

Document Number: 802154MPSRM
Rev. 2.5
04/2010

802.15.4 MAC PHY Software
Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2005, 2006, 2007, 2008, 2009, 2010. All rights reserved.

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor iii

Contents
About This Book

Audience . vii
Organization . vii
Revision History . vii
Conventions . viii
Definitions, Acronyms, and Abbreviations . viii
References. ix

Chapter 1
IEEE 802.15.4 MAC/PHY Software Overview

1.1 Understanding the 802.15.4 Standard. 1-2
1.2 802.15.4 Standard Differences between 2003 and 2006. 1-4
1.3 System Overview . 1-5
1.4 802.15.4 MAC/PHY Software Device Types and Libraries . 1-6
1.4.1 Code Size versus 802.15.4 Device Type . 1-6
1.4.2 PHY Function . 1-8
1.4.3 Available Device Types . 1-8
1.5 802.15.4 MAC/PHY Parametric Information. 1-10
1.6 802.15.4 MAC/PHY Software Build Environment . 1-11
1.6.1 Adding User Applications to the Build Environment. 1-11
1.7 Freescale 802.15.4 MAC/PHY HCS08 Software Source File Structure 1-12
1.7.1 Used File Extensions . 1-12
1.7.2 Source File Structure for HCS08 Based Platforms. 1-12
1.8 Configuring the 802.15.4 MAC/PHY HCS08 Software (Users Hardware Platform) 1-13
1.8.1 Redefining the HCS08 Clock Speed. 1-13
1.8.2 Changing the Interconnection Between the HCS08 MCU and the MC1319x or MC1320x

Transceiver1-14
1.8.3 HCS08 MCU with the MC1319x or MC1320x Transceiver or MC1321x Antenna Control. . .

1-15

Chapter 2
MAC/Network Layer Interface Description

2.1 General MAC/Network Interface Information . 2-1
2.2 Data Types . 2-3
2.3 Message Buffer Configuration . 2-6
2.4 Message System API . 2-8
2.4.1 MM_Init . 2-8
2.4.2 MSG_Alloc . 2-10
2.4.3 MSG_AllocType. 2-10
2.4.4 MM_Alloc . 2-10
2.4.5 MM_AllocPool . 2-11
2.4.6 MSG_Free. 2-12
2.4.7 MM_Free . 2-12

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

iv Freescale Semiconductor

2.4.8 MSG_Send . 2-12
2.4.9 MSG_InitQueue . 2-13
2.4.10 MSG_Queue . 2-14
2.4.11 MSG_QueueHead. 2-14
2.4.12 MSG_DeQueue. 2-15
2.4.13 Message Tracking . 2-15
2.4.14 MSG_Pending. 2-16

Chapter 3
Interfacing to the 802.15.4 MAC Software

3.1 Interface Overview . 3-1
3.1.1 MC1310x, MC1320x, and MC1321x Transceiver IRQ Timing Dependency 3-2
3.1.2 MC1322x Transceiver IRQ Timing Dependency. 3-3
3.2 Include Files . 3-3
3.3 Source Files. 3-3
3.4 MAC API . 3-4
3.5 MAC Main Task . 3-5
3.6 MLME and MCPS Interface. 3-6
3.6.1 Resetting . 3-6
3.6.2 Accessing PIB Attributes . 3-7
3.6.3 MLME Primitives . 3-8
3.6.4 MCPS Primitives . 3-10
3.7 ASP Interface . 3-11

Chapter 4
Feature Descriptions

4.1 Configuration . 4-1
4.1.1 PIB Attributes . 4-1
4.1.2 Configuration Primitives. 4-6
4.1.3 Configuration Examples . 4-8
4.2 Scan Feature . 4-9
4.2.1 Common Parts. 4-9
4.2.2 Energy Detection Scan . 4-9
4.2.3 Active and Passive Scan . 4-10
4.2.4 Orphan Scan . 4-10
4.2.5 Scan Primitives . 4-10
4.3 Start Feature . 4-14
4.3.1 Start Primitives . 4-14
4.4 Sync Feature . 4-16
4.4.1 Synchronization Primitives. 4-16
4.5 Association Feature. 4-17
4.5.1 Association Primitives . 4-19
4.5.2 Associate Example . 4-22
4.6 Disassociation Feature . 4-22

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor v

4.6.1 Disassociation Primitives . 4-23
4.7 Data Feature . 4-25
4.7.1 Data Primitives . 4-25
4.7.2 Data Example . 4-29
4.8 Purge Feature . 4-30
4.8.1 Purge Primitives . 4-30
4.9 Rx Enable Feature. 4-31
4.9.1 RX Enable Request . 4-31
4.9.2 RX Enable Confirm . 4-31
4.10 Guaranteed Time Slots (GTS) Feature . 4-31
4.10.1 GTS as a Device . 4-31
4.10.2 GTS as PAN Coordinator . 4-33
4.10.3 Miscellaneous Items . 4-34
4.10.4 GTS Primitives . 4-34
4.11 Security . 4-35
4.11.1 Security PIB Attributes . 4-36
4.11.2 Security Library . 4-37
4.11.3 Counter with CBC-MAC (CCM*) . 4-37

Chapter 5
APP/ASP Layer Interface Description

5.1 General APP/ASP Interface Information . 5-1
5.1.1 uint8_t ASP_APP_SapHandler(aspToAppMsg_t *pMsg) . 5-1
5.2 ASP to APP Interface . 5-2
5.2.1 Wake Indication . 5-2
5.2.2 Idle Indication . 5-2
5.2.3 Inactive Indication . 5-2
5.2.4 Event Indication . 5-3
5.2.5 ASP to APP Message Union. 5-3
5.2.6 Examples of ASP to APP Messages . 5-3
5.3 APP to ASP Interface . 5-4
5.3.1 Get MAC Time Functions . 5-5
5.3.2 uint8_t Asp_GetInactiveTimeReq(zbClock24_t *time) . 5-5
5.3.3 uint8_t Asp_DozeReq(zbClock24_t *dozeDuration, uint8_t clko_en) 5-5
5.3.4 uint8_t Asp_AutoDozeReq(bool_t autoEnable, bool_t enableWakeIndication, zbClock24_t

*autoDozeInterval, uint8_t clko_en)5-6
5.3.5 uint8_t Asp_AcomaReq(uint8_t clko_en) . 5-6
5.3.6 uint8_t Asp_HibernateReq(void) . 5-7
5.3.7 uint8_t Asp_EventReq(zbClock24_t *time). 5-7
5.3.8 Device Reference Oscillator Trim Functions . 5-7
5.3.9 uint8_t Asp_SetNotifyReq(uint8_t notifications). 5-8
5.3.10 uint8_t Asp_SetMinDozeTimeReq(zbClock24_t *minDozeTime) 5-8
5.3.11 void Asp_TelecTest(uint8_t mode) . 5-8
5.3.12 Asp_TelecSetFreq(uint8_t channel) . 5-9

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

vi Freescale Semiconductor

5.3.13 Functions for Setting RF TX Power Level . 5-9
5.3.14 uint8_t Asp_GetPowerLevel(void). 5-11
5.3.15 void Asp_SetDemodulatorType(bool_t demDCDenable) . 5-11
5.3.16 void Asp_EnableComplementaryPAOutput(bool_t enable) . 5-12
5.3.17 uint8_t Asp_ConfigureRFCtlSignals(AspRfSignalType_t signalType, AspRfSignalFunction_t

function, bool_t gpioOutput, bool_t gpioOutputHigh)5-12
5.3.18 uint8_t Asp_GetMacStateReq(void). 5-13
5.3.19 void Asp_WakeReq(void) . 5-14
5.3.20 HCS08 Platform Transceiver GPIO Functions. 5-14
5.3.21 uint8_t Asp_ClkoReq(bool_t clkoEnable, uint8_t clkoRate) . 5-15
5.3.22 Examples of APP to ASP calls . 5-15

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor vii

About This Book
This manual describes Freescale’s IEEE™ 802.15.4 Standard (2003 and 2006) compliant MAC/PHY
software. The Freescale 802.15.4 MAC/PHY software is designed for use with the following families of
short range, low power, 2.4 GHz Industrial, Scientific, and Medical (ISM) band transceivers:

• Freescale MC1319x and MC1320x families, designed for use with the HCS08 Family of MCUs.
• Freescale MC1320x, designed for use with the MCS08QE128 MCU.
• Freescale MC1321x , that incorporates a low power 2.4 GHz radio frequency transceiver and an

8-bit microcontroller into a single LGA package.
• Freescale MC1322x Platform-In-Package, that combines a low power 2.4 GHz frequency

transceiver and a 32-bit ARM7 microcontroller into a single LGA package.

Throughout this manual, the term transceiver refers to either the MC1319x, MC1320x, or the internal
counterpart inside the MC1321x and MC1322x. .

Audience
This document is intended for 802.15.4 MAC application developers.

Organization
This document is organized into five chapters.
Chapter 1 802.15.4 MAC/PHY Software Overview — This chapter presents the Freescale

802.15.4 MAC/PHY software Device Types and libraries, build environment,
source file structure, and hardware setup.

Chapter 2 MAC/Network Layer Interface Description — This chapter describes the
MAC/PHY interface for FDD, RFD and their derivatives.

Chapter 3 Interfacing to the 802.15.4 MAC Software — This chapter describes how to
interface an application to the MAC and how to use the MAC interface functions.

Chapter 4 Feature Descriptions — The chapter contains descriptions of the Freescale
802.15.4 MAC/PHY software features, focusing on the implementation specific
details of the 802.15.4 Standard.

Chapter 5 APP/ASP Layer Interface Description — This section describes the
Application (APP)/Application Support Package (ASP) interface.

Revision History
The following table summarizes revisions to this document since the previous release (Rev 2.4).

Revision History

Location Revision

Section 1.2 Added note about Beacon Mode not supported for
MC1322x MAC.

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

viii Freescale Semiconductor

Conventions
This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples, expressions,
datatypes, and directives.

• Italic type indicates replaceable command parameters.
• All source code examples are in C.

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.
ACK Acknowledgement Frame
API Application Programming Interface
ASP Application Support Package
APP Application
CAP Contention Access Period
CFP Contention Free Period
FFD Full Function Device as specified in the 802.15.4 Standard.
FFDNGTS An FFD without GTS support.
FFDNB An FFD without beacon support.
FFDNBNS An FFD without beacon or security support.
GPIO General Purpose Input Output
GTS Guaranteed Time Slot
HW Hardware
IRQ Interrupt Request
ISR Interrupt Service Routine
MAC Medium Access Control
MCPS MAC Common Part Sublayer- Service Access Point
MCU Micro Controllers
MLME MAC Sublayer Management Entity
MSDU MAC Service Data Unit
NWK Network Layer
PAN Personal Area Network
PAN ID PAN Identification
PCB Printed Circuit Board
PHY PHYsical Layer
PIB PAN Information Base

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor ix

PSDU PHY Service Data Unit
RF Radio Frequencies
RFD Reduced Function Device as specified in the 802.15.4 Standard.
RFDNB An RFD without beacon support.
RFDNBNS An RFD without beacon or security support.
SAP Service Access Point
SW Software

References
The following sources were referenced to produce this book:

1. IEEE™ 802.15.4 Standard -2003, Part 14.5: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(LR-WPANs), The Institute of Electrical and Electronics Engineers, Inc. October 2003

2. ZigBee Security Services Specification V.092
3. 802.15.4 Media Access Controller (MAC) MyWirelessApp User’s Guide, Freescale

Semiconductor, 2006, 2007.
4. IEEE 802.15.4 Standard - REV b/D6, April 2006.

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

x Freescale Semiconductor

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-1

Chapter 1
IEEE 802.15.4 MAC/PHY Software Overview
This chapter provides an overview of the 802.15.4 Standard (MAC 2003 and MAC 2006) background, and
describes Freescale’s 802.15.4 MAC/PHY device types and libraries, parametric details, build
environment, source file structure and hardware setup.

NOTE
• Users should become familiar with the IEEE Std 802.15.4™-2003, Part

15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(LR-WPANs) and/or IEEE Std 802.15.4™-2006, Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks
(LR-WPANs) as required

• This document will not detail all the differences between the 802.15.4
Standards for 2003 and 2006, except those relevant to the 802.15.4
MAC/PHY software.

The Freescale 802.15.4 MAC/PHY software targets two different platforms:
• The HC(S)08 8-bit MCU family used with the MC1319x, MC1320x and MC1321x
• The ARM7 32-bit MCU used with the MC1322x family

This manual supports the HC(S)08 and ARM7 32-bit platforms and two 802.15.4 Standards (2003 and
2006).

• The MAC 2006 is only available on the ARM7 platform
— MAC 2006 requires a full function device
— Beaconing is not presently supported in MAC 2006

• The MAC 2003 is available on both platforms
— The HC(S)08 supports all features including beaconing and GTS
— The ARM7 does not support beaconing

• Users should be cognizant that differences in use and services and differences in the standards as
deployed in the software are highlighted as necessary throughout the manual.

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-2 Freescale Semiconductor

1.1 Understanding the 802.15.4 Standard
The 802.15.4 Standard was developed for Wireless Personal Area Networks (WPANs). WPANS convey
information over short distances among the participants in the network. They enable small, power
efficient, inexpensive solutions to be implemented for a wide range of applications and device types. Some
key characteristics of an 802.15.4 Standard network are:

• Over-the-air data rate of 250 kbit/s in the 2.4 GHz ISM band
• 16 independent communication channels in the 2.4 GHz band
• Large networks (up to 65534 devices)
• Devices use carrier sense multiple access with collision avoidance (CSMA-CA) to access the

medium
• Devices use Energy Detection (ED) for channel selection (implemented in the SCAN primitive)
• Devices inform the application about the quality of the wireless link - Link Quality Indication

(LQI) (reported as part of the Data Indication primitive)

The 802.15.4 Standard defines two network topologies in which both topologies use one and only one
central device (the PAN coordinator). The PAN coordinator is the principal controller of the network.

• Star Network Topology — In a star network, all communication in the network is either to or from
the PAN coordinator. That is, communication between non-PAN coordinator devices is not
possible.

• Peer-to-Peer Network Topology — In a peer-to-peer network, communication can occur between
any two devices in the network as long as they are within range of one another.

Figure 1-1. Peer-to- Peer and Star Network (No PAN Coordinator)

If a device wants to join an 802.15.4 network it must associate with a device that is already part of the
network. In turn, this allows other devices to associate with it. Multiple devices can be associated with the
same device as shown in Figure 1-2. A device that has other devices associated with it is a coordinator to
those devices. A coordinator can provide synchronization services to the devices that are associated with
it through the transmission of beacon frames as shown in Figure 1-2. In a star network there will be only
one PAN coordinator, but in a peer-to-peer network there can be multiple coordinators plus the PAN
coordinator.

DevicePAN coordinator Communication Line (within range)

Star network Peer-to-peer network

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-3

Figure 1-2. Peer and Star Network (With PAN Coordinator)

A network (both star and peer-to-peer) can operate in either beacon mode or non-beacon mode. In beacon
mode, all coordinators within the network transmit synchronization frames (beacon frames) to their
associated devices and all data transmissions between the coordinator and its associated devices occur in
the active period following the beacon frame as shown in Figure 1-3.

Figure 1-3. Beacon Frame Timing

For both non-beacon and beacon networks, the application can choose to transmit data in the following
ways.

• Direct Data Transfer — Data from the device to the coordinator using direct data transfer takes
place as soon as the channel is free. For beacon networks, direct data is transferred during the active
period.

• Indirect Data Transfer — Data from a coordinator to a device using indirect data transfer is stored
in the coordinator’s queue and transferred to the device when the latter does a poll request.

• Beaconed Tree Mode — A peer-to-peer network operating in beacon mode will experience
beacon collision which can result in the possible loss of synchronization. The ZigBee 1.0
specification outlines the Beaconed Tree Mode, which is a synchronized peer-to-peer network
topology. An advantage of a Beaconed Tree Mode network is lower power requirements. A
Beaconed Tree Mode network node is active for a short duration (the active portion of the
superframe) and it enters a low power mode (sleep) during inactive periods of the superframe. The
Freescale 802.15.4 software supports Beaconed Tree Mode as described in the 805.15.4
MyWirelessApp User’s Guide (802154MWASUG).

CoordinatorPAN coordinator Association Lines

Star network Peer-to-peer network

Device

Beacon Frames

Contention Access Period

Time
Active
Period

Inactive
Period

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-4 Freescale Semiconductor

1.2 802.15.4 Standard Differences between 2003 and 2006
This section lists some of the additions to the 802.15.4 Standard for 2006 versus the 802.15.4 Standard for
2003 as implemented in the MAC software. See the appropriate 802.15.4 Standard specification for further
details.

• 2006 PHY Enhancements
— Added a Channel Page to allow more flexibility for new channel allocations
— Simplified transceiver states (removed Busy_Rx and Busy_Tx)
— Modified and added PHY PIB attributes

– Modified phyChannelsSupported attribute
– Supports PHY PIB access through the MAC SAP
– Added phyCurrentPage attribute — The current PHY channel page.
– Added phyMaxFrameDuration attribute — The maximum number of symbols in a frame.
– Added phySHRDuration attribute — The duration of the sync. header (SHR) in symbols.
– Added phySymbolsPerOctet attribute — The number of symbols per octet.

• 2006 MAC Enhancements
— Reduced complexity, reduced MAC overhead and resolved long association times
— Improved security
— Supports more detailed beacon scheduling
— Supports distributed shared (beacon) timebase
— Supports multicast by employing broadcast frame transmission procedures
— Provided new CCM suite that consolidates CTR and CBC-MAC suites
— Removed the Access Control List (ACL)
— Appended the Auxiliary Security Header (ASH) to the addressing field as part of the MHR
— Redesigned the MAC security PIB attribute table
— Clarified security operations and optimized storage of keying material
— Improved data authenticity and replay protection and simplified protection parameter setup
— A single key can now be used for different protection levels in a frame
— Allows unsecured communications until a higher layer sets up the key

NOTE
The MAC used for MC1322x based platforms does not support beacon
mode.

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-5

1.3 System Overview
Figure 1-4 shows a block diagram of the system. The application uses the lower layers to implement a
wireless application based on the Freescale 802.15.4 software.

Figure 1-4. System Block Diagram

The application can theoretically be anything and is entirely up to the user. Some examples are:
• Dedicated MAC application
• ZigBee network layer
• Proprietary stack

The layer below the application as shown in Figure 1-4, is the 802.15.4 MAC (or just MAC). The MAC
provides three interfaces to the application.

1. MLME (MAC Sublayer Management Entity) Interface - This interface is used for all 802.15.4
MAC commands. For example, the application must use this interface to send the
MLME-ASSOCIATE.request primitive and it will also receive the MLME-ASSOCIATE.confirm
primitive on this interface. This interface is defined in the 802.15.4 Standard.

2. MCPS (MAC Common Part Sublayer) Interface - This interface is used for all 802.15.4 data
related primitives. The application must use this interface in order to send and receive data. This
interface is defined in the 802.15.4 Standard.

3. ASP (Application Support Package) Interface - This interface is used for various application
support features. For example, the application can request that the hardware enter a low power
mode. This interface is proprietary to Freescale.

As shown in Figure 1-4, the two layers at the bottom are the PHY and the actual radio (including hardware
driver). The application cannot access the PHY and hardware layer directly.

NOTE
The application must use the three MAC interfaces to implement the desired
functionality. Chapter 3, “Interfacing to the 802.15.4 MAC Software”
describes the interfaces in complete detail.

802.15.4 PHY

802.15.4 MAC

MCPSMLME ASP

RF modem transceiver

Application

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-6 Freescale Semiconductor

1.4 802.15.4 MAC/PHY Software Device Types and Libraries
This section describes the suite of Freescale 802.15.4 MAC/PHY software Device Types and their related
libraries.

1.4.1 Code Size versus 802.15.4 Device Type
The different 802.15.4 MAC/PHY software Device Types offer various degrees of code sizes by reducing
functionality. Table 1-1 (MAC 2003) and Table 1-2 (MAC 2006) shows the relationship between each
library and any excluded functionality.

NOTE
• The code sizes for both the HCS08 (MC1319x, 20x, and 21x) and

ARM7 (MC1322x) platforms are shown in Table 1-1.
• The code sizes as shown in Table 1-1 are for the complete Freescale

802.15.4 MAC software library. The MAC is available in library format
only because it is independent of the hardware platform for the user’s
802.15.4 application.

• Table 1-2 shows the ARM7 MC1322x platform FFD library for 2006;
2006 requires full function device and does not presently support
beaconing
Table 1-1. MAC/PHY Software Device Type Functionality (MAC 2003)

Device
Type Description Typical Usage Mac Library File Name

Code Size

MC1319x
MC1320x
MC1321x

MC1322x1

FFD Full-blown FFD.
Contains all
802.15.4 features
including security.

PAN Coordinator, Coordinator,
Router, or End-device.
Includes Beacon Mode support,
GTS, parameter verification and
security.

802.15.4_MAC_FFD.Lib 37.3 kB 34.3 kB

FFDNB Same as FFD but
no beacon
capability.

PAN Coordinator, Coordinator,
Router, or End-device.
No beacon capability is included,
making this Device Type incapable
of joining a beacon network. It can
transmit/receive beacons for
scanning.
Includes security and parameter
verification.

802.15.4_MAC_FFDNB.Lib 25.9 kB N/A

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-7

FFDNBNS Same as FFD but
no beacon and no
security capability.

PAN Coordinator, Coordinator,
Router, or End-device.
No beacon capability is included,
making this Device Type incapable
of joining a beacon network. It can
transmit/receive beacons for
scanning.
Security is not supported.

802.15.4_MAC_FFDNBNS.Lib 21.3 kB N/A

FFDNGTS Same as FFD but
no GTS capability.

PAN Coordinator, Coordinator,
Router, or End-device.
Lacks the ability to communicate
using GTS, but may participate in a
Beacon Network.
Includes security.

802.15.4_MAC_FFDNGTS.Lib 33.3 kB N/A

RFD Reduced function
device. Contains
802.15.4 RFD
features.

Operates as an End-device only and
can participate in beacon networks.
Includes security.

802.15.4_MAC_RFD.Lib 27.8kB N/A

RFDNB Same as RFD but
no beacon
capability.

Operates as an End-device only,
and can not participate in beacon
networks.
Includes security

802.15.4_MAC_RFDNB.Lib 23.0kB N/A

RFDNBNS Same as RFD but
no beacon and no
security capability.

Can operate as an End-device only,
and can not participate in beacon
networks.
Security is not supported.

802.15.4_MAC_RFDNBNS.Lib 18.4kB N/A

1 MAC 2003 on the ARM7 does not support beaconing/GTS

Table 1-2. MAC/PHY Software Device Type Functionality (MAC 2006)

Device
Type Description Typical Usage Mac Library File Name

Code Size

MC1319x
MC1320x
MC1321x

MC1322x1

FFD Full-blown FFD.
Contains all
802.15.4 features
including security.

PAN Coordinator, Coordinator,
Router, or End-device. Includes
parameter verification and security.

802.15.4_MAC_FFD.Lib Not
available

46.6 kB

1 MAC 2006 on the ARM7 does not support beaconing/GTS

Table 1-1. MAC/PHY Software Device Type Functionality (MAC 2003) (continued)

Device
Type Description Typical Usage Mac Library File Name

Code Size

MC1319x
MC1320x
MC1321x

MC1322x1

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-8 Freescale Semiconductor

1.4.2 PHY Function
The PHY is independent of whether the end user application is a Full Function Device or a Reduced
Function Device as well as the platform.

1.4.2.1 HCS08-Based Platforms
The HCS08 PHY is available in source code format because it is dependent on the hardware platform used
for the 802.15.4 application. If users want to run the Freescale 802.15.4 MAC/PHY software on their own
hardware platform where the MCU to transceiver connections can vary, they may need to change the
definition of the connections between the HCS08 MCU and the MC1319x or MC1320x. See Section 1.8,
“Configuring the 802.15.4 MAC/PHY HCS08 Software (Users Hardware Platform)” for a detailed
description of how to make the Freescale 802.15.4 MAC/PHY software run on the user’s own hardware
platform.

For the MC1321x platform, the HCS08 MCU and transceiver are internally interfaced with fixed
connections in the SiP. However, users may still control items such as antenna control by customizing the
PHY driver. See Section 1.8, “Configuring the 802.15.4 MAC/PHY HCS08 Software (Users Hardware
Platform)” for a detailed description of how to make modifications to the Freescale 802.15.4 PHY driver
software.

1.4.2.2 ARM7 MC1322x Platform
The ARM7 PHY is dependent on the 802.15.4 MAC version:

• The MAC 2003 version is implemented as part of the MAC library in the MC1322x ROM.
• The MAC 2006 version PHY is available only as part of MAC RAM library. It is not available as

source. It is exercised directly through the MAC libraries.

1.4.3 Available Device Types
The following sections describe the available device types.

1.4.3.1 Full Function Device (FFD) Device Type
The Freescale 802.15.4 MAC/PHY software FFD type is an 802.15.4 Standard compliant Full Functional
Device that includes all MAC features. It can be used in applications that require both device and
coordinator functionality such as ZigBee routers.

Users should compile their application with the 802.15.4_MAC_FFD library to create a device with FFD
capabilities.

For ARM7 MC1322x platform, the Full Function Device (FFD) type is the only option when using the
802.15.4 MAC/PHY software. For this platform, the FFD MAC 2003 library is resident in ROM. The
MAC 2006 version is available only as a RAM build library.

NOTE
The MAC2006 option is available only as an FFD.

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-9

1.4.3.2 Full Function Device With No GTS (FFDxxNGTSxx) Device Types
The Freescale 802.15.4 MAC/PHY software FFDxxNGTSxx Device Types are 802.15.4 Standard
compliant FFDs that exclude GTS functionality. These can be used in applications that require both device
and coordinator functionality such as ZigBee routers. These libraries cannot be used for applications that
require GTS data transmissions.

Users should compile their application with the 802.15.4_MAC_FFDxxNGTSxx libraries to create a
device with FFDNGTS capabilities.

