« ability to query list of available memory spaces

¢ new option config Memldentifier sets the default memory space
« improved formatting

« ability to specify data conversion, like %x to display in hex and %u to display
unsigned decimal

« ability to swap data

« ability to insert colons for better readability, for example, 0x0000:00f0:0000:0000
instead of 0x000000f000000000

« ability to pad data with leading O's, if desired

« for memory, ability to control the display width and the hardware access size
independently

« for memory, displays both hex and ascii, same as the Memory window
* new option MemSwap command to specify default memory swapping behavior

¢ new options config MemWidth and config MemAccessommands to specify the
default memory display width and access width

« ability to view register details information
« ability to view variables with the display command

* new commands reg, mem, and var duplicating the syntax and functionality of
display and change but without the potential for ambiguity

¢ new commands attach and connect
¢ new namespace capability

« Command Window commands are now all in the namespace ‘cmdwin’, which is
imported into the global namespace by default

« scroll bar added to window

Command Window Interface

The Command Window (Eigure 3.1) is a window in the CodeWarrior IDE that lets you
interactively execute Tcl commands.

To access this window in the Windows-hosted IDE, select View > Command Window
from the menu bar. To access this window in the IDE hosted by Linux® or Solaris™,
select Window > Command Window from the menu bar.

IDE 5.9 Windows Automation Guide 17

Command Window Scripting
Command Window Interface

Figure 3.1 The Command Window

Table 3.2 describes each of the three parts of the Command Window.

Table 3.2 Command Window Parts

Part Description

Text area displays the command prompt, %> and the text output of
commands

Status line displays the status of the last executed command

Help line displays command hints for the CodeWarrior commands

To browse through all available command hints, press the space bar at an empty command
prompt. The highlighted characters represent the short form of the command.

Command hints and short command forms are not available for built-in Tcl commands.
Documentation for these commands is located in the Tcl8.3/Tk8.3 Manuaih the
CodeWarrior Help System, and at the Tcl web site:

http://www.tcl.tk

Issuing Commands

To issue a Tcl command, type the command at the command prompt (%>. For
CodeWarrior commands, you may type either the normal or the short form of the
command. If you specify a short-form command, pressing space or tab will auto-complete
it.

18 IDE 5.9 Windows Automation Guide

Command Window Scripting
Running Tcl Scripts

History Functions

To repeat the last command entered, press Enter on your keyboard. To browse through the
command history, press the up arrow or down arrow keys.

Scroll Functions

To scroll the text area of the Command Window:
¢ Click the scroll bar arrows

 Press the page up or page down keys on your keyboard to scroll the text area by the
number of lines set with the config command. The default value is the number of
lines currently displayed. This value is updated when you resize the Command
Window

¢ Press Control-up arrow or Control-down arrow on your keyboard to scroll the text
window up or down by one line

« Press Control-left arrow or Control-right arrow on your keyboard to scroll the text
window left or right by one character

Copy and Paste Functions

To copy portions of the text window to the clipboard, hold down the left mouse button and
drag the selection box around the desired text. Press Enter on your keyboard or select Edit
> Copy from the CodeWarrior menu bar.

To paste text from the clipboard into the text area of the Command Window, click the left
mouse button or select Edit > Pastefrom the CodeWarrior menu bar.

Running Tcl Scripts

The built-in Tcl command source lets you run a sequence of Tcl commands that you
have placed into a text file.

The command-line IDE lets you specify a Tcl script as a parameter. This makes it possible
to run Tcl scripts from the system command-line without first opening the IDE Command

«

Window. See “Syntax” for more information.

Each time you open the Command Window, the IDE searches for a script file named
teld.tcl in the (%SystemRoot%) directory. If the IDE finds this script file, the IDE

IDE 5.9 Windows Automation Guide 19

Command Window Scripting
Tcl Built-in Commands

attempts to run it. Place commands into this script file that you want the IDE to run each
time you open the Command Window or run a Tcl script.

TIP By convention, Tcl script files have the filename extension .tcl

Tcl Built-in Commands

The Tcl built-in commands are documented in the Tcl8.3/Tk8.3 Manualocated within
the CodeWarrior Help System.

To display the version of your Tcl interpreter, type this command into the Command
Window:

puts [info tclversion]
You can obtain additional information about Tcl here:
http://www.tcl.tk

CodeWarrior Commands

There are numerous CodeWarrior commands that you may use within the Tcl scripts or in
the Command Window. This section describes each of these commands.

NOTE Shortcut command syntax (if available) is listed first, followed by formal
syntax.

Note that the backslashes in Windows pathnames work only for the Tcl built-in
commands, such as cd, pwd, dir, and load. For other commands, Tcl processes each
backslash as an escape character and performs a "backslash substitution”, thus garbling the
original pathname.

This backslash substitution can be avoided in one of three ways:

¢ Using forward slashes in place of backslashes, which is more portable to Unix as
well

 Enclosing the pathname within the curly braces
¢ Using two backslashes

about

Displays version information about the command window.

20

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

alias
Creates, removes, or lists an alias for a command.
NOTE Aliased commands are not available from within scripts. To create a different
command name or syntax, you can wrap an existing command with a Tcl proc.
alias [<alias> [<command>]]
Shortcut
al
Parameters
alias
Supply the name of the alias.
command
Supply the command.
Examples
To display all current aliases:
alias
To create an alias that issues the dir command when Is is typed:
alias Is dir
NOTE Note that <command> must be a single string. For more complex substitutions,
please use the Tcl proc command.
To remove the alias Is:
alias Is
attach

Attaches to process on target hardware.
attach [project_file(*.mcp)]

IDE 5.9 Windows Automation Guide 21

Command Window Scripting
CodeWarrior Commands

Shortcut
at

Parameters
project_file
Supply the name of a CodeWarrior project

Examples
To attach using settings of current target of default project:
attach
To attach using settings of current target of project.mcp:
attach project.mcp

bp
Sets, removes, or lists breakpoints.
bp
bp func_name|machine_addr
bp file_name line_number [column_number]
bp func_name|brkpt_numjall OFF|enable|disable
bp brkpt_num cond expr-elements...
Shortcut
b
Parameters
func_name|machine_addr
Supply the name or machine code address of the function on which you want to set
the breakpoint.
file_name line_number [column_number]
Supply the name of the file, the line number, and (optionally) the column number
where you want to set the breakpoint.
22 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

func_name|brkpt_numlall OFF|enable|disable

Supply the function name containing an existing breakpoint, the breakpoint
number of an existing breakpoint, or all . Supply one of OFF, enable , or
disable indicating the action you want to take on the breakpoint.

brkpt_num cond expr-elements

Supply the breakpoint number of an existing breakpoint, the condition to apply to
the breakpoint, and the expressions you want to execute when the debugger
encounters the condition.

Examples
To display all current breakpoints:
bp
To set a breakpoint at function fn()
bp fn
To set a breakpoint in file file.cpp at line 101, column 1:
bp file.cpp 101 1
To remove the breakpoint at function fn()
bp fn off
To set a breakpoint at memory address p:10343:
bp p:10343
To remove breakpoint number 4 (use break to look for the number):
bp #4 off
To disable breakpoint number 4:
bp #4 disable
To set the condition for breakpoint number 4 to trigger only if x == 3:
bp #4 cond x == 3

See also

radix

cd

Changes directory.
cd [path]

IDE 5.9 Windows Automation Guide 23

Command Window Scripting
CodeWarrior Commands

Examples
To display the current working directory:
cd
To change the current working directory to drive C:
cd C:
To change the current working directory to D:/cw/0622/test
cd D:/cw/0622/test

To change the current working directory to the parent of the current working
directory:

cd..

To use a wild card to change the current working directory to C:\Program
Files

cd C:/p*s

To change the current working directory to C:\notes\lib
cd C:/n*/I*

To change the current working directory to C:\Acrobat3
cd c:/*3

Comments

After you have entered a portion of a directory name, press Tab on the keyboard to
complete the directory name automatically.

change

Changes memory, registers, or variable.
change <item> [<options>...]

Shortcut
C

Memory Syntax
change [<ms>:]<addr> [<count>][<width>] [-s|-ns] [%6<conv>]

24 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

<value>

Table 3.3 Memory Options

<ms> On architectures supporting multiple memory spaces, specifies the
memory space to be found in <addr> . Refer to information about
display -ms for more information on memory spaces. If unspecified,
the setting config Memldentifier is used.

<addr> Target address in hex

<count> Number of memory cells

<width> [x<cell-size>][h<access-size>] | [{8,16,32,64}bit]
x<cell-size>

Memory is accessed in units called cells, where each cell consists of
<cell-size> bytes. If unspecified, the setting for config
MemWidth is used.

h<access-size>

Memory is accessed with a hardware access size of <access-size>
bytes. If unspecified, the setting for config MemAccess is used.

{8,16,32,64}bit

Sets both <cell-size> and <access-size> for reads and
writes to target memory or memory-mapped registers.

-s|-ns Specifies whether each cell is to be swapped. With a setting of -ns ,

target memory is written in order from lowest to highest byte address,
otherwise, each cell is endian swapped. If unspecified, the setting for
config MemSwap is used.

%<conv> Specifies the type of data. Possible values for <conv> are given
below. If unspecified, %xXis used.

%X Hexadecimal

%d Signed decimal
%u Unsigned decimal
%f Floating point

IDE 5.9 Windows Automation Guide 25

Command Window Scripting
CodeWarrior Commands

Table 3.3 Memory Options (continued)

%[E<n>]F Fractional

Normally fractional values occupy the range (-1,1), where all bits in the
value are to the right of the decimal point. On some architectures, a
certain number of high order bits are defined to be to the left of the
decimal. The option E<n> may be used to indicate that the uppermost
<n> bits are to the left of the decimal. For example, a 40-bit value with
8 bits to the left of the decimal would have a format of %E8Fand a
range of (-256,256).

