
Architecture Guide
C-5e/C-3e NETWORK
PROCESSOR

SILICON REVISION B0

C5EC3EARCH-RM

Rev 04 PRODUCTION

rxzb30
copywithline

Architecture Guide

C-5e/C-3e Network Processor
Silicon Revision B0

C5EC3EARCH-RM
Rev 04

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

C5EC3EARCH-RM

Rev 04
CONTENTS
About This Guide
Guide Overview . 45
Architecture Guide Classifications . 47
Using PDF Documents . 48
Guide Conventions . 49
Related Product Documentation . 50
Revision History . 51

CHAPTER 1 Introduction
Chapter Overview . 57
C-5e NP Architecture Overview . 58

Highly-Integrated Architecture . 58
C-5e NP Modes of Operation . 59

Single Channel Mode . 59
Pipeline Channel Mode . 59
Aggregate Channel Mode . 59

C-5e NP Supported Interfaces . 59
Major Components of the C-5e NP . 61
C-5e NP Interconnect Components . 62
Other Supported Features . 62

C-5e NP Block Diagram and Flow Processes . 63
Cell and Packet Forwarding Overview

(! OC-48) . 64
Receiving Packets . 65
Transmitting Packets . 66

Cell and Packet Forwarding Overview (OC-48) . 68
Receiving Packets . 68
Transmitting Packets . 68

C-5e NP Address Mapping . 69
Configuration Register Definitions . 71
Processor Base Address Offsets . 71
C5EC3EARCH-RM REV 04

6 CONTENTS
Configuration Register Address Offsets . 72
Byte Ordering . 72

C-3e NP Architecture Overview . 73

CHAPTER 2 Channel Processors
Chapter Overview . 77
Channel Processors (CPs) Overview . 78

CP Major Components . 78
Serial Data Processors (SDPs) Overview . 80

Supported External Interfaces . 80
SDPs Functions . 81
SDPs Major Components . 83
Common Components of the Programmable Processors . 84
RxSDP Detail Operations . 88

8b/10b Decode Configurable Logic Block . 88
RxSmallFIFO Configurable Logic Block . 89
RxBit Programmable Processor . 89
RxSONET Framer Configurable Logic Block . 90
RxSync Programmable Processor . 91
RxLargeFIFO Configurable Logic Block . 91
RxByte Programmable Processor . 92

TxSDP Detail Operations . 93
TxByte Programmable Processor . 93
TxLargeFIFO Configurable Logic Block and Options . 93

Automatic Idle Cell and PPP Flag Insertion Option . 94
Transmit FIFO High Water Mark Option . 94

TxSONET Framer Configurable Logic Block . 95
TxBit Programmable Processor . 96
TxSmallFIFO Configurable Logic Block . 96
8b/10b Encode Configurable Logic Block . 97

Configuration for Recirculation Operations Using RxSDP and TxSDP . 98
CP RISC (CPRC) Overview . 100

RISC Instruction Set Supported . 100
Fast Context Switching Configuration Using the CPRC . 102
Fast Context Switching Detail Operations . 103
Interrupts . 104

CP Memory (IMEM and DMEM) . 105
C5EC3EARCH-RM REV 04

CONTENTS 7
Instruction Memory (IMEM) . 105
Data Memory (DMEM) . 106

CP Memory Interface Transactions . 107
DataScope Purpose . 110

Data Scope Detail Operations . 111
CP Configuration Space . 112

Address Mapping of the CPs . 112
Understanding CP Functions . 114

Extract Space . 114
Merge Space . 115
Control Block Registers . 116

Write Control Blocks (WrCB0_ , WrCB1_) . 116
Read Control Blocks (RdCB0_ , RdCB1_) . 120
SDP RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_) 123
SDP TxByte Processor Transmit Control Block (TxCB0_, TxCB1_) 128

Ring Bus Registers . 133
Ring Bus Transmit (Tx) Messages Registers . 133
Ring Bus (Rx) Receive Message Registers . 134
Ring Bus Receive (Rx) Response Registers . 134

SDP Control and Status Registers . 135
Miscellaneous Control Registers . 137

Event Registers . 137
Interrupt Access . 139
Queue Status Registers . 140
Cycle Counter . 140
Event Timer . 141

Understanding Block Moves of Data . 142
External Handling Overview . 142
Internal Handling Overview . 143
Using Multi-Use Control Blocks to Achieve Different Functions . 144

C-5e Methods for Handling High Speed (OC-48) PDUs . 148
Sequence Numbers for CPs . 148

Enqueue Operations Using Sequence Numbers . 149
Error Handling and Error Conditions . 149

Dequeues Operations Using Sequence Numbers . 150
Aggregated Queueing for CPs . 150

Queue Length and Queue Status Trade-Offs . 151
C5EC3EARCH-RM REV 04

8 CONTENTS
Changes in the Dequeue Paradigm . 151
Implementation of Aggregated Queueing for CPs . 151

Speculative Enqueues for CPs . 153
Implementation of Speculative Enqueues for CPs . 154

CHAPTER 3 Executive Processor
Chapter Overview . 155
Executive Processor (XP) Overview . 156

XP Major Components . 156
XP RISC (XPRC) Overview . 159

XPRC Instruction Set . 159
XPRC Registers . 160
Context Switching . 160
Interrupts . 162
Hardware Programming Resources . 163
Event Registers . 164

XP Memory (IMEM and DMEM) . 165
Instruction Memory . 165
Data Memory . 165
SDRAM . 165
IROM . 166

XP Supported Interfaces . 167
PCI Bus Interface . 167

PCI Access to C-5e NP Physical Address Space . 168
C-5e NP Access to PCI Address Space . 169
PCI Registers . 169

PROM Interface . 169
Serial Bus Interface . 171

C-5e NP Interface Options for Initialization . 172
Using the PCI Interface Initialization Option . 172
Using the PROM Interface Initialization Option . 172

Other XP Interfaces . 173
XP Configuration Space . 175
C5EC3EARCH-RM REV 04

CONTENTS 9
CHAPTER 4 Fabric Processor
Chapter Overview . 179
Fabric Processor (FP) Overview . 180

Terminology . 181
FP Block Diagram . 181
Multiple C-5e NP Configurations . 182
General FP Specifications . 183
FPTx Overview . 184
FPRx Overview . 184

FP Transmit (FPTx) Sequence . 185
FPTx Dequeuing PDUs . 189
FPTx Decoding Descriptors . 190
FPTx Reading Payload . 190

FPTx Data Memory (DMEM) . 190
FP TxByte Processors Microcoding . 191

FP TxByte Processors . 191
External Test Conditions . 192
Header Inputs . 192
TxByte Processors Microcoding Performance Considerations 193
TxByte Processor Microcoding Minimum Requirements . 193

TxByte Processor’s Memory Space and Registers . 194
FPTx Header and Payload Merging . 199
FPTx Fabric Interface Transmit Operation . 199
FPTx Advanced Features . 199

Weighting Algorithm . 199
Allocating Bandwidth Among Queues . 200
Absolute Priority Queues . 200
Minimum Quantum Size . 200

FPTx Error Reporting and Interrupts . 201
FP Receive (FPRx) Sequence . 203

Fabric Interface Receive Operation . 207
FPRx Header and Payload Splitting . 207
FP RxByte Processors Microcoding . 208

FP RxByte Processors . 208
Control Store Entries . 208
External Test Conditions . 209
RxByte Processors Microcoding Minimum Requirements . 210
C5EC3EARCH-RM REV 04

10 CONTENTS
RxByte Processor Memory Space and Registers . 210
RxByte Processors Datascopes . 218
RxByte Processors Set Up Control Information . 219
RxByte Processors Writing to Extract Space . 220
RxByte Processors Performing TLU Lookups . 220

RxByte Processor Microcode Programming Guidelines for the TLU Interface 221
RxByte Shared Registers . 222
RxByte General Purpose Configuration Registers . 222
RxByte Processors Discarding Segments . 222
RxByte Processors Token Passing . 223

FPRx Writing Payload . 223
Storing the Payload to the BMU Process . 224
FPRx Data Memory (DMEM) . 224

FPRx Building Descriptors . 225
Descriptor Build Engine’s (DBE) Microcode Programming to Build the Descriptor 225

FPRx Extract Space Data and TLU Response Space Data . 226
BTag/Pool Data . 226
TLU Error Handling . 226

Descriptor Build Engine’s (DBE) Descriptor Control Word . 227
Alignment . 231

FPRx Enqueuing PDUs . 233
TLU Error Handling . 233
Enqueue Race Condition Handling . 233
Failed Enqueue Operation Handling . 234

Congestion Handling . 234
FPRx Payload FIFO Backpressure . 234
FPRx Header FIFO Backpressure . 234
FPRx Scope Backpressure . 235

FPRx Interrupts . 236
FPTx and FPRx General Considerations . 237

Link-Level Flow Control . 237
Fabric to C-5e NP Link-Level Flow Control . 237
C-5e NP to Fabric Link-Level Flow Control . 237

Latency Considerations of Flow Control . 237
Per-Queue Flow Control . 238

Fabric to C-5e NP Per-Queue Flow Control . 238
TxFlow CAM Configuration Procedure . 240
C5EC3EARCH-RM REV 04

CONTENTS 11
FP Descriptor Size . 240
FP CRC . 240
FP Endianness (Byte and Bit Ordering) . 241

Byte Order Requirements per Fabric Interface Mode . 241
FP Payload Bus Bandwidth . 242

Fabric Interface Modes and Configurations . 243
CSIX-L1 Interface Mode . 243

CSIX-L1 Flow Control . 247
CSIX-L1 Configuration . 249
CSIX-L1 Pin Mapping . 249

UTOPIA Interface Modes . 250
UTOPIA Interpretation and C-5e Implementation . 250

UTOPIA3 Implementation . 251
UTOPIA2 Implementation . 253

UTOPIA Configuration . 256
UTOPIA Pin Mapping . 256

PRIZMA Interface Mode . 258
Packet Sizes . 258
In-Band Flow Control . 258
Link-Level Flow Control . 259
Idle Packets . 259
Queue Grants . 260
RxByte Processor’s Drop Mode . 260
PRIZMA Configuration . 261
PRIZMA Pin Mapping . 262

PowerX(CSIX-L0) Interface Mode . 263
PowerX(CSIX-L0) Constraints . 263
PowerX(CSIX-L0) Requirements . 263
PowerX(CSIX-L0) Byte Processor Unloading . 264
PowerX(CSIX-L0) Configuration . 265
PowerX(CSIX-L0) Pin Mapping . 266

UTOPIA3 Like to M-5 Interface Mode . 267
FP Debug and Test . 268

FP Debug Mux . 268
FPRx Statistics Registers . 268
FP Internal Debug State Registers . 268
Debug and Test of Selected FP Internal Memories . 268
C5EC3EARCH-RM REV 04

12 CONTENTS
Rx PDU ID CAM Access . 269
Rx Flow Table and Descriptor Table Access . 269
Tx Flow Table Access . 270
Merge Space Access . 271
DMEMs Access . 271
TLU Response Space Access . 271
FP Read and Write Control Blocks (RdCBs and WrCBs) Access . 271

FP Setup . 272
FP Initialization Steps . 272

Initialization Options for SDRAM . 272
Initialization of Selected FP Internal Memories . 273

FPTx Flow Control CAM . 273
TxByte Processor’s WCSs/CAMs Access . 273
RxByte Processor’s WCSs/CAMs and the RxDescriptor Build Engines’s WCS Access . . . 273

Using the Special Byte Access (Wr only) for the RxByte Processor’s WCSs and RxDBE’s
WCS . 275

Using the Internal Scan Access (Wr) for RxByte Processor’s CAMs 276
Using the Internal Scan Access (Rd) for RxByte Processor’s WCS/CAM 277
Using the Internal Scan Access (Rd) for DBE’s WCS . 278

CHAPTER 5 Buffer Management Unit
Chapter Overview . 279
Buffer Management Unit (BMU) Overview . 280

BMU Major Components . 280
BMU Physical Memory Organization . 282

Out-of-Band Bits . 283
SECDED ECC Support . 283

BMU Buffer Memory Organization . 284
Buffer Pools . 284
Buffers . 284
Buffer Tags (BTags) . 284

Storage Space (SDRAM Partitions) . 284
Buffer Access . 285

Types of Transactions . 287
Buffer Memory Transactions . 290

Using Wr/Rd Control Blocks for Payload Transactions . 290
Using Rx/Tx Control Blocks for Payload Transactions . 290

Read/Write Ordering . 290
C5EC3EARCH-RM REV 04

CONTENTS 13
Unaligned Buffers . 290
BTag Management Transactions . 292

BTag Transaction Functions (Operation and Examples) . 292
BTag Initialization Operation . 292
BTag Initialization Example . 293
BTag Allocation Operation . 295
BTag Allocation Example . 295
BTag Deallocation Operation . 297
BTag Deallocation Example . 297

Multi-Use Counter (MUC) Management Transactions . 299
MUC Transaction Functions (Operation and Examples) . 300

MUC Allocation Operation . 300
MUC Allocation Example . 300
MUC Decrement Operation . 303
MUC Decrement Example . 303
MUC Read Operation . 305
MUC Read Example . 305

BMU Configuration Space . 307
Test and Debug Registers . 308

Memory Error Reporting . 308
ECC Test Modes . 309
Debug Register . 309

BMU Setup . 310

CHAPTER 6 Table Lookup Unit
Chapter Overview . 313
Table Lookup Unit (TLU) Overview . 314

TLU Major Components . 315
TLU Flow Process . 317

TLU Flow Process Details . 317
Ring Bus Interface and Command Parser . 318
TLU Registers . 318
Initial Index Generation . 318
Address Generation . 319
Compare Register Fetch . 319
SRAM Data Latch . 319
PFX Stage1 and PFX Stage2 . 319
C5EC3EARCH-RM REV 04

14 CONTENTS
Index Generation . 319
TLU SRAM . 320

TLU Supported Table Types . 321
Implementation Considerations . 322

TLU Operation Overview . 323
TLU Operation Details . 324
TLU Operation Example . 326

Software Algorithms . 327
Hash-Trie-Key . 327

Hash Sub-Table . 330
Hash Sub-Table Data Entry Format . 332
Hash Sub-Table Example . 332

Trie Sub-Table . 332
Trie Sub-Table Data Entry Format . 333
Trie Sub-Table Example . 333

Key Sub-Table . 335
Key Sub-Table Data Entry Format . 336
Key Sub-Table Example . 336

Chained Hash . 337
Chained Hash Data Entry Format . 342
Chained Hash Example . 342

Chained Index . 343
Chained Index Data Entry Format . 347
Chained Index Example . 347

Chained Index vs. Chained Hash . 347
PFX (Longest-Prefix Match) . 348

PFX (Longest-Prefix Match) Data Entry Format . 352
PFX (Longest-Prefix Match) Chunk Types Details . 353

Initial Chunk Type . 353
ActionVec Chunk Type . 353
Fail Chunk Type . 353
Hash Chunk Type . 353

Flat Data . 354
Flat Data Example . 355

External . 356
TLU Commands Overview . 357

TLU Command Parameters . 358
C5EC3EARCH-RM REV 04

CONTENTS 15
Detail TLU Commands . 359
Write Command . 359

Write Command Format . 360
Write Command Data Alignment Rules . 361
Write Command Returned Data . 361
Write Command Error Types . 361

Read Command . 362
Read Command Format . 362
Read Command Data Alignment Rules . 363
Read Command Returned Data . 363
Read Command Error Types . 363

Find Command . 364
Find Command Format . 364
Find Command Data Alignment Rules . 365
Find Command Returned Data . 365
Find Command Error Types . 365

Findw Command . 366
Findw Command Format . 366
Findw Command Data Alignment Rules . 367
Findw Command Returned Data . 367
Findw Command Error Types . 367

Findr Command . 368
Findr Command Format . 368
Findr Command Data Alignment Rules . 369
Findr Command Returned Data . 369
Findr Command Error Types . 369

Add Command . 370
Add Command Format . 370
Add Command Data Alignment Rules . 371
Add Command Returned Data . 371
Add Command Error Types . 371

XOR Command . 372
XOR Command Format . 372
XOR Command Data Alignment Rules . 373
XOR Command Returned Data . 373
XOR Command Error Types . 373

CRC Mode (Using the Non-zero XOR Command Options) . 374
C5EC3EARCH-RM REV 04

16 CONTENTS
CRC Mode Flow . 375
CRC Mode Data Alignment Rules . 375
CRC Mode Returned Data . 375
CRC Mode Error Types . 375
CRC Mode Parity Error . 376

Write Register Command . 377
WriteReg Command Format . 377
WriteReg Command Data Alignment Rules . 377
WriteReg Command Returned Data . 377
WriteReg Command Error Types . 377

Read Register Command . 378
ReadReg Command Format . 378
ReadReg Command Data Alignment Rules . 378
ReadReg Command Returned Data . 378
ReadReg Command Error Types . 378

Echo Command . 379
Echo Command Format . 379
Echo Command Data Alignment Rules . 379
Echo Command Returned Data . 379
Echo Command Error Types . 379

No-Operation (NOP) Command . 380
Data Alignment Rules for NOP Commands . 380
Returned Data for NOP Commands . 380
Error Types for NOP Commands . 380

TLU Table Mapping . 381
Mapping Virtual Tables to Physical Tables . 381

TLU Configuration and Status Registers . 383
TLU Registers . 383

CRC-32_Checkvalue Register . 384
CRC-32_FCS_Correction_Table_Base_Address Register . 385
TLU_Statistics Register . 386
TLU_Memory Register . 387
External_Data_Table Register . 388
Table_Configuration1 Register . 389
Virtual_Table_Configuration Register . 391

TLU Application Considerations . 392
TLU/Ring Bus Control Register Response Slot Usage . 392
C5EC3EARCH-RM REV 04

CONTENTS 17
TLU Performance . 393
TLU Throughput . 393
TLU Latency . 394

Table Sizing Examples . 395
Bridge Address Table Sizing Example . 396
IP Routing Table Sizing Example . 396

TLU Special Applications . 397
Using the RxByte Processor for Long Lookups . 397

Long Lookup Example for an Ethernet Application . 399
Ethernet Application Example Implementation Notes . 400

Partial CRC-32 Support . 400
Partial CRC-32 Data Entry Format . 401

Partial CRC-32 General Setup . 401
Partial CRC-32 Rx Setup and Operation . 401
Partial CRC-32 Tx Setup and Operation . 403

CHAPTER 7 Queue Management Unit
Chapter Overview . 405
Queue Management Unit (QMU) Overview . 406

Payload Descriptors Enqueued to the QMU . 406
User-Defined Inter-processor Messages Enqueued to the QMU . 407
QMU Major Components . 407

QMU Flow Process . 410
Flow Details for CPs/XP Inputs and FP Inputs . 410

CPs and XP Input Flow . 410
FP Input Flow . 411

Queue Organization . 412
External SRAM . 412

Descriptor Buffer . 412
Dynamic Descriptor Pools . 412
Dynamic Descriptor Usage Limit Pooln . 413

Internal SRAM . 414
QMU Variables . 416
Queue Mapping and Parameter Characteristics . 418

Queue to Processor Mapping . 418
Queue to Processor Mapping Rules . 419

Queue Length Allowance and Length Limit Parameters . 420
C5EC3EARCH-RM REV 04

18 CONTENTS
Queueing Operations . 422
QMU Run Enable . 422
Enqueue Operation . 422

Payload (Wr/Rd) Servicing Order During Enqueue Operation . 422
Causes of Enqueue Failure . 423

Dequeue Operation . 423
Queue Servicing Policy During Dequeueing Operation . 423
Causes of Dequeue Failures . 424

Status Reporting . 424
Mailbox Availability and Status Reporting of Mailboxes . 424
Queue Status Information . 425

Queue Empty to Non-empty State Notification Process Information 425
Dequeue Status Information . 426
Buffer Management Information . 426

Types of Transactions . 428
Queue Management Transactions . 431

Queue Transaction Functions (Operation and Examples) . 431
Configure Queue Operation . 431
Configure Queue Example . 431
Queue Status Operation . 433
Queue Status Example . 433
Unicast Enqueue Operation . 435
Unicast Enqueue Example . 435
Speculative Unicast Enqueue Operation . 437
Speculative Unicast Enqueue Example . 437
Multicast Enqueue Operation . 439
Multicast Enqueue Example . 439
Dequeue Operation . 441
Dequeue Example . 441

QMU Multicast Support (Non-System Level) . 443
Multicast Operations Success or Failure . 445
Multicast Operation Throughput Considerations . 445
Queue Levels Supported in Multicast Operations . 446
Multicasting to the Fabric Processor . 446

QMU Configuration Space . 447
QMU Setup . 450
QMU Performance . 452
C5EC3EARCH-RM REV 04

CONTENTS 19
Execution Speed and Descriptor Size Relationship . 452
Multicast Support (System Level) . 453

Multicast Flow in the C-5e NP . 453
Multicast Receive Flow Transaction Process . 453
Multicast Transmit Flow Transaction Process . 455

External Scheduler Mode . 457
Operation of the External Scheduler Mode . 457

Implementation of External Scheduler Mode . 458
VOP Descriptors for CPs and/or FPTx . 458
QMU Multicast in External Mode . 459
Queue Organization in External Mode . 459
QMU Setup in External Mode . 462

Queue Management Transactions in External Mode . 463
Queue Transaction Functions (Operation and Examples) in External Mode 463

Queue Status Operation in External Mode . 463
Queue Status Example in External Mode . 463
Unicast Enqueue Operation in External Mode . 464
Unicast Enqueue Example in External Mode . 464
Speculative Unicast Enqueue Operation in External Mode . 465
Speculative Unicast Enqueue Example in External Mode . 465
Multicast Enqueue Operation in External Mode . 466
Multicast Enqueue Example in External mode . 466
Dequeue Operation in External Mode . 467
Dequeue Example in External Mode . 467

Response Field Descriptions for Internal and External Modes 468

CHAPTER 8 Internal Buses
Chapter Overview . 471
Internal Buses Overview . 472

Internal Buses Characteristics . 473
Bus Bandwidth General Formulas . 473

Payload Bus Overview . 475
Payload Bus Operation . 475
Payload Bus Latency . 475

Payload Bus Latency (Default Mode) . 476
Payload Bus Latency (FP Mode) . 476

Ring Bus Overview . 477
C5EC3EARCH-RM REV 04

20 CONTENTS
Ring Bus Major Components . 477
Ring Bus Node Operation . 478

Sending Downstream . 479
Receiving from Upstream . 480

Ring Bus Latency . 480
Ring Bus Interface Registers . 482

Ring Bus Transmit (Tx) Message Registers . 482
Ring Bus (Rx) Receive Message Registers . 482
Ring Bus Receive (Rx) Response Registers . 483

Global Bus Overview . 484

APPENDIX A C-5e NP Registers
Appendix Overview . 485
Channel Processor (CP) Configuration Registers . 486

CP Registers . 486
CP Detailed Descriptions . 492

RxSDP0_Ext0 to RxSDP0_Ext15 Registers (CP Rx Extract Space0 Function) 492
TxSDP0_Merge0 to TxSDP0_Merge15 Registers (CP Tx Merge Space0 Function) 492
RxCB0_Sys_Addr Register (CP Rx Control Block0 Function) . 493
RxCB0_Ctl Register (CP Rx Control Block0 Function) . 494
RxCB0_DMA_Addr Register (CP Rx Control Block0 Function) . 497
RxCB0_SDP_Addr Register (CP Rx Control Block0 Function) . 498
RxCtl0_Status Register (CP Rx Control Block0 Function) . 498
WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function) . 499
WrCB0_Ctl Register (CP Wr Control Block0 Function) . 500
WrCB0_DMA_Addr Register (CP Wr Control Block0 Function) . 501
RdCB0_Sys_Addr Register (CP Rd Control Block0 Function) . 502
RdCB0_Ctl Register (CP Rd Control Block0 Function) . 503
RdCB0_DMA_Addr Register (CP Rd Control Block0 Function) . 504
TxCB0_Sys _Addr Register (CP Tx Control Block0 Function) . 505
TxCB0_Ctl Register (CP Tx Control Block0 Function) . 506
TxCB0_DMA_Addr Register (CP Tx Control Block0 Function) . 507
TxCB0_SDP_Addr Register (CP Tx Control Block0 Function) . 508
TxCtl0_Status Register (CP Tx Control Block0 Function) . 509
TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function) 510
TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function) 512
TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function) 512
C5EC3EARCH-RM REV 04

CONTENTS 21
RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function) 513
RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function) 514
RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function) 515
RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function) 515
RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function) 517
Rx_SONETOH0 to Rx_SONETOH31 Registers (CP SONET Rx Control Function) 517
Tx_SONETOH0 to Tx_SONETOH31 Registers (CP SONET Tx Control Function) 517
RxCtl_ByteSeq0 Register (CP SDP Rx Control Function) . 518
RxCtl_SyncSeq Register (CP SDP Rx Control Function) . 518
RxCtl_BitSeq0 Register (CP SDP Rx Control Function) . 518
TxCtl_ByteSeq0 Register (CP SDP Tx Control Function) . 519
TxCtl_BitSeq0 Register (CP SDP Tx Control Function) . 519
CP_Mode0 Register (CP Mode Configuration Function) . 520
CP_Mode1 Register (CP Mode Configuration Function) . 523
SDP_Mode2 Register (CP Mode Configuration Function) . 526
SDP_Mode3 Register (CP Mode Configuration Function) . 529
SDP_Mode4 Register (CP Mode Configuration Function) . 536
SDP_Mode5 Register (CP Mode Configuration Function) . 538
Debug_Mode Register (CP Mode Configuration Function) . 544
PIN_Mode Register (CP Mode Configuration Function) . 546
Queue_Status0 Register (CP Queue Status Function) . 549
Queue_Update0 Register (CP Queue Status Function) . 550
Queue_Empty Register (Aggregated Queueing Function) . 550
Event_Timer Register (CP Miscellaneous Control Function) . 550
Cycle_Count_H Register (CP Miscellaneous Control Function) . 551
Cycle_Count_L Register (CP Miscellaneous Control Function) . 551
Queue_Ctl Register (Aggregated Queueing Function) . 551
Event0 Register (CP Event and Interrupt Function) . 552
Event1 Register (CP Event and Interrupt Function) . 555
Event_Mask0 Register (CP Event and Interrupt Function) . 557
Event_Access Register (CP Event and Interrupt Function) . 557
Mask_Access Register (CP Event and Interrupt Function) . 559
Interrupt_Mask0 Register (CP Event and Interrupt Function) . 559
SONET_Event Register (CP Event and Interrupt Function) . 560
SONET_Mask Register (CP Event and Interrupt Function) . 569
RdCB0_BTag_Alloc (CP Rd Control Block0 Fixed Function) . 569
RdCB0_Dequeue (CP Rd Control Block0 Fixed Function) . 570
C5EC3EARCH-RM REV 04

22 CONTENTS
WrCB0_BTag_Deallocate (CP Wr Control Block0 Fixed Function) 571
WrCB0_MUC_Allocate (CP Wr Control Block0 Fixed Function) . 571
WrCB0_MUC_Decrement (CP Wr Control Block0 Fixed Function) 572
WrCB0_Uni_Enq (CP Wr Control Block0 Fixed Function) . 573
WrCB0_Multi_Enq (CP Wr Control Block0 Fixed Function) . 574
WrCB0_Spec_Uni_Enq (CP Wr Control Block0 Fixed Function) . 575

Executive Processor (XP) Configuration Registers . 576
XPSlot 24 Configuration Registers . 576
XP Detailed Descriptions . 588

PCI Device ID Register (XP PCI Configuration Function) . 588
PCI Vendor ID Register (XP PCI Configuration Function) . 589
PCI Status Register (XP PCI Configuration Function) . 589
PCI Command Register (XP PCI Configuration Function) . 591
PCI Class Code Register (XP PCI Configuration Function) . 592
PCI Revision ID Register (XP PCI Configuration Function) . 593
PCI Header Type Register (XP PCI Configuration Function) . 594
PCI Latency Timer Register (XP PCI Configuration Function) . 594
PCI Inbound Memory Base Address0 Register (XP PCI Configuration Function) 595
PCI Inbound Memory Base Address2 Register (XP PCI Configuration Function) 596
PCI Subsystem ID Register (Read Only) (XP PCI Configuration Function) 597
PCI Subsystem Vendor ID Register (Read Only) (XP PCI Configuration Function) 597
PCI Interrupt Pin Register (XP PCI Configuration Function) . 597
PCI Interrupt Line Register (XP PCI Configuration Function) . 597
PCI Inbound BAR0 Translation Register (XP PCI Configuration Function) 598
PCI Inbound BAR1 Translation Register (XP PCI Configuration Function) 598
PCI Auxiliary Control Register (XP PCI Configuration Function) . 599
PCI Subsystem ID Register (XP PCI Configuration Function) . 600
PCI Subsystem Vendor ID Register (XP PCI Configuration Function) 600
PCI Inbound Byte Swap Control Register (XP PCI Configuration Function) 600
PCI Inbound BAR2 Translation Register (XP PCI Configuration Function) 601
Serial Bus Configuration Register (XP Miscellaneous Control Function) 602
Serial Bus Data Register (XP Miscellaneous Control Function) . 603
XP to CP Interrupt Request Registers (XP Miscellaneous Control Function) 604
Software Warm Reset Request Register (XP Miscellaneous Control Function) 605
Outbound PCI Base Address0 Register (XP Configuration Function) 606
Outbound BAR0 Translation Register (XP Configuration Function) 607
DMA Transmit Channel0 PCI Target Register (XP Configuration Function) 608
C5EC3EARCH-RM REV 04

CONTENTS 23
DMA Receive Channel0 PCI Target Register (XP Configuration Function) 609
DMA Receive Channel0 Transfer Count Register (XP Configuration Function) 610
XP Miscellaneous Control Register (XP Configuration Function) . 611
XP Auxiliary Event Register (XP Configuration Function) . 612
Inbound PCI Mailbox0 Register (XP Configuration Function) . 613
IMEM Overlay Target Address Register (XP Configuration Function) 614
RxCB #25 Transfer Count Register (XP Configuration Function) . 615
XP Diagnostic Register (XP Configuration Function) . 615
PCI Outbound Byte Swap Control Register (XP Configuration Function) 616
Debug Counter0 Start Value Register (XP Configuration Function) 617
Debug Counter0 Control Register (XP Configuration Function) . 618
Debug Counter0 Current Value Register (XP Configuration Function) 620
RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function) 621
TxCB0_Ctl Register (XP DMEM#24 Transfer Tx Control Block0 Function) 622
TxCtl0_Status Register (XP DMEM#24 Transfer Tx Control Block0 Function) 622
XP_Mode Register (XP Mode Configuration Function) . 623
XP Debug Mode Register (XP Mode Configuration Function) . 625
Event0 Register (Event and Interrupt Control Function) . 627
Event1 Register (Event and Interrupt Control Function) . 629
RxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function) 631
TxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function) 632

Queue Management Unit (QMU) Configuration Registers . 633
QMU Registers . 634
QMU Detailed Descriptions . 637

QMU_Run_Enable Register (QMU Enable Queue Function) . 637
Clear_Statistics Register (QMU Statistics Function) . 637
Base_Queue_CP0 to Base_Queue_CP15 Registers (QMU CP’s Queue Allocation Function) 640
Base_Queue_FP Register (QMU FP’s Queue Allocation Function) 640
Base_Queue_XP Register (QMU XP’s Queue Allocation Function) 641
Num_Queues Register (QMU Configuration Function) . 641
Num_Descriptors Register (QMU Configuration Function) . 642
Dyn_Des_Usage_Lim_Pool0 Register (QMU Configuration Function) 642
Operation_Mode Register (QMU Configuration Function) . 643
Descriptor_Size Register (QMU Configuration Function) . 644
Config_Q_Cnt Register (QMU Statistics Function) . 644
Rd_Q_Status_Cnt Register (QMU Statistics Function) . 644
CP_Uni_Enq_Cnt Register (QMU Statistics Function) . 645
C5EC3EARCH-RM REV 04

24 CONTENTS
CP_Multi_Enq_Cnt Register (QMU Statistics Function) . 645
CP_Multi_Enq_Target_Cnt Register (QMU Statistics Function) . 645
CP_Dequeue_Cnt Register (QMU Statistics Function) . 645
FP_Uni_Enq_Cnt Register (QMU Statistics Function) . 645
FP_Multi_Enq_Cnt Register (QMU Statistics Function) . 645
FP_Multi_Enq_Target_Cnt Register (QMU Statistics Function) . 646
FP_Dequeue_Cnt Register (QMU Statistics Function) . 646
QMU_Idle_Cycles Register (QMU Statistics Function) . 646
Payload_NACK_Cnt Register (QMU Statistics Function) . 646
Global_NACK_Cnt Register (QMU Statistics Function) . 646
Payload_Read_Failures_Cnt Register (QMU Statistics Function) . 646
Cmd_Processor_Err_Cnt Register (QMU Statistics Function) . 647
Dq_H_Par_Err_Cnt Register (QMU Sequence Numbers Function) 647
Dq_L_Par_Err_Cnt Register (QMU Sequence Numbers Function) 648
Missing_Front_Seq_Num_Cnt Register (QMU Sequence Numbers Function) 648
Front_Seq_Num Register (QMU Sequence Numbers Function) . 649
Back_Seq_Num Register (QMU Sequence Numbers Function) . 649
Front_Seq_Num_Timeout Register (QMU Sequence Numbers Function) 650
Multicast_Destination0 to Multicast_Destination255 Registers
(QMU Configuration Function) . 651
Free_Descriptor_List_Head Register (QMU Control Function) . 651
Free_Descriptor_List_Tail Register (QMU Control Function) . 652
Free_Descriptor_Buffer_List Register (QMU Control Function) . 652
Dyn_Descriptor_Pool0_Usage Register (QMU Status Function) . 653

Buffer Management Unit (BMU) Configuration Registers . 654
BMU Registers . 655
BMU Detailed Descriptions . 660

Pool0 Base to Pool29 Base Registers (Buffer Pool Base Address Function) 660
Pool0 BTag Shift to Pool29 BTag Shift Registers (Buffer Size for a Pool Function) 661
BTag FIFO Base0 to BTag FIFO Base29 Registers (BTag FIFO Base Address Function) 662
Num BTags0 to Num BTags29 Registers (Number of BTags in a Pool Function) 662
Memory Size Register (Miscellaneous Function) . 663
SDRAM Config Register (Miscellaneous Function) . 664
Single ECC Errors Register (Miscellaneous Function) . 665
ECC Enable and Test Enable Register (Miscellaneous Function) . 665
Debug Config Register (Miscellaneous Function) . 666
Wr_Mem_Violation_Hi Register (Miscellaneous Function) . 667
C5EC3EARCH-RM REV 04

CONTENTS 25
Wr_Mem_Violation_Lo Register (Miscellaneous Function) . 667
Fabric Processor (FP) Configuration Registers . 668

FP Registers . 668
FP Details Descriptions . 672

TxFP_Enable Register (FP Tx Enable Function) . 672
TxFI_Configuration Register (FP Tx Configuration Function) . 673
TxDescInfo Register (FP Tx Configuration Function) . 675
TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function) 675
TxQueueWeight_Configuration Register (FP Tx Configuration Function) 676
TxSysConfig Register (FP Tx Configuration Function) . 678
TxFI_CRC Register (FP Tx Configuration) . 678
TxFCE_Configuration Register (FP Tx Configuration Function) . 679
TxFP_Debug_Mux_Control Register (FP Tx Debug Function) . 681
TxWCS_CAM (Tx WCS CAM Function) . 683
TxFlowTbI Register (FP Tx Debug Function) . 684
TxFlowTbl_Data_Low Register (FP Tx Debug Function) . 684
TxFlowTbl_Data_High Register (FP Tx Debug Function) . 685
TxFlowCAM Register (FP Tx Debug Function) . 685
TxMergeAddr Register (FP Tx Debug Function) . 687
TxMergeData Register (FP Tx Debug Function) . 687
TxIdleData Register (FP Tx Configuration Function) . 688
TxByte_Ctl0 Register (FP TxByte General Purpose Function) . 688
TxByte_Ctl1 Register (FP TxByte General Purpose Function) . 689
TxDebug_Internal_State Register (FP Tx Debug Function) . 689
Absolute Priority_Configuration Register (FP Tx Configuration Function) 690
RxExtractSpace0 Space (FP RxByte Processor0 Function) . 691
RxStatus0 Register (FP RxByte Processor0 Function) . 692
RxFlowSeg0 Register (FP RxByte Processor Function) . 693
RxFlowSize0 Register (FP Rx Byte Processor Function) . 694
RxTxCgs0 Register (FP Rx Byte Processor Function) . 695
RxFP_Enable Register (FP Rx Enable Function) . 696
RxFI_Configuration Register (FP Rx Configuration Function) . 696
RxDS_Header_Change1 Register (FP Rx Configuration Function) . 699
RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function) 700
RxDS_Configuration Register (FP Rx Configuration Function) . 701
RxFI_CRC Register (FP Rx Configuration Function) . 703
RxWCS_CAM Register (FP RxWCS CAM Function) . 704
C5EC3EARCH-RM REV 04

26 CONTENTS
RxByte0 General Purpose Configuration Register (FP Rx Configuration Function) 705
RxFCE_Configuration0 Register (FP Rx Configuration Function) . 706
RxFCE_Configuration1 Register (FP Rx Configuration Function) . 707
RxFCE_Configuration2 Register (FP Rx Configuration Function) . 709
Pool0_CFG0 Register (FP Rx Pool Configuration Function) . 710
Pool0_CFG1 Register (FP Rx Pool Configuration Function) . 711
RxByte_Shared_Low Register (FP Rx Shared Function) . 712
RxByte_Shared_High Register (FP Rx Shared Function) . 712
RxFP_Interrupt_Event Register (FP Rx Interrupt Function) . 713
RxFP_Interrupt_Enable Register (FP Rx Interrupt Function) . 714
RxFP_Debug_Mux_Control Register (FP Rx Debug Function) . 714
RxMemory_Address Register (FP Rx Debug Function) . 717
RxMemory_Data Register (FP Rx Debug Function) . 717
RxPDU_ID_CAM Register (FP Rx Debug Function) . 718
RxFP_Statistics Registers (FP Rx Statistics Function) . 719
RxDebug_Internal_State Register (FP Rx Statistics Function) . 722

APPENDIX B Using Aggregate Mode
Appendix Overview . 725
Purpose of the C-5e NP Channel Aggregate Mode . 726
Aggregate Mode Requirements on the C-5e NP . 726
Packet/Cell Ordering Handling for Rx in Aggregate Mode . 727

Hardware Receive Tokens . 727
Software Receive Tokens . 728

Packet/Cell Ordering Handling for Tx in Aggregate Mode . 729
Hardware Transmit Tokens . 729
Software Transmit Tokens . 729

Clock Distribution in Aggregate Mode . 731
Aggregate Mode Application Examples . 731

Gigabit Ethernet and FibreChannel Applications . 731
PHY Connectivity . 731
SDP Components . 732

8b/10b Decode Block . 732
RxBit Processor . 732
RxSync and RxByte Processors . 732
TxByte Processor . 733
TxBit Processor . 734
C5EC3EARCH-RM REV 04

CONTENTS 27
8b/10b Encode Block . 734
Implementation Options . 736

Non-blocking Operation . 736
Blocking Operation . 736

OC-12 and OC-12c Applications . 737
PHY Connectivity . 737
SDP Components . 737

RxBit Processor . 737
RxSONET Framer . 737
RxSync Processor . 737
RxByte Processor . 738
TxByte Processor . 739
TxSONET Framer . 739
TxBit Processor . 739

APPENDIX C SONET/SDH CP Support
Appendix Overview . 741
C-5e NP SONET Support Overview . 742
SONET/SDH Overview . 743
SONET/SDH Overhead Access . 745

SONET/SDH Frame Format Overview . 745
SONET/SDH OC-3c Overhead Bytes . 748

Receive OC-3c Readable Overhead Bytes Positions . 749
Receive OC-3c Transport Overhead Definitions . 750
Receive OC-3c Path Overhead Definitions . 754
Receive OC-3c Statistics Counters for Both Transport and Path Overhead 755
Transmit OC-3c Writable Overhead Bytes Positions . 757
Transmit OC-3c Transport Overhead Definitions . 758
Transmit OC-3c Path Overhead Definitions . 761

SONET/SDH OC-12 and OC-12c Overhead Bytes . 762
Receive OC-12/OC-12c Readable Overhead Bytes . 762
Receive OC-12/OC-12c Transport Overhead Definitions . 763
Receive OC-12/OC-12c Path Overhead Definitions . 774
Receive OC-12/OC-12c Statistics Counters for Both Transport and Path Overhead 777
Transmit OC-12/OC-12c Writable Overhead Bytes Positions . 781
Transmit OC-12/OC-12c Transport Overhead Definitions . 782
Transmit OC-12/OC-12c Path Overhead Definitions . 790
C5EC3EARCH-RM REV 04

28 CONTENTS
CP Configuration Space (SONET/SDH Specific) . 793
CP Mode (SONET/SDH Specific Enable) Registers . 793
CP Event and Interrupt (SONET/SDH Specific Event) Registers . 793

SONET/SDH Monitoring Example . 795
Automatic Protection Switch (APS) Overview . 796

Signal Failure (SF) Definition . 796
Signal Degrade (SD) Definition . 796
Switch Initiation Timing . 797
Clearing of SD /SF Conditions . 797
APS Protocol Using the K1 and K2 Bytes . 798

Determining Signal Degrade/Signal Failure Conditions with C-5e NP . 799

APPENDIX D RISC Core Custom Instructions
Appendix Overview . 803
RISC Core Enhancements . 804

Individual Custom Instructions . 804
CLZ - Count leading zeros . 804

Format: . 804
Description: . 804
Operation: . 804

CSWAP - Context swap . 805
Format: . 805
Description: . 805
Operation: . 805

BEQNL - Branch on equal not likely . 806
Format: . 806
Description: . 806
Operation: . 806

BGEZALNL - Branch on greater than or equal to zero and link not likely 807
Format: . 807
Description: . 807
Operation: . 807

BGEZNL - Branch on greater than or equal to zero not likely . 808
Format: . 808
Description: . 808
Operation: . 808

BGTZNL - Branch on greater than zero not likely . 809
C5EC3EARCH-RM REV 04

CONTENTS 29
Format: . 809
Description: . 809
Operation: . 809

BLEZNL - Branch on less than or equal to zero not likely . 810
Format: . 810
Description: . 810
Operation: . 810

BLTZALNL - Branch on less than zero and link not likely . 811
Format: . 811
Description: . 811
Operation: . 811

BLTZNL - Branch on less than zero not likely . 812
Format: . 812
Description: . 812
Operation: . 812

BNENL - Branch on not equal not likely . 813
Format: . 813
Description: . 813
Operation: . 813

BBIT0 - Branch on bit clear . 814
Format: . 814
Description: . 814
Operation: . 814

BBIT1 - Branch on bit set . 815
Format: . 815
Description: . 815
Operation: . 815

INS - Insert bit field . 816
Format: . 816
Description: . 816
Operation: . 816

CINS - Clear then insert bit field . 817
Format: . 817
Description: . 817
Operation: . 817

EXTU - Extract bit field unsigned . 818
Format: . 818
C5EC3EARCH-RM REV 04

30 CONTENTS
Description: . 818
Operation: . 818

EXTS - Extract bit field signed . 819
Format: . 819
Description: . 819
Operation: . 819