1.4.3.3 Full Function Device No Beacon (FFDxxNBxx) Device Types
The Freescale 802.15.4 MAC/PHY software FFDxxNBxx Device Types are 802.15.4 compliant Full
Functional Devices that exclude beacon functionality. These can be used in applications that require both
device and coordinator functionality such as ZigBee routers. These libraries cannot be used for creating
beaconed networks.

Users should compile their application with the 802.15.4_MAC_FFDxxNBxx libraries to create a device
with FFDNB capabilities.

1.4.3.4 Full Function Device No Security (FFDxxNSxx) Device Types
The Freescale 802.15.4 MAC/PHY software FFDxxNSxx Device Types are 802.15.4 compliant Full
Functional Devices that exclude security functionality. These can be used in applications that require both
device and coordinator functionality such as ZigBee routers. These libraries cannot be used for
applications that require encrypted or otherwise secured transactions.

Users should link their application with the 802.15.4_MAC_FFDxxNSxx libraries to create a device with
FFDNS capabilities.

1.4.3.5 Full Function Device Pan Only (FFDPxx) Device Types
The Freescale 802.15.4 MAC/PHY software FFDPxx Device Types are 802.15.4 compliant Full
Functional Devices which can be used in applications that require only the coordinator functionality. These
libraries cannot be used for applications that require end device capabilities.

Users should link their application with the 802.15.4_MAC_FFDPxx libraries to create a device with
FFDP capabilities.

1.4.3.6 Full Function Device ZigBee Security(FFDxxZSxx) Device Types
The Freescale 802.15.4 MAC/PHY software FFDxxZSxx Device Types are 802.15.4 compliant Full
Functional Devices. These can be used in applications that require implementing their own security layer,
using the security module provided by the MAC.

Users should link their application with the 802.15.4_MAC_FFDxxZSxx libraries to create a device with
FFDZS capabilities.

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-10 Freescale Semiconductor

1.4.3.7 Reduced Function Device (RFD) Device Type
The Freescale 802.15.4 MAC/PHY software RFD Device Type is an 802.15.4 compliant Reduced
Functional Device. It can be used in applications that require only the device functionality.

Users should compile their application with the 802.15.4_MAC_RFD library to create a device with RFD
capabilities.

1.4.3.8 Reduced Function Device No Beacon (RFDxxNBxx) Device Types
The Freescale 802.15.4 MAC/PHY software RFDNB Device Types are 802.15.4 compliant Reduced
Functional Device that exclude beacon functionality. These can be used in applications that only require
device functionality such as leaf devices (end-devices with no child devices). This library cannot be used
for applications that need to participate in beaconed networks.

Users should compile their application with the 802.15.4_MAC_RFDxxNBxx libraries to create a device
with RFDNB capabilities.

1.4.3.9 Reduced Function Device No Security (RFDxxNSxx) Device Types
The Freescale 802.15.4 MAC/PHY software RFDxxNSxx Device Types are 802.15.4 compliant Reduced
Functional Devices that exclude security functionality. These can be used in applications that only require
device functionality such as leaf devices (end-devices with no child devices). This library cannot be used
for applications that require encrypted or otherwise secured transactions.

Users should compile their application with the 802.15.4_MAC_RFDxxNSxx libraries to create a device
with RFDNS capabilities.

1.4.3.10 Reduced Function Device ZigBee Security (RFDxxZSxx) Device Types
The Freescale 802.15.4 MAC/PHY software RFDxxNVxx Device Types are 802.15.4 compliant Reduced
Functional Device. These can be used in applications that only require device functionality, such as leaf
devices (end-devices with no child devices) and that require implementing their own security layer by
using the security module provided in the MAC.

Users should compile their application with the 802.15.4_MAC_RFDxxZSxx libraries to create a device
with RFDZS capabilities.

1.5 802.15.4 MAC/PHY Parametric Information
The following lists show the main parametric information for the Freescale 802.15.4 MAC/PHY software.

The clock requirements stated here are for an HC(S)08 based MCU. The HCS08 CPU clock is always 2
times the bus clock. The bus clock is referenced in the following list.

• When running in beacon mode the MCU bus clock must run at a minimum clock frequency of 16
MHz to meet the 802.15.4 Standard timing requirement for all 802.15.4 Standard features

• When running in non-beacon mode the MCU bus clock can also run at a frequency of 8 MHz

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-11

• Within a period of 64µs, the application must disable the MC1319x/MC1320x/MC1321x
interrupts for a maximum duration of 10µs, when running at 16 MHz bus clock

• Within a period of 64µs, the application must disable the MC1319x/MC1320x/MC1321x
interrupts for a maximum duration of 7µs, when running at 8 MHz bus clock

• The frequency of the SPI that connects the HCS08 MCU to the transceiver must be half of the
HCS08 bus clock speed

• The maximum allowed time for each Application Task is 4ms. No Application Task should have
higher priority than the MAC Task.
The clock requirements stated here are for an ARM7 based MC1322x platform. The CPU clock,
bus clock, and peripheral clock on the MC1322x are always at the same frequency, derived from
the reference oscillator. The maximum frequency is the reference oscillator which is typically 24
MHz.

• To ensure that timing constraints are met as required by the 802.15.4 Standard, it is recommended
the MCU clocks run at 24MHz.

• The maximum allowed time for each Application Task is 4ms. No Application Task should have
higher priority than the MAC Task.

• If MAC 2006 is used, the maximum allowed time for the interrupts to be disabled is 40 µs.

1.6 802.15.4 MAC/PHY Software Build Environment
Freescale 802.15.4 MAC/PHY applications can be generated using the Freescale BeeKit Wireless
Connectivity Toolkit. For more information on how to create wireless applications using BeeKit, see the
BeeKit Wireless Connectivity Toolkit User’s Guide (BKWCTKUG).

This section describes the Freescale 802.15.4 MAC/PHY software build environment.
• For HCS08 based platforms, the Freescale 802.15.4 MAC/PHY software is built using the IDE

CodeWarrior Development Studio for Freescale HC08. Users should employ the
Freescale_802.15.4_MAC_PHY_V50.mcp file if development is based on the IDE CodeWarrior
Development Studio for Freescale HC08 for MAC 2003 version or
Freescale_802.15.4_MAC_PHY_2006_V60.mcp for MAC 2006 version.

• For the ARM7 based MC1322x platform, the Freescale 802.15.4 MAC/PHY software is built using
the IAR Embedded Workbench IDE.

1.6.1 Adding User Applications to the Build Environment
This Freescale 802.15.4 MAC/PHY software includes the Freescale 802.15.4 MAC libraries, the Freescale
HCS08 802.15.4 PHY source code, and CodeWarrior project files (.mcp) only.

• No application library, code, or documentation is included in this release.
• Adding a user application directly on top of the build environment is possible, but it requires both

in-depth knowledge of the 802.15.4 Standard and wireless application experience.
• Freescale strongly recommends that users base their application development on the Freescale

802.15.4 MAC/PHY My_Wireless_App_demo application example software. This software is

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-12 Freescale Semiconductor

described in detail in the Freescale 802.15.4 MyWirelessApp Software User’s Guide
(802154MWASUG). Users can generate MyWirelessApp source code, via Freescale BeeKit.

• For more information, please refer to Freescale ZigBee home page at www.freescale.com/zigbee.

1.7 Freescale 802.15.4 MAC/PHY HCS08 Software Source File
Structure

This section describes the source file structure of the Freescale 802.15.4 MAC/PHY software.

1.7.1 Used File Extensions
The Freescale 802.15.4 MAC/PHY software uses the following file extensions:
Source code *.c *.h

Libraries *.lib *.a

ELF format targets *.elf

S19 record format targets *.s19

Memory maps *.map

1.7.2 Source File Structure for HCS08 Based Platforms
This section describes the source file structure for applications based on MC1319x, MC1320x and
MC1321x platforms.

NOTE
All targets are drive and main directory independent. The .mcp project file
and the MAC/PHY libraries have a version number added to the end of the
file name for version tracking.

The Freescale 802.15.4 MAC/PHY software for HCS08 is arranged in a the following file structure:
|———Application
| |———Configure Configuration header files
| |———Init Application initialization code
| |———Interface 802_15_4.h header file
| |———Source Application source files
| |———UartUtil UART helper functions
|———Bin Empty output directory
|———MacStandalone
| |———Interface MAC interface header files
| |———Mac
| | |———802.15.4_MAC_FFD.Lib library
| | |———802.15.4_MAC_FFDNB.Lib library
| | |———802.15.4_MAC_FFDNBNS.Lib library
| | |———802.15.4_MAC_FFDNGTS.Lib library
| | |———802.15.4_MAC_RFD.Lib library
| | |———802.15.4_MAC_RFDNB.Lib library
| | |———802.15.4_MAC_RFDNBNS.Lib library
| |———Phy
| | |———Interface PHY interface header files

http://www.freescale.com/zigbee

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-13

| | |———Isr Interrupt handlers
| | |———Primitives Source code of PHY primitives
|———PLM
| |———Interface Platform interface files
| |———PRM Beestack.prm
| |———Source Source code for drivers
|———SSM
| |———TS Task scheduler source code
| |———ZTC ZigBee test client source code
|———mcp CodeWarrior project file

1.8 Configuring the 802.15.4 MAC/PHY HCS08 Software (Users
Hardware Platform)

This section describes how to redefine the HCS08 clock speed and how to change the interconnection
between the HCS08 MCU and the MC1319x or MC1320x. This enables users to run their 802.15.4
application on their own hardware platform.

1.8.1 Redefining the HCS08 Clock Speed
By properly configuring the Freescale 802.15.4 MAC/PHY software, it is possible to run the HSC08 MCU
at various clock speeds. Freescale recommends adding a compiler define “Type_XXXX”, where XXXX
corresponds to the selected MAC library, when the MAC/PHY libraries are linked with the application
software. That is to specify “Type_FFD” for MAC FFD library, “Type_RFD” for MAC RFD library, etc.
The MAC libraries were also built using this #define to enable the functionality required for a specific
Device Type.

However, the system clock is not directly controlled by the libraries but by the application. In the Freescale
802.15.4 example application My_Wireless_App_demo, the system clock is controlled from the files in
the sys directory. Freescale recommends copying and reusing the files from these examples.

The “Type_XXXX” define selects a minimum system bus frequency in the AppToPlatformConfig.h header
file in the interface directory for each Device Type. The application can choose to use a higher system bus
frequency, but Freescale recommends to not use a lower one. If users want to use a higher frequency than
necessary, they need to define one of the following settings on their project:
#define SYSTEM_CLOCK_16MHZ
#define SYSTEM_CLOCK_16_78MHZ

The above defines are used in the NV_Data.c file to setup the correct system bus frequency.

NOTE
• Some MCU UART serial port baud rates may not be available at certain

system clock frequencies. The resulting frequency from the baud rate
generator may be too inaccurate to use at a given standard baud rate.

• When using the HCS08 clock generator FLL to generate different clock
frequencies, the user must be aware that certain frequencies may violate
possible errata conditions for a given HCS08 device. Be sure to check
the errata for a given device before choosing a custom clock frequency.

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-14 Freescale Semiconductor

• The 16 MHz default HCS08 bus clock for the MAC, as well as, the
above referenced 8 MHz bus clock do not violate any errata conditions
for the MCU.

1.8.2 Changing the Interconnection Between the HCS08 MCU and the
MC1319x or MC1320x Transceiver

The PHY is provided with standard interconnections between the MCU and the transceiver for a number
of Freescale development modules. If users require a different interconnection for their own hardware
platform, the PHY files must be changed. For this reason the PHY library is delivered as source code.

NOTE
The MC1321x SiP contains fixed internal interconnection the internal
HCS08 MCU and transceiver. Therefore, no changes can be made for this
mapping. The NCB and SRB use the MC1321x, so this section is not
applicable to those boards.

In the MacPhy.h header file, a set of macros is defined which are used directly by the PHY layer for antenna
control and other functions. In addition to the macros used directly by the PHY layer, the GPIO ports on
the MCU must be set correctly. The port settings are controlled by an additional set of macros which are
configured in the PortConfig.h file. The PHY function PHY_HW_Setup() uses these macros to set up the
ports. Therefore, PHY_HW_Setup() must be called before calling the InitializePhy() function.

The macros in the PortConfig.h file can be changed for a new hardware configuration. All macros use the
following definitions which must be redefined if other port and pin mappings are used. In the following
example code, the settings are for the Freescale 13192-SARD and 13192-EVB evaluation boards.

// Define HW pin mapping
 #define gMC1319xAttnPort PTBD
 #define gMC1319xRxTxPort PTBD
 #define gMC1319xResetPort PTBD

 #define gMC1319xAttnMask_c (1<<2)
 #define gMC1319xRxTxMask_c (1<<3)
 #define gMC1319xResetMask_c (1<<1)

 #define gMC1319xGPIO1Port PTBD
 #define gMC1319xGPIO2Port PTBD
 #define gMC1319xAntSwPort PTBD

 #define gMC1319xGPIO1Mask_c (1<<4)
 #define gMC1319xGPIO2Mask_c (1<<5)
 #define gMC1319xAntSwMask_c (1<<6)

 #define gMC1319xSpiTxD1Mask_c (1<<0)
 #define gMC1319xSpiRxD1Mask_c (1<<1)
 #define gMC1319xSpiSsMask_c (1<<2)
 #define gMC1319xSpiMisoMask_c (1<<3)
 #define gMC1319xSpiMosiMask_c (1<<4)
 #define gMC1319xSpiSpsckMask_c (1<<5)

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 1-15

1.8.3 HCS08 MCU with the MC1319x or MC1320x Transceiver or MC1321x
Antenna Control

The type of antenna (single or dual antenna) is specified by the use of the Dual Antenna field of the
gHardwareParametersInit structure, defined in NV_Data.h. If the value is FALSE (0), the MAC will use a
single antenna and if it is TRUE (1), the MAC will use separate antennas for Tx and Rx.The antenna type
can also be specified in BeeKit by setting the “User defined internal or external antenna switch
configuration” in the Platform component.

IEEE 802.15.4 MAC/PHY Software Overview

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

1-16 Freescale Semiconductor

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-1

Chapter 2
MAC/Network Layer Interface Description
This chapter describes the MAC/PHY interface for FDD, RFD, and their derivatives.

2.1 General MAC/Network Interface Information
The interface between the Network Layer (NWK) and the MAC Logical Management Entity Layer
(MLME) is based on service primitives passed from one layer to the other through a layer Service Access
Point (SAP). Two SAPs must be implemented as functions in the application:

1. uint8_t MLME_NWK_SapHandler(nwkMessage_t *pMsg); MLME to NWK SAP
MLME_NWK_SapHandler() function passes primitives from the MLME to the NWK)

2. uint8_t MLME_NWK_SapHandler(nwkMessage_t *pMsg); MCPS to NWK SAP
MCPS_NWK_SapHandler() function passes primitives from the MCPS to the NWK)

Two SAP handlers are likewise implemented in the MAC. They accept messages in the opposite direction
from the NWK to the MLME, and MCPS.

The SAP handler functions should not be called directly, but through the available MSG_Send(SAP msg)
macro. The identifier ‘SAP’ will be concatenated with _SapHandler, so the MSG_Send(NWK_MLME
msg) will be translated to NWK_MLME_SapHandler(msg), where msg is some message that must be sent
from the NWK to the MLME. Both MLME and MCPS service primitives use the same type of messages
as defined in the NwkMacInterface.h interface header file. The macros are defined in the MsgSystem.h
header file.

The NWK_MLME_SapHandler() and NWK_MCPS_SapHandler() functions may place a message in a
queue. In order to process queued messages, the MAC task needs to run.

The function returns TRUE if it has more to process (that is, it must be called again) and returns FALSE
if it does not have more to process. The CPU sleep mode can be entered by the NWK or the application.

Because the NWK and MLME/MCPS interfaces are based on messages being passed to a few SAPs, each
message needs to have an identifier. These identifiers are shown in the following four tables. Some of the
identifiers are unsupported for some of the Device Types. For example, the MLME-GTS.request primitive
is available for the FFDNGTS but the functionality is not supported.

Table 2-1 lists all the message identifiers in the MLME to NWK direction. They cover all the MLME
confirm and indication primitives.

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-2 Freescale Semiconductor

Table 2-2 lists all the message identifiers in the MCPS to NWK direction. They cover all the MCPS
confirm and indication primitives.

Table 2-3 lists all the message identifiers in the NWK to the MLME direction. They cover all the MLME
request and response primitives.

Table 2-1. Primitives In The MLME to NWK Direction

Message Identifier (primMlmeToNwk_t) 802.15.4 MLME to NWK Primitives

gNwkAssociateInd_c MLME-ASSOCIATE.Indication

gNwkAssociateCnf_c MLME-ASSOCIATE.Confirm

gNwkDisassociateInd_c MLME-DISASSOCIATE.Indication

gNwkDisassociateCnf_c MLME-DISASSOCIATE.Confirm

gNwkBeaconNotifyInd_c MLME-BEACON-NOTIFY.Indication

gNwkGetCnf_c N/A

gNwkGtsInd_c MLME-GTS.Indication

gNwkGtsCnf_c MLME-GTS.Confirm

gNwkOrphanInd_c MLME-ORPHAN.Indication

gNwkResetCnf_c MLME-RESET.Confirm

gNwkRxEnableCnf_c MLME-RX-ENABLE.Confirm

gNwkScanCnf_c MLME-SCAN.Confirm

gNwkCommStatusInd_c MLME-COMM-STATUS.Indication

gNwkSetCnf_c N/A

gNwkStartCnf_c MLME-START.Confirm

gNwkSyncLossInd_c MLME-SYNC-LOSS.Indication

gNwkPollCnf_c MLME-POLL.Confirm

gNwkPollNotifyIndication_c Freescale proprietary Poll Notify Indication

Table 2-2. Primitives in the MCPS to NWK Direction

Message Identifier (primMcpsToNwk_t) 802.15.4 MCPS to NWK Primitives

gMcpsDataCnf_c MCPS-DATA.Confirm

gMcpsDataInd_c MCPS-DATA.Indication

gMcpsPurgeCnf_c MCPS-PURGE.Confirm

Table 2-3. Primitives in the NWK to MLME Direction

Message Identifier (primNwkToMlme_t) 802.15.4 NWK to MLME Primitives

gMlmeAssociateReq_c MLME-ASSOCIATE.Request

gMlmeAssociateRes_c MLME-ASSOCIATE.Response

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-3

Table 2-4 provides a list of all the message identifiers in the NWK to the MCPS direction. They cover all
the MCPS request and response primitives.

2.2 Data Types
This section describes the main C-structures and data types used by the MAC/NWK interface.

A common feature of all the interface structures, with the exception of the pointer type, is that all elements
of a size greater than 1 byte are little endian, and declared as byte arrays. That is, a 16 bit short must be
stored as shown in the following code example:
short panId = 0x1234;
associateReq->coordPanId[0] = panId & 0xFF; // 0x34
associateReq->coordPanId[1] = panId >> 8; // 0x12

The pointer type is the exception from the little endian notation. The pointer type may be aligned to a
suitable boundary and have the endianess of the CPU in question.

Values for the various structure elements are defined by the 802.15.4 Standard. For example, Address
Mode can take on the values 0 (No), 2 (Short), and 3 (Extended).

The structures described in Section 4.1.2.1, “Reset Request” through Section 4.10.4.3, “GTS Indication”
have been collected in single message type as unions, plus a message type that corresponds to the
enumeration of the primitives. These are the structures which transport messages across the interface.

For messages from the MLME to the NWK the following structure/union is used.

gMlmeDisassociateReq_c MLME-DISASSOCIATE.Request

gMlmeGetReq_c MLME-GET.Request

gMlmeGtsReq_c MLME-GTS.Request

gMlmeOrphanRes_c MLME-ORPHAN.Response

gMlmeResetReq_c MLME-RESET.Request

gMlmeRxEnableReq_c MLME-RX-ENABLE.Request

gMlmeScanReq_c MLME-SCAN.Request

gMlmeSetReq_c MLME-SET.Request

gMlmeStartReq_c MLME-START.Request

gMlmeSyncReq_c MLME-SYNC.Request

gMlmePollReq_c MLME-POLL.Request

Table 2-4. Primitives in the NWK to MCPS Direction

Message Identifier (primNwkToMcps_t) 802.15.4 NWK to MCPS Primitives

gMcpsDataReq_c MCPS-DATA.Request

gMcpsPurgeReq_c MCPS-PURGE.Request

Table 2-3. Primitives in the NWK to MLME Direction (continued)

Message Identifier (primNwkToMlme_t) 802.15.4 NWK to MLME Primitives

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-4 Freescale Semiconductor

// MLME to NWK message
typedef struct nwkMessage_tag {
 primMlmeToNwk_t msgType;
 union {
 nwkAssociateInd_t associateInd;
 nwkAssociateCnf_t associateCnf;
 nwkDisassociateInd_t disassociateInd;
 nwkDisassociateCnf_t disassociateCnf;
 nwkBeaconNotifyInd_t beaconNotifyInd;
 nwkGetCnf_t getCnf; // Not used
 nwkGtsInd_t gtsInd;
 nwkGtsCnf_t gtsCnf;
 nwkOrphanInd_t orphanInd;
 nwkResetCnf_t resetCnf; // Not used
 nwkRxEnableCnf_t rxEnableCnf;
 nwkScanCnf_t scanCnf;
 nwkCommStatusInd_t commStatusInd;
 nwkSetCnf_t setCnf; // Not used
 nwkStartCnf_t startCnf;
 nwkSyncLossInd_t syncLossInd;
 nwkPollCnf_t pollCnf;
 nwkErrorCnf_t errorCnf; // Test framework primitive.
 nwkBeaconStartInd_t beaconStartInd;
 nwkMaintenanceScanCnf_t maintenanceScanCnf;
 nwkPollNotifyInd_t pollNotifyInd;
 } msgData;
} nwkMessage_t;

For messages from the MCPS to the NWK for the S08 platform, the following structure/union is used:
// MCPS to NWK message
typedef struct mcpsToNwkMessage_tag {
 primMcpsToNwk_t msgType;
 union {
 mcpsDataCnf_t dataCnf;
 mcpsDataInd_t dataInd;
 mcpsPurgeCnf_t purgeCnf;
 } msgData;
} mcpsToNwkMessage_t;

For messages from the MCPS to the NWK for the ARM7 platform, the following structure/union is used:
// MCPS to NWK message
typedef struct mcpsToNwkMessage_tag {
 primMcpsToNwk_t msgType;
 union {
 mcpsDataCnf_t dataCnf;
 mcpsDataInd_t dataInd;
 mcpsPurgeCnf_t purgeCnf;
 mcpsPromInd_t promInd;
 void *dummyAlign;// Used for aligning union, so that mcpsToNwkMessage_t may be
cast to nwkMessage_t (in PassMacMessageUp of PTC)
 } msgData;
} mcpsToNwkMessage_t;

The following structure/union is used for messages that must be sent from the NWK to the MLME. An
MLME message must be allocated using MSG_AllocType(mlmeMessage_t). The macro returns a pointer
to a memory location with a sufficient number of bytes, or NULL if the memory pools are exhausted. The

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-5

NULL pointer should be handled in the same way as a confirm message with a status code of
TRANSACTION_OVERFLOW.

An allocated message that is sent to the MLME will be freed automatically. Pay attention to the comments
regarding allocation for the Set, Get, and Reset requests described in Section 4.1.2, “Configuration
Primitives”.
// NWK to MLME message
typedef struct mlmeMessage_tag {
 primNwkToMlme_t msgType;
 union {
 mlmeAssociateReq_t associateReq;
 mlmeAssociateRes_t associateRes;
 mlmeDisassociateReq_t disassociateReq;
 mlmeGetReq_t getReq;
 mlmeGtsReq_t gtsReq;
 mlmeOrphanRes_t orphanRes;
 mlmeResetReq_t resetReq;
 mlmeRxEnableReq_t rxEnableReq;
 mlmeScanReq_t scanReq;
 mlmeSetReq_t setReq;
 mlmeStartReq_t startReq;
 mlmeSyncReq_t syncReq;
 mlmePollReq_t pollReq;
 } msgData;
} mlmeMessage_t;

The following structure/union is used for messages that must be sent from the NWK to the MCPS. An
MCPS-PURGE.request must be allocated using MSG_AllocType(nwkToMcpsMessage_t), while an
MCPS-DATA.request message must be allocated using
MSG_Alloc((sizeof(nwkToMcpsMessage_t)-1)+size). Both allocation macros return a pointer to a
memory location with a sufficient number of bytes, or NULL if the memory pools are exhausted. The
NULL pointer should be handled in the same way as a confirm message with a status code of
TRANSACTION_OVERFLOW.

An allocated message (S08 platform) that is sent to the MCPS will be freed automatically.
// NWK to MCPS message
typedef struct nwkToMcpsMessage_tag {
 primNwkToMcps_t msgType;
 union {
 mcpsDataReq_t dataReq;
 mcpsPurgeReq_t purgeReq;
 } msgData;
} nwkToMcpsMessage_t;

An allocated message (ARM7 platform) that is sent to the MCPS will be freed automatically.

// NWK to MCPS message
typedef struct nwkToMcpsMessage_tag {
 primNwkToMcps_t msgType;
 union {
 mcpsDataReq_t dataReq;
 mcpsPurgeReq_t purgeReq;
 void * dummyAlign; // Used for alignment with mlmeGenericMsg_t
 } msgData;
} nwkToMcpsMessage_t;

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-6 Freescale Semiconductor

2.3 Message Buffer Configuration
The message system, which is an integral part of the MAC and the interface to the MAC, relies on a pool
of message buffers. Depending on the Device Type and selected feature set the buffer pool varies in size.
Typically, a coordinator can have 5 small messages of 22 bytes each and 5 large messages of 134 bytes
each. The number of buffers is defined in the AppToMacPhyConfig.h header file in the Configure folder.
Specifically, the gTotalSmallMsgs_d, and gTotalBigMsgs_d constant definitions can be used to configure
the number of message buffers.

NOTE
Freescale strongly recommends to only increase the number of message
buffers because MAC functionality may be adversely affected by a
reduction in the number of message buffers. If users are absolutely required
to reduce the number of message buffers, then extensive testing must be
performed to ensure that the MAC is not influenced by the reduced buffer
count.

When building applications incorporating the Freescale MAC, the GlobalVars.c source file must be
included because it contains the instantiation of the MAC message pools.