%s Ascii

Other Memory Syntax

change[<ms>:]<al>{..<a2>|#<n>}[<width>][-{s|ns}][%<conv>]

<value>

Table 3.4 Other Memory Options

<al>{.<a2>|#<n>}

Specifies a range of memory either by two endpoints, <al>
and <a2>, or by a startpoint and a count, <al> and <n>.
This alternate syntax is provided mainly for backwards
compatibility. The new form of <addr> and <count>
should be easier to use and thus preferred.

Register Syntax

change [{r|nr}:]<reg> [<n>] [-s|-ns] [%b<conv>] <value>
change [{r|nr}:]<reg>{..<reg>|#<n>} [-s|-ns] [%<conv>]

<value>

26

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Table 3.5 Register Options

{rnr}: Treat the command as a register command only, either recursive (r:)
or non-recursive (Nr:). The change command will normally make a
best guess as to whether the thing being changed is memory, register,
or a variable.

These options make the choice explicit and can be used to overcome
any ambiguities. The register set for a particular architecture is
organized to match the hierarchy of the processor architecture. The
change command can be instructed to traverse the hierarchy in
calculating a range. If unspecified, no recursion is performed.

<reg> A register name or a register group name.

..<reg> The end point for a range of registers to display.

<n> Number of registers.

-s|-ns Specifies whether each register value is to be swapped.

%<conv> Specifies the type of the data. Possible values for <conv> are given
below. If unspecified, %Xis used.

%X Hexadecimal

%d Signed decimal

%u Unsigned decimal

%f Floating point

%[E<n>]F Fractional
Normally fractional values occupy the range (-1,1), where all bits in
the value are to the right of the decimal point. On some architectures,
a certain number of high order bits are said to be to the left of the
decimal. The option E<n> may be used to indicate that the
uppermost <n> bits are to the left of the decimal.

For example, a 40-bit value with 8 bits to the left of the decimal would
have a format of %E8Fand a range of (-256,256).

%s Ascii

Variable Syntax

change [v:]<var> [-s|-ns] [Yo<conv>] <value>

change v: [-s|-ns] [%6<conv>] <value>

IDE 5.9 Windows Automation Guide

27

Command Window Scripting
CodeWarrior Commands

Table 3.6 Variable Options

v: Treat the command as a variable command only. The change
command will normally make a best guess as to whether the thing
being changed is memory, register, or a variable. This option makes
the choice explicit and can be used to overcome any ambiguities. If
this option appears with no <var> following it, then all variables
pertinent to the current scope will be printed.

<var> Symbolic name of the variable to print. Can be a C expression as
well.

-s|-ns Specifies whether the variable data is to be swapped.

%-<conv> Specifies the type of data. Possible values for <conv> are given

below. If unspecified, %Xis used.

%X Hexadecimal

%d Signed decimal
%u Unsigned decimal
%f Floating point
%[E<n>]F Fractional

Normally fractional values occupy the range (-1,1), where all bits in
the value are to the right of the decimal point. On some
architectures, a certain number of high order bits are defined to be to
the left of the decimal. The option E<n> may be used to indicate that
the uppermost <n> bits are to the left of the decimal. For example, a
40-bit value with 8 bits to the left of the decimal would have a format
of %E8Fand a range of (-256,256).

%s Ascii

Other Variable Syntax
change v <var> [-s|-ns] [%6<conv>] <value>

v This alternate syntax is provided mainly for backwards compatibility.

Memory Examples
All memory examples assume the following settings:

28 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

radix = hex

config Memldentifier = 0

config MemWidth = 4

config MemAccess = 4

config MemSwap = no
To change memory range 0x10000-3 to 0x10 (because radix is hex):
change 10000 10
To change memory range 0x10000-3, memory space 1, to 0x20
change 1:10000 20
To change each of 16 cells in the memory range 0x10000-3f to 0x20
change 10000 16 20

To change each of 16, 1-byte cells to 0x31, using a hardware access size of 8-bytes
per write.

change 10000 16x1h8 31
Change memory range 0x10000-3 to c8000000.
change 10000 -s %d 200

Register Examples
To change register R1 to 0x123
change R1 123
To change registers R1 through R5 to 0x5432
change R1..R5 5432
To change register R1 in the General Purpose Register group to 0x100
change “General Purpose Register/R1” 100

Variable Examples
To change the value of variable var to 16 (0x10).
change var 10

cls

Clears the screen.
cls

IDE 5.9 Windows Automation Guide 29

Command Window Scripting
CodeWarrior Commands

Shortcut
cl

cmdregistry

Displays custom commands registered by all Command Definition Files.
cmdregistry [no options]

Shortcut
cmdr

Examples
To display custom commands registered by all Command Definition Files:
cmdregistry

config

Configures and displays Command Window settings.
config <option> [<sub-option>] <value>

config

config project | target [<target-name>]

Shortcut
conf

Table 3.7 Config Options

none With no options, config displays the current
configuration settings.

onScriptError abort | Controls whether the script will continue after an

continue error. When set to continue, one subtlety is that a
catch of a CodeWarrior command will never catch
an error.

30 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Table 3.7 Config Options (continued)

color {rmcsen} <red>
<green> <blue> [<bg-red>
<bg-green> <bg-blue>]

Selects the display color for text foreground and
background. There are multiple text types, each
with its own coloration, each selectable by
choosing one of “rmcsen ”. The default text color
is specified with an n. Other text types are:
register I , memory m command C, script S, and
error €. Colors are specified with a <red> <green>
<blue> triple of 8-bit values.

scroll lineNum

Sets the number of lines for page-up and page-
down scrolling.

page on | off

For commands that generate multiple pages of
output, enables or disables the buffering of output.

hexPrefix <prefix>

Sets the string to be used as the prefix for hex
values.

binPrefix <prefix>

Sets the string to be used as the prefix for binary
values.

showCommas off | on

When on, decimal data is displayed with commas
inserted every three digits. Hex and binary data is
displayed with a colon inserted every four digits.

hexPadding on | off

When on, hex values are padded with leading
zeroes.

decPadding off | on

When on, decimal values are padded with leading
zeroes.

memldentifier <mem-space-
id>

Sets the string to be used for the main memory
space prefix.

memReadMax <max-bytes>

Limits the amount of memory to be read in a single
command. This prevents the Command Window
from locking up on abnormally large memory read
requests.

memCache off | on

With memCache off, the Command Window will
always read target memory. This setting is useful if
your target memory may change while the target is
paused. With memCache on, the Command
Window will cache target memory reads while your
target is paused. This setting will improve the
performance of the Command Window.

IDE 5.9 Windows Automation Guide

31

Command Window Scripting
CodeWarrior Commands

Table 3.7 Config Options (continued)

memSwap off | on When set, memory values are swapped on cell
boundaries by default.

memWidth <bits> Specifies the default width for display of memory
data.
memAccess <bits> Specifies the default hardware access size for

target memory.

debugTimeout <seconds> The maximum amount of time to wait for a debug
command to finish. You can also press ESC key to
stop waiting.

runControlSync off | Sets how to synchronize run control commands. If

script-only | on set to “on”, then all run control commands will wait

until a thread stopped event. If set to “off”, then all
run control commands will return immediately. If
set to “script-only”, then all run control commands
will wait while running a script but will return
immediately while running interactively.

autoThreadSwitch off | Allows the user to control whether the Command
interactive-only | on Window will perform automatic thread-switching.
Possible settings are always on, always off, and
on when running interactively, i.e. not from a
script. If enabled, automatic thread switching is
done in the following cases:

1) If no thread is currently selected or if the current
thread exits, then the first one detected will
become the current.

2) If the current thread is running and another
thread stops, then the current thread will switch to
the stopped thread.

variable <sub-option>[on Enables or disables certain fields in the output of
| off] the “evaluate” command. If neither on nor off are
specified, then the field is enabled. Possible
values for <sub-option> are:

echo - the variable name

location - the address of the variable

size - the size of the variable is bytes

type - the variable type

32 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Table 3.7 Config Options (continued)

variable format <format> Controls the output format of the “evaluate”
command. Possible values for <format> are:
- | Default

d | Signed

u | Unsigned

x| h| Hex

c | Char

s | CString

p | PascalString

f | Float

e | Enum

i| Fixed

Fract

b | Binary

Boolean

SignedFixed

o | w | Unicode

project Displays all open projects. See also the “project”
command.

target [<default-target>] With no options, displays the default target. The
value <default-target> may be used to set the
default target.

Examples
To display the current config settings:
config
To display the current build target:
config target
To display the current project:
config project
To change the default build target to XXX
config target XXX
To abort the script if a command fails (onScriptError):
config o abort
To set the error text color to red:
config c e $ff $0 $0

IDE 5.9 Windows Automation Guide 33

Command Window Scripting
CodeWarrior Commands

To set the register display color to black, background color to white:
config color r $0 $0 $0 $ff $ff $ff

NOTE Refer to Table 3.8 for a list of text color codes.