APPENDIX E PCI Byte Swapping
Appendix Overview . 821
PCI Byte Swapping Overview . 822

Default Mode . 822
Byte Swapping Mode . 825

Primary Application Using Byte Swapping Mode . 827
Implementing Byte Swapping Mode . 828

PCI Inbound and Outbound Byte Swap Registers . 831

APPENDIX F C-5e NP System Configuration
Appendix Overview . 833
C-5e NP System Configuration and Overview . 834
C-5e and M-5 Configuration Types and Their Options . 835

Front Ports (CPs) and Back Port (FP) Configurations . 835
External Scheduler Mode . 836
Queueing Model Configurations . 836
Sequence Numbers Configurations . 836
C-5e Methods . 836
Notes . 836

C-5e Methods for Handling High Speed (OC-48) PDUs . 842
M-5 Channel Adapter Overview . 843

Glossary . 847

Index . 853
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
LIST OF FIGURES
1 C-5e NP Processors and Coprocessors . 58
2 Examples of SDP Programmability. 60
3 C-5e NP Simplified Block Diagram . 64
4 Typical Cell/Packet Forwarding Application Receive and Transmit Data Flow (! OC-48). 67
5 C-5e NP Physical Address Memory Map . 70
6 Register Address Format (in bits). 72
7 C-3e NP Block Diagram . 73
8 Channel Processor Block Diagram . 79
9 Rx and Tx SDP Programmable Processors and Configurable Logic Blocks 82
10 Common Components of Programmable Processors . 84
11 RxSDP Programmable Processors and Configurable Logic Blocks . 88
12 Operation of 8b/10b Decode Configurable Logic Block. 88
13 TxSDP Programmable Processors and Configurable Logic Blocks . 93
14 Operation of 8b/10b Encode Configurable Logic Block . 97
15 SDP Recirculation Path Using Both RxBitLoopBack and RxByteLoopBack Bits 98
16 Recirculation Shown for Normal Operations (for Cooperating CPs) . 99
17 CP Context Switching Feature Block Diagram. 103
18 Local and Shared Memory in a Channel Processor . 105
19 Four (4) Data Scopes Between the CPRC and SDPs . 110
20 CP Configuration Space Memory Map . 112
21 DMA Operation (Buffer Transfer) Using WrCBn_ Registers. 117
22 DMA Operation (Buffer Transfer) Using RdCBn_ Registers . 120
23 DMA Operation (Buffer Transfer) Using RxCBn Registers . 124
24 DMA Operation (Buffer Transfer) Using TxCBn_ Registers . 129
25 Relationship Between Interruput_Mask0, IRQ0 and Event0 Registers 140
26 Rx and TxCBn_ Handling Process Overview (for External Flow) . 143
27 Wr and RdCBn_ Handling Process Overview (for Internal Flow) . 144
28 Executive Processor Block Diagram. 158
29 Executive Processor Context Switching . 161
30 PROM Interface . 170
C5EC3EARCH-RM REV 04

34 LIST OF FIGURES
31 XP Configuration Space (Slot #24) . 176
32 XP Configuration Space (Slot #25) . 177
33 XP Slot #24 Configuration Space for PCI, XP and Miscellaneous Registers 178
40 Fabric Processor Block Diagram . 181
41 Multiple C-5e NPs with Switching Fabric . 182
42 Two C-5e NP Application . 183
43 FPTx Sequence and Block Diagram . 187
44 FPTx Global Address Memory Map . 188
45 TxByte Processor Memory Map . 196
46 FPRx Sequence and Block Diagram . 205
47 FPRx Global Address Memory Map . 206
48 RxByte Processor Memory Map . 213
49 Descriptor Build Engine (DBE) Inputs and Outputs . 225
50 Mapping Per-Queue Flow Control Requests to FPTx Queues . 239
51 Idle Packet Configuration Requirements for FPRx to Prevent a Race Condition 261
52 Address Map for Both Descriptor Table and RxFlow Table Memories for Debug Purposes 270
53 Byte Load Sequence Mapping to DBE’s WCS and RxByte Processor’s WCS 275
54 RxByte Processors Scan Chain . 276
55 BMU Block Diagram. 281
56 SDRAM Storage Space for User Data Example . 286
57 Buffer Wrapping . 291
58 Unaligned Buffer Access . 291
59 BTag Initialization Implementation . 294
60 BTag Allocation Implementation. 296
61 BTag Deallocation Implementation . 298
62 Multi-Use Counter Table . 300
63 Multi-Use Counter Allocation Implementation . 302
64 Multi-Use Counter Decrement Implementation . 304
65 Multi-Use Counter Read Implementation . 306
66 TLU Block Diagram . 316
67 Hash -> Trie -> Key State Transition Diagram . 327
68 Hash-Trie-Key Recommended Memory Organization (Conceptually) . 329
69 Hash Sub-Table Block Diagram . 331
70 Trie Sub-Table Showing Skip Function . 334
71 Chained Hash State Transition Diagram . 337
72 Chained Hash Recommended Memory Organization (Conceptually) . 340
73 Chained Hash Block Diagram. 341
C5EC3EARCH-RM REV 04

List of Figures 35
74 Chained Hash Ethernet Application Example . 342
75 Chained Index Transition States . 343
76 Chained Index Recommended Memory Organization (Conceptually) . 345
77 Chained Index Block Diagram . 346
78 Chained Index ATM Application Example . 347
79 PFX Transition States . 349
80 PFX Recommended Memory Organization (Conceptually) . 350
81 PFX Block Diagram . 351
82 Hash Chunk Type Block Diagram . 354
83 Flat Data Recommended Memory Organizational (Conceptually) . 355
84 External Table Interface Format . 356
85 Example of Two Copies of a Table . 382
86 TLU/Ring Bus Control Register Response Slot Usage . 392
87 Throughput Formula . 393
88 TLU Pipeline Elements Affecting Latency Formula . 395
89 QMU Block Diagram . 409
90 QMU Flow Diagram . 411
91 External SRAM Storage Space for Descriptor Buffer Data . 413
92 Internal SRAM Space . 415
93 Mapping Queues to Processors for Unicast/ Multicast Enqueue Operations Example 419
94 Configure Queue Implementation . 432
95 Queue Status Implementation . 434
96 Unicast Enqueue Implementation . 436
97 Speculative Unicast Enqueue Implementation in Internal Mode . 438
98 Multicast Enqueue Implementation . 440
99 Dequeue Implementation . 442
100 Multicast Enqueue Operation Example . 444
101 QMU Performance Formula . 452
102 Multicast Application Receive Process Flow. 454
103 Multicast Application Transmit Process Flow . 456
104 Internal SRAM Space Using External Mode . 461
105 Queue Status Implementation in External Mode . 463
106 Unicast Enqueue Implementation in External Mode . 464
107 Speculative Unicast Enqueue Implementation in External Mode . 465
108 Multicast Enqueue Implementation in External Mode . 466
109 Dequeue Implementation in External Mode . 467
110 Internal Custom Buses . 472
C5EC3EARCH-RM REV 04

36 LIST OF FIGURES
111 C-5e NP Bandwidth Formulas . 474
112 C-3e NP Bandwidth Formulas . 474
113 Ring Bus Node Block Diagram . 478
114 Nodes on the Ring Bus . 481
115 RxSDP Token Buses . 728
116 TxSDP Token Bus . 730
117 SDP Receive Path for Gigabit Ethernet and FibreChannel . 733
118 SDP Transmit Path for Gigabit Ethernet and FibreChannel . 735
119 SDP Receive Path for OC-12 and OC-12c . 738
120 SDP Transmit Path for OC-12 and OC-12c. 740
121 Receive SONET Pointer State Machine . 746
122 SONET/SDH Frame Format. 747
123 Rx SONET/SDH OC-3c Readable Overhead Bytes . 749
124 Tx SONET/SDH OC-3c Writable Overhead Bytes . 757
125 Rx SONET/SDH OC-12/OC-12c Readable Overhead Bytes . 762
126 Tx SONET/SDH OC-12/OC-12c Writable Overhead Bytes . 781
127 Converting from Binomial to Approximate Normal Distribution Formula 799
128 Converting from Standard Normal to Normal Distribution Formula . 800
129 Detection Threshold Formula . 800
130 OC-3c Detection Example . 800
131 Little Endian vs. Big Endian . 822
132 PCI 32bit Aligned Double Word Access to C-5e NP . 823
133 PCI Byte Access to C-5e NP (PCI Address 3). 823
134 C-5e NP 32bit Aligned Double Word Access to PCI . 824
135 C-5e NP Byte Access to PCI (C-5e NP Address 0) . 824
136 PCI 32bit Aligned Double Word Access to C-5e NP . 825
137 PCI Byte Access to C-5e NP (PCI Address 3). 826
138 C-5e NP 32bit Aligned Double Word Access to PCI . 826
139 C-5e NP Byte Access to PCI (C-5e NP Address 0) . 827
140 C-5e NP 32bit Aligned Double Word Access to PCI . 828
141 Basic Port Aggregation !OC-48 System Configuration, Using 1 C-5e . 839
142 OC-48c to OC-48c Configuration, Using 2 C-5es, and 2 M-5s . 840
143 OC-48(c) to Switch Fabric Configuration, Using 1 C-5e, and 1 M-5 . 841
144 M-5 Block Diagram . 843
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
LIST OF TABLES
1 Architecture Guide Classifications . 47
2 Navigating Within a PDF Document . 48
3 C-Port Silicon Documentation Set . 50
4 C-5e/C-3e NP Architecture Guide Revision History . 51
5 C-5e NP Major Components . 61
6 C-5e NP Interconnect Components . 62
7 C-5e NP Other Supported Interfaces . 62
8 Ring Bus Node IDs . 71
9 C-5e NP Compared to the C-3e NP (Differences) . 74
10 112 Pins Not Used for C-3e NP that are Used for C-5e NP . 76
11 Major Components of the CPs and Their Functions . 78
12 Supported Interfaces & Transmit Clock Mux Selects . 80
13 Types of Hardware Features in the RxSDP and TxSDP . 83
14 Common Components of Programmable Processors and Their Functions. 85
15 CPRC Supported Instruction Classes . 101
16 CPRC (32) Internal Registers Definitions . 101
17 Motorolas Coprocessor Zero Register Definitions . 102
18 CP Memory Interface Transactions . 107
19 CP Registers by Function . 113
20 Extract Space Registers . 115
21 Merge Space Registers . 115
22 Out-of-Band Bits and Functions . 127
23 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx). 145
24 Fixed-Use Control Blocks (for Wr and Rd) . 147
25 C-5e Methods and Purpose in Relation to Components, Operation, and

External Companion Devices for CPs Only . 148
26 Legal Values for Queue Aggregation for CPs . 152
27 Commit Message Format for the Commit Serial Line . 153
28 Major Components of the XP and Their Function . 156
29 Internal XPRC Register Definitions . 160
C5EC3EARCH-RM REV 04

38 LIST OF TABLES
30 Coprocessor Zero Register Definitions . 163
31 Accessibility of XP Initiated Data Transactions to C-5e NP Resources. 174
36 Protocol-Specific Nomenclature . 181
37 FP General Specifications . 183
38 FPTx PDU Sequence and Reference to Details. 185
39 TxByte Processor Header Inputs and Their Descriptions . 192
40 TxByte Processor Memory Space and Descriptions . 195
41 TxByte Processor Mapping and Details . 197
42 FPTx Four (4) Error Types and Descriptions . 201
43 FPRx PDU Sequence and Reference to Details . 203
44 RxByte Processor External Test Conditions. 209
45 RxByte Processor Memory Space and Descriptions . 211
46 RxByte Processor Mapping and Details. 214
47 Control Word Format . 227
48 Descriptor Build Engine (DBE) Command Format. 227
49 Descriptor Build Engine (DBE) Command Format Fields . 228
50 Source and Destination Alignments based on Operation . 231
51 DBE Operand Alignment Examples. 232
52 FPRx Interrupts . 236
53 Big Endian Byte Ordering on Data Pins 31:0 . 241
54 Little Endian Byte Ordering on Data Pins 31:0 . 241
55 Byte Order Requirements per Fabric Interface Mode . 242
56 CSIX-L1 Supported Items and Descriptions . 243
57 Freescale Optional Extensions to CSIX-L1 . 245
58 CSIX-L1 Unsupported Items and Descriptions . 246
59 FPRx to FPTx Flow Control Format for CSIX-L1 . 247
60 CSIX-L1 Configuration Settings . 249
61 C-5e NP to Fabric Interface Pin Mapping for CSIX-L1 Mode . 249
62 Freescale Supported UTOPIA Protocols, Modes and Their Bus Widths 250
63 UTOPIA3 Supported and Unsupported Items . 251
64 UTOPIA3 Control Signal Specifications and Implementation . 252
65 UTOPIA2 Supported and Unsupported Items . 253
66 UTOPIA2 Control Signal Specifications and Implementation . 254
67 UTOPIA Configuration Settings . 256
68 C-5e NP to Fabric Interface Pin Mapping for UTOPIA1, 2, 3 ATM Mode 256
69 C-5e NP to Fabric Interface Pin Mapping for UTOPIA1, 2, 3 PHY Mode 257
70 PRIZMA Delta Configuration Settings . 261
C5EC3EARCH-RM REV 04

List of Tables 39
71 C-5e NP to Fabric Interface Pin Mapping for PRIZMA Mode . 262
72 PowerX (CSIX-L0) Supported and Unsupported Items . 263
73 PowerX (CSIX-L0) Configuration Settings . 265
74 C-5e NP to Fabric Interface Pin Mapping for PowerX (CSIX-L0) . 266
75 RxFlow Table Memory, Field Selection . 270
76 Global Access for FP Control Blocks . 271
77 RxByte Processor’s WCSs/CAMs and RxDBE’s WCS Access . 274
78 RxByte Processors Scan Chain Fields . 277
79 Major Components of the BMU and Their Functions. 280
80 Supported SDRAM Configurations . 282
81 Legal Ranges for SDRAM Partition Variables . 285
82 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx). 287
83 WrCB0_ Variables per Field for BMU . 288
84 RdCB0_ Variables per Field for BMU . 289
85 WrCB0_ Settings for BTag Initialization . 293
86 RdCB0_ Settings for BTag Allocation . 295
87 WrCB0_ Settings for BTag Deallocation . 297
88 WrCB0_ Settings for Multi-Use Counter Allocation . 301
89 WrCB0_ Settings for Multi-Use Counter Decrement. 303
90 RdCB0_ Settings for Multi-Use Counter Read . 305
91 BMU Registers. 307
92 Major Components of the TLU and Their Functions . 315
93 TLU SRAM Configurations. 320
94 Supported Table Types (Software Algorithms and Hardware) . 321
95 TLU General Operation Step/Action Table. 323
96 TLU Allowed State Transitions. 324
97 Relationships of TLU States, Software Algorithms, Hardware Table Types, and

Encoded Values . 325
98 Hash -> Trie -> Key State Transition Details . 327
99 Chained Hash State Transition Details. 337
100 Chained Index State Transition Details . 343
101 PFX State Transition Details . 349
102 Key Format . 355
103 TLU Commands . 357
104 TLU Command Parameters . 358
105 Non-zero CRC Modes, Their Names and Parity Error Status . 374
106 Non-zero CRC Modes and Their Functions. 374
C5EC3EARCH-RM REV 04

40 LIST OF TABLES
107 TLU Registers . 383
108 SRAM Accesses per TLU Command . 393
109 SRAM Access for Find Command . 394
110 Bridge Address Table Sizing Example . 396
111 IP Routing Table Sizing Example . 396
112 TxMsgn Registers and Their Size . 397
113 Large Key Data Format, >48bits . 398
114 Key Size versus Key Match . 398
115 Ethernet Application Lookup Format . 399
116 TxMsgn_Ctl Mapping . 399
117 Major Components of the QMU and Their Functions . 407
118 QMU Internal SRAM Sub-Sections and Their Functions . 414
119 Legal Ranges for SRAM Variables . 416
120 Multi-Use Control Blocks (for Wr and Rd) . 428
121 WrCB0_ Variables per Field for QMU . 429
122 RdCB0_ Variables per Field for QMU . 430
123 WrCB0_ Settings for Configure Queue . 431
124 RdCB0_ Settings for Queue Status. 433
125 WrCB0_ Settings for Unicast Enqueue . 435
126 WrCB0_ Settings for Speculative Unicast Enqueue . 437
127 WrCB0_ Settings for Multicast Enqueue . 439
128 RdCB0_ Settings for Dequeue . 441
129 QMU Registers . 447
130 QMU Performance Results Using the Formula and Typical QMU Speeds 452
131 VOP Descriptor Capacities . 459
132 Response Field Descriptions . 468
133 C-5e NP Interconnect Components . 472
134 C-5e NP Bus Characteristics Summary . 473
135 C-3e NP Bus Characteristics Summary . 473
136 Typical Payload Operations . 475
137 Payload Bus Arbitration Delay in Default Mode . 476
138 Payload Bus Arbitration Delay in FP Mode . 476
139 Ring Bus Components . 477
140 Ring Bus Node IDs . 479
141 CP Registers by Function . 482
142 Global Bus Latency. 484
143 CP Registers . 486
C5EC3EARCH-RM REV 04

List of Tables 41
144 RxSDP1_Ext0 to RxSDP1_Ext15 Registers (for Datascope1) . 492
145 TxSDP1_Merge0 to TxSDP1_Merge15 Registers (for Datascope1) . 493
146 RxCB1_Sys_Addr Register (for Datascope1) . 493
147 Transfer Control Block Error Codes . 495
148 RxCB1_Ctl Register (for Datascope1) . 496
149 RxCB1_DMA_Addr Register (for Datascope1) . 497
150 RxCB1_SDP_Sys_Addr Register (for Datascope1). 498
151 RxCtl1_Status Register (for Datascope1). 499
152 WrCB1_Sys_Addr Register (for Control Block1) . 499
153 WrCB1_Ctl Register (for Control Block1) . 501
154 WrCB1_DMA_Addr Register (for Control Block1) . 501
155 RdCB1_Sys_Addr register (for Control Block1) . 502
156 RdCB1_Ctl Register (for Control Block1) . 504
157 RdCB1_DMA_Addr Register (for Control Block1). 504
158 TxCB1_Sys_Addr Register (for Datascope1) . 505
159 TxCB1_Ctl Register (for Datascope1) . 507
160 TxCB1_DMA_Addr Register (for Datascope1) . 508
161 TxCB1_SDP_Addr Register (for Datascope1) . 508
162 TxCtl1_Status Register (for Datascope1) . 509
163 Ring Bus Processor IDs . 511
164 TxMsgn_Ctl Registers (for Messages 1, 2 and 3) . 511
165 TxMsgn_Data_H Registers (for Messages 1, 2 and 3) . 512
166 TxMsgn_Data_L Registers (for Messages 1, 2 and 3) . 512
167 RxRespn_Ctl Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) 513
168 RxRespn_Data_H Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) 514
169 RxRespn_Data_L Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) 515
170 RxCtl_ByteSeq1 Register (for Byte Sequence1) . 518
171 RxCtl_BitSeq1 Register (for Bit Sequence1) . 519
172 TxCtl_ByteSeq1 Register (for Byte Sequence1) . 519
173 TxCtl_BitSeq1 Register (for Bit Sequence1) . 519
174 Global Bus Error Status Encoding . 525
175 PHY Status Bit - TxBit Processor Connections . 543
176 Debug Multiplexor Select Encodings . 545
177 Queue_Statusn Registers (for Queue Status 1, 2 and 3) . 549
178 Queue_Updaten Registers (for Queue Updates 1, 2 and 3) . 550
179 Event_Mask1 Register (for Mask1) . 557
180 Interrupt_Mask1 Register (for Mask Events [31:16] and [15:0]) . 560
C5EC3EARCH-RM REV 04

42 LIST OF TABLES
181 CP Configurations to Monitor Accumulated Parity Counts in an Aggregated Application . . 568
182 RdCB1_BTag_Alloc Register (for Control Block1) . 569
183 RdCB1_Dequeue Register (for Control Block1) . 570
184 WrCB1_BTag_Deallocate Register (for Control Block1) . 571
185 WrCB1_MUC_Allocate Register (for Control Block1) . 572
186 WrCB1_MUC_Decrement Register (for Control Block1) . 572
187 WrCB1_Uni_Enq Register (for Control Block1) . 573
188 WrCB1_Multi_Enq Register (for Control Block1). 574
189 WrCB1_Spec_Uni_Enq Register (for Control Block1) . 575
190 XP Registers . 576
191 PCI Device ID (Reset Value) . 588
192 PCI Revision ID (Reset Value). 593
193 PCI Inbound Memory Base Addressn Register (for Base Address1) . 595
194 PCI Inbound Memory Base Addressn Register (for Base Address3, 4, and 5) 596
195 PCI Inbound BARn Translation Register (for BAR3, 4 and 5) . 602
196 Outbound PCI Base Addressn Registers (for BAR 1, 2, 3, 4, 5, 6 and 7) 606
197 Outbound BARn Translation Registers (for BAR1, 2, 3, 4, 5, 6 and 7) . 608
198 DMA Transmit Channel1 PCI Target Register (for Channel1) . 609
199 DMA Receive Channel1 PCI Target Register (for Channel1) . 609
200 DMA Receive Channel1 Transfer Count Register (for Channel1) . 610
201 Inbound PCI Mailboxn Registers (for Mailbox 1, 2, 3, 4, 5, 6 and 7) . 613
202 Debug Countern Start Value Registers (for Debug Counter 1, 2 and 3) 618
203 Debug Countern Control Registers (for Debug Counter 1, 2 and 3) . 620
204 Debug Countern Current Value Registers (for Debug Counter 1, 2 and 3) 620
205 RxCtl1_Status Register (for Datascope1) . 621
206 TxCB1_CTL Register . 622
207 TxCtl1_Status Register (for Datascope1) . 623
208 XP Debug Multiplexor Select Encodings . 626
209 RxCtl1_Status Register . 632
210 TxCtl1_Status Register . 632
211 QMU Registers . 634
212 Dyn_Des_Usage_Lim_Pooln Registers (for Descriptor Pools 1, 2 and 3). 643
213 Queue Operating Mode Codes . 643
214 Descriptor Size and VOP-Descriptor Capacity Values . 644
215 Dyn_Descriptor_Buffer_Usage_Pooln Register (for Pool1, 2 and 3) . 653
216 BMU Registers . 655
217 BTag Shift Values and Corresponding Buffer Sizes . 661
C5EC3EARCH-RM REV 04

List of Tables 43
218 BMU Debug Inputs . 666
219 Fabric Processor Registers . 668
220 FPTx_Debug Monitored Events . 682
221 RxExtractSpace0 Space (for RxByte Processor1) . 691
222 RxStatus1 Register (for RxByte Processor1) . 692
223 RxFlowSeg1 Register (for RxByte Processor1) . 694
224 RxFlowSize1 Register (for RxByte Processor1) . 694
225 RxTxcgs1 Register (for RxByte Processor1) . 695
226 RxDS_Header_Change2 Register . 699
227 RxDS_Header/Payload_Delimiter1 and 2 (for Payload Delimiter1 and 2). 700
228 RxByte1 General Purpose Configuration Register (for RxByte Processor1) 706
229 Pooln_CFG0 Registers (for Pools 1, 2, and 3) . 710
230 Pooln_CFG1 Registers (for Pools 1, 2 and 3) . 711
231 RxFP Thirteen (13) Viewable Events . 715
232 Global Bus Receive FP Statistics Registers Map . 719
233 FP-QMU State Machine States . 723
234 Transfer Control Block Programing States . 723
235 Buffer State Machine States . 723
236 Aggregate Mode Implications (for SDP and CPRC) . 726
237 Example of Events Reported in the SONET_Event Register . 744
238 Quick Reference to Applicable SONET/SDH Information . 748
239 Receive SONET/SDH OC-3c Transport Overhead Byte Addresses . 750
240 Receive SONET/SDH OC-3c Path Overhead Byte Addresses . 754
241 Receive SONET/SDH OC-3c Statistics Counters Byte Addresses . 755
242 Transmit SONET/SDH OC-3c Transport Overhead Byte Addresses . 758
243 Transmit SONET/SDH OC-3c Path Overhead Byte Addresses . 761
244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses 763
245 Receive SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses 774
246 Receive SONET/SDH OC-12 and OC-12c Statistics Counters Byte Addresses. 777
247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses 782
248 Transmit SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses. 790
249 SONET/SDH Specific Configuration Registers . 793
250 SONET/SDH Specific Event Registers . 794
251 Maximum Switch Initiation Times . 797
252 Maximum Switch Clearing Time . 798
253 Possible Settings for OC-3c Detection Times . 800
254 Possible Settings for OC-12c Detection Times . 801
C5EC3EARCH-RM REV 04

44 LIST OF TABLES
255 OC-3c Desired Thresholds for Lower Error Rates . 801
256 OC-12c Desired Thresholds for Lower Error Rates . 801
257 Byte Swapping Support Specification . 829
258 Inbound and Outbound Barn Transaction Registers . 830
259 PCI Inbound and Outbound Byte Swap Control Registers . 831
260 Roles of Each Device Within the C-5e NP System . 834
261 Supported C-5e System Configurations. 837
262 C-5e Methods and Purpose in Relation to Components, Operation, and Companion Devices842
263 M-5 Specifications . 844
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
ABOUT THIS GUIDE
Guide Overview The C-5e/C-3e Network Processor Architecture Guide describes the full architecture of the
C-5e Network Processor and describes the differences between the C-5eTM NP and the
C-3eTM NP. Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products. It is intended for system
architects and developers to enable you to fully understand how the C-5e network
processor (C-5e NP) works and how the processor can be used to implement your
networking applications. This guide is also useful as a reference during product design
and development, and a Register Reference is provided for that purpose. This guide
assumes a good familiarity with communications hardware design and implementation.
This guide also assumes good working knowledge of the C-Ware Software Toolset.

This guide covers the following topics:

• Introduction describes the major components and functions of the C-5e NP, supported
interfaces, addressing scheme, system configurations, cell/packet handling (!OC-48),
and cell/packet handling for high speed (OC-48). Also describes the differences
between the C-5e NP and the C-3e NP.

• Channel Processors describes the major components and functions of the CPs,
processing of data streams, memory areas, interface transactions, configuration space,
and using block moves.

• Executive Processor describes the major components and functions of the XP, memory
areas, supported external interfaces, initialization options, and internal XP interfaces.

• Fabric Processor describes the major components and functions of the FP, flow
sequence for both FPTx and FPRx, Fabric Interface modes supported and their
configurations, debug and test features, and setup.

• Buffer Management Unit describes the major components and functions of the BMU,
memory areas, types of transactions, configuration space, and setup.
C5EC3EARCH-RM REV 04

46
• Table Lookup Unit describes the major components and functions of the TLU, flow
process, supported table types, operation, software algorithms, formats, examples,
commands, mapping, configuration and status registers, application considerations,
and special applications.

• Queue Management Unit describes the major components and functions of the QMU,
flow process, memory areas, queuing operations, types of transactions, configuration
space, setup, multicast support, system level multicast operations performance, and
external scheduler mode.

• Internal Buses describes the interconnect components of the C-5e NP including the
Ring Bus, Payload Bus and Global Bus.

• C-5e NP Registers lists all the C-5e NP registers including their function, purpose,
address, access, fields, bit positions, default values, and options.

• Using Aggregate Mode describes using the C-5e NP in this mode of operation to
support Gigabit Ethernet, FibreChannel, OC-12 and OC-12c interfaces.

• SONET/SDH CP Support describes the mapping between the C-5e NP and SONET Byte
Overhead definitions for OC-3c, OC-12, and OC-12c protocols, and configuration.

• RISC Core Custom Instructions describes sixteen (16) custom instructions used in the
CPRC and XPRC. The name, format, description and operation for each instruction is
provided.

• PCI Byte Swapping describes the C-5e NP feature that allows easy transition between
the PCI Bus and C-5e NP environments.

• C-5e NP System Configuration describes C-5e NP system configurations using the M-5
companion device, as well as, the M-5’s function, block diagram and specifications.

Information contained in this guide does not represent a commitment on the part of

Freescale Corporation.
C5EC3EARCH-RM REV 04

Architecture Guide Classifications 47
Architecture Guide
Classifications

Table 1 describes the Architecture Guide classifications of Advance, Preliminary, and
Production.

Table 1 Architecture Guide Classifications

CLASSIFICATION DESCRIPTION

Advance
Information

Used to advise customers of the proposed addition to the product line. This
document will typically contain some useful information including
interfacing with the user’s system and some specifications. The goal of this
document is to allow customers to begin designs but with expectation of
changes. Specification details may be changed later without notice.

Preliminary
Information

Describes pre-production or first production devices and is usually indicative
of production stage performance. Minor changes should be expected as
characteristic spreads become better controlled. Specification details may be
changed slightly without notice, but the customer can design their product
based on this architecture guide.

Production Data Defines the long-term specified production limits based on fully
characterized data. It includes a disclaimer to allow improvements in
specifications and modifications that do not affect form, fit or function in
original applications; if absolute maximum ratings are changed, they should
improve rather than downgrade.
C5EC3EARCH-RM REV 04

48
Using PDF Documents Electronic documents are provided as PDF files. Open and view them using the Adobe®
Acrobat® Reader application, version 3.0 or later. If necessary, download the Acrobat
Reader from the Adobe Systems, Inc. web site:

http://www.adobe.com/prodindex/acrobat/readstep.html

PDF files offer several ways for moving among the document’s pages, as follows:

• To move quickly from section to section within the document, use the Acrobat
bookmarks that appear on the left side of the Acrobat Reader window. The bookmarks
provide an expandable outline view of the document’s contents. To display the
document’s Acrobat bookmarks, press the “Display both bookmarks and page” button
on the Acrobat Reader tool bar.

• To move to the referenced page of an entry in the document’s Contents or Index, click
on the entry itself, each of which is hyperlinked.

• To follow a cross-reference to a heading, figure, or table, click the blue text.

• To move to the beginning or end of the document, to move page by page within the
document, or to navigate among the pages you displayed by clicking on hyperlinks,
use the Acrobat Reader navigation buttons shown in this figure:

Table 2 summarizes how to navigate within an electronic document.

Table 2 Navigating Within a PDF Document

TO NAVIGATE THIS WAY CLICK THIS

Move from section to section within the
document.

A bookmark on the left side of the Acrobat Reader
window

Move to an entry in the Table of Contents. The entry itself

Move to an entry in the Index. The page number

Beginning
of document End of

Next pagePrevious

Previous or next hyperlink
C5EC3EARCH-RM REV 04

www.adobe.com/prodindex/acrobat/readstep.html

Guide Conventions 49
Guide Conventions The following visual elements are used throughout this guide, where applicable:

This icon and text designates information of special note.

Warning: This icon and text indicate a potentially dangerous procedure. Instructions
contained in the warnings must be followed.

Warning: This icon and text indicate a procedure where the reader must take
precautions regarding laser light.

This icon and text indicate the possibility of electro-static discharge (ESD) in a procedure
that requires the reader to take the proper ESD precautions.

Move to an entry in the List of Figures or List
of Tables.

The Figure or Table number

Follow a cross-reference (highlighted in blue
text).

The cross-reference text

Move page by page. The appropriate Acrobat Reader navigation
buttons

Move to the beginning or end of the
document.

The appropriate Acrobat Reader navigation
buttons

Move backward or forward among a series of
hyperlinks you have selected.

The appropriate Acrobat Reader navigation
buttons

Table 2 Navigating Within a PDF Document

TO NAVIGATE THIS WAY CLICK THIS
C5EC3EARCH-RM REV 04

50
Related Product
Documentation

Table 3 lists the user and reference documentation for Freescale's C-Port silicon
documentation set.

Table 3 C-Port Silicon Documentation Set

DOCUMENT NAME PURPOSE DOCUMENT ID

C-5 Network Processor Architecture Guide Describes the full architecture of the C-5 network processor. C5NPARCH-RM

C-5 Network Processor Data Sheet Describes hardware design specifications for the C-5
network processor.

C5NPDATA-DS

C-5e/C-3e Network Processor Architecture Guide Describes the full architecture of the C-5e and C-3e network
processors.

C5EC3EARCH-RM

C-5e Network Processor Data Sheet Describes hardware design specifications for the C-5e
network processor.

C5ENPB0-DS

C-3e Network Processor Data Sheet Describes hardware design specifications for the C-3e
network processor.

C3ENPB0-DS

C-5 Network Processor to C-5e Network Processor
Comparison Delta Document

Describes key architectural features of the C-5e, and
highlights main differences between C-5 and C-5e.

C5C5EDELTA-RM

M-5 Channel Adapter Architecture Guide Describes the full architecture of the M-5 channel adapter. M5CAARCH-RM

M-5 Channel Adapter Data Sheet Describes hardware design specifications for the M-5
channel adapter.

M5CA0-DS
C5EC3EARCH-RM REV 04

Revision History 51
Revision History Table 4 provides details about changes made for each revision of this guide.

Table 4 C-5e/C-3e NP Architecture Guide Revision History

REVISION CHANGES

04 • Chapter 1, added notes to applicable OC-48c configurations that clarify
conditions pertaining to realizing full OC-48c line rate.

• Chapter 1, Write Control Blocks (WrCB0_ , WrCB1_) section, changed
WrCB0_DMA_Addr bite [13:0] LineAddr field to WrCB0_DMA_Addr bite [13:4]
LineAddr field.

• Chapter 1, Read Control Blocks (RdCB0_ , RdCB1_) section, changed
RdCB0_DMA_Addr bits [15:4] LineAddr field to RdCB0_DMA_Addr bits [13:4]
LineAddr field.

• Chapter 1, removed all references to the Q-5, FPTx Sequence Numbers and
Virtual Queueing functions, Virtual Queueing functions in relation to the Q-5.

• Chapter 2, removed all references to Virtual Queueing and the Q-5.

• Chapter 4, removed all references to the FPTx Sequence Numbers and Virtual
Queueing functions.

• Chapter 6, added information about what causes time out errors for Find, Findr
and Findw commands to their respective command error type section.

• Chapter 7, removed all references to Virtual Queueing and the Q-5.

• Appendix A, added information to SDP_Mode3 Register, Manual_FEBE field
about K2 operation.

• Appendix A, RdCB0_DMA_Addr Register (CP Rd Control Block0 Function),
added Reserved field [15:14] to table and bit position artwork.

• Appendix F, changed to detail the C-5e NP and M-5 system configurations and
the functionality of the M-5.
C5EC3EARCH-RM REV 04

52
03 • Chapter 1, C-3e NP Architecture Overview section, removed OC-3 from the C-5e
NP Compared to the C-3e NP (Differences) table as a supported interface for
both C-5e and C-3e.

• Chapter 2, Configuration for Recirculation Operations Using RxSDP and TxSDP
section, added a note that: Bit level recirculation for an SDP is not supported for
CPs within the same cluster.

• Chapter 2, SDP TxByte Processor Transmit Control Block (TxCB0_, TxCB1_)
section, changed a reference that bit [22] Own0 field and bit [23] Own1 field
are in TxCB0_Ctl registers rather than in TxCB0_Sys_Addr register.

• Chapter 5, BMU Buffer Memory Organization section, changed the Number of
Buffers per Pool Legal range= 0 to 65,528 (must be in multiples of 8), rather
than 0 to 65,535 (must be in multiples of 8).

• Chapter 5, BTag Deallocation Operation section, changed the implementation
figure to show the BTag is held in the last (least significant) two bytes inside the
last 32bit word of the 64Byte DMEM.

• Chapter 5, MUC Allocation Operation section, changed the implementation
figure to show the Reference Count (8bytes) is held in the last (least significant)
byte inside the last 32bit word of the 64Byte DMEM.

• Chapter 6, TLU Performance section, changed the SRAM Access for Find
Command table to reflect the PFX assumed key size of 32bits, rather than
48bits. Also, enhanced the TLU Latency section for clarification.

• Chapter 6, Add Command section, changed the note to indicate that the read
occurs and then six (6) clocks later the value is written back to the SRAM, rather
than four (4) clocks.

• Chapter 6, Table Lookup Unit (TLU) Overview section, changed 34bit control
bus to connect to ZBT SRAMs to 31 control signals to connect to ZBT SRAMs.

• Chapter 6, TLU_Memory Register bit position [5:0] BankConfig, clarified the
encoded values relation to memory capacity per bank.

• Chapter 7, QMU Performance section, updated to reflect QMU performance
formula and typical speeds.

• Chapter 7, QMU Multicast Support (Non-System Level) section, changed the
multicast vector going from 18 to 32bits and table mapping the levels to the
correct queue was lengthened from 144 to 256 entries. Also, changed
Multicast_Destination0 to Multicast_Destination255 Registers (QMU
Configuration Function) in Appendix A.

Table 4 C-5e/C-3e NP Architecture Guide Revision History (continued)

REVISION CHANGES
C5EC3EARCH-RM REV 04

Revision History 53
03
(Continued)

• Appendix A, Num_Descriptors Register (QMU Configuration Function),
changed Legal range= 0 to 16,383, rather than 0 to 16,384. Also, changed
applicable values in Chapter 7.

• Appendix A, Dyn_Des_Usage_Lim_Pool0 Register (QMU Configuration
Function), changed Legal range 0 to 16K -1, rather than 16K-1. Also, changed
applicable values in Chapter 7.

• Appendix A, Dyn_Descriptor_Pool0_Usage Register (QMU Status Function),
changed Legal range= 0 to 16K-1, rather than 0=16K. Added an example for
clarification. Also, changed applicable values in Chapter 7.

• Appendix A, Num BTags0 to Num BTags29 Registers (Number of BTags in a Pool
Function), clarified that the Default value of 0 = 0 BTags allocated.

• Appendix A, PCI Device ID Register (XP PCI Configuration Function), added
Device ID and Revision ID information for both C-5e B0 and C-3e B0.

• Appendix A, PCI Vendor ID register description added. Bit Position 15:0 contains
the read-only vendor ID, which is 0x150E.

• Appendix A, TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function),
changed Avial field (31bit position) to include SDP in addition to CPRC.

• Appendix A, TxCB0_Ctl Register (XP DMEM#24 Transfer Tx Control Block0
Function), changed the Reset Value to 1x0xx00x000x.

• Appendix A, TxCB0_Ctl Register (CP Tx Control Block0 Function), clarified the
SDP state bit position [19:18] to indicate this field is for SDP engines for CPs or
the PCI engine for the XP.

• Appendix A, Event0 Register (CP Event and Interrupt Function), changed bit
position [61] filed name from MCError to PayloadError. Because the error
returns for a request sent to either a BMU or QMU error.

• Appendix A, SDP_Mode5 Register (CP Mode Configuration Function), changed
information about fields ForcePathAIS3 to ForcePathAIS0 (17:14bits).
Specifically, the operation varies according to the SONET mode selected.

Table 4 C-5e/C-3e NP Architecture Guide Revision History (continued)

REVISION CHANGES
C5EC3EARCH-RM REV 04

54
03
(Continued)

• Appendix A, TxFI_Configuration Register (FP Tx Configuration Function),
changed bit position [25] filed name from U2TriEnable to U2PHYTriEnable as
well as its description.

• Appendix B, Aggregate Mode Application Examples section, updated to reflect
token passing in the RxByte processor rather than the RxBit processor.

• Appendix B, Aggregate Mode Application Examples section, specifically
pertaining to Non-blocking Operation, removed the statements about CP
cluster mapping and restrictions related to the BMU memory bandwidth. These
restrictions do not apply to the C-5e NP.

• Appendix C, SONET/SDH Frame Format Overview section, added a figure to
show the Receive SONET Pointer State Machine Operation and updated two
applicable tables for the corresponding transport overhead byte H1, STS #1 for
receive SONET/SDH OC-3c and OC-12/OC-12c.

• Appendix C, Determining Signal Degrade/Signal Failure Conditions with C-5e
NP section, changed the Detection Threshold formula’s subtract sign to an
addition sign. An addition sign was added to the example below which
changed the resulting values of 581 errors to 663 errors. In addition, in the
Possible Settings for OC-3c Detection Times table the threshold value of 581
was changed to 663, and the two 64 values were changed to 63.

02 • Chapter 2, added CRC types available per SDP blocks and their generator
polynomial (formula) for each supported CRC type.

• Chapter 6, added throughput and latency formula and applicable artwork to
clarify TLU performance elements.

• Chapter 8, updated internal bus characteristics for both C-5e/C-3e. Added
general bandwidth formulas for both C-5e and C-3e. Updated the Ring Bus
Latency section.

• Appendix A, updated SONET_Event, SDP_Mode2, 3 and 4 registers. Updated
XP PCI Device and PCI Revision ID registers.

• Appendix C, updated SONET/SDH overhead writable byte s positions,
definitions, and notes. Added SONET overhead readable bytes positions,
definitions, and notes. Added SONET/SDH frame format overview, and receive
OC-3c, OC-12, OC-12c statistics counters for both transport & path overhead.
Added sections on: C-5e NP SONET Support, Automatic Protection Switch (APS)
support, and Determining Signal Degrade/Failure Conditions.

• Appendix D added. Describes sixteen (16) custom instructions used in the
CPRC and XPRC. The name, format, description and operation for each
instruction is provided.

• Glossary, added new terms.

Typographic corrections throughout.

Table 4 C-5e/C-3e NP Architecture Guide Revision History (continued)

REVISION CHANGES
C5EC3EARCH-RM REV 04

Revision History 55
01 • Related User Documentation, changed part numbers.

• Chapter 1, added information about the differences between the C-5e NP and
the C-3e NP.

• Chapter 4, restructured, enhanced, and updated. Added information about
CSIX-L1, UTOPIA3 Like to M-5, new weighting algorithm, congestion handling,
DBE inputs and outputs, Rx and Tx Byte Processor’s mapping between global
and byte addressing, Rx and Tx Byte memory space.

• Chapter 6, restructured, enhanced, and updated. Added information about
Hash-Trie-Key, Chained Hash, Chained Index, PFX (Longest-Prefix Match), Flat
Data tables, as well as, TLU operation, software algorithms, and mapping.
Changes to: commands, registers, table configuration, data formats and
examples.

• Chapter 7, added information about: external scheduler mode (Q-5), Payload
Bus response format for the external mode, speculative unicast-enqueue
operations, and internal SRAM data structures in external mode. Updated the
Payload Bus response format for the internal mode.

• Appendix A, added new registers and fields in the CP, XP, FP, and QMU
configuration space.

Table 4 C-5e/C-3e NP Architecture Guide Revision History (continued)

REVISION CHANGES
C5EC3EARCH-RM REV 04

56
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 1
INTRODUCTION
Chapter Overview This chapter covers the following topics:

• C-5e NP Architecture Overview

• C-5e NP Block Diagram and Flow Processes

• C-5e NP Address Mapping

• C-3e NP Architecture Overview
C5EC3EARCH-RM REV 04

58 CHAPTER 1: INTRODUCTION
C-5e NP Architecture
Overview

The C-5eTM NP implements an architecture specifically designed for communications
applications. Cell and packet processing, table lookup processing, and queue
management functions are all integrated into the C-5e NP architecture. With the addition
of physical interface chips, memory chips (for payload, circuit/routing tables, and payload
descriptor queues), and minimal support logic, a single C-5e NP can be used to
implement highly-intelligent mixed media, multiport, multiprotocol switches,
multiplexors, and concentrators. Multiple C-5e NPs can be used in conjunction with a
switching fabric to implement larger scale switching systems.