An application is allowed to add message buffers to the pools as well as use the extra buffers for both MAC
messages and non-MAC related memory allocations. However, if using the buffers for private allocations,
the application must take care to not allocate more buffers than was added. For example, if
gTotalSmallMsgs_d is changed from 5 to 12, then the application should only use the extra 7 buffers for
private allocations. Otherwise, the MAC may fail to function properly.

Instead of adding application specific buffers to the MAC buffer pool, the application can create its own
private pool. The following example shows how to accomplish this using the data types and macros from
the MsgSystem.h file. The example defines four pools configured as shown in Table 2-5.

The message system header file is included and then the APP_Alloc*** macros are defined to access the
application specific pool (myAppPools).
#include “MsgSystem.h”

#define APP_Alloc(size) MM_AllocPool(myAppPools, numBytes)
#define APP_AllocType(type) MM_AllocPool(myAppPools, sizeof(type))

The pool layout (S08 platform) is defined using the poolInfo_t type shown below:
typedef struct poolInfo_tag {
 uint8_t poolSize;

Table 2-5. Pool Configuration

Pool ID Number of buffers Size of each buffer in bytes

0 mMyAppNumBuf0 = 8 mMyAppBufSize0 = 16

1 mMyAppNumBuf1 = 4 mMyAppBufSize1 = 32

2 mMyAppNumBuf2 = 2 mMyAppBufSize2 = 50

3 mMyAppNumBuf3 = 1 mMyAppBufSize3 = 128

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-7

 uint8_t blockSize;
 uint8_t nextBlockSize;
} poolInfo_t;

The pool layout (ARM7 platform) is defined using the poolInfo_t type shown below:
typedef struct poolInfo_tag {
 uint8_t poolSize;
 uint8_t blockSize;
 uint8_t nextBlockSize;
 uint8_t padding[1];
} poolInfo_t;

NOTE

It is important that the buffer sizes are sorted in ascending order. The
sequence in this example must be as follows:
16, 32, 50, 128

#define mMyAppNumBuf0 8 // Pool0 has 8 buffers of
#define mMyAppBufSize0 16 // 16 bytes each
#define mMyAppNumBuf1 4 // Pool1 has 4 buffers of
#define mMyAppBufSize1 32 // 32 bytes each
#define mMyAppNumBuf2 2 // Pool2 has 2 buffers of
#define mMyAppBufSize2 50 // 50 bytes each
#define mMyAppNumBuf3 1 // Pool3 has 1 buffer of
#define mMyAppBufSize3 128 // 128 bytes

const poolInfo_t myAppPoolInfo[4] = {
 mMyAppNumBuf0, mMyAppBufSize0, mMyAppBufSize1,
 mMyAppNumBuf1, mMyAppBufSize1, mMyAppBufSize2,
 mMyAppNumBuf2, mMyAppBufSize2, mMyAppBufSize3,
 mMyAppNumBuf3, mMyAppBufSize3, 0
};

In order to allocate the heap for the pools, the total size of the pools must be known. The following code
snippet shows how to calculate the total heap size and then allocate it. Extra space (sizeof listHeader_t) is
added to each buffer for storing two pointers related to linked list operations.
#define mMyAppHeapSize (\
 mMyAppNumBuf0*(mMyAppBufSize0+sizeof(listHeader_t)) + \
 mMyAppNumBuf1*(mMyAppBufSize1+sizeof(listHeader_t)) + \
 mMyAppNumBuf2*(mMyAppBufSize2+sizeof(listHeader_t)) + \
 mMyAppNumBuf3*(mMyAppBufSize3+sizeof(listHeader_t)))

uint8_t myAppHeap[mMyAppHeapSize];

NOTE
Depending on machine architecture, it may be required to restrict the buffer
sizes to values divisible by sizeof(void *). Otherwise, bus access violations
may occur.
For example, a buffer size of 50 can cause problems on 32 bit architectures.
To avoid potential issues, the size should be defined as 32.

When initializing the pools the myAppPools array is filled with information about each pool. This array is
used as the handle to the application’s private pool when allocating a buffer.
pools_t myAppPools[4];

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-8 Freescale Semiconductor

 // Initialize application pools
MM_Init(myAppHeap, myAppPoolInfo, myAppPools);

When allocating buffers from the application pool, use the APP_Alloc(size) and APP_AllocType(type)
macros. They will translate to MM_Alloc(myAppPools, size), and MM_Alloc(myAppPools, sizeof(type))
respectively. MSG_Free can be used on all buffers regardless of the pool they originate from. This implies
that the application private buffers can be sent to the MAC as long as the message sizes expected by the
MAC are complied with (a minimum of 22 bytes for small non-data messages and a minimum of 134 bytes
for data packets and command frames). When freed by the MAC, the application buffers are returned to
the applications private pool.

2.4 Message System API
This section describes the macros and functions available in the Message System API. In order to use the
API, the MsgSystem.h header file must be included in the relevant source code files. The GlobalVars.c
file is also a requirement in the build.

2.4.1 MM_Init

Prototype
void MM_Init(uint8_t *pHeap, const poolInfo_t *pPoolInfo, pools_t *pPools);

pHeap

Points to a contiguous memory block with space for the complete memory pool including space for linked
list housekeeping. The number of bytes required in the heap can be calculated using the following
equation:

Where:
M is the number of pools of different buffer sizes.
Nm is the number of buffers in pool m.
Sm is the number of bytes in each buffer in pool m.

For example, if M=2, pools are defined with N0=3 buffers of S0=16 bytes, and N1=2 buffers of S1=64
bytes, then the amount of heap memory must be: 3*(16+4) + 2*(64+4) = 196 bytes, assuming that
sizeof(listHeader_t) is 4. The heap can be created as follows:
uint8_t myHeap[196];

pPoolInfo

Points to an array of data structures which define the memory pool layout. The array is not altered by this
function and may be placed in read only memory. The format of the pool info array is shown in Table 2-6.

∑
−=

=

+=
1

0
))_((

Mm

m
mm tlistHeadersizeofSNHeapSize

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-9

An important restriction to the buffer sizes is shown in the following formula:

For example, the pools must be defined with ascending buffer sizes. An equally important restriction is
that the buffer size must be a modulus of the pointer size of the machine architecture. For example, on 32
bit MCUs the buffer size must be divisible by 4. Otherwise, bus access violations occur when accessing
misaligned buffers.

Using the previous example, a pool can be constructed by defining the following structure:
const poolInfo_t myPoolInfo[2] = {
 3, 16, 64,
 2, 64, 0 };

pPools

Points to an array of c-structures which will receive the initialized memory pool handle. The handle is used
when allocating memory from the pool. If M pools have been defined in the pool info array, then the output
array also needs to reserve space for M number of pools_t structures. For example, continuing with the
current example, the array is defined as:
pools_t myPools[2];

To fill in the array the MM_Init function is called as follows:
MM_Init(myHeap, myPoolInfo, myPools);

Now allocation and deallocation is possible using the application specific allocation function and the
standard free function:
myDataType_t *pBuffer = MM_AllocPool(myPools, 12);
MSG_Free(pBuffer);

Functional Description

The MM_Init function is used whenever a new set of memory pools must be created. It is used by the MAC
during initialization and soft reset (MLME-RESET.request) to configure the MAC message pool.
However, applications may also use the function for creating their own private pools.

The array of poolInfo_t structures is used for segmenting the supplied heap into buffers, and organizing
them in pools. All buffers are assigned a header with a pointer to the original pool, and a next pointer for
linked list operations. The pool information, including anchors for each buffer pool, is stored in the output
pools_t array.

Table 2-6. Pool Info Array

N0 S0 S1

N1 S1 S2

N2 S2 SM-1

NM-1 SM-1 0 (Termination)

1+≤ mm SS

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-10 Freescale Semiconductor

2.4.2 MSG_Alloc

Macro Definition
#define MSG_Alloc(size) MM_Alloc(size)

Size

Specifies the size of the requested buffer, which must be less than 256 bytes.

Functional Description

The macro is typically translated directly to MM_Alloc(size). See Section 2.4.4, “MM_Alloc” for more
information.

Example
uint8_t *pMsg = MSG_Alloc(10);

2.4.3 MSG_AllocType

Macro Definition
#define MSG_AllocType(type) MM_Alloc(sizeof(type))

Type

Specifies the type of the requested buffer. The type is translated to a size which must be less than 256 bytes.

Functional Description

The macro is typically translated directly to MM_Alloc(sizeof(type)). See Section 2.4.5,
“MM_AllocPool” for more information.

Example
mlmeMessage_t *pMsg = MSG_AllocType(mlmeMessage_t);

2.4.4 MM_Alloc

Prototype
void *MM_Alloc(uint8_t size);

Size

Specifies the size of the requested buffer, which must be less than 256 bytes.

Returns

Pointer to allocated buffer, or NULL if no buffers were available.

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-11

Functional Description

This function is solely for allocating buffers from the MAC pools. Otherwise, the functionality is identical
to MM_AllocPool. See Section 2.4.5, “MM_AllocPool” for more information. Freescale recommends
using the MSG_Alloc and MSG_AllocType macros instead of the direct function call.

Example
nwkToMcpsMessage_t *pMsg = MM_Alloc(sizeof(nwkToMcpsMessage_t));

2.4.5 MM_AllocPool

Prototype
void *MM_AllocPool(pools_t *pPool, uint8_t size);

pPool

The pool to allocate a buffer from. pPool must have been initialized by MM_Init.

Size

Specifies the size of the requested buffer, which must be less than 256 bytes.

Returns

Pointer to allocated buffer, or NULL if no buffers were available.

Functional Description

This function searches in the memory pool specified by the pPool argument for a buffer of at least the
number of bytes given by the size argument. The search starts at the smallest buffer size and ends at the
largest buffer size.

For example, assume a memory pool with 3 buffers of 16 bytes and 2 buffers of 64 bytes. If the size
argument is 10, a buffer from the 16 byte pool will be allocated. After allocating two additional buffers of
size 10, the 16 bytes buffer pool is exhausted. If allocating the fourth 10 bytes buffer, it will be allocated
from the pool with the 64 bytes buffers. The next time that the function is called when all buffers of all
sizes in the pool have been allocated, the function returns the value NULL to signify that no memory is
available. The function also returns NULL if no buffers of the requested buffer size exists in the pools. For
example, if the size argument is 70, then none of the pools in the example will match the request and the
return value is NULL.

Example
myTypeA_t *pMsg = MM_AllocPool(myPools, sizeof(myTypeA_t));

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-12 Freescale Semiconductor

2.4.6 MSG_Free

Macro Definition
#define MSG_Free(buffer) MM_Free(buffer)

Buffer

Specifies the buffer to be returned to the memory pool.

Functional Description

The macro is typically translated directly to MM_Free(size). See Section 2.4.7, “MM_Free” for more
information.

2.4.7 MM_Free

Prototype
void MM_Free(void *pBuffer);

pBuffer

The buffer to be returned to the memory pool from which it was allocated.

Functional Description

The pBuffer argument points at a memory buffer allocated by the MSG_Alloc and MSG_AllocType
macros, or the MM_Alloc and MM_AllocPool functions. It is important that the value of the pBuffer
pointer is the same as the value returned by any of the four allocation methods. Otherwise, the memory
pool will be invalidated.

Example
uint8_t *pMsg = MM_Alloc(14);
/* Important: Do not modify the value returned by any allocation function. E.g. pMsg++, or pMsg
+= startOfDataIndex etc. will cause the MM_Free function to invalidate the memory pool. */
MM_Free(pMsg);

2.4.8 MSG_Send

Macro Definition
#define MSG_Send(sap, msg) (sap##_SapHandler((void *)(msg)))

Sap

Specifies the name of the service access point to which the message is sent.

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-13

Msg

Specifies the message to be send to the service access point.

Functional Description

The macro translates into a function with the name of the specified SAP concatenated with the extension
“_SapHandler”. For example, a network layer or application must implement a function called
MLME_NWK_SapHandler. The 802.15.4 MAC will call that function when sending messages to the
network layer or application.

The following SAPs must be defined by the upper layer:
MLME_NWK_SapHandler()
MCPS_NWK_SapHandler()
ASP_APP_SapHandler()

See Section 2.1, “General MAC/Network Interface Information”, and Section 5.1, “General APP/ASP
Interface Information” for more information about the service access points.

Example
mlmeMessage_t *pMsg = MSG_AllocType(mlmeMessage_t);
PrepareAssociateMessage(pMsg); // Pseudo code.
// Call NWK_MLME_SapHandler(pMsg);
MSG_Send(NWK_MLME, pMsg);

2.4.9 MSG_InitQueue

Macro Definition
#define MSG_InitQueue(anchor) List_ClearAnchor(anchor)

Anchor

Specifies a pointer to the queue anchor that must be initialized.

Functional Description

This macro translates to a function which clears the head and tail pointers of the queue anchor. All anchors
must be cleared during system initialization before they are used for queuing messages.

Example
anchor_t myNwkQueue;
void MyApp_Init(void)
{
 MSG_InitQueue(&myNwkQueue);
}

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-14 Freescale Semiconductor

2.4.10 MSG_Queue

Macro Definition
#define MSG_Queue(anchor, msg) List_AddTail((anchor), (msg))

Anchor

Specifies a pointer to the queue anchor which will receive the message.

Msg

Specifies a pointer to the message being queued.

Functional Description

The macro translates to a function which adds the message to the tail of the queue. There is no limit
imposed on the number of messages that can be stored in the queue. When combined with the
MSG_DeQueue macro, a FIFO queue is realized.

Example
anchor_t myMlmeNwkQueue;

void MLME_NWK_SapHandler(nwkMessage_t *pMsg)
{ // Queue up messages from the MLME.
 MSG_Queue(&myMlmeNwkQueue, pMsg);
}

2.4.11 MSG_QueueHead

Macro Definition
#define MSG_QueueHead(anchor, msg) List_AddHead((anchor), (msg))

Anchor

Specifies a pointer to the queue anchor which will receive the message.

Msg

Specifies a pointer to the message being queued.

Functional Description

This macro translates to a function which adds the message to the head of the queue. There is no limit
imposed on the number of messages that can be stored in the queue. When combined with the
MSG_DeQueue macro a LIFO queue, or stack, is realized because messages are always de-queued from
the head of the queue. See Section 2.4.12, “MSG_DeQueue”.

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 2-15

Example
anchor_t myStackQueue;

void AddToStack(myDataType_t *pMsg)
{ // Put the message on the stack-like queue
 MSG_QueueHead(&myStackQueue, pMsg);
}

2.4.12 MSG_DeQueue

Macro Definition
#define MSG_DeQueue(anchor) List_RemoveHead(anchor)

Anchor

Specifies a pointer to the queue anchor.

Returns

Pointer to de-queued message or NULL if queue is empty.

Functional Description

The macro translates to a function which removes a message from the head of the specified queue.

Example
anchor_t myMcpsNwkQueue;

void ProcessMcpsMessage(void)
{
 mcpsToNwkMessage_t *pMsg = MSG_DeQueue(&myMcpsNwkQueue);
 // Do something with the message.
 ...
 // ALWAYS free message when done with it.
 MSG_Free(pMsg);

2.4.13 Message Tracking
The message tracking feature allows monitoring the status of each buffer in the memory pool. The user
can know the number of times a buffer was allocated, deallocated, its allocation status and the address of
the function that last allocated or deallocated it.

The message tracking is enabled by setting MsgTracking_d on 1 in file AppToMacPhyConfig.h. Each
buffer in the memory pool is associated with an element of type MsgTracking_t, stored in the
MsgTrackingArray, which is defined in GlobalVars.c. The MsgTracking_t type definition is shown below.
typedef struct MsgTracking_tag {
 uint16_t MsgAddr;
 uint16_t AllocAddr;
 uint16_t FreeAddr;
 uint8_t AllocCounter;

MAC/Network Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

2-16 Freescale Semiconductor

 uint8_t FreeCounter;
 uint8_t AllocStatus;
} MsgTracking_t;

The meaning of each field is described below:
• The MsgAddr field specifies the address of the buffer;
• The AllocAddr and FreeAddr fields specify the addresses where the buffer was allocated and

respectively deallocated the last time;
• The AllocCounter and FreeCounter fields show the number of times the buffer was allocated and

deallocated, respectively;
• The AllocStatus field specifies if the buffer is currently allocated (1) or deallocated (0).

Another useful feature allows to detect whenever the message system tries to allocate or deallocate an
invalid buffer, e.g. a buffer that is outside the pool memory. The NoOfWrongAddrs increments each time
the buffer accessed by MM_Alloc or MM_Free is not in the memory pool.

2.4.14 MSG_Pending

Macro Definition
#define MSG_Pending(anchor) ((anchor)->pHead != 0)

Anchor

Specifies a pointer to the queue anchor.

Returns

TRUE if one or more messages in queue, or FALSE if queue is empty.

Functional Description

This macro checks if there are any messages in the specified queue. This is accomplished without disabling
interrupts, and it is the recommended method for checking queues for messages. The MSG_DeQueue
macro translates to a function which disables interrupts for a few micro seconds. Thus, if checking the
queues in a tight loop, it is preferred to use MSG_Pending so as not to interfere with the real-time
functionality of the MAC.

Example
anchor_t myMcpsNwkQueue;
while(running) {
 if(MSG_Pending(&myMcpsNwkQueue)) {
 // Function uses MSG_DeQueue to obtain queued message.
 ProcessMcpsMessage();
 }
}

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 3-1

Chapter 3
Interfacing to the 802.15.4 MAC Software
This chapter describes how to interface an application to the MAC and how to use the MAC interface
functions. The examples shown in this chapter explain the API functions and are often simplified for this
purpose. Refer to 802.15.4 MyWirelessApp Software User’s Guide (802154MWASUG) for a detailed
walk-through of how to create a more advanced application.

A brief overview of the MAC interfaces are given in Section 3.1, “Interface Overview” before each
interface is explained in more detail. Throughout this chapter, the term “application” refers to the next
higher layer and all layers above the MAC layer. This could be the ZigBee Network, an application, or
another network layer written directly on top of the MAC.

3.1 Interface Overview
The interface between the application layer and the MAC layer is based on service primitives passed as
messages from one layer to another. These service primitives are implemented as a number of C-structures
with fields for command opcodes/identifiers and command parameters. This chapter does not describe the
primitives in detail but focuses on the functions used for passing, receiving, and processing the message
primitives. For a description of all available message primitives see Chapter 2, “MAC/Network Layer
Interface Description”.

Figure 3-1 shows the three interfaces to the MAC.

Figure 3-1. MAC Interfaces

MCPS_NW K_SapHandler() MLME_NW K_SapHandler() ASP_NW K_SapHandler()

NW K_MCPS_SapHandler() NW K_MLME_SapHandler()

MLME_Main task

APP

MAC

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

3-2 Freescale Semiconductor

Messages are sent to a Service Access Point (SAP) function which is responsible for handling the message.
Five SAPs exists, two for the communication stream to the MAC and three for the communication from
the MAC to the application layer.

The following list shows the two Service Access Points as provided by the MAC layer:
1. NWK_MLME_SapHandler() - Used for command related primitives sent from the application

(or network) layer to the MAC layer. This SAP receives all MLME request and response
primitives. See Section 3.5, “MAC Main Task” for a detailed description.

2. NWK_MCPS_SapHandler() - Used for data related primitives sent from the application layer
to the MAC layer. This SAP receives all MCPS request and response primitives. See Section 3.5,
“MAC Main Task” for a detailed description.

The following list shows the three Service Access Points (SAPs) which must be implemented in the
application layer by the MAC user.

1. MLME_NWK_SapHandler() - Used for command related primitives sent from the MAC layer
to the application/network layer. The access point receives all MLME confirm and indication
primitives. See Section 3.6, “MLME and MCPS Interface” for a detailed description.

2. MCPS_NWK_SapHandler() - Used for data related primitives sent from the application layer
to the MAC layer. This SAP receives all MCPS confirm and indication primitives. See Section 3.6,
“MLME and MCPS Interface” for a detailed description.

3. ASP_APP_SapHandler()- Used for receiving all ASP indications from the MAC. See
Section 3.7, “ASP Interface” for a detailed description.

The application and MAC SAPs typically store the received messages in message queues. A message
queue decouples the execution context which ensures that the call stack does not build up between modules
when communicating. The decoupling also ensures that timing critical modules can queue a message to
less timing critical modules and move on which ensures that the receiving module does process the
message immediately.

3.1.1 MC1310x, MC1320x, and MC1321x Transceiver IRQ Timing
Dependency

For these devices, the transceiver is a separate device from the MCU. Parts of the MAC are implemented
through a synchronous, interrupt driven structure (from the transceiver to the MCU). This area is referred
to as the “transceiver ISR” because the controlling interrupts are generated by the MC1319x/MC1320x/
MC1321x transceiver. These transceiver interrupts typically indicate events such as Rx data received, Rx
timeouts, Tx done indications, and others. The most timing critical parts of the MAC are serviced through
these interrupts. The following timing constraint must be kept by the application in order to meet MAC
interrupt latency demands:

• Within a period of 64 µs, the application may only disable the transceiver interrupts for a maximum
duration of 10 µs.

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 3-3

3.1.2 MC1322x Transceiver IRQ Timing Dependency
The MC1322x has the transceiver attached as a peripheral directly to the MCU bus, and also has a separate
MAC controller and DMA for moving data. As such, the CPU typically need not respond to the transceiver
on any periodic basis and does not have a similar timing constraint for handling interrupts.

3.2 Include Files
Table 3-1 shows which MAC files must be included in the application C-files in order to have access to
the entire MAC API.

\

3.3 Source Files
Table 3-2 shows which MAC source files must be included in the application project.

Table 3-1. Required MAC Include Files in Application C-Files

Include File Name Description

EmbeddedTypes.h Provides Freescale specific type defines for creating fixed sized variables. For example an uint8_t
defines the type of an 8 bit unsigned integer. Also defines the TRUE and FALSE constants.

MsgSystem.h Provides access to message handling functions and to allocation/deallocation of data and command
buffers to/from the MAC/PHY.

NwkMacInterface.h Defines structures and constants for all MLME and MCPS primitives.

AppAspInterface.h Defines structures and constants for all ASP primitives.

PublicConst.h Contains the 802.15.4 specific status/return codes.

PlatformInit.h Platform initialization functions.

IrqControlLib.h Provides primitives for interrupt protection, configuration, checking and acknowledgement.

FunctionLib.h Generic function library.

TS_Interface.h Provides the interface functions to the task scheduler interface.

TMR_Interface.h The timer driver interface.

UartUtil.h Needs to be included if the application uses the UART interface. Contains support functions for different
UART operations. Functions like UartUtil_Print and UartUtil_PrintHex are defined here.

Table 3-2. Required MAC Source Files in Application Project

Source File Name Description

GlobalVars.c Provides MAC specific variables and memory allocations.

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

3-4 Freescale Semiconductor

3.4 MAC API
The MAC API provides a simple and consistent way of interfacing to the Freescale 802.15.4 MAC
software. The number of API functions that the Freescale MAC software exposes to the application, are
limited in order to keep the interfaces as simple and consistent as possible. The API functions available
are used for initialization of the MAC, running the MAC, allocating, deallocating, and sending messages,
and queueing and dequeueing of messages. Table 3-3 shows the available API functions for initializing
and running the MAC.

For allocating and deallocating messages to and from the MAC and sending messages to the MAC, the
MAC exposes the following message handling functions as shown in Table 3-4.

The MAC implements a few functions for queueing and dequeuing messages from the MAC to the
application. These functions are shown in Table 3-5.

Table 3-3. Available API Functions

Function Description

Init_802_15_4() This function initializes internal variables of the MAC/PHY modules, resets state machines etc. Once
the function has been called the MAC layer services are available and the MAC and PHY layers are
in a known and ready state for further access.
The function is only available if the preprocessor definition INCLUDE_802_15_4 has been setup in
the compiler settings of the MCP project.

Mlme_Main task As the MAC has been designed to be independent of an operating system, part of the MAC must be
executed regularly by the MAC task. This task has basically processes data/command messages that
are pending in any of the MAC input queues.
See Section 3.5, “MAC Main Task” for an in-depth description of the Mlme_Main() function.

Table 3-4. Exposed Message Handling Functions

Function Description

*pMsg = MSG_AllocType(type) Allocate a message of a certain type. This must only be used to allocate messages for
one of the MAC access points. The type parameter can be set to mlmeMessage_t,
mcpsMessage_t, and aspMessage_t.

MSG_Free(*pMsg) Frees a message that was allocated using MSG_AllocType().

status = MSG_Send(SAP, *pMsg) Sending a message is equal to calling a Service Access Point function. The SAP
argument can be either NWK_MLME or NWK_MCPS. The argument is translated into the
corresponding SAP handler function, e.g. NWK_MLME_SapHandler().

Table 3-5. Queueing and Dequeuing Functions

Function Description

MSG_InitQueue(*pAnchor) Initializes a queue. This function must be called before queuing or dequeueing from the
queue.

status = MSG_Pending(*pAnchor) Checks if a message is pending in a queue given a queue anchor. Returns TRUE if any
pending messages, and FALSE otherwise.

MSG_Queue(*pAnchor, *pMsg) Queues a message given a queue anchor and a pointer to the message.

*pMsg = MSG_DeQueue(*pAnchor) Gets a message from a queue. Returns NULL if there are no messages in the queue.

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 3-5

Also, a few data types are available on the MLME and MCPS interfaces. A common element of the data
structures is that a member variable must be set to indicate which message is being sent. The rest of the
data structure is a union that must be accessed and set up accordingly.

Similar data structures are used when the MAC sends messages to the application. Again, a member
variable contains the message type and the rest of the data structure is a union that must be decoded
accordingly.

Additionally, a helper structure for managing message queues is also defined.

3.5 MAC Main Task
Because the MAC is designed to be independent of an operating system, part of the MAC is executed by
the MAC task with the root function Mlme_Main. The MAC task is responsible for the following
functions.