To set page-up, page-down scrolling size to hexadecimal 10 (decimal 16) lines:
config scroll $10

To display hexadecimal numbers with the prefix “0x”:

config hexprefix 0x

To show hexadecimal and binary numbers with a colon, as in $0000:0000, and
show decimal numbers with a comma, as in 1,000,000.00:

config ShowCommas on

To show hex and binary numbers with leading zeroes, as in 0x0000:
config HexPadding off

To use “m” as the memory identifier:

config memidentifier m

To display expressions and variable names for the “evaluate” command:
config var echo on

To set default display format to decimal (see Table 3.9):

config var format d

To disable the display of types for expressions or variables:

config var types off

To display location information for variables:

config var location on

To display size information for variables:

config var size on

To limit memory commands to 2048 (decimal) bytes, preventing a large memory
read command from tying up the IDE:

config MemReadMax 2048

CodeWarrior pre-fetches chunks of memory when memory caching is on. Turning
memory caching off reduces performance but provides the user with better control
for memory accesses. Note that this command only works in the Command
Window. To turn off caching of target memory:

config MemCache off

34 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

To wait up to 10 seconds for debug command to finish:

config DebugTimeout 10

To run control commands that will wait for thread-stopped event:
config RunControlSync on

If commands are being entered interactively, i.e. not from a script, automatic thread
switching will be performed. If no thread is currently selected or if the current
thread exits, then the first one detected will become the current. If the current
thread is running and another thread stops, then the current thread will switch to the
stopped thread.

config AutoThreadSwitch interactive-only

To include the variable name in the output of the “evaluate” command:
config var echo on

To set the default display format of the “evaluate” command to decimal:
config var format d

The format may be one of the following strings or the corresponding character
abbreviation:

Default(-), Signed(d), Unsigned(u), Hex(h|x), Char(c)
CString(s), PascalString(p), Float(f), Enum(e), Fixed(i)

Fract(no abbreviation), Binary(b), Boolean(no
abbreviation), SignedFixed(no abbreviation)

Unicode(o|w)

To exclude the variable type name in the output of the “evaluate” command:
config var type off

To include the memory address in the output of the “evaluate” command:
config var location on

To include the variable size in the output of the “evaluate” command:
config var size on

To wrap line output that exceeds 80 characters in length:

config wordwrap 80

IDE 5.9 Windows Automation Guide 35

Command Window Scripting
CodeWarrior Commands

Table 3.8 Codes for Text Color

Message Type Code
command c
errors e
memory m
normal n
register r
script S

Table 3.9 Format Type Abbreviations

Format Type Abbreviation Alternate
Abbreviation

Binary b

Boolean

Char [«

CString

1

Default

Enum e

Fixed i

Float f

Fract

Hex h X

PascalString p

Signed d

SignedFixed

36 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Table 3.9 Format Type Abbreviations (continued)

Format Type Abbreviation Alternate
Abbreviation

Unicode 0 w

Unsigned u

connect

Connects to target hardware.
connect [project_file(*.mcp)]

Shortcut
conn

Parameters
project_file

Examples
To connect using default project remote connection:
connect
To connect using the remote connection set in the current target of project.mcp:
connect project.mcp

copy

Copies memory.
copy addr_block addr

Shortcut
Cco

IDE 5.9 Windows Automation Guide 37

Command Window Scripting
CodeWarrior Commands

Examples
To copy memory addresses 00 through 1F to address 30:
copy p:00..1f p:30

To copy 10 memory locations beginning at memory address 20 to memory
beginning at address 50:

copy p:20#10 p:50

See also

radix

debug

Starts a debugging session for a project.

debug [project_file(*.mcp) [number of projects]] |
[executable_file(*.elf | *.eld)]

Shortcut
de

Examples
To debug the current default project:
debug
To open the project des.mcp and start debugging the default build target in it:
debug des.mcp

To start a debugging session for the project file named 8102.mcp with three sub-
projects to debug, waiting until all four projects are open before starting the debug
session:

debug 8102.mcp 4

Comments
Only use the [number of projects] parameter for 8102 projects.

38 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

dir

Lists the contents of a directory.

dir [pathlfiles|-d]

Shortcut

dir

Examples
dir
dir *.txt
dir c:/tmp

disassemble

Disassembles instructions at the memory block.

disassemble

disassemble reset

disassemble pc|<ms>:<addr> [<count>]

Shortcut

di

Table 3.10 Options

[none]

With no options, the next block of instructions is displayed. After a
target stop event, the next block starts at the PC.

<ms>

On architectures supporting multiple memory spaces, specifies the
memory space in which <addr> is to be found. If unspecified, the
setting “config Memldentifier” is used.

<addr>

Target address in hex.

pc

The current program counter.

IDE 5.9 Windows Automation Guide

39

Command Window Scripting
CodeWarrior Commands

Table 3.10 Options (continued)

<count> Number of instructions to be displayed.
reset Reset the next block to the PC and the instruction count to one
screenful.
Other Syntax

disassemble <ms>:<al>{..<a2>|#<n>}

<al>{.<a2>|#<n>} Specifies a range of memory either by two endpoints, <al> and
<a2>, or by a startpoint and a count, <al> and <n>. This alternate syntax is provided
mainly for backwards compatibility. The new form of <addr> and <count> should be
easier to use and thus preferred. The instruction count will be set to the number of
disassembled instructions.

Examples
To display the next block of instructions:
disassemble
To reset the next block to the PC and the instruction count to one screenful:
disassemble reset
To display instructions starting at the PC:
disassemble pc
To display 4 instructions starting at the PC. Sets the instruction count to 4:
disassemble pc 4
To display instructions starting at program memory address 0x1000:
disassemble p:1000

To display 4 instructions starting at program memory address 1000. Sets the
instruction count to 4:

disassemble p:1000 4

To display instructions from program memory address block 0 to 1f:
disassemble p:0..1f

To disassemble 16 bytes starting at program memory 0x50:
disassemble p:$50#10

40

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

display

Displays registers, memory, or variables.

display <item> [<options>...]

Shortcut
d

Memory Syntax

display [<ms>:]<addr> [<count>][<width>] [-np] [-S|-ns]

[Yo<conv>]

Table 3.11 Memory Options

<ms> On architectures supporting multiple memory spaces, specifies
the memory space in which <addr> is to be found. See the
option -ms below for more information on memory spaces. If
unspecified, the setting config Memldentifier is used.

<addr> Target address in hex.

<count> Number of memory cells.

<width> [x<cell-size>][h<access-size>] | [{8,16,32,64}bit]
x<cell-size>
Memory is displayed in units called cells, where each cell
consists of <cell-size> bytes. If unspecified, the setting config
MemWidth is used.
h<access-size>
Memory is accessed with a hardware access size of <access-
size> bytes. If unspecified, the setting config MemAccess is
used.
{8,16,32,64}bit
Sets both <cell-size> and <access-size>.

-np Don't print anything to the display, only return the data. Scripts
run faster when no data has to be printed.

IDE 5.9 Windows Automation Guide

41

Command Window Scripting
CodeWarrior Commands

Table 3.11 Memory Options (continued)

-s|-ns

Specifies whether each cell is to be swapped. With a setting of
-ns, target memory is displayed in order from lowest to highest
byte address. Otherwise, each cell is endian swapped. If
unspecified, the setting config MemSwap is used.

%-<conv>

Specifies the type of data. Possible values for <conv> are
given below. If unspecified, %x is used.

%X

Hexadecimal

%d

Signed decimal

%u

Unsigned decimal

%f

Floating point

%[E<n>]F

Fractional. Normally fractional values occupy the range (-1,1),
where all bits in the value are to the right of the decimal point.
On some architectures, a certain number of high order bits are
defined to be to the left of the decimal. The option E<n> may
be used to indicate that the uppermost <n> bits are to the left
of the decimal. For example, a 40-bit value with 8 bits to the left
of the decimal would have a format of %E8F and a range of (-
256,256).

%s

Ascii

-ms

On architectures supporting multiple memory spaces, displays
the list of available memory spaces including a mnemonic and/
or an integer index which may be used when specifying a
target address.

Other Memory Syntax
display [<ms>:]<al>{..<a2>|#<n>} [<width>] [-np] [-s|-nS]

[Yo<conv>]

Other Memory Options
<al>{..<a2>|#<n>}

Specifies a range of memory either by two endpoints, <al>and <a2>, or by a
startpoint and a count, <al> and <n>. This alternate syntax is provided mainly for
backwards compatibility. The new form of <addr> and <count> should be easier to
use and thus preferred.

42

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Register Syntax

display [{r|nr}:]<reg> [<n>] [-{d|nr|nv|np} ...] [-S|-ns]
[Yo<conv>]

display [{r|nr}:]<reg>{..<reg>|#<n>} [-{d|nr|nv|np} ...] [-
s|-ns] [%<conv>]

display allr:|nr: [-{d|nr|nv|np} ...] [-s|-ns] [Yo<conv>]
display [-]regset

Table 3.12 Register Options

{rInr}: Treat the command as a register command only, either recursive (r:) or
non-recursive (nr:). The display command will normally make a best
guess as to whether the thing being displayed is memory, register, or a
variable. These options make the choice explicit and can be used to
overcome any ambiguities. The register set for a particular architecture
is organized to match the hierarchy of the processor architecture. The
display command can be instructed to traverse the hierarchy in
calculating a range. If unspecified, no recursion is performed.

<reg> A register name or a register group name.

..<reg> The end point for a range of registers to display.

<n> Number of registers.

-d Print detailed data book information.

-nr Print only register groups, that is, no registers.

-nv Print only register group and register names, that is, no values.
-np Don't print anything to the display, only return the data. Scripts run

faster when no data has to be printed.

-s|-ns Specifies whether each register value is to be swapped.

%<conv> Specifies the type of the data. Possible values for <conv> are given
below. If unspecified, %x is used.

%X Hexadecimal

%d Signed decimal
%u Unsigned decimal
%f Floating point

IDE 5.9 Windows Automation Guide 43

Command Window Scripting
CodeWarrior Commands

Table 3.12 Register Options (continued)

%[E<n>]F Fractional

Normally fractional values occupy the range (-1,1), where all bits in the
value are to the right of the decimal point. On some architectures, a
certain number of high order bits are said to be to the left of the decimal.
The option E<n> may be used to indicate that the uppermost <n> bits
are to the left of the decimal. For example, a 40-bit value with 8 bits to
the left of the decimal would have a format of %E8F and a range of (-

256,256).
%s Ascii
regset Display the register group hierarchy.

Variable Syntax
display [v:]<var> [-np] [-s|-ns] [%<conv>]
display v: [-np] [-s|-ns] [%<conv>]

Table 3.13 Variable Options

V: Treat the command as a variable command only. The display
command will normally make a best guess as to whether the thing
being displayed is memory, register, or a variable. This option makes
the choice explicit and can be used to overcome any ambiguities. If
this option appears with no <var> following it, then all variables
pertinent to the current scope will be printed.