Highly-Integrated
Architecture

The C-5e NP’s highly-integrated architecture employs dedicated processors for each
networking channel and a series of coprocessors that offload many common
networking-specific tasks. Refer to Figure 1 on page 58. This architecture allows the
processors and coprocessors to support concurrent processing, which helps the C-5e NP
to deliver software flexibility at hardware speeds. In addition, the C-5e NPs RISC
instruction set is specially designed to handle communications functions efficiently, even
further enhancing its performance. Also the C-5e can be used with the M-5, refer to “C-5e
NP System Configuration and Overview” on page 834.

Figure 1 C-5e NP Processors and Coprocessors

Network I/O
5Gbps

Host I/O
2Gbps

Internal
I/O

60Gbps

Fabric I/O
5Gbps

CP0 CP1 CP15 XP FP QMU BMU

SDRAM

16 integrated processors

available for value-added

Networking Intelligence

3 optimized coprocessors

offload specialized network-

ing tasks that are common

across applications

C-5e

SRAM or
Ext. TLE

Ext. M-5
to CP's

Ext. M-5
to FP

M-5M-5

C-5e
Optional
 Device

1 management

processor for Host,
1 interface processor

 for Fabric switching

TLU

SDRAM
C5EC3EARCH-RM REV 04

C-5e NP Architecture Overview 59
C-5e NP Modes of
Operation

The C-5e NP supports three (3) different modes of operation (Single Channel, Pipeline
Channel, and Aggregate Channel) based upon your application needs, allowing you to
increase processing power or increase bandwidth.

Single Channel Mode
CPs operate independently of each other at full duplex and can support, for example,
OC-3.

Pipeline Channel Mode
To scale processing power for a particular application, the CPs can be linked for pipelined
processing on a single data stream. This allows processing power to be applied
independently of data rate. Using this mode, different CPs sequentially process
cells/packets, achieving a high-level of processing. For example, AAL2.

Aggregate Channel Mode
To scale serial bandwidth capabilities, the CPs can be aggregated into parallel clusters for
wider data streams. The C-5e NP’s 16 CPs can be partitioned into four (4) groups of four (4)
CPs called clusters. Clusters allow the CPs to share resources (IMEM and DMEM) and
support aggregation. A cluster of CPs can be configured, for example, to work together to
support one physical interface (such as OC-12), or either the receive or transmit portion of
one physical interface (such as Gigabit Ethernet). For more information about
Aggregation in the C-5e NP. Refer to Appendix B.

C-5e NP Supported
Interfaces

The C-5e NP’s architecture supports a variety of industry-standard serial and parallel
protocols and individual port data rates ranging from DS1 (1.544Mbps) to Gigabit
Ethernet (1000Mbps). The interfaces supported include:

• 10/100Mb Ethernet (RMII)

• 1Gb Ethernet (GMII and TBI)

• OC-3c

• OC-12 (as an aggregation of four OC-3c data streams)/OC-12c

• OC-48c (using various configurations). Refer to “C-5e NP System Configuration and
Overview” on page 834.
C5EC3EARCH-RM REV 04

60 CHAPTER 1: INTRODUCTION
• OC-48 (using various configurations). Refer to “C-5e NP System Configuration and
Overview” on page 834.

• 100Mbit FibreChannel

Each CP comprises of a set of microprogrammable, special-purpose processors, called
Serial Data Processors (SDPs), that provide features such as Ethernet MAC and SONET
framing, multichannel HDLC control, and ATM cell delineation. Figure 2 on page 60 shows
the physical interfaces and examples of the processing provided by the CP’s SDPs for the
interface type.

The programmability of the C-5e NP can also support a variety of special interfaces, such
as various xDSL encapsulations and proprietary protocols.

Figure 2 Examples of SDP Programmability

CP

10/100/
GbE PHY

Ethernet
MAC

CP

OC-3/OC-12
PHY

SONET
Framer

ATM Cell
Delineator

CP

OC-3/OC-12
PHY

SONET
Framer

PPP (HDLC)
Framer

CP

Associated
PHY

CP

T/E-Carrier
Framers

Line
Interface

Unit (LIU)

Multi-
channel
HDLC

Controller

Virtually
any

protocol
C5EC3EARCH-RM REV 04

C-5e NP Architecture Overview 61
Major Components of the
C-5e NP

The C-5e NP contains eighteen (18) processors (16CPs, XP, and FP) and three (3)
coprocessors that operate as shared resources for the CPs and each other, and perform
some networking-specific tasks. Refer to Table 5 on page 61.

Table 5 C-5e NP Major Components

ITEM DEVICE TYPE FUNCTION

Channel
Processor (CP)

Programmable
Processor

The programmable Channel Processors (CPs) are
responsible for receiving, processing, and transmitting cells
or packets. The CP’s design and on-chip memory
architecture incorporate a number of features that result in
a uniquely capable engine for the execution of
high-performance data communication tasks.

Executive
Processor (XP)

Programmable
Processor

Provides network control and management functions in
user applications. The XP’s Peripheral Component Interface
(PCI) supplies an industry-standard 32bit 33/66MHz
channel to attach additional processors and line interfaces.
The XP also has a PROM and serial bus interface.

Fabric Processor
(FP)

Programmable
Processor

Manages the high-speed fabric interface. FP channels
attach to a switch fabric or very high performance line
interfaces. The FP supports the CSIX-L1, UTOPIA-1, -2, -3,
Power X(CSIX-L0), RRIZMA, and UTOPIA3 Like to M-5
protocols.

Buffer
Management
Unit (BMU)

Programmable
Coprocessor

Manages centralized payload storage during the
forwarding process. An independent high-bandwidth
memory interface connects to external memory for the
actual storage of payload data.

Table Lookup
Unit (TLU)

Programmable
Coprocessor

Provides table search and associated data storage services
to the CPs, XP, and FP. An independent high-bandwidth
memory interface connects to external memory for storage
of circuit and forwarding tables.

Queue
Management
Unit (QMU)

Programmable
Coprocessor

Manages application-defined descriptor queues among the
CPs, FP, and the XP. An independent high-bandwidth
memory interface connects to external memory for storage
of payload descriptor queues.
C5EC3EARCH-RM REV 04

62 CHAPTER 1: INTRODUCTION
C-5e NP Interconnect
Components

The C-5e NP also contains three (3) independent data buses that provide internal
communication paths between the eighteen (18) processors (16CPs, XP, and FP) and three
(3) coprocessors, supporting concurrent processing. Refer to Table 6 on page 62.

Other Supported Features In addition, the C-5e NP provides these other features that provide better application
integration. Refer to Table 7 on page 62.

Table 6 C-5e NP Interconnect Components

ITEM DEVICE TYPE FUNCTION

Payload
Bus

Slotted,
multichannel, shared,
arbitrated bus

Carries payload data and payload descriptors between the
processors and the BMU and QMU.

RIng Bus Slotted ring-topology
bus

Provides bounded latency transactions between the
processors and the TLU. It also supports inter-processor
communication.

Global
Bus

Slotted,
multichannel, shared,
arbitrated bus

Supports inter-processor communication via a conventional
flat memory-mapped addressing scheme.

Table 7 C-5e NP Other Supported Interfaces

FEATURES FUNCTION

Byte Swapping Used to move data between the PCI Bus Little Endian environment and
the C-5e NP Big Endian environment. Refer to Appendix E for details.

SONET/SDH Support Provides hardware support to extract, insert and analyze SONET/SDH
(Synchronous Digital Hierarchy). Refer to Appendix C for details.

Multicast Operations Allows multicast elaboration using the BMU and QMU components of
the C-5e NP. Refer to “Multicast Support (System Level)” on page 453 for
details.
C5EC3EARCH-RM REV 04

C-5e NP Block Diagram and Flow Processes 63
C-5e NP Block Diagram
and Flow Processes

The full architecture of the C-5e NP is shown in Figure 3 on page 64. The major
components of the C-5e NP are numbered on the diagram, as well as one (1) external
companion device, and include:

1 Channel Processors (CPs)

2 Executive Processor (XP)

3 Fabric Processor (FP)

4 Buffer Management Unit (BMU)

5 Table Lookup Unit (TLU)

6 Queue Management Unit (QMU)

7 Internal Buses (Ring Bus, Global Bus and Payload Bus)

8 Channel Adapter (M-5), external companion device
C5EC3EARCH-RM REV 04

64 CHAPTER 1: INTRODUCTION
Figure 3 C-5e NP Simplified Block Diagram

Cell and Packet
Forwarding Overview

(! OC-48)

Each CP within the C-5e NP has special-purpose components that aid in cell/packet
parsing and verification. These components also aid in creating separate data and control
paths for the cell/packet. Data is sent via the Payload Bus to the BMU for temporary
storage in SDRAM. In parallel with the data being stored, application-specific control data
is abstracted into a short descriptor that is used to make forwarding decisions. All
interfaces use the Ring Bus to consult forwarding tables in the TLU. The interfaces access
the QMU (to enqueue frame descriptors to another interface or processor) through the
Payload Bus. Cells/packets that are terminated in the chip or require management
processing (such as for routing updates) are enqueued for handling by the XP.

Note that the receive and transmit processes can occur on the same or on different CPs.

PHY PHY PHY PHY PHY PHY PHY PHY

Payload Bus

Ring Bus

Global Bus

Cluster Cluster

CP1CP0 CP2 CP3 CP12 CP13 CP14 CP15

XP

TLU

QMU

External
Host
CPU

Table Storage
and Statistics

(SRAM)
Queue Storage

(SRAM)

Table
Lookup
Engine

SRAM
Ctrl

SRAM
Ctrl

Queue
Mgmt
Engine

External
PROM

(optional)

PROM
Interface

Serial
Bus

Interface
PCI

Control
Logic

(optional)

Fabric

FP

BMU

SDRAM
Ctrl

Processor Boundary

Buffer
Mgmt
Engine

SDRAM
Packet/

Cell
Storage

XP Prog/
Data

Storage

1

2

3

4

5

6 7

C-5e NP

M-5 Option M-5 Option

M-5 Option

8

8

8

C5EC3EARCH-RM REV 04

C-5e NP Block Diagram and Flow Processes 65
The CP handles typical packet forwarding as described in the following sections. The
receive and transmit flows are described in detail and shown in Figure 4 on page 67.

Receiving Packets
1 On reception of a serial bit stream, the RxSDP (Receive Serial Data Processor) program

detects the packet framing and organizes the bit stream into a byte stream. The SDP
program also characterizes and parses the byte stream, performing pattern matching
and checking validity criteria.

2 The RxSDP places application-defined fields in Extract Space for access by the CPRC
(Channel Processor RISC Core).

3 The SDP launches table lookup requests on extracted data fields using the Ring Bus.

4 Concurrently, the byte stream is transported to a double 64-byte buffer in local DMEM
(Data Memory), where it accumulates 64-byte segments (until reaching the end of the
packet). The 64-byte segments are transported via the Payload Bus and the BMU to
pre-allocated packet buffers in external SDRAM.

5 The CPRC program, upon receiving the extracted data fields and table lookup results,
determines the destination queue and other forwarding parameters for the packet,
and constructs a forwarding descriptor data structure. This data structure, at a
minimum, includes the identity of the packet buffer in which the packet resides. The
descriptor is transmitted by the CPRC receive program to the QMU via the Payload Bus.
The QMU copies the descriptor into a descriptor buffer and chains that buffer onto the
desired queue.
C5EC3EARCH-RM REV 04

66 CHAPTER 1: INTRODUCTION
Transmitting Packets
6 The transmitting CPRC program discovers, via a background queue status distribution

mechanism, that a queue it services contains a forwarding descriptor. The program
reads the descriptor via the Payload Bus from the QMU.

7 The transmit CPRC program inspects the descriptor and using the information it
contains, parameterizes the TxSDP program by filling the Merge Space with the format
information and packet data field contents necessary to perform the packet
transformation. The CPRC sets up the payload transfer from SDRAM via the BMU to
local DMEM.

8 The data stream is transported from the BMU via the Payload Bus in 64-byte segments
to a double 64-byte buffer in DMEM. The segments are then passed as a byte stream to
the TxSDP program, which transforms the packet, substituting data fields from the
Merge Space.

9 As a part of either the receive or transmit process, the CPRC program can exercise
other C-5e NP resources, such as performing additional table lookups or accessing
packet data directly as it flows through the DMEM data buffers.

10 The TxSDP converts the byte stream to a serial bit stream, applies framing, and
transmits the bit stream.
C5EC3EARCH-RM REV 04

C-5e NP Block Diagram and Flow Processes 67
Figure 4 Typical Cell/Packet Forwarding Application Receive and Transmit Data Flow (! OC-48)

External QMU

External BMU

CPRC

Forwarding
Descriptor

Descriptor
Buffer

Extract
Space

BMUDMADMEMDMARxSDP

Data

Packet Cell

QMU

1

4

5

Inbound serial
data stream

Receiving Channel Processor

Buffers

External TLU

Forwarding

Statistics Tables

SRAM

SDRAM

Ring Bus
Registers

2

TLU

Buffer

SRAM

BMUDMADMEMDMATxSDP

Merge
Space

CPRC

Forwarding
Descriptor

Data

QMU

6

7

8

Transmitting Channel Processor

10

Buffers

Outbound serial
data stream

Ring Bus
Registers

9

TLU

Queues

3

Tables
C5EC3EARCH-RM REV 04

68 CHAPTER 1: INTRODUCTION
Cell and Packet
Forwarding Overview

(OC-48)

The C-5e NP handles OC-48 in a similar fashion as !OC-48 except, for the addition of the
external Channel Adapter (M-5) companion device (optional) in front of the CPs for PDU
ordering and bus translations.

The receive and transmit flows for !OC-48 are described in detail and shown in Figure 4 on
page 67 and the receive and transmit flow for OC-48 is similar with the differences
described here.

Receiving Packets
The Rx flow for OC-48 is similar to that for !OC-48 except for the following:

• Prior to the serial bit stream being received by the RxSDP (item1), the external M-5
companion device provides the required PDU ordering for both packet and cells for
the CPs, as well as bus translations from multi-physical (MPHY), UTOPIA Level 3
(UTOPIA-L3), and Saturn POS-PHY Level 3 (POS-PHY-L3).

Transmitting Packets
The Tx flow for OC-48 is similar to that for !OC-48 except for the following:

• After the byte stream is converted to a serial bit stream by the TxSDP, framing applied
and the bit stream is transmitted (item 10), the M-5 orders the packets /cells and
provides the required bus translation.
C5EC3EARCH-RM REV 04

C-5e NP Address Mapping 69
C-5e NP Address Mapping The C-5e NP supports inter-processor communication using a single, flat memory model.
This allows all C-5e NP processors to view all memory-mapped state and configuration
registers.

The Channel Processors (CPs) cannot access certain registers reserved exclusively for the
Executive Processor (XP).

Each memory resource in the C-5e NP is mapped within its own contiguous 1MByte block
of memory. Thus, the specific location of any processor’s resource block (local DMEM and
registers) within the physical memory space can be mapped using multiple 1MByte
offsets. Refer to Figure 5 on page 70.
C5EC3EARCH-RM REV 04

70 CHAPTER 1: INTRODUCTION
Figure 5 C-5e NP Physical Address Memory Map

KSEG2
1 Gigabyte

KSEG1
0.5 Gigabytes

(Local Sys I/O)

KSEG0
0.5 Gigabytes

KUSEG
2 Gigabytes

PROM Space
4 Megabytes

60 - 1 Megabyte
Configuration

 Blocks for CPs,
XP, FP,

General System
I/O Space is:

Windows to PCI
Memory and

I/O Space, etc.

0.5GB KSEG1

CP0

CP15

CP14

CP13

CP12

CP11

CP10

CP9

CP8

CP7

CP6

CP5

CP4

CP3

CP2

CP1

Reserved

0xBD8FFFFF

0xBD8000000xA0000000

0xBFFFFFFF

0x00000000

0xFFFFFFFF

0xBFC00000

0xBFFFFFFF

0xBBFFFFFF

0xBFBFFFFF

0xBC000000

0xC0000000

Reserved
Configuration

Space

0xBFBFFFFF

0x7FFFFFFF

0x9FFFFFFF

0xA0000000

0x80000000

0xBDB00000

0xBD900000

0xBDC00000

0xBDA00000

0xBC000000

0xBC100000

0xBC200000

0xBC300000

0xBC400000

0xBC500000

0xBC600000

0xBC700000

0xBCF00000

0xBD000000

0xBC800000

0xBC900000

0xBCA00000

28 - 1 Megabyte

Reserved
Configuration

8 - 1 Megabyte

QMU, BMU, etc.

0xBCB00000

#27: BMU

#26: QMU (Internal)

0xBDF00000

0xBE000000

#25: XP1

#24: XP2 0xBD800000
0xBD7FFFFF

0xBCD00000

0xBCE00000

0xBCC00000

Space

Blocks

Blocks

448 Megabytes

Reserved

0xBDD00000

0xBDE00000
#29: TxFP

#30: RxFP

1: XP #25 can only be accessed by the XP, it is not visible to CPs.
2: The CPs can only access DMEM in XP #24.

Individual
Processor’s

Configuration
Space

(See memory
maps located
in each chap-

ter)
C5EC3EARCH-RM REV 04

C-5e NP Address Mapping 71
Configuration Register
Definitions

The CP configuration registers form the “base register set” for the C-5e NP. Each CP
duplicates the base register set within its own configuration space.

The XP registers include a subset of the base register set, as well as the system interface
registers. The XP’s “CP-like” base registers are located at the same address offsets within
the XP’s configuration space as are the CP configuration registers. The FP has a subset of
the “CP-like” base registers.

The configuration registers are listed in this chapter by incremental address (CPs, XP, FP,
QMU, and so on).

Processor Base Address
Offsets

Each C-5e NP processors/coprocessors have a unique 5bit processor ID value. The starting
address for any CP (as well as the XP, FP, QMU, BMU, and TLU) can be determined by
adding 0xBC000000 to the 5bit processor ID shifted left 20 bit positions, to provide the
1MByte of address space assigned to each processor. For example, the address space for
CP5 is: 0xBC000000 + (0x05 << 20) = 0xBC500000. Refer to the memory map in Figure 5
on page 70. In addition, the Ring Bus node IDs for the CPs, XP, FP, and TLU are listed in
Table 8 on page 71.

Table 8 Ring Bus Node IDs

UNIT NODE ID UNIT NODE ID

CP0 0 CP10 10

CP1 1 CP11 11

CP2 2 CP12 12

CP3 3 CP13 13

CP4 4 CP14 14

CP5 5 CP15 15

CP6 6 XP 24

CP7 7 FP*

* Transmit only. The FP cannot read messages on the Ring Bus. Thus
any messages sent to the FP cannot be removed from the Ring Bus,
eventually filling up the Ring Bus.

30

CP8 8 TLU 31

CP9 9
C5EC3EARCH-RM REV 04

72 CHAPTER 1: INTRODUCTION
As shown in Figure 5 on page 70, within this space, CP0’s 12kBytes of local DMEM begins
at the base address (for CP0 this is 0xBC000000), the configuration register space begins
at the base address plus 16kBytes (0xBC004000) (with a CP ID shifted of 20 bits). This
mapping makes all of DMEM and configuration space available within the positive signed
16bit offset from the CP0 base address.

Configuration Register
Address Offsets

Most configuration registers are described only once in this manual. However, some
registers have unique variations for different processors. In this case, each register
variation is defined.

The register addresses as listed substitute the letter n in the address for the processor’s ID.
By substituting the processor’s ID for n, you can calculate the address for all individual
registers in the C-5e NPs address space. Refer to Figure 6 on page 72 and Figure 5 on
page 70.

Figure 6 Register Address Format (in bits)

Byte Ordering
The C-5e NP uses Big Endian byte ordering. However, the XP because of its Peripheral
Component Interface (PCI), is capable of handling either Big or Little Endian format from
the PCI.

It is recommended that developers use only Big Endian format when developing
applications.

1011 110x xxxx 0000 yyyy yyyy yyyy yyyy

CP ID

CSR

Register Address

5 bits

16 bits
C5EC3EARCH-RM REV 04

C-3e NP Architecture Overview 73
C-3e NP Architecture
Overview

This section provides an overview of the C-3e NP. The C-3e NP implements an architecture
similar to that of the C-5e NP except it targets applications with lower bandwidth and
lower power requirements than those traditionally targeted by the C-5e NP. Figure 7 on
page 73 shows the C-3e block diagram and Table 9 on page 74 lists the differences
between the C-5e NP and C-3e NP.

Figure 7 C-3e NP Block Diagram

16 Channel Processors:
8 (CP0 to CP7 full functionality
8 (CP8 to CP15) Internal-only

UTOPIA Bus Width:
8bit or 16bit

SRAM

SRAM

Host
CPU

Fabric Interface

Table Lookup Unit

Fabric
Processor

Queue Management
Unit

Buffer Management
Unit

Executive
Processor

3 Buses

CP4-CP7

CP8-CP11

CP12-CP15

PCI

PHYs

PHYs

16bit

SDRAM

CP0-CP3
C5EC3EARCH-RM REV 04

74 CHAPTER 1: INTRODUCTION
Table 9 C-5e NP Compared to the C-3e NP (Differences)

CHARACTERISTIC ITEM C-5E C-3E

Electrical Frequency 266MHz typical 180MHz typical

Voltage 1.2V, +/- 0.1V 1.1V, +/- 0.1V

Power
Consumption

9W@266MHz typical 5W@180MHz nominal

Physical Layout 840 pin HiTCE CBGA, 1mm 728 pin HiTCE CBGA, 1mm

Performance Supported
Interfaces

• 10/100Mb Ethernet (RMII)

• 1Gb Ethernet (GMII and TBI)

• OC-3c

• OC-12 (as an aggregation of four OC-3c
data streams)/OC-12c

• OC-48c (using various configurations).
Refer to “C-5e NP System Configuration and
Overview” on page 834.

• OC-48 (using various configurations). Refer
to “C-5e NP System Configuration and
Overview” on page 834.

• 100Mbit FibreChannel

• 10/100Mb Ethernet (RMII)

• 1Gb Ethernet (GMII and TBI)

• OC-3c

• OC-12 (as an aggregation of four OC-3c
data streams)/OC-12c

• 100Mbit FibreChannel

Note: For Gbit Ethernet, full line rate is only
achieved using dual-cluster, single-interface
mode for minimum sized packets (64Bytes).
Also, for both Gb Ethernet and OC-12 full
speeds are not possible through a single
queue.

Supported
Fabric
Interfaces

• UTOPIA1,2, and 3, IBM PRIZMA, PowerX
(CSIX-L0), and CSIX-L1

• UTOPIA1, UTOPIA2, and UTOPIA3 as
detailed here:

UTOPIA
LEVEL

BUS WIDTH
(BITS) MODE

-L1 8 ATM

16 ATM/PHY

-L2 8 ATM

16 ATM/PHY

-L3 8 ATM

16 ATM/PHY
C5EC3EARCH-RM REV 04

C-3e NP Architecture Overview 75
Functional CPs Available • 16 (CP0 to CP15) with full functionality,
configurable for full I/O or recirculation

• 8 (CP0 to CP7) with full functionality,
configurable for full I/O or recirculation.

• 8 (CP8 to CP15) with limited functionality,
configurable only for bit and Byte level
recirculation.

Bit Loopback
Operation (CP
PIN_Mode
register)

No restriction. Must set:

• bits [20:18] RxClkMUX field to 6 for inverted
transmit clock (for local loopback) and

• bits [17:14] TxClkMUX field to 1 for T1
source.

Refer to “PIN_Mode Register (CP Mode
Configuration Function)” on page 546.

Logic Design XP PCI Device ID
register

• 0x2 • 0x3

Refer to “PCI Device ID Register (XP PCI
Configuration Function)” on page 588.

XP PCI Revision
ID register

• 0x10 • 0x10

Refer to “PCI Revision ID Register (XP PCI
Configuration Function)” on page 593.

FP FP Pin Voltage Supports 3.3V and 2.5V devices. Supports 3.3V devices.

FP
Performance

• FPTx single queues reach OC-12 speeds. • FPTx single queues do not reach OC-12
speeds.

• The maximum achievable FPTx bandwidth
is 1.66Gb/s (UTOPIA3 16bit), or 800Mb/s
(UTOPIA2).

Pinouts CP, FP, NC, and
CLKS

Refer to C-5e Network Processor Data Sheet. Refer to Table 10 on page 76.

Compatibility Companion
device

• M-5

Table 9 C-5e NP Compared to the C-3e NP (Differences) (continued)

CHARACTERISTIC ITEM C-5E C-3E
C5EC3EARCH-RM REV 04

76 CHAPTER 1: INTRODUCTION
Table 10 on page 76 lists those pins that are not used for the C-3e NP compared to the
C-5e NP.

Table 10 112 Pins Not Used for C-3e NP that are Used for C-5e NP

SECTION SIGNAL NAME
TOTAL
PINS TYPE I/O SIGNAL DESCRIPTION

CP8 CP8_0 - CP8_6 7 LVTTL/
LVPECL

I/O Refer to C-5e Network
Processor Data Sheet.

CP9 CP9_0 - CP9_6 7 I/O

CP10 CPA_0 - CPA_6 7 I/O

CP11 CPB_0 - CPB_6 7 I/O

CP12 CPC_0 - CPC_6 7 I/O

CP13 CPD_0 - CPD_6 7 I/O

CP14 CPE_0 - CPE_6 7 I/O

CP15 CPF_0 - CPF_6 7 I/O

FP FIN16 - FIN31 16 LVTTL I Fabric Data Bus In

FP FPRxCTL5 - FPRxCTL3 3 I/O Receive Control Signals

FP FPOUT16 - FOUT31 16 O Fabric Data Bus Out

FP FPTxCTL5 - FPTxCTL3 3 I/O Transmit Control Signal

NC NC0 - 9 10 I/O Reserved for future
functionality

CLKS CCLK4 - 7 4 I Clock

FP VDDF 4 P N/A Fabric I/O Supply (3.3 or
2.5V)

Total 112
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 2
CHANNEL PROCESSORS
Chapter Overview This chapter covers the following topics:

• Channel Processors (CPs) Overview

• Serial Data Processors (SDPs) Overview

• CP RISC (CPRC) Overview

• CP Memory (IMEM and DMEM)

• CP Memory Interface Transactions

• CP Configuration Space

• Understanding Block Moves of Data

• C-5e Methods for Handling High Speed (OC-48) PDUs
C5EC3EARCH-RM REV 04

78 CHAPTER 2: CHANNEL PROCESSORS
Channel Processors (CPs)
Overview

The C-5e NP has a dedicated, programmable CP for each of its sixteen (16) line interfaces
to handle cell and packet forwarding. The CPs are designated (CP0,CP1 ... CP14, CP15) and
can be aggregated to handle higher-speed interfaces and share memory resources. Each
CP consists of Serial Data Processors (SDP) and a Channel Processor RISC Core (CPRC),
which together perform cell and packet processing via special-purpose memories,
namely Instruction Memory (IMEM) and Data Memory (DMEM) that loosely couple these
processors. Refer to for details about Aggregation.

CP Major Components The major components of each CP are listed in Table 11 on page 78. In addition, Figure 8
on page 79 shows the CP Block Diagram.

Table 11 Major Components of the CPs and Their Functions

ITEM FUNCTION

SDPs Provide microprogrammable interfaces for receive (Rx) and transmit (Tx)
between external serial streams and the rest of the CP elements. The receive SDP
(RxSDP) and the transmit SDP (TxSDP) can be programmed to process some of
the most common types of networking traffic, such as SONET, Ethernet, and ATM.
The RxByte programmable processor of the RxSDP and the TxByte
programmable processor of the TxSDP can be further programmed for
specialized applications.
On receipt of a cell/packet, the RxSDP provides serial-to-parallel conversion,
validates and interprets the header and payload, and initiates table lookups. On
transmission of a cell/packet, the TxSDP applies the header and payload, and
provides parallel-to-serial conversion.

CPRC Programmed to support the following application functions:

• Characterizing cells/packets and building descriptors

• Initiating additional table lookups

• Collecting all table lookup results

• Making forwarding and filtering decisions based on the parsed header data
and table lookup results (classifying cells/packets)

• Making scheduling decisions (based on the characterization of cells/packets)

The CPRC implements a subset of the MIPSTM 1 instruction set (excluding
multiply, divide, floating point, unaligned loads and stores, move to hi and move
to lo), eight (8) Branch Likely instructions from the standard MIPSTM 2 instruction
set, and sixteen (16) custom instructions. In addition, the CPRCs support
four-way fast context switching.
C5EC3EARCH-RM REV 04

Channel Processors (CPs) Overview 79
Figure 8 Channel Processor Block Diagram

Memory Two (2) types of memory are available: IMEM and DMEM.
• Each CP has 8kBytes IMEM that contain the RISC Instructions in RAM. In

Cluster mode, four (4) adjacent CPs provide 32kBytes instruction memory
(IMEM) that are shared among the CPs within that cluster.

• Each CP has 12kBytes of local non-cached data memory (DMEM) for storage of
data. Each CPRC can access the local DMEM of any other CPRC within that
cluster within one to four additional cycles of latency (depending on CP
contention for the DMEM) for a total of 48kBytes. In addition, the DMEM can
also be accessed as remote memory by other CPs and the XP via the Global
Bus.

Configuration
Space

This area of the CP contains a number of registers used to communicate
with the SDP and the bus controllers (Payload Bus and Global Bus). The
CP’s registers can also be accessed by other components of the C-5e NP,
(XP and other CPs via the Global Bus).

Table 11 Major Components of the CPs and Their Functions (continued)

ITEM FUNCTION

Ring
Bus

Interface

DMA

Pin
Logic

Pin
Logic

RxSDP

TxSDP

IMEM

Extract
Space

CPn

Data Path

Data Path

Control
Paths

TxByte
Proc

TxBit
Proc

Merge
Space

RxByte
Proc

RxSync
Proc

RxBit
Proc

DMEM

Global
Bus

Interface

Payload
Bus

Interface

CP
RISC
Core

(CPRC)
C5EC3EARCH-RM REV 04

80 CHAPTER 2: CHANNEL PROCESSORS
Serial Data Processors
(SDPs) Overview

Each CP includes a Serial Data Processor (SDP) that contains microcode-programmable
components for receive processing (RxSDP) and for transmit processing (TxSDP). Each
SDP provides a programmable bit- and byte-level interface to the physical layer (PHY) and
acts as the interface between external serial data streams and all other CP elements. The
SDP can also launch table lookups to the Table Lookup Unit (TLU).

The SDPs and CPRC operate independently on their specific forwarding tasks and interact
to forward a packet to its destination. For example, during receive operations, the RxSDP
assembles cell/packet data into DMEM buffers that are written to SDRAM over the Payload
Bus under CPRC control. In the process, the RxSDP extracts application-defined fields,
placing them in shared registers for access by the CPRC.

Code running on the CPRC characterizes the incoming cell/packet, synthesizes a
descriptor that directs the management and routing of the cell/packet, and classifies the
cell/packet by enqueuing the descriptor to the appropriate QMU queue. Because the SDP
and the CPRC are pipelined to forward cells and packets, many parts of the forwarding
process can be performed concurrently.

Supported External
Interfaces

Each CP currently supports (in hardware and C-Ware application microcode) the following
external interfaces as shown in Table 12 on page 80.

The programmability feature of the SDPs enables support for many other physical
interface types, including various xDSL encapsulations and proprietary protocols.

Each type of physical layer PHY has both a characteristic frequency and a particular
configuration for the input and output clocks. To accommodate these needs, each CP has
a transmit clock mux (txclk mux) that can select among eight (8) global clocks that are
sourced externally, two (2) clocks that are sourced from CPs and driven globally, or a clock
that is received locally (that is, for OC-12c).

Table 12 Supported Interfaces & Transmit Clock Mux Selects

SUPPORTED
INTERFACES

SUGGESTED
SOURCE

ENCODED
VALUE APPLICABLE NOTES

T1 CCLK0 1 N/A

E1 CCLK1 2

E3 CCLK2 3

T3 CCLK3 4
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 81
The SDP can be run synchronously with the C-5e NP clock by driving the C-5e NP’s clock
signal into the corresponding external clock port to which the SDP is configured.

Up to two (2) receive clock muxes (rxclk mux), internal_0 and internal_1, can also be used
as transmit clocks for other CPs. This is intended for Telephony applications where the
received clock is considered to be more accurate than the local clock source. The CPs that
drive these internal clocks are limited to two fixed locations, CP0 and CP8.

CP I/O requires configuration based on the configuration register that specifies the type of
port. In addition, there are controls for the rclk mux and the tclk mux that are also based
on the port type.

SDPs Functions The SDP is a pipeline of serially-connected, microcode programmable processors and
configurable logic blocks, as shown in Figure 9 on page 82. The data path among these
processors and blocks is application configurable. These processors and blocks implement
a programmable interface between a port’s PHY, where data is serialized, encoded, and
encapsulated in protocol-dependent ways, and the CPRC, which expects data to be
byte-wide, decoded, delineated, and with header fields naturally aligned.

RMII CCLK4 5 CCLK4-7 are internally tied to 0 in C-3e NP.

Fibre Channel CCLK5 6

MII MII clk
(CPn_1 in
each cluster)

7 To be used by MII Mode for GMII autonegotiate
down to 100/10BaseT.

GMII/Gigabit
Ethernet

CCLK6 9 CCLK4-7 are internally tied to 0 in C-3e NP

OC3 CCLK7 A

 internal0 B Internal0 and internal1 are internally buffered
versions of the receive clocks on CP4 and CP8,
respectively.internal1 C

receive clock D Use the ’even’ receive clock in an ’even-odd’ pair, for
example CP8 and CP9 will use receive clock from
CP8.

receive clock E N/A

0,8,F = transmit clock disabled (internally set to 0) for both C-5e and C-3e

Table 12 Supported Interfaces & Transmit Clock Mux Selects (continued)

SUPPORTED
INTERFACES

SUGGESTED
SOURCE

ENCODED
VALUE APPLICABLE NOTES
C5EC3EARCH-RM REV 04

82 CHAPTER 2: CHANNEL PROCESSORS
The receive SDP (RxSDP) accepts serial data from the C-5e NP’s physical layer circuitry and
performs serial-to-parallel conversion on the data. It delineates frames and cells from the
protocol that carries them, performs error and data integrity checks, and compares and
extracts fields in the data stream. It provides the contents of the extracted fields to the
CPRC in the CPRC’s Extract Space. The CPRC’s local memory (DMEM) provides buffering for
the payload data going to SDRAM.

During data transmission, the CPRC’s DMEM buffers the payload data that originates from
SDRAM. The transmit SDP (TxSDP) performs field insertion, deletion, and replacement in
the outgoing data stream using fields from the CPRC’s Merge Space. It performs
checksum and CRC generation, frame encapsulation and encoding, and parallel-to-serial
conversion on the data. The TxSDP forwards the data to the C-5e NP’s external physical
layer circuitry.

Figure 9 Rx and Tx SDP Programmable Processors and Configurable Logic Blocks

If a set of CPs is aggregated, those CPs’ SDPs are also configured as aggregated. The
behavior of aggregated SDPs is described in .

PHY Clock Core Clock

Merge
Space

Data from
DMEM

8b/10b
Decode
Block

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

Large
FIFO

Small
FIFO

PHY Clock Core Clock

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

TxByte
Processor

Large
FIFO

Small
FIFOTransmit SDP

Receive SDP

Channel Processor

Co
nf

ig
ur

ab
le

 P
in

 L
og

ic

TLU
Lookups

Extract
Space

Data to
DMEM

RxByte
Processor
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 83
SDPs Major Components The RxSDP and TxSDP features two (2) types of hardware. Refer to Table 13 on page 83.

These programmable processors and configurable logic blocks are described in more
detail in “RxSDP Detail Operations” on page 88 and “TxSDP Detail Operations” on page 93.

The SDP’s processors are microcode programmable, and SDP’s blocks are configurable
only.

Each pipeline configuration uses FIFO blocks between certain pairs of processors. The
FIFOs allow for some elasticity during relatively short periods of time when one SDP
processor’s throughput does not exactly match that of another that feeds it or is fed by it.

The run-time path for data traffic through this pipeline of SDP processors and blocks is
configured by the application using higher-level calls to the C-Ware Communications
Programming Interfaces (CPIs). This configuration takes place under application control as
part of initializing the C-5e NP’s ports. The available pipeline configurations are
determined at the application level. Refer to the C-Ware Reference Library document in the
C-Ware Application Development Guide for more information. These CPI calls configure the
RxSDP and TxSDP by setting the appropriate bits in the SDP_Mode3 (RxSDP) and
SDP_Mode5 (TxSDP) registers.

Table 13 Types of Hardware Features in the RxSDP and TxSDP

TYPE OF HARDWARE
FEATURES ITEMS FUNCTION

Programmable
Processors

RxBit Processor,
RxSync Processor,
RxByte Processor,
TxBit Processor and
TxByte Processor.
Refer to Figure 9 on
page 82.

Each embedded processor has special-purpose
hardware such as a dedicated instruction store, a
bank of internal registers, ALU, CAM, CRC engines,
and so on for performing a unique set of
operations. See the C-Ware Microcode
Programming Guide (part number CSTMCPG-UG/D)
for more information.

Configurable Logic
Blocks

8b/10b Decode
Block, RxSONET
Framer Block, 8b/10b
Encode Block and
TxSONET Framer
Block. Refer to
Figure 9 on page 82.

Each block is optimized to perform one function,
and, while not fully programmable is configurable
by the application. Examples of these
configurable logic blocks are the SONET Framers
and the 8b/10b Decode/Encode Blocks used for
TBI protocols.
C5EC3EARCH-RM REV 04

84 CHAPTER 2: CHANNEL PROCESSORS
By distributing the SDP’s tasks among a pipeline of embedded programmable processors
and configurable logic blocks, the available processing achievable at wire speed can be
quite high. For OC-12, Gigabit Ethernet, and FibreChannel, the C-5e NP’s SDPs can be
configured (via C-Ware CPIs) into aggregated channels that cooperatively achieve an even
higher aggregate throughput.

A CP can also be configured to allow recirculation of data traffic from the TxSDP to the
RxSDP. Refer to “Configuration for Recirculation Operations Using RxSDP and TxSDP” on
page 98.

Common Components of
the Programmable

Processors

Refer to Table 14 on page 85 and Figure 10 on page 84 for the common components of
the programmable processors (RxBit, RxSync, RxByte, TxBit and TxByte) inside the SDPs and
their functions.

Figure 10 Common Components of Programmable Processors

ALU

Shift Registers CRC Block

Iregs

Microprogram Store

CAM (9 bits wide)
24 Entries: RxSync, TxByte
64 Entries: RxBit, RxByte

RxBit, TxBit
only

RxByte, TxByte, and
RxSync only
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 85
Table 14 Common Components of Programmable Processors and Their Functions

ITEM FUNCTION

Arithmetic Logic Unit
(ALU)

The eight-bit arithmetic and logic unit, where computations take place.

Internal Registers
(Iregs)

Consists of sixteen (16) (Ireg0 to Ireg15) registers for the embedded
processor’s internal use:

• Ireg0 to Ireg3 can serve as general-purpose registers but also can
serve as counters (can be incremented directly by microcode). Ireg0
to Ireg3 can be incremented separately as eight-bit registers or as
16bit register pairs (Ireg0/Ireg1 and Ireg2/Ireg3). If Ireg0 to Ireg3 are
used as pairs, Ireg1 is the least-significant half of its pair, as is Ireg3.

• Ireg4 to Ireg9 are eight-bit, general-purpose registers.

• Ireg10 to Ireg12 are currently not implemented.

• Ireg13’s two least significant bits (LSBs) provide access to the ninth
bit of Ireg0 and of Ireg15.

• Ireg14 is the Control/Status register.

• Ireg15 is the microcode program counter.

Microprogram Store Provides storage for the processor’s microcode program. It comprises a
series of 52bit microprogram words. Its characteristics are shown here:

PROGRAMMABLE
PROCESSORS

MICROPROGRAM
STORE SIZE *

* 52bit word

RxBit 64 words

RxSync 64 words

RxByte 512 words

TxBit 256 words

TxByte 384 words
C5EC3EARCH-RM REV 04

86 CHAPTER 2: CHANNEL PROCESSORS
Content
Addressable
Memory (CAM)

Provides a nine (9) bit wide lookup table. Its characteristics are shown
here:

Shift Registers Supports serial-to-parallel conversion.
Note: Only applies to RxBit and TxBit programmable processors.

Table 14 Common Components of Programmable Processors and Their Functions (continued)

ITEM FUNCTION

PROGRAMMABLE
PROCESSORS CAM

RxBit 64 entries x 9 bits wide

RxSync 24 entries x 9 bits wide

RxByte 64 entries x 9 bits wide

TxBit None

TxByte 24 entries x 9 bits wide
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 87
The CPRC restarts each SDP processor by toggling a reset signal. The microprogram stores
and CAMs are visible to the CPRC and XP programs only for the purpose of loading these
memories. The other registers and counters are not visible to CPRC and XP programs.

For information about the programmability of the SDP’s embedded processors, see the
Microcode Programming Guide (part number CSTMCPG-UG/D).

Cyclic Redundancy
Check (CRC)

Provides CRC checking, generation, and scrambling. Variations of
CRC checking and generation are supported based on the SDP as
detailed here:

The generator polynomial (formula) for each supported CRC type
is detailed here:

Table 14 Common Components of Programmable Processors and Their Functions (continued)

ITEM FUNCTION

PROGRAMMABLE
PROCESSORS CRC TYPES AVAILABLE

RxBit None

RxSync CRC-8 (ATM HEC), CRC-10 , CRC-16, CRC-32

RxByte CRC-5, CRC-16, CRC-32

TxByte CRC-5, CRC-8 (ATM HEC), CRC-10, CRC-16,
CRC-32

TxBit None

CRC TYPE GENERATOR POLYNOMIAL (FORMULA)

CRC-5 X5 + X2 + 1

CRC-8 (ATM HEC) X8 + X2 + X + 1

CRC-10 X10 + X9 + X5 + X4 + X + 1

CRC-16 X16 + X12 + X5 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +
X8 + X7 + X5 + X4 + X2 + X + 1
C5EC3EARCH-RM REV 04

88 CHAPTER 2: CHANNEL PROCESSORS
RxSDP Detail Operations This section provides more detail information regarding each RxSDP’s programmable
processors and configurable logic blocks. The individual items are shown in Figure 11 on
page 88.

Figure 11 RxSDP Programmable Processors and Configurable Logic Blocks

8b/10b Decode Configurable Logic Block
The 8b/10b Decode configurable logic block is located in the RxSDP.

This block contains hardware for encoding and decoding between 8-bit and 10-bit
formats. This enables support for protocols that require 8b/10b encoding, such as
FibreChannel or Gigabit Ethernet over the Ten Bit Interface (TBI).

As shown in Figure 12, in the RxSDP the 8b/10b Decode block decodes the 10-bit
encoded data into its 8-bit equivalent, plus a Special-K signal, which is passed upstream as
the ninth bit of the data stream. This bit is used during RxBit CAM lookups to differentiate
between control and data characters. Using this decoded data stream, RxBit can be
microprogrammed to perform frame delineation and to implement the Physical Coding
Sublayer (PCS) state machine, defined in the IEEE 802.3 specification, section 36.