• Restructuring data and command frames from the application to the 802.15.4 MAC packet format
and vice versa. This includes processing all primitives sent to the MLME, MCPS, and ASP SAPs

• Matching data requests received from remote devices against the packets queued for indirect
transfer. Matched packets are passed on to an interrupt driven part of the MAC that takes care of
the actual transmission

• Processing the GTS fields, pending address fields, and the beacon payload of received beacon
frames

• Automatically generating data requests packets to extract pending data from remote devices (only
if in beacon mode and the PIB attribute macAutoRequest is set to TRUE)

• Applying encryption/decryption to the MAC frames if security is enabled

Table 3-6. Data Structures Passed From The Application

Data Type Description

mlmeMessage_t The data structure of the messages passed from the application to the MLME SAP handler.

mcpsMessage_t The data structure of the messages passed from the application to the MCPS SAP handler.

Table 3-7. Data Structures Passed From The MAC

Data Type Description

nwkMessage_t The data structure of the messages passed from the MLME to the applications MLME SAP handler.

mcpsToNwkMessage_t The data structure of the messages passed from the MCPS to the applications MCPS SAP handler.

aspToAppMsg_t The data structure of the messages passed from the ASP to the applications ASP SAP handler.

Table 3-8. Helper Structures For Managing Message Queues

Data
Type Description

anchor_t A container for any type of MAC message. Before queuing or dequeuing messages into the structure the anchor
must be initialized using MSG_InitQueue(). Messages are queued and dequeued using MSG_Queue() and
MSG_DeQueue().

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

3-6 Freescale Semiconductor

Even though these activities are not highly time critical in nature, the application program must execute
this function in a timely manner. The specific requirements for this execution are as follows.

• The MAC main task must be executed at least once for every Rx packet the application wishes to
receive. If the MAC is in a state where the receiver is enabled either continuously or with a regular
interval, packets can be expected “any time” and the worst-case packet receive latency is increased
with the interval, with which the application executes the Mlme_Main() function. The MAC will
not crash if all receive buffers fill up due to slow Mlme_Main() polling, but instead the receiver
will be switched off even though it should actually have been enabled

• The function must be executed at least once for every MCPS, MLME or ASP primitive the
application has sent to one of the MAC access points

• In addition to the already stated requirements, the function must be executed at least once between
two beacon receptions in order to ensure basic beacon operation. If this requirement is not met,
beacon packets are not processed in a timely manner, which could lead to unexpected behavior. For
optimal beacon operation it is recommended that the MAC main task is executed at least twice
during every superframe

3.6 MLME and MCPS Interface
The MLME and MCPS interfaces are quite similar in the way that they are used and both of them are
specified in the 802.15.4 Standard. The ASP interface is Freescale proprietary. The MLME interface
manages all commands, responses, indications, and confirmations used for managing a PAN and an
802.15.4 compliant unit. The MCPS interface carries data related messages (data requests, data
indications, data confirmations) and the number of available messages is much smaller than on the MLME
interface.

Common for the MCPS and MLME interface is that messages are sent to the interfaces using the
MSG_Send(SAP, *pMsg) function (see Section 3.3, “Source Files”). If sending to the MLME the SAP
parameter must be set to NWK_MLME and sending to the MCPS the SAP parameter must be set to
NWK_MCPS.

3.6.1 Resetting
Before the Freescale 802.15.4 MAC layer can be accessed after power-on, it must be initialized by calling
the Init_802_15_4() function. See Section 3.3, “Source Files” for a more detailed explanation.

At any point after this, it is always safe to reset the MAC (and also the PHY) layer by using the service
MLME-RESET.request as shown in the following example code:
void App_ResetMac_Example(void)
{
 mlmeMessage_t mlmeReset;

 /* Create and execute the Reset request */
 mlmeReset.msgType = gMlmeResetReq_c;
 mlmeReset.msgData.resetReq.setDefaultPib = TRUE;
 (void) MSG_Send(NWK_MLME, &mlmeReset);
}

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 3-7

By calling this service, the MAC layer is reset and brought into the same state, as it was right after having
called Init_802_15_4(). The setDefaultPib parameter tells the MAC layer whether its PIB attributes should
be set to their default value or if they are to stay unchanged after the reset. This is specified in the 802.15.4
Standard.

Notice that the reset is processed immediately (in the NWK_MLME_SapHandler()) and that the Freescale
MAC does not generate the confirmation message, MLME-RESET.confirm. Furthermore there is no need
to check for the return value of MSG_Send() as it always returns gSuccess_c on an
MLME-RESET.request.

Since the call is processed immediately, the message structure need not be allocated through
MSG_AllocType(), but can be allocated on the stack. In all circumstances, it is the responsibility of the
calling entity to de-allocate the message for MLME-RESET.request.

3.6.2 Accessing PIB Attributes
The MAC PIB holds all the MAC attributes/variables that are accessible for the application. According to
the 802.15.4 Standard, the primitives MLME-SET.request and MLME-GET.request, provide access to the
PIB.

Similar to the Freescale implementation of MLME-RESET, these primitives are processed immediately
and therefore the corresponding confirm messages MLME-SET.confirm and MLME-GET.confirm are not
generated. Instead, the return code from MSG_Send() must be used to check the status. The
MLME-SET.request message contains a pointer to the data to be written to the MAC PIB, which must be
supplied by the application. The following code is an example of how to use MLME-SET.request.
uint8_t App_SetMacPib_Example(uint8_t attribute, uint8_t *pValue)
{
 mlmeMessage_t mlmeSet;

 /* Create and execute the Set request */
 mlmeSet.msgType = gMlmeSetReq_c;
 mlmeSet.msgData.setReq.pibAttribute = attribute;
 mlmeSet.msgData.setReq.pibAttributeValue = pValue;

 return MSG_Send(NWK_MLME, &mlmeSet);
}

This usage is very similar to MLME-RESET.request, because the call is processed immediately. Therefore
the message structure need not be allocated through MSG_AllocType(), but can be allocated. For example,
it can allocated on the stack. It is the responsibility of the calling entity to de-allocate the message (and
potentially the PIB attribute value data buffer) for MLME-SET.request.

The return value of MSG_Send() is gSuccess_c if the set request was processed correctly or
gInvalidParameter_c if parameter verification failed. In the latter case, the PIB attribute was not set to the
new value. The use of MLME-GET.request is very similar and only differs in that the pibAttributeValue
parameter in the message is a return value and in the value of msgType.

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

3-8 Freescale Semiconductor

3.6.3 MLME Primitives
The MLME-SET.request, MLME-GET.request, and MLME-RESET.requests are the only messages that
are completed synchronously all other messages from the application to the MLME interface are
completed asynchronously i.e. a confirmation message will be generated in the MLME and sent to the
MLME SAP handler of the application (MLME_NWK_SapHandler()).

For example, in order to request an energy detection scan, the application must allocate a MLME message
using MSG_AllocType(mlmeMessage_t) and fill out the parameters of the message
(MLME-SCAN.request) and send the message to the MLME SAP handler as shown in the following code
example. For a detailed explanation of energy detection scan, see Section 4.2.2, “Energy Detection Scan”.
uint8_t App_StartEdScan_Example(void)
{
 mlmeMessage_t *pMsg;

 /* Allocate a message for the MLME. */
 pMsg = MSG_AllocType(mlmeMessage_t);
 if(pMsg != NULL)
 {
 /* Allocation succeeded. Fill out the message */
 pMsg->msgType = gMlmeScanReq_c;
 pScanReq->msgData.scanReq.scanType = gScanModeED_c;
 pScanReq->msgData.scanReq.scanChannels[0] = 0x00;
 pScanReq->msgData.scanReq.scanChannels[1] = 0xF8;
 pScanReq->msgData.scanReq.scanChannels[2] = 0xFF;
 pScanReq->msgData.scanReq.scanChannels[3] = 0x07;
 pScanReq->msgData.scanReq.scanDuration = 5;

 /* Send the Scan request to the MLME. */
 if(MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
 return errorNoError;
 else
 return errorInvalidParameter;
 }
 else
 {
 /* Allocation of a message buffer failed. */
 return errorAllocFailed;
 }
}

When requesting a service that is completed asynchronously, it is the responsibility of the MLME to
deallocate the message. In order for the application to be able to receive the MLME-SCAN.confirm
message from the MLME (and for the application to be able to link without any errors) the application
must implement the MLME SAP handler. This SAP handler will typically only queue the message (which
is of type nwkMessage_t) and return as soon as possible. An event needs to be passed to the application
task in order to notify it that a new message from the MLME has arrived. To tell the MLME that the
message was received successfully the SAP handler must return a status code of gSuccess_c (any other
return codes indicates a failure) as shown in the following code example.
uint8_t MLME_NWK_SapHandler(nwkMessage_t * pMsg)
{
 /* Put the incoming MLME message in the applications input queue. */
 MSG_Queue(&mMlmeNwkInputQueue, pMsg);

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 3-9

 TS_SendEvent(gZappTaskID_c, evtMessageFromMLME);
 return gSuccess_c;
}

As shown in the following code example, the application task checks whether it has received the event sent
by the MLME_NWK_SapHandler. Dequeuing the messages that were received from either the MCPS,
MLME, or ASP interface is done using MSG_DeQueue().
void AppTask(event_t events)
{
 nwkMessage_t *pMsg;
 uint8_t *pEdList;

 /* Try to get a message from the MLME. */
 if (events & evtMessageFromMLME)
 {
 pMsg = MSG_DeQueue(&mMlmeNwkInputQueue);
 switch (pMsg->msgType)
 {
 /* Check for a scan confirm message. */
 case gNwkScanCnf_c:
 /* Find the pointer to the list of detected energies */
 pEdList = pMsg->msgData.scanCnf.resList.pEnergyDetectList;
 /* Do app. specific operation on the detected energies */
 … No code is shown for that
 /* The list of detected energies MUST be freed. */
 /* Note: This is a special exception for scan. */
 MSG_Free(pEdList);
 break;
 default:
 break;
 }
 /* Ensure to always free the message */
 MSG_Free(pMsg);
 }
}

Notice that the application must free the MLME message after having processed it and that some messages
contain pointers to data structures that must be freed before freeing the message itself (as in the case shown
in the previous example code). Neglecting to free such data structures (and the messages themselves) will
cause memory leaks.

The MLME interface only allows for one request pending at a time. That is, after having sent a scan request
message to the MLME, users must wait for a scan confirmation message on the MLME SAP handler until
they are allowed to send another MLME request to the MLME. Not complying with this rule may result
in unwanted and/or unpredictable behaviour.

If a MLME primitive is called with an invalid argument, the MAC will not pass it down to the lower layers,
so the application will not have to wait for a confirmation. In this case MSG_Send will return the
gInvalidParameter_c value. This approach simplifies the application state machine.

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

3-10 Freescale Semiconductor

3.6.4 MCPS Primitives
Alongside the MLME interface, the MCPS interface processes data related messages (see Figure 3-1 in
Section 3.1, “Interface Overview”). The MCSP interface is used just like the MLME interface. The main
difference is the message types are sent back and forth on the interface. On the MCPS, users must use
Msg_AllocType(gMaxRxTxDataLength_c) to allocate a MCPS message as shown in the following code
example.
void SendMyName(void) {
 uint8_t FSL[] = "Freescale";
 nwkToMcpsMessage_t *pMsg;
 // DO LIKE THIS - remember to allocate room for data, structure only contains room for data
pointer and not the data.
 pMsg = MSG_Alloc(gMaxRxTxDataLength_c);
 if (pMsg) {
 pMsg->msgType = gMcpsDataReq_c;
 /* initialize pointer to Msdu */
 pMsg->msgData.dataReq.pMsdu = (uint8_t*)(&(pMsg->msgData.dataReq.pMsdu)) +
sizeof(uint8_t*);
 FLib_MemCpy(pMsg->msgData.dataReq.pMsdu, FSL, sizeof(FSL));
 FLib_MemCpy(pMsg->msgData.dataReq.dstAddr, maDeviceShortAddress, 2);
 FLib_MemCpy(pMsg->msgData.dataReq.srcAddr, (void *)maShortAddress, 2);
 FLib_MemCpy(pMsg->msgData.dataReq.dstPanId, (void *)maPanId, 2);
 FLib_MemCpy(pMsg->msgData.dataReq.srcPanId, (void *)maPanId, 2);
 pMsg->msgData.dataReq.dstAddrMode = gAddrModeShort_c;
 pMsg->msgData.dataReq.srcAddrMode = gAddrModeShort_c;
 pMsg->msgData.dataReq.msduLength = sizeof(Mads);
 /*Add Indirect option in order to send to polling end device*/
 pMsg->msgData.dataReq.txOptions = gTxOptsAck_c | gTxOptsIndirect_c;
 pMsg->msgData.dataReq.msduHandle = mMsduHandle++;
 /* Send the Data Request to the MCPS */
 (void)MSG_Send(NWK_MCPS, pMsg);
 /* Prepare for another data buffer */
 }
}

The application is allowed to allocate multiple data messages using
MSG_AllocType(gMaxRxTxDataLength, ...) until this returns NULL. Unless the MAC is running in
non-beacon mode as a device, it reserves a buffer for general receive and for transmitting beacons.

Because the MCPS interface can manage multiple outstanding data requests, it is possible to use double
(or multiple) buffering for maximum throughput. That is, it is possible to send a data request to the MCPS
and then, before receiving a data confirmation on that request, send another data request which keeps a
constant data flow between the application and the MCPS interface. Even though it is not supported by the
802.15.4 Standard, double buffering can also be used for polling. See Section 4.7.1, “Data Primitives” for
a description of how to optimize data throughput using double buffering.

When the application receives messages from the MCPS, the messages are received as a type
mcpsToNwkMessage_t in the MCPS_NWK_SapHandler() function as shown in the following code
example.
uint8_t MCPS_NWK_SapHandler(mcpsToNwkMessage_t *pMsg)
{
 /* Put the incoming MCPS message in the applications input queue. */
 MSG_Queue(&mMcpsNwkInputQueue, pMsg);

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 3-11

 TS_SendEvent(gZappTaskID_c, evtMessageFromMCPS);
 return gSuccess_c;
}

The MCPS SAP handler in the application is similar to that of the MLME. However, separate queues are
used for the MCPS and MLME messages because the messages cannot be differentiated once the SAP
handler has finished and the messages have been queued.

MCPS message processing is performed similar to the processing of MLME messages (typically in the
application task) and the application is responsible of deallocating the MCPS messages.

3.7 ASP Interface
The ASP interface is a Freescale proprietary interface that can perform several functions including power
management, access non-volatile (NV) RAM and others. Unlike the MCPS and MLME primitives, the
ASP primitives are implemented as direct functions calls like in the code shown below.
void App_EnterHibernation_Example(void)
{
 uint8_t res = Asp_HibernateReq();
}

Notice that the application is responsible for de-allocating the messages that it sends to the ASP. However,
as a consequence of the ASP receiving a command (for example, an Asp_DozeReq to send the MC 13192
into doze mode), the ASP may at some point send an indication message to the application (for example,
an ASP-WAKE.indication when the MC1319x/MC1321x wakes up from doze mode). As was the case for
the MLME and MCPS interfaces, the ASP sends back indication messages (of type aspToAppMsg_t) to
the application using the applications ASP SAP handler ASP_APP_SapHandler()as shown in the
following example code.
uint8_t ASP_APP_SapHandler(aspToAppMsg_t *pMsg)
{
 /* Put the incoming ASP message in the applications input queue. */
 MSG_Queue(&mAspAppInputQueue, pMsg);
 TS_SendEvent(gZappTaskID_c, evtMessageFromASP);
 return gSuccess_c;
}

NOTE
By queuing the ASP msg to the AppTask, the AppTask is responsible for
calling MSG_Free(pMsg) to free the msg.

Again, the ASP messages are typically processed in the application task, just like the MLME and MCPS
messages. It is the responsibility of the application to de-allocate the ASP message.

Interfacing to the 802.15.4 MAC Software

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

3-12 Freescale Semiconductor

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-1

Chapter 4
Feature Descriptions
The chapter contains descriptions of the Freescale 802.15.4 MAC/PHY software features, focusing on the
implementation specific details of both the 802.15.4 2003 and 2006 Standards. Refer to the appropriate
802.15.4 Standard for more details on these features.

NOTE
The differences relevant to the MAC software between the 802.15.4
Standard (2003) and the 802.15.4 Standard (2006) are noted where
appropriate.

4.1 Configuration
The MAC contains a programmable PAN information base (PIB). It consists of variables controlling the
operation of the MAC. Some of the variables are updated by the MAC while others must be configured by
the upper layer. The MAC PIB attributes, and the three primitives which are available for configuring the
MAC PIB, are described in the following sections.

4.1.1 PIB Attributes
Table 4-1 shows all the MAC PIB attributes available including Freescale specific additions to the
802.15.4 Standard specific attributes.

Table 4-1. Available PIB Attributes

PIB
Attribute Description

Freescale Specific Attributes

0x20 gMPibRole_c — Contains the current role of the device:
0x00 = Device
0x01 = Coordinator
0x02 = PAN Coordinator

0x21 gMPibLogicalChannel_c — Contains the current logical channel (11 to 26).

0x22 gMPibTreemodeStartTime_c — Used to support Beaconed Tree Mode.

0x23 gMPibPanIdConflictDetection_c - Disables or enables PAN ID conflict detection.

0x24 gMPibBeaconResponseDenied_c - If set on TRUE, the coordinator will not respond to beacon requests.
Note: This PIB attribute is available for ARM7 based MC1322x platform.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-2 Freescale Semiconductor

0x25 gMPibNBSuperFrameInterval_c - The length of the superframe for non-beacon mode. This attribute is used
instead of gMPibBeaconOrder_c for the calculation of the persistence time of indirect packets, when the
coordinator runs in non-beacon mode. See the IEEE™ 802.15.4 Standard for details on how the persistence time
is calculated.
Note: This PIB attribute is available for ARM7 based MC1322x platform.

0x27 gMacBeaconResponseLQIThreshold_c - Used to filter incoming beacon requests based on their LQI value.
0x00 (default) = filter disabled. The coordinator will respond to all incoming beacon requests.
0x01 - 0xFF = filter enabled. The coordinator will not respond to incoming beacon requests having the LQI smaller
than the configured threshold.
Note: This PIB attribute is not available for the ARM7 based MC1322x platform.

802.15.4 Specific Attributes (see [1] for descriptions)

0x40 gMPibAckWaitDuration_c

0x41 gMPibAssociationPermit_c

0x42 gMPibAutoRequest_c

0x43 gMPibBattLifeExt_c

0x44 gMPibBattLifeExtPeriods_c

0x45 gMPibBeaconPayload_c

0x46 gMPibBeaconPayloadLength_c

0x47 gMPibBeaconOrder_c

0x48 gMPibBeaconTxTime_c

0x49 gMPibBsn_c

0x4A gMPibCoordExtendedAddress_c

0x4B gMPibCoordShortAddress_c

0x4C gMPibDsn_c

0x4D gMPibGtsPermit_c

0x4E gMPibMaxCsmaBackoffs_c

0x4F gMPibMinBe_c

0x50 gMPibPanId_c

0x51 gMPibPromiscuousMode_c

0x52 gMPibRxOnWhenIdle_c

0x53 gMPibShortAddress_c

0x54 gMPibSuperFrameOrder_c

0x55 gMPibTransactionPersistenceTime_c

0x56 gMPibAssociatedPANCoord_c (available only for MAC 2006)

0x57 gMPibMaxBe_c (available only for MAC 2006)

Table 4-1. Available PIB Attributes (continued)

PIB
Attribute Description

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-3

0x59 gMPibMacFrameRetries_c (available only for MAC 2006)

0x5A gMPibResponseWaitTime_c (available only for MAC 2006)

0x5B gMPibSyncSymbolOffset_c (available only for MAC 2006)

0x5C gMPibTimeStampSupported_c (available only for MAC 2006)

0x5D gMPibSecurityEnable_c (available only for MAC 2006)

Security Specific Attributes

0x70 gMPibAclEntryDescriptorSet_c — A set of ACL entries each containing information to be used to protect
frames between the MAC layer and the specified destination device. Size is 30*N, where N is the number of ACL
entry descriptors.

0x71 gMPibAclEntryDescriptorSetSize_c — The number of entries in the ACL descriptor set. Size is 1 byte.

0x72 gMPibDefaultSecurity_c — If TRUE, then the device is able to send/receive secured frames to/from devices
not listed in the ACL descriptor set. Size is 1 byte.

0x73 gMPibDefaultSecurityMaterialLength_c — The number of bytes in the ACL Security Material. Size is 1
byte.

0x74 gMPibDefaultSecurityMaterial_c — The specific security material to be used to protect frames between
the MAC and devices not in the ACL descriptor set. Size is 16 bytes.

0x75 gMPibDefaultSecuritySuite_c — The unique identifier of the security suite to be used to protect frames
between the MAC and devices not in the ACL descriptor set. Size is 1 byte.

0x76 gMPibSecurityMode_c — The identifier of the security mode in use. 0x00 = Unsecured mode, 0x01 = ACL
mode, 0x02 is Secured Mode. Size is 1 byte.

0x71 gMPibKeyTable_c (available only for MAC 2006) - A table of KeyDescriptor entries, each containing keys and
related information required for secured communications.

0x72 gMPibKeyTableEntries_c (available only for MAC 2006) - The number of entries in macKeyTable. This PIB
is read-only.

0x73 gMPibDeviceTable_c (available only for MAC 2006) - A table of DeviceDescriptor entries, each indicating a
remote device with which this device securely communicates.

0x74 gMPibDeviceTableEntries_c (available only for MAC 2006) - The number of entries in
macDeviceTable. This PIB is read-only.

0x75 gMPibSecurityLevelTable_c (available only for MAC 2006) - A table of SecurityLevelDescriptor entries,
each with information as to the minimum security level expected depending on incoming frame type and subtype.

0x76 gMPibSecurityLevelTableEntries_c (available only for MAC 2006) - The number of entries in
macSecurityLevelTable.

0x77 gMPibFrameCounter_c (available only for MAC 2006) - The outgoing frame counter for this device.

0x78 gMPibAutoRequestSecurityLevel_c (available only for MAC 2006) - The security level used for automatic
data requests.

0x79 gMPibAutoRequestKeyIdMode_c (available only for MAC 2006) - The key identifier mode used for automatic
data requests. This attribute is invalid if the macAutoRequestSecurityLevel attribute is set to 0x00.

Table 4-1. Available PIB Attributes (continued)

PIB
Attribute Description

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-4 Freescale Semiconductor

0x7A gMPibAutoRequestKeySource_c (available only for MAC 2006) - The originator of the key used for automatic
data requests. This attribute is invalid if the macAutoRequestKeyIdMode element is invalid or set to 0x00.

0x7B gMPibAutoRequestKeyIndex_c (available only for MAC 2006) - The index of the key used for automatic data
requests. This attribute is invalid if the macAutoRequestKeyIdMode attribute is invalid or set to 0x00.

0x7C gMPibAutoDefaultKeySource_c (available only for MAC 2006) - The originator of the default key used for
key identifier mode 0x01.

0x7D gMPibPANCoordExtendedAddress_c (available only for MAC 2006) - The 64-bit address of the PAN
coordinator.

0x7E gMPibPANCoordShortAddress_c (available only for MAC 2006) - The 16-bit short address assigned to the
PAN coordinator. A value of 0xfffe indicates that the PAN coordinator is only using its 64-bit extended address. A
value of 0xffff indicates that this value is unknown.

0x7F gMPibKeyIdLookupDescriptor_c (available only for MAC 2006) - A list of KeyIdLookupDescriptor entries
used to identify this KeyDescriptor.

0x80 gMPibKeyIdLookupEntries_c (available only for MAC 2006) - The number of entries in KeyIdLookupList.

0x81 gMPibKeyDeviceList_c (available only for MAC 2006) - A list of KeyDeviceDescriptor entries indicating which
devices are currently using this key, including their blacklist status.

0x82 gMPibKeyDeviceListEntries_c (available only for MAC 2006) - The number of entries in KeyDeviceList.

0x83 gMPibKeyUsageList_c (available only for MAC 2006) - A list of KeyUsageDescriptor entries indicating which
frame types this key may be used with.

0x84 gMPibKeyUsageListEntries_c (available only for MAC 2006) - The number of entries in KeyUsageList.

0x85 gMPibKey_c (available only for MAC 2006) - The actual value of the key.

0x86 gMPibKeyUsageFrameType_c (available only for MAC 2006) - The type of the frame to be secured.

0x87 gMPibKeyUsageCmdFrameId_c (available only for MAC 2006) - The ID of the command frame to be secured.

0x88 gMPibKeyDeviceDescriptorHandle_c (available only for MAC 2006) - Handle to the DeviceDescriptor
corresponding to the device.

0x89 gMPibUniqueDevice_c (available only for MAC 2006) - Indicator as to whether the device indicated by
DeviceDescriptorHandle is uniquely associated with the KeyDescriptor, i.e. it is a link key as opposed to a group
key.

0x8A gMPibBlackListed_c (available only for MAC 2006) - Indicator as to whether the device indicated by
DeviceDescriptorHandle previously communicated with this key prior to the exhaustion of the frame counter. If
TRUE, this indicates that the device shall not use this key further, since it exhausted its use of the frame counter
used with this key.

0x8B gMPibSecLevFrameType_c (available only for MAC 2006) - The type of the frame to be secured.

0x8C gMPibSecLevCommandFrameIdentifier_c (available only for MAC 2006) - The ID of the command frame
to be secured.

0x8D gMPibSecLevSecurityMinimum_c (available only for MAC 2006) - The minimal required/expected security
level for incoming MAC frames with the indicated frame type and, if present, command frame type.

Table 4-1. Available PIB Attributes (continued)

PIB
Attribute Description

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-5

0x8E gMPibSecLevDeviceOverrideSecurityMinimum_c (available only for MAC 2006) - Indicator as to whether
originating devices for which the Exempt flag is set may override the minimum security level indicated by the
SecurityMinimum element.

0x8F gMPibDeviceDescriptorPanId_c (available only for MAC 2006) - The 16-bit PAN identifier of the device in
this DeviceDescriptor.

0x90 gMPibDeviceDescriptorShortAddress_c (available only for MAC 2006) - The 16-bit short address of the
device in this DeviceDescriptor. A value of 0xfffe indicates that this device is only using its extended address. A
value of 0xffff indicates that this value is unknown.

0x91 gMPibDeviceDescriptorExtAddress_c (available only for MAC 2006) - The 64-bit IEEE extended address
of the device in this DeviceDescriptor. This element is also used in unsecuring operations on incoming frames.