<var> Symbolic name of the variable to print. Can be a C expression as well.

-np Don't print anything to the display, only return the data. Scripts run
faster when no data has to be printed.

-s|-ns Specifies whether the variable data is to be swapped.

%<conv> Specifies the type of data. Possible values for <conv> are given below.
If unspecified, %x is used.

%X Hexadecimal

%d Signed decimal
%u Unsigned decimal
%f Floating point

44 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Table 3.13 Variable Options (continued)

%[E<n>]F

Fractional

Normally fractional values occupy the range (-1,1), where all bits in the
value are to the right of the decimal point. On some architectures, a
certain number of high order bits are defined to be to the left of the
decimal. The option E<n> may be used to indicate that the uppermost
<n> bits are to the left of the decimal. For example, a 40-bit value with
8 bits to the left of the decimal would have a format of %E8F and a
range of (-256,256).

%s

Ascii

Memory Examples

All memory examples assume the following settings:

radix = hex

config Memldentifier = 0
config MemWidth = 4
config MemAccess = 4

config MemSwap = no

Display memory range 0x10000-3 as one cell.
display 10000
Display memory range 0x10000-3, memory space 1, as one cell.
display 1:10000
Display memory range 0x10000-3f as 16 cells.
display 10000 16
Display 16, 1-hyte cells, with a hardware access size of 8-bytes per read.

display 10000 16x1h8

Display one byte, with a hardware access size of one byte.
display 10000 8bit
Return one cell, but don't print it to the Command Window.
display 10000 -np
Display one cell with the data endian-swapped.
display 10000 -s

Display one cell in decimal format.

display 10000 %d

IDE 5.9 Windows Automation Guide

45

Command Window Scripting
CodeWarrior Commands

Display the available memory spaces, if any.
display -ms

Register Examples

To list all the available register set(s) on the target chip:

display regset

Tp display the value of register R1:

display R1

To display the value of register R1 in the General Purpose Register group:
display "General Purpose Register/R1"

To display detailed “data book” contents of R1, including bitfields and definitions:
display R1 -d

To begin with register R1, display the next 25 registers. Register groups will not be
recursively searched.

display nr:R1 25

Variable Examples

To display the endian-swapped contents of variable var in decimal.
display var -s %d

Comments

Displaying a register also returns a value to Tcl. Examples:
set myReg [display gpr0]; puts $myReg ;
set multiReg [display gpr0..gpr3]; puts $multiReg ;

ep::pause

Sets, removes, or lists Pause Points.

ep::pause -list

ep::pause <func_name>|[<ms>:]<addr>

ep::pause <file_name> <line_number> [<column_number>]
ep::pause <func_namel#<bkrpt_num>|all -off|-enable|-disable
ep::pause #<brkpt_num> -cond <expr_elements...>

46

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Shortcut
ep::pa
Parameters

<func_name>|[<ms>:]<addr

Supply the name or machine code address of the function on which you want to set
the pause point

<file_name> <line_number> [<column_number>]

Supply the name of the file, the line number, and (optionally) the column number
where you want to set the pause point

<func_name|#<bkrpt_num>|all -off|-enable|-disable

Supply the function name containing an existing pause point, the pause point
number of an existing pause point, or all . Supply one of off , enable , or
disable indicating the action you want to take on the pause point.

#<brkpt_num> -cond <expr_elements...>

Supply the pause point number of an existing pause point, the condition to apply to
the pause point, and the expressions you want to execute when the debugger
encounters the condition.

Examples
To displays all pause points:
ep::pause -list
To set a pause point in file.cpp at line 22:
ep::pause file.cpp 22
To set a pause point at function main execution:
ep::pause main
To clear pause point 4:
ep::pause #4 -off
To disable pause point on function main:
ep::pause main -disable
To set a condition on pause point #4:
ep::pause #4 -cond "x == 3"

IDE 5.9 Windows Automation Guide 47

Command Window Scripting
CodeWarrior Commands

ep::script

Sets, removes, or lists Script Points.

ep::script -list

ep::script <func_name>|[<ms>:]<addr> -cmds "<commands>"|-
file "<scriptfile>" [-stop|-go]

ep::script<file_name><line_number>[<column_number>]-cmds
"<commands>"|-file "<scriptfile>" [-stop|-go]

ep::script <func_namel#<bkrpt_num>|all -off|-enable|-
disable

ep::script #<brkpt_num> -cond <expr_elements...>

Shortcut
ep::sc

Parameters

<func_name>|[<ms>:]<addr> -cmds "<commands>"|-file

"<scriptfile>" [-stop|-go]
Supply the name or machine code address of the function on which you want to set
the script point and the command or script file to be executed. Supply stop or go
indicating whether to stop or continue the execution.

<file_name> <line_number> [<column_number>] -cmds

"<commands>"|-file "<scriptfile>" [-stop|-go]
Supply the name of the file, the line number, and (optionally) the column number
where you want to set the script point. Supply the command or script file to be
executed and one of stop or go to indicate whether to stop or continue the
execution.

<func_name|#<bkrpt_num>|all -off|-enable|-disable

Supply the function name containing an existing script point, the script point
number of an existing script point, or all . Supply one of off , enable , or
disable indicating the action you want to take on the script point.

#<brkpt_num> -cond <expr_elements...>

Supply the script point number of an existing script point, the condition to apply to
the script point, and the expressions you want to execute when the debugger
encounters the condition.

48

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Examples

To display all script points:
ep::script -list

To set a script point in file.cpp at line 22 that will execute script file script.tcl and
stop execution:

ep::script file.cpp 22 -file "script.tcl" -stop

To set a script point at function main that displays memory and continues
execution:

ep::script main -cmds "display 0..ff* -go
To clear script point 4:

ep::script #4 -off

To disable script point on function main:
ep::script main -disable

To set a condition on script point #4:
ep::script #4 -cond "x == 3"

evaluate

Displays C variable type or value.
evaluate [#formatchar|#fullformatname] [variable_Name]

Shortcut

Examples

To list the types for all the variables in current and global stack:
evaluate

To return the value of variable 'i":

evaluate i

To return the value of variable 'i' formatted in binary (Table 3.14):
evaluate #b i

IDE 5.9 Windows Automation Guide 49

Command Window Scripting

CodeWarrior Commands

Table 3.14 Format Type Abbreviations

Format Type Abbreviation Alternate
Abbreviation

#Binary #b

#Boolean

#Char #e

#CString s

#Default #-

#Enum #e

#Fixed #i

#Float #

#Fract

#Hex #h #x

#PascalString

#Signed #d

#SignedFixed

#Unicode #o H#Hw

#Unsigned #u

exit
Closes the command line window.
exit
Shortcut
ex
50 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

finish
Executes until the current function returns.
finish
Shortcut
f
See also
step, next, stepi, nexti
getpid
Returns the process ID of the last stopped debug process.
getpid
Shortcut
ge
See Also
switchtarget
go

Start target program from the current instruction.
go [ALL | NOWAIT | time_period]

Shortcut
g

Comments
If run from the command window, go returns immediately.

If run from a script file, the Command Window polls for keyboard input until the
target stops (for example, the target encounters a breakpoint). It will then run the

IDE 5.9 Windows Automation Guide 51

Command Window Scripting
CodeWarrior Commands

next command. You may press the ESC key to stop the script if the target never
stops and the Command Window continues to poll.

gol

Stop polling the target if a breakpoint is not encountered within 1 second. The Tcl
variable still_running issetto 1.

go nowait

If run from a script file, Tcld will execute the next script command without waiting
for the target to stop.

help
Displays help for commands.
help [command] | [shortcut]
Shortcut
h
Examples
To list all the Command Window commands:
help
To display help on the command break :
help break
To display help on the command break :
help b
history

Lists the command history.
history

Shortcut
hi

52

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

kill
Closes the current debug session.
kill [all]
Shortcut
k
log
Logs commands or a session.
log [OFF] [C(commands)|S(session) filename]
Shortcut
lo
Examples
To display currently opened log files:
log
To log all display entries to the file sessionl.log
log s session.log
To log internal command contents to the file command.log :
log c command.log
To terminate command logging:
log off ¢
To terminate all logging:
log off
make

Builds the specified project or the default project if none is specified.
make [project file(*.mcp)]

IDE 5.9 Windows Automation Guide 53

Command Window Scripting
CodeWarrior Commands

Shortcut

m

Examples

To build the default project:

make

To build the project test.mcp

make test.mcp

mem

Table 3.15 mem Options

Reads and writes memory.

mem

mem -ms

mem [<ms>:]<addr> [<count>][<width>] [-s|-ns] [Ye<conv>] [-np]

mem [<ms>:]<addr> [<count>][<width>] [-s|-ns]
[Yo<conv>]=<value>

Shortcut

m

[none] With no options, the next block of memory is read.

<ms> On architectures supporting multiple memory spaces, specifies
the memory space in which <addr> is to be found. See the help
for the option -ms of display or mem for more information on
memory spaces. If unspecified, the setting “config
Memldentifier” is used.

<addr> Target address in hex.

<count> Number of memory cells.

54

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Table 3.15 mem Options (continued)

<width> [x<cell-size>][h<access-size>] | [{8,16,32,64}bit]

x<cell-size>

Memory is accessed in units called cells, where each cell
consists of <cell-size> bytes. If unspecified, the setting for
config MemWidth is used.

h<access-size>

Memory is accessed with a hardware access size of <access-
size> bytes. If unspecified, the setting for config MemAccess is
used.

{8,16,32,64]bit

Sets both <cell-size> and <access-size>

-s|-ns Specifies whether each cell is to be swapped. With a setting of -
ns, target memory is written in order from lowest to highest byte
address. Otherwise, each cell is endian swapped. If unspecified,
the setting “config MemSwap” is used.