Figure 12 Operation of 8b/10b Decode Configurable Logic Block

PHY Clock Core Clock

8b/10b
Decode
Block

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

Large
FIFO

Small
FIFOReceive SDP

Channel Processor

Co
nf

ig
ur

ab
le

 P
in

 L
og

ic

TLU
Lookups

Extract
Space

Data to
DMEM

RxByte
Processor

RxBit
Processor

10bit
Encoded

Data
Data 0-7

8bit Data

Special-K

Sync Loss
(to Event Reg)

Data 8

RxSmall
FIFO

8b/10b
Decode
Block

Synch
State

Machine
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 89
Also in the 8b/10b Decode block, a special hardware component implements the
synchronization state machine defined in the IEEE 802.3z specification, section 36.2.5.2.6
and in FibreChannel specifications. This component tracks whether comma code groups
appear on odd or even positions in the incoming data stream to establish a state of
synchronization, after which it tracks the occurrence of running disparity errors. After
observing a defined density of disparity errors, the SyncLoss signal is asserted. This signal
sets a bit in the SONET_Event register which then sets a bit in the Event0 register that can
be programmed to cause a CPRC interrupt, which allows the CPRC the opportunity to take
corrective action, such as to initiate a re-establishment of the physical link.

RxSmallFIFO Configurable Logic Block
The RxSmallFIFO configurable logic block provides elasticity for the RxBit Processor’s
throughput requirements.

The RxSmallFIFO block also bridges the network clock domain with the C-5e NP’s internal
clock domain. The block has two (2) parts: the internal half’s clock runs at the same
frequency as the core clock, and the external half’s clock runs at the same frequency (or a
submultiple) as the external PHY’s clock. This allows the input data stream to be converted
to the core clock’s higher frequency, thereby increasing all SDP throughput.

The RxSmallFIFO is sixteen (16) locations deep and ten (10) bits wide (that is, eight (8) data
bits and two (2) control bits).

RxBit Programmable Processor
The RxBit programmable processor performs frame and cell delineation (including
serial-to-parallel conversion), pattern matching, and field extraction on serial data up to
nine (9) bits at a time. The extracted fields are written to the CP’s Extract Space.

The payload output data is nine (9) bits wide.

The RxBit programmable processor can take specific actions in microcode in response to a
particular pattern match. The RxBit programmable processor processes the data stream as
a function of position. Pattern matches can include “don’t cares.” Extracted fields and
status are written to programmable locations in the CP’s Extract Space.
C5EC3EARCH-RM REV 04

90 CHAPTER 2: CHANNEL PROCESSORS
In a sense, the RxBit programmable processor is an intelligent serial-to-parallel converter,
in that it is:

• Capable of detecting High-level Data Link Control (HDLC) frames and invalid
sequences, as well as removing stuffed zeroes.

• Used to find the Synchronous Transport Signal (STS) frame in an OC-3c data stream.

• Capable of identifying and deleting the preamble of incoming Ethernet frames.

• Used for 1000BASE-X Gigabit Ethernet delimiter recognition.

• Used to implement the receive side of the 1000BASE-X physical convergence sub-layer
of IEEE 802.3z.

• Used to delineate FibreChannel frames.

RxSONET Framer Configurable Logic Block
The RxSONET Framer configurable logic block obtains recovered receive clock frame sync
(A1 and A2) and eight-bit (8) data from the physical layer interface chip or from the RxBit
programmable processor. It descrambles the data, demultiplexes the transport overhead,
checks (B1, B2) parity, and writes the overhead octets into the CP’s register space. Refer to
Figure 11 on page 88. Each STS frame has its own parity checker.

The RxSONET Framer also interprets the STS pointer in order to extract the Synchronous
Payload Envelope (SPE). From the payload envelope, it demultiplexes the path overhead,
checks (B3) parity, and writes the other overhead bytes to the CP’s Extract Space. The
remaining payload is passed downstream, which handles concatenated formats only.

The RxSONET Framer does no demultiplexing of the SPE payload. As such, it is only
suitable for receiving frames or cells.

The RxSONET framer also provides support for detection and monitoring by software of
various SONET/SDH defects such as Loss of Signal (LOS), Loss of Frame (LOF), Loss of
Pointer (LOP), Path Remote Defect Indication (RDI-P), Line Alarm Indication Signal (AIS-L)
to name just a few. Events of interest can be masked to enable either access via RC
interrupt or polling.
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 91
RxSync Programmable Processor
RxSync is a general-purpose programmable processor that can be used to perform any
generic processing to off-load either the RxBit or RxByte Processors. One example of this is
synchronizing on ATM cells.

When configured for ATM, the RxSync programmable processor receives a byte data
stream consisting of 53-byte ATM cells. It finds the cell boundaries by applying the Header
Error Check (HEC) CRC sequentially to five-byte (5) segments, checking the first four (4)
bytes against the fifth HEC byte. If the check fails, the cell delineator repeats the process.
When it finds an application-defined number of successful HEC checks in a row, it enters
the in_sync state. It remains in this state until there has been an application-defined
number of consecutive HEC check failures, then it resumes the search.

After the data stream is synchronized, the RxSync programmable processor appends a
status byte to the data stream so that the cell could be discarded if the HEC does not
check.

The RxSync programmable processor can be programmed to parse the cell header,
writing (Virtual Path Identifier (VPI), Virtual Channel Identifier (VCI)) payload_type and
cell_loss_priority to locations in the CP’s Extract Space.

When configured for Fast or Gigabit Ethernet, the RxSync programmable processor assists
in 802.3x pause packet processing, passing the pause time up to the CPRC for processing.

The RxSync programmable processor is also capable of handling the HDLC byte escape
sequence for Point-to-Point Protocol (PPP) over SONET.

RxLargeFIFO Configurable Logic Block
The RxLargeFIFO configurable logic block is located in front of the RxByte programmable
processor and provides elasticity for the RxByte programmable processor, which typically
has the greatest computational responsibility within the RxSDP. Therefore, this block can
stage a cell while its VPI/VCI is being looked up by the C-5e NP’s TLU.
C5EC3EARCH-RM REV 04

92 CHAPTER 2: CHANNEL PROCESSORS
RxByte Programmable Processor
The RxByte programmable processor performs pattern matching and field extraction. It
also detects and parses the Ethernet and IP headers when acting as a pre-processor to the
CPRC for switching and routing applications. It can extract fields and launch TLU lookups
on fields, stream data to DMEM and to the CP’s Extract Space, and has responsibility for
interfacing with the CPRC.

The RxByte programmable processor can also perform CRC computations and checks and
has the largest amounts of Content Addressable Memory (CAM) and microcode store
space. It is expected that the RxByte microcode contains the majority of the application’s
RxSDP-resident custom functionality.

The RxByte programmable processor can take specific actions as a result of a particular
pattern match on nine (9) bit words of data. The nine (9) bit match values are stored in a
CAM, which is loaded along with the SDP’s microcode. Refer to the SDP Programming
document in the C-Ware Application Development Guide for details about CAMs.

The extracted fields are written to the CP’s Extract Space, which is memory-mapped into
the CP’s Configuration Space. The RxByte programmable processor can also initiate
lookups in the C-5e NP’s TLU on the extracted fields via the Ring Bus interface.

The receive data can pass through the RxByte programmable processor multiple times
(via an idle port) by reading the processed data back from local memory and operating on
it again via the SDP’s recirculation path. Refer to “Configuration for Recirculation
Operations Using RxSDP and TxSDP” on page 98 for details.

The RxByte programmable processor implements operations with CRC-16 and CRC-32
only. It can be programmed to check Ethernet and ATM Adaptation Layer 5 (AAL5) Frame
Check Sequence (FCS). AAL5 CRC checking is performed with assistance from the TLU.
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 93
TxSDP Detail Operations This section provides more detail information regarding each TxSDP’s programmable
processors and configurable logic blocks. The individual items are shown in Figure 13 on
page 93.

Figure 13 TxSDP Programmable Processors and Configurable Logic Blocks

TxByte Programmable Processor
The TxByte programmable processor can be programmed to read data from DMEM,
generate a valid CRC, and insert, delete, and replace fields in the egress traffic data stream.
Like the RxByte programmable processor, it is expected that the TxByte microcode
contains the majority of the application’s TxSDP-resident custom functionality.

The transmit data can pass through the TxByte programmable processor multiple times
(via an idle port) by writing the processed data back to local memory and operating on it
again via the SDP’s recirculation path. Refer to “Configuration for Recirculation Operations
Using RxSDP and TxSDP” on page 98 for details.

TxLargeFIFO Configurable Logic Block and Options
The TxLargeFIFO configurable logic block is located after TxByte programmable processor
and provides elasticity for the TxByte programmable processor, which typically has the
greatest computational responsibility within the TxSDP. This block provides elasticity for
field inserts and deletes by the TxByte programmable processor.

This FIFO is one-hundred-twenty-eight (128) locations deep and ten (10) bits wide (eight
(8) bits of data and two (2) control bits). The second control bit is not accessible to the
microcode and is used only for optional payload scrambling in OC-12 mode. The OC-12
data stream must consist of four (4) OC-3c streams.

Merge
Space

Data from
DMEM

PHY Clock Core Clock

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

TxByte
Processor

Large
FIFO

Small
FIFOTransmit SDP

Channel Processor
Co

nf
ig

ur
ab

le
 P

in
 L

og
ic
C5EC3EARCH-RM REV 04

94 CHAPTER 2: CHANNEL PROCESSORS
In addition, the TxLargeFIFO allows two (2) selectable options: Automatic Idle Cell and
PPP Flag Insertion, and Transmit FIFO High Water Mark as described here.

Automatic Idle Cell and PPP Flag Insertion Option
For the C-5e NP Version D0, the TxLargeFIFO supports automatically inserting ATM idle
cells or PPP Flag characters into the output stream when needed.

For applications running on hardware prior to the C-5e NP Version D0, the TxByte
microcode was required to perform this work. That microcode was conservative about
when to send idle cells or PPP flags, to ensure that the TxLargeFIFO never emptied
completely. This resulted in more idle cells or PPP flags being sent out than necessary,
which in turn caused reduced bandwidth over the physical interface.

The new feature for the C-5e NP Version D0 sends idle cells or PPP flags only when the
TxLargeFIFO becomes empty. Using this feature ensures that only the minimal number of
idle cells or PPP flags are sent between packets or user data cells. It also allows
TxLargeFIFO to be filled with real payload and not cluttered with idle characters.

To use the new feature, set the Idle Insert Enable bit in the SDP_MODE4 register. For ATM
applications, also set the Idle Cell Mode bit in the SDP_MODE4 register. For PPP flag
insertion, make sure that the Idle Cell Mode bit is clear. Refer to “SDP_Mode4 Register (CP
Mode Configuration Function)” on page 536.

Transmit FIFO High Water Mark Option
Most applications process a protocol header in the SDP’s TxByte serial processor prior to
streaming payload data. The speed at which it processes a header is typically less than the
transmit speed of the physical interface. If the header bytes were popped off the
TxLargeFIFO at the rate of the physical interface while TxByte is sending them out at a rate
less than that of the physical interface, an under-run condition can occur. An under-run
causes corrupted data to be sent out on the interface when no payload data is available.

To work-around this problem prior to the C-5e NP Version C0, applications padded the
TxLargeFIFO with enough flag bytes or idle cells to allow TxByte enough cycles to process
a header. For all non-SONET applications, TxByte can signal TxBit when the data is ready to
send at the physical interface speed. TxByte usually notifies TxBit at some point after it
finishes processing the protocol header. In the meantime, TxBit sends out idle bytes to
prevent under-running the physical interface.
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 95
In the C-5e NP Version D0 a high water mark feature has been added to eliminate the need
to pad the TxLargeFIFO or coordinate with TxBit. The high water mark is a count of bytes
that must be in the TxLargeFIFO for it to appear non-empty to the downstream SDP
components that pop data out of it.

The high water mark value is set in the SDP_MODE4 register. Setting this value to zero
results in the same behavior as occurred in the C-5e NP Version C0 chip. Setting
SDP_MODE4 to a non-zero value causes the transmit FIFO to appear empty until the “high
water mark” number of bytes are in the TxLargeFIFO. An application typically sets the high
water mark value to the number of bytes in the protocol header that TxByte must process
at less than the speed of the physical interface. Refer to “SDP_Mode4 Register (CP Mode
Configuration Function)” on page 536.

The high water mark depth is tested at the end of each packet. The transmit FIFO uses the
ninth bit as the end of packet or cell indication. If the TxLargeFIFO depth is less than the
high water mark when the last byte of a packet or cell is unloaded “popped” from the
TxLargeFIFO, the FIFO appears empty.

This feature can be used with the automatic Idle Cell and PPP Flag insertion logic. This logic
inserts idle cells or PPP flags whenever a downstream SDP component unloads “pops” a
byte from TxLargeFIFO and the FIFO appears empty.

TxSONET Framer Configurable Logic Block
The TxSONET Framer configurable logic block must receive data from TxLargeFIFO
configurable logic block. It obtains most of the transport overhead and path overhead
from the TxSONETOH0 to TxSONETOH31 registers. This allows the application developer to
insert values into the transmit overhead. Refer to Figure 13 on page 93.

The transmit pointer value (bytes H1 and H2 in the SONET frame’s Path Overhead
section) is fixed.

The TxSONET Framer block generates B1, B2, and B3 bit-interleaved parity, then inserts the
OC-12c overhead into the payload data and scrambles it to form either a SONET OC-3c,
OC-12, or OC-12c format.
C5EC3EARCH-RM REV 04

96 CHAPTER 2: CHANNEL PROCESSORS
TxBit Programmable Processor
The TxBit programmable processor receives byte-wide data. Under microcode control it
inserts, deletes, and replaces fields. Typically, the TxBit programmable processor provides
the reverse functions of the RxBit programmable processor. TxBit contains a
special-purpose shift register for performing parallel-to-serial conversion.

The TxBit programmable processor can impose minimum inter-frame gaps and monitor
PHY status, for instance, in order to detect MAC collisions.

Input to the TxBit programmable processor is nine (9) bits wide and its output can be one,
two, four, eight or ten (1, 2, 4, 8, or 10) bits at a time, depending on the type of physical
interface.

The TxBit programmable processor can be viewed as an intelligent parallel-to-serial
converter, because:

• The TxBit programmable processor modifies the data stream as a function of the data
stream.

• The TxBit programmable processor is used for collision detection when configured for
half-duplex 10Mbit/100Mbit Ethernet or Gigabit Ethernet.

• The TxBit programmable processor is used to implement the transmit side of the
1000BASE-X physical convergence sub-layer of IEEE 802.3z.

The TxBit programmable processor is capable of inserting the HDLC frame sequence, as
well as stuffing zeros into the data stream as appropriate, under microcode control.

TxSmallFIFO Configurable Logic Block
The TxSmallFIFO configurable logic block provides elasticity for the TxBit programmable
processor’s throughput requirements.

The TxSmallFIFO configurable logic block also bridges the network clock domain with the
C-5e NP’s internal clock domain. The TxSmallFIFO configurable logic block has two (2)
parts: the internal half’s clock runs at the same frequency as the C-5e NP’s core clock, and
the external half’s clock runs at the same frequency (or a submultiple) as the external
physical layer’s clock. This allows the outgoing data stream to be converted from the core
clock’s frequency to the PHY’s clock frequency.

The TxSmallFIFO configurable logic block is sixteen (16) locations deep and ten (10) bits
wide (that is, eight (8) data bits and two (2) control bits).
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 97
8b/10b Encode Configurable Logic Block
The 8b/10b Encode configurable logic block is located in the TxSDP.

This one (1) block contains hardware for encoding between 8bit and 10bit formats. This
enables support for protocols that require 8b/10b encoding, such as FibreChannel or
Gigabit Ethernet over the Ten Bit Interface (TBI).

As shown in Figure 14 on page 97, in the TxSDP the 8b/10b Encode block receives as input
the 8bit data and Special-K bit (again, in the ninth bit position) and outputs the
appropriate 10bit encoded value.

Figure 14 Operation of 8b/10b Encode Configurable Logic Block

When transmitting idle code groups to the 8b/10b Encode block, the TxBit Processor
should be programmed to transmit a series of (K28.5, D31.7). The D31.7 will be converted
to the appropriate Dx.y value, either D5.6 or D16.2, depending on the block’s internal
odd/even state. This relieves TxBit from the burden of tracking the odd/even state of its
output stream.

TxBit
Processor

8bit Data

Special-K

TxSmall
FIFO

8b/10b
Encode
Block
C5EC3EARCH-RM REV 04

98 CHAPTER 2: CHANNEL PROCESSORS
Configuration for
Recirculation Operations
Using RxSDP and TxSDP

Enabling recirculation for an SDP means to configure its RxSDP and TxSDP so that the
output from the TxSDP processor is routed to the input of its corresponding RxSDP
processor. This method is one way to pipeline your C-5e NP. The C-5e NP Pipeline Channel
Mode, allows you to scale processing power for a particular application, the CPs can be
linked for pipelined processing on a single data stream. Refer to Figure 15 on page 98.

Figure 15 SDP Recirculation Path Using Both RxBitLoopBack and RxByteLoopBack Bits

The SDP can be configured to permit recirculation of the data path in either of two (2)
ways:

• From the TxByte programmable processor’s output to the RxByte programmable
processor’s input, enabled by setting the SDP_Mode3 register bit [25] RxByteLoopBack
field.

• From the TxBit programmable processor’s output to RxBit programmable processor’s
input, enabled by setting the SDP_Mode3 register bit [24] RxBitLoopBack field.

Enabling recirculation for a CP’s SDP can be useful in two (2) different ways: pipelining
packet processing (during normal operations) and debugging and test.

• During normal operation, the ingress CP performs packet classification then enqueues
the packet descriptor. If additional classification is desired, another CP with loopback
set can dequeue the packet descriptor and process the packet again. The payload is
moved from SDRAM through DMEM in the TxSDP. Using either the byte or bit

Merge
Space

Data from
DMEM

8b/10b
Decode
Block

Small
FIFO

Large
FIFOTransmit SDP

Receive SDP

Channel Processor

TLU
Lookups

Extract
Space

Data to
DMEM

TxSONET
Framer
Block

RxBit
Loopback

RxByte
Loopback

Small
FIFO

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxByte
Processor

TxBit
Processor

TxByte
Processor

Large
FIFO

8b/10b
Encode
Block

PHY Clock Core Clock

PHY Clock Core Clock
C5EC3EARCH-RM REV 04

Serial Data Processors (SDPs) Overview 99
loopback, the data is brought back through the RxSDP for further classification. The
second CP then enqueues the new packet descriptor for either actual transmit or for
another stage of loopback processing for classification or forwarding decisions.
Figure 16 on page 99 summarizes the data flow during normal operations. The
recirculation operation can be used for any application that requires greater degrees of
packet processing. For example, with applications such as multichannel HDLC and
encryption that use T1 and T3 data rates.

Figure 16 Recirculation Shown for Normal Operations (for Cooperating CPs)

• SDP loopback can be used to debug the output of the TxSDP. Transmit data can be
brought back on the chip for traffic analysis or chip test through the RxSDP without
ever having to move data off chip.

Bit level recirculation for an SDP is not supported for CPs within the same cluster.

CP1 CP5

CP2 CP6

CP3 CP7

CP4CP0
Recirculation
Path

CP Pairs

Ingress
Port

Receive
Process 1

Egress
Port

Recirculation
Path

Receive
Process 2

Transmit
Process 2

Transmit
Process 1
C5EC3EARCH-RM REV 04

100 CHAPTER 2: CHANNEL PROCESSORS
CP RISC (CPRC) Overview Each of the sixteen (16) CPs has a Reduced Instruction Set Computer (RISC) Core. The
dedicated CPRC in each channel orchestrates cell and packet processing. The CPRC
operates at the C-5e NP’s core clock rate.

The CPRC contains a 32bit data path and accesses memory using a 32bit physical address.
Within the address space, a CPRC can reference its own local memory with zero-wait-state
latency in the absence of remote contention from the Global Bus. Memory addresses
outside of local memory range refer to remote memory space contained within other CPs
and the Executive Processor (XP).

The CP contains memory-mapped, shared control registers used for CPRC-to-SDP
communication. Refer to “CP Configuration Space” on page 112. The shared control
registers also enable the CPRC to control the Payload and Ring Buses and enable the XP to
configure the channel during initialization.

RISC Instruction Set
Supported

The CPRC executes the following instruction set: a subset of MIPSTM1 instruction set
(excluding multiply, divide, floating point, unaligned loads and stores, move to hi and
move to lo), eight (8) Branch Likely instructions from the standard MIPSTM 2 instruction
set, and sixteen (16) custom instructions. Refer to “RISC Core Enhancements” on page 804.
The CPRC supports the classes of instructions shown in Table 15 on page 101. The CPRC
includes four (4) sets of 32 internal registers. Each set is associated with a CP’s context.
These internal registers are used to support fast context switching. These internal registers
are defined in Table 16 on page 101.

The standard MIPS Coprocessor Zero (CP0) register are not supported. However,

Freescale provides its own special purpose Coprocessor Zero registers. Refer to Table 17
on page 102.

It is highly recommended that you use the C-Ware Compiler when building your
application code. Therefore, refer to the C-Ware Application Development Guide for

information on using the Freescale compiler, which supports the CPRC.
C5EC3EARCH-RM REV 04

CP RISC (CPRC) Overview 101
Table 15 CPRC Supported Instruction Classes

CLASS OF INSTRUCTION DESCRIPTION

Load and Store Load immediate values and move data between memory and
general registers.

Computational Perform arithmetic and logical operations for values in registers.

Jump and Branch Change program control flow.

Coprocessor Interface Provide standard interfaces to the coprocessors.

Special Perform miscellaneous tasks.

Table 16 CPRC (32) Internal Registers Definitions

CPRC INTERNAL
REGISTER NAMES SOFTWARE NAME USE AND LINKAGE

$0 — Always has the value of 0.

$at or $1 — Reserved for the assembler.

$2:$3 v0 to v1 Used for expression evaluations and to hold integer
function results. Also used to pass the static link when
calling nested procedures.

$4:$7 a0 to a3 Used to pass the first four words of integer type actual
arguments. Their values are not preserved across
procedure calls.

$8:$15 t0 to t7 Temporary registers used for expression evaluations.
Their values are not preserved across procedure calls.

$16:$23 s0 to s7 Saved registers. Their values must be preserved across
procedure calls.

$24:$25 t8 to t9 Temporary registers used for expression evaluations.
Their values are not preserved across procedure calls.

$26:$27 or
$kt0:$kt1

k0 to k1 Used internally by the C-5e NP system services.

$28 or $gp gp Contains the global pointer.

$29 or $sp sp Contains the stack pointer.

$30 s8 A saved register (like s0 - s7).

$31 ra Contains the return address used for expression
evaluation.
C5EC3EARCH-RM REV 04

102 CHAPTER 2: CHANNEL PROCESSORS
See the MIPSpro™ Assembly Language Programmer’s Guide for information about the
standard MIPSTM1 instruction set. It is available at
http://www.mips.com/publications/index.html.
)

Fast Context Switching
Configuration Using the

CPRC

The CPRC and its memory architecture are optimized for the execution of real-time
communication tasks, typically multiplexing processing between a number of different
tasks (transmit and receive, at a minimum). The CPRC may be configured to incorporate a
fast, four-way, context switching feature that replicates the entire CPRC register space four
(4) times and can switch from one register set (one context) to another under software
control or hardware interrupt.

Thus, actual processing (as opposed to manually saving the contents of one set of
registers and then loading another) can begin on a different context in only two cycles.
Therefore, these four (4) contexts can be used for debugging, supervisory tasks, event
handlers, or other tasks.

Table 17 Motorolas Coprocessor Zero Register Definitions

REGISTER DEFINITION

R0 Whoami Register — Contains the DMEM base (hardcoded) for this CPRC.

R1 Interrupt Table Register — Contains the vector address for INT 0.

R2 Break Table Register — Contains the vector address for break 0.

R3 Current Context Register — The two LSBs are the current context register.

R4 DMEM Comparison Address — Contains the address at which debug pulse is
generated.

R5 DMEM Comparison Address Mask — Contains the mask for the DMEM address.

R6 DMEM Comparison Data — Contains the data value for which debug pulse is
generated.

R7 DMEM Comparison Data Mask — Contains the mask for the DMEM data.

R8 Interrupt Flag — The LSB in the Interrupt Flag.

R9 Read/Write Mask — The two LSBs are the Read mask and the Write mask for R4 to
R7.
C5EC3EARCH-RM REV 04

http://www.mips.com/publications/index.html

CP RISC (CPRC) Overview 103
Figure 17 CP Context Switching Feature Block Diagram

Fast Context Switching
Detail Operations

Using the internal registers, context switching is accomplished two (2) ways:

1 Coprocessor instruction (software):

The software mechanism for executing a context switch is the Freescale Coprocessor Zero
instructions. Refer to Table 17 on page 102.

– MTC0 $1 $3

– where $1 specifies the destination context, and where $3 is the source or current
context. The contexts have no priority; how they are used is entirely designated by
software.

2 Interrupt (hardware):

The hardware interrupt sequence is:

– All interrupts are disabled until an Restore From Exception (RFE) instruction is
executed.

– The address of the next instruction to be executed in the interrupted context is
saved in K1. Refer to “Interrupts” on page 104.

– Program execution continues with the instruction at the address specified in the
interrupt vector.

Context 0 Context 3

Context 2Context 1

Other
Tasks

Debugging/
Supervisory Tasks/

Event Handlers

CPRC

Receive
Task

Transmit
Task
C5EC3EARCH-RM REV 04

104 CHAPTER 2: CHANNEL PROCESSORS
Interrupts The CPRC supports four (4) prioritized hardware interrupts, that can be triggered from any
bits in the Event0/Event1 Registers. There are four (4) MIPS-like register sets corresponding
to each hardware context, one (1) register of which (K0) is shared by the other contexts.

K1 contains the program counter value and the context number of the interrupted
context. These values are used in the execution of the RFE instruction to return to the
previously interrupted context.

All interrupts and exceptions transfer control to a location found in the appropriate
interrupt or break table. The base address of the interrupt table is specified by the
contents of the interrupt table register ($1) in coprocessor zero. The base address of the
exception table is specified by the contents of the break table register ($2) in coprocessor
zero.

Interrupts are dispatched by a jump to the address equal to ((interrupt number * 8) +
(interrupt table register)). Exceptions are dispatched by a jump to the address equal to
((break number * 8) + (break table register)). In addition to the jump, the register context
is set to zero and interrupts are disabled. However, exceptions may still occur. Whether a
hardware interrupt or an exception, the interrupted routine’s register context and its next
program counter are saved in K1 of context zero.

The K1 value points at the next instruction to be executed after the interrupt is serviced.
RFE is normally used to: (1) resume the instruction flows at this point, (2) restore the
proper register context, and (3) restore the Interrupt Enable Flag (IEF) to its value at the
time of the interrupt or exception.

Interrupts are not recognized in a branch delay slot. Also, all exceptions fill the delay slot
following a change of flow with a NOP instruction.

Interrupts are enabled by setting the IEF which is the LSB of coprocessor zero, Register 8,
(Interrupt Flag). Refer to Table 17 on page 102. The IEF is preserved whenever an
exception or an interrupt occurs and is restored by the RFE instruction.
C5EC3EARCH-RM REV 04

CP Memory (IMEM and DMEM) 105
CP Memory (IMEM and
DMEM)

The CP has local instruction memory (IMEM) and data memory (DMEM).

Instruction Memory
(IMEM)

Each CP shares access to a 32kByte IMEM among a cluster of four (4) adjacent CPs, as
shown in Figure 18 on page 105. The IMEM is configured as four (4) sub-arrays, with each
CP in the cluster given access to the arrays, one per cycle, in fixed round-robin order. With
this simple interleaved scheme, the four (4) adjacent CPRCs can access this memory at
nearly full bandwidth.

Figure 18 Local and Shared Memory in a Channel Processor

When adjacent channels are configured to handle similar communication protocols, the
large shared memory can contain both CP-specific code and cluster-shared code (such as
exception routines).

At initialization time, the 32kByte array can be divided so that each CP gets a dedicated
8kByte sub-array. This array allocation removes all CP contention for IMEM (and also
removes the ability to share code among CPs).

CPRC instruction execution outside of the shared local memory space is not supported.

CPRC Bus
Control

and
Registers

Bus
Control

and
Registers

Bus
Control

and
Registers

Bus
Control

and
Registers

CPRC

SDP

CPRC

SDP

SDP

CPRC

SDP

IMEM
(8kByte)

IMEM
(8kByte)

IMEM
(8kByte)

IMEM
(8kByte)

DMEM
(12kByte)

DMEM
(12kByte)

DMEM
(12kByte)

DMEM
(12kByte)

CP0

CP3 CP2

CP1
C5EC3EARCH-RM REV 04

106 CHAPTER 2: CHANNEL PROCESSORS
Data Memory (DMEM) Each CPRC in a cluster has a local 12kByte DMEM and can access the local DMEM of any
other CPRC in the cluster with one additional cycle of latency.

The local 12kByte DMEM is organized as 16Byte lines providing 3.2GBps peak bandwidth
through a single port. The memory resides in the global address space of the C-5e NP.
Local CPRC and Global Bus references use a 4Byte (32bit) access path with zero-wait states
in the absence of contention.

The SDP assembles payload data into 16Byte lines and writes it into local DMEM for
receive cell/packet processing. For transmit, the SDP reads bytes of payload data from a
16Byte line buffer that is filled from DMEM using a single-cycle, 16Byte access. The
Payload Bus controller moves buffers to and from SDRAM through this memory in 64Byte
bursts comprised of four (4) consecutive 16Byte accesses.

The SDP and payload transactions have priority over CPRC transactions and use
predetermined slots to access DMEM; this provides predictable bandwidth and latency
and eliminates the need for extra data buffering. Global references and local CPRC
references contend for unused DMEM access slots.
C5EC3EARCH-RM REV 04

CP Memory Interface Transactions 107
CP Memory Interface
Transactions

The CP memory interface transactions are described in Table 18 on page 107.

Table 18 CP Memory Interface Transactions

TRANSACTION
TYPE

MEMORY
TYPE DESCRIPTION

Payload Buffer
Write

DMEM to
SDRAM

The CPRC sets up a Write Control Block (WrCB0 or WrCB1) or Receive
Control Block (RxCB0 or RxCB1) and clears the Avail bit to cause the
bus controller to arbitrate for a payload write. When grant is
acquired, the controller transfers 64Bytes in a four-cycle,
16Byte-per-cycle burst from local DMEM directly onto the Payload
Bus. Transmission is successful if the receiver acknowledges (ACKs).
Otherwise, the bus controller can retry or terminate depending on
the programmable controller configuration.

Payload Buffer
Read

SDRAM to
DMEM

The CPRC sets up a Transmit Control Block (TxCB0 or TxCB1) or Read
Control Block (RdCB0 or RdCB1) and clears the Avail bit to cause the
bus controller to arbitrate for a payload read. When grant is acquired,
the controller transfers the read address and makes the request.
Transmission is successful if the receiver ACKs. Otherwise, the bus
controller can retry or terminate depending on the programmable
controller configuration.
If the memory controller or queue controller accepts the request, it
accesses SDRAM and returns the requested data. Access to DMEM is
guaranteed; no acknowledgment is required. The bus controller bus
moves 64Bytes in a four-cycle, 16Byte-per-cycle burst directly into
the DMEM in consecutive cycles.

Rx SDP Byte
Process

External
to DMEM

The CPRC sets up a Receive Control Block (RxCB0 or RxCB1) to control
the SDP RxByte Processor. When the accumulation buffer fills with
byte writes from the RxByte Processor, the 16Byte line is written into
the DMEM at the address in the RxCB0_SDP_Addr register bits [13:0]
ByteAddr field using the next guaranteed Receive access time to
DMEM.

Tx SDP Byte
Process

DMEM to
External

The CPRC sets up a Transmit Control Block (TxCB0 or TxCB1) to control
the SDP TxByte Processor. When the TxByte Processor requests a byte
read, a 16Byte line buffer is filled from DMEM at the address in the
RxCB0_SDP_Addr register. Subsequent byte reads from the SDP are
serviced from the line buffer. DMEM access uses the next guaranteed
Tx access time to DMEM.
C5EC3EARCH-RM REV 04

108 CHAPTER 2: CHANNEL PROCESSORS
CPRC
Read/Write

DMEM The CPRC uses word, half-word, and byte loads and stores to access
the local DMEM cluster. Local DMEM access for transmit and receive
Direct Memory Access (DMA) transactions is guaranteed and takes
top priority. CPRC memory references falling within the local DMEM
address space receive single-cycle access if memory is available.
CPRC memory references falling outside the local DMEM but within
the DMEM cluster, take a cycle to arbitrate for the desired DMEM
array. When other CPRCs in the cluster have requested a DMEM array,
the local CPRC participates in the arbitration. The arbitration scheme
ensures that cluster accesses are serviced within the next four cycles
that are free of local transmit and receive DMA.

CPRC
Read/Write

Global
Space

The CPRC uses 32bit word loads and stores to access global memory
space. Load operations outside of the cluster DMEM space cause the
bus controller to arbitrate for a global transaction. Upon acquisition
of grant, the controller drives out the address and request.
Transmission of the request is successful if the receiver ACKs.
Otherwise, the controller can retry or terminate depending on the
programmable controller configuration. Later, the receiver drives
back the request data. The CPRC stalls until the load data arrives, so
there can only be a single load to global space outstanding per CPRC.
Store operations to global memory space dumps address and data
into a write buffer in the bus controller. If the write buffer is full, the
CPRC process stalls, otherwise the CPRC process continues. A valid
write buffer entry causes the bus controller to arbitrate for the global
bus. When grant is acquired, the controller drives out address and
data. Transmission is successful if the receiver ACKs. Otherwise, the
controller can retry or terminate depending on the programmable
controller configuration. Since these transactions do not involve the
local arrays, DMEM DMA can take place underneath.

CPRC
Instruction
Fetch

IMEM Instruction fetch is always local to cluster IMEM.
Note: Global memory addresses are not allowed.

Read IMEM The read uses the (lwc2) instruction.

Write IMEM The write uses the (swc2) instruction.

Table 18 CP Memory Interface Transactions (continued)

TRANSACTION
TYPE

MEMORY
TYPE DESCRIPTION
C5EC3EARCH-RM REV 04

CP Memory Interface Transactions 109
Global Bus
Read/Write

DMEM Global Bus transactions are 32bit word length. From the
point-of-view of the target receiving a CPRC Global Memory Space
Read/Write, when the bus controller decodes a global read targeted
at its local DMEM, it loads a read address latch and either sends back
an ACK, if successful, or non-acknowledge (NACK) if the latch is full.
The controller arbitrates for DMEM along with cluster DMEM
requests. When granted, the controller reads the requested data of
the DMEM array into a latch, then arbitrates for the bus. When the
bus access is granted, the read data is returned to the requester
which must ACK.
When the bus control indicates a global write targeted at the local
DMEM, the bus controller loads a write address and data latch and
either sends back an ACK, if successful, or NACK if the latch is full. The
controller arbitrates for DMEM taking the next available cycle to write
the data into the array.

CPRC
Read/Write

Configura
tion
Space

Global configuration registers maintained on a per CP basis are
addressed in global memory space. The CPRC reads and writes the
registers over its 32bit data bus using word, half-word, and byte load
and store operations. Access is guaranteed since these transactions
do not involve the local arrays.

Global
Read/Write

Configura
tion
Space

Global access of configuration registers follows the same timing as
global access of DMEM.

Table 18 CP Memory Interface Transactions (continued)

TRANSACTION
TYPE

MEMORY
TYPE DESCRIPTION
C5EC3EARCH-RM REV 04

110 CHAPTER 2: CHANNEL PROCESSORS
DataScope Purpose The CP architecture provides access to two (2) sets of packet headers and data fields
(Datascope0 and Datascope1) to enable a unique feature called data scoping. Data scoping
allows overlap of CPRC processing tasks while receiving and transmitting packets. Each
data scope provides the CPRC with a coherent view of an individual packet on reception
or transmission, including DMA parameters, Extract or Merge registers, and table lookup
results.

The exact contents of the Extract and Merge registers are determined by microcode. Refer
to the C-Ware Microcode Programming Guide (part number CSTMCPG-UG/D) for details.

Data scopes also eliminate the need for the CPRC program itself to manage the coherency
of these disparate operations, allowing the construction of a simple, efficient two-stage
software pipeline model. There are a total of four (4) data scopes available, two (2) for
receive (Receive Control Blocks RxCB0 and RxCB1) and two (2) for transmit (Transmit
Control Blocks TxCB0 and TxCB1 registers). A diagram of a CP depicting the receive and
transmit data scopes is shown in Figure 19 on page 110.

Figure 19 Four (4) Data Scopes Between the CPRC and SDPs

A hardware receive data scope is made up of Extract Space, an SDP Receive status register,
and a Receive Control Block (RxCB). A hardware transmit data scope is made up of Merge
Space, an SDP Transmit status register, and a Transmit Control Block (TxCB).

 Shared
Register
 File

Data Scope RxCB1
Data Scope RxCB0

Config
Reg

Extract
Space

Merge
Space

RxSDP

TxSDP

CPRC

Data Scope TxCB0
Data Scope TxCB1
C5EC3EARCH-RM REV 04

CP Memory Interface Transactions 111
Data Scope Detail Operations
Initially, the RxSDP brings in payload, extracts fields and writes them to Extract Space, and
launches table lookups on the Ring Bus in Datascope0. Hardware directs SDP DMEM writes
to RxCB0, Extract Space writes to RxSDP0_Ext0 to RxSDP0_Ext31, and status updates to
RxCtl0_Status. Subsequently, the RxSDP signals that it has finished processing a
cell/packet, triggering the hardware to switch to Datascope1.

Then the hardware directs SDP DMEM writes to RxCB1, Extract Space writes to
RxSDP1_Ext0 to RxSDP1_Ext31, and status updates to RxCtl1_Status. At the end of this
cell/packet, hardware switches back to scope 0. The SDP is required to test the status bits
in RxStatus to be sure the new scope is ready before processing the next cell/packet.

The CPRC must monitor both RxCtln_Status registers to track SDP processing. After the
SDP finishes a scope, the CPRC must:

• Examine and possibly remove relevant data from the associated Extract Space.

• Examine the RxCBn to confirm that the payload DMA finished and reprogram the
RxCBn if necessary.

• Examine and possibly remove relevant data from the Ring Bus response registers and
reset the ownership bits.

• Update the RxCtln_Status to make the scope available to the SDP.

The TxSDP and CPRC operate in a similar manner to transmit the datascopes.
C5EC3EARCH-RM REV 04

112 CHAPTER 2: CHANNEL PROCESSORS
CP Configuration Space Each CP has memory-mapped Configuration Space that contains a number of registers.
Refer to Table 19 on page 113 for a list of CP registers by function. The CPRC uses these
registers to communicate with the SDP, the bus controllers, and the XP.

Address Mapping of the
CPs

Since the CP configuration space is duplicated for each CP (CP0 to CP15), the address
listed in the memory maps and register descriptions begins with 0xBCn0 where n should
be replaced with the appropriate offset for the particular CP. Refer to Chapter 1 for
addressing details.

The Configuration Space provides a 1MB block or segment of Configuration Space for
each CP. Specific registers are located at offsets from each CP’s Configuration Space base
address.

Figure 20 CP Configuration Space Memory Map

0xBCnFFFFF

0xBCn03000
0xBCn02FFF

0xBCn00000

0xBCn03FFF
0xBCn04000

0xBCn04FFFCP Configuration
Space

(4k Bytes)

Reserved
(4k Bytes)

Local DMEM
(12k Bytes)
C5EC3EARCH-RM REV 04

CP Configuration Space 113
Table 19 CP Registers by Function

CP FUNCTION SPECIFIC REGISTERS

DMEM See “Data Memory (DMEM)” on page 106

Rx Extract RxSDP0_Ext0 to RxSDP0_Ext15
RxSDP1_Ext0 to RxSDP1_Ext15

Rx Control Blocks RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr,
RxCB0_SDP_Addr, RxCB0_Status,
RxCB1_Sys_Addr, RxCB1_Ctl, RxCB1_DMA_Addr,
RxCB1_SDP_Addr, RxCB1_Status

Tx Merge TxSDP0_Merge0 to TxSDP0_Merge15
TxSDP1_Merge0 to TxSDP1_Merge15

Tx Control Blocks TxCB0_Sys_Addr, TxCB0_Ctl, TxCB0_DMA_Addr,
TxCB0_SDP_Addr, TxCB0_Status,
TxCB1_Sys_Addr, TxCB1_Ctl, TxCB1_DMA_Addr,
TxCB1_SDP_Addr, TxCB1_Status

Wr Control Blocks WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr,
WrCB1_Sys_Addr, WrCB1_Ctl, WrCB1_DMA_Addr

Rd Control Blocks RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr,
RdCB1_Sys_Addr, RdCB1_Ctl, RdCB1_DMA_Addr

Ring Bus Tx Message Control TxMsg0_Ctl, TxMsg1_Ctl, TxMsg2_Ctl, TxMsg3_Ctl,
TxMsg0_Data_H, TxMsg0_Data_L, TxMsg1_Data_H,
TxMsg1_Data_L, TxMsg2_Data_H, TxMsg2_Data_L,
TxMsg3_Data_H, TxMsg3_Data_L

Ring Bus Rx Response Control RxResp0_Ctl, RxResp1_Ctl, RxResp2_Ctl, RxResp3_Ctl,
RxResp4_Ctl, RxResp5_Ctl, RxResp6_Ctl, RxResp7_Ctl,
RxResp0_DataH, RxResp0_DataL, RxResp1_DataH,
RxResp1_DataL, RxResp2_DataH, RxResp2_DataL,
RxResp3_DataH, RxResp3_DataL, RxResp4_DataH,
RxResp4_DataL, RxResp5_DataH, RxResp5_DataL,
RxResp6_DataH, RxResp6_DataL, RxResp7_DataH,
RxResp7_DataL

Ring Bus Rx Message Control RxMsg_Ctl, RxMsg_FIFO

SONET Rx Control Rx_SONETH0 to Rx_SONETH31

SONET Tx Control Tx_SONETH0 to Tx_SONETH31

SDP Rx Control RxCtl_ByteSeq0, RxCtl_ByteSeq1, RxCtl_SyncSeq,
RxCtl_BitSeq0, RxCtl_BitSeq1

SDP Tx Control TxCtl_ByteSeq0, TxCtl_ByteSeq1, TxCtl_BitSeq0,
TxCtl_BitSeq1
C5EC3EARCH-RM REV 04

114 CHAPTER 2: CHANNEL PROCESSORS
For complete details about specific registers go to their reference. Refer to “CP Registers”
on page 486.

Understanding CP
Functions

The following is a discussion of the CP functions and the registers associated with each
function.

Extract Space
Configuration Space contains 64Bytes of Extract Space per datascope
(Datascope0/Datascope1) for passing fields extracted from the receive data stream (by
the SDP RxByte programmable processor) to the CPRC. The RxByte programmable
processor performs byte-wide write operations to the Extract Space by specifying the
configuration register destination commands in microcode.

The RxByte programmable processor cannot read the Extract Space registers.

The CPRC accesses the memory-mapped Extract Space using load and store instructions.
The CPRC can write to the Extract Space registers, but only during initialization and test
periods when the SDP_Mode3 register bit [30] RxEnable field is cleared.

The data format for the Extract Space is defined by agreement between the CPRC
program and the RxByte programmable processor microcode. Refer to Table 20 on
page 115 for Extract Space registers.