0x92 gMPibDeviceDescriptorFrameCounter_c (available only for MAC 2006) - The incoming frame counter of
the device in this DeviceDescriptor. This value is used to ensure sequential freshness of frames.

0x93 gMPibDeviceDescriptorExempt_c (available only for MAC 2006) - Indicator as to whether the device may
override the minimum security level settings.

0x94 gMPibKeyIdLookupData_c (available only for MAC 2006) - Data used to identify the key.

0x95 gMPibKeyIdLookupDataSize_c (available only for MAC 2006) - A value of 0x00 indicates a set of 5 octets;
a value of 0x01 indicates a set of 9 octets.

Freescale Specific Security Attributes

0x77 gMPibAclEntryCurrent_c — Sets which ACL entry is active for access (0 indicates first entry, 1 second entry
and so on). Size is 1 byte.

0x78 gMPibAclEntryExtAddress_c — 64 bit addr of the device in this ACL entry. Size is 8 bytes.

0x79 gMPibAclEntryShortAddress_c — 16 bit addr of the device in this ACL entry. Size is 2 bytes.

0x7A gMPibAclEntryPanId_c — PAN ID of the device in this ACL entry. Size is 2 bytes.

0x7B gMPibAclEntrySecurityMaterialLength_c — Number of bytes in 'aclSecurityMaterial' (<=16). Size is 1
byte.

0x7C gMPibAclEntrySecurityMaterial_c — Key for protecting frames. Size is 16 bytes.

0x7D gMPibAclEntrySecuritySuite_c — Security suite used for the device in this ACL entry. Size is 1 byte.

0x96 gMPibKeyTableCrtEntry_c (available only for MAC 2006) - The current entry in the macKeyTable.

0x97 gMPibDeviceTableCrtEntry_c (available only for MAC 2006) - The current entry in the macDeviceTable.

0x98 gMPibSecurityLevelTableCrtEntry_c (available only for MAC 2006) - The current entry in the
macSecurityLevelTable.

0x99 gMPibKeyIdLookupListCrtEntry_c (available only for MAC 2006) - The current entry in the
KeyIdLooupList.

0x9A gMPibKeyUsageListCrtEntry_c (available only for MAC 2006) - The current entry in the KeyUsageList.

0x9B gMPibKeyDeviceListEntry_c (available only for MAC 2006) - The current entry in the KeyDeviceList.

Table 4-1. Available PIB Attributes (continued)

PIB
Attribute Description

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-6 Freescale Semiconductor

4.1.2 Configuration Primitives
This section describes the implementation of the configuration related primitives.

4.1.2.1 Reset Request
The internal state of the MAC, including the message/data buffer system, is always reset by the
MLME-RESET.request. However, the upper layer can choose whether the MAC PIB attributes must be
set to default values. This is accomplished through the setDefaultPib parameter of the
MLME-RESET.request. If the parameter is TRUE, the MAC PIB will be reset to default values, otherwise
the contents are left untouched.

The Reset-Request message is processed immediately, and can be allocated on the stack. If the message is
allocated by MSG_Alloc(), it will not be freed by the MLME and a confirm message is not generated.
Instead, the return code from the MSG_Send() macro is used as the status code.
// Type: gMlmeResetReq_c,
typedef struct mlmeResetReq_tag {
 bool_t setDefaultPib;
} mlmeResetReq_t;

4.1.2.2 Reset Confirm (N/A)
The Reset-Confirm is not used because the Reset is carried out immediately. The Confirmation status code
is returned by the SAP function that sends the Reset-Request message to the MLME.
// Type: gNwkResetCnf_c,
typedef struct nwkResetCnf_tag {
 uint8_t status;
} nwkResetCnf_t;

4.1.2.3 Set Request
The MLME-SET.request is used for modifying parameters in the MAC PIB. See Section 4.1,
“Configuration” for a list of available PIB attributes.

The Set Request message structure contains a pointer to the data to be written to the MAC PIB. The pointer
must be supplied by the NWK or APP. Attributes with a size of more than one byte must be little endian,
and given as byte arrays. Because the Set-Request message is processed immediately, it can be allocated
on the stack. If the message is allocated by MSG_Alloc(), it will not be freed by the MLME. A confirm
message is not generated. Instead, the return code from the MSG_Send() macro is used as the status code.
When the Set-Request is used for setting the beacon payload, the beacon payload length attribute must be
set first. Otherwise, the MLME has no way to tell how many bytes to copy.

For MAC 2003 version the SetRequest structure is the following:
// Type: gMlmeSetReq_c,
typedef struct mlmeSetReq_tag {
 uint8_t pibAttribute;
 uint8_t *pibAttributeValue; // Pointer supplied by NWK
} mlmeSetReq_t;

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-7

For MAC 2006 version the SetRequest structure is the following:
typedef struct mlmeSetReq_tag {
 uint8_t pibAttribute;
 uint8_t pibAttributeIndex;
 uint8_t *pibAttributeValue; // Pointer supplied by NWK
} mlmeSetReq_t;
pibAttributeIndex is not used.

4.1.2.4 Set Confirm
The Set-Confirm is not used because the Set-Request is carried out synchronously. See Section 4.1.2.3,
“Set Request” for more information.
// Type: gNwkSetCnf_c,
typedef struct nwkSetCnf_tag {
 uint8_t status;
 uint8_t pibAttribute;
} nwkSetCnf_t;

4.1.2.5 Get Request
The MLME-GET.request reads parameters in the MAC PIB. See Table 4-1 for a list of available PIB
attributes.

The Get-Request message contains a pointer to a buffer where data from the MAC PIB will be copied to.
The pointer must be supplied by the NWK or APP. Attributes with a size of more than one byte are little
endian and given as byte arrays. Because the Get-Request message is processed immediately, it can be
allocated on the stack. If the message is allocated by MSG_Alloc(), it will not be freed by the MLME. A
confirm message is not generated. Instead, the return code from the MSG_Send() macro is used as the
status code.

For MAC 2003 version the GetRequest structure is the following:
// Type: gMlmeGetReq_c,
typedef struct mlmeGetReq_tag {
 uint8_t pibAttribute;
 uint8_t *pibAttributeValue; // Pointer supplied by NWK
} mlmeGetReq_t;

For MAC2006 version the GetRequest structure is the following:
typedef struct mlmeGetReq_tag {
 uint8_t pibAttribute;
 uint8_t pibAttributeIndex;
 uint8_t *pibAttributeValue; // Not in spec.
} mlmeGetReq_t;
pibAttributeIndex is not used.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-8 Freescale Semiconductor

4.1.2.6 Get Confirm
Get-Confirm is not used because the Get-Request is carried out synchronously. See Section 4.1.2.5, “Get
Request” more information.
// Type: gNwkGetCnf_c,
typedef struct nwkGetCnf_tag {
 uint8_t status;
 uint8_t pibAttribute;
 uint8_t *pibAttributeValue;
} nwkGetCnf_t;

4.1.3 Configuration Examples
The following code snippets show examples of sending configuration messages to the MLME.

The following code snippet sends a Set-Request with a macPanId=0x1234.
uint8_t confirmStatus;
uint8_t bPanId[2] = {0x34, 0x12}; // little endian Pan ID
mlmeMessage_t *Msg = MSG_AllocType(mlmeMessage_t);

Msg->msgData.setReq.attribute = 0x50;
Msg->msgData.setReq.attributeValue = bPanId;
Msg->msgType = gMlmeSetReq_c;

// Calls uint8_t NWK_MLME_SapHandler(void *msg)
confirmStatus = MSG_Send(NWK_MLME, Msg)

// Msg is not deallocated by Get/Set/Reset-Requests.
MSG_Free(Msg);

The following code snippet uses the stack instead of using the MSG_AllocType() for getting the message
buffer (Only for Get/Set/Reset Requests).
mlmeMessage_t msg;
uint8_t autoRequestFlag = TRUE;

// Set message identifer to MLME-SET.request
msg.msgType = gMlmeSetReq;

// We want to set the PAN ID attribute of the MAC PIB.
msg.msgData.setReq.attribute = 0x50;
msg.msgData.setReq.attributeValue = bPanId;

// Calls uint8_t NWK_MLME_SapHandler(void*msg)
confirmStatus = MSG_Send(NWK_MLME, &msg)

// Set the MAC PIB Auto request flag to TRUE. No need to set
// message identifier again since the Msg is not modified by
// the MSG_Send(NWK_MLME, &msg) call.
msg.msgData.setReq.attribute = 0x42;
msg.msgData.setReq.attributeValue = &autoRequestFlag;
MSG_Send(NWK_MLME, &msg);

The following code snippet shows how to get the macBeaconTxTime using the Get Request.
uint8_t txTime[3];

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-9

msg.msgData.getReq.attribute = 0x48;
msg.msgData.getReq.attributeValue = txTime;
msg.msgType = gMlmeGetReq_c;

// Calls uint8_t NWK_MLME_SapHandler(void*msg)
confirmStatus = MSG_Send(NWK_MLME, &msg)

// Now txTime contains the value of macBeaconTxTime
// (24 bit integer in little endian format).

4.2 Scan Feature
The scan feature is used by the device to determine energy usage or the presence of other devices on a
communications channel. This feature is implemented similar to the 802.15.4 Standard, but specific details
are included in this section.

NOTE
The Freescale MAC does not provide standalone PLME-ED primitives for
energy detect measurement. Alternatively, the MLME_SCAN primitives
are used where the scan can be limited to one channel.

4.2.1 Common Parts
Requesting any of the scan types (using the MLME-SCAN.request primitive) interrupts all other system
activity at the MLME layer and below in accordance with the 802.15.4 Standard. It is the responsibility of
the NWK layer to only initiate scanning when this behavior is acceptable.

The NWK layer is responsible for correct system behavior, particularly by ensuring that only supported
scan types are attempted and that at least one channel is always indicated in the ScanChannels parameter.

4.2.2 Energy Detection Scan
RFD devices and derivatives do not support Energy Detection (ED) Scan. When Energy Detection Scan
is requested, the device measures the energy level on each requested channel until the scan time has
elapsed.

The MLME-SCAN.confirm primitive always holds energy detection results from all requested channels,
that is, partial responses are never returned.

The level for Energy Detection is reported as required by the 802.15.4 Standard with an integer value from
0x00-0xFF. The hardware measured values are scaled and normalized for this range with the minimum
value of 0x00 set to -100dBm and the maximum value of 0xFF set to -15 dBm. Measured values between
-15dBm and -100dBm are scaled linearly between 0x00 and 0xFF.

The actual measured value is dependent on the target silicon:
• MC1319x, MC1320x and MC1321x families:

— The energy levels are reported by hardware and measured in ½ dBm steps. The hardware values
range from 0x00 corresponding to about –80 dBm (theoretical minimal value) and 0xA0

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-10 Freescale Semiconductor

(decimal 160) corresponding to 0 dBm (theoretical maximal value). Actual tests indicate a
practical minimal value as 0x0A (-75dBm) and a maximal value as 0x82 (-15dBm).

— The MAC scales these hardware values to the proper reported ED value as stated above.
• MC1322x family:

— The energy level is mathematically derived from several reported hardware values. The values
range from 0x00 (-100dBm) to 0xFF (-15dBm) as required.

4.2.3 Active and Passive Scan
When Active or Passive Scan is requested, the device waits for beacons to arrive until the scan time has
elapsed. If during this time a valid unique beacon is received, the device stores the result. In this case, or
if any other package was received from the air, the device re-enters Rx mode, as long as there is time for
the shortest possible Rx cycle to complete before the complete scan time has elapsed.

Active and Passive Scan are capable of returning up to ten (10) results in a single MLME-SCAN.confirm
primitive. Thus, when ten (10) unique beacons (see the 802.15.4 Standard) are received, the Scan is
terminated in accordance with the 802.15.4 Standard, even if all channels have not been scanned to
completion.

The pan descriptors are grouped by 5 (five) in 2 (two) linked blocks. The pPanDescriptorBlocks field of
the scan confirmation message points to the first block.Each block contains the pointer to the first PAN
descriptor in the block and the number of PAN descriptors in that block.The block structure is as follows:
struct panDescriptorBlock_tag {
 panDescriptor_t descriptorList[aScanResultsPerBlock];
 uint8_t descriptorCount;
 struct panDescriptorBlock_tag *pNext;
};

4.2.4 Orphan Scan
When Orphan Scan is requested, the device waits for a coordinator realignment command to arrive until
the scan time has elapsed. If during this time any other command is received from the air, the device
ignores the command and re-enters Rx mode, as long as there is time for the shortest possible Rx cycle to
complete before the complete scan time has elapsed.

If a valid coordinator realignment response is received while performing the Orphan Scan, scanning is
immediately terminated in accordance with the 802.15.4 Standard [1], even if all channels have not been
scanned to completion. In this case, the resulting Status parameter is SUCCESS (otherwise
NO_BEACON), and MAC PIB attribute values received in the coordinator realignment frame (macPanId,
macCoordShortAddress, macLogicalChannel and macShortAddress) are automatically used to update the
MAC PIB.

4.2.5 Scan Primitives
This section describes the implementation of the Scan related primitives.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-11

4.2.5.1 Scan Request
The Scan-Request message parameters are directly mapped to the message parameters listed and described
in the 802.15.4 Standard [1]. Users must ensure that scanChannels always indicates at least one valid
channel and that channels outside the valid range [11 through 26] are not indicated. The value 0x07FFF800
corresponds to “all valid channels”. The valid range for scanType is [0:3]. The valid range for
scanDuration is [0:14].

For MAC 2003 version the ScanRequest structure is the following:
// Type: gMlmeScanReq_c,
typedef struct mlmeScanReq_tag {
 uint8_t scanType;
 uint8_t scanChannels[4];
 uint8_t scanDuration;
} mlmeScanReq_t;

For MAC 2006 version the ScanRequest structure is the following:
typedef struct mlmeScanReq_tag {
 uint8_t scanType;
 uint8_t scanChannels[4];
 uint8_t scanDuration;

 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} mlmeScanReq_t;

• securityLevel — The security level to be used.
• keyIdMode — This mode identifies the key to be used. This parameter is ignored if the

securityLevel parameter is set to 0.
• keySource — The originator of the key to be used. This parameter is ignored if the keyIdMode

parameter is ignored or set to 0x00.
• keyIndex — The index of the key to be used. This parameter is ignored if the keyIdMode parmeter

is ignored.

4.2.5.2 Scan-Confirm
The Scan-Confirm structure contains a pointer to an array of blocks containing PAN descriptors or a
pointer to an array of energy levels. See the definition in Section 4.2.5.6, “PAN Descriptor”. The array
must be freed by a call to MM_Free() after Energy Detection, Passive, or Active Scan. All other parameters
map exactly as shown to the parameters listed and described in the 802.15.4 Standard.
// Type: gNwkScanCnf_c,
typedef struct nwkScanCnf_tag {
 uint8_t status;
 uint8_t scanType;
 uint8_t resultListSize;
 uint8_t unscannedChannels[4];
 union {
 uint8_t *pEnergyDetectList; // pointer to 16 byte static buffer
 panDescriptorBlock_t *pPanDescriptorBlocks; // this one must be freed by the upper layer

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-12 Freescale Semiconductor

 } resList;
} nwkScanCnf_t;

4.2.5.3 Orphan Indication
For MAC 2003 version the OrphanIndication structure is the following:
// Type: gNwkOrphanInd_c,
typedef struct nwkOrphanInd_tag {
 uint8_t orphanAddress[8];
 bool_t securityUse;
 uint8_t AclEntry;
} nwkOrphanInd_t;

For MAC 2006 version the OrphanIndication structure is the following:
typedef struct nwkOrphanInd_tag {
 uint8_t orphanAddress[8];
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} nwkOrphanInd_t;

The security parameter has the same meaning as the ScanRequest security parameters.

4.2.5.4 Orphan Response
For MAC 2003 version the OrphanResponse structure is the following:
// Type: gMlmeOrphanRes_c,
typedef struct mlmeOrphanRes_tag {
 uint8_t orphanAddress[8];
 uint8_t shortAddress[2];
 bool_t securityEnable;
 bool_t associatedMember;
} mlmeOrphanRes_t;

For MAC 2006 version the OrphanResponse structure is the following:
typedef struct mlmeOrphanRes_tag {
 uint8_t orphanAddress[8];
 uint8_t shortAddress[2];
 bool_t associatedMember;

 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} mlmeOrphanRes_t;

The security parameter has the same meaning as the ScanRequest security parameters.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-13

4.2.5.5 Beacon Notify Indication
The MLME-BEACON-NOTIFY.indication message is not only received during scan, but may also be
received when the device is tracking a beaconing coordinator.

The MLME-BEACON-NOTIFY.indication message is special because it contains pointers. The pAddrList
pointer points to the address list which is formatted according to the 802.15.4 Standard. The
pPanDescriptor pointer points to the pan descriptor of the indication message. See the definition in
Section 4.2.5.6, “PAN Descriptor”. The pSdu is the beacon payload buffer. The pBufferRoot pointer
contains the data fields pointed to by the other pointers, and is used for freeing only.

WARNING
The pBufferRoot must be freed before the indication message is freed. As
shown in this example:
MSG_Free(pBeaconInd->pBufferRoot);

MSG_Free(pBeaconInd);

Otherwise, the MAC memory pools will be exhausted after just a few
beacons.

// Type: gNwkBeaconNotifyInd_c
typedef struct nwkBeaconNotifyInd_tag {
 uint8_t bsn;
 uint8_t pendAddrSpec;
 uint8_t sduLength;
 uint8_t *pAddrList;
 panDescriptor_t *pPanDescriptor;
 uint8_t *pSdu;
 uint8_t *pBufferRoot;
} nwkBeaconNotifyInd_t;

4.2.5.6 PAN Descriptor
The PAN descriptor structure is a common data type used by both the Active/Passive Scan and Beacon
Notification messages.

NOTE
Link Quality Indication (LQI) is used as part of the PAN descriptor structure
representing an integer value from 0x00-0xFF where 0x00 equates to
-100dBm and the maximum value of 0xFF to -15 dBm.

For MAC 2003 version the PanDescriptor structure is the following:
typedef struct panDescriptor_tag {
 uint8_t coordAddress[8];
 uint8_t coordPanId[2];
 uint8_t coordAddrMode;
 uint8_t logicalChannel;
 bool_t securityUse;
 uint8_t aclEntry;
 bool_t securityFailure;
 uint8_t superFrameSpec[2];
 bool_t gtsPermit;
 uint8_t linkQuality;

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-14 Freescale Semiconductor

 uint8_t timeStamp[3];
} panDescriptor_t;

For MAC 2006 version the PanDescriptor structure is the following:
typedef struct panDescriptor_tag {
 uint8_t coordAddress[8];
 uint8_t coordPanId[2];
 uint8_t coordAddrMode;
 uint8_t logicalChannel;
 uint8_t securityFailure;
 uint8_t superFrameSpec[2];
 bool_t gtsPermit;
 uint8_t linkQuality;
 uint8_t timeStamp[3];
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} panDescriptor_t

The security parameter has the same meaning as the ScanRequest security parameters.

4.3 Start Feature
The start feature is not supported on RFD type devices and derivatives. According to the 802.15.4 Standard
[1], it is necessary to set the macShortAddress PIB attribute to any value different from 0xFFFF before
using the start feature, otherwise an error code (gNoShortAddress_c) is returned.

Be default, the system enables RxOnWhenIdle when successfully calling the MLME-START.request
primitive. Thus, the new (PAN) coordinator starts receiving right away.

Also, if any additional MLME-START.request primitives are issued, to change superframe configuration
after previously having enabled a beaconed network using MLME-START.request, all information
regarding GTS (if GTS is being used) is cleared and GTS must be set up again by the NWK layer.

4.3.1 Start Primitives
This section describes the implementation of the Start related primitives.

4.3.1.1 Start Request
Before sending a Start-Request, the macShortAddress must be set to something other than 0xFFFF.

For MAC 2003 the StartRequest structure is the following:
// Type: gMlmeStartReq_c,
typedef struct mlmeStartReq_tag {
 uint8_t panId[2];
 uint8_t logicalChannel;
 uint8_t beaconOrder;
 uint8_t superFrameOrder;
 bool_t panCoordinator;
 bool_t batteryLifeExt;
 bool_t coordRealignment;

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-15

 bool_t securityEnable;
} mlmeStartReq_t;

For MAC 2006 the StartRequest structure is the following:
typedef struct mlmeStartReq_tag {
 uint8_t panId[2];
 uint8_t logicalChannel;
 uint32_t startTime;
 uint8_t beaconOrder;
 uint8_t superFrameOrder;
 bool_t panCoordinator;
 bool_t batteryLifeExt;
 bool_t coordRealignment;

 uint8_t coordRealignSecurityLevel;
 uint8_t coordRealignKeyIdMode;
 uint8_t coordRealignKeySource[8];
 uint8_t coordRealignKeyIndex;

 uint8_t beaconSecurityLevel;
 uint8_t beaconKeyIdMode;
 uint8_t beaconKeySource[8];
 uint8_t beaconKeyIndex;
} mlmeStartReq_t;

• startTime parameter — Not used
• coordRealignSecurityLevel — The security level to be used for coordinator realignment command

frames.
• coordRealignKeyIdMode — Identifies the key to be used. This parameter is ignored when

coordRealignSecurityLevel parameter is set to 0x00.
• coordRealignKeySource — The originator of the key to be used. This parameter is ignored if the

coordRealignKeyIdMode parameter is ignored or set to 0x00.
• coordRealignKeyIndex — The index of the key to be used. This parameter is ignored if the

coordRealignKeyIdMode parameter is ignored or set to 0x00.
• beaconSecurityLevel — The security level to be used for beacon frames.
• beaconKeyIdMode — Identifies the key to be used. This parameter is ignored if the

beaconSecurityLevel parameter is set to 0x00.
• beaconKeySource — The originator of the key to be used. This parameter is ignored if the

beaconKeyIdMode parameter is ignored or set to 0x00.
• beaconKeyIndex — The index of the key to be used. This parameter is ignored if the

beaconKeyIdMode parameter is ignored or set to 0x00.

4.3.1.2 Start Confirm
// Type: gNwkStartCnf_c,
typedef struct nwkStartCnf_tag {
 uint8_t status;
} nwkStartCnf_t;

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-16 Freescale Semiconductor

4.4 Sync Feature
When executing an MLME-SYNC.request, the device tries to synchronize with the coordinator beacons.
Because there is no MLME-SYNC.confirm primitive, the way to detect when synchronization occurs is to
set the macAutoRequest PIB attribute to FALSE prior to executing the MLME-SYNC.request. This forces
the MAC to send an MLME-BEACON-NOTIFY.indication every time a beacon is received. After the first
beacon is received, the macAutoRequest PIB attribute can be set to TRUE again. If consecutive beacons
(aMaxLostBeacons) are lost, the MAC sends an MLME-SYNC-LOSS.indication.

NOTE
It is very important to set the macPANId PIB attribute to a value different
from 0xFFFF prior to executing the MLME-SYNC.request. If this is not
done, the command is ignored by the MAC.

If the TrackBeacon parameter is TRUE, the MAC attempts to synchronize with the beacon and track all
future beacons. If TrackBeacon is FALSE the MAC attempts to synchronize with only the next beacon and
then goes back to the IDLE state. This also works in combination with the macAutoRequest PIB attribute.
For example, if macAutoRequest is set to TRUE and MLME-SYNC.request is issued with trackBeacon
equal to FALSE, the MAC attempts to acquire synchronization and poll out any pending data.

4.4.1 Synchronization Primitives
This section describes the implementation of the synchronization related primitives.

4.4.1.1 Sync Request
// Type: gMlmeSyncReq_c,
typedef struct mlmeSyncReq_tag {
 uint8_t logicalChannel;
 bool_t trackBeacon;
} mlmeSyncReq_t;

4.4.1.2 Sync Loss Indication
For MAC 2003 version the SyncLossIndication structure is the following:
// Type: gNwkSyncLossInd_c,
typedef struct nwkSyncLossInd_tag {
 uint8_t lossReason;
} nwkSyncLossInd_t;

For MAC 2006 version the SyncLossIndication structure is the following:
typedef struct nwkSyncLossInd_tag {
 uint8_t lossReason;
 uint8_t panId[2];
 uint8_t logicalChannel;

 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} nwkSyncLossInd_t

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-17

• panId — The PAN identifier with which the device lost synchronization or to which it was
realigned.

• logicalChannel — The logical channel on which the device lost synchronization or to which it was
realigned.

• securityLevel — If the primitive was either generated by the device itself following loss of
synchronization or generated by the PAN coordinator upon detection of a PAN ID conflict, the
security level is set to 0x00. If the primitive was generated following the reception of either a
coordinator realignment command or a PAN ID conflict notification command: The security level
purportedly used by the received MAC frame.

• keyIdMode — If the primitive was either generated by the device itself following loss of
synchronization or generated by the PAN coordinator upon detection of a PAN ID conflict, this
parameter is ignored. If the primitive was generated following the reception of either coordinator
realignment command or a PAN ID conflict notification command: The mode used to identify the
key purportedly used by the originator of the received frame. This parameter is invalid if the
securityLevel parameter is set to 0x00.

• keySource — If the primitive was either generated by the device itself following loss of
synchronization or generated by the PAN coordinator upon detection of a PAN ID conflict, this
parameter is ignored. If the primitive was generated following the reception of either a coordinator
realignment command or a PAN ID conflict notification command: The originator of the key
purportedly used by the originator of the received frame. This parameter is invalid if the
keyIdMode parameter is invalid or set to 0x00.

• keyIndex — If the primitive was either generated by the device itself following loss of
synchronization or generated by the PAN coordinator upon detection of a PAN ID conflict, this
parameter is ignored. If the primitive was generated following the reception of either a coordinator
realignment command or a PAN ID conflict notification command: The index of the key
purportedly used by the originator of the received frame. This parameter is invalid if the
keyIdMode parameter is invalid or set to 0x00.

4.5 Association Feature
Association is implemented according to the 802.15.4 Standard but the standard is not explicit on how and
when various MAC PIB attributes are updated. Issuing the MLME-ASSOCIATE.request primitive
actually results in two MAC command frames being sent to the coordinator:

1. The association request itself.
2. The data request that is sent after aResponseWaitTime symbols.

Refer to the 802.15.4 Standard for a description of the association procedure. The following attributes are
updated when MLME-ASSOCIATE.request is called.