%<conv> Specifies the type of the data. Possible values for <conv> are
given below. If unspecified, %x is used.

%X Hexadecimal

%d Signed decimal
%u Unsigned decimal
%f Floating point
%[E<n>]F Fractional.

Normally fractional values occupy the range (-1,1), where all bits
in the value are to the right of the decimal point. On some
architectures, a certain number of high order bits are defined to
be to the left of the decimal. The option E<n> may be used to
indicate that the uppermost <n> bits are to the left of the
decimal. For example, a 40-bit value with 8 bits to the left of the
decimal would have a format of %E8F and a range of (-
256,256).

%s Ascii

IDE 5.9 Windows Automation Guide 55

Command Window Scripting
CodeWarrior Commands

Table 3.15 mem Options (continued)

-np Don't print anything to the display, only return the data.

-ms On architectures supporting multiple memory spaces, displays

the list of available memory spaces including a mnemonic and/
or an integer index which may be used when specifying a target
address.

Examples
The examples assume the following settings:
radix = hex
config Memldentifier = 0
config MemWidth = 4
config MemAccess = 4
config MemSwap = no
To display the next block of memory:
mem
To display memory range 0x10000-3 as one cell:
mem 10000
To display memory range 0x10000-3, memory space 1, as one cell:
mem 1:10000
To display memory range 0x10000-3f as 16 cells:
mem 10000 16
To display 16, 1-byte cells, with a hardware access size of 8-bytes per read:
mem 10000 16x1h8
To display one byte, with a hardware access size of one byte:
mem 10000 8bit
To return one cell, but don't print it to the Command Window:
mem 10000 -np
To display one cell with the data endian-swapped:
mem 10000 -s
To display one cell in decimal format:
mem 10000 %d

56 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

To display the available memory spaces, if any.

mem -ms

To change memory range 0x10000-3 to 0x10 (because radix is hex):
mem 10000 =10

To change memory range 0x10000-3, memory space 1, to 0x20:
mem 1:10000 =20

To change each of 16 cells in the memory range 0x10000-3f to 0x20:
mem 10000 16 =20

To change each of 16, 1-byte cells to 0x31, using a hardware access size of 8-bytes
per write:

mem 10000 16x1h8 =31
To change memory range 0x10000-3 to c8000000:
mem 10000 -s %d =200

next

Runs to the next source line or assembly instruction in the current frame.

next

Shortcut

n

Comment

The display command is automatically run after the next command finishes.

nexti

Executes over function calls, if any, to the next assembly instruction
nexti

Shortcut

nexti

IDE 5.9 Windows Automation Guide 57

Command Window Scripting
CodeWarrior Commands

Examples

To executes the thread to the next assembly instruction unless the current
instruction is a function call, in which case the thread is executed until the function

returns:

nexti

See also
stepi, step, next, finish

project

Opens or closes a project file or ELF file.
project -o[pen] file (.mcp|.elf|.elf)
project -c[lose]

project

Shortcut
proj

Examples
To open the project des.mcp :
proj -o des.mcp
To close the default project:
proj -c
To list open projects:
proj

pwd

Displays current working directory.
pwd

58

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

quitIDE
Quits the CodeWarrior IDE.
quitiDE
Shortcut
q
radix

Changes the number base for input and memory/register displays.

radix [B(bin)|D(dec)|F(frc)|H(hex)|U(unsigned)]
[reg[_block]|addr{_block] ...]

Shortcut

r

Examples
To display the default radix currently enabled:
radix
To change input radix to decimal:
radix D
To change input radix to hexadecimal:
radix H
To change the display radix for the specified registers fractional:
radix f r0..r7

To change the display radix for the specified registers and memory blocks to
decimal:

radix d m:0#10 r1

Comments
The default value for the input and output radix is hexadecimal.
The input radix may not be changed to fractional.

IDE 5.9 Windows Automation Guide 59

Command Window Scripting
CodeWarrior Commands

Hexadecimal constants may always be specified by preceding the constant with a
dollar sign (3$).

Decimal constants may always be specified by preceding the constant with a grave
accent (°).

Binary constants may always be specified by preceding the constant with a percent
sign (%).

reg

Reads and writes registers.

reg [{rlnr}:]<reg> [<n>] [-{d|nr|nv|np} ...] [-s|-ns]
[Yo<conv>]

reg[{r|nr}:]<reg>{..<reg>|#<n>}[-{d|nr|nv|np}...][-s|-ns]
[Yo<conv>]

reg all|r:|nr: [-{d|nr|nv|np} ...] [-s|-ns] [%e<conv>]

reg [{r|nr}:]<reg> [<n>] [-s|]-ns] [%o<conv>] =<value>

reg [{r|nr}:]<reg>{..<reg>|#<n>} [-s|-ns] [%6<conv>] =<value>
reg -regset

reg

Shortcut

r

Table 3.16 reg Options

{rInr}: If multiple registers are specified, then the prefix r: causes a
recursive, depth-first traversal of the register hierarchy. The prefix
nr: prevents recursion. If unspecified, no recursion is performed.

<reg> A register name or a register group name.

..<reg> The end point for a range of registers to access.

<n> Number of registers.

-s|-ns Specifies whether each register value is to be swapped.

%<conv> Specifies the type of the data. Possible values for <conv> are given

below. If unspecified, %x is used.

60

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Table 3.16 reg Options (continued)

%X Hexadecimal

%d Signed decimal

%u Unsigned decimal

%f Floating point

%[E<n>]F Fractional. Normally fractional values occupy the range (-1,1),

where all bits in the value are to the right of the decimal point. On
some architectures, a certain number of high order bits are defined
to be to the left of the decimal. The option E<n> may be used to
indicate that the uppermost <n> bits are to the left of the decimal.
For example, a 40-bit value with 8 bits to the left of the decimal
would have a format of %E8Fand a range of (-256,256).

%s Ascii
-d Print detailed data book information.
-nr Print only register groups, i.e. no registers.
-nv Print only register group and register names, i.e. no values.
-np Don't print anything to the display, only return the data.
regset Display the register group hierarchy.

Examples

To list all the available register sets on the target chip:

reg -regset

To display the value of register R1:

reg R1

To display the value of register R1 in the General Purpose Register group:

reg “General Purpose Register/R1”

To display detailed “data book” contents of R1, including bitfields and definitions:
regR1-d

To beginning with register R1, display the next 25 registers. Register groups are
not recursively searched:

reg nr:R1 25

IDE 5.9 Windows Automation Guide 61

Command Window Scripting
CodeWarrior Commands

To change register R1 to 0x123:

reg R1 =123

To change registers R1 through R5 to 0x5432:

reg R1..R5 =5432

To change register R1 in the General Purpose Register group to 0x100:
reg “General Purpose Register/R1” =100

removeobj

Removes object code and binaries

removeobj [#a[lltargets]] [#c[ompact]] [#r[ecurse]]
[project file(*.mcp)]

Shortcut

rem

Examples
To remove binaries for the default target for default project:
removeobj
To remove binaries for all targets for the default project:
removeobj #all
To remove binaries and compact data for the default project and all subprojects:
removeobj #recurse #compact
To remove binaries for the project test.mcp
removeobj test.mcp

reset

Resets the target hardware.
reset [h/ard | s/oft][run]

Shortcut
reset

62 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Examples

If hard or soft is not specified with the reset command, then the default depends on
the hardware support. If soft is supported, then that is the default. Otherwise, if
hard is supported, then that is the default.

reset

To perform soft reset, if supported:
reset soft

To perform hard reset, if supported:
reset hard

To allow the target to run after the reset, also called “reset to user”. Otherwise, the
target is halted at the reset vector.

reset run

restart

Restarts the debugging session.
restart

Shortcut

re

Examples
restart
This command will download the code again.

Comments

NOTE For remote connections, this command causes the debugger to download code
again.

If you change the debugging session memory where the program code stores the
startup CRT code, the command restart will not set the PC back to the main()
function.

IDE 5.9 Windows Automation Guide 63

Command Window Scripting
CodeWarrior Commands

restore

Writes file contents to memory.
restore -h *.lod [addr|offset] [8bit|16bit|32bit|64bit]
restore -b *.lod addr [8bit|16bit|32bit|64bit]

Shortcut

rest

Example
To load the contents of hexfile dat.lod into memory:
restore -h dat.lod
To load the contents of binary file dat.lod into memory beginning at $20:
restore -b dat.lod p:$20

To load the contents of binary file dat.lod into memory with an offset of $20,
relative to the address saved in dat.lod

restore -h dat.lod $20

Comments
The [8bit | ...] option controls the access size for reads and writes to target
memory or memory-mapped registers.

See Also

save

save

Saves memory contents to a file.

save -h/-b addr_block... filename [-a/-0]
[8bit|16bit|32bit|64bit]

Shortcut

sa

64

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Examples

To save two memory blocks to filename.lod in hexadecimal format. If
filename.lod exists, appends data to existing file:

save -h p:0..10 p:20..28 filename -a

To save memory blocks to filename.lod in binary format. If
filename.lod exists, overwrites existing file:

save -b p:0..10 p:20..28 filename -0

Comments

The [8bit | ...] option controls the access size for reads and writes to target
memory or memory-mapped registers.

setvisible

Hides or makes a command visible.
setvisible on|off <name> ...
<name> is either a fully qualified command or a command namespace.

Shortcut

setv

Examples
To make the command “cmdwin::step” visible:
setvisible on cmdwin::step
To hide the command “cmdwin::step”
setvisible off cmdwin::step
To make all commands in the namespace “com::acme::cmds” visible:

setvisible on com::acme::.cmds

NOTE Built-in Tcl commands cannot be hidden.