CP Mode Configuration CP_Mode0, CP_Mode1, SDP_Mode2, SDP_Mode3,
SDP_Mode4, SDP_Mode5, Debug_Mode, PIN_Mode

Queue Status Queue_Status0, Queue_Status1, Queue_Status2,
Queue_Status3, Queue_Update0, Queue_Update1,
Queue_Update2, Queue_Update3

Miscellaneous Event_Timer, Cycle_Counter_H, Cycle_Counter_L

Event and Interrupt Event0, Event0, Event_Mask1, Event_Mask1,
Event_Access, Mask_Access, Interrupt_Mask0,
Interrupt_Mask1, SONET_Event, SONET_Mask

Table 19 CP Registers by Function (continued)

CP FUNCTION SPECIFIC REGISTERS
C5EC3EARCH-RM REV 04

CP Configuration Space 115
Merge Space
Configuration Space contains 64Bytes of Merge Space per datascope
(Datascope0/Datascope1) for passing fields from the CPRC to the SDP TxByte
programmable processor to merge in with the transmit data stream. The CPRC accesses
the memory-mapped Merge Space using load and store instructions. The TxByte
programmable processor performs byte-wide read operations from the Merge Space by
specifying the configuration register source in microcode. The data format for the Merge
Space registers is defined by the CPRC process and the SDP firmware. Refer to Table 21 on
page 115 for Merge Space registers.

The TxByte programmable processor cannot write to the Merge Space registers.

Table 20 Extract Space Registers

REGISTER NAME PURPOSE ADDRESS DETAILS

RxSDP0_Ext0 to
RxSDP0_Ext15

Used to pass fields extracted from
the receive data stream by the
RxSDP to the CPRC. These
registers are used only for receive
data scope0.

0xBCn04000 to
0xBCn0403C

See “RxSDP0_Ext0 to
RxSDP0_Ext15 Registers
(CP Rx Extract Space0
Function)” on page 492

RxSDP1_Ext0 to
RxSDP1_Ext15

Same as registers RxSDP0_Ext0 to
RxSDP0_Ext15, except for data
scope1.

0xBCn04200 to
0xBCn0423C

See “RxSDP1_Ext0 to
RxSDP1_Ext15 Registers
(for Datascope1)” on
page 492

Table 21 Merge Space Registers

REGISTER NAME PURPOSE ADDRESS DETAILS

TxSDP0_Merge0 to
TxSDP0_Merge15

Used to pass fields from the CPRC
to the TxSDP to merge in with the
transmit data stream. These
registers are used only for
transmit data scope0.

0xBCn04100 to
0xBCn0413C

See “TxSDP0_Merge0
to TxSDP0_Merge15
Registers (CP Tx
Merge Space0
Function)” on
page 492

TxSDP1_Merge0 to
TxSDP1_Merge15

Same as registers TxSDP0_Merge0
to TxSDP0_Merge15, except for
data scope1.

0xBCn04300 to
0xBCn0433C

See “TxSDP1_Merge0
to TxSDP1_Merge15
Registers (for
Datascope1)” on
page 493
C5EC3EARCH-RM REV 04

116 CHAPTER 2: CHANNEL PROCESSORS
Control Block Registers
Configuration Space includes eight (8) sets of control registers called Control Blocks (CBs)
that govern DMA operations to and from DMEM. The CPRC sets up the control registers to
perform four (4) types of DMEM DMA operations:

• Write Control Block (WrCB0_ , WrCB1_)

• Read Control Block (RdCB0_ , RdCB1_)

• SDP RxByte Processor Receive Control Block (RxCB0_ , RxCB1_)

• SDP TxByte Processor Transmit Control Block (TxCB0_ , TxCB1_)

Write Control Blocks (WrCB0_ , WrCB1_)
Two Write Control Blocks (WrCB0_ and WrCB1_) provide the capability for general
purpose write tasks, such as Buffer Transfers, QMU enqueues and BTag writes. These tasks
are DMA operations of programmable length that move data from DMEM over the
Payload Bus in bursts of four (4) cycles with 16 bytes per burst.

Figure 21 on page 117 shows a Buffer Transfer. In general, data is moved from DMEM (the
source) to SDRAM (the destination). Specifically, moving data starting at the LineAddr (1)
location inside DMEM with a Length (2) to SDRAM beginning at the (PoolID, BTag and
Offset (3,4,5)) location. These individual fields that are used to set up the details of the
block move make up parts of these registers: WrCBn_Sys_Addr, WrCBn_Ctl and
WrCBn_DMA_Addr.
C5EC3EARCH-RM REV 04

CP Configuration Space 117
Figure 21 DMA Operation (Buffer Transfer) Using WrCBn_ Registers

Buffer Transfer Setup Using WrCBn_Sys_Addr, WrCBn_Ctl and WrCBn_DMA_Addr:
To set up this single contiguous data transfer, the CPRC writes a system address and a line
address for DMEM to the WrCB. The length is written by the CPRC to the desired transfer
length.

To perform Buffer Transfers involves setting the bits for WrCB0_Sys_Addr (0xBCn04400),
WrCB0_Ctl (0xBCn04404) and WrCB0_DMA_Addr (0xBCn04408).

To set up a general contiguous data transfer, the CPRC process must do the following:

1 Ensure that the WrCB0 is available by testing that WrCB0_Ctl bit [31] Avail field=1.

2 Write WrCB0_Sys_Addr with the system address to be written in the form of:
WrCB0_Sys_Addr bits [31:16] BTag field = BTag, and
WrCB0_Sys_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically equal to 0, or aligned to a 64Byte
boundary).

Register Fields

WrCBn_Sys_Addr

WrCBn_Ctl

WrCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

2

3

4 5

1

2

5

4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)Address

16Bytes

Source Destination

WrCB Block Move of Data
C5EC3EARCH-RM REV 04

118 CHAPTER 2: CHANNEL PROCESSORS
3 Write the Pool ID portion of the system address into WrCB0_DMA_Addr bits [20:16]
PoolID field. Write WrCB0_DMA_Addr bits [13:4] LineAddr field with the location of a
buffer in DMEM, typically aligned on a 64Byte boundary. This is the location that the
DMA engine uses to begin transferring data out of DMEM to SDRAM.

4 Write WrCB0_Ctl with WrCB0_Ctl bits [13:4] Length field equal to the number of bytes
to be transferred, and WrCB0_Ctl bit [31] Avail field equal to 0, and WrCB0_Ctl bit [29]
Modulo64 equal to 0 to cause the WrCB0_Sys_Addr bits [15:4] Offset field and
WrCB0_DMA_Addr bits [13:4] LineAddr field to increment during the DMA for a
contiguous block transfer.

For complete details about specific registers go to their reference. Refer to:
“WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function)” on page 499, “WrCB0_Ctl
Register (CP Wr Control Block0 Function)” on page 500, and “WrCB0_DMA_Addr Register
(CP Wr Control Block0 Function)” on page 501. You also have the following registers
available for Control Block1: WrCB1_Sys_Addr, WrCB1_Ctl and WrCB1_DMA_Addr that
function in the same manner.

Buffer Transfer Operations Using WrCBn_Sys_Addr, WrCBn_Ctl and WrCBn_DMA_Addr:
An availability bit indicates DMA or CPRC control of the block of DMEM. When set, the
CPRC controls the block; when clear, the DMA engine controls the block and is free to
transfer out of it.

Clearing the availability bit, WrCB0_Ctl bit [31] Avail field, the CPRC process initiates a data
transfer from DMEM beginning at the line addressed by WrCB0_DMA_Addr bits [13:4]
LineAddr field to SDRAM beginning at the system address in WrCB0_Sys_Addr. The DMA
engine transfers payload out of DMEM in bursts, decrementing WrCB0_Ctl bits [13:0]
Length field by 64Bytes for each burst. Transfer continues until the WrCB0_Ctl bits [13:0]
Length field equals 0 (at which time the DMA engine sets WrCB_Ctl bit [31] Avail field, thus
returning control of the WrCB back to the CPRC process).

Initiating transfers with WrCB0_Ctl bits [13:0] Length field equal to 0 causes a single 64Byte
transfer. If a 4-cycle, 64Byte transfer is started with WrCB0_Ctl bits [13:0] Length field less
than 64 bytes, only the number of 16Byte lines needed to transmit the whole length
actually get written into SDRAM and the Length field is set to 0 after the burst.

If the WrCB0_Sys_Addr bits [15:4] Offset field is aligned to a 64Byte boundary, a contiguous
64Byte block of DRAM is written. If the WrCB0_Sys_Addr bits [15:4] Offset is 64Byte
unaligned, the DRAM block is written in a wrapped fashion which is typically not useful.
Typically, contiguous transfers start with aligned offsets.
C5EC3EARCH-RM REV 04

CP Configuration Space 119
WrCB0_DMA_Addr bits [13:4] LineAddr field increments for each of the four
16Byte-per-cycle transfers to provide an address into DMEM. Typically, WrCB0_DMA_Addr
bits [13:4] LineAddr field starts at a 64Byte aligned address. WrCB0_DMA_Addr bits [13:4]
LineAddr field can start unaligned, but the resulting wrap behavior is not useful. Transfers
with Offset unaligned make the most sense if the Length and Offset fields are set so that
the resulting SDRAM completes a block of SDRAM, but does not wrap. For example, if
WrCB0_Sys_Addr bits [15:4] Offset field= 0x0010 and WrCB0_Ctl bits [13:4] Length field=
0x0030, then the DMA moves three 16Byte lines from DMEM[1:3] to SDRAM[1:3]. The
burst wraps to DMEM[0] and SDRAM[0], but the write is inhibited. If WrCB0_Ctl bit [29]
Modulo64 field equal to 0, WrCB0_DMA_Addr bits [13:4] LineAddr field and
WrCB0_Sys_Addr bits [15:4] Offset field increment by 64 for each 64Byte burst.

Initiating transfers with the modulo64, WrCB0_Ctl bit [29] Modulo64 field, equal to
1prevents an update of the WrCB0_Sys_Addr bits [15:4] Offset field and causes
WrCB0_DMA_Addr bits [13:4] LineAddr field to increment modulo 64Bytes, effectively
returning WrCB0_DMA_Addr bits [13:4] LineAddr field to wrap back to the starting value
after a 4-cycle burst. This feature is useful for writes to the QMU or BMU when the system
address contains a command, not an address. The WrCB can be used again without
resetting the WrCB0_Sys_Addr bits [15:4] Offset field and WrCB0_DMA_Addr bits [13:4]
LineAddr field.

The CPRC process can read the state of the DMA machine from WrCB0_Ctl bits [17:16]
State field. The WrCB0_Ctl word generally should not be written by the CPRC process
when hardware is operating (that is, WrCB_Ctl bit [31] Avail field= 0). On a write to
WrCB0_Ctl, bits [17:16] State field is only updated if bit [31] Avail field =1.

When DMA transaction requests receive a no-acknowledge (NACK) on the Payload Bus,
the bus controller retries the request up to 16 (maximum) times before reporting a bus
error. The bus error sets status in WrCB0_Ctl bits [27:24] Error field with an encoding, this
generates an event for the Event0 or Event1 register, and immediately terminates the
transfer by setting WrCB0_Ctl bit [31] Avail field. When the WrCB0_Ctl bit [30] NoRetry field
is set, the bus controller does not retry, and reports the bus NACK immediately as a bus
error.
C5EC3EARCH-RM REV 04

120 CHAPTER 2: CHANNEL PROCESSORS
Read Control Blocks (RdCB0_ , RdCB1_)
Two Read Control Blocks (RdCB0_ and RdCB1_) provide the capability for general purpose
read tasks, such as Buffer Transfers, QMU dequeues and BTag allocates. These tasks move
data across the Payload Bus into DMEM in bursts of four (4) cycles with 16Bytes per cycle.

Figure 22 on page 120 shows a Buffer Transfer. In general, you are moving data from
SDRAM (the source) to DMEM (the destination). Specifically, you are moving data starting
at the (PoolID, BTag and Offset (3,4,5)) location inside DRAM to DMEM at the LineAddr (1)
location with a Length (2). These individual fields that are used to set up the details of the
block move make up parts of these registers: RdCBn_Sys_Addr, RdCBn_Ctl and
RdCBn_DMA_Addr.

Figure 22 DMA Operation (Buffer Transfer) Using RdCBn_ Registers

Buffer Transfer Setup Using RdCBn_Sys_Addr, RdCBn_Ctl and RdCBn_DMA_Addr:
To set up this single, contiguous data transfer, the CPRC writes a system address
(consisting of a PoolID, BTag, and Offset for buffer memory in SDRAM), a line address for
DMEM, to the RdCB. The length is written by the CPRC to be the desired transfer length.

Register Fields

RdCBn_Sys_Addr

RdCBn_Ctl

RdCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

2

3

4 5

1

2

5
4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)Address

16Bytes

SourceDestination

RdCB Block Move of Data
C5EC3EARCH-RM REV 04

CP Configuration Space 121
To perform Buffer Transfers involves setting the bits for RdCB0_Sys_Addr (0xBCn04420),
RdCB0_Ctl (0xBCn04424) and RdCB0_DMA_Addr (0xBCn04428).

To set up a general contiguous data transfer, the CPRC process must do the following:

1 Ensure that the RdCB0 is available by reading RdCB0_Ctl bit [31] Avail field =1.

2 Write RdCB0_Sys_Addr with the system address to be read, in the form of:
RdCB0_Sys_Addr bits [31:6] BTag field = BTag, and
RdCB0_Sys_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically equal to 0, or aligned to a 64Byte
boundary.

3 Write the PoolID portion of the system address to be read into RdCB0_DMA_Addr bits
[20:16] PoolID field. Write RdCB0_DMA_Addr bits [13:4] LineAddr field with the location
of a buffer in DMEM, typically aligned on a 64Byte boundary. This is the DMEM location
that the DMA engine uses to begin writing data from SDRAM.

4 Write RdCB0_Ctl with RdCB0_Ctl bits [13:0] Length field equal to the number of bytes to
be transferred, RdCB0_Ctl bit [31] Avail field equal to 0, and RdCB0_Ctl. bit [29]
Modulo64 equal to 0 to cause the RdCB0_Sys_Addr bits [15:4] Offset field and
RdCB0_DMA_Addr bits [13:4] LineAddr field to increment during the DMA for a
contiguous block register.

For complete details about specific registers go to their reference. Refer to:
“RdCB0_Sys_Addr Register (CP Rd Control Block0 Function)” on page 502, “RdCB0_Ctl
Register (CP Rd Control Block0 Function)” on page 503, and “RdCB0_DMA_Addr Register
(CP Rd Control Block0 Function)” on page 504. You also have the following registers
available for Control Block: RdCB1_Sys_Addr, RdCB1_Ctl and RdCB1_DMA_Addr that function
in the same manner.

Buffer Transfer Operations Using RdCBn_Sys_Addr, RdCBn_Ctl and RdCBn_DMA_Addr:
An availability bit indicates that the block of DMEM is controller by to either DMA or CPRC.
When set, the CPRC controls the block; when clear, the DMA engine controls the block and
is free to transfer into it.
C5EC3EARCH-RM REV 04

122 CHAPTER 2: CHANNEL PROCESSORS
Clearing the available bit, RdCB0_Ctl bit [31] Avail field, the CPRC process initiates a 64Byte
data transfer from SDRAM beginning at the system address consisting of
(RdCB0_Sys_Addr bits [31:16] BTag field, RdCB0_Sys_Addr bits [15:4] Offset field, and
RdCB0_DMA_Addr bits [20:16] PoolID field to DMEM beginning at the 16Byte line
addressed by RdCB0_DMA_Addr bits [13:4] LineAddr field. The SDRAM DMA engine
transfers payload out of SDRAM in a 4-cycle, 16Byte-per-cycle burst, decrementing
RdCB0_Ctl bits [13:0] Length field by 64 for each burst.

Transfer continues until RdCB0_Ctl bits [13:0] Length field equals 0 (at which time the DMA
engine sets RdCB0_Ctl bit [31] Avail field, thus returning control of the RdCB back to the
CPRC process).

Initiating transfers with RdCB0_Ctl bits [13:0] Length field equal to 0 causes a single 64Byte
transfer. If a 4-cycle, 64Byte transfer is started with RdCB0_Ctl bits [13:4] Length field
< 64Bytes, only the number of 16Byte lines needed to satisfy the whole length according
to the Length field actually get read from SDRAM. Unpredictable data completes the full
64Bytes returned, and the Length field after the burst is set to 0.

If the RdCB0_Sys_Addr bits [13:4] Offset field is aligned to a 64Byte boundary, a contiguous
64Byte block of SDRAM is read. If the Offset is 64Byte unaligned, the SDRAM block is read
in a wrapped fashion which is generally not useful. Typically, contiguous transfers start
with aligned offsets.

RdCB0_DMA_Addr bits [13:4] LineAddr field increments for each of the four
16Byte-per-cycle transfers to provide an address into DMEM. Typically, RdCB0_DMA_Addr
bits [13:4] LineAddr field starts at a 64Byte aligned address. RdCB0_DMA_Addr bits [13:4]
LineAddr field can start unaligned, but the resulting wrap behavior is not useful. The burst
read from SDRAM always returns 64Bytes. RdCB0_Sys_Addr bits [15:4] Offset field
increments by 64 each 64Byte burst.

Initiating transfers with the modulo64, RdCB0_Ctl bit [29] Modulo64, equal to 1prevents
updates of the RdCB0_Sys_Addr bits [15:4] Offset field and causes RdCB0_DMA_Addr bits
[13:4] LineAddr field to increment modulo 64Bytes, effectively returning the LineAddr to
wrap back to the starting value. This feature is useful for reads from the QMU or BMU
where the system address contains a command, not an address. The RdCB can be used
again without resetting the Offset and RdCB0_DMA_Addr bits [13:4] LineAddr field.
C5EC3EARCH-RM REV 04

CP Configuration Space 123
The CPRC process can read the state of the DMA machine at any time from RdCB0_Ctl bits
[17:16] State field. The RdCB0_Ctl word generally should not be written by the CPRC
process when hardware is operating (that is, RdCB0_Ctl bit [31] Avail field=0). On a write to
RdCB0_Ctl bits [17:16] State field are only updated if bit [31] Avail field=1.

When DMA transaction requests receive a no-acknowledge (NACK) on the Payload Bus,
the bus controller retries the request up to 16 times before reporting a bus error. The bus
error sets status in RdCB0_Ctl bits [27:24] Error field, generates an event for the Event
register, and immediately terminates the transfer by setting RdCB0_Ctl bit [31] Avail field.
When the RdCB0_Ctl bit [30] NoRetry field is set, the bus controller does not retry, and
reports the bus NACK immediately as a bus error.

SDP RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_)
The CPRC controls receive operations using the two (2) Receive Control Blocks (RxCB0_
and RxCB1_) that handle the payload write operation much like the (WrCB0 and WrCB1),
but add the capability to control SDP RxByte Processor writes to DMEM. The SDP RxByte
Processor directs the incoming data stream into DMEM a byte at a time. In hardware, the
byte stream is accumulated into 16Byte lines that are written to DMEM in a single cycle.
Using a RxCB, the CPRC can set up a payload receive path from the RxByte Processor to
DMEM to SDRAM. Payload data movement happens in hardware with no further CPRC
control.

Figure 23 on page 124 shows a Buffer Transfer. In general, you are moving data from SDP
(the source) to SDRAM (the destination). Specifically, you are moving data from the SDP
RxByte Sequencer in 8bit units using ByteAddr (6) and counting the bytes moved with a
Length (2) starting at the LineAddr (1) location inside DMEM to SDRAM at the (PoolID, BTag
and Offset (3,4,5)) location. These individual fields are used to setup the details of the
block move and make up parts of these registers: RxCBn_Sys_Addr, RxCBn_Ctl,
RxCBn_DMA_Addr, and RxCBn_SDP_Addr.
C5EC3EARCH-RM REV 04

124 CHAPTER 2: CHANNEL PROCESSORS
Figure 23 DMA Operation (Buffer Transfer) Using RxCBn Registers

Buffer Transfer Setup Using RxCBn_Sys_Addr, RxCBn_Ctl RxCBn_DMA_Addr and
RxCBn_SDP_Addr:
To perform Buffer Transfers involves setting the bits for RxCB0_Sys_Addr (0xBCn04080),
RxCB0_Ctl (0xBCn4084), RxCB0_DMA_Addr (0xBCn04088), and RxCB0_SDP_Addr
(0xBCn0408C).

To set up a typical single receive operation, the CPRC must do the following:

1 Ensure that the RxCB0 is available by testing that RxCB0_Ctl bit [31] Avail field = 1.

2 Write RxCB0_Sys_Addr with the system address to be written in the form of:
RxCB0_Sys_Addr bits [31:16] BTag field = BTag, and
RxCB0_Sy_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically aligned to a 64Byte boundary).

3 Write the Pool ID portion of the system address to be written into RxCB0_DMA_Addr
bits [20:16] PoolID field. Write RxCB0_DMA_Addr bit [13:4] LineAddr field with a 16Byte
address in DMEM, typically aligned on a 128Byte boundary. This is the location that the
DMA engine uses to begin transferring data out of DMEM to SDRAM.

Register Fields

RxCBn_Sys_Addr

RxCBn_Ctl

RxCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

3

4 5

1

2

5

4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)

Address

16Bytes

Source Destination

RxCB Block Move of Data

6Data (8 bits)

SDP RxByte Sequencer

16Bytes

4Lines

4Lines

RxCBn_SDP_Addr

Counts the Bytes
moved from the sequencer)

ByteAddr 6

2

C5EC3EARCH-RM REV 04

CP Configuration Space 125
4 Write RxCB0_SDP_Addr bits [15:0] ByteAddr field with a 16Byte address in DMEM,
typically the same value (buffer) as RxCB0_DMA_Addr bits [13:4] LineAddr field. This is
the location that the SDP RxByte Processor uses to begin transferring bytes into DMEM.

5 Write the RxCB0_Ctl bits [15:0] RxLength field to zero, clear RxCB0_Ctl bit [23] Own1 field
and RxCB0_Ctl bit [22] Own0 field to give ownership of the double buffer to the SDP
DMA (rather than the SDRAM DMA) engine, and clear RxCB0_Ctl bit [31] Avail field that
starts the SDRAM DMA engine.

For complete details about specific registers go to their reference. Refer to:
“RxCB0_Sys_Addr Register (CP Rx Control Block0 Function)” on page 493, “RxCB0_Ctl
Register (CP Rx Control Block0 Function)” on page 494, “RxCB0_DMA_Addr Register (CP
Rx Control Block0 Function)” on page 497 and “RxCB0_SDP_Addr Register (CP Rx Control
Block0 Function)” on page 498. You also have the following registers available for Control
Block1: RxCB1_Sys_Addr, RxCB1_Ctl, RxCB1_DMA_Addr and RxCB1_SDP_Addr that function
in the same manner.

Buffer Transfer Operations Using RxCBn_Sys_Addr, RxCBn_Ctl RxCBn_DMA_Addr and
RxCBn_SDP_Addr:
The DMA engine always uses 128Bytes double buffering (that is, two (2) sequential 64Byte
DMEM buffers (16bytes wide x 4lines high)) to handle payloads of arbitrary length. The
transfer of these buffers can be individually controlled by the CPRC.

Typically, both buffers are enabled by the CPRC via the RxCB0_Ctl bit [23] Own1 field and
RxCB0_Ctl bit [22] Own0 field and the DMA initiates transfers whenever the next 64Byte
block within the buffer becomes available. Ownership bits track the status of the two
contiguous 64Byte blocks in DMEM.

RxCB0_DMA_Addr bits [13:4] LineAddr field and RxCB0_SDP_Addr bits [15:0] ByteAddr field
typically point to the 128Byte aligned buffer. Increments of RxCB0_SDP_Addr bits [15:0]
ByteAddr field and RxCB0_DMA_Addr bits [13:4] LineAddr field are done modulo 128 so
that writing or reading the last line in the buffer causes the pointers to wrap back to the
start of the buffer.

RxCB0_Ctl bit [23] Own1 field and RxCB0_Ctl bit [22] Own0 field track the ownership of the
two (2) 64Byte blocks in the 128Byte buffer. By clearing the ownership bits initially, the
CPRC allows the SDP RxByte Processor to write into the DMEM buffers. When RxCB0_SDP
Addr bits [15:0] ByteAddr field reaches a 64Byte boundary, the hardware sets the
corresponding ownership bit to indicate that the SDRAM DMA engine now owns the
block. It initiates a 64Byte transfer to SDRAM as soon as possible, incrementing
C5EC3EARCH-RM REV 04

126 CHAPTER 2: CHANNEL PROCESSORS
RxCB0_DMA_Addr bits [13:4] LineAddr field by 16 for each of the four (4), 16Byte-per-cycle
transfers to provide an address into DMEM. It also adds 64 to RxCB0_Sys_Addr bits [15:4]
Offset field to update the SDRAM address. When the DMA is complete, the RxCB0_Ctl bit
[23] Own1 field or RxCB0_Ctl bit [22] Own0 field is cleared to allow the SDP to reuse that
half of the double buffer.

Thus, RxCB0_SDP_Addr bits [15:0] ByteAddr field and RxCB0_DMA_Addr bits [13:4]
LineAddr field act as a pair, following one another through a payload transfer.
RxCB0_SDP_Addr bits [15:0] ByteAddr field leads as the SDP RxByte Processor fills DMEM
with payload bytes. When a 64Byte buffer is full, an SDRAM DMA transaction uses the
lagging RxCB0_DMA_Addr bits [13:4] LineAddr field to move the buffer to SDRAM. The SDP
RxByte Processor forces a line write when signaling end-of-frame by setting RxCtl0_Status
bit [31] Avail field, which must happen exclusive of an SDP byte write. Unwritten bytes at
the end of the 16Byte line are undefined. This clears RxCB0_SDP_Addr bits [6:0] within the
ByteAddr field, clears RxCB0_DMA_Addr bits [6:4] within the LineAddr field, and sets
RxCB0_Ctl bit [31] Avail field to realign the double buffer and to return control of the RxCB
to the CPRC.

In hardware, an accumulation buffer assembles sequential SDP RxByte Processor writes
until a 16Byte DMEM line boundary is crossed. This triggers a line write to DMEM at the
address in RxCB0_SDP_Addr bits [15:4] ByteAddr field if the associated ownership bit
allows it. There are no hardware interlocks that assure the RxCB is configured before
accepting SDP byte writes. The CPRC process must be sure to configure RxCB0_SDP_Addr
bits [15:0] ByteAddr field and both Own0 field bit [22] and Own1 field bit [23] before
passing the datascope to the SDP.

For some applications, the CPRC process can choose to write RxCB0_DMA_Addr,
RxCB0_Sys_Addr, and RxCB0_Ctl bit [31] Avail field (using a byte operation later). For each
byte transferred, hardware increments the RxCB0_Ctl bits [15:0] RxLength field to reflect
the total number of bytes in the receive payload.

The RxCB can be used with RxCB0_Sys_Addr bits [15:4] Offset field and RxCB0_DMA_Addr
bits [13:4] LineAddr field pointing to 16Byte addresses that are not 64Byte aligned. In this
case, the SDRAM DMA inhibits any writes that wrap within the SDRAM block. This can be
used to transfer partial blocks from DMEM to SDRAM in assembly operations. After a
4-cycle burst, the RxCB0_Sys_Addr bits [15:4] Offset field is always set to the next aligned
64Byte block.
C5EC3EARCH-RM REV 04

CP Configuration Space 127
There are eight (8) bits in each of the Out-Of-Band fields (OOB). Refer toTable 22 on
page 127.They (OOB) are located in the TxCB0_SDP_Addr register, bits [31:24] are for OOB0
and bits [23:16] are for OOB1. Eight (8) Out-Of-Band bits are transferred to SDRAM along
with every 64Byte payload transfer. The 7th Bit of OOBn indicates that the SDP
encountered an error receiving this frame. The 6th Bit of OOBn indicates that this block of
64Bytes contains the End-of-Packet (EOP), and when the 6th Bit is set, the remaining six
bits in the OOBn field indicate the position of the last byte. These (OOBn) bits get
transferred to SDRAM automatically, based on SDP error signals and RxCB0_Ctl bits [15:0]
RxLength field. During test, the RxCB can be used to write the OOB bits. Writing a buffer in
DMEM and setting up RxCB0_Sys_Addr, RxCB0_DMA_Addr bits [13:4] LineAddr field,
RxCB0_Ctl bit [29] EOP field, and RxCB0_Ctl bits [15:0] RxLength field determine what
payload and OOBn bits get written to SDRAM.

Test software can force the transfer by clearing RxCB0_Ctl bit [31] Avail field and setting
the appropriate RxCB0_Ctl bits [23:22] Own1 or Own0 bit.

The CPRC process can read the state of both DMA engines and the EOP status at any time
from RxCB0_Ctl bit [19] SDP State field and the RxCB0_Ctl bits [17:16] DMA State field. The
RxCB0_Ctl word generally should not be written by the CPRC process when hardware is
operating (that is, when RxCB0_Ctl bit [31] Avail field=0).

On a write to RxCB0_Ctl bit [19] SDP State field, bits [17:16] DMA State, and bit [29] EOP
fields are only updated if bit [31] Avail=1. Additionally, RxCB0_Ctl bit [29] EOP field is not
updated if bit [28] Protect_EOP=1.

When DMA transaction requests receive no-acknowledge (NACK) on the Payload Bus, the
bus controller retries the request up to 16 (maximum) times before reporting a bus error.
The bus error sets status in RxCB0_Ctl bits [27:24] Error field, generates an event for the
Event 1, and immediately terminates the SDRAM transfer by setting RxCB0_Ctl bit [31] Avail
field. When the RxCB0_Ctl bit [30] NoRetry field is set, the bus controller does not retry, and
reports the bus NACK immediately as a bus error.

Table 22 Out-of-Band Bits and Functions

SIDE-CAR BITS FUNCTION

7 Packet Error

6 End of Packet (EOP)

5:0 Encoded Value (for valid Bytes)
Legal Range= 0 to 63
C5EC3EARCH-RM REV 04

128 CHAPTER 2: CHANNEL PROCESSORS
Receive payload can be recycled back through the SDP RxByte Processor using a
configuration option and explicit CPRC control. A path can be set up for payload bytes to
travel from the SDP to DMEM, back to the SDP to DMEM and then to SDRAM.

The NP supports two (2) near-end loopbacks for the purposes of recirculation. The first
connects the output of the Large Transmit FIFO to the input of the Large Receive FIFO, the
second connects the output of the Small Transmit FIFO to the input of the Small Receive
FIFO. For more information about recirculation, see “Configuration for Recirculation
Operations Using RxSDP and TxSDP” on page 98.

SDP TxByte Processor Transmit Control Block (TxCB0_, TxCB1_)
The CPRC controls transmit operations using the two (2) Transmit Control Blocks (TxCB0_
and TxCB1_). The TxCBs handle the payload read operation much like the (RdCB0 and
RdCB1), but add the capability to control TxByte Processor reads from DMEM. Using a
TxCB, the CPRC can set up a payload transmit path from SDRAM to DMEM, and from
DMEM to the TxByte Processor. Payload data movement happens in hardware with no
further CPRC control.

Figure 24 on page 129 shows a Buffer Transfer. In general, you are moving data from
SDRAM (the source) to SDP (the destination). Specifically, you are moving data starting at
the (PoolID, BTag and Offset (3,4,5)) location inside the SDRAM to DMEM at the LineAddr (1)
location and moving 8bit units of data from the DMEM into the RxByte Sequencer using
ByteAddr (6) and counting the bytes moved with a Length (2). These individual fields that
are used to set up the details of the block move make up parts of these registers:
TxCBn_Sys_Addr, TxCBn_Ctl, TxCBn_DMA_Addr and TxCBn_SDP_Addr.
C5EC3EARCH-RM REV 04

CP Configuration Space 129
Figure 24 DMA Operation (Buffer Transfer) Using TxCBn_ Registers

Buffer Transfer Setup Using TxCBn_Sys_Addr, TxCBn_Ctl TxCBn_DMA_Addr and
TxCBn_SDP_Addr:
To perform Buffer Transfers involves setting the bits for TxCB0_Sys_Addr (0xBCn04180),
TxCB0_Ctl (0xBCn4184), TxCB0_DMA_Addr (0xBCn04188), and TxCB0_SDP_Addr
(0xBCn0418C).

To set up a typical single transmit operation for > 64Bytes of data, the CPRC must do the
following:

1 Ensure that the TxCB0 is available by reading TxCB0_Ctl and testing that TxCB0_Ctl bit
[31] Avail field=1.

2 Write TxCB0_Sys with the system address to be written in the form of:
TxCB0_Sys_Addr bits [31:16] BTag field = BTag, and
TxCB0_Sys_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically aligned to a 64Byte boundary).

3 Write the Pool ID portion of the system address to be written into TxCB0_DMA_Addr
bits [20:16] PoolID field. TxCB0_DMA_Addr bits [13:4] LineAddr field with the location of
a 64Byte buffer in DMEM, typically aligned on a 128Byte boundary. This is the DMEM
location that the DMA engine uses to begin reading data from SDRAM.

Register Fields

TxCBn_Sys_Addr

TxCBn_Ctl

TxCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

3

4 5

1

2

5

4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)

Address

16Bytes

SourceDestination

TxCB Block Move of Data

6Data (8 bits)

SDP TxByte Sequencer

16Bytes

4Lines

4Lines

TxCBn_SDP_Addr

Counts the Bytes
moved from the sequencer)

ByteAddr 6

2

C5EC3EARCH-RM REV 04

130 CHAPTER 2: CHANNEL PROCESSORS
4 Write TxCB0_SDP_Addr bits [15:0] ByteAddr field with a 16Byte address in DMEM,
typically the same value (buffer) as TxCB0_DMA_Addr bits [13:4] LineAddr field. This is
the location that the SDP TxByte Processor uses to begin transferring bytes out of
DMEM.

5 Write the TxCB0_Ctl register, to initialize the TxCB0_Ctl bits [15:0] TxLength field with
the number of bytes to transfer, clear TxCB0_Ctl bit [23] Own1 field and TxCB0_Ctl bit
[22] Own0 to give ownership of the buffer to the SDRAM (rather than the SDP) DMA
engine, enabling the prefetch of 128Bytes of payload, clear TxCB0_Ctl bit [31] Avail
field to start the SDRAM DMA engine.

For complete details about specific registers go to their reference. Refer to:
“TxCB0_Sys _Addr Register (CP Tx Control Block0 Function)” on page 505, “TxCB0_Ctl
Register (CP Tx Control Block0 Function)” on page 506, “TxCB0_DMA_Addr Register (CP
Tx Control Block0 Function)” on page 507 and “TxCB0_SDP_Addr Register (CP Tx Control
Block0 Function)” on page 508. You also have the following registers available for Control
Block1: TxCB1_Sys_Addr, TxCB1_Ctl, TxCB1_DMA_Addr and TxCB1_SDP_Addr that function
in the same manner.

Buffer Transfer Operations Using TxCBn_Sys_Addr, TxCBn_Ctl TxCBn_DMA_Addr and
TxCBn_SDP_Addr:
The CPRC can set up a payload transfer of arbitrary length using double buffering.
TxCB0_DMA_Addr bits [13:4] LineAddr field and TxCB0_SDP_Addr bits [15:0] ByteAddr field
typically point to a 128Byte aligned buffer. Increments of TxCB_SDP bits [15:6] ByteAddr
field and TxCB0_DMA_Addr bits [13:4] LineAddr field are done to modulo 128 so that
writing or reading the last line in the buffer causes the pointers to wrap back to the start
of the buffer.

TxCB0_Ctl bit [22] Own0 field and TxCB0_Ctl bit [23] Own1 field track the ownership of the
two 64Byte blocks in the 128Byte double buffer. By clearing the ownership bits initially,
the CPRC allows the SDRAM DMA engine to prefetch payload into the DMEM buffers.
TxCB0_DMA_Addr bits [13:4] LineAddr field increments by 16 for each of the four
16Byte-per-cycle transfers to provide an address into DMEM. It also adds 64 to
TxCB0_Sys_Addr bits [15:4] Offset field to update the SDRAM address.
C5EC3EARCH-RM REV 04

CP Configuration Space 131
If the payload length is ≤64 bytes, only TxCB0_Ctl bit [22] Own0 field should be cleared
and TxCB0_Ctl bit [23] Own1 field set to keep the DMA engine from wasting bandwidth by
prefetching an extra block. If the payload length is >64 bytes, TxCB0_Sys_Addr bit [22]
Own0 field and TxCB0_Sys_Addr bit [23] Own1 field must be cleared to prefetch the first
two blocks of payload. When the blocks of payload arrive from SDRAM, the DMA engine
sets the corresponding ownership bit to indicate that the SDP DMA engine now owns the
block.

In hardware, setting Own causes the SDP TxByte Processor to read and buffer a 16Byte line
of DMEM pointed to by TxCB0_SDP_Addr bits [15:6] ByteAddr field. The SDP TxByte
Processor byte reads are serviced from this read buffer. For each byte transferred, the
address in TxCB0_SDP_Addr bits [15:0] ByteAddr field is incremented. Crossing a 16Byte
DMEM line triggers another line read from DMEM from the address in TxCB0_SDP_Addr
bits [15:6] ByteAddr field. When the last line of a 64Byte block of payload has been read out
of DMEM, the SDP DMA engine clears the corresponding Own bit to allow the SDRAM
DMA engine to reuse that half of the buffer.

Thus, TxCB0_DMA_Addr bits [13:4] LineAddr field and TxCB0_SDP_Addr bits [15:0] ByteAddr
field act as a pair, following one another through a payload transfer. TxCB0_DMA_Addr bits
[13:4] LineAddr field leads as the DMA engine fills DMEM with payload from SDRAM. When
a 64Byte buffer is full, the SDP TxByte Processor uses the lagging TxCB0_SDP_Addr bits
[15:0] ByteAddr field to read bytes of payload from DMEM. When the TxCB0_Ctl bits [15:0]
TxLength field equals 0, the hardware clears the TxCB0_Sys_Addr bit [22] Own0 field and
the TxCB0_Sys_Addr bit [23] Own1 field and signals the SDP that the last byte was
transmitted. The SDP TxByte Processor signals end-of-frame by setting TxCtl_Status bit
[31] Avail field. This clears TxCB0_SDP_Addr bits [6:0] within the ByteAddr field, clears
TxCB0_DMA_Addr bits [6:4] with the LineAddr field and sets TxCB0_Ctl bit [31] Avail field to
realign to the double buffer and to return control of the TxCB to the CPRC.

There are eight (8) bits in each of the Out-Of-Band field (OOB). The OOB are located in the
TxCB0_SDP_Addr register. Bits [31:24] are for OOB0 and bits [23:16] are for OOB1. Eight (8)
OOB bits are transferred to SDRAM along with every 64Byte payload transfer. The 7th Bit of
the OOBn indicates that the SDP encountered an error receiving this frame.
C5EC3EARCH-RM REV 04

132 CHAPTER 2: CHANNEL PROCESSORS
The 6th Bit of the OOBn indicates that this block of 64Bytes contains the last byte of the
payload, and when the 6th Bit of the (OOBn) is set, the remaining six bits indicate the
position of the last byte. These (OOBn) bits get transferred to TxCB0_SDP_Addr bits [31:24]
OutOfBand0 and TxCB0_SDP_Addr bits [23:16] OutOfBand1 field for every payload read.
Based on the TxCB0_Ctl bit [28] OOB field, the hardware uses either the TxCB0_Ctl bits
[15:0] TxLength field or the TxCB0_SDP_Addr OutOfBand field to determine the last
payload byte. Hardware decrements the TxCB0_Ctl bits [15:0] TxLength field and the
appropriate TxCB0_SDP_Addr OutOfBandn field for each byte transferred. When TxCB0_Ctl
bit [28] OOB field is clear, the TxLength equals 0 indicates the payload transfer is finished.
When the TxCB0_Ctl bit [28] OOB is set, and the appropriate TxCB0_SDP_Addr OutOfBandn
field indicates last byte and the position equals 0, the payload transfer is finished.

During test, the TxCB can be used to read the SDRAM data and OOB bits. Setting up
TxCB0_Sys_Addr and TxCB0_DMA _Addr bits [13:4] LineAddr field determines where
payload gets read into DMEM. Software can force the transfer by clearing TxCB0_Ctl bit
[31] Avail field and setting the appropriate TxCB0_Ctl bit [23 or 22] Ownn bit. When the
transfer finishes, the OOB bits can be read from TxCB0_SDP_Addr OutOfBandn field.

The CPRC process can read the state of both DMA engines and the EOP status at any time
from TxCB0_Ctl bits [19:18] SDP State field and TxCB0_Ctl bits [17:16] DMA State field. The
TxCB0_Ctl word generally should not be written by the CPRC process when hardware is
operating (that is, when TxCB0_Ctl bit [31] Avail=0). On writes to TxCB0_Ctl bits [17:16]
DMA State field, bits [19:18] SDP State field, and bit [29] EOP field are only updated if bit
[31] Avail=1.

When DMA transaction requests receive no-acknowledge (NACK) on the payload bus, the
bus controller retries the request up to 16 times before reporting a bus error. The bus error
sets status in TxCB0_Ctl bits [27:24] Error field, generates an event for the Event1 register,
and immediately terminates the SDRAM transfer by setting TxCB0_Ctl bit [31] Avail field.
When the TxCB_Ctl bit [30] NoRetry field is set, the bus controller does not retry, and
reports the bus NACK immediately as a bus error.

Transmit payload can be recycled back through DMEM and retransmitted using a
configuration option and explicit CPRC control. A path can be set up for the payload to
travel from the SDRAM to DMEM to the SDP to DMEM to the SDP (a process call
recirculation). For more information about recirculation, see “Configuration for
Recirculation Operations Using RxSDP and TxSDP” on page 98.
C5EC3EARCH-RM REV 04

CP Configuration Space 133
Ring Bus Registers
Configuration Space contains registers to control the Ring Bus, including transmitting
messages, receiving messages, and receiving responses.

Ring Bus Transmit (Tx) Messages Registers
Configuration Space includes four (4) sets of registers used to transmit messages on the
Ring Bus. The four (4) consist of:
TxMsg0_Ctl, TxMsg0_Data_H, and TxMsg0_Data_L; TxMsg1_Ctl, TxMsg1_Data_H, and
TxMsg1_Data_L; TxMsg2_Ctl,TxMsg2_Data_H, and TxMsg2_Data_L; TxMsg3_Ctl,
TxMsg3_Data_H, and TxMsg3_Data_L. The CPRC has access to all four (4) sets. The SDP
RxByte and TxByte Processors have access to only sets zero and one, (TxMsg0_Ctl,
TxMsg0_Data_H, and TxMsg0_Data_L; TxMsg1_Ctl, TxMsg1_Data_H, and
TxMsg1_Data_L).

Refer to the SDP Programming document in the C-Ware Application Development Guide for
SDP addressing of these registers.

When programming, mutual exclusivity among users of each TxMsgn_Ctl must be
maintained.