• macPanId — This attribute is updated as required by the 802.15.4 Standard
• phyLogicalChannel — This attribute is updated as required by the 802.15.4 Standard
• macCoordExtendedAddress — This attribute is updated if the extended address of the coordinator

is passed as argument. Otherwise it is not affected

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-18 Freescale Semiconductor

• macCoordShortAddress — This attribute is updated with the value passed as argument if short
addressing mode is used. This is stated in the 802.15.4 Standard. If the extended coordinator
address is used in the call it is not possible to update this attribute – the short address of the
coordinator is unknown. The 802.15.4 Standard does not mention this possibility. The
implementation will force macCoordShortAddress to 0xFFFE if an extended address is used in the
call

• macShortAddress — The implementation will force this attribute to 0xFFFF before sending the
request to the coordinator. This is the default value following a reset. The attribute is updated
because it will ensure that the data request is sent using a long source address. This is the only way
to guarantee that the association response can be successfully extracted from the coordinator.
Setting macShortAddress to 0xFFFF can be considered as a safeguard mechanism. Although this
update is not listed in the 802.15.4 Standard, it should not violate the intention of the 802.15.4
Standard

Once these attributes have been updated, a MAC command frame containing the association request is sent
to the coordinator and a timer is started upon successful reception. The timer expires after
aResponseWaitTime symbols.

The timeout value has a different meaning given the scenario used:
• Non-beacon enabled PAN network (macBeaconOrder = 15) — The timeout value just a simple

wait (corresponds to approximately 0.5 sec)
• Beacon-enabled PAN network (macBeaconOrder < 15) — The same interpretation as already

stated is used if the beacon is not being tracked. If the beacon is being tracked, it implies that the
timeout value corresponds to CAP symbols. In this case, the timeout can extend over several
superframes

WARNING
If the beacon is being tracked, there are some implications that may not be
readily apparent. For example, consider a superframe configuration with
macBeaconOrder = 14 and macSuperframeOrder = 0. In this example, the
CAP will be approximately 900 symbols (depending on the length of the
beacon frame). Beacons will be transmitted approximately every 4 minutes.
The aResponseWaitTime is equal to 30.720 symbols. This implies that the
timeout will occur after approximately 34 superframes, which in this
example, is more than two hours.

Always pay close attention to the impact of the aResponseWaitTime value
as it relates to association requests.

The data request is sent when the timer expires in order to get the association response from the coordinator
unless the following occurs.

• The association response has been “auto requested” (beacon enabled PAN with beacon tracking
enabled and macAutoRequest set to TRUE). The timer is cancelled if the response arrives before
the timer expires. The implementation discards all other types of incoming MAC command frames
while waiting for the association response

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-19

• Beacon synchronization may be lost on a beacon enabled PAN. Loss of beacon synchronization
implies that the beacon was being tracked when the association procedure was initiated. If this
should happen, the association attempt is aborted with a status error of BEACON LOST (indicated
in the MLME-ASSOCIATE.confirm message). This error code is not listed in the 802.15.4
Standard [1]. An MLME-SYNC-LOSS.indication message will also be generated (as expected
when synchronization is lost)

Once the data request has been sent (if any), the code is ready to process any incoming MAC command
frames (the expected being the MLME-ASSOCIATE.response packet of course). The following attributes
are updated if the associate response frame is received and the status indicates a successful association as
follows:

• macShortAddress — This attribute is updated with the allocated short address
• macCoordExtendedAddress — The source address is extracted from the MAC command frame

header and stored in this attribute
• macCoordShortAddress — This attribute is not updated although this is mentioned in the 802.15.4

Standard [1]. The short address of the coordinator is not present in the response

An MLME-COMM-STATUS.indication message is generated on the coordinator when the response has
been extracted by the device.

4.5.1 Association Primitives
This section describes the implementation of the Association related primitives.

4.5.1.1 Associate Request
Before sending the Associate-Request primitive, the 802.15.4 Standard [1] states that a Reset-Request
must be sent, and an Active or Passive Scan was performed.

For MAC 2003 version the AssociateRequest structure is the following:
// Type: gMlmeAssociateReq_c
typedef struct mlmeAssociateReq_tag {
 uint8_t coordAddress[8];
 uint8_t coordPanId[2];
 uint8_t coordAddrMode;
 uint8_t logicalChannel;
 bool_t securityEnable;
 uint8_t capabilityInfo;
} mlmeAssociateReq_t;

For MAC 2006 version the AssociateRequest structure is the following:
typedef struct mlmeAssociateReq_tag {
 uint8_t coordAddress[8];
 uint8_t coordPanId[2];
 uint8_t coordAddrMode;
 uint8_t logicalChannel;

 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-20 Freescale Semiconductor

 uint8_t keyIndex;

 uint8_t capabilityInfo;
} mlmeAssociateReq_t;

The security parameter has the same meaning as the ScanRequest security parameters.

4.5.1.2 Associate Response
For MAC 2003 version the AssociationResponse structure is the following:
// Type: gMlmeAssociateRes_c
typedef struct mlmeAssociateRes_tag {
 uint8_t deviceAddress[8];
 uint8_t assocShortAddress[2];
 bool_t securityEnable;
 uint8_t status;
} mlmeAssociateRes_t;

For MAC 2006 version the AssociationResponse structure is the following:
typedef struct mlmeAssociateRes_tag {
 uint8_t deviceAddress[8];
 uint8_t assocShortAddress[2];
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
 uint8_t status;
} mlmeAssociateRes_t;

The security parameter has the same meaning as the ScanRequest security parameters.

4.5.1.3 Associate Indication
For MAC 2006 version the AssociateIndication structure is the following:
// Type: gNwkAssociateInd_c
typedef struct nwkAssociateInd_tag {
 uint8_t deviceAddress[8];
 bool_t securityUse;
 uint8_t AclEntry;
 uint8_t capabilityInfo;
} nwkAssociateInd_t;

For MAC 2006 version the AssociateIndication structure is the following:
typedef struct nwkAssociateInd_tag {
 uint8_t deviceAddress[8];
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
 uint8_t capabilityInfo;
} nwkAssociateInd_t;

• securityLevel — The security level purportedly used by the received MAC command frame.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-21

• keyIdMode — The mode used to identify the key purportedly used by the originator of the received
frame. This parameter is invalid if the securityLevel parameter is set to 0x00.

• keySource — The originator of the key purportedly used by the originator of the received frame.
This parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.

• keyIndex — The index of the key purportedly used by the originator of the received frame. This
parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.

4.5.1.4 Associate Confirm
For MAC 2003 version the AssociateConfirm structure is the following:
// Type: gNwkAssociateCnf_c
typedef struct nwkAssociateCnf_tag {
 uint8_t assocShortAddress[2];
 uint8_t status;
} nwkAssociateCnf_t;

For MAC 2006 version the AssociateConfirm structure is the following:
typedef struct nwkAssociateInd_tag {
 uint8_t deviceAddress[8];

 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;

 uint8_t capabilityInfo;
} nwkAssociateInd_t

• securityLevel — If the primitive was generated following failed outgoing processing of an
association request command: The security level to be used. If the primitive was generated
following receipt of an association response commands: The security level purportedly used by the
received frame.

• keyIdMode — If the primitive was generated following failed outgoing processing of an
association request command: The mode used to identify the key to be used. This parameter is
ignored if the securitylevel parameter is set to 0x00. If the primitive was generated following
receipt of an association response command: The mode used to identify the key purportedly used
by the originator of the received frame. This parameter is invalid if the securityLevel parameter is
set to 0x00.

• keySource — If the primitive was generated following failed outgoing processing of an association
request command: The originator of the key to be used. This parameter is ignored if the keyIdMode
parameter is ignored or set to 0x00. If the primitive was generated following receipt of an
association response command: The originator of the key purportedly used by the originator of the
received frame. This parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.

• keyIndex — If the primitive was generated following failed outgoing processing of an association
request command: The index of the key to be used. This parameter is ignored if the keyIdMode
parameter is ignored or set to 0x00. If the primitive was generated following receipt of an
association response command: The index of the key purportedly used by the originator of the
received frame. This parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-22 Freescale Semiconductor

4.5.2 Associate Example
This section shows an example of sending an associate-request. Some pseudo-code has been used (the
AssociateFillInParms(),and HandleAssocConf() functions do not exist) in order to simplify the example.
// Need to allocate MLME message for this one.
mlmeMessage_t *ReqMsg = MSG_AllocType(mlmeMessage_t);
nwkMessage_t *CnfMsg;

// If ReqMsg==NULL then TRANSACTION_OVERFLOW
// fill in source+destination addresses and capabilities.
AssociateFillInParms(&ReqMsg->msgData.associateReq);
ReqMsg->msgType = gMlmeAssociateReq_c;

// Calls uint8_t NWK_MLME_SapHandler(void*msg)
confirmStatus = MSG_Send(NWK_MLME, ReqMsg)

if(confirmStatus == SUCCESS) {
 // OS call that waits until input arrives in the input queue.
 WaitEvent();

 // Use message system to get the message from the input queue.
 if(MSG_Pending(&nwkQueue)) {
 CnfMsg = MSG_DeQueue(&nwkQueue);

 // Check if it is the correct message
 if(CnfMsg->msgType == gNwkAssociateCnf_c) {
 HandleAssocConf(&CnfMsg->msgData.associateCnf);
 }
 }
 else {
 // Not the message we waited for.
 }
 // ALWAYS remember to free incoming messages.
 MSG_Free(CnfMsg);
}
else {
// MAC failed to initiate association request due to either
// wrong parameters or out of buffers. Msg was freed by the MAC.
}

4.6 Disassociation Feature
Disassociation is less complex than association, but there is an issue in the 802.15.4 Standard that makes
disassociation from a coordinator difficult in a non-beacon enabled PAN network so special care must be
taken when disassociating from a coordinator in a non-beacon network.

• Disassociation from a device — The MLME-DISASSOCIATE.request is just sent to the remote
device where it will result in an MLME-DISASSOCIATE.indication message.

The 802.15.4 Standard states that a device with a valid short address will supply this address as a source
address in the MAC header of the data request. However, the coordinator must queue the packet using the
extended address of the device. The result is that the packet cannot be extracted from the coordinator
because a short address cannot be matched against the long address so the

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-23

MLME-DISASSOCIATE.request is queued in the indirect queue where it resides until it is polled by the
remote device (or the transaction expires).

• It is not possible to disassociate from a coordinator in a non-beacon enabled PAN if the device has
a valid short address (address < 0xFFFE)

This limitation does not exist on a beacon enabled PAN where macAutoRequest = TRUE because the
auto-request poll packet is sent with a source address equal to the one indicated in the beacon frame
pending address list.

A workaround is possible for all other scenarios. That is, the device may temporarily set its
macShortAddress to 0xFFFE or 0xFFFF if it wishes to poll for packets queued using the device’s extended
address.

4.6.1 Disassociation Primitives
This section describes the implementation of the Disassociation related primitives.

4.6.1.1 Disassociate Request
For MAC 2003 version the DisassociateRequest structure is the following:

// Type: gMlmeDisassociateReq_c
typedef struct mlmeDisassociateReq_tag {
 uint8_t deviceAddress[8];
 bool_t securityEnable;
 uint8_t disassociateReason;
} mlmeDisassociateReq_t;

For MAC 2006 version the DisassociateRequest structure is the following:
typedef struct mlmeDisassociateReq_tag {
 uint8_t deviceAddress[8];
 uint8_t devicePanId[2];
 uint8_t deviceAddrMode;
 uint8_t disassociateReason;
 bool_t txIndirect;
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} mlmeDisassociateReq_t;

• devicePanId — The PAN identifier of the device to which to send the disassociation notification
command.

• deviceAddrMode — The addressing mode of the device to which to send the disassociation
notification command.

• txIndirect — This is TRUE if the disassociation notification command is to be sent indirectly.

Security parameters have the same meaning as ScanRequest security parameters.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-24 Freescale Semiconductor

4.6.1.2 Disassociate Indication
For MAC 2003 version the DisassociateIndication structure is the following:
// Type: gNwkDisassociateInd_c
typedef struct nwkDisassociateInd_tag {
 uint8_t deviceAddress[8];
 bool_t securityUse;
 uint8_t aclEntry;
 uint8_t disassociateReason;
} nwkDisassociateInd_t;

For MAC 2006 version the DisassociateIndication structure is the following:
typedef struct nwkDisassociateInd_tag {
 uint8_t deviceAddress[8];
 uint8_t disassociateReason;

 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} nwkDisassociateInd_t

• securityLevel — The security level purportedly used by the received MAC command frame.
• keyIdMode — Identifies the key purportedly used by the originator of the received frame. This

parameter is invalid if the securityLevel parameter is set to 0x00.
• keySource — The originator of the key purportedly used by the originator of the received frame.

This parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.
• keyIndex — The index of the key purportedly used by the originator of the received frame. This

parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.

4.6.1.3 Disassociate Confirm
For MAC 2003 version the DisassociateConfirm structure is the following:
// Type: gNwkDisassociateCnf_c
typedef struct nwkDisassociateCnf_tag {
 uint8_t status;
} nwkDisassociateCnf_t;

For MAC 2006 version the DisassociateConfirm structure is the following:
typedef struct nwkDisassociateCnf_tag {
 uint8_t deviceAddress[8];
 uint8_t devicePanId[2];
 uint8_t deviceAddrMode;
 uint8_t status;
} nwkDisassociateCnf_t;

• deviceAddress — The address of the device that has either requested disassociation or been
instructed to disassociate by its coordinator.

• devicePanId — The PAN identifier of the device that has either requested disassociation or been
instructed to disassociate by its coordinator.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-25

• deviceAddrMode — The addressing mode of the device that has either requested disassociation or
been instructed to disassociate by its coordinator.

4.7 Data Feature
The data feature includes the service provided by the MCPS-DATA.confirm/indication and
MLME-POLL.request/confirm primitives. Whenever these primitives are in use, so are one or more large
data buffers. The large data buffers are mainly used for holding Tx or Rx packets and they are limited to a
specific number for each Device Type.

Table 4-2 shows the number of available large data buffers. The numbers vary because the different Device
Types have different levels of functionality.

Each time an MCPS-DATA.confirm or MLME-POLL.request primitive is executed, one large buffer is
used. Even though not directly supported by the 802.15.4 Standard, it is possible to execute an
MLME-POLL.request while another MLME-POLL.request is pending in the MAC.

The MAC reserves a buffer for general receive and for transmitting beacons unless it is running in
non-beacon mode as a device. This means that it is safe for the application to allocate data buffers using
the MSG_AllocType() function until receiving NULL, indicating that no buffers are available.

4.7.1 Data Primitives
This section describes the implementation of the Data related primitives.

4.7.1.1 Data Request
The Data-Request message structure has an embedded data field. The total size of the message is
(sizeof(mcpsDataReq_t) - 1) + msduLength. The data field is simply addressed with:
mcpsDataReq->pMsdu, and may contain more than one byte even though the array is declared with a size
of 1.

For MAC 2003 version the DataRequest structure is the following:
// Type: gMcpsDataReq_c,
typedef struct mcpsDataReq_tag {
 uint8_t dstAddr[8]; //Address as defined by dstAddrMode
 uint8_t dstPanId[2];
 uint8_t dstAddrMode;
 uint8_t srcAddr[8]; //Address as defined by srcAddrMode
 uint8_t srcPanId[2];
 uint8_t srcAddrMode;
 uint8_t msduLength; // 0-102
 uint8_t msduHandle;
 uint8_t txOptions;
 uint8_t *pMsdu; // Data will start at this byte

Table 4-2. Available Large Data Buffers

Device type RFD RFDNB RFDNBNS FFD FFDNGTS FFDNB FFDNBNS

Bufferst 4 3 3 5 5 4 4

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-26 Freescale Semiconductor

} mcpsDataReq_t;

For MAC 2006 version the DataRequest structure is the following:
typedef struct mcpsDataReq_tag {
 uint8_t dstAddr[8]; // First 0/2/8 bytes is the address as defined by dstAddrMode
 uint8_t dstPanId[2]; // 16 bit word converted to little endian byte array
 uint8_t dstAddrMode;
 uint8_t srcAddr[8]; // First 0/2/8 bytes is the address as defined by srcAddrMode
 uint8_t srcPanId[2]; // 16 bit word converted to little endian byte array
 uint8_t srcAddrMode;
 uint8_t msduLength; // 0-102
 uint8_t msduHandle;
 uint8_t txOptions;
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
 uint8_t *pMsdu; // Data will start at this address
} mcpsDataReq_t;

The security parameters have the same meaning as the ScanRequest security parameters.

4.7.1.2 Data Confirm
// Type: gMcpsDataCnf_c,
typedef struct mcpsDataCnf_tag {
 uint8_t msduHandle;
 uint8_t status;
} mcpsDataCnf_t;

4.7.1.3 Data Indication
The Data-Indication structure has an embedded data field. The total size of the message is
(sizeof(mcpsDataInd_t) - 1) + (mcpsDataInd->msduLength). The data field is simply addressed with:
mcpsDataInd->pMsdu, and may contain more than one byte even though the array is declared with a size
of 1.

NOTE
Link Quality Indication (LQI) is used as part of the Data Indication structure
representing an integer value from 0x00-0xFF where 0x00 equates to
-100 dBm and the maximum value of 0xFF to -15 dBm.

For MAC 2006 version the DataIndication structure is the following:
// Type: gMcpsDataInd_c,
typedef struct mcpsDataInd_tag {
 uint8_t dstAddr[8]; //Address as defined by dstAddrMode
 uint8_t dstPanId[2];
 uint8_t dstAddrMode;
 uint8_t srcAddr[8]; //Address as defined by srcAddrMode
 uint8_t srcPanId[2];
 uint8_t srcAddrMode;
 uint8_t msduLength; // 0-102
 uint8_t mpduLinkQuality;
 bool_t securityUse;

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-27

 uint8_t aclEntry;
 uint8_t *pMsdu; // Data will start at this byte
 } mcpsDataInd_t;

For MAC 2006 version the DataIndication structure is the following:
typedef struct mcpsDataInd_tag {
 uint8_t dstAddr[8]; // First 0/2/8 bytes is the address as defined by dstAddrMode
 uint8_t dstPanId[2]; // 16 bit word converted to little endian byte array
 uint8_t dstAddrMode;
 uint8_t srcAddr[8]; // First 0/2/8 bytes is the address as defined by srcAddrMode
 uint8_t srcPanId[2]; // 16 bit word converted to little endian byte array
 uint8_t srcAddrMode;
 uint8_t msduLength; // 0-102 (101?)
 uint8_t mpduLinkQuality;
 uint8_t dsn;
 uint32_t timeStamp;
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
 uint8_t *pMsdu; // Data will start at this address inside the message.
} mcpsDataInd_t;

• dsn — The data sequence number of the received frame.
• timestamp — The time in symbols at the which data were received.
• securityLevel — The security level purportedly used by the received data frame.
• keyIdMode — The mode used to identify the key purportedly used by the originator of the received

frame. This parameter is invalid if the securityLevel parameter is set to 0x00.
• keySource — The originator of the key purportedly used by the originator of the received frame.

This parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.
• keyIndex — The index of the key purportedly used by the originator of the received frame. This

parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.

4.7.1.4 Poll Request
For MAC 2003 version the PollRequest structure is the following:
// Type: gMlmePollReq_c,
typedef struct mlmePollReq_tag {
 uint8_t coordAddress[8];
 uint8_t coordPanId[2];
 uint8_t coordAddrMode;
 bool_t securityEnable;
} mlmePollReq_t;

For MAC 2006 version the PollRequest structure is the following:
typedef struct mlmePollReq_tag {
 uint8_t coordAddress[8];
 uint8_t coordPanId[2];
 uint8_t coordAddrMode;
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-28 Freescale Semiconductor

 uint8_t keyIndex;
} mlmePollReq_t

The security parameters have the same meaning as the ScanRequest security parameters.

4.7.1.5 Poll Confirm
// Type: gNwkPollCnf_c,
typedef struct nwkPollCnf_tag {
 uint8_t status;
} nwkPollCnf_t;

4.7.1.6 Poll Notify Indication
// Type: gNwkPollNotifyInd_c,
typedef struct nwkPollNotifyInd_tag {
 uint8_t srcAddrMode;

uint8_t srcAddr[8];
uint8_t srcPanId[2];

} nwkPollNotifyInd_t;

4.7.1.7 Communications Status Indication
For MAC 2003 version the CommunicationStatusIndication structure is the following
// Type: gNwkCommStatusInd_c,
typedef struct nwkCommStatusInd_tag {
 uint8_t srcAddress[8];
 uint8_t panId[2];
 uint8_t srcAddrMode;
 uint8_t destAddress[8];
 uint8_t destAddrMode;
 uint8_t status;
} nwkCommStatusInd_t;

For MAC 2006 version the CommunicationStatusIndication structure is the following:
typedef struct nwkCommStatusInd_tag {
 uint8_t srcAddress[8];
 uint8_t panId[2];
 uint8_t srcAddrMode;
 uint8_t destAddress[8];
 uint8_t destAddrMode;
 uint8_t status;
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} nwkCommStatusInd_t;

• securityLevel — If the primitive was generated following a transmission instigated through a
response primitive: The security level to be used. If the primitive was generated on receipt of a
frame that generates an error in its security processing: The security level purportedly used by the
received frame.

• keyIdMode — If the primitive was generated following a transmission instigated through a
response primitive: The mode used to identify the key to be used. This parameter is ignored if the

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-29

securityLevel parameter is set to 0x00. If the primitive was generated on receipt of a frame that
generates an error in its security processing: The mode used to identify the key purportedly used
by the originator of the received frame. This parameter is invalid if the securityLevel parameter is
set to 0x00.

• keySource — If the primitive was generated following a transmission instigated through a response
primitive: The originator of the key to be used. This parameter is ignored if the keyIdMode
parameter is ignored or set to 0x00. If the primitive was generated on receipt of a frame that
generates an error in its security processing: The originator of the key purportedly used by the
originator of the received frame This parameter is invalid if the keyIdMode parameter is invalid or
set to 0x00.

• keyIndex — If the primitive was generated following a transmission instigated through a response
primitive: The index of the key to be used. This parameter is ignored if the keyIdMode parameter
is ignored or set to 0x00. If the primitive was generated on receipt of a frame that generates an error
in its security processing: The index of the key purportedly used by the originator of the received
frame. This parameter is invalid if the keyIdMode parameter is invalid or set to 0x00.

4.7.2 Data Example
The following is an example of the NWK sending an MCPS-DATA.request to the MCPS. It mainly
demonstrates how to properly allocate a message buffer, and add data to the pMsdu parameter.
nwkToMcpsMessage_t *mpPacket = MSG_Alloc(gMaxRxTxDataLength_c);
if(mpPacket != NULL)
{

mpPacket->msgData.dataReq.pMsdu = "Message example";

/* Data was available in the UART receive buffer. Now create an
MCPS-Data Request message containing the UART data. */
mpPacket->msgType = gMcpsDataReq_c;
mpPacket->msgData.dataReq.msduLength = 16;

/* Create the header using coordinator information gained during
the scan procedure. Also use the short address we were assigned
by the coordinator during association. */
memcpy(mpPacket->msgData.dataReq.dstAddr, mCoordInfo.coordAddress, 8);
memcpy(mpPacket->msgData.dataReq.srcAddr, maAddress, 2);
memcpy(mpPacket->msgData.dataReq.dstPanId, mCoordInfo.coordPanId, 2);
memcpy(mpPacket->msgData.dataReq.srcPanId, mCoordInfo.coordPanId, 2);
mpPacket->msgData.dataReq.dstAddrMode = mCoordInfo.coordAddrMode;
mpPacket->msgData.dataReq.srcAddrMode = gAddrModeShort_c;

/* Request MAC level acknowledgement of the data packet */
mpPacket->msgData.dataReq.txOptions = gTxOptsAck_c;

/* Give the data packet a handle. The handle is
returned in the MCPS-Data Confirm message. */
mpPacket->msgData.dataReq.msduHandle = mMsduHandle++;

/* Send the Data Request to the MCPS */
(void) MSG_Send(NWK_MCPS, mpPacket);

}

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-30 Freescale Semiconductor

An alternative way to provide the payload to MCPS-DATA.request is to include its contents in the data
request message, like in the example below:

FLib_MemCpy(mpPacket->msgData.dataReq.pMsdu, "Message example", 16);

The following is an example of the NWK receiving an MCPS-DATA.indication from the MCPS. It shows
how the MCPS to NWK SAP handler may be implemented by the application/NWK programmer.
// NWK – Receive data indication with 10 bytes of data
uint8_t MCPS_NWK_SapHandler(mcpsToNwkMessage_t *pMsg)
{
 switch(pMsg->msgType) {
 case gMcpsDataInd_c:
 // Handle the incoming data frame
 for(i=0; i<pMsg->msgData.dataInd.msduLength; i++)
 myBuffer[i] = pMsg->msgData.dataInd.pMsdu[i];
 break;
 case gMcpsDataCnf_c:
 // The MCPS-DATA.request has completed. Check status
 // parameter to see if the transmission was successful.
 break;
 case gMcpsPurgeCnf_c:
 // The MCPS-PURGE.request has completed.
 break;
 }
 MSG_Free(pMsg); // Free message ASAP.
 return gSuccess_c;
}

4.8 Purge Feature
The purge feature allows the next higher layer to purge a data packet (MSDU) stored in the MAC until it
has been sent. This means that if an MCPS-DATA.request primitive with that msduHandle has been
initiated, it is possible to purge the MSDU with the given msduHandle, if it has not been sent. Initiating
the MCPS-PURGE.request primitive and specifying the msduHandle parameter will accomplish the task.
A MCPS-PURGE.confirm primitive is generated in response to the MCPS-PURGE.request primitive with
the status of SUCCESS if an MSDU matching the given handle is found, or with the status of
INVALID_HANDLE if an MSDU matching the given handle is not found.