IDE 5.9 Windows Automation Guide 65

Command Window Scripting
CodeWarrior Commands

sourcedisplay

Changes the source view in the front-most debugger thread window.
sourcedisplay [code|asm|mixed|cycle]

Shortcut
SO

Examples
To cycle through available display modes:
sourcedisplay cycle
To change the view to display source code:
sourcedisplay code
To change the view to display assembly:
sourcedisplay asm
To change the view to display both source and assembly:
sourcedisplay mixed

stack

Displays the call stack.
stack [num_frames] [-default]

Shortcut
stac

Examples
To print the entire call stack unless limited with stack -default:
stack
To print the 6 innermost call stack levels:
stack 6
To print the 6 outer-most call stack levels:
stack -6

66

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

To limit the number of stack frames shown to the 6 innermost levels:
stack 6 -default

To remove the stack frame limit:

stack -default

status
Displays the debug status of all active targets.
status
Shortcut
sta
step

Steps through the target program.

step [into|over|outjasm|all]

step [into[li(lines)|out|in(struction)|all]
step [nve|nxt|fwd|end]|aft]

Shortcut
st
Examples
To step over a source line:
step
step i
step over

To step a single assembly instruction:
step asm

sepin

step instruction

IDE 5.9 Windows Automation Guide 67

Command Window Scripting
CodeWarrior Commands

To step into a source line:

step into

To step out of a function:

step out

For supported targets, step a single assembly instruction on all cores:

step all

For supported targets, optimized code debugging step non optimized action:
step nve

For supported targets, optimized code debugging step next action:

step nxt

For supported targets, optimized code debugging step forward action:

step fwd

For supported targets, optimized code debugging step end of statement action:
step end

For supported targets, optimized code debugging step end all previous action:
step aft

Comments
The display command is automatically run after a successful step command.

stepi

Executes to the next assembly instruction.
stepi

Shortcut

stepi

Examples
To execute exactly one assembly instruction:
stepi

See also

nexti, step, next, finish

68

IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

stop

Stops the target program after the command go, step out , or next .
stop

Shortcut
S

switchtarget

During multi-core debugging, select the debug session to which the IDE sends debug
commands.

switchtarget [pid]

Shortcut

Sw

Examples
To list currently available debug sessions:
switchtarget
To select the debug session whose PID is 0:
switchtarget 0

system

Executes a system command.
system [command]

Shortcut
sy
Examples

To delete any file with the extension .tmp :
system del *.tmp

IDE 5.9 Windows Automation Guide 69

Command Window Scripting
CodeWarrior Commands

var

Reads and writes variables or C-expressions.
var [v:]<var> [-np] [-s|-ns] [%6<conv>]

var v: [-np] [-s|-ns] [Yo<conv>]

var [v:]<var> [-s|-ns] [%o<conv>] =<value>

Shortcut

\Y

Table 3.17 var Options

V: If this option appears with no <var> following it, then all variables
pertinent to the current scope are printed.

<var> Symbolic name of the variable to print. Can also be a C
expression.

-s|-ns Specifies whether the variable data is to be swapped.

%<conv> Specifies the type of data. Possible values for <conv> are given

below. If unspecified, %x is used.

%X Hexadecimal

%d Signed decimal

%u Unsigned decimal

%f Floating point

%[E<n>]F Fractional. Normally fractional values occupy the range (-1,1),

where all bits in the value are to the right of the decimal point. On
some architectures, a certain number of high order bits are defined
to be to the left of the decimal. The option E<n> may be used to
indicate that the uppermost <n> bits are to the left of the decimal.
For example, a 40-bit value with 8 bits to the left of the decimal
would have a format of %E8Fand a range of (-256,256).

%s Ascii

-np Don't print anything to the display, only return the data.

70 IDE 5.9 Windows Automation Guide

Command Window Scripting
CodeWarrior Commands

Examples
To display the endian-swapped contents of variable myVar in decimal:
var myVar -s %d
To change the value of variable myVar to 16 (0x10):
var myVar=10

wait
Waits for a specified time.
wait [milliseconds]

Shortcut

w

Examples
To wait until the user hits ESC:
wait
To wait for 2 seconds:
wait 2000

watchpoint

Adds, removes, or displays a watchpoint.
watchpoint [variable_name|watchpoint_id OFF]

Shortcut

wat

Examples
To display the watchpoint list:
watchpoint
To add watchpoint on variable i :
watchpoint i

IDE 5.9 Windows Automation Guide 71

Command Window Scripting
CodeWarrior Commands

window

Opens a specific IDE debugger window.
window [breakpoints | expressions | globals | memory |

processes | registers | symbolics]

Shortcut

Examples

To open the symbolics window associated with the current debug session:
window

To open the debugger breakpoints window:

window breakpoints

To open the debugger expressions window:

window expressions

To open the debugger globals window:

window globals

To open a memory window:

window memory

To open the processes window:

window processes

To open the debugger registers window:

window registers

To open the symbolics window associated with the current debug session:

window symbolics

72

IDE 5.9 Windows Automation Guide

4
Microsoft COM Automation

This chapter describes how to automate certain tasks performed by the CodeWarrior IDE.
These tasks include:

¢ Managing project files

¢ Building, compiling, linking, and debugging projects
¢ Using the version control system

* Logging CodeWarrior messages

While you can use any of the several different scripting tools (Perl, VBScript) to create
automation scripts for the IDE. The CodeWarrior IDE uses Perl. Perl offers an industry-
standard, flexible way to create scripts to control various objects, including the IDE. All
the examples in this chapter use Perl.

This chapter has these sections:
¢ Viewing OLE/COM Objects

¢ Creating a CodeWarrior Instance

* Managing Files in Projects

* Manipulating Projects

e Compiling Projects
¢ Linking Projects
« Generating Debugger Output

¢ Displaying IDE Messages

« Using Version Control System

Viewing OLE/COM Objects

You can view the Component Object Model (COM) objects the IDE exposes and the
methods you can call to work with those objects using the OLE/COM Obiject Viewer
(Eigure 4.1). The following sub-sections describe how to work with the OLE/COM Object
Viewer.

¢ Setting the View to Expert Mode
¢ Opening the CodeWarrior Type Library
¢ Finding Method Details

IDE 5.9 Windows Automation Guide 73

Microsoft COM Automation
Viewing OLE/COM Objects

Setting the View to Expert Mode

The remainder of these instructions assume that you have set your Object Viewer to
Expert Mode. To do so:

1. Select View > Expert Mode.

This setting provides more detail than would otherwise appear in the Object Viewer.

Opening the CodeWarrior Type Library

To view the interfaces and enumerations that you can use to control the IDE:
1. Inthe left pane, expand the Type Libraries list (Eigure 4.1).

Figure 4.1 Expand Type Libraries List

74 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Viewing OLE/COM Objects

2. Double-click the Metrowerks CodeWarrior IDE (Ver 1.1) item in the Type
Libraries tree.

The ITypeLib Viewer (Eigure 4.2) appears, showing the interfaces and enumerations
you can use to control the IDE.

Figure 4.2 ITypeLib Viewer

3. Select View > Group by type kind in the ITypeLib Viewer window. All the entries
are grouped (Eigure 4.3).

IDE 5.9 Windows Automation Guide 75

Microsoft COM Automation
Viewing OLE/COM Objects

Figure 4.3 Grouping Entries

4. Expand the Dispinterfaceslist (Figure 4.4) to display the interfaces and methods you
can use in a Perl script.

Figure 4.4 Expand Dispinterfaces List

NOTE Use the Dispinterfaces list, rather than the Interfaces list, when
scripting in Perl. The methods in the Dispinterfaces list show the correct
return types and parameters for Perl scripting.

76 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Creating a CodeWatrrior Instance

Finding Method Details

To see the details of the methods within an interface:

1. Inthe ITypeLib Viewer’s left pane, expand the interface you want to use from the
Interfaces list.

2. Click the method you want to use.
The right pane shows the definition of the selected method (Figure 4.5).

Figure 4.5 Select Method

Because the Object Viewer uses Interface Definition Language (IDL), you can see which
parameters provide input and which parameters hold return values.

NOTE When using Perl to script CodeWarrior COM abjects, remove the “I” from the
beginning of each interface name. For example, use CodeWarriorApp
rather than ICodeWarriorApp

Creating a CodeWarrior Instance

Before you can manipulate the IDE in any way, you must first create a CodeWarrior
instance. The following block of code shows how to get the IDE’s application object
(CodeWarriorApp):

Win32::OLE gives access to COM objects,
including the IDE’'s COM # objects
use Win32::0OLE;

IDE 5.9 Windows Automation Guide 77

Microsoft COM Automation
Managing Files in Projects

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Managing Files in Projects

You can use Perl scripts to add and remove files within projects.
« Adding Files to Projects

* Removing Files From Projects

Adding Files to Projects

To add a file, you must get a reference to a project. You must then add the file to one or
more targets within the project. The following script shows how to add a file to all the
targets within a project:

Script to add a file to all targets within a project

Win32::OLE gives access to COM objects,
including the IDE’'s COM # objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line arguments
$projecttoopen = @ARGVIO];
$filetoadd = @ARGV[1];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)

$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Get the target list object
Targets()

$targets = $project->Targets();

Count the targets in the list
Count()

78 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Managing Files in Projects

$numtargets = $targets->Count();
Add the file to each target

Item (long index)

AddFile (BSTR path,

BSTR groupPath)

for ($i = 0; $i < $numtargets; $i++)

{
$targets->Item($i)->AddFile($filetoadd, ™);

end of script

To use this script, type:
perl addfile.pl someproject .mcp somefile . ***

NOTE You can modify the above script to add multiple files or to read file names
from an input file.