The 8Byte data portion of a single-slot Ring Bus message is written into two (2) 4Byte
TxMsg0_Data_H and TxMsg0_Data_L registers. The control portion of a Ring Bus message
is written into the TxMsg0_Ctl register bits [23, 19:0] in the exact format to be sent directly
out on the Ring Bus control wires. Clearing the TxMsg0_Ctl bit [31] Avail transfers
ownership of the transmit message registers to the Ring Bus control, effectively giving the
send command. The Ring Bus controller then puts the 21bits of control from the
TxMsg0_Ctl register and the 8Bytes of data from the TxMsg0_Data_L registers out on the
Ring Bus. The Ring Bus controller sets the TxMsg0_Ctl bit [31] Avail when the message has
gone out, indicating to the CPRC that the transmit message register set is available to send
subsequent messages. Four (4) messages of 8Byte data length can be sent independently
using the four (4) sets of transmit message registers. Transmit message register sets can
also be combined to send messages of 16Bytes and 32Bytes length (two and four Ring Bus
slots). Multiple slot messages may begin with any of the transmit message register sets.
The additional data is placed in sequential, wrapped TxMsg0_Data registers. The
beginning TxMsg0_Ctl register must contain the appropriate slot length. The sequential
TxMsg0_Ctl registers that match participating sequential TxMsg0_Data registers must
have the Avail bit [31] set, that is, must not be in use for another transmit, but otherwise
have no effect on the transaction.
C5EC3EARCH-RM REV 04

134 CHAPTER 2: CHANNEL PROCESSORS
Ring Bus (Rx) Receive Message Registers
Configuration Space includes a set of registers used to receive unsolicited messages
consisting of RxMsg_Ctl, and RxMsg_FIFO.

Unsolicited messages are of type: indication, confirmation, or request. These incoming
messages enter a 4-entry x 8-Byte FIFO in the Ring Bus controller. The CPRC process uses
load instructions to read the head of the FIFO from the RxMsg_Ctl and RxMsg_FIFO
registers. When set, RxMsg_Ctl bit [31] State indicates that a complete, valid message
resides in the FIFO. RxMsg_Ctl bits [23,14:10,4:0] contain the control portion of the
message as received off the Ring Bus. The Dst field [9:5] which must be this channel’s Ring
Bus ID is not reported.

When the FIFO contains a valid message, the CPRC reads RxMsg_FIFO to obtain the first
4Bytes of the data portion of the Ring Bus message. The CPRC continues to read from the
RxMsg_FIFO register to empty the complete message out of the FIFO. The CPRC process
must track the message length given by initial RxMsg_Ctl bits [17:15] Len to know how
many times to read the RxMsg_FIFO to obtain the complete message. When the
RxMsg_Ctl indicates a message is valid, the entire data portion of the message is available
through RxMsg_FIFO; there is no need for the CPRC process to check intermediate data
status.

Ring Bus Receive (Rx) Response Registers
Messages initiated by the CPRC as a request type expect to receive a subsequent response
type message, for example TLU requests. Configuration space includes eight (8) sets of
registers used to receive responses. The eight (8) consist of:
RxResp0_Ctl, RxResp0_Data_H, RxResp0_Data_L; RxResp1_Ctl, RxResp1_Data_H,
RxResp1_Data_L; RxResp2_Ctl, RxResp2_Data_H, RxResp2_Data_L; RxResp3_Ctl,
RxResp3_Data_H, RxResp3_Data_L; RxResp4_Ctl, RxResp4_Data_H, RxResp4_Data_L;
RxResp5_Ctl, RxResp5_Data_H, RxResp5_Data_L; RxResp6_Ctl, RxResp6_Data_H,
RxResp6_Data_L; RxResp7_Ctl, RxResp7_Data_H, RxResp7_Data_L.

The control field of a Ring Bus response is moved into a RxRespn_Ctl register and the data
field of a Ring Bus response slot is moved into a RxRespn_Data_H/RxRespn_Data_L
register pair. Responses are directed to the specific one of eight register sets based on the
sequence bits [12:10] of the incoming Ring Bus control field. The sequence field is merely
an echo of the sequence field that was sent in the control field of the request message
that triggered this response. Sequence field bits [14:13] have no effect on hardware and
can be used by software for additional ordering information.
C5EC3EARCH-RM REV 04

CP Configuration Space 135
When set, RxResp0_Ctl bit [31] Avail indicates that a complete, valid response has been
received. The Dst field [9:5] which must be this channel’s Ring Bus ID, the Type field bits
[19:18] which must be type response, and the Length field bits [17:15] which must be
known by requesting software, are not reported.

Eight (8) responses of 8Byte data length can be received independently using the eight (8)
sets of receive response registers. Receive response register sets can also be combined to
receive responses of 16Byte and 32Byte length (two or four Ring Bus slots). Multiple slot
responses begin with the receive response register set specified by the sequence bits. The
additional data is placed in sequential, wrapped RxResp0_Data registers. The beginning
RxResp0_Ctl register contains the Ring Bus control field. The sequential RxResp0_Ctl
registers that match participating sequential RxResp0_Data registers are not updated.

While receiving cells/packets, the SDPRxByte Processor uses its access to the Ring Bus
transmit message registers to initiate lookup requests for the TLU based on various fields
(such as the destination address) extracted from the incoming header. The TLU responses
to the lookup requests are received and interpreted by the CPRC.

For complete details about specific registers go to their reference. Refer to:
“TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function)” on page 510,
“TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function)” on page 512,
“TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function)” on page 512,
“RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function)” on page 515,
“RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function)” on page 517,
“RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function)” on page 513,
“RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function)” on page 514, and
“RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function)” on page 515. You
also have the other registers available that comprise the sets, and function in the same
manner.

SDP Control and Status Registers
Configuration Space includes a number of general purpose registers for passing control
and status information between the CPRC and the SDP Processors.

Five (5) control registers (RxCtl_ByteSeq0, RxCtl_ByteSeq1, RxCtl_SyncSeq, RxCtl_BitSeq0
and RxCtl_BitSeq1) are allocated to communicating with the RxByte, RxBit, and RxSync
Processors. The Rx processors perform byte-wide read and write operations from and to
these registers under microcode control.
C5EC3EARCH-RM REV 04

136 CHAPTER 2: CHANNEL PROCESSORS
For complete details about specific registers go to their reference. Refer to:
“RxCtl_ByteSeq0 Register (CP SDP Rx Control Function)” on page 518, Table 170 on
page 518, “RxCtl_SyncSeq Register (CP SDP Rx Control Function)” on page 518,
“RxCtl_BitSeq0 Register (CP SDP Rx Control Function)” on page 518, and Table 171 on
page 519.

Four (4) control registers (TxCtl_ByteSeq0, TxCtl_ByteSeq1, TxCtl_BitSeq0 and
TxCtl_BitSeq1) are allocated to communicating with the TxByte and TxBit Processors. The
Tx processors perform byte-wide read and write operations from and to these registers
under microcode control.

For complete details about specific registers go to their reference. Refer to:
“TxCtl_ByteSeq0 Register (CP SDP Tx Control Function)” on page 519, Table 172 on
page 519, “TxCtl_BitSeq0 Register (CP SDP Tx Control Function)” on page 519, and
Table 173 on page 519.

In addition, four (4) status registers (RxCtl0_Status, RxCtl1_Status,TxCtl0_Status, and
TxCtl1_Status), two (2) each for the RxSDP and the TxSDP, contain predefined status bits
used by the CPRC to track the SDP progress through cell/packet processing and
vice-versa.

The CPRC process accesses all of these memory-mapped SDP control registers using load
and store instructions. These registers have two (2) read and two (2) write ports, allowing
CPRC and SDP access at all times. The CPRC process and SDP firmware must cooperate to
ensure data integrity. For both receive and transmit, the SDP microcode sets the Avail bit
[31] to signal end-of-frame, and thereby switch data scopes. For more information about
data scopes. Refer to “Data Scope Detail Operations” on page 111.

For complete details about specific registers go to their reference. Refer to:
“RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function)” on page 621,
Table 162 on page 509, “TxCtl0_Status Register (CP Tx Control Block0 Function)” on
page 509, and Table 162 on page 509.
C5EC3EARCH-RM REV 04

CP Configuration Space 137
Miscellaneous Control Registers
Configuration Space includes miscellaneous control registers.

Event Registers
There are a number of events that can occur in a C-5e NP that are asynchronous, and that
the CPRC must be able to process. These events must be recognized either by polling for
them, or via interrupt notification. Refer to “Interrupt Access” on page 139 for more
information. The C-5e NP has the capabilities to reduce the processing time required to
respond to an asynchronous event. This event handling mechanism in the CPRC has the
following properties:

• Software can identify events and dispatch them to their corresponding processing
routines very quickly.

• Software can dynamically prioritize events.

• Software can choose which events will generate interrupts (if any), and which events it
will poll.

Each of sixty-four (64) events in the CP is assigned an event number, and a corresponding
bit in one of the two (2) 32bit event registers (Event0 and Event1). When an event occurs in
the CP (that is, the signal transitions from 0 to 1), it sets the corresponding bit in event
registers.

Most of the bits in the event registers can be interrogated and cleared independently of
other state in Configuration Space. However, Event0 register bit [50] and Event1 register
bit [21] are exceptions; these bits are not edge sensitive and cannot be cleared directly. Bit
[21] represents the logical OR of the current bits in all of the four Queue Status registers
(Queue_Status0 to Queue_Status3). Clearing the Queue Status registers clears Event1
register bit [21]. Similarly, bit [50] SONET event represents the logical OR of the masked
bits in the SONET_Event register. Clearing or masking off all SONET events clears Event0
register bit [50].

The Event Registers comprise two (2) words in the CP (Event0 and Event1), and those
words can be read by the CPRC and written with value 1 to clear bits. The normal
mechanism for accessing the event status uses the “Event_Access Register (CP Event and
Interrupt Function)” on page 557.

For complete details about specific registers go to their reference. Refer to:
“Event0 Register (CP Event and Interrupt Function)” on page 552, and “Event1 Register (CP
Event and Interrupt Function)” on page 555.
C5EC3EARCH-RM REV 04

138 CHAPTER 2: CHANNEL PROCESSORS
Event Access registers are a set of four (4) registers used to provide access to the Event0
and Event1 registers. The Event Access registers consist of: Event_Mask0, Event_Mask1,
Event_Access, and Mask_Access register.

The Event_Mask defines which events the Event_Access responds to. It comprises two (2)
32bit registers in the CP. The event number in Event0 and Event1 registers is active if its
corresponding bit is set in the Event_Mask0 or Event_Mask1 registers. This can be done at
initialization time or dynamically. Individual bits can be set or cleared in Event_Mask by
using the Mask_Access.

The Event_Access returns the logical AND and the logical NOR of the bits from
Event0/Event1 that are active. When the CP reads the value of Event_Access, it gets a value
of 1 in bit [31] All field if all of the bits in the Event0/Event1 that are set in Event_Mask are
on. If any of the bits in the Event0/Event1 that are active in the Event Access registers are
reading, Event_Access returns 0 in bit [31] All field. This allows a program to check whether
all interesting events have occurred. If no events are active in the Event Access registers,
that is, the Event_Mask=0, reading Event_Access returns 1 in bit [31] All field. When the CP
reads the value of Event_Access, it gets a value of 0 in bit [15] None field if any of the bits in
the Event0/Event1 that are set in Event_Mask are on. If all of these bits are 0, reading
Event_Access returns 1 in bit [15] None field. This allows a program to check whether any
interesting events have occurred.

The Event_Access also provides access to the events in the Event_Mask0/Event_Mask1
registers, one at a time in a highest-to-lowest event number order. When a program reads
Event_Access, bits [7:2] EventNumber field denotes the “highest numbered active bit”,
which is set in Event0/Event1. The Event_Access, bits [7:2] EventNumber field is positioned
to allow software to use the read value directly as a word index. If Event_Mask &
Event0/Event1= 0, indicating that none of the events active has occurred, reading
Event_Access returns 0x8000 in bits [15:0] field.

While many of the bits in the Event0/Event1 correspond to other bits in the CP, they are not
directly linked to those bits. When an asynchronous event occurs in the CP, such as the
Avail bit [31] being set in Receive Control Block 0 (RxCB0_), the corresponding bit gets set
in the Event0/Event1. Clearing the bit in the Event0/Event1 does not clear the Avail bit [31]
in the RxCB0_Ctl register.

To clear a particular bit in Event0/Event1, a program writes the particular bit number into
Event_Access bits [7:2] ClearBit field. This lets a program clear an event bit (after processing
the event) by writing the same value to Event_Access.
C5EC3EARCH-RM REV 04

CP Configuration Space 139
To set a particular bit in Event0/Event1, a program writes the particular bit number into
Event_Access bits [23:18] field. This provides a mechanism for setting a software event and
having it recognized later in the event polling loop.

Another way to clear one or more bits in Event0/Event1 is to write a mask value containing
the bits to be cleared into the appropriate words of Event0/Event1 directly. Bits in the
Event0/Event1 are “write 1 to clear”.

Single bits in the Event_Mask can be set and cleared using the Mask_Access, which
provides a decode mechanism similar to the one for the Event0/Event1. This allows an
event dispatcher to dynamically change the events that are interesting to a program as
the program modules progress from one stage to the next.

To clear a particular bit in Event_Mask, a program writes the particular bit number into
Mask_Access bits [7:2] ClearBit field. To set a particular bit in Event_Mask, a program writes
the particular bit number into Mask_Access bits [23:18] SetBit field. Event_Mask0 and
Event_Mask1 registers are also directly writable.

For complete details about specific registers go to their reference. Refer to:
“Event_Mask0 Register (CP Event and Interrupt Function)” on page 557, “Event_Mask1
Register (for Mask1)” on page 557, “Event_Access Register (CP Event and Interrupt
Function)” on page 557 and “Mask_Access Register (CP Event and Interrupt Function)” on
page 559.

Interrupt Access
The CPRC implements four prioritized hardware interrupts, IRQ0-IRQ3. Interrupt_Mask0
and Interrupt_Mask1 registers provide a means for software to configure which events in
the event register cause interrupts.

An interrupt is requested whenever a bit in the Event0 or Event1 register is set and its
corresponding bit in the Interrupt_Maskn is set. Bits [63:48] in Event0 register correspond
to bits [63:48] in the Interrupt_Mask0 register that also corresponds to IRQ0. This same
type of relationship applies for IRQ1, IRQ2 and IRQ3. Refer to Figure 25 on page 140.
C5EC3EARCH-RM REV 04

140 CHAPTER 2: CHANNEL PROCESSORS
Figure 25 Relationship Between Interruput_Mask0, IRQ0 and Event0 Registers

For complete details about specific registers go to their reference. Refer to:
“Interrupt_Mask0 Register (CP Event and Interrupt Function)” on page 559, and Table 180
on page 560.

Queue Status Registers
Queue status from the Queue Management Unit (QMU) is regularly broadcast on a side
band of the C-5e NP buses. This status is automatically loaded into the four (4) queue
status registers (Queue_Status0, Queue_Status1, Queue_Status2 and Queue_Status3)
where it can be read by the CPRC. The CPRC can set bits in the queue status registers by
accessing them through the update addresses. The logical OR of the bits in the status
registers, provides a level-sensitive event for input to Event1 register bit [21].

For complete details about specific registers go to their reference. Refer to:
“Queue_Status0 Register (CP Queue Status Function)” on page 549 and “Queue_Statusn
Registers (for Queue Status 1, 2 and 3)” on page 549.

Cycle Counter
A 64bit Cycle counter is provided in Configuration Space (Cycle_Count_H and
Cycle_Count_L). The cycle counter initializes to 0 during reset and runs freely when reset is
released. Thus, the cycle counters in each of the channels are synchronized. The full
counter value is readable atomically by the CPRC reading two (2) registers. A copy of the
top word is updated whenever the bottom word is read. Only the frozen copy of the top
word can be read. For atomic access to the 64bit value, the bottom 32bit word should be
read first, then the frozen top 32bit word.

For complete details about specific registers go to their reference. Refer to:
“Cycle_Count_H Register (CP Miscellaneous Control Function)” on page 551, and
“Cycle_Count_L Register (CP Miscellaneous Control Function)” on page 551.

63 48 3247

0

Interrupt_Mask0

IRQ0

63

IRQ1

Event0

31 16 015

0

Interrupt_Mask1

IRQ2

31

IRQ3

Event1

48 47 16 15
C5EC3EARCH-RM REV 04

CP Configuration Space 141
Event Timer
One event timer register is provided in the Configuration Space (Event_Timer). The timer
initializes to 0 during reset. After reset, the value in the timer always decrements once per
core clock cycle. During the cycle that the timer decrements through 0, a timer event is
recorded in the Event0 register bit [52] Time-out field. The timer value can also be read by
the CPRC. Applications can write a value into this register that decrements in the same
fashion.

For complete details about specific registers go to their reference. Refer to:
“Event_Timer Register (CP Miscellaneous Control Function)” on page 550.
C5EC3EARCH-RM REV 04

142 CHAPTER 2: CHANNEL PROCESSORS
Understanding Block
Moves of Data

Block moves are used to move data from/to the CPs to/from the BMU, or from/to the CPs
to/from the QMU across the Payload Bus.This is done by using Wr, Rx, Rd and Tx features
to achieve many different functions. Therefore, to use this feature you should have a basic
understanding of the Payload process as described in the following sections.

Payload handling is divided into two (2) types:

• External, a data stream that is received from outside the C-5e NP and transmitted
outside the C-5e NP using the Rx and Tx functions, and

• Internal, a movement of data within the C-5e NP using the Wr and Rd functions.

External Handling
Overview

This is a general overview of the data movement coming into the C-5e NP. Refer to:
“SDP RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_)” on page 123 for more
details of the Rx side, and “SDP TxByte Processor Transmit Control Block (TxCB0_,
TxCB1_)” on page 128 for details of the Tx side.

1 Payload handling process, the Rx side:

The flow of the payload handling process starts with a Rx of data from outside the C-5e NP
that is processed by the RxSDP, then using the following registers (RxCBn_Sys_Addr,
RxCBn_Ctl, RxCBn_DMA_Addr, and RxCBn_SDP_Addr) places data (data0) into a location
inside the DMEM. The data inside DMEM is then written through the BMU, into the
SDRAM for storage. This process explains why an external Rx is associated with an internal
Wr. The Rx Control Blocks are used to provide block data moves across the Payload Bus
from the CPs to SDRAM. Refer to Figure 26 on page 143.

2 Payload handling process, the Tx side:

The flow of the payload starts with a Tx of data from inside the C-5e NP using certain
registers (TxCBn_Sys_Addr, TxCBn_Ctl, TxCBn_DMA_Addr and TxCBn_SDP_Addr) that
reads the data stored in the SDRAM, through the BMU, then places the data (data0) into
the DMEM that is then processed by the TxSDP to outside the C-5e NP. This process
explains why an external Tx is associated with an internal Rd. The Tx Control Blocks are
used to provide block data moves across the Payload Bus from the SDRAM to the CPs.
Refer to Figure 26 on page 143.
C5EC3EARCH-RM REV 04

Understanding Block Moves of Data 143
Figure 26 Rx and TxCBn_ Handling Process Overview (for External Flow)

Internal Handling
Overview

This is a general overview of the data movement inside the C-5e NP. Refer to:
“Write Control Blocks (WrCB0_ , WrCB1_)” on page 116 for more details of the Wr side, and
“Read Control Blocks (RdCB0_ , RdCB1_)” on page 120 for more details of the Rd side.

1 Payload handling process, the Wr side:

The flow of the payload handling process starts with a Wr of data from inside the C-5e NP
using (WrCBn_Sys_Addr, WrCBn_Ctl, and WrCBn_DMA_Addr) that takes data (data0) from
the DMEM and then writes it through the BMU into the SDRAM for storage. The Wr Control
Blocks are used to provide block data moves across the Payload Bus from the SDRAM,
QMU or BMU to the CPs. Refer to Figure 27 on page 144.

Rx

Tx TxSDP

DMEM

Data0
Data1

Data2

Data3

Data0
Data1

Data2

Data3

Data0
Data1

Data2

Data3

Data0
Data1

Data2

Data3

DMEM

BMU

SDRAM

1

RxSDP 1

2

2

21Rx Tx

RxCBn_Sys_Addr TxCBn_Sys_Addr

RxCBn_Ctl TxCBn_Ctl

RxCBn_DMA_Addr TxCBn_DMA_Addr

RxCBn_SDP_Addr TxCBn_SDP_Addr

Internal to the C-5 NPExternal to the C-5 NP
C5EC3EARCH-RM REV 04

144 CHAPTER 2: CHANNEL PROCESSORS
2 Payload handling process, the Rd side:

The flow of the payload handling process starts with a Rd of data from inside the C-5e NP
using (RdCBn_Sys_Addr, RdCBn_Ctl, and RdCBn_DMA_Addr) that reads the data stored in
the SDRAM, through the BMU then places the data (data0) into the DMEM. The Rd Control
Blocks are used to provide block data moves across the Payload Bus from SDRAM to the
CPs. Refer to Figure 27 on page 144.

Figure 27 Wr and RdCBn_ Handling Process Overview (for Internal Flow)

Using Multi-Use Control
Blocks to Achieve

Different Functions

The Multi-Use Control Blocks (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr;
RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr; RdCB0_Sys_Addr,
RdCB0_Ctl, RdCB0_DMA_Addr; and TxCB0_Sys_Addr, TxCB0_Ctl, TxCB0_DMA_Addr,
TxCB0_SDP_Addr) can be programmed to make data moves to/from SDRAM, the BMU, or
the QMU. All of these registers physically reside in the CP memory map at their respective
addresses.

The individual fields of these registers are used to perform different functions. Refer to
Table 23 on page 145. Detail examples of each, including actual field bit values, are shown
in other locations of this manual as noted in this table.

DMEM

Data0
Data1

Data2

Data3

Datan

DMEM

BMU

SDRAM

1

2

21Wr Rd

WrCBn_Sys_Addr RdBn_Sys_Addr

WrCBn_Ctl RdCBn_Ctl

WrCBn_DMA_Addr RdCBn_DMA_Addr

Data0
Data1

Data2

Data3

Datan

Internal to the C-5 NPExternal to the C-5 NP
C5EC3EARCH-RM REV 04

Understanding Block Moves of Data 145
In addition to the Mutli-Use Control Blocks (for Wr, Rx, Rd and Tx), eight (8) Fixed-Use
Control Blocks (for Wr and Rd) are provided as programming short-cuts for various
common operations. Refer to Table 24 on page 147.

Table 23 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx)

MODE CATEGORY FUNCTION FIELDS USED DETAILS

CP
to/from
BMU

Memory
Transactions

Buffer
Memory
Transfer
Operation

PoolID, BTag,
Offset

See “Write Control Blocks (WrCB0_ ,
WrCB1_)” on page 116
See “SDP RxByte Processor Receive
Control Blocks (RxCB0_, RxCB1_)”
on page 123
See “Read Control Blocks (RdCB0_ ,
RdCB1_)” on page 120
See “SDP TxByte Processor Transmit
Control Block (TxCB0_, TxCB1_)” on
page 128

CP
to/from
BMU

BTag
Management
Transactions

Initializing
BTags

PoolID, BTag,
Command,
Pool

See “BTag Initialization Operation”
on page 292.

Allocating
BTags

See “BTag Allocation Operation” on
page 295.

Deallocating
BTags

See “BTag Deallocation Operation”
on page 297.

Multi-Use
Management
Transactions

Allocating
(Multi-Use
Counter)

See “MUC Allocation Operation” on
page 300.

Decrementing
(Multi-Use
Counter)

See “MUC Decrement Operation”
on page 303.

Reading
(Multi-Use
Counter)

See “MUC Read Operation” on
page 305.
C5EC3EARCH-RM REV 04

146 CHAPTER 2: CHANNEL PROCESSORS
CP
to/from
QMU

Queue
Management
Transactions

Configure
Queue

Mail Box#,
Queue#,
Command,
PoolID

See “Configure Queue
Operation” on page 431.

Queue Status See “Queue Status Operation” on
page 433.

Unicast
Enqueue

See “Unicast Enqueue
Operation” on page 435.

Multicast
Enqueue

Mail Box#,
QueueLevel#,
Command,
PoolID

See “Multicast Enqueue
Operation” on page 439.

Dequeue Mail Box#,
Queue#,
Command,
PoolID

See “Dequeue Operation” on
page 441.

Table 23 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx) (continued)

MODE CATEGORY FUNCTION FIELDS USED DETAILS
C5EC3EARCH-RM REV 04

Understanding Block Moves of Data 147
The details column in Table 24 on page 147 goes directly to the individual register
parameters, not to the BMU or QMU chapter like in Table 23 on page 145 since these are
merely programming short-cuts.

Table 24 Fixed-Use Control Blocks (for Wr and Rd)

MODE CATEGORY FUNCTION
 RD/WR CB
USED DETAILS

CP to/from
BMU

BTag
Management
Transactions

Allocating
BTags

Rd See “RdCB0_BTag_Alloc (CP Rd
Control Block0 Fixed Function)” on
page 569.

Deallocating
BTags

Wr See “WrCB0_BTag_Deallocate (CP
Wr Control Block0 Fixed Function)”
on page 571.

Multi-Use
Management
Transactions

Allocating
(Multi-Use
Counter)

See “WrCB0_MUC_Allocate (CP Wr
Control Block0 Fixed Function)” on
page 571.

Decrementing
(Multi-Use
Counter

See “WrCB0_MUC_Decrement (CP
Wr Control Block0 Fixed Function)”
on page 572.

CP to/from
QMU

Queue
Management
Transactions

Unicast
Enqueue

See “WrCB0_Uni_Enq (CP Wr
Control Block0 Fixed Function)” on
page 573.

Speculative
Unicast
Enqueue

See “WrCB0_Spec_Uni_Enq (CP Wr
Control Block0 Fixed Function)” on
page 575.

Multicast
Enqueue

See “WrCB0_Multi_Enq (CP Wr
Control Block0 Fixed Function)” on
page 574.

Dequeue Rd See “RdCB0_Dequeue (CP Rd
Control Block0 Fixed Function)” on
page 570.
C5EC3EARCH-RM REV 04

148 CHAPTER 2: CHANNEL PROCESSORS
C-5e Methods for
Handling High Speed
(OC-48) PDUs

This section pertains to the three (3) C-5e methods used to implement higher line speeds
that apply to the CPs only. Some are used in conjunction with an external devices (M-5).
Table 25 on page 148 lists the methods and some related aspects as an overview. Each of
these methods are described in the following section.

Sequence Numbers for
CPs

PDUs are received and transmitted into the M-5 out of order. Therefore, sequence
numbers are used to provide ordering inside the C-5e that enables extracting and
merging of the associated descriptors with their payloads. Sequence numbers are needed
for the CPs for both enqueue and dequeue operations. Sequence numbers are 13bits long
and are included in enqueue and dequeue operations once they are configured.

For CP enqueue and dequeue operations, the SeqNum bit [7], of the Payload address
[27:0], indicates if sequence numbers are to be used in the request or not (1=use
sequence numbers, 0=do not use sequence numbers).

Table 25 C-5e Methods and Purpose in Relation to Components, Operation, and External Companion Devices for CPs Only

C-5E
METHODS PURPOSE

APPLICABLE
C-5E
COMPONENT

APPLICABLE
OPERATION USED WITH

Sequence
Numbers

Provides ordering inside the C-5e that enables extracting and
merging of the associated descriptors with their payloads.

CPs Enqueue and
Dequeue

M-5

Aggregated
Queueing

Provides two benefits: allows clustered CPs to share queues,
and allows all 16 CPs to share a single queue in order to
transmit a single concatenated stream. Both are used in order
to reduce latency when operating at higher line speeds.

CPs Dequeue Only N/A

Speculative
Enqueue

Allows a fixed latency for PDU streams, from the start to enqueue. It
prevents uneven PDU flows that can cause overruns of PDUs, and
large gaps in the streams. This provides a more efficient bandwidth
of PDU flow. The enqueues are speculative because at the time they
are enqueued, the CRC is not calculated.

CPs/QMU Enqueue Only M-5 Optional
C5EC3EARCH-RM REV 04

C-5e Methods for Handling High Speed (OC-48) PDUs 149
Enqueue Operations Using Sequence Numbers
When sequence numbers are used for the CPs, the QMU serves its request in the following
manner. The QMU alternates its preference between serving those in the normal FIFO
order, and those with sequence numbers.

Occasionally, PDUs are dropped that create gaps in the sequence numbering. This causes
an error that is taken into account in the new algorithm. Therefore, a saturating count of
the missing sequence numbers that should have been enqueued to the QMU from the
CPs are collected in the new Missing_Front_Seq_Num_Cnt register bits [31:0].

The new enqueue algorithm is used with the CPs. The descriptor is enqueued in the C-5e.
Using the new Front_Seq_Num register bits [28:16] front ingress sequence number field, the
QMU looks here to obtain the next sequence number for enqueuing descriptors from the
front ports (CPs).

Error Handling and Error Conditions
Error handling is provided for occasional missing sequence numbers and is handled as
follows:

When all mailboxes are full, but the expected sequence number does not appear, then
the expected sequence number is incremented. The new
Missing_Front_Seq_Num_Cnt register bits [31:0] count these events.

Three (3) error conditions can cause out-of-sync count between QMU and M-5. Under
these conditions, while the QMU counts through sequence numbers to regain
synchronization, large numbers of PDUs could be lost. Such events rarely occur. These
conditions are as follows:

• After the C-5e NP is reset, the first sequence number seen by the QMU is far from zero
(0). This would cause acceptable loss at startup.

• There is a missing sequence number, and shortly thereafter there is a very large PDU
followed by a long stream of very small PDUs. While the large PDU is arriving, other
write mailboxes in the same cluster cannot be filled by the CP. Due to the empty
mailboxes, the QMU’s expected sequence number does not increment past the
missing number. Enqueues stop while the many small PDUs arrive, causing overrun of
the CP FIFOs.

• The QMU receives a corrupted sequence number.

The enqueue algorithm assumes that each CP must eventually enqueue a descriptor.
When any CP goes off-line, all enqueueing stops.
C5EC3EARCH-RM REV 04

150 CHAPTER 2: CHANNEL PROCESSORS
Dequeues Operations Using Sequence Numbers
Both the front ports (CPs) and the back port (FPTx) have separate sequence number
spaces.

• Using the new Front_Seq_Num register bits [12:0] front egress sequence number field,
the QMU looks here to obtain the next sequence number to supply with a descriptor
to send to the front ports (CPs).

• Using the new Back_Seq_Num register bits [12:0] back egress sequence number field,
the QMU looks here to obtain the next sequence number to supply with a descriptor
to send to the back port (FP). New enqueue/dequeues formats exist using the Unicast
Enqueue Operation (WrCB).

Aggregated Queueing for
CPs

The purpose of aggregated queuing is two fold: to allow clustered CPs to share queues,
and to allow all 16 CPs to share a single queue in order to transmit a single concatenated
stream. Both are used in order to reduce latency when operating at higher line speeds.

Each CP has three (3) hardware operational modes:

• Single CP Queuing Mode (00), (1 CP)

• Cluster Aggregation Mode (01), (4CPs clustered) (128 Queues are available)

• Full-Chip Aggregation Mode (10), (all 16 CPs clustered) (128 Queues are available)

Except for full-chip aggregation, other possible mixes are allowed. For example, 1 CP in
cluster aggregation, while another is in single CP queuing mode. However, all CPs in a
cluster must be in the same mode.

In all three (3) modes the queue status register is now a true reflection of the QMUs queue
empty/not-empty status. For all three (3) modes empty to not-empty (0 to 1) transactions
are distributed in the same manner, via QMU broadcasts on the Global Bus. During the
aggregation queuing the CPs masks the appropriate lower bits of the CPId to make the
distribution across four (4) or sixteen (16) CPs. The Global Bus and Payload Bus use the
same CPId bit masking. For all three (3) modes a not-empty to empty (1 to 0) transactions
are detected over the Payload Bus. These transactions are watched for all dequeues and
note queue lengths of zero (0). A queue length of zero (0) causes the associated queue
status bit to clear to empty (zero).

While the QMU issues special broadcasts for the 0 to 1 transactions, the 1 to 0
transactions are communicated indirectly via the queue length that is embedded in a
dequeue response.
C5EC3EARCH-RM REV 04

C-5e Methods for Handling High Speed (OC-48) PDUs 151
• In single CP Queuing Mode, the operation is essentially the same as described above,
(empty to not-empty and not-empty to empty) except there is no bit masking. Each CP
acts independently.

• In Cluster Aggregation Mode, 4 CPs are aggregated and each cluster uses tokens for
pipelining the transmit operation. The tokens are not used for ordering, this is done by
the M-5. A total of 128 queues can be used by the aggregated CPs.

• In Full-Chip Aggregation Mode, the 16 CPs are aggregated for pipelining the transmit
operation. Ordering, is done by the M-5 in cooperation with the QMU. A total of 128
queues can be used by the aggregated CPs.

Queue Length and Queue Status Trade-Offs
The use of queue lengths for the purpose of determining whether or not a dequeue
should be issued are optional based upon the specifics of the application. Bear in mind,
that this is an explicit trade-off between performance and functionality.

Changes in the Dequeue Paradigm
When the queue status indicates the queue is non-empty (>0) then a dequeue is issued.
This is speculative since the software is not sure if the queue actually has a descriptor or
not. This is because other CPs in other clusters may be looking at the same queue.

When there is no descriptor for the requesting CP, the QMU handles the dequeue request
by setting the dry bit. A dry bit occurs when the requesting CP tried to dequeue an empty
queue. A dry dequeue does not create a Payload Bus error and the mailbox status bits from
the QMU indicates idle (00). Therefore, the dry dequeue no longer results in an error. The
CP should either re-try or try to dequeue form another queue. The result is that an empty
to not-empty transition, a transient number of CPs might see the queue status bit and
dequeue simultaneously even though there may only be one (1) PDU to transmit. The
number of transient CPs should be four (4) due to the dequeue token in the clusters. In
this case, one (1) CP gets a descriptor and three CPs (3) get a dry queue message.

Implementation of Aggregated Queueing for CPs
The queue aggregation mode is selected using the new Queue_Ctl register bits [1:0]
QueueAggrMode field. This register is located in the CP configuration space. Select the
desired mode using the supported values. They are:
C5EC3EARCH-RM REV 04

152 CHAPTER 2: CHANNEL PROCESSORS
These bits exist in all CPs. Both the Payload Bus and Global Bus logic use these modes to
select a wildcard on bits of the nodeID during a QMU queue status broadcast message
and during QMU dequeue payload reads.

The QMU returns the encoded queue status number, (dequeue queue number - base
queue number), in bits [20:14] of the first 16Bytes (128bits) of the dequeue read payload.
Each Payload Bus detects dequeues aimed with the mode mask at its CP. When a match
occurs, the Payload Bus creates a write to the new Queue_Empty register containing bits
[20:14] encoded queue status number field and bits [13:0] queue length field. This is then
used by the CP logic to clear a bit in the Queue_Status registers when the queue length==
0.

Hardware updates (that is, setting the bits) of the Queue_Status register can not occur
during the hardware clear mechanism because of the bus timing.

Table 26 Legal Values for Queue Aggregation for CPs

ENCODED
VALUE FUNCTION

00 Single CP Queuing (x1) (1 CP)

01 Cluster Aggregation Mode (x4) (4CPs clustered)

10 Full-Chip Aggregation Mode (x16) (all 16 CPs clustered)

11 Reserved
C5EC3EARCH-RM REV 04

C-5e Methods for Handling High Speed (OC-48) PDUs 153
Speculative Enqueues for
CPs

Speculative Enqueues allow a fixed latency for PDU streams, from the start to enqueue. It
prevents uneven PDU flows that can cause overruns of PDUs, and large gaps in the
streams. Thus, providing a more efficient bandwidth of PDU flow. The enqueues are
speculative because at the time they are enqueued, the CRC is not calculated. Therefore,
the PDUs are accepted into the CPs faster because the PDUs are treated as valid upon
reception. Erroneous PDUs are detected and dropped on transmission by the output port.

Speculative enqueues do not support multicast PDUs. Therefore, only non-speculative
enqueues should be used for multicast PDUs. Furthermore, the XP does not support
speculative enqueues. When attempted the CPI returns an error.

Operation of Speculative Enqueues

At a fixed time after processing starts, the Rx CP builds a descriptor that includes the PDU
length that is calculated by the M-5 and then sends it (in a speculatively state) to the QMU.
Later when the entire PDU has been received, a 2bit commit message, in CP_Mode0
register bit [25] field SendSpeculCommit and bit [24] field Valid/Invalid, are sent to the QMU
that indicate whether the PDU is valid. If it indicated an error then it would normally cause
the PDU to be dropped. When an error is detected, the Invalid bit [24] is then used in the
transmit path. Refer to Table 27 on page 153.

At commit time, the descriptor and BTag have already been stored in internal structures
and cannot be deleted. Consequently it is up to the transmit port to drop the descriptor
and deallocate or reuse the BTag.

When the head of a queue is not committed then the queue appears to be empty. The
following provides more detail on this:

• When an uncommitted descriptor is enqueued in an otherwise empty queue then the
queue ready (empty to non-empty) message is not issued.

• When a descriptor is dequeued and the next descriptor in that queue is uncommitted,
then the queue length supplied with the dequeued descriptor is zero (0).

Table 27 Commit Message Format for the Commit Serial Line

FIELD NAME BIT POSITION DESCRIPTION

SendSpeculCommit 25 1= Initialize transfer
0= No action

Valid/invalid 24 0= Commit, valid descriptor
1= Commit, invalid descriptor
C5EC3EARCH-RM REV 04

154 CHAPTER 2: CHANNEL PROCESSORS
• When an uncommitted descriptor is at the head of the queue, then attempted
dequeues result in a “dry queue” response.

• When a descriptor at the head of a queue is committed, a queue ready message is
broadcast.

When dequeue occurs the transmit CP must examine the invalid bit and if the PDU is
invalid then the PDU must be dropped. Since a commit message is under software control
the QMU must be able to tolerate spurious commits in a graceful manner. Spurious
commits mean commits that have no corresponding speculative enqueue. When a
commit arrives at a mailbox and is not expected then the commit is simply ignored. This
refers to a mailbox not containing an uncommitted speculative enqueue.

The speculative enqueue process is achieved using dedicated serial lines between each of
the CPs and QMU. Serial status bits from the QMU mailboxes to the CPs function as
described in the QMU section. This means that a mailbox status may be idle even though
it is waiting for a commit.

The CP must send the commit message after the associated speculative enqueue, but
before sending the next enqueue to the mailbox. If a mailbox receives another command
while it is still waiting for a commit, the latter command is NACKed.

When using speculative enqueues, there must be a one-to-one association between CPs
and write mailboxes. Specifically, CPn must only send enqueues to mailboxn.

Dequeue messages from the QMU include the invalid bit on the first beat of the Payload
Bus.

Implementation of Speculative Enqueues for CPs
• A new QMU function called Speculative Unicast-Enqueue is available using a WrCB0_

(0x3) to provide CP to/from QMU payload transactions.

• Also, the two dedicated serial lines between each of the CPs and the QMU is used in
the following manner: one is used for both read and write mailbox status from the
QMU, while the other is used for speculative enqueue commit messages to the QMU.

Software launches the speculative commit transmission by writing the commit message,
a 2bit commit message, in CP_Mode0 register bit [25] field FrameBit and bit [24] field
Valid/Invalid. The actual writing of these 2bits causes the CP to send the commit message
to the QMU.
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 3
EXECUTIVE PROCESSOR
Chapter Overview This chapter covers the following topics:

• Executive Processor (XP) Overview

• XP RISC (XPRC) Overview

• XP Memory (IMEM and DMEM)

• XP Supported Interfaces

• C-5e NP Interface Options for Initialization

• Other XP Interfaces

• XP Configuration Space
C5EC3EARCH-RM REV 04

156 CHAPTER 3: EXECUTIVE PROCESSOR
Executive Processor (XP)
Overview

The XP serves as a centralized computing resource for the C-5e NP and manages the
system interfaces. One of the system interfaces it manages is the PCI bus, which is
generally used for communication to an external host processor. If present, a host
processor can provide device-wide coordination (for example, between multiple C-5e
NPs), network management, signaling, and could possibly build all routing tables for the
device of which the C-5e NP is a part. The XP can also perform many of these functions by
itself. The XP has access to the internal Global, Ring, and Payload buses.

Typical XP functions include:

• Chip initialization and code download

• Routing/Switching table maintenance (either building tables or importing updates
from the host)

• Statistics harvesting from CP DMEM and the TLU

• Fault detection/recovery

• Non-critical-path forwarding functions

XP Major Components The major components of the XP are listed in Table 28 on page 156. In addition, Figure 28
on page 158 shows the XP Block Diagram.

Table 28 Major Components of the XP and Their Function

ITEM FUNCTION

XP RISC Core
(XPRC)

Performs conventional supervisory tasks in the C-5e NP, including:

• Reset and initialization of the C-5e NP

• Program loading and control of CPs

• Centralized exception handling

• Management of a host interface through the PCI

• Management of system interfaces (PCI, PROM, Serial Bus)

This general purpose CPU implements a subset of the MIPS 1 instruction set
(multiply, divide, floating point, and CPO instructions are not supported) with its
own dedicated code and data store. The XPRC has Global Bus access to all CP
configuration registers and DMEMs. In addition, the XPRC has Ring Bus access for
table lookup operations. A 16-word Instruction ROM (IROM) is dedicated to the
XPRC. Refer to “XP RISC (XPRC) Overview” on page 159.
C5EC3EARCH-RM REV 04

Executive Processor (XP) Overview 157
Memory Two (2) types of memory are available: IMEM and DMEM.

• The XP has 48kBytes of IMEM that contains the RISC Instructions in RAM. It is
organized as two (2) 24kBytes banks for sharing within the XP.

• The XP has 32kBytes of local non-cached data memory (DMEM) for storage of
data. It is organized as two (2) 16kBytes banks. In addition, the DMEM can also
be accessed as remote memory by CPs via the Global Bus.

Refer to “XP Memory (IMEM and DMEM)” on page 165.

PCI Provides an industry standard 32bit 33/66MHz PCI channel used for chip-level
shared resources. The PCI has both initiator and target capabilities. A host is
optional, but when present, it is capable of:

• Requesting the Global Bus (which provides access to all CP configuration
registers and DMEMs)

• Requesting the Ring Bus (which provides access to table lookup operations)

• Requesting XP processing and communicating with the XP for additional
services

• Supporting C-5e NP initialization

Refer to “PCI Bus Interface” on page 167.

PROM
Interface

Allows the XP to boot from an external PROM. The PROM interface is a low-speed,
serial I/O interface that requires external glue logic to interface to an external
PROM up to 4MBytes in size. Refer to “PROM Interface” on page 169.

Serial Bus
Interface

 Consists of a general purpose bi-directional, two-wire serial bus and I/O port. It
allows the C-5e NP to control external logic with either of two (2) standard
protocols.

• The high-speed protocol uses a 16bit data format with 10bits of addressing,
and supports transfers up to 25MHz.

• The low-speed protocol uses an 8bit data format followed by an acknowledge
bit and supports transfers at up to 400kbps.

The bus supports a single master hierarchy that can operate as either a receiver or
a transmitter. The bus also supports an integrated addressing and data-transfer
protocol. Refer to “Serial Bus Interface” on page 171.

Configuration
Space

This area of the XP contains a number of registers used to communicate with the
SDP and the bus controllers (Payload Bus and Global Bus). The XP’s registers can
also be accessed by other components of the C-5e NP.(CPs via the Global Bus).
Refer to “XP Configuration Space” on page 175.