4.8.1 Purge Primitives
This section describes the implementation of the Purge related primitives.

4.8.1.1 Purge Request
// Type: gMcpsPurgeReq_c,
typedef struct mcpsPurgeReq_tag {
 uint8_t msduHandle;
} mcpsPurgeReq_t;

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-31

4.8.1.2 Purge Confirm
// Type: gMcpsPurgeCnf_c,
typedef struct mcpsPurgeCnf_tag {
 uint8_t msduHandle;
 uint8_t status;
} mcpsPurgeCnf_t;

4.9 Rx Enable Feature
The Rx Enable feature allows the network layer to enable the receiver at a given time. The feature is
implemented according to the 802.15.4 Standard.

4.9.1 RX Enable Request
// Type: gMlmeRxEnableReq_c,
typedef struct mlmeRxEnableReq_tag {
 bool_t deferPermit;
 uint8_t rxOnTime[3];
 uint8_t rxOnDuration[3];
} mlmeRxEnableReq_t;

4.9.2 RX Enable Confirm
// Type: gNwkRxEnableCnf_c,
typedef struct nwkRxEnableCnf_tag {
 uint8_t status;
} nwkRxEnableCnf_t;

4.10 Guaranteed Time Slots (GTS) Feature
The GTS feature allows a device to reserve a certain bandwidth. A GTS slot is always unidirectional and
it is always requested by the device.

4.10.1 GTS as a Device
It does not make sense for a device to allocate more than one Rx slot and one Tx slot (although it is possible
to do so) because it is impossible for a device to differentiate two Tx slots of the same length. Analysis
yields the following results.

• The MCPS-DATA.request does not support any method for selecting between Tx slots.
• If the PAN coordinator de-allocates or realigns one of the Tx slots, it is not possible to tell which

of the slots were affected.

Freescale recommends that a device should never allocate more than one GTS slot in each direction.

Refer to the 802.15.4 Standard for more information. Allocating a GTS slot or de-allocating a GTS slot is
implemented according to the standard. In either case the MLME-GTS.request primitive is used.

• Allocating — An allocation attempt is initiated by sending the GTS request to the PAN coordinator.
The device then looks for a GTS descriptor that matches the requested characteristics in the beacon
frames received. Once found, it is possible to perform GTS transfers.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-32 Freescale Semiconductor

• Deallocating — Deallocation is similar. The local GTS “context” is marked as invalid before the
request is actually sent to the PAN coordinator. Any packets that may have been queued for GTS
transmission are completed with status INVALID_GTS at this point. The GTS deallocation request
is then sent to the PAN coordinator. There is no guarantee that the PAN coordinator receives the
request (it may fail with status NO_ACK or CHANNEL_ACCESS_FAILURE). This is not critical
because the PAN coordinator must implement mechanisms to detect “stale” GTS slots.

NOTE
GTS processing is rather MCU expensive and cannot be completed in IRQ
context. The following steps describe the procedure for handling a GTS:

1. A beacon frame is received.
2. Time critical beacon frame processing is performed. This includes calculating various superframe

timing parameters such as the expected end time of the CAP and the expected time of the next
beacon frame arrival.

3. The GTS field of the beacon frame is pre-processed. Pre-processing consists of only one thing:
Check if the device’s short address is present in the list. An internal flag (gMlmeGtsAccess) is
raised if this is true.

4. The beacon frame is then queued for further processing by higher layer software (the MLME).
5. This completes the beacon processing in IRQ context.

The MLME will asynchronously perform further processing of the beacon frame. This includes generating
MLME-BEACON.indications messages to the NWK layer. GTS processing is performed if the
gMlmeGtsAccess flag was raised. This includes processing all GTS descriptors that matches the short
address of the device. The following actions are performed.

1. A new internal GTS context is allocated if a GTS allocation request was pending and the current
GTS descriptor matches the requested characteristics.

2. An existing GTS slot may have been realigned by the PAN coordinator (that is, a new start slot has
been defined). The proper internal GTS context is updated.

3. An existing GTS slot may have been deallocated by the PAN coordinator (indicated by a start slot
of 0). The proper internal GTS context is deallocated. Queued data packets are completed with
status INVALID_GTS if applicable.

4. Timing parameters for the entire CFP is then calculated. This includes calculating the start and end
times for all allocated GTS slots. The times are adjusted according to internal setup requirements
and clock drift.

5. The gMlmeGtsAccess flag is cleared.

NOTE
These steps are important because the entire CFP of a superframe will be
skipped if the gMlmeGtsAccess is detected high at the beginning of the CFP.
This is needed because the CFP timing parameters are not yet in place. It is
also important that the Mlme_Main()is called in a timely manner.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-33

4.10.2 GTS as PAN Coordinator
The PAN coordinator always accepts incoming GTS requests and it always allocates the requested GTS
slot if the minimum length CAP can be maintained. A GTS slot can occupy 1 to15 superframe slots
(assuming that sufficient superframe slots are free). A GTS request is denied if the PAN coordinator cannot
allocate the requested GTS slot.

NOTE
GTS processing is rather intensive and cannot be completed in IRQ context.
The following steps describe the procedure for this software
implementation.

1. A GTS request is received in the CAP.
2. gMlmeGtsAccess is raised.
3. The MAC command frame is queued for further processing by higher layer software (the MLME).
4. This completes GTS processing in IRQ context.

As previously stated, the MLME asynchronously performs further processing of the GTS request. This
includes the following actions.

1. An internal GTS context is allocated (if the GTS request specified an allocation request) or an
existing context is deallocated (if the GTS request specified a deallocation request).

2. All GTS slots are realigned if a deallocation created “gaps” in the CFP.
3. Timing parameters for the entire CFP are calculated. This includes calculating the start and end

times for all allocated GTS slots. The times are adjusted according to internal setup requirements
and clock drift.

4. The gMlmeGtsAccess flag is cleared.
5. An MLME-GTS.indication message is generated (if applicable).

NOTE
The entire CFP of a superframe is skipped if the gMlmeGtsAccess is
detected high at the beginning of the CFP. This is required because the CFP
timing parameters are not yet in place. It is therefore important that the
Mlme_Main() is called in a timely manner.

Users should also be aware that all existing GTS slots (if any) are deallocated immediately if the
superframe configuration changes (macBeaconOrder or macSuperframeOrder are changed).

NOTE
Issuing the MLME-START.request primitive updates these two PIB
attributes. There is no indication in the beacon frame to indicate this. That
is, a device must assume that the GTS slots are invalidated if the superframe
configuration changes.

GTS expiration is implemented according to the 802.15.4 Standard. The PAN coordinator deallocates stale
slots automatically. The 802.15.4 Standard does not specify how to expire a GTS slot where data is sent
unacknowledged. This implies that the PAN coordinator will not receive any acknowledgement frames.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-34 Freescale Semiconductor

The implementation in this case deallocates the GTS slot if no data has been transmitted in the slot for the
specified number of superframes. For example, “counting” is based on Tx packets and not Rx
acknowledgements.

4.10.3 Miscellaneous Items
The following items are valid for both a device and a PAN coordinator.

• It is possible, but not recommended, to allocate a GTS slot with a length of 1 at
macSuperframeOrder = 0. This GTS slot will only contain 60 symbols (30 bytes). As already
stated, setup time and overhead for PHY and MAC headers is at least 21 bytes, so it is not possible
to send or receive any data. A GTS slot should at least have a length = 2 at
macSuperframeOrder = 0 (corresponding to 120 symbols). All other superframe orders support
GTS slots with a length = 1

As already stated, it is possible so skip a CFP due to GTS maintenance. Although this hazard exists, it
should have minimal effects because GTS slots will more than likely rarely be allocated and deallocated
except at feature setup and termination.

4.10.4 GTS Primitives

4.10.4.1 GTS Request
For MAC 2003 version the GtsRequest structure is the following:
// Type: gMlmeGtsReq_c,
typedef struct mlmeGtsReq_tag {
 bool_t securityEnable;
 uint8_t gtsCharacteristics;
} mlmeGtsReq_t;

For MAC 2006 version the GtsRequest structure is the following:
typedef struct mlmeGtsReq_tag {
 uint8_t gtsCharacteristics;
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} mlmeGtsReq_t;

The security parameters have the same meaning as ScanRequest security parameters.

4.10.4.2 GTS Confirm
// Type: gNwkGtsCnf_c,
typedef struct nwkGtsCnf_tag {
 uint8_t status;
 uint8_t gtsCharacteristics;
} nwkGtsCnf_t;

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-35

4.10.4.3 GTS Indication
For MAC 2003 version the GtsIndication structure is the following:
// Type: gNwkGtsInd_c,
typedef struct nwkGtsInd_tag {
 uint8_t devAddress[2];
 bool_t securityUse;
 uint8_t AclEntry;
 uint8_t gtsCharacteristics;
} nwkGtsInd_t;

For MAC 2006 version the GtsIndication structure is the following:
typedef struct nwkGtsInd_tag {
 uint8_t devAddress[2];
 uint8_t gtsCharacteristics;
 uint8_t securityLevel;
 uint8_t keyIdMode;
 uint8_t keySource[8];
 uint8_t keyIndex;
} nwkGtsInd_t;

• securityLevel — If the primitive was generated when a GTS deallocation is initiated by the PAN
coordinator itself, the security level to be used is set to 0x00. If the primitive was generated
whenever a GTS is allocated or deallocated following the reception of a GTS request command:
The security level purportedly used by the received MAC command frame.

• keyIdMode — If the primitive was generated when a GTS deallocation is initiated by the PAN
coordinator itself, this parameter is ignored. If the primitive was generated whenever a GTS is
allocated or deallocated following the reception of a GTS request command: The mode used to
identify the key purportedly used by the originator of the received frame. This parameter is invalid
if the securityLevel parameter is set to 0x00.

• keySource — If the primitive was generated when a GTS deallocation is initiated by the PAN
coordinator itself, this parameter is ignored. If the primitive was generated whenever a GTS is
allocated or deallocated following the reception of a GTS request command: The originator of the
key purportedly used by the originator of the received frame. This parameter is invalid if the
keyIdMode parameter is invalid or set to 0x00.

• keyIndex — If the primitive was generated when a GTS deallocation is initiated by the PAN
coordinator itself, this parameter is ignored. If the primitive was generated whenever a GTS is
allocated or deallocated following the reception of a GTS request command: The index of the key
purportedly used by the originator of the received frame. This parameter is invalid if the
keyIdMode parameter is invalid or set to 0x00.

4.11 Security
The MAC security functionality is implemented as described in the 802.15.4 Standard and in the ZigBee
Security Services Specification V.092. Where a different approach is used between the two, Freescale
follows the ZigBee Security Services Specification V.092. So, the CCM security levels are used in place
of the security suites described in the 802.15.4 Standard.

One current limitation in this implementation is that secured beacons are not processed.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-36 Freescale Semiconductor

Secured packets are longer when transmitted over the air than corresponding non-secured packets. Besides
the increased power consumption and lower maximum throughput, this results in MCPS-DATA.request
delivering a gFrameTooLong_c error code if the resulting packet goes longer than 127 bytes. The
maximum msduLength for secured packets depends on the security level, source, and destination
addressing modes and whether the source and destination PAN ID are the same. Table 4-3 shows the
overhead added for each security level.

4.11.1 Security PIB Attributes
The ACL entries are statically allocated. The gNumAclEntryDescriptors may be defined in the
AppToMacPhyConfig.h file. The default value for the number of ACL entries is 4.

It is possible to use the security PIB attributes as defined in the 802.15.4 Standard with the variation that
the ACLSecurityMaterial always takes up the maximum (26 decimal) amount of bytes. The
DefaultSecurityMaterial does the same, but it is always accessed directly.

It is also possible to write to the contents of the individual ACL entries using the Freescale specific security
PIB attributes, see Table 4-1.

By setting the Freescale specific gMPibAclEntryCurrent_c security attribute to an ACL entry index
between 0, and (gNumAclEntryDescriptors-1), it is possible to read and write the individual attributes of
the different ACL entries without reading/writing the complete ACL entry descriptor set at once.

For MAC 2006 the number of entries for macKeyTable, KeyIdLookupList, KeyDeviceList, KeyUsageList,
macDeviceTable and macSecurityLevelTable are allocated statically. For each table the number of entries
isdefined in AppToMacPhyConfig.h file: gNumKeyTableEntries_c, gNumKeyIdLookupEntries_c,
gNumKeyDeviceListEntries_c, gNumKeyUsageListEntries_c, gNumDeviceTableEntries_c,
gNumSecurityLevelTableEntries_c.

It is possible to read orwrite security PIB as defined in 802.15.4 2006 standard version. It is also possible
to read or write the content of indiviual entry of each security PIB presented as a list.

Table 4-3. Security Level Overhead

Level Name Encrypted Integrity Check
(length)

Packet Length
Overhead

0x00 N/A No 0 (no check) 0

0x01 MIC-32 No 4 9

0x02 MIC-64 No 8 13

0x03 MIC-128 No 16 21

0x04 ENC Yes 0 (no check) 5

0x05 ENC-MIC-32 Yes 4 9

0x06 ENC-MIC-64 Yes 8 13

0x07 ENC-MIC-128 Yes 16 21

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 4-37

4.11.2 Security Library
The basic building blocks used by the 802.15.4 security standard have been made available in the security
library. It is not necessary to utilize these functions for any network or application layers for 802.15.4
nodes to work with security. They are supplied for use in cases where any network or application layers
may need them for additional security on these layers. This could be for hash functions for key
generation/exchange protocols or for separate CCM security on the packets.

NOTE
These functions are not re-entrant, neither individually nor mutually. This
requires all calls to these functions to happen from execution contexts that
do not interleave, one of these being the execution context from which the
MAC main function is called. The reason is that these functions modify
some global variables without using a mutual exclusion mechanism.

4.11.2.1 Advanced Encryption Standard (AES)

4.11.2.1.1 Libraries

These libraries perform AES-128 cryptographic operation on a data set
• The 8-bit library is fully implemented in software and is optimized for the HCS08 platform. For all

HCS08 projects, the architecture definitions must locate the internal buffers (MY_ZEROPAGE) in
lower memory space for correct linking.

• The MC1322x ARM7 library makes use of the onboard Advanced Security Module (ASM).

4.11.2.1.2 Interface Assumptions
• All input/outputs are 16 bytes (128 bit).

NOTE
The function is not re-entrant. Also, it is of course not re-entrant with other
functions calling this function (like SecLib_CcmStar).

• Users can point the ReturnData pointer to the same memory as either Data or Key if needed.
void SecLib_Aes
 (
 const uint8_t *pData, // IN: Data to be en/de-crypted
 const uint8_t *pKey, // IN: 128 bit key
 uint8_t *pReturnData // OUT: Result (can be same address as
 // pData or pKey)
);

4.11.3 Counter with CBC-MAC (CCM*)
CCM* mode is a mode of operation for cryptographic block ciphers. It is an authenticated encryption
algorithm designed to provide both authentication and privacy. CCM* mode is only defined for 128-bit
block ciphers. CCM* as defined for ZigBee offers encryption-only and integrity-only capabilities.

Feature Descriptions

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

4-38 Freescale Semiconductor

4.11.3.1 Interface Assumptions
Header, Message, and Integrity code have to be located in memory as they appear in the packet. That is,
as a concatenated string in that order. For levels with encryption Message is encrypted in-place
(overwriting Message).

Depending on the security level the function behaves as described in Table 4-4

NOTE
The function is not re-entrant.

The function returns the status of the operation (always ok = 0 for encoding)
uint8_t SecLib_CcmStar
 (
 uint8_t * pHeader, // IN/OUT: start of data to
 // perform CCM-star on
 uint8_t headerLength, // IN: Length of header field (a)
 uint8_t messageLength, // IN: Length of data field (m)
 const uint8_t key[16], // IN: 128 bit key
 const uint8_t nonce[13], // IN: 802.15.4/Zigbee specific
 // nonce
 const uint8_t securityLevel, // IN: Security level 0-7
 gCcmDirection_t direction // IN: Direction of CCM:
 // gCcmEncode_c, gCcmDecode_c
);

Table 4-4. CCM* Internal Translation and Behavior for Different Security Levels

Level Action CCM* ‘a’ input CCM* ‘m’ input

0 Nothing N/A N/A

1, 2, 3 Integrity only based on Header||Message Header||Message Empty

4 Encryption of Message only Empty Message

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-1

Chapter 5
APP/ASP Layer Interface Description
This section describes the Application (APP)/Application Support Package (ASP) interface. As described
earlier in this manual, the user must be aware that not all functions and primitives are available on both
supported platforms, i.e., some are specific to a single platform and are noted as such.

5.1 General APP/ASP Interface Information
The interface between the APP and the ASP is based on direct function calls. Seventeen functions are
implemented in the ASP part of the MAC. The application layer can use these functions after including
the AppAspInterface.h header file. The ASP functions prototypes are highlighted in this section. However,
refer to Section 5.3, “APP to ASP Interface” for a more complete description.

The interface between the ASP and the APP is based on service primitives passed from one layer to the
other through a layer Service Access Point (SAP).

5.1.1 uint8_t ASP_APP_SapHandler(aspToAppMsg_t *pMsg)
The ASP to APP SAP ASP_APP_SapHandler() passes primitives from the ASP to the APP. The
ASP_APP_SapHandler() must be implemented in the application layer by the application developer.

The SAP handler functions should not be called directly, but through the available MSG_Send(ASP_APP,
msg) macro. ASP to APP service primitives use the same type of messages as defined in the
AppAspInterface.h interface header file. The macros are defined in the MsgSystem.h header file.

Because the ASP to APP interface is based on messages being passed to a SAP, each message needs to
have an identifier. These identifiers are shown in the enumeration in Table 5-1.

The following two sections describe the C-structures which correspond to the message identifiers shown
in this section. A common feature of all structures is that all elements of a size greater than 1 byte are little
endian and declared as byte arrays.

Table 5-1. Primitives in the ASP to APP Direction

Message Identifiers ASP Primitives

gAspAppWakeInd_c ASP-WAKE.Indication

gAspAppIdleInd_c ASP-IDLE.Indication

gAspAppInactiveInd_c ASP-INACTIVE.Indication

gAspAppEventInd_c ASP-EVENT.Indication

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-2 Freescale Semiconductor

5.2 ASP to APP Interface
The following structures are used for the messages that go from the ASP to the APP. See the message
identifier enumeration lists as shown in Table 2-1, Table 2-2, Table 2-3, and Table 2-4 for implemented
primitives. All indication primitives are sent in messages that must be freed by MSG_Free() as described
in Section 2.4.6, “MSG_Free”.

NOTE
Some primitives are not available for the AMR7 based MC1322x platform.

5.2.1 Wake Indication
Available only on HCS08 based platforms, the ASP-WAKE.Indication primitive is sent to the APP when
the transceiver comes out of doze or hibernate mode. If auto doze is enabled by issuing the
ASP-AUTODOZE.Request with the enableWakeIndication, and the autoEnable parameters set to TRUE,
then wake indications are sent to the APP each time auto doze switches from doze to active mode. Auto
doze may place the transceiver in doze mode again after the wake indication has been processed by the
ASP_APP SAP. Thus, the APP has the opportunity to disable auto doze or change the parameters at this
time by sending an ASP-AUTODOZE.Request with the new set of parameters.

Remember to free this message by calling MSG_Free().
// Type: gAspAppWakeInd_c
typedef struct appWakeInd_tag {
 uint8_t status;
} appWakeInd_t;

5.2.2 Idle Indication
Available only on HCS08 based platforms, this indication is sent to the APP if enabled by the
ASP-SETNOTIFY.Request, and the MAC is operating in beaconed mode. The indication is sent at the start
of the super frame’s idle portion. The timeRemaining parameter is the number of CAP symbols left. If
macRxOnWhenIdle is TRUE the CAP idle state does not exist, and no idle indications will be sent.

Remember to free this message by calling MSG_Free().
// Type: gAspAppIdleInd_c
typedef struct appIdleInd_tag {
 uint8_t timeRemaining[3];
} appIdleInd_t;

5.2.3 Inactive Indication
This indication is sent to the APP if enabled by the ASP-SETNOTIFY.Request, and the MAC is operating
in beaconed mode. The indication is sent at the start of the super frame’s inactive portion. The
timeRemaining parameter is the number of symbols left in the inactive period.

Remember to free this message by calling MSG_Free().
// Type: gAspAppInactiveInd_c
typedef struct appInactiveInd_tag {
 uint8_t timeRemaining[3];

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-3

} appInactiveInd_t;

5.2.4 Event Indication
Available only on HCS08 based platforms, this indication is sent to the APP when the requested event has
expired.

Remember to free this message by calling MSG_Free().
// Type: gAspAppEventInd_c
typedef struct appEventInd_tag {
 uint8_t dummy; // This primitive has no parameters.
} appEventInd_t;

5.2.5 ASP to APP Message Union
The aspToAppMsg_t structure union to passes ASP specific messages from application layer to the ASP
layer.
// ASP to application message
typedef struct aspToAppMsg_tag {
 uint8_t msgType;
 union {
 appWakeInd_t appWakeInd;
 appIdleInd_t appIdleInd;
 appInactiveInd_t appInactiveInd;
 appEventInd_t appEventInd;
 } msgData;
} aspToAppMsg_t;

5.2.6 Examples of ASP to APP Messages
This section shows examples of how the APP layer should process incoming messages. The examples are
not guaranteed to compile because they may contain pseudo code for clarity.

Only indications must be handled by the APP SAP. Because ASP requests are performed synchronously,
the confirm messages are returned in the message buffer used for the requests, so they do not end up in the
APP SAP.

Example 5-1. Handle Wake Indications

// APP must have its own SAP handler:
uint8_t ASP_APP_SapHandler(aspToAppMsg_t *pMsg)
{
 // Declared somewhere else
 extern bool_t weAreAutoDozing;

 // Check which indication was received.
 switch(pMsg->msgType) {
 case aspAppWakeInd_t:
 if(weAreAutoDozing == TRUE) {
 // Awoke while auto doze was active. Now do some
 // processing (put data in queue etc.) before transceiver
 // is re-entering doze mode.

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-4 Freescale Semiconductor

 DoSomeThingWhileAwake();
 // When returning from here, transceiver enters doze mode asap.
}
 else {
 // transceiver came out of normal doze or hibernate mode.
 }
 break;
 case aspAppIdleInd_t:
 // ASP-SetNotify.Request(gAspNotifyIdle_c) was issued.
 break;
 case aspAppInactiveInd_t:
 // ASP-SetNotify.Request(gAspNotifyInactive_c) was issued.
 break;
 case aspAppEventInd_t:
 // ASP-Event.Request(time) was issued.
 break;
 }
 // ALWAYS free incoming messages.
 MSG_Free(pMsg);
 return gSuccess_c;
}

5.3 APP to ASP Interface
Functions used by the APP layer for requesting different ASP functionality are common to all platforms
with the following exceptions:

• The following functions are not available for the ARM7 based MC1322x platform:
— Asp_GetInactiveTimeReq
— Asp_DozeReq
— Asp_AutoDozeReq
— Asp_AcomaReq
— Asp_HibernateReq
— Asp_EventReq
— Asp_SetNotifyReq
— Asp_SetMinDozeTimeReq
— Asp_WakeReq
— Asp_PortReq
— Asp_DdrReq
— Asp_ClkoReq

• The following functions are not available for the HCS08 platform:
— Asp_SetDemodulatorType
— Asp_EnableComplementaryPAOutput
— Asp_ConfigureRFCtlSignals
— Asp_SetPowerLevelLockMode

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-5

5.3.1 Get MAC Time Functions
Functions are available to acquire MAC internal time values. The MC1319x, MC1320x, and MC1321x
devices have a separate transceiver with onboard timers. In contrast ,the MC1322x devices provide a timer
in the onboard MAC Accelerator block (MACA).

5.3.1.1 void Asp_GetTimeReq(zbClock24_t *time)
Available only on HCS08 based platforms, this function requests the tranceiver’s current internal event
timer value.

The time pointer points to a 3-byte array where the transceiver’s internal 24 bit event timer value will be
copied. The internal event timer’s current value (0x000000 to 0xFFFFFF) is little endian. The function
does not return any value because the call is always successful.

5.3.1.2 void Asp_GetTimeReq(zbClock32_t *time)
Available only on MC1322x family, this function requests the MACA current internal event timer value.

The time pointer points to a 4-byte array where a 30-bit value represents the MACA symbol clock time.
This value is obtained by reading the MACA 32-bit Clock Register (MACA_CLK) (which runs at the
250KHz bit clock) and shifting the register value right 2 bits. The value is little endian. The function does
not return any value because the call is always successful.

5.3.2 uint8_t Asp_GetInactiveTimeReq(zbClock24_t *time)
Available only on HCS08 based platforms, this function requests the remaining time in the super frame’s
inactive portion (related to beacon mode).

The time pointer points to a 3-byte array where the superframe’s inactive portion 24-bit time remaining
will be copied. The remaining time in the superframe’s inactive portion (0x000000 to 0xFFFFFF) is little
endian. The function will only return gSuccess_c when called during the inactive portion of a super frame,
and the transceiver is not in Doze, or Hibernate mode. Otherwise, the returned value will be
gInvalidParameter_c.

5.3.3 uint8_t Asp_DozeReq(zbClock24_t *dozeDuration, uint8_t clko_en)
Available only on the HCS08 platforms, this function requests a transceiver shut down for a given amount
of time in symbols.

The dozeDuration pointer points to a 3-byte array which contains the maximum time in number of symbols
that the transceiver will be in Doze mode. The transceiver can be awakened prematurely from Doze Mode
by a signal on the ATTN pin. CLKO is automatically started again when the transceiver leaves Doze Mode.

The CLKO output pin stops providing a clock signal to the CPU while dozing if clko_en is 0 (FALSE).
The CLKO output pin continues to provide a clock signal while dozing if clko_en is 1 (TRUE).

If Doze mode is not possible because the transceiver is busy, the function returns the gInvalidParameter_c.
Otherwise, the function returns gSuccess_c.

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-6 Freescale Semiconductor

The dozeDuration parameter is modified by the function. So, if the transceiver is idle, the requested doze
duration is granted and the DozeDuration parameter is the same as the time requested. However, if the
transceiver is in a timed wait state with a duration shorter than the requested duration, the transceiver will
doze until the wait state completes. The DozeDuration parameter will be the difference between the
requested doze duration and the end time of the transceiver wait state.

5.3.4 uint8_t Asp_AutoDozeReq(bool_t autoEnable, bool_t
enableWakeIndication, zbClock24_t *autoDozeInterval, uint8_t
clko_en)

Available only on the HCS08 platforms, this function requests an automatic shut down of the transceiver
during idle periods.