Removing Files From Projects

To remove a file, you must get a reference to a project. You must then remove the file
from one or more targets within the project. The following script shows how to remove a
file from all the targets within a project:

Script to remove a file from all targets within a project

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line arguments
$projecttoopen = @ARGV[0];
$filetoremove = @ARGVI[1];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

IDE 5.9 Windows Automation Guide 79

Microsoft COM Automation
Manipulating Projects

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Get the collection of files that match the file spec
#FindFileByName(BSTR filename)
$projectfiles = $project->FindFileByName($filetoremove);

Get the number of files to remove
Count()
$filecount = $projectfiles->Count();

Remove the files

Iltem(long index)

RemoveFile(ICodeWarriorProjectFile* projectFile)
for ($i = 0; $i < $filecount; $i++)

$file = $projectfiles->Item($i);
$project->RemoveFile($file);

end of script

NOTE You can modify the above script to remove multiple files or to read file names

from an input file.

Manipulating Projects

You can use Perl script to manipulate projects in the IDE. You can remove the object code

from a project before building it (or at any time).

Removing Object Code From Projects

The IDE exposes separate methods for removing object code. Thus, you can remove
object code at any time. However, common practice calls for removing object code before

building the project.

CodeWarriorProject offers two methods to remove object code:

« RemoveObjectCode
¢ RemoveObjectCodeWithOptions

80

IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Manipulating Projects

RemoveObjectCode

The RemoveObjectCode method removes the object code from the specified project.
This method includes an option to remove the data files created during the latest build.

The following script shows an example using the RemoveObjectCode method:

Script to remove the object code from a project

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line argument
$projecttoopen = @ARGV[0];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Remove the object code

RemoveObjectCode(ECodeWarriorWhichTargetOptions whichTarget, # 0 =
all; 1 = current

VARIANT_BOOL deleteDataFiles)

$project->RemoveObjectCode(0, true);

end of script

RemoveObjectCodeWithOptions

The RemoveObjectCodeWithOptions method removes the object code from the
specified project. This method includes an option to remove the data files created during
the latest build and an option to remove object code from all subprojects included within
the specified project.

The following script shows an example using the RemoveObjectCodeWithOptions
method:

IDE 5.9 Windows Automation Guide 81

Microsoft COM Automation
Manipulating Projects

Script to remove the object code from a project and all subprojects

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line argument
$projecttoopen = @ARGV[0];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Remove the object code

RemoveObjectCodeWithOptions(

ECodeWarriorWhichTargetOptions whichTarget, # 0 = all; 1 = current
VARIANT_BOOL recurseSubProject,

VARIANT_BOOL deleteDataFiles)
$project->RemoveObjectCodeWithOptions(0, true, true);

end of script

Building Projects

CodeWarriorProject offers four methods to build a project:
* Build

BuildWithOptions

BuildAndWaitToComplete

BuildAndWaitToCompleteWithOptions

* A Combined Example

Build

The Build method builds the specified project, with no options and no error messages.

82 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Manipulating Projects

The following script shows an example using the Build method:

Script to build a project

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line argument
$projecttoopen = @ARGVI0];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Build the project
Build()
$project->Build();

end of script

BuildWithOptions

The BuildWithOptions method builds the specified project, with the option to skip
dependencies.

The following script shows an example using the BuildWithOptions method:

Script to build a project and not run after the build

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line argument
$projecttoopen = @ARGVIO];

IDE 5.9 Windows Automation Guide 83

Microsoft COM Automation
Manipulating Projects

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Build the project

BuildWithOptions(ECodeWarriorBuildOptions options, # 0 = Normal; 1 =
Skip Dependencies

ECodeWarriorRunMode runMode) # 0 = Don't run; 1 = Run; 2 = Run in
Debug Mode

$project->BuildWithOptions(0, 0);

end of script

BuildAndWaitToComplete
The BuildAndWaitToComplete method builds the specified project and waits until
the build is complete to create a collection of all the messages created during the build.

The following script shows an example using the BuildAndWaitToComplete
method:

Script to build a project, wait until all build messages have been
collected,
and then print the messages

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line argument
$projecttoopen = @ARGV[0];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

84 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Manipulating Projects

Build the project
BuildAndWaitToComplete()
$messages = $project->BuildAndWaitToComplete();

Print the build messages

Errors()

ErrorCount()

Warnings()

WarningCount()

Informations()

InformationCount()

Definitions()

DefinitionCount()

ltem(long index)

ErrorNumber()

MessageText()

$errors = $messages->Errors();

$numerrors = $messages->ErrorCount();
$warnings = $messages->Warnings();
$numwarnings = $messages->WarningCount();
$informations = $messages->Informations();
$numinformations = $messages->InformationCount();
$definitions = $messages->Definitions();
$numdefinitions = $messages->DefinitionCount();

print ("Number of Errors: $numerrors\n");
print (" \n");
for ($i = 0; $i < $numerrors; $i++)

$errortoprint = $errors->ltem($i);

$errornum = $errortoprint->ErrorNumber();
$stringtoprint = $errortoprint->MessageText();
print("$errornum: $stringtoprint\n™);

print ("\nNumber of Warnings: $numwarnings\n“);

print (" \n");
for ($i = 0; $i < $numwarnings; $i++)
{

$warningtoprint = $warnings->Item($i);
$Warningnum = $warningtoprint->ErrorNumber();
$stringtoprint = $warningtoprint->MessageText();
print("$warningnum: $stringtoprint\n”);

print ("\nNumber of Informations: $numinformations\n“);
print (" \n");

IDE 5.9 Windows Automation Guide 85

Microsoft COM Automation
Manipulating Projects

for ($i = 0; $i < $numinformations; $i++)

$informationtoprint = $informations->ltem($i);
$informationnum = $informationtoprint->ErrorNumber();
$stringtoprint = $informationtoprint->MessageText();
print("$informationnum: $stringtoprint\n");

print ("\nNumber of Definitions: $numdefinitions\n");
print (" \n");
for ($i = 0; $i < $numdefinitions; $i++)

$definitiontoprint = $definitions->ltem($i);
$definitionnum = $definitiontoprint->ErrorNumber();
$stringtoprint = $definitiontoprint->MessageText();
print("$definitionnum: $stringtoprint\n");

end of script

BuildAndWaitToCompleteWithOptions

The BuildAndWaitToCompleteWithOptions method builds the specified project
and waits until the build is complete to create a collection of all the messages created
during the build. It offers the option to skip dependencies.

The following script shows an example using the
BuildAndWaitToCompleteWithOptions method:

Script to build a project, wait until all build messages have been
collected,
and then print the messages

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line argument
$projecttoopen = @ARGVIO];

Open the project
OpenProject(BSTR filePath,

86 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Manipulating Projects

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Build the project

BuildAndWaitToCompleteWithOptions(

ECodeWarriorBuildOptions options) # 0 = Normal; 1 = Skip
Dependencies

$messages = $project->BuildAndWaitToCompleteWithOptions(0);

Print the build messages

Errors()

ErrorCount()

Warnings()

WarningCount()

Informations()

InformationCount()

Definitions()

DefinitionCount()

ltem(long index)

ErrorNumber()

MessageText()

$errors = $messages->Errors();

$numerrors = $messages->ErrorCount();
$warnings = $messages->Warnings();
$numwarnings = $messages->WarningCount();
$informations = $messages->Informations();
$numinformations = $messages->InformationCount();
$definitions = $messages->Definitions();
$numdefinitions = $messages->DefinitionCount();

print ("Number of Errors: $numerrors\n");

print (" \n");
for ($i = 0; $i < $numerrors; $i++)
{

$errortoprint = $errors->ltem($i);

$errornum = $errortoprint->ErrorNumber();
$stringtoprint = $errortoprint->MessageText();
print("$errornum: $stringtoprint\n™);

print ("\nNumber of Warnings: $numwarnings\n“);

print (" \n");
for ($i = 0; $i < $numwarnings; $i++)
{

$warningtoprint = $warnings->Item($i);
$Warningnum = $warningtoprint->ErrorNumber();

IDE 5.9 Windows Automation Guide 87

Microsoft COM Automation
Manipulating Projects

$stringtoprint = $warningtoprint->MessageText();
print("$warningnum: $stringtoprint\n");

}
print ("\nNumber of Informations: $numinformations\n");
print (" \n");

for ($i = 0; $i < $numinformations; $i++)

$informationtoprint = $informations->ltem($i);
$informationnum = $informationtoprint->ErrorNumber();
$stringtoprint = $informationtoprint->MessageText();
print("$informationnum: $stringtoprint\n");

}
print ("\nNumber of Definitions: $numdefinitions\n");
print (" \n");

for ($i = 0; $i < $numdefinitions; $i++)

$definitiontoprint = $definitions->ltem($i);
$definitionnum = $definitiontoprint->ErrorNumber();
$stringtoprint = $definitiontoprint->MessageText();
print("$definitionnum: $stringtoprint\n");

end of script

A Combined Example

Build scripts often remove object code from a project and then build the project. The
following example uses RemoveObjectCodeWithOptions and
BuildAndWaitToComplete to perform those tasks:

Script to remove all object code, build a project, wait until
all build messages have been collected, and print the messages

Win32::OLE gives access to COM objects,
including the IDE’s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line argument
$projecttoopen = @ARGVI0];

Open the project

88 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Manipulating Projects

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Remove the object code

RemoveObjectCodeWithOptions(

ECodeWarriorWhichTargetOptions whichTarget, # 0 = all; 1 = current
VARIANT_BOOL recurseSubProject,

VARIANT_BOOL deleteDataFiles)
$project->RemoveObjectCodeWithOptions(0, true, true);

Build the project
BuildAndWaitToComplete()
$messages = $project->BuildAndWaitToComplete();

Print the build messages

Errors()

ErrorCount()

Warnings()

WarningCount()

Informations()

InformationCount()

Definitions()

DefinitionCount()

ltem(long index)

ErrorNumber()

MessageText()

$errors = $messages->Errors();