Table 28 Major Components of the XP and Their Function (continued)

ITEM FUNCTION
C5EC3EARCH-RM REV 04

158 CHAPTER 3: EXECUTIVE PROCESSOR
Figure 28 Executive Processor Block Diagram

DMEM
(Bank 1)

XP

XP/CP
Configuration

Registers

XP/CP
Configuration

Registers

PROM
Interface

Serial
Bus

Interface

PCI

XP
Config
Regs

PCI Bus

DMEM
(Bank 2)

Ring
Bus

Interface

Global
Bus

Interface

Payload
Bus

Interface

Payload
Bus

Interface

XP
RISC
Core

(XPRC)

IMEM Loader

IMEM

IROM
C5EC3EARCH-RM REV 04

XP RISC (XPRC) Overview 159
XP RISC (XPRC) Overview The XPRC is a general purpose Central Processing Unit (CPU) founded on the same RISC
Core used for the CP. Operating at the C-5e NP’s core clock rate, the XPRC provides
about.85 instructions per cycle (IPC) when executing out of local memory. The IPC and
frequency targets offer about 190MIPS per channel on non-blocking code.

The XPRC contains a 32bit data path and accesses memory using a 32bit physical address.
It has two (2) banks of local data memory (DMEM); references to memory within Bank 2
(also referred to as DMEM 25) occur with zero wait states; accesses to Bank 1 (also referred
to as DMEM 24) incur one core clock cycle latency. Memory addresses outside of local
memory range refer to remote memory (that is, the memory contained within the CPs,
SDRAM, or I/O devices).

The XP contains memory-mapped control registers (blocks) used for DMA between DMEM
and SDRAM, between PCI and SDRAM (via DMEM 24), as well as between SDRAM and
IMEM (via DMEM 25). In addition, Configuration Registers enable the XPRC (and PCI
interface) access to Payload, Global, and Ring Buses.

XPRC Instruction Set The XPRC executes the following instruction set: a subset of MIPS™1 instruction set
(excluding multiply, divide, floating point, unaligned loads and stores, move to hi and
move to lo), eight (8) Branch Likely instructions from the standard MIPSTM 2 instruction
set, and sixteen (16) custom instructions. Refer to “RISC Core Enhancements” on page 804.
Its four (4) sets of 32 registers each support fast context switching. See the MIPSpro™
Assembly Language Programmer’s Guide (available over the Internet at
http://www.mips.com/publications/index.html) for information about the standard MIPS1
instruction set.

The standard MIPS Coprocessor Zero (CP0) registers are not supported. However,

Freescale provides its own special purpose Coprocessor Zero registers.

It is highly recommended that you use the C-Ware Compiler when building your
application code. Therefore, refer to the C-Ware Application Development Guide for

information on using the Freescale compiler, which supports the CPRC.
C5EC3EARCH-RM REV 04

160 CHAPTER 3: EXECUTIVE PROCESSOR
XPRC Registers The set of internal XPRC registers is defined in Table 29.

Context Switching The XPRC incorporates a fast, four-way, context switching facility that replicates the entire
XPRC register space four times and can switch from one register set (one context) to
another under software control or hardware interrupt. Thus, actual processing (as
opposed to manually saving the contents of one set of registers and then loading
another) can begin on a different context in only two cycles. Therefore, you can use these
four contexts for debugging, supervisory tasks, event handlers, or other tasks.

Table 29 Internal XPRC Register Definitions

REGISTER NAME SOFTWARE NAME USE AND LINKAGE

$0 — Always has the value of 0.

$at or $1 — Reserved for the assembler.

$2:$3 v0 to v1 Used for expression evaluations and for hold integer
function results. Also used to pass the static link when
calling nested procedures.

$4:$7 a0 to a3 Used to pass the first four words of integer type actual
arguments. Their values are not preserved across
procedure calls.

$8:$15 t0 to t7 Temporary registers used for expression evaluations,
Their values are not preserved across procedure calls.

$16:$23 s0 to s7 Saved registers. Their values must be preserved across
procedure calls.

$24:$25 t8 to t9 Temporary registers used for expression evaluations.
Their values are not preserved across procedure calls.

$26:$27 or
$kt0:$kt1

k0 to k1 Used internally by the C-5e NP system services.

$28 or $gp gp Contains the global pointer.

$29 or $sp sp Contains the stack pointer.

$30 s8 A saved register (like s0 - s7).

$31 ra Contains the return address used for expression
evaluation.
C5EC3EARCH-RM REV 04

XP RISC (XPRC) Overview 161
Figure 29 Executive Processor Context Switching

The XPRC includes four sets of 32 internal registers. Each register set is associated with a
processor context. The set of registers are defined in Table 29.

Context switching is accomplished two (2) ways:

• Coprocessor instruction (software)

• Interrupt (hardware)

The software mechanism for executing a context switch is the MIPS MTC0 instruction:

MTC0 $1 $3

where $1 specifies the destination context. The contexts have no priority; how they are
used is entirely designated by software.

The hardware interrupt sequence is:

• All interrupts are disabled until an RFE instruction is executed.

• The address of the next instruction to be executed in the interrupted context is saved
in K1 (see “Interrupts”).

• Program execution continues with the instruction at the address specified in the
interrupt vector.

Context 0 Context 3

Context 2Context 1

Other
Tasks

Debugging/
Supervisory Tasks/

Event Handlers

XPRC

Receive
Task

Transmit
Task
C5EC3EARCH-RM REV 04

162 CHAPTER 3: EXECUTIVE PROCESSOR
Interrupts The XPRC supports four prioritized hardware interrupts, that can be triggered from any
bits in the Event Register. There are four MIPS-like register sets corresponding to each
hardware context, one register of which (K0) is shared between the other contexts.

K1 contains the program counter value and the context number of the interrupted
context. These values are used in the execution of the RFE instruction to return to the
previously interrupted context.

All interrupts and exceptions transfer control to a location found in the appropriate
interrupt or break table. The base address of the interrupt table is specified by the
contents of the interrupt table register ($1) in coprocessor zero. The base address of the
exception table is specified by the contents of the break table register ($2) in coprocessor
zero.

Interrupts are dispatched by a jump to the address equal to ((interrupt number * 8) +
(interrupt table register)). Exceptions are dispatched by a jump to the address equal to
((break number * 8) + (break table register)). In addition to the jump, the register context
is set to zero and interrupts are disabled. However, exceptions may still occur. Whether a
hardware interrupt or an exception, the interrupted routine’s register context and its next
program counter are saved in K1 of context zero.

The K1 value points at the next instruction to be executed after the interrupt is serviced.
RFE is normally used to: (1) resume the instruction flows at this point, (2) restore the
proper register context, and (3) restore the Interrupt Enable Flag to its value at the time of
the interrupt or exception.

Note that interrupts are not recognized in a branch delay slot. Also note that all
exceptions fill the delay slot following a change of flow with a NOP instruction.

Interrupts are enable by setting the Interrupt Enable Flag (IEF) which is the LSB of
coprocessor zero, Register 8 (see Table 30). The IEF is preserved whenever an exception or
an interrupt occurs and is restored by the RFE instruction.
C5EC3EARCH-RM REV 04

XP RISC (XPRC) Overview 163
)

Hardware Programming
Resources

In addition to fast Context Switching, the XPRC contains resources to aid in efficient
program design. These include:

• Event Registers — Each bit indicates that the corresponding event has or has not
occurred since last set. Centralizing status monitoring into a single register allows for
efficient event-driven software design. Many bits are pre-defined, providing
high-speed reporting of events between on-chip subsystems (for example, data
available on QMU queue). Other bits are software programmable.

• Cycle Counter — This 64bit counter is set to 0 when the chip is reset, and increments
every core clock cycle thereafter. at overflow, the counter wraps to 0.

• Countdown Timer — Applications can set this timer to a value that decrements.
When the timer reaches 0, it generates an event for the application.

Table 30 Coprocessor Zero Register Definitions

REGISTER DEFINITION

R0 Whoami Register — Contains the DMEM base (hardcoded) for this XPRC.

R1 Interrupt Table Register — Contains the vector address for INT 0.

R2 Break Table Register — Contains the vector address for break 0.

R3 Current Context Register — The two LSBs are the current context register. Set by
setting ictxt in decoder.v.

R4 DMEM Comparison Address — Contains the address at which debug pulse is
generated.

R5 DMEM Comparison Address Mask — Contains the mask for the DMEM address.

R6 DMEM Comparison Data — Contains the data value for which debug pulse is
generated.

R7 DMEM Comparison Data Mask — Contains the mask for the DMEM data.

R8 Interrupt Flag — The LSB in the Interrupt Flag.

R9 Read/Write Mask — The two LSBs are the Read mask and the Write mask for R4 to
R7.
C5EC3EARCH-RM REV 04

164 CHAPTER 3: EXECUTIVE PROCESSOR
Event Registers There are a number of events that can occur in a C-5e NP that are asynchronous, and that
the XPRC must be able to recognize and process. These events must be recognized either
by polling for them, or via interrupt notification. To reduce the processing time required to
respond to an asynchronous event (and hence to improve latency and reduce the chance
of losing an event), this event handling mechanism in the XPRC has the following
properties:

• Software can identify events and dispatch to their corresponding processing routines
very quickly, on the order of 5 to 10 cycles.

• Software can dynamically prioritize events.

• Software can choose which events will generate interrupts (if any), and which it will
process via polling.

Each of 64 events in the XP is assigned an event number, and a corresponding bit in one
of the two (2) 32bit event registers (Event0 and Event1). When an event occurs in the XP
(that is, the signal transitions from 0 to 1), it sets the corresponding bit in event registers.
The normal mechanism for accessing the event status uses the Event Access Control
Block.

Most of the bits in the event registers can be interrogated and cleared independently of
other state in Configuration Space. However, Event0 register bits [55:52] are an
exception; these bits are not edge sensitive and cannot be cleared directly. They represent
the logical OR of the current bits in each of the Queue Status registers (Queue_Status0 to
Queue_Status3). Clearing the Queue Status registers clears these Event0 register bits
[55:52]. Refer to “Executive Processor (XP) Configuration Registers” on page 576.
C5EC3EARCH-RM REV 04

XP Memory (IMEM and DMEM) 165
XP Memory (IMEM and
DMEM)

The XP has both local instruction memory (IMEM) and local data memory (DMEM). These
are local memory, not a level 1 cache. In addition, it has the capability to bring in overlays
from SDRAM to either IMEM or DMEM, using DMA under program control. The XP also has
a local Instruction ROM (IROM).

Instruction Memory The XP has 48kByte IMEM, configured as two (2) sub-arrays. This memory is shared two (2)
ways between the XP and the IMEM loader. The IMEM loader is a logical block that moves
code overlays from SDRAM to IMEM. Using the Code Overlay Transfer Control Block, the
IMEM loader can DMA code from SDRAM into IMEM via an intermediate buffer in DMEM
bank 2 (DMEM #25).

XPRC instruction references outside of the local memory space are not supported.
Similarly, the XP IMEM is not visible to any other processors on the chip or to the PCI
interface.

Data Memory The XP has a local 32kByte DMEM. This is organized into two 16kByte banks; bank 2
(DMEM #25) is accessed with zero latency; bank 1 (DMEM #24) is accessed with one
additional cycle of latency.

DMEM is organized as 16Byte lines providing 3.2GBps peak bandwidth through a single
port. It is accessed via a 4Byte (32bit) access path. The memory resides in the global
address space of the C-5e NP; however, only Bank 1 (DMEM24) is accessible by CPs; DMEM
Bank 2 (DMEM #25) is not visible to processors outside of the XP. Bank 2 does, however,
interface to the Payload bus for data and code transfers, as well as the PCI Bus. Refer to
“Executive Processor (XP) Configuration Registers” on page 576.

SDRAM The XP has DMA access to SDRAM to support data transfers to/from the PCI, IMEM code
overlays, and DMEM data overlays. All DMA is controlled using Control Blocks (WrCB0_,
RdCB0_, RxCB0_, TxCB0_). SDRAM is not addressable in the global address space. The XP’s
control blocks provide the following types of SDRAM access:

• DMA to/from DMEM Bank 1 and SDRAM for data overlays.
[control block RdCB/WrCB #24]

• DMA to/from DMEM Bank 2 and SDRAM for data overlays.
[control block RdCB/WrCB #25]

• DMA to/from the PCI bus and SDRAM (via buffer in DMEM bank 1).
[control block TxCB/RxCB #24]
C5EC3EARCH-RM REV 04

166 CHAPTER 3: EXECUTIVE PROCESSOR
The transfer control block presents transaction requests to the XP Outbound
Transaction State Machine, which competes for access to the PCI Master in the XP
Outbound Transaction Arbiter. The PCI address and transfer count information for the
DMA transfer are provided via additional configuration registers in the XP
Configuration Register Block.

• DMA from SDRAM to IMEM (via buffer in DMEM bank 2) for code overlays.
[control block TxCB #25]

• DMA from a constant zero data to SDRAM. This is used to initialize SDRAM.
[control block RxCB #25]

The transfer control block presents transactions to the IMEM Loader that interfaces
directly into the IMEM. IMEM target address information for the DMA transfer is provided
via additional configuration registers in the XP Configuration Register Block.

IROM The IROM provides the first instructions when the chip is initialized. It is only accessible by
the XPRC. See “C-5e NP Interface Options for Initialization” on page 172 for more
information.
C5EC3EARCH-RM REV 04

XP Supported Interfaces 167
XP Supported Interfaces The XP manages the supervisory controls for the network interfaces as well as the set of
pins that provide interfaces to other components in the system that are not memories or
network interfaces. The XP supports three (3) system interfaces:

• 32bit PCI Interface (33MHz or 66MHz)

• PROM Interface

• Serial Bus Interface

PCI Bus Interface Host communication to the C-5e NP is provided through the PCI interface. A host is
optional, but when present, it is capable of requesting the Global Bus through the PCI
interface. Using the PCI interface, a host can request XP processing through the PCI
mailbox registers and communicate with the XP for additional services. A host is capable
of supporting C-5e NP initialization without a ROM.

The XP can be configured to support a 32bit PCI interface capable of operating at either
33MHz or 66MHz. The PCI interface on the C-5e NP is fully compliant with the PCI
Specification Revision 2.1. The C-5e NP PCI interface includes the following functions:

• Initiation of PCI transactions as a PCI Bus Initiator including:

– Memory Reads and Writes

– Internal DMA engines capable of transferring blocks of data between the C-5e NP’s
SDRAM and the PCI Bus under XP control

• Processing PCI transactions as a PCI Bus Target including:

– Memory Writes

– Memory Reads, Memory Read Line, and Memory Read Multiple

– Configuration Read and Write

– Single Delayed Transaction

– Medium DEVSEL timing

– Configurable via the PCI Interface and/or internal bus accesses from the XP

– 32bit Addressing

– 32bit Transfers
C5EC3EARCH-RM REV 04

168 CHAPTER 3: EXECUTIVE PROCESSOR
– 33MHz or 66MHz operation

– Support for a single PCI interrupt line (PCI_INTA)

The PCI Bus interface does not include support for the following functions:

• Exclusive accesses controlled by the PCI_LOCK_N signal as either an Initiator or a
Target (all requirements for access exclusion to memory space within the C-5e NP are
assumed to be handled through software semaphores)

• Special cycles

• PCI cache support (all memory space within the C-5e NP is NOT cacheable to an
external processor)

• JTAG (IEEE 1149.1)

• Power management

• Bus arbitration logic (an external PCI Central Resource is required to support this
function)

PCI Access to C-5e NP Physical Address Space
An external PCI Initiator can access C-5e NP physical address space through six (6) 1MByte
windows in PCI address space. The System Interface Configuration Space contains six (6)
standard PCI Base Address Registers (BARs) each defining a 1MB prefetchable memory
region.

While the regions are defined as prefetchable, software is responsible for properly
handling any read side effects that may occur within the C-5e NP.

For each of these BARs, there is a corresponding address translation register indicating the
1MByte page in C-5e NP physical address space that is to be accessed.
C5EC3EARCH-RM REV 04

XP Supported Interfaces 169
C-5e NP Access to PCI Address Space
The XP can access PCI address space through eight (8) programmable windows in the
C-5e NP’s physical address space. Each window is controlled by an XP BAR and a PCI
address translation register. The BAR controls the location and size of the window in C-5e
NP physical address space. The programmable window sizes are: 16kBytes, 32kBytes,
64kBytes, 128kBytes, 256kBytes, 512kBytes, 1MByte, or 2MByte. Each window can be up to
2MByte in size, but the windows can be programmed as any combination of the specified
sizes (for example, there could be eight 2MByte windows, or four 128kByte, three 1MByte,
and one 256kByte windows). The PCI Address Translation register controls the window’s
view into the PCI address space.

The C-5e NP provides an optional byte swapping mode for moving data between the PCI
Bus Little Endian environment and the C-5e NP Big Endian environment. Refer to “PCI Byte
Swapping Overview” on page 822.

PCI Registers
Table 190 on page 576 shows all the PCI Configuration registers. Refer to “Executive
Processor (XP) Configuration Registers” on page 576.

PROM Interface The PROM interface is a low-speed serial I/O interface that allows the C-5e NP to read from
an external PROM. The PROM interface clock is created internally in the C-5e NP by
dividing the core clock. The clock divider is programmable via the XP Miscellaneous Control
register and can be set to values ranging from 2 to 16. The maximum PROM size
addressable is 4MBytes, and must use a “by 16” part.

The external glue logic (which must be provided by the application) is illustrated in
Figure 30 along with the internal mechanisms of the C-5e NP PROM interface. The glue
logic consists of an external 22bit shift register with parallel-in and parallel-out
capabilities, and a 22bit parallel-in/parallel-out register. Both registers must be positive
edge triggered by the PROM interface clock, and perform a synchronous parallel load
whenever SPLD is asserted high. For all other cycles, SPLD is asserted low, and the shift
register should shift and the parallel register should hold.
C5EC3EARCH-RM REV 04

170 CHAPTER 3: EXECUTIVE PROCESSOR
Figure 30 PROM Interface

The PROM interface operates in the following manner. Whenever the XPRC, or an inbound
transaction being serviced by the PCI target, requests a read from address 0xBFC00000
through 0xBFFFFFFC, the PROM interface initiates the following sequence (which
accesses the 16bit wide external PROM to return a 32bit result). Note that two accesses
are pipelined together to execute one 32bit fetch:

1 The PROM_ADDR is loaded into the C-5e NP internal shift register.

2 The PROM_ADDR is shifted into the external shift register for 22 SPCLK cycles.

3 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external
presentation register.

4 SPLD is deasserted for 22 SPCLK cycles. The PROM presents the first 16bit
PROM_DATA. At the same time, the next PROM_ADDR is shifted into the external shift
register.

5 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external
presentation register and the first PROM_DATA into the external shift register.

External Logic

PROM_ADDR<21:1>

PROM _Return_Data

15

1516

PROM _H_Word

C-5e NP

PROM Clock Gen.

31

21
21

6
1
0

PROM _Return_Data

PROM Sequencer

21 0

0

CE

SPCLK
SPLD

SPDO

SPDI

Internal Shift
Register

PROM_ADDR<21:1>

CE

PROM _LO_Word

21 6 0

21 0

21 1

PROM PROM_Data

16

External Shift
Register
C5EC3EARCH-RM REV 04

XP Supported Interfaces 171
6 SPLD is deasserted for 22 SPCLK cycles, shifting the first PROM_DATA into the C-5e NP
internal shift register.

7 SPLD is asserted for one SPCLK cycle, loading the first PROM_DATA into the C-5e NP
PROM_RETURN_DATA register and the second PROM_DATA into the external shift
register.

8 SPLD is deasserted for 22 SPCLK cycles, shifting the second PROM_DATA into the C-5e
NP internal shift register.

9 SPLD is asserted for one SPCLK cycle, loading the second PROM_DATA into the C-5e NP
PROM_RETURN_DATA register.

Serial Bus Interface The Serial Bus interface is a general purpose bi-directional, two-wire serial bus and I/O
port. It allows the C-5e NP to control external logic with either of two standard protocols.
The high-speed protocol (MDIO) uses a 16bit data format with 10bits of addressing, and
supports transfers up to 25MHz. The low-speed protocol uses an 8bit data format followed
by an acknowledge bit and supports transfers at up to 400kbps. Software can select which
protocol to use by setting the appropriate bits in the Serial Bus Configuration Register.
When a serial bus transfer is active, an external pin is driven by the C-5e NP to indicate
which protocol is being used (SPLD=0 indicates high-speed protocol, SPLD=1 indicates
low-speed protocol).

The bus only supports a single master hierarchy that can operate as either a receiver or a
transmitter. The bus also supports collision detection and arbitration, and an integrated
addressing and data-transfer protocol.

Both SIDA and SICL are bi-directional lines that are connected (via a pull-up resistor) to the
positive supply voltage. When the bus is free, both lines are HIGH. The output stages of
the devices connected to the bus must have either an open-drain or open-collector in
order to perform the wired-AND function required for its arbitration mechanism. Refer to
“Serial Bus Configuration Register (XP Miscellaneous Control Function)” on page 602, and
“Serial Bus Data Register (XP Miscellaneous Control Function)” on page 603.
C5EC3EARCH-RM REV 04

172 CHAPTER 3: EXECUTIVE PROCESSOR
C-5e NP Interface Options
for Initialization

Typically, you use either the PCI or PROM interface to initialize the C-5e NP. Upon
initialization, the XP begins executing at the first word of the 16-word IROM. The IROM
uses the contents of location BD808300h as a pointer to a formatted boot image, copies
the code from that image to the XP IMEM, and begins execution at the code’s start
address. Unless modified by an external system, the reset value in the boot image pointer
is 0xBFC000000, which is the standard address for the boot PROM.

Using the PCI Interface
Initialization Option

If you use the PCI to initialize the C-5e NP, you would normally use the C-5e NP as an
intelligent peripheral to a host processor. Upon deassertion of the C-5e NP reset, all of the
internal CPs and the XP continue to be held in a reset state and the external host
processor is responsible for initialization.

The external system contains a C-5e NP boot image that is accessible to the XP via the PCI
Bus. This image can be in a boot ROM or in any other memory region accessible via the
PCI bus. The external host processor sets up the configuration registers in the System PCI
to give the XP access to the boot image, sets the boot pointer to the address of the image
in C-5e NP address space, and then releases the XP to begin fetching code over the PCI
bus.

Using the PROM Interface
Initialization Option

You would use the PROM interface to initialize the C-5e NP if the C-5e NP is used as a
stand-alone processor in a single-C-5e NP system. Upon deassertion of reset, the XP
immediately begins to fetch code from the PROM.
C5EC3EARCH-RM REV 04

Other XP Interfaces 173
Other XP Interfaces In addition, the XP has access to:

• PCI interface with both Initiator and Target capabilities.

• Global Bus access to all CP configuration registers and DMEMs from both the PCI target
and the XPRC.

• Ring Bus access from both the PCI target and the XPRC.

• Payload Bus access from both the PCI target and the XPRC via Control Blocks.

All CP configuration registers and DMEMs are accessible via the Global Bus from the
XPRC and PCI. However, CPs cannot access XP configuration registers or the PCI bus. Also,
CPs can only access one bank of XP DMEM (Bank 1) via the Global Bus; Bank 2 is not
visible. In addition, the PCI and XPRC have the same access to all resources with the
exception of the IMEM and IROM.

Table 31 lists the accessibility of XP initiated data transactions to various C-5e NP
Resources.
C5EC3EARCH-RM REV 04

174 CHAPTER 3: EXECUTIVE PROCESSOR
Table 31 Accessibility of XP Initiated Data Transactions to C-5e NP Resources

TRANSACTION INITIATOR*

XPRC
PCI
TARGET

CPS VIA
GLOBAL
BUS

TXCB/
RXCB
#24

TXCB/
RXCB
#25

RDCB/
WRCB
#24

RDCB/
WRCB #25

RE
SO

U
RC

ES

IROM W none none none none none none

XP SPECIFIC CONFIGURATION
REGISTERS

W, H, B W, H, B none none none none none

XP CP-LIKE CONFIGURATION
REGISTERS†

W, H, B W, H, B none none none none none

EXTERNAL SERIAL BUS H, B H, B none none none none none

PROM W W none none none none none

RING BUS Yes Yes none none none none none

CPS VIA GLOBAL BUS W W none none none none none

SDRAM (PAYLOAD ONLY) none none none 16Bytes 16Bytes 16Bytes 16Bytes

IMEM W none none none 16Bytes none none

DMEM #24 W, H, B (1 stall) W, H, B W 16Bytes none 16Bytes none

DMEM #25 W, H, B (no stall) W, H, B none none 16Bytes none 16Bytes

PCI W, H, B W, H, B none 16Bytes none none none

* The table entries indicate accessibility in terms of byte (B), half-word (H), 32bit word (W), and larger transfer operations.
† All control blocks
C5EC3EARCH-RM REV 04

XP Configuration Space 175
XP Configuration Space The Executive Processor (XP) has two areas of memory, referred to as XPSlot 24 and XPSlot
25. Both XPSlot 24 and XPSlot 25 has 1MByte of memory allocated to each for its use. Only
the DMEM part of XPSlot 24 can be accessed by all Channel Processor (CPs). In contrast, no
CP can access the XPSlot 25 area, however, the XP has full access to the XPSlot 25 area. The
memory maps for the XPSlot 24, XP Slot 25, and PCI, XP and other miscellaneous registers
are shown in Figure 31 on page 176, Figure 32 on page 177, and Figure 33 on page 178.

Although specific ranges of memory are allocated to specific functions, the entire area
may not be used.
C5EC3EARCH-RM REV 04

176 CHAPTER 3: EXECUTIVE PROCESSOR
Figure 31 XP Configuration Space (Slot #24)

CP0

CP15

CP14

CP13

CP12

CP11

CP10

CP9

CP8

CP7

CP6

CP5

CP4

CP3

CP2

CP1

0xBD8FFFFF

0xBD800000

Reserved
Configuration

Space

0xBFBFFFFF

0xBDB00000

0xBD900000

0xBDA00000

0xBC000000

0xBC100000

0xBC200000

0xBC300000

0xBC400000

0xBC500000

0xBC600000

0xBC700000

0xBCF00000

0xBD000000

0xBC800000

0xBC900000

0xBCA00000

Reserved
Configuration

Space

28 - 1 Megabyte

0xBCB00000

#27: BMU

#26: QMU (Internal)

0xBE000000

#25: XP1

#24: XP2 0xBD800000
0xBD7FFFFF

0xBCD00000

0xBCE00000

0xBCC00000

Test and Set
Local DMEM #24

(16k Bytes)

Reserved
Configuration

Space

Local
DMEM #24

(16k Bytes)

XP “CP-like”

(4kBytes)

PCI & XP Specific
Configuration

0xBD884000
0xBD883FFF

0xBD880000
0xBD87FFFF

0xBD808400
0xBD8083FF

0xBD808000
0xBD807FFF

0xBD804000
0xBD803FFF

Space

Reserved
Configuration

8 - 1 Megabyte

Space (1kByte)

Blocks

Blocks

Reserved 0xBDC00000

0xBDF00000Reserved

0xBDD00000

0xBDE00000
#29: TxFP

#30: RxFP

1: XP #25 can only be accessed by the XP, it is not visible to CPs.
2: The CPs can only access DMEM in XP #24.

0xBD804FFF
 Config. Space

Reserved

0xBD8FC3FF
Mirror Memory Region1:

0xBD8FC000

0xBD8F8FFF
0xBD8F8000

Mirror Memory Region2:
Same as 0xBD8FC3FF

Same as 0xBD8F8FFF

Same as 0xBD8F8000

Same as 0xBD8FC000

3: Access to the XP Configuration Register’s physical memory locations can be done
 using either one of two different Mirrored Memory Regions (Blocks).
C5EC3EARCH-RM REV 04

XP Configuration Space 177
Figure 32 XP Configuration Space (Slot #25)

CP0

CP15

CP14

CP13

CP12

CP11

CP10

CP9

CP8

CP7

CP6

CP5

CP4

CP3

CP2

CP1

0xBD9FFFFF

0xBD900000

Reserved
Configuration

Space

0xBFBC

0xBDB00000

0xBD900000

0xBDA00000

0xBC000000

0xBC100000

0xBC200000

0xBC300000

0xBC400000

0xBC500000

0xBC600000

0xBC700000

0xBCF00000

0xBD000000

0xBC800000

0xBC900000

0xBCA00000

Reserved
Configuration

Space

28 - 1 Megabyte

0xBCB00000

#27: BMU

#26: QMU (Internal)

0xBE000000

#25: XP1

#24: XP2 0xBD800000
0xBD7FFFFF

0xBCD00000

0xBCE 0000

0xBCC00000

Test and Set
Local DMEM #25

(16k Bytes)

Reserved
Configuration

Space

Local
DMEM #25

(16k Bytes)

0xBD984000
0xBD983FFF

0xBD980000
0xBD97FFFF

0xBD904000
0xBD903FFF

Space

Reserved
Configuration

8 - 1 Megabyte

Blocks

Blocks

Reserved 0xBDC00000

0xBDF00000Reserved

0xBDD00000

0xBDE00000
#29: TxFP

#30: RxFP

1: XP #25 can only be accessed by the XP, it is not visible to CPs.
2: The CPs can only access DMEM in XP #24.
C5EC3EARCH-RM REV 04

178 CHAPTER 3: EXECUTIVE PROCESSOR
Figure 33 XP Slot #24 Configuration Space for PCI, XP and Miscellaneous Registers

For complete details about specific registers go to their reference. Refer to “Executive
Processor (XP) Configuration Registers” on page 576.

Configuration
Space

0xBD8FFFFF

0xBD800000

Local DMEM
(16k Bytes)

(16k Bytes)

XP “CP-like”

Configuration
Space

PCI & XP Specific

Configuration
Space

Reserved

Configuration
Space

Reserved

Test & Set
Local DMEM
(16k Bytes)

Configuration
Registers

PCI

Configuration
Registers

XP Specific

Control
Registers

XP Miscellaneous

0xBD808000

0xBD808100
0xBD8080FF

0xBD808200
0xBD8081FF

0xBD8083FF

(256 Bytes)

(512 Bytes)

(256 Bytes)

0xBD883FFF
0xBD884000

0xBD87FFFF
0xBD880000

0xBD803FFF
0xBD804000

0xBD8083FF
0xBD808400

0xBD807FFF
0xBD808000(16k Bytes)
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 4
FABRIC PROCESSOR
Chapter Overview This chapter covers the following topics:

• Fabric Processor (FP) Overview

• FP Transmit (FPTx) Sequence

• FP Receive (FPRx) Sequence

• FPTx and FPRx General Considerations

• Fabric Interface Modes and Configurations

• FP Debug and Test

• FP Setup
C5EC3EARCH-RM REV 04

180 CHAPTER 4: FABRIC PROCESSOR
Fabric Processor (FP)
Overview

The FP provides a high-bandwidth port for the segmentation and reassembly of PDUs at
up to OC-48 speeds. It behaves like a high-speed network interface port (up to 125MHz
for two 32bit data paths) with advanced functionality that allows the C-5e NP to interface
to an application-specific switching solution or a switching fabric. The FP can be
configured to conform to seven (7) different fabric interfaces that include: CSIX-L1,
UTOPIA-1, -2, -3, PRIZMA, Power X(CSIX-L0), and UTOPIA3 like to M-5. The programming
flexibility of the FP allows it to support standards-based and customer proprietary switch
fabric cell formats.

The FP performs flow mapping and management to and from the switching fabric. It can
receive up to 159 flows concurrently, and supports transmission of up to 128 prioritized,
simultaneous flows configured as either: a 32-port matrix with four (4) priority levels, or a
16-port matrix with eight (8) priority levels. These flows support:

• Unicast and multicast topologies

• C-5e NP-to-fabric link-level flow control

• End-to-end congestion management and flow control

• Segmentation and reassembly (SAR) of Protocol Data Units (PDUs) to and from
configurable uniform fabric cells for the purposes of higher fabric utilization and
Quality of Service (QoS) based arbitration

Think of the FP as a very high performance Channel Processor (CP) without a RISC Core
(RC). It uses the same bus interfaces and data path constructs as a CP. The receive (FPRx)
and transmit (FPTx) parts of the FP can operate both autonomously and asynchronously.
The FPRx and FPTx each contain two (2) microcode programmable Byte Processors that
use the same instruction architecture as the (CPs) SDP Byte Processors. Thereby, enabling
the FP to adapt to customer proprietary fabric header formats.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Overview 181
Terminology For definitions of terminology commonly associated with the FP, refer to the “Glossary” on
page 847, at the end of this book. The word “segment” used in this chapter corresponds to
the following:

FP Block Diagram Figure 40 shows a high-level diagram of the FP.

Figure 40 Fabric Processor Block Diagram

Table 36 Protocol-Specific Nomenclature

PROTOCOL NOMENCLATURE

UTOPIA Cell

PRIZMA Packet

CSIX-L1 Frame

PowerX (CSIX-L0) Frame

FPRx

FPTx

Switching
Fabric

C-Port
Fabric
Interface

Global
Bus

Payload
Bus

Ring
Bus
C5EC3EARCH-RM REV 04

182 CHAPTER 4: FABRIC PROCESSOR
Multiple C-5e NP
Configurations

A switching fabric is used when more than two (2) C-5e NPs are required in a system. The
switching solution has two (2) or more FP-type ports and provides a mechanism for
switching cell or packet-based data from one C-5e NP to another. A homogenous,
multi-C-5e NP application is shown in Figure 41.

Figure 41 Multiple C-5e NPs with Switching Fabric

The FP is designed with symmetric receive (Rx) and transmit (Tx) interfaces. Therefore, the
C-5e NP can use the FP to provide a glueless two (2) chip solution, as shown in Figure 42.

C-5e NP1

C-5e NP2

Memory

Port 1
Port 2

Port 16

Port 17
Port 18

Port 32

Memory

Switching
Fabric

C-Port Fabric Interface

C-Port Fabric Interface

C-Port Fabric Interface

FP

FP
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Overview 183
Figure 42 Two C-5e NP Application

General FP Specifications Table 37 on page 183 lists selected general FP specifications.

Memory

Memory

Port 1
Port 2

Port 16

Port 17
Port 18

Port 32

C-Port Fabric Interface

FP

FP

C-5e NP1

C-5e NP2

Table 37 FP General Specifications

ITEM SPECIFICATION

Fabric interface frequency Up to 125MHz

Separate Rx and Tx Data
Buses

8bits, 16bits, or 32bits

Protocols supported CSIX-L1, PowerX(CSIX-L0), PRIZMA, UTOPIA 1, 2, 3 ATM and PHY,
(except 8bitPHY)

Segment size 8Bytes minimum, 204Bytes maximum (payload per segment:
4Bytes minimum, 196Bytes maximum)
Note: Size must be a multiple of 4.

PDU size 5Bytes minimum, 64K -1Bytes maximum

Full Duplex Bandwidth Up to 4000Mbps
C5EC3EARCH-RM REV 04

184 CHAPTER 4: FABRIC PROCESSOR
FPTx Overview The FPTx transmits segmented PDUs onto the external fabric interface. It services up to
128 Queue Management Unit (QMU) queues by dequeuing descriptors, reading payload
out of Buffer Management Unit (BMU) buffers, breaking up the payload into segments
and placing a header on each segment. The basic sequence of a PDU being transmitted
from the FPTx consists of six (6) steps. Refer to “FP Transmit (FPTx) Sequence” on
page 185.

FPRx Overview The FPRx receives segments from the external fabric interface and writes them to BMU
buffers, reassembling them into PDUs (up to 159 concurrently), while building and
enqueuing the associated descriptors. The basic sequence of a PDU being received by the
FPRx consists of six (6) steps. Refer to “FP Receive (FPRx) Sequence” on page 203.
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 185
FP Transmit (FPTx)
Sequence

The FPTx performs essentially the same transmit function as a Channel Processor (CP), but
with a high performance and mostly hard-wired implementation. The FPTx can actively
transmit segments in a round-robin fashion from up to 8 PDUs. As many as 128 queues
can be serviced.

In general, the FPTx services a number of QMU queues, using descriptors to identify the
PDUs in the BMU buffer, and segments the PDUs and places a header at the beginning of
each segment before transmitting onto the external fabric interface.

The basic sequence of a PDU being transmitted from the FPTx consists of six (6) steps. The
six (6) steps include: FPTx Dequeuing PDUs, FPTx Decoding Descriptors, FPTx Reading
Payload, FPTx Byte Processors Microcoding, FPTx Header and Payload Merging, and FPTx
Fabric Interface Transmit Operation.

The basic FPTx PDU sequence is indicated in Table 38 on page 185, and Figure 43 on
page 187 illustrates both the sequence and main components of the FPTx. In addition,
Figure 44 on page 188 shows the Global Address Memory Map of the FPTx.

Table 38 FPTx PDU Sequence and Reference to Details

FPTX
SEQUENCE SEQUENCE NUMBER DETAILS

FPTx
Dequeuing
PDUs

Whenever there is something to transmit (as indicated
by the QMU), the FPTx makes a dequeue request to the
QMU via a dedicated FP-to-QMU interface.

Refer to “FPTx
Dequeuing
PDUs” on
page 189.

The descriptor returns from QMU via Payload Bus.

FPTx
Decoding
Descriptors

The BTag, Pool, PDU length, and multicast flag are
extracted from descriptor.

Refer to “FPTx
Decoding
Descriptors” on
page 190. The current queue length, which was returned along

with the descriptor in step 1a, is saved.

FPTx
Reading
Payload

The Payload is read from the BMU buffer pointed to by
BTag/Pool and placed in DMEM awaiting transmission to
the fabric interface.

Refer to “FPTx
Reading
Payload” on
page 190.

FPTx Byte
Processors
Microcoding

The microcode programmable TxByte Processors
generate headers for segments.

Refer to “FP
TxByte
Processors
Microcoding”
on page 191.

1

1a

2

2a

3

4

C5EC3EARCH-RM REV 04

186 CHAPTER 4: FABRIC PROCESSOR
In addition, there are two related FPTx topics that are outside the basic sequence. Refer to
“FPTx Advanced Features” on page 199, and “FPTx Error Reporting and Interrupts” on
page 201.

Furthermore, for a description of functions that span both the FPRx and FPTx such as: FP
Flow Control (Link-Level and Per-Queue), FP Descriptor Size, FP CRC, FP Endianness, and
FP Payload Bus Bandwidth, please refer to “FPTx and FPRx General Considerations” on
page 237.

FPTx Header
and Payload
Merging

Payload and Header are merged to form segments. Refer to “FPTx
Header and
Payload
Merging” on
page 199.

Fabric
Interface
Transmit
Operation

Segments are transmitted via the external Fabric
interface until entire PDU (as indicated by PDU length)
has been transmitted. The segments are interleaved
with segments of other PDUs in a round-robin fashion.

Refer to “FPTx
Fabric Interface
Transmit
Operation” on
page 199.

The segment CRC is generated (optional).

Segment data is adjusted according to endianness.

If a multicast flag was set, the multicast counter
associated with pool/BTag is decremented, otherwise
the BTag is deallocated back to the pool.

Table 38 FPTx PDU Sequence and Reference to Details (continued)

FPTX
SEQUENCE SEQUENCE NUMBER DETAILS

5

6

6a

6b

6c
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 187
Figure 43 FPTx Sequence and Block Diagram

External
Fabric
Interface

Transmit
Fabric
Interface

Header/
Payload
Merge

Payload FIFO

Header FIFO (2)

DMEM
12KBytes Read Control

Block DMA
Engines (8)

Payload from
BMU/SDRAM

Link-Level
Flow Control
from FPRx

Per-Queue
Flow Control
from FPRx

Descriptors from
QMU Via Payload
Bus

Byte Pro-
cessors (2)

Merge
Space

Congestion
Control

Descriptors BTag Deallocate
(or Multicast Counter
Decrement)

6b6 5 6a

4

2 2a
3

6c

1 1a
C5EC3EARCH-RM REV 04

188 CHAPTER 4: FABRIC PROCESSOR
Figure 44 FPTx Global Address Memory Map

Event
Registers

0xBDD04670

RdCB7 0xBDD04490

RdCB6 0xBDD04480

RdCB5 0xBDD04470

RdCB4 0xBDD04460

RdCB3 0xBDD04450

RdCB2 0xBDD04440

RdCB1 0xBDD04430

RdCB0 0xBDD04420

WrCB1 0xBDD04180

WrCB0 0xBDD04080

Configuration
Space

0xBDD04000

DMEM (12K)

0xBDD00000
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 189
FPTx Dequeuing PDUs The FPTx only begins dequeuing descriptors and transmitting segments after it has
received a queue ready notification from the QMU via the global bus. After that, it
continues transmitting PDUs from that queue until the queue length returned with a
descriptor is zero, indicating that the queue is empty.

The FPTx’s base queue is configured via the TxSysConfig register bits [24:16] QueueOffset
field and must be configured to be the same queue that the QMU configuration specifies.
The FPTx has no knowledge of the number of queues assigned to it. It services any queue
for which it receives a queue ready notification from the QMU. Refer to “TxSysConfig
Register (FP Tx Configuration Function)” on page 678.

The FPTx can service up to 128 queues. The FPTx can be configured so that its 128 queues
can be organized as either: 32 ports with four (4) priorities per port, or 16 ports with eight
(8) priorities per port. This organization is selected in TxFCE_Configuration register bit [18]
QueueDepth field.

Even if fewer than 128 FPTx queues are used, the port organization is the same. The FPTx
does not know how many queues are actually used.

Ports are contiguous sets of queues with the highest priority queue being the lowest
numbered queue. For example, with a 32x4 organization, queues 0 to 3 are part of port 0,
with queue 0 being the highest priority queue within that port and queue 3 being the
lowest priority queue within that port.

If more than one (1) queue is non-empty, then FPTx transmits segments in an interleaved
fashion, with up to eight (8) queues being transmitted simultaneously. The FPTx always
completes transmission of one (1) PDU from a queue before beginning another PDU from
that queue, thus ensuring in-order transmission from queues. When multiple queues are
non-empty, the FPTx uses the algorithm described in “Weighting Algorithm” on page 199
to select the next queue to transmit.
C5EC3EARCH-RM REV 04

190 CHAPTER 4: FABRIC PROCESSOR
FPTx Decoding
Descriptors

Every descriptor that the FPTx dequeues must contain:

• A 5bit pool and 16bit BTag that point to the buffer to be transmitted.

• A 16bit PDU length indicating the amount of data in that buffer which should be
transmitted.

• A 1bit multicast flag.

The FPTx can be configured to extract these parameters from different locations within
the descriptor with a few constraints. This configuration is done using the TxDescInfo
register. For multi-bit fields (length, pool, and BTag), the "position" indicates the position
within the descriptor of the least significant bit of the field.

Bit positions within the descriptor are numbered so that bit position 0 is the least
significant bit of the first 32bit word of the descriptor, bit position 32 is the least
significant bit of the second 32bit word of the descriptor, etc.

Multi-bit fields must be positioned so that they do not cross 32bit boundaries. For
example, the 5bit pool field cannot be positioned at bit 30 of the descriptor because it
would require some bits in the first 32bit word of the descriptor and some bits in the
second 32bit word. Refer to “TxDescInfo Register (FP Tx Configuration Function)” on
page 675.

FPTx Reading Payload Each PDU’s payload is read from the Buffer Management Unit (BMU) into FPTx data
memory (DMEM), from where it gets segmented and eventually transmitted onto the
fabric interface. When the FPTx begins transmitting a PDU from a buffer, it always
transmits from the beginning (offset 0) of that buffer. It is not possible for the FPTx to
begin transmission from any offset inside the buffer.

The FPTx ignores the out-of-band bits returned from the BMU and relies on the length
passed to it in the descriptor to determine what portion of the buffer to transmit.