The CLKO output pin stops providing a clock signal to the CPU while dozing if clko_en is 0 (FALSE).
The CLKO output pin continues to provide a clock signal while dozing if clko_en is 1 (TRUE).

The autoDozeInterval pointer points to a 3 byte array which contains the suggested period in symbols in
which the transceiver will be in Doze mode. This interval may be overridden if Doze mode is interrupted
by an external signal (ATTNBi pin).

If the enableWakeIndication parameter is TRUE, then an ASP-WAKE.Indication is sent to the APP layer
each time the doze interval expires. The indication can be used by the APP layer to do processing. In order
to enable auto doze, the autoEnable parameter must be TRUE. Auto doze can be disabled by sending
another ASP-AUTODOZE.Request with the autoEnable parameter set to FALSE. Freescale recommends
using the ASP-WAKEIndication for simple processing during auto doze because it will occur frequently
(if enabled) and the auto doze feature is blocked during the processing of the indication in the ASP_APP
SAP. The function always returns gSuccess_c.

5.3.5 uint8_t Asp_AcomaReq(uint8_t clko_en)
Available only on the HCS08 platforms, this function requests a transceiver shut down. The CLKO output
pin stops providing a clock signal to the CPU if clko_en is 0 (FALSE). The CLKO output pin continues to
provide a clock signal if clko_en is 1 (TRUE). Only a signal on the ATTNBi pin of the transceiver or a
power loss can bring the transceiver out of Acoma mode. CLKO is automatically started again when
transceiver leaves Acoma mode.

The Acoma mode is not suited for beaconed operation and Doze mode should be used instead when
transceiver internal timers are required. One primary difference between Acoma mode and Hibernate
mode is that CLKO can be generated during Acoma mode, which is not possible in Hibernate. Acoma
mode does not support timer wakeup, which is possible during Doze mode.

The function returns gSuccess_c if the transceiver is in Idle mode. Otherwise the return value is
gInvalidParameter_c.

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-7

5.3.6 uint8_t Asp_HibernateReq(void)
Available only on the HCS08 platforms, the hibernate request shuts down the transceiver.

The CLKO output pin stops providing a clock signal to the CPU. Only a signal on the ATTNBi pin of the
transceiver or a power loss can bring the transceiver out of Hibernate mode. CLKO is automatically started
again when transceiver leaves Hibernate mode. The Hibernate mode is not adequate for beaconed
operation. Doze mode should be used instead when internal transceiver timers are required.

The function returns gSuccess_c if the transceiver is in Idle mode. Otherwise, the return value is
gInvalidParameter_c.

5.3.7 uint8_t Asp_EventReq(zbClock24_t *time)
Available only on the HCS08 platforms, this function can be used to schedule a notification for an
application event. The notification is a single instance event. If there is any conflict with the MAC
operation a gInvalidParameter_c value is returned, otherwise the function returns gSuccess_c.

The time parameter is pointer to a 3-byte little endian integer symbol time. The event time is relative to
moment when the function was called.

5.3.8 Device Reference Oscillator Trim Functions
The MC1319x, MC1320x, and MC1321x devices use a 16 Mhz transceiver reference crystal oscillator and
these devices provide onboard trimmable capacitive loading in addition to external load capacitors to the
crystal. In contrast ,the MC1322x devices provide complete onboard load capacitance to a 24MHz device
reference crystal oscillator. A trim function is provided for each platform as described in the following
sections.

5.3.8.1 void Asp_TrimReq(uint8_t trimValue)
Available only on HCS08 based platforms, this function sets the trim capacitor value for the transceiver
16MHz reference oscillator. Upon call, the trim capacitor value contained in the 8-bit parameter is
programmed to the transceiver.

The function does not return any value because the call is always successful.

5.3.8.2 void Asp_TrimReq(uint8_t fineTune, uint8_t coarseTune)
Available only on MC1322x based platforms, this function trims the device 24MHz reference oscillator
(via changing the load capacitance) through programming the CRM register XTAL Control
(XTAL_CNTL)

The function does not return any value because the call is always successful.

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-8 Freescale Semiconductor

5.3.9 uint8_t Asp_SetNotifyReq(uint8_t notifications)
Available only on the HCS08 platforms, this function controls the indications generated in beaconed
operation. The notifications parameter can be any of the following four values:

1. gAspNotifyNone_c — No indications are sent to the APP layer.
2. gAspNotifyIdle_c ASP — IDLE Indication (See Section 5.2.2, “Idle Indication”) is sent.
3. gAspNotifyInactive_c — ASP-INACTIVE Indication (See Section 5.2.3, “Inactive Indication”)

is sent.
4. gAspNotifyIdleInactive_c — ASP-IDLE, and ASP-INACTIVE Indications are sent.

If the MAC PIB attribute macRxOnWhenIdle is set then no idle indications are sent. If beacons are part of
the MAC feature the value returned is always gSuccess_c. Otherwise the return value is
gInvalidParameter_c.

5.3.10 uint8_t Asp_SetMinDozeTimeReq(zbClock24_t *minDozeTime)
Available only on the HCS08 platforms, this function sets the default minimum transceiver doze time. If
the MAC cannot doze for at least the minimum doze time, then it will not enter Doze mode. For example,
if the doze request is issued 3ms before the end of a beacon period, the MAC will not enter Doze mode
since the default minimum doze time is 4ms. However, if the minimum doze time is changed to 2ms, then
the MAC will doze for 2ms, and wake up 1ms before the next beacon. Assume the same timing in both
examples. The function always returns gSuccess_c value.

5.3.11 void Asp_TelecTest(uint8_t mode)
This function executes one of the TELEC test sequences. After finishing the test, the device should either
be reset using MLME-RESET.request, or power cycle.

The mode parameter of the request can be one of the following as shown in Table 5-2.

The function does not return any value because the call is always successful.

Table 5-2. TELEC Mode Parameter

Mode Description

gTestForceIdle_c Stop the test currently running.

gTestPulseTxPrbs9_c Continuously transmit a PRBS9 pattern.

gTestContinuousRx_c Sets the device into continuous RX mode.

gTestContinuousTxMod_c Sets the device to continuously transmit a 10101010 pattern.

gTestContinuousTxNoMod_c Sets the device to continuously transmit an un-modulated carrier wave.

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-9

5.3.12 Asp_TelecSetFreq(uint8_t channel)
This function sets the logical channel used when running the TELEC test sequences. The logicalChannel
parameter can be any value between 0x0B, and 0x1A. The function does not return any value because the
call is always successful.

5.3.13 Functions for Setting RF TX Power Level
The functions for setting device transmit power level are affected by the target platform:

• HCS08 based platforms use only “Asp_SetPowerLevel(uint8_t powerLevel)”
• MC1322x based platforms use:

— “Asp_SetPowerLevel(uint8_t powerLevel)” to set the power level
— “Asp_SetPowerLevelLockMode(bool_t enableLock)” to restrict the power levels for use with

external amplification

5.3.13.1 HCS08 Based Platforms (Asp_SetPowerLevel(uint8_t powerLevel))
The “Asp_SetPowerLevel(uint8_t powerLevel)” for HCS08 based platforms allows 16 possible values for
the powerLevel parameter, i.e., hex 0x00 to 0x0E. The relationship between the powerLevel parameter and
the actual transmit power is not perfectly linear or exponential. Table 5-3 shows the typical transmit power
level, and the TX level applies to either single-port or dual-port PA mode in the MC1320x and MC1321x
platforms.

Table 5-3. HCS08 PA Level vs. Output Power

Power Level
(Hex)

Transmit Power
(dBm)

0 -16.6

1 -16

2 -15.3

3 -14.8

4 -8.8

5 -8.1

6 -7.5

7 -6.9

8 -1

9 -0.5

A 0

B 0.4 (default)

C 2.1

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-10 Freescale Semiconductor

5.3.13.2 MC1322x Based Platform (Asp_SetPowerLevel(uint8_t powerLevel) and
Asp_SetPowerLevelLockMode(bool_t enableLock))

For MC1322x platforms the “Asp_SetPowerLevel(uint8_t powerLevel)” function has a wider range of
values, i.e., from (hex) 0x00 to 0x11. Table 5-4 shows typical TX output power vs. programmed value.
The listed output power is measured at the RF_RX_TX port of the device.

The use of the “Asp_SetPowerLevel(uint8_t powerLevel)” function and the MC1322x transmit power
level settings are affected by the use of external amplification (an external hardware power amplifier (PA)).
When an external PA is used:

— The highest 802.15.4 channel (Channel 26) must be disabled, and its use is disallowed
— The allowable power levels are restricted.
— The user must enable the restriction of the TX power levels (called powerlock) via the

“Asp_SetPowerLevelLockMode(bool_t enableLock)” function

Available only on the MC1322x platform, the “Asp_SetPowerLevelLockMode(bool_t enableLock)”
function is used to enable or disable the power level lock mode. When the power level lock mode is
applied, the output power level is restricted to the following values (hex): 0x00, 0x01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x0C. The Asp_SetPowerLevel function will return gDenied_c if a different power
level is requested when the lock mode is applied. Also in this mode, the Channel 26 cannot be selected
through MACPib.Set primitive (returned status = gDenied_c).

The enableLock parameter selects the current power level lock mode on the following basis:
• enableLock = TRUE (1) - MC1322x Power Level lock mode is enabled
• enableLock = FALSE (0) - MC1322x Power Level lock mode is disabled

Based on the current selected power level and communication channel selected at the function call
moment, the Asp_SetPowerLevelLockMode can return the following values:

• gSuccess_c = The requested power lock mode was applied.
• gDenied_c = The power level lock mode could not be enabled. The current power level is not

allowed in this mode, or the channel 26 is currently selected.

D 2.8

E 3.5

Table 5-4. MC1322x PA Level vs. Output Power

Power Level
(Hex)

Transmit Power
(dBm)

Available
for

PowerLock1

0 -30 Yes

1 -28 Yes

Table 5-3. HCS08 PA Level vs. Output Power (continued)

Power Level
(Hex)

Transmit Power
(dBm)

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-11

5.3.14 uint8_t Asp_GetPowerLevel(void)
This function returns the current programmed power level of the transceiver. This function returns the
value set by the user through the call to:

Asp_SetPowerLevel(uint8_t requestedPowerLevel)

If no call has been previously made, the default start value will be returned - gAspPowerLevel_0dBm_c.

5.3.15 void Asp_SetDemodulatorType(bool_t demDCDenable)
Available only on the MC1322x platform, this function selects either the Differentially-coherent Chip
Detection (DCD) or the Non-coherent Chip Detection (NCD) mode demodulation in the MC1322x
receiver. The DCD mode is more robust, but has less sensitivity; it is also the default mode.

The demDCDenable parameter selects the actual demodulator type on the following basis:
• demDCDenable = TRUE (1) - DCD demodulation is enabled (default)
• demDCDenable = FALSE (0) - NCD demodulation is enabled.

2 -27 Yes

3 -26 Yes

4 -24 Yes

5 -21 Yes

6 -19 Yes

7 -17 Yes

8 -16 No

9 -15 No

A -11 No

B -10 No

C -4.5 Yes

D -3 No

E -1.5 No

F -1 No

10 1.7 No

11 3 No
1 When Power Lock is enabled only the power

settings shown as available may be used. This
feature is intended for use with an external PA.

Table 5-4. MC1322x PA Level vs. Output Power (continued)

Power Level
(Hex)

Transmit Power
(dBm)

Available
for

PowerLock1

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-12 Freescale Semiconductor

5.3.16 void Asp_EnableComplementaryPAOutput(bool_t enable)
The MC1322x device has two transmit modes:

• A primary mode where a shared single-ended port (RF_RX_TX) is used for both receive and
transmit.

• A secondary mode where a secondary dual-port PA with complementary outputs (ports PA_POS
and PA_NEG) is used for transmit. In this mode the RF_RX_TX port is used only for receive.

To control use of the transmit PAs (only available on the MC1322x platform), the
“Asp_EnableComplementaryPAOutput(bool_t enable)” function is used to enable or disable the
complementary PA outputs. The default state of the complementary PA outputs is determined by the
BeeKit via the “MC1322x User Defined Target Editor” tool.

The enable parameter selects the current PA output path on the following basis:
• enable = TRUE (1) - MC1322x Complementary PA Output is enabled
• enable = FALSE (0) - MC1322x Complementary PA Output is disabled

5.3.17 uint8_t Asp_ConfigureRFCtlSignals(AspRfSignalType_t
signalType, AspRfSignalFunction_t function, bool_t gpioOutput,
bool_t gpioOutputHigh)

The MC1322x has four I/O signals that can optionally be used to control external RF hardware: ANT_1
(GPIO42), ANT_2 (GPIO43), TX_ON (GPIO44), RX_ON (GPIO43). The advantage of using these
signals is that they can be controlled by the radio hardware without need of real-time software support.

Available only on the MC1322x platform, the “uint8_t Asp_ConfigureRFCtlSignals(AspRfSignalType_t
signalType, AspRfSignalFunction_t function, bool_t gpioOutput, bool_t gpioOutputHigh)” function is
used to configure these RF control signals.

The function can configure one of the above signals at a time, with the possibility of selecting between
Automatic RF Control (Function 1 or Function 2) or general purpose I/O (GPIO).

NOTE
Refer to the MC1322x Reference Manual, for use and operation of RF
circuitry and these control signals.

Provided values for Asp_ConfigureRFCtlSignals signalType:
typedef enum {
 gAspRfSignalANT1_c,
 gAspRfSignalANT2_c,
 gAspRfSignalTXON_c,
 gAspRfSignalRXON_c,
 gAspRfSignalMax_c
}AspRfSignalType_t;

Provided values for Asp_ConfigureRFCtlSignals signalFunction:
typedef enum {
 gAspRfSignalFunctionGPIO_c,
 gAspRfSignalFunction1_c,

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-13

 gAspRfSignalFunction2_c,
 gAspRfSignalFunctionMax_c
}AspRfSignalFunction_t;

The Table 5-5 shows the possible values for the RF control signal parameters.

This function can return the following values:
• gSuccess_c = Function parameters are valid and the requested configuration was applied.
• gInvalidParameter_c = Function parameters are invalid and the requested configuration was

denied.

5.3.18 uint8_t Asp_GetMacStateReq(void)
Get basic state of the MAC. The caller can use this information to determine if it is safe to go into one of
the deep sleep modes! If the MEM, SEQ, and MLME state machines are not in idle state. it returns
gAspMacStateBusy_c. If the queues are empty the functions returns gAspMacStateNotEmpty_c. In all
other cases the returned value is gAspMacStateIdle_c.

Table 5-5. Asp_ConfigureRFCtlSignals Function Parameters

signalType function gpioOutput gpioOutputHigh

ANT_1 (GPIO42) FunctionGPIO (Rf Ctl disabled) FALSE (In) Ignored

FunctionGPIO (Rf Ctl disabled) TRUE (Out) TRUE(high)/FALSE(low)

Function1(Rf controlled) Ignored Ignored

ANT_2 (GPIO43) FunctionGPIO (Rf Ctl disabled) FALSE (In) Ignored

FunctionGPIO (Rf Ctl disabled) TRUE (Out) TRUE(high)/FALSE(low)

Function1 (Rf controlled) Ignored Ignored

TX_ON (GPIO44) FunctionGPIO (Rf Ctl disabled) FALSE (In) Ignored

FunctionGPIO (Rf Ctl disabled) TRUE (Out) TRUE(high)/FALSE(low)

Function1 (Rf controlled) Ignored Ignored

Function2 (Rf controlled) Ignored Ignored

RX_ON (GPIO45) FunctionGPIO (Rf Ctl disabled) FALSE (In) Ignored

FunctionGPIO (Rf Ctl disabled) TRUE (Out) TRUE(high)/FALSE(low)

Function1 (Rf controlled) Ignored Ignored

Function2 (Rf controlled) Ignored Ignored

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-14 Freescale Semiconductor

5.3.19 void Asp_WakeReq(void)
Available only on HCS08 based platforms, this function wakes up the transceiver from Doze or Hibernate
mode.

• The ATTNBi pin of the transceiver must be wired to an MCU port pin for this primitive to function.
Otherwise, it has no effect.

• The MC1319xDrv_AttEnable, and MC1319xDrv_AttDisable macros must be defined in the
MC1319xDrv.c file.

• The MC1319xDrv_AttEnable must set the MCU port pin to logic high
• The MC1319xDrv_AttDisable must set it to logic low.

The function does not return any value because the call is always successful.

5.3.20 HCS08 Platform Transceiver GPIO Functions
On the HCS08 based platforms, the transceiver is a separate device and has an independent 7-bit GPIO
port (designated GPIO1 - GPIO7) from the MCU. These functions relate to the transceiver GPIO port.

NOTE
GPIO1 and GPIO2 have alternate hardware functions that are used by the
802.15.4 MAC software. As such, they are not available for user application
purposes and the following functions apply only to GPIO3 - GPIO7

5.3.20.1 void Asp_PortReq(uint8_t portWrite, uint8_t portValue, uint8_t
*CnfPortResult)

Available only on HCS08 based platforms, this function reads or writes the transceiver GPIO data register.
• portWrite is a Boolean value.
• If TRUE, the respective bits in portValue will be programmed to the GPIO data register (only bits

3-7 are valid).
• If FALSE, the GPIO data register (only bits 3-7) will be copied at the address given by

CnfPortResult.

The function does not return any value because the call is always successful.

5.3.20.2 void Asp_DdrReq(uint8_t directionMask)
Available only on HCS08 based platforms, this function sets the GPIO data direction.

• GPIOs 3-7 are programmed as outputs if the respective bit in mask is a logical 1, otherwise they
are programmed as inputs.

• Bits 2:0 of the mask are ignored.

The function does not return any value because the call is always successful.

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

Freescale Semiconductor 5-15

5.3.21 uint8_t Asp_ClkoReq(bool_t clkoEnable, uint8_t clkoRate)
Available only on HCS08 based platforms, this function sets and/or enables the transceiver CLKO output
(commonly used as an external clock source to the HCS08).

• If clkoEnable is TRUE, CLKO is made active, otherwise it is disabled.
• The CLKO output frequency is programmed depending on the value contained in clkoRate per the

CLKO frequency selection of the transceiver. The clkoRate can be assigned the values shown in
Table 5-6.

5.3.22 Examples of APP to ASP calls
This section provides two examples of how to interact with the ASP layer. The examples are not
guaranteed to compile because they may contain pseudo code for clarity.

Example 5-2. Getting the Current Transceiver Clock

// APP layer must allocate a 3 bytes buffer, where the clock value
// shall be retrieved by the function
int8_t currentTime[3];

//call the ASP function
Asp_GetTimeReq(currentTime);
// Now currentTime contains the value of the transceiver clock

Example 5-3. Start Auto Doze

// APP layer must allocate a buffer for the requested doze time
uint8_t autoDozeInterval[3];
bool_t weAreAutoDozing = FALSE;

// In this example ASP-WAKE.Indications are enabled,
// and doze interval is 5 seconds ((5*1000000)/16 = 125000
// symbols = 0x04C4B4). It is recommended that scans and
// network formation has been carried out before entering
// auto doze if possible.

//autoEnable parameter will be set to TRUE;
//enableWakeIndication parameter will be set to TRUE;

Table 5-6. CLKO Values

clkoRate CLKO frequency

0 16 MHz

1 8 MHz

2 4 MHz

3 2 MHz

4 1 MHz

5 62.5 KHz

6 31.738 KHz(default)

7 16.393 KHz

APP/ASP Layer Interface Description

802.15.4 MAC/PHY Software Reference Manual, Rev. 2.5

5-16 Freescale Semiconductor

// Values greater than 1 byte must be little endian byte arrays.
autoDozeInterval[0] = 0xB4;
autoDozeInterval[1] = 0x4C;
autoDozeInterval[2] = 0x04;
// Call the ASP function

if (Asp_DozeReq(TRUE, TRUE, autoDozeInterval, FALSE)==gSucces_c)
{
weAreAutoDozing = TRUE;
}

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	References

	Chapter 1 IEEE 802.15.4 MAC/PHY Software Overview
	1.1 Understanding the 802.15.4 Standard
	1.2 802.15.4 Standard Differences between 2003 and 2006
	1.3 System Overview
	1.4 802.15.4 MAC/PHY Software Device Types and Libraries
	1.4.1 Code Size versus 802.15.4 Device Type
	1.4.2 PHY Function
	1.4.3 Available Device Types

	1.5 802.15.4 MAC/PHY Parametric Information
	1.6 802.15.4 MAC/PHY Software Build Environment
	1.6.1 Adding User Applications to the Build Environment

	1.7 Freescale 802.15.4 MAC/PHY HCS08 Software Source File Structure
	1.7.1 Used File Extensions
	1.7.2 Source File Structure for HCS08 Based Platforms

	1.8 Configuring the 802.15.4 MAC/PHY HCS08 Software (Users Hardware Platform)
	1.8.1 Redefining the HCS08 Clock Speed
	1.8.2 Changing the Interconnection Between the HCS08 MCU and the MC1319x or MC1320x Transceiver
	1.8.3 HCS08 MCU with the MC1319x or MC1320x Transceiver or MC1321x Antenna Control

	Chapter 2 MAC/Network Layer Interface Description
	2.1 General MAC/Network Interface Information
	2.2 Data Types
	2.3 Message Buffer Configuration
	2.4 Message System API
	2.4.1 MM_Init
	2.4.2 MSG_Alloc
	2.4.3 MSG_AllocType
	2.4.4 MM_Alloc
	2.4.5 MM_AllocPool
	2.4.6 MSG_Free
	2.4.7 MM_Free
	2.4.8 MSG_Send
	2.4.9 MSG_InitQueue
	2.4.10 MSG_Queue
	2.4.11 MSG_QueueHead
	2.4.12 MSG_DeQueue
	2.4.13 Message Tracking
	2.4.14 MSG_Pending

	Chapter 3 Interfacing to the 802.15.4 MAC Software
	3.1 Interface Overview
	3.1.1 MC1310x, MC1320x, and MC1321x Transceiver IRQ Timing Dependency
	3.1.2 MC1322x Transceiver IRQ Timing Dependency

	3.2 Include Files
	3.3 Source Files
	3.4 MAC API
	3.5 MAC Main Task
	3.6 MLME and MCPS Interface
	3.6.1 Resetting
	3.6.2 Accessing PIB Attributes
	3.6.3 MLME Primitives
	3.6.4 MCPS Primitives

	3.7 ASP Interface

	Chapter 4 Feature Descriptions
	4.1 Configuration
	4.1.1 PIB Attributes
	4.1.2 Configuration Primitives
	4.1.3 Configuration Examples

	4.2 Scan Feature
	4.2.1 Common Parts
	4.2.2 Energy Detection Scan
	4.2.3 Active and Passive Scan
	4.2.4 Orphan Scan
	4.2.5 Scan Primitives

	4.3 Start Feature
	4.3.1 Start Primitives

	4.4 Sync Feature
	4.4.1 Synchronization Primitives

	4.5 Association Feature
	4.5.1 Association Primitives
	4.5.2 Associate Example

	4.6 Disassociation Feature
	4.6.1 Disassociation Primitives

	4.7 Data Feature
	4.7.1 Data Primitives
	4.7.2 Data Example

	4.8 Purge Feature
	4.8.1 Purge Primitives

	4.9 Rx Enable Feature
	4.9.1 RX Enable Request
	4.9.2 RX Enable Confirm

	4.10 Guaranteed Time Slots (GTS) Feature
	4.10.1 GTS as a Device
	4.10.2 GTS as PAN Coordinator
	4.10.3 Miscellaneous Items
	4.10.4 GTS Primitives

	4.11 Security
	4.11.1 Security PIB Attributes
	4.11.2 Security Library
	4.11.3 Counter with CBC-MAC (CCM*)

	Chapter 5 APP/ASP Layer Interface Description
	5.1 General APP/ASP Interface Information
	5.1.1 uint8_t ASP_APP_SapHandler(aspToAppMsg_t *pMsg)

	5.2 ASP to APP Interface
	5.2.1 Wake Indication
	5.2.2 Idle Indication
	5.2.3 Inactive Indication
	5.2.4 Event Indication
	5.2.5 ASP to APP Message Union
	5.2.6 Examples of ASP to APP Messages

	5.3 APP to ASP Interface
	5.3.1 Get MAC Time Functions
	5.3.2 uint8_t Asp_GetInactiveTimeReq(zbClock24_t *time)
	5.3.3 uint8_t Asp_DozeReq(zbClock24_t *dozeDuration, uint8_t clko_en)
	5.3.4 uint8_t Asp_AutoDozeReq(bool_t autoEnable, bool_t enableWakeIndication, zbClock24_t *autoDozeInterval, uint8_t clko_en)
	5.3.5 uint8_t Asp_AcomaReq(uint8_t clko_en)
	5.3.6 uint8_t Asp_HibernateReq(void)
	5.3.7 uint8_t Asp_EventReq(zbClock24_t *time)
	5.3.8 Device Reference Oscillator Trim Functions
	5.3.9 uint8_t Asp_SetNotifyReq(uint8_t notifications)
	5.3.10 uint8_t Asp_SetMinDozeTimeReq(zbClock24_t *minDozeTime)
	5.3.11 void Asp_TelecTest(uint8_t mode)
	5.3.12 Asp_TelecSetFreq(uint8_t channel)
	5.3.13 Functions for Setting RF TX Power Level
	5.3.14 uint8_t Asp_GetPowerLevel(void)
	5.3.15 void Asp_SetDemodulatorType(bool_t demDCDenable)
	5.3.16 void Asp_EnableComplementaryPAOutput(bool_t enable)
	5.3.17 uint8_t Asp_ConfigureRFCtlSignals(AspRfSignalType_t signalType, AspRfSignalFunction_t function, bool_t gpioOutput, bool_t gpioOutputHigh)
	5.3.18 uint8_t Asp_GetMacStateReq(void)
	5.3.19 void Asp_WakeReq(void)
	5.3.20 HCS08 Platform Transceiver GPIO Functions
	5.3.21 uint8_t Asp_ClkoReq(bool_t clkoEnable, uint8_t clkoRate)
	5.3.22 Examples of APP to ASP calls