$numerrors = $messages->ErrorCount();
$warnings = $messages->Warnings();
$numwarnings = $messages->WarningCount();
$informations = $messages->Informations();
$numinformations = $messages->InformationCount();
$definitions = $messages->Definitions();
$numdefinitions = $messages->DefinitionCount();

print ("Number of Errors: $numerrors\n");

print (" \n");
for ($i = 0; $i < $numerrors; $i++)
{

$errortoprint = $errors->ltem($i);

$errornum = $errortoprint->ErrorNumber();
$stringtoprint = $errortoprint->MessageText();
print("$errornum: $stringtoprint\n™);

IDE 5.9 Windows Automation Guide 89

Microsoft COM Automation
Compiling Projects

print ("\nNumber of Warnings: $numwarnings\n“);

print (" \n");
for ($i = 0; $i < $numwarnings; Ji++)
{

$warningtoprint = $warnings->ltem($i);
$Warningnum = $warningtoprint->ErrorNumber();
$stringtoprint = $warningtoprint->MessageText();
print("$warningnum: $stringtoprint\n");

print ("\nNumber of Informations: $numinformations\n");
print (" \n");
for ($i = 0; $i < $numinformations; $i++)

$informationtoprint = $informations->ltem($i);
$informationnum = $informationtoprint->ErrorNumber();
$stringtoprint = $informationtoprint->MessageText();
print("$informationnum: $stringtoprint\n”);

print ("\nNumber of Definitions: $numdefinitions\n");
print (" \n");
for ($i = 0; $i < $numdefinitions; $i++)

$definitiontoprint = $definitions->ltem($i);
$definitionnum = $definitiontoprint->ErrorNumber();
$stringtoprint = $definitiontoprint->MessageText();
print("$definitionnum: $stringtoprint\n");

end of script

Compiling Projects

You can compile collections of files within a project or target. The following sections
explain how to do:

¢ Compiling From Projects

¢ Compiling From Build Targets

Compiling From Projects

CodeWarriorProject offers one method for compiling collections of files (including
collection that consist of one file):

90 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Compiling Projects

CompileFilesWithChoice
The CompileFilesWithChoice method performs one of the following actions on
the specified collection of files:

* Check Syntax

* Preprocess

¢ Precompile

¢ Compile

« Disassemble

Because CompileFilesWithChoice associates with the project, it compiles the file
for all targets. See “Compiling From Build Targets” for how to compile files for a single
target.

The following script shows how to use CompileFilesWithChoice to compile an
individual file within a project:

Script to compile a file within a project

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line arguments
$projecttoopen = @ARGV[0];
$filetocompile = @ARGV[1];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Get a file collection (required by the compiling method)
$filecoll = $project->FindFileByName($filetocompile);

#Compile the file

CompileFilesWithChoice(

ICodeWarriorProjectFileCollection* collection,
ECodeWarriorCompileChoice compileChoice);
ECodeWarriorCompileChoice

IDE 5.9 Windows Automation Guide 91

Microsoft COM Automation
Compiling Projects

0 = Check Syntax

1 = Preprocess

2 = Precompile

3 = Compile

4 = Disassemble
$project->CompileFilesWithChoice($filecoll, 3);

HHIFHH

Note: Ignoring the return value

end of script

This example script compiles a single file, but you can modify it to compile a number of
files or to read filenames from an input file.

Compiling From Build Targets

The CodeWarriorTarget method offers three methods for compiling collections of
files (including collection that consist of one file):

e CompileFiles
¢ CompileFilesAndWaitToComplete
* CompileFilesWithChoice

CompileFiles

The CompileFiles method compiles the specified collection of files within the target.

The following script shows how to use CompileFiles to compile an individual file
within a target:

Script to compile a file within a target

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line arguments
$projecttoopen = @ARGV[0];
$targettoopen = @ARGV[1];
$filetocompile = @ARGV[2];

92 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Compiling Projects

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Get the target
$targettouse = $project->FindTarget($targettoopen);

Get the project file collection
containing the file to compile
$filecoll = $project->FindFileByName($filetocompile);

Compile the file
CompileFiles(ICodeWarriorProjectFileCollection* collection);
$targettouse->CompileFiles($filecoll);

end of script

This example script compiles a single file, but you can modify it to compile a number of
files or to read filenames from an input file.

CompileFilesAndWaitToComplete

The CompileFilesAndWaitToComplete method compiles the specified collection
of files within the target. CompileFilesAndWaitToComplete generates messages,
which your script can print or save.

The following script shows how to use CompileFilesAndWaitToComplete to
compile an individual file within a target:

Script to compile a file within a target,
gather the resulting messages,
and print the messages

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line arguments
$projecttoopen = @ARGV[0];

IDE 5.9 Windows Automation Guide 93

Microsoft COM Automation
Compiling Projects

$targettoopen = @ARGV[1];
$filetocompile = @ARGV[2];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Get the target
$targettouse = $project->FindTarget($targettoopen);

Get the project file collection
containing the file to compile
$filecoll = $project->FindFileByName($filetocompile);

Compile the file and create the messages

CompileFilesAndWaitToComplete(ICodeWarriorProjectFileCollection*
collection);

$messages = $targettouse->CompileFilesAndWaitToComplete($filecoll);

Print the messages

Errors()

ErrorCount()

Warnings()

WarningCount()

Informations()

InformationCount()

Definitions()

DefinitionCount()

ltem(long index)

ErrorNumber()

MessageText()

$errors = $messages->Errors();

$numerrors = $messages->ErrorCount();
$warnings = $messages->Warnings();
$numwarnings = $messages->WarningCount();
$informations = $messages->Informations();
$numinformations = $messages->InformationCount();
$definitions = $messages->Definitions();
$numdefinitions = $messages->DefinitionCount();

print ("Number of Errors: $numerrors\n");
print (" \n");
for ($i = 0; $i < $numerrors; $i++)

$errortoprint = $errors->ltem($i);

94 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Compiling Projects

$errornum = $errortoprint->ErrorNumber();
$stringtoprint = $errortoprint->MessageText();
print("$errornum: $stringtoprint\n");

}

print ("\nNumber of Warnings: $numwarnings\n");
print (" \n");

for ($i = 0; $i < $numwarnings; Ji++)

{

$warningtoprint = $warnings->Item($i);
$Warningnum = $warningtoprint->ErrorNumber();
$stringtoprint = $warningtoprint->MessageText();
print("$warningnum: $stringtoprint\n”);

print ("\nNumber of Informations: $numinformations\n“);
print (" \n");
for ($i = 0; $i < $numinformations; $i++)

$informationtoprint = $informations->Item($i);
$informationnum = $informationtoprint->ErrorNumber();
$stringtoprint = $informationtoprint->MessageText();
print("$informationnum: $stringtoprint\n®);

print ("\nNumber of Definitions: $numdefinitions\n");
print (" \n");
for ($i = 0; $i < $numdefinitions; $i++)

$definitiontoprint = $definitions->Item($i);
$definitionnum = $definitiontoprint->ErrorNumber();
$stringtoprint = $definitiontoprint->MessageText();
print("$definitionnum: $stringtoprint\n");

end of script

This example script compiles a single file, but you can modify it to compile a number of
files or to read filenames from an input file.

CompileFilesWithChoice

The CompileFilesWithChoice method performs one of the following actions on
the specified collection of files:

IDE 5.9 Windows Automation Guide 95

Microsoft COM Automation
Compiling Projects

* Check Syntax
 Preprocess

e Precompile
e Compile

« Disassemble

The following script shows how to use CompileFilesWithChoice to compile an
individual file within a target:

Script to perform one of a number of possible actions
on a file within a target

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line arguments
$projecttoopen = @ARGVI0];
$targettoopen = @ARGV[1];
$filetocompile = @ARGV[2];
$action = @ARGVI3];

Open the project

OpenProject(BSTR filePath,

VARIANT_BOOL fMakeVisible,

ECodeWarriorConvertOption convertOption,

ECodeWarriorRevertPanelOption revertOption)
$project = $CW->OpenProject($projecttoopen, true, 0, 0);

Get the target
$targettouse = $project->FindTarget($targettoopen);

Get the project file collection
containing the file to compile
$filecoll = $project->FindFileByName($filetocompile);

Compile the file

CompileFilesWithChoice(

ICodeWarriorProjectFileCollection* collection,
ECodeWarriorCompileChoice compileChoice);
ECodeWarriorCompileChoice:

0= Check Syntax

1 =Preprocess

2= Precompile

96 IDE 5.9 Windows Automation Guide

Microsoft COM Automation
Linking Projects

3= Compile

4 = Disassemble
$targettouse->CompileFilesWithChoice($filecoll, $action);
Note: Ignoring the return value

end of script

This example script compiles a single file, but you can modify it to compile a number of
files or to read filenames from an input file.

Linking Projects

CodeWarriorTarget lets you obtain the linker name and specify whether to link
against specific files in targets.

Obtaining the Linker Name

The COM Application Programming Interface (API) exposes a method that lets you
obtain the name of the current linker plug-in. To do so, use:

¢ GetlLinkerName

GetLinkerName

The GetLinkerName method obtains the name of the linker for a target.

The following script shows how to use GetLinkerName to obtain the name of the linker
for a target:

Script to get the name of the current linker

Win32::OLE gives access to COM objects,
including the IDE’'s COM objects
use Win32::0OLE;

Create an instance of CodeWarrior
$CW = Win32::OLE->new("CodeWarrior.CodeWarriorApp");

Get the command line arguments
$projecttoopen = @ARGVI0];
$targettoopen = @ARGV[1];

IDE 5.9 Windows Automation Guide 97

	Getting Started
	Overview of This Manual
	Related Documentation
	IDE Command-Line Tools
	Tcl Scripting

	IDE Batch-Mode Processing
	Overview
	Running the IDE Command-Line Tool
	IDE Command-Line Tool Reference
	Startup Operations

	Command Window Scripting
	Migrating from TCLD 2.0 to Command Window 3.0

	Microsoft COM Automation
	Viewing OLE/COM Objects
	Creating a CodeWarrior Instance

	Index