FPTx Data Memory (DMEM)
The FPTx hardware uses 12KBytes of data memory for storage. It uses 2KBytes for storing
payload for its 8 active flows, 8KBytes for up to 128 descriptors, and the remainder for
BTags to be deallocated.
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 191
FP TxByte Processors
Microcoding

The FPTx includes two (2) microcode programmable FPTx Byte Processors, similar to those
in the Channel Processors (CPs). These TxByte Processors are used to generate the header
for each segment, because header formats vary from fabric protocol to fabric protocol and
application to application. Headers for consecutive segments are generated alternately by
one (1) of the two (2) FPTx Byte Processors.

Typically, more information needs to be included in the header of the first segment of a
PDU than is required in subsequent segments. For example, the header of the first
segment typically must include information about the length of the PDU and the
destination queue on the receiving Network Processor. This information needn’t be
conveyed in subsequent segments for that PDU.

For this reason, the FPTx supports two (2) different header sizes: one that is used for first or
only segments, and another that is used for middle or last segments. Because the FPTx
always appends as much payload as possible after the header, this allows more payload to
be transmitted with each middle and last segment, thus increasing the efficiency of the
transmission.

The header sizes are configured in TxDM_Header/Payload Delimiter register bits [7:0]
HeaderLen1 field for the first or only segments, and bits [15:8] HeaderLen2 field for the
middle or last segments. Headers for all cells can be configured to be the same size. FP
TxByte Processor microcode must generate headers of exactly the sizes configured.
Header sizes must be non-zero and multiples of 4. Refer to “TxDM_Header/Payload
Delimiter Register (FP Tx Configuration Function)” on page 675.

FP TxByte Processors
In general, FP TxByte Processor microcoding is done much like microcoding for a SDP Byte
Processor. The FPTx Byte Processor is capable of the same sequencing and ALU operations
as the SDP Byte Processor, with 64 control store entries and 24 CAM entries.

There are four (4) unique aspects of the FP TxByte Processor, compared to a SDP. They
include: different external test conditions, different inputs (header inputs), no input FIFO,
and the Tx is not allowed to write a Creg (that is, the TxByte Processor’s TxStatus register)
on two (2) consecutive microinstructions.
C5EC3EARCH-RM REV 04

192 CHAPTER 4: FABRIC PROCESSOR
External Test Conditions
There are eight (8) external test conditions available to the FPTx Byte Processor as
described in the C-Ware Microcode Programming Guide (part number CSTMCPG-UG/D). The
only one that is used by the FPTx Byte Processor is bit1= Header FIFO empty. Therefore, bit
[0] and bits [2:7] are not used by the FPTx Byte Processor. The Header FIFO empty test
condition is true when the Header FIFO for the TxByte Processor is empty.

Header Inputs
The TxByte Processor can read seven (7) different inputs to construct a header. Refer to
Table 39 on page 192.

Table 39 TxByte Processor Header Inputs and Their Descriptions

INPUTS DESCRIPTION

Current payload length This value represents the number of Bytes of payload
appended to the header to form the segment. Typically this is
only useful for applications such as PowerX (CSIX-L0) where
the segment size is included in the fabric header. Refer to
“Pay_Len [7:0]” on page 198.
Note: If the CRC is enabled, the payload length includes an
additional 4Bytes of CRC.

Current segment type This value represents the segment type. Refer to “TxStatus
[7:0]” on page 198.

FP queue This value represents the FP queue number (offset from the
FP base queue) from which the current segment's PDU came.
Typically, this would be used to form the PDU ID or fabric
address. Refer to “Src_Queue [6:0]” on page 198.

General Purpose Configuration
Registers
(TxByte_Ctl0 and TxByte_Ctl1)

There are 8Bytes of general purpose registers that can be
initialized with global writes and read by either TxByte
Processor. For example, one of these Bytes might be initialized
to contain a unique Network Processor ID (for a multiple
Network Processor system) that could then be incorporated
into a PDU ID in the header used by the FPRx for reassembly.
Both Byte Processors read the same value from these
registers.
There are no restrictions on when the two (2) TxByte
Processors can read these registers; that is, they can both read
any Byte any time, including different Bytes at the same time.
Refer to “TxByte_Ctl0 & TxByte_Ctl1” on page 197.
Note: The TxByte Processors cannot write to these registers.
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 193
TxByte Processors Microcoding Performance Considerations
A segment does not begin transmission until both its payload and header are ready. For
optimal performance, since their are two (2) TxByte Processors, the microcode should be
constructed to complete header building faster than the time it takes to transmit two (2)
segments on the interface, otherwise, bandwidth is wasted.

TxByte Processor Microcoding Minimum Requirements
For the TxByte Processor’s microcode to operate properly, these minimum requirements
must be followed:

• Wait for datascope ownership. Specifically, because the FPTx can transmit up to eight
(8) queues at a time, it provides context or "datascope" for one of eight PDUs at a time
to the TxByte Processor. However, there are times when the FPTx hardware is updating
this context and therefore the datascope is not ready for processing. In this case, the
TxByte Processor’s microcode must wait until it is granted ownership of a datascope
before it begins constructing a header. The microcode tests for datascope availability
using bit [7] Ownership field of the TxStatus register of the TxByte Processor. Refer to
Table 41 on page 197.

• Wait for the header FIFO to be empty using the header FIFO empty test condition.

• Build the header by writing out the header Bytes in sequence.

Descriptor contents Typically, headers contain at least some portion of the
descriptor that the FPTx dequeued. All Bytes of the current
descriptor are made available to the TxByte Processor
through an internal memory known as Merge Space. Refer to
“Merge0 - Merge63” on page 197.

Information from RxByte
Processors

There are 17bits of information that the FPRx sends to the
FPTx hardware for per-queue flow control (Refer to “Fabric to
C-5e NP Per-Queue Flow Control” on page 238). These bits
can also be read by the TxByte Processors as a general
purpose communication mechanism from the RxByte
Processors. If used for this purpose, disable flow control. Refer
to “TxFI_Configuration Register (FP Tx Configuration
Function)” on page 673. Also refer to the registers beginning
“Pool0_CFG0 Register (FP Rx Pool Configuration Function)” on
page 710.

Literals

Table 39 TxByte Processor Header Inputs and Their Descriptions (continued)

INPUTS DESCRIPTION
C5EC3EARCH-RM REV 04

194 CHAPTER 4: FABRIC PROCESSOR
• Indicate end of header by using Merge9 (refer to C-Ware Microcode Programming Guide
(part number CSTMCPG-UG/D). This indicates to the FPTx hardware that the full header
is constructed and ready to be merged with payload to form a segment.

• Flip ownership for that datascope. After the TxByte Processor’s microcode has finished
generating a header, it passes ownership for the datascope to hardware by setting bit
[7] Ownership field of the TxStatus register of the FPTx Byte Processor.

TxByte Processor’s Memory Space and Registers
The TxByte Processor contains three (3) types of memory space, they include: Merge
Space, Control Space, and TxByte General Purpose Space. Each memory space provides a
different function and each space consists of a number of registers specific to that
function. Both the Merge Space and Control Space are used to pass information between
the TxByte Processor and associated FP hardware. In contrast, the TxByte General Purpose
Space does not pass information between the TxByte Processor and associated FP
hardware.

Table 40 on page 195 lists the three (3) Memory Spaces of a TxByte Processor and
descriptions, Figure 45 on page 196 shows the TxByte Processor’s Memory Map with
specific registers, and Table 41 on page 197 provides a mapping of the Global Addresses
(32bits) to the TxByte Processor’s Byte Address (8bits) with descriptions, and access
information for Global Bus, TxByte Processor and Hardware. The information in Table 40
on page 195, Figure 45 on page 196, and Table 41 on page 197 pertain to a single TxByte
Processor.
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 195
Refer to Appendix A for details about global accesses to Merge Space or TxByte General
Purpose Configuration Space. The TxByte Control Space is not globally accessible and is
therefore not found in Appendix A.

Table 40 TxByte Processor Memory Space and Descriptions

MEMORY SPACE DESCRIPTION

Merge Space Sixty-four (64), 32bit Merge registers (256Bytes) are used for descriptor data,
that are organized as eight (8) groups of 32Bytes. The datascope number
selects the group and the TxByte Processor Address offset selects the Byte.
The Merge space is globally accessed via the TxMergeAddr and TxMergeData
registers. The TxMergeAddr register is used to index into the Merge Block
and read/write data via the TxMergeData Register.
Merge space registers are used for passing fields to be inserted as part of the
Segment Header by the TxByte Processor. During normal operation the
TxByte Processor performs Byte-width reads and the FPTx hardware writes
the Merge registers with the entire Internal Descriptor. Byte 0 of the
Descriptor is written to Merge[0], Byte n of the descriptor is written to
Merge[n], and so on. The TxByte Processor cannot write these registers and
is restricted to one descriptor (up to 32Bytes at a time dependent upon
datascope).
The Merged information is prepended as part of the Segment Header and
formatted to the fabric destination descriptor format. There are eight
descriptors of either 32 or 16Bytes in length as configured by the
“TxFCE_Configuration Register (FP Tx Configuration Function)” on
page 679.
Refer to “TxMergeAddr Register (FP Tx Debug Function)” on page 687, and
“TxMergeData Register (FP Tx Debug Function)” on page 687.

Control Space Control information unique to the TxByte Processor. The TxByte Processor
control space consists of six (6) registers. Refer to “TxStatus [7:0]” on
page 198, “Src_Queue [6:0]” on page 198, “Pay_Len [7:0]” on page 198,
“TxCG PR [0]” on page 198, “TxCG ID H” on page 198, and “TxCG ID L” on
page 198.

TxByte General
Purpose
Configuration
Space

4Byte General Purpose Configuration registers that are shared by both
TxByte Processors. Refer to “TxByte_Ctl0 & TxByte_Ctl1” on page 197.
C5EC3EARCH-RM REV 04

196 CHAPTER 4: FABRIC PROCESSOR
Figure 45 TxByte Processor Memory Map

Control Space

Merge Space
0x01F

through
0x000

0x08F
through
0x080

0x08B

0x08A

0x089

0x088

0x087

0x086

0x082

0x080

TxCG ID L

TxCG ID H

TxCG PR

Pay_Len

Src_Queue

Engine_Num

Reserved

TxStatus

0
1

7

General Purpose
Space
(TxByte_CTL0,
TxByte_CTL1)

0x0A7
through
0x0A0

0x0A6

0x0A5

0x0A4

0x0A3

0x0A2

0x0A1

0x0A0

0x0A7
TxByte_CTL1 (15:8)

TxByte_CTL1 (23:16)

TxByte_CTL1 (31:24)

TxByte_CTL0 (7:0)

TxByte_CTL0 (15:8)

TxByte_CTL0 (23:16)

TxByte_CTL0 (31:24)

TxByte_CTL1 (7:0)

32Bytes per
Scope

Seq_Num [12:8]

Seq_Num [7:0]

Disc_Pri

Cong_Indx

0x08C

0x08D

0x08E

0x08F
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 197
Table 41 TxByte Processor Mapping and Details

GLOBAL ADDRESS
(TXBYTE0/TXBYTE1)

TXBYTE
PROCESSOR
ADDRESS
(8BITS) NAME DESCRIPTION

ACCESS
VIA
GLOBAL
BUS

ACCESS VIA
TXBYTE
PROCESSOR

ACCESS VIA
HARDWARE

Indirectly accessible
for debug purposes
using 0xBDD0403C
and 0xBDD04040 1

0x000 - 0x01F Merge0 - Merge63 Sixty-four (64) 32bit merge registers
(256Bytes) used for descriptor data,
organized as eight(8) groups of
32Bytes. The datascope number
selects the group and the TxByte
offset selects the Byte.

R/W R W

0xBDD04048,
0xBDD0404C

0x0A0 - 0x0A7 TxByte_Ctl0 &
TxByte_Ctl1

4Byte TxByte General Purpose
Configuration registers (4Bytes for
each TxByte Processor).

R/W R N/A
C5EC3EARCH-RM REV 04

198 CHAPTER 4: FABRIC PROCESSOR
Note: These registers
are not accessible via
the Global Bus.

0x080 TxStatus [7:0] Status register: bit [7] is the
ownership bit. Bits [6:2] are not used.
Bits [1:0] represent the Segment
type. Legal ranges are detailed here:

N/A Bit [7]=W2
Bits [1:0]=R

Bit [7]=W
Bits [1:0]=W

0x087 Src_Queue [6:0] Cell Source Queue # (0 - 127) N/A R W

0x086 Engine_Num Indicates which of the 8 FPTx flow
engines is assigned to the segment.
Legal range= 0 to 7.

N/A R W

0x088 Pay_Len [7:0] Payload Length within cell N/A R W

0x089 TxCG PR [0] Congestion register Pause/Resume
bit (bit 0)

N/A R W

0x08A TxCG ID H Congestion Flow ID High [15:8] N/A R W

0x08B TxCG ID L Congestion Flow ID Low [7:0] N/A R W

1 Accessed via TxMergeAddr and TxMergeData registers (0xBDD0403C and 0xBDD04040).
2 Once the header has been built, the TxByte Processor should set the ownership bit by performing a Creg write. The address and data of the write do

not matter; the act of doing any Creg write sets the ownership bit. This characteristic is unique to the TxByte Processor and does not apply to the other
byte processors.

Table 41 TxByte Processor Mapping and Details (continued)

GLOBAL ADDRESS
(TXBYTE0/TXBYTE1)

TXBYTE
PROCESSOR
ADDRESS
(8BITS) NAME DESCRIPTION

ACCESS
VIA
GLOBAL
BUS

ACCESS VIA
TXBYTE
PROCESSOR

ACCESS VIA
HARDWARE

ENCODED
VALUES
FOR [1:0] SEGMENT TYPE

00 Continuation of
Message (COM),
(middle) segment

01 End of Message
(EOM), (last)
segment

10 Beginning of
Message (BOM),
(first) segment

11 First and only
Message (FOM), (first
and last) segment
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 199
FPTx Header and Payload
Merging

The FPTx hardware merges the headers built by the two (2) TxByte Processors with the
associated Payload, to form segments for transmission.

FPTx Fabric Interface
Transmit Operation

The FPTx transmits segments on the fabric interface in compliance with the configured
protocol (for example, CSIX-L1). Refer to “Fabric Interface Modes and Configurations” on
page 243 for specific details about each of the seven (7) supported fabric interfaces.

FPTx Advanced Features In addition to the normal transmission sequence, the FPTx provides features for certain
advanced applications. The features include: weighting algorithm, and virtual queuing for
FPTx.

Weighting Algorithm
There are eight (8) FPTx flow engines, and thus up to eight (8) queues can be serviced
simultaneously. As long as there are eight (8) or fewer queues with something to transmit,
each queue is assigned to a flow engine, and segments are transmitted in a round-robin
fashion. In this case no weighting algorithm is used.

However, as soon as there are more than eight (8) queues with something to transmit, the
FPTx must decide how to map the queues to the eight (8) flow engines. It does this by
means of a configurable weighting algorithm.

The weighting algorithm can be configured by the user to accomplish the following:

• Allocate bandwidth among the queues within a port

• If desired, provide guaranteed service for a single Absolute Priority Queue within each
port

• If desired, guarantee that queues are allowed to transmit a minimum number of bytes
(Quantum Size) while being serviced
C5EC3EARCH-RM REV 04

200 CHAPTER 4: FABRIC PROCESSOR
Allocating Bandwidth Among Queues
Bandwidth can be allocated among the queues within a port by configuring the Weight
Counters for each of the 128 FPTx queues (either 32 ports by 4 queues or 16 ports by 8
queues). The Weight Counter represents the number of Payload Bytes currently allocated
to the queue. The initial weight can be configured to be anywhere from 16KBytes to
240KBytes in 16KByte increments (15 possible values), using the
TxQueueWeight_Configuration register bits [10:7] WeightCtrValue field. If not explicitly
configured, the initial weight defaults to 16KBytes. The range of 15 possible initial values
implies that the maximum bandwidth ratio of two queues within a port is 15:1. As each
PDU is serviced, the hardware subtracts the number of payload bytes in that PDU from the
associated Weight Counter. Once a queue has used all of its bandwidth, at the appropriate
time the queue “refreshes” by having its initial weight added back to its Weight Counter
(possibly multiple times).

An initial value of zero should not be used because it results in undefined behavior. A zero
value in the weight counter represents no bandwidth left and a negative value
represents a borrow towards future bandwidth.

As an example, to allocate bandwidth equally among the queues in port0 (assume 32x4
port depth), configure the initial Weight Counter values to be equal for q0 through q3. If
the desired bandwidth allocation is q0=50%, q1=25%, q2=12.5%, q3=12.5%, set the
initial values using the appropriate ratios, for instance q0=64KB, q1=32KB, q2=16KB,
q3=16KB.

Absolute Priority Queues
The lowest queue in each port can be configured as an absolute priority queue. Absolute
priority queues are serviced before any other queues, provided the following three (3)
conditions are true: the queue is non-empty, the queue is not paused, and the queue is
not already transmitting a flow. Absolute priority queues are serviced in a round-robin
fashion starting from queue0. Once an absolute priority is serviced by a flow, it continues
to be serviced from that flow until the queue is empty. Absolute priority is enabled using
the AbsolutePriority_Configuration register.

Minimum Quantum Size
Queues normally transmit a single PDU while being serviced (except for Absolute Priority
queues), after which the assigned flow engine is released and assigned to the next queue
needing to be serviced. Some applications may desire for the queue to transmit a
guaranteed minimum number of bytes while being serviced. This can be accomplished by
configuring the Minimum Quantum (MQ) Counter for each queue. The initial value of each
MQ counter is a function of the initial value of the associated Weight Counter. The default
C5EC3EARCH-RM REV 04

FP Transmit (FPTx) Sequence 201
values for each are 0Bytes (no minimum quantum) and 16KBytes respectively. To set a
minimum, configure the TxQueueWeight_Configuration register bits [14:11] MQShiftVal
field. While a queue is being serviced, the length of each transmitted PDU gets subtracted
from the queue’s MQ Counter. Once the counter reaches <= 0, the queue is done being
serviced. The flow engine is released and the MQ Counter resets to its initial value.

For complete details about registers related to the weighting algorithm, refer to:
“TxQueueWeight_Configuration Register (FP Tx Configuration Function)” on page 676,
and “Absolute Priority_Configuration Register (FP Tx Configuration Function)” on
page 690.

FPTx Error Reporting and
Interrupts

Four (4) error types are detected by the FPTx and logged in bits [31:28] of the
TxFCE_Configuration register. In addition to being logged, these errors cause an interrupt
to be sent to the XP (if bit [26] IntEnable field in the TxFCE_Configuration register is
asserted). These error bits remain asserted until bit [27] IntAck field in the
TxFCE_Configuration register is written to a 1. Bit [27] IntAck field must then be set to a 0
again. When writing the register, be careful not to change the other configuration fields,
such as bits [25:24] DescSize. Refer to Table 42 on page 201 and “TxFCE_Configuration
Register (FP Tx Configuration Function)” on page 679.

Table 42 FPTx Four (4) Error Types and Descriptions

ERROR TYPES BIT DESCRIPTION

Descriptor
(QMU) Parity
Error

31 Indicates that a parity error occurred when the QMU sent a descriptor.
This error is only logged if bit [21] QMUParityErrorEnable field is set. In
this case, the error has a separate enable in addition to the interrupt
enable.
If the error occurs (and is enabled), no additional PDUs are transmitted
for the queue in question. Further, no PDUs are transmitted for the
lower priority queues in the same port.

Buffer (BMU)
Read Error

30 A buffer read error may occur for a number of different reasons.

• ECC error - BMU detects an ECC error when it reads the buffer from
SDRAM.

• Retry time-out - BMU is unable to satisfy the buffer read request
because it is too busy.

• Non-existent memory error - This only occurs if the BMU were
misconfigured to be storing buffers in a non-existent memory
location.

Note: Whatever data is transferred from the BMU is transmitted.
C5EC3EARCH-RM REV 04

202 CHAPTER 4: FABRIC PROCESSOR
Write (BMU)
Error

29 A buffer write error may occur for a number of different reasons.

• Retry Time-out - A BTag deallocate operation or a multi-use
counter (MUC) operation could fail because the BMU is too busy to
service the request or because the pool ID used for the operation is
invalid. The invalid pool ID errors only occurs if the pool value in a
descriptor passed to the FPTx is invalid or the FPRx was illegally
configured to use an invalid pool. The BMU should never be too
busy to service these operations.

• Multi-use Counter Decrement Error - Multiuse counter
decrement operations can also fail if the multi-use counter does not
exist in the BMU. This could only occur in the event of a CP/XP
software error; for example, if it failed to set up the counter,
initialized it to a value which was too small, or decremented a
counter more than once after transmitting.

Note: If one of these write errors occurs, the FPTx will not retry the
operation and the buffer is effectively leaked because its BTag is never
freed.

Dequeue (QMU)
Failure

28 A dequeue operation fails if the queue is empty when the request is
made. A dequeue from an empty queue should only occur in the event
of a CP/XP programming error where a CP or XP removes something
from a queue belonging to the FPTx.

Table 42 FPTx Four (4) Error Types and Descriptions (continued)

ERROR TYPES BIT DESCRIPTION
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 203
FP Receive (FPRx)
Sequence

The FPRx performs essentially the same receive function that a Channel Processor (CP)
does, but with a high-performance and mostly hard-wired implementation.

In general, the FPRx receives segments and writes them to BMU buffers, reassembling
them into PDUs (up to 159 concurrently), while building and enqueuing the associated
descriptors.

The basic sequence of a PDU being received by the FPRx consists of six (6) steps. The six (6)
steps include: Fabric Interfaces Receive Operation, FPRx Header and Payload Splitting,
FPRx Byte Processors Microcoding, FPRx Writing Payload, FPRx Building Descriptors, and
FPRx Enqueuing PDUs.

The basic FPRx PDU sequence is indicated in Table 43 on page 203, and Figure 46 on
page 205 illustrates both the sequence and main components of the FPRx. In addition,
Figure 47 on page 206 shows the Global Address Memory Map of the FPRx.

Table 43 FPRx PDU Sequence and Reference to Details

FPRX
SEQUENCE SEQUENCE NUMBER DETAILS

Fabric
Interface
Receive
Operation

A segment arrives at fabric interface. Refer to “Fabric
Interface Receive
Operation” on
page 207. The segment data is adjusted according to

endianness. Refer to “FP Endianness (Byte and Bit
Ordering)” on page 241.

The segment CRC is checked.

The in-band link-level flow control information
extracted from the header (CSIX-L1 mode and
PRIZMA mode).

FPRx Header
and Payload
Splitting

The segment header is directed to a RxByte
Processor’s Header FIFO (subsequent segments
alternate between the two (2) RxByte Processors);
the payload is sent to the single Payload FIFO.

Refer to “FPRx
Header and Payload
Splitting” on
page 207.

1

1a

1b

1c

2

C5EC3EARCH-RM REV 04

204 CHAPTER 4: FABRIC PROCESSOR
In addition, there is one related FPRx topic that is outside the basic sequence. Refer to
“FPRx Interrupts” on page 236.

Furthermore, for a description of functions that span both the FPRx and FPTx such as: FP
Flow Control (Link-Level and Per-Queue), FP Descriptor Size, FP CRC, FP Endianness, and
FP Payload Bus Bandwidth, please refer to “FPTx and FPRx General Considerations” on
page 237.

FPRx Byte
Processors
Microcoding

The microcode programmable RxByte Processor
processes the header:

 “FP RxByte
Processors
Microcoding” on
page 208. It extracts PDU ID and segment type.

It extracts PDU length (not necessary if using the
default PDU length option).

It processes in-band per-queue flow control
(optional).

It launches TLU lookup (optional).

It saves header content for descriptor building
(optional).

FPRx Writing
Payload

If this is the first segment of a PDU, then a buffer is
selected for payload, based on the PDU length.

Refer to “FPRx
Writing Payload” on
page 223.

The payload is written to the BMU buffer from
DMEM.

FPRx Building
Descriptors

The TLU response is returned (optional). Refer to “FPRx
Building
Descriptors” on
page 225. If this is the first segment of a PDU, the descriptor is

built.

FPRx
Enqueuing
PDUs

If this is the last segment of a PDU, the descriptor is
enqueued.

Refer to “FPRx
Enqueuing PDUs”
on page 233.

Table 43 FPRx PDU Sequence and Reference to Details (continued)

FPRX
SEQUENCE SEQUENCE NUMBER DETAILS

3

3a

3b

3c

3d

3e

4

4a

5

5a

6

C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 205
Figure 46 FPRx Sequence and Block Diagram

Switching
Fabric

Receive
Fabric
Interface

Header/
Payload
Splitter

Payload FIFO

Header FIFO (2)

DMEM
12KBytes

Write Control
Block DMA
Engines (4)

Payload
to BMU/
SDRAM

Link-Level
Flow Control
to FP Tx

Per Queue
Flow Control
to FP Tx

To TLE Via
Ring Bus

From TLE Via
Dedicated TLE-
FP Interface

Enqueue
Descriptors
to QMU Via
FP-QMU
Interface

Byte Pro-
cessors (2)

Extract
Space

Descriptor
Build
Engine

TLE
Lookup
Request

TLE
Lookup
Response

1a1 1b

3

2

4 4a

5a

63e

3d

3c

5

3a 3b

1c
C5EC3EARCH-RM REV 04

206 CHAPTER 4: FABRIC PROCESSOR
Figure 47 FPRx Global Address Memory Map

Debug State 0xBDE04700

Configuration
Space &
Statistics

0xBDE04600

TLU Response
256Bytes

0xBDE04500

Ring Bus 0xBDE04440

RdCB1 0xBDE04430

RdCB0 0xBDE04420

WrCB3 0xBDE04380

RxByte
Processor1

oxBDE04290

WrCB2 0xBDE04280

Extract 1
(128Bytes)

0xBDE04200

WrCB1 0xBDE04180

RxByte
Processor0

0xBDE04090

WrCB0 0xBDE04080

Extract0
(128Bytes)

0xBDE04000

0xBDE03000

DMEM (12K) 0xBDE00000
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 207
Fabric Interface Receive
Operation

The fabric interface represents the front-end of the FPRx pipeline. It is here that segments
are received and link-level flow control performed, in compliance with the configured
protocol (for example, CSIX-L1). The front-end hardware also performs initial error
checking (parity, CRC, segment length) and makes adjustments for endianness. All
received segments are then passed to the Header/Payload Splitter.

FPRx Header and Payload
Splitting

Segments are split into headers and payload, which are in turn forwarded through
separate pipelines. To accommodate different segments types, up to three (3) different
splits between the header size and the payload size are allowed per application. The
segment type must be identifiable by checking the masked value of some single Byte of
the segment. Which Byte to check, the mask, and the comparison value are all
configurable using the RxDS_Header_Change1 and RxDS_Header_Change2 registers.
Segment type checking is done in a prioritized order with the first match specifying the
type. If neither of the change registers matches, a configurable default splitting is done.
Refer to “RxDS_Header_Change1 Register (FP Rx Configuration Function)” on page 699
and “RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function)” on
page 700.

In general, as segments arrive, their headers are directed alternately to the Header FIFOs
belonging to the two (2) RxByte Processors. All payload is directed into a single Payload
FIFO.

Specifically, for each segment type, the number of segment bytes to be directed to the
header FIFO of a RxByte Processor for header processing is configurable. Headers are
always presumed to begin with the first byte of the segment (byte offset is zero). The
portion of the segment which will be directed to the payload FIFO, ultimately to be stored
in a BMU buffer, is also configurable. Header/payload regions are configured using
RxDS_Header/Payload_Delimiter0, RxDS_Header/Payload_Delimiter1, and
RxDS_Header/Payload_Delimiter2 registers. These three (3) registers allow you to specify a
header and payload which overlap, allowing as much or all of the header to be included in
the payload or leaving a gap between header and payload. Refer to
“RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function)” on page 700,
and Table 227 on page 700.

RxDS_Header/Payload_Delimiter0 register must always be used and properly configured.
RxDS_Header/Payload_Delimiter1 and RxDS_Header/Payload_Delimiter2 are optional.

Freescale recommends that if using more than one (1) delimiter
(RxDS_Header/Payload_Delimiter0), use RxDS_Header/Payload_Delimiter1 before using
RxDS_Header/Payload_Delimiter2.
C5EC3EARCH-RM REV 04

208 CHAPTER 4: FABRIC PROCESSOR
If (change reg 2 enabled AND (segment[change 2 reg index] &
change reg 2 mask) ==
change reg 2 value))
Use delimiter reg 2

Else If (change reg 1 enabled AND (segment[change 1 reg
index] & change reg 1 mask) == change reg 1 value))
Use delimiter reg 1

Else
Use delimiter reg 0

In the equation above, “&” means “bitwise”.

The Payload Last FPRx index must have the lowest two bits (LSBs) set (that is,
0xmmmmmm11) as C-5e NP only supports 4Byte multiples for both payload and
header. Correspondingly, the Payload First Index must have the two LSBs cleared (that is,
0xmmmmmm00).

The payload cannot end on byte 3 of the cell, so the Payload Last index must be greater
than 3.

FP RxByte Processors
Microcoding

The FPRx includes two (2) microcode programmable FP RxByte Processors, similar to
those in the Channel Processors (CPs). These RxByte Processors are used to process the
header for each segment; header formats vary by fabric protocol and application. Headers
for consecutive segments are processed alternately by one (1) of the two (2) RxByte
Processors. Only a single microcode program can be loaded for both RxByte Processors,
however there are ways microcode execution can be made unique for each RxByte
Processor.

FP RxByte Processors
In general, FP RxByte Processor microcoding is done much like microcoding for a SDP Byte
Processor. The FP RxByte Processor is capable of the same sequencing and ALU operations
as the SDP Byte Processor. The RxByte Processor has 24 entries in its CAM, just like a SDP.
There are two (2) unique aspects of the RxByte Processor, compared to a SDP: different
number of control store entries, and different external test conditions.

Control Store Entries
The RxByte Processor has 96 control store entries as opposed to a CP SDP Byte Processor
that has 64.
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 209
External Test Conditions
There are eight (8) external test conditions available to the RxByte Processor as described
in the C-Ware Microcode Programming Guide (part number CSTMCPG-UG/D). Bits [0, 1, 4, 5,
6, 7] are used by the RxByte Processor as detailed in Table 44 on page 209. Therefore, bits
[2:3] are not used.

Table 44 RxByte Processor External Test Conditions

BIT ITEM DESCRIPTION

0 Input data valid This test condition indicates that the byte feeding the Processor is
valid.

1 Token This test condition can be used to test for ownership of a token
passed between the two (2) Byte Processors.

2 Not Used

3 Not Used

4 Header FIFO
Overflow

This test condition is used to detect overflows. Overflows are
typically prevented using the RxDS_Configuration register bits [26:23]
HdrFIFOXOFF field (backpressure mechanism).
Certain applications can overwhelm the backpressure mechanism.
For example, when the headers are large, and the link-level response
time is too long. For these types of applications, this condition should
be checked at the start of each header (within the first 4Byte word).
When a Header FIFO Overflow condition is detected, it means the
header was cutoff so the microcode must drop the segment and not
use the header data.
Note: The microcode can still use the First/Last Header Byte test
condition in this case, even though the end of the header was cutoff.
The last byte of the header that was not cutoff is flagged as Last
Header Byte.

5 First/Last Header
Byte

This test condition can be used to test if the byte currently being
unloaded from the header FIFO is the first or last byte of the header. It
is configurable whether this test condition indicates the first or last
byte of the header via the RxByte Processor End Of Header field of the
RxDS_Configuration register. Refer to “RxDS_Configuration Register
(FP Rx Configuration Function)” on page 701.

6 Drop Mode This test condition indicates that a segment needs to be dropped
because the payload FIFO is full (512Bytes). Should only be
applicable to PRIZMA applications. Refer to “RxByte Processor’s Drop
Mode” on page 260.
C5EC3EARCH-RM REV 04

210 CHAPTER 4: FABRIC PROCESSOR
RxByte Processors Microcoding Minimum Requirements
For the RxByte Processor’s microcode to operate properly, these minimum requirements
must be followed:

• Wait for datascope ownership.

• Set up a PDU ID and segment type for the segment.

• Remove all bytes for that header from the Header FIFO.

• Flip ownership for that datascope.

Other functions the RxByte Processor may perform include:

• Setting up a PDU length for first or only segments, if a default PDU length isn’t used.

• Launching a TLU lookup for use in descriptor building and enqueuing.

• Processing per-queue flow control information, and sending flow control messages to
the FPTx.

• Storing header data in extract space for descriptor building.

RxByte Processor Memory Space and Registers
The RxByte Processor contains five (5) types of memory space, they include: Extract Space,
Control Space, RxByte General Purpose Configuration Space, RxByte Shared Space, and
Ring Bus Space. Each memory space provides a different function and each space consists
of a number of registers specific to that function. Both the Extract Space and Control
Space are used to pass information between the RxByte Processor and associated FP
hardware. In contrast, the RxByte General Purpose Configuration Space does not pass
information between the RxByte Processor and associated FP hardware. All of the
registers within all five (5) of these spaces are mapped to Global Address Space for debug
purposes.

7 Control Word This test condition indicates that the byte currently being unloaded is
coming from the control FIFO, not the header FIFO. The control FIFO is
only used in PowerX(CSIX-L0) mode so details of its usage are
provided in the PowerX(CSIX-L0) section. Refer to “PowerX(CSIX-L0)
Interface Mode” on page 263.

Table 44 RxByte Processor External Test Conditions (continued)

BIT ITEM DESCRIPTION
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 211
Table 45 on page 211 lists the five (5) Memory Spaces of a RxByte Processor and
descriptions, Figure 48 on page 213 shows the RxByte Processor’s Memory Map with
specific registers, and Table 46 on page 214 provides a mapping of the Global Addresses
(32bits) to the RxByte Processor’s Byte Address (8bits) with descriptions, and access
information for Global Bus, RxByte Processor and Hardware. The information in Table 45
on page 211, Figure 48 on page 213, and Table 46 on page 214 pertain to only a single
RxByte Processor.

Table 45 RxByte Processor Memory Space and Descriptions

MEMORY SPACE DESCRIPTION

Extract Space Each RxByte Processor has 128Bytes of Extract Space, divided across the
number of Scopes (32Bytes descriptors implies 32Bytes of Extract Space for
each of four (4) Scopes per processor). Refer to “RxExtractSpace0/” on
page 214, and “RxExtractSpace1” on page 214.

Control Space Control information unique to the RxByte Processor. The RxByte Processor
control space consists of: RxStatus, RxFlowSegment, RxFlowSize, and
RxTxCongestion.

• For RxStatus refer to: “RxStatus0/” on page 214, and “RxStatus1” on
page 214.

• For RxFlowSegment refer to: “RxFlowSeg0/” on page 214, and “RxFlowSeg1”
on page 214.

• For RxFlowSize refer to: “RxFlowSize0/” on page 214, and “RxFlowSize1” on
page 214

• For RxTxCongestion refer to: “RxTxcgs0/” on page 215, and “RxTxcgs1” on
page 215.

RxByte General
Purpose
Configuration
Space

4Byte RxByte General Purpose Configuration registers (4Bytes for each RxByte
Processor). Refer to “RxByte0 General Purpose Configuration/” on page 215,
and “RxByte1 General Purpose Configuration” on page 215.

RxByte Shared
Space

Two (2) 4Byte RxByte Shared registers (8Bytes total accessible by either RxByte
Processor0 or RxByte Processor1). Refer to “RxByte_Shared_Low/” on page 215,
and “RxByte_Shared_High” on page 215.
C5EC3EARCH-RM REV 04

212 CHAPTER 4: FABRIC PROCESSOR
All of the individual Byte registers for the RxByte Processor’s (RxByte Processor0 and
RxByte Processor1) are detailed in Appendix A since they are accessible via the Global
Bus. Refer to Table 46 on page 214 where they are listed by their Global Address and
Appendix A where their individual fields are detailed using their Global addresses.

The RxByte Processor is analogous to the RxSync Processor in the CP’s SDP.

Refer to the C-Ware Microcode Programming Guide (part number CSTMCPG-UG/D).

Ring Bus Space Contains four (4) sets of Ring Bus registers.

• For Ring Bus0 refer to: “Ring Bus TxMsg0_CTL” on page 216, “Ring Bus
TxMsg0_D0H/L” on page 217, and “Ring Bus TxMsg0_D1H/L” on page 217

• For Ring Bus1 refer to: “Ring Bus TxMsg1_CTL” on page 217, “Ring Bus
TxMsg1_D0H/L” on page 217, and “Ring Bus TxMsg1_D1H/L” on page 217

• For Ring Bus2 refer to: “Ring Bus TxMsg2_CTL” on page 217, “Ring Bus
TxMsg2_D0H/L” on page 217, and “Ring Bus TxMsg2_D1H/L” on page 217

• For Ring Bus3 refer to: “Ring Bus TxMsg3_CTL” on page 217, “Ring Bus
TxMsg3_D0H/L” on page 217, and “Ring Bus TxMsg3_D1H/L” on page 217

Table 45 RxByte Processor Memory Space and Descriptions (continued)

MEMORY SPACE DESCRIPTION
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 213
Figure 48 RxByte Processor Memory Map

Control Space

Extract Space

08Dh

08Eh

08Fh

08Ah

08Bh

085h

086h

087h

TxCG PR

TxCG ID H

TxCG ID L

Flow Sz H

Flow Type

Status

0

7

Ring Bus

0CCh

0CBh

0C9h

0C8h

0D0h to 0D7h

0C0h to 0C7h

0CDh

Ring Bus TxMsg_CTL_TYP

Ring Bus TxMsg_CTL_LEN

Ring Bus TxMsg_CTL_DST

Ring Bus TxMsg_CTL_SRC

Ring Bus TxMsgData Slot 1 (8)

Ring Bus TxMsg Data Slot 0 (8)

Ring Bus TxMsg_CTL_Avail

RxByte Shared

RxByteGPR

Flow Sz L

Flow Err

Flow ID H

Flow ID L

080h

084h

0A0h to 0A3h

0B0h to 0B7h

0C0h to 0D7h

080h to 08Fh

000h to 01Fh
C5EC3EARCH-RM REV 04

214 CHAPTER 4: FABRIC PROCESSOR
Table 46 RxByte Processor Mapping and Details

GLOBAL ADDRESS
OFFSET FROM
0XBDE04000 (32BITS)
(RXBYTE0/RXBYTE1)

RXBYTE PROCESSOR
ADDRESS (8BITS) NAME DESCRIPTION

ACCESS
VIA
GLOBAL
BUS

ACCESS VIA
RXBYTE
PROCESSOR

ACCESS
VIA
HARDW
ARE

000h-07Fh/ 200h-27Fh 000-01Fh 1

(Range/Field)
RxExtractSpace0/
RxExtractSpace1

A block of 128Bytes of Extract
space divided by the number
of Scopes per RxByte
Processor.

R/W W R

0090h/ 0290h 080h-083h (Range) RxStatus0/
RxStatus1

RxStatus Register2. This
register is used to pass
ownership of a scope
between the RxByte Processor
and the hardware.

R/W R/W R/W

• 080h (Field) • RxStatus RxStatus Byte 2. Bit[7] is the
Own bit (0=RxByte has
ownership, 1=hardware has
ownership). Bits [6:0] are
reserved. Bit [0] must be set to
0.

• 081h-083h
(Field)

• Unused Unused

094h-097h/
0294h-0297h

084h- 87h (Range) RxFlowSeg0/
RxFlowSeg1

RxFlow Segment Register 2, 3.
This register is used to
associate a segment with a
PDU.

R/W W R

• 086h–087h
(Field)

• RxFlow_Seg[15:0] PDU ID

• 085h (Field) • RxFlow_Seg[17:16] Flow Discard bit [17], Flow
Error bit [16]

• 084h (Field) • RxFlow_Seg[25:24] Segment Type

098h-09Bh/
0298h-029Bh

088-08Bh (Range) RxFlowSize0/
RxFlowSize1

RxFlow Size Register 2, 3. This
register specifies the PDU
length.

R/W W R

• 088-089h (Field) • Unused Unused

• 08A-08Bh (Field) • RxFlow Size[15:0] RxFlow Size 2, 3
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 215
09Ch-09Fh/
029Ch-029Fh

08Ch-08Fh (Range) RxTxcgs0/
RxTxcgs1

RxTxCongestion Register2, 3.
This register is used to send a
per-queue flow control
message to the FPTx.

R/W W R

• 08Ch (Field) • Unused Unused

• 08Dh (Field) • RxTxcgs[21] Pause / Resume (1 = pause). A
write to this bit triggers the
message to be sent to the
FPTx.

• 08Eh-08Fh (Field) • RxTxcgs[15:0] Flow ID

0628h-062Bh/
062Ch-062Fh

0A0h-0A3h
(Range/Field)

RxByte0 General
Purpose
Configuration/
RxByte1 General
Purpose Configuration

4Byte RxByte General Purpose
Configuration register (4Bytes
for each RxByte Processor) 3

R/W R N/A

0660h-0667h 0B0h-0B7h
(Range/Field)

RxByte_Shared_Low/
RxByte_Shared_High

Two (2) 4Byte RxByte Shared
registers (8Bytes total
accessible by either RxByte0
or RxByte1) 3

R R/W N/A

Table 46 RxByte Processor Mapping and Details (continued)

GLOBAL ADDRESS
OFFSET FROM
0XBDE04000 (32BITS)
(RXBYTE0/RXBYTE1)

RXBYTE PROCESSOR
ADDRESS (8BITS) NAME DESCRIPTION

ACCESS
VIA
GLOBAL
BUS

ACCESS VIA
RXBYTE
PROCESSOR

ACCESS
VIA
HARDW
ARE
C5EC3EARCH-RM REV 04

216 CHAPTER 4: FABRIC PROCESSOR
440h 0C8h–0CDh (Range) Ring Bus TxMsg0_CTL Ring Bus0 (TxMsg) control 4,5 R/W W N/A

0CDh (Field) Ring Bus
TxMsg0_CTL[31]

Ring Bus0 Avail 4

0CCh (Field) Ring Bus
TxMsg0_CTL[19:18]

Ring Bus0 Type

0CBh (Field) Ring Bus
TxMsg0_CTL[17:15]

Ring Bus0 Length – Bit 17
hardwired to 0. Legal values
are detailed here:

0CAh — Ring Bus0 Sequence number
is set by hardware based on
the Scope, and not writable
by the RxByte Processor or the
Global Bus.

0C9h (Field) Ring Bus
TxMsg0_CTL[9:5]

Ring Bus0 Destination

0C8h (Field) Ring Bus
TxMsg0_CTL[4:0]

Ring Bus0 Source

Table 46 RxByte Processor Mapping and Details (continued)

GLOBAL ADDRESS
OFFSET FROM
0XBDE04000 (32BITS)
(RXBYTE0/RXBYTE1)

RXBYTE PROCESSOR
ADDRESS (8BITS) NAME DESCRIPTION

ACCESS
VIA
GLOBAL
BUS

ACCESS VIA
RXBYTE
PROCESSOR

ACCESS
VIA
HARDW
ARE

ENCODED
VALUE

LENGTH OF
REQUEST

001 8Bytes (1Slot)

010 16Bytes (2Slots)
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 217
460h / 464h C0 – C7h
(Range/Field)

Ring Bus
TxMsg0_D0H/L

High and Low Data for Slot0
(See WARNING below) 6, 3

R/W W N/A

480h / 484h D0 – D7h
(Range/Field)

Ring Bus
TxMsg0_D1H/L

High and Low Data for Slot17 R/W W

448h C8h-CDh
(Range/Field)

Ring Bus TxMsg1_CTL Ring Bus1 (TxMsg) control R/W W

468h / 46Ch C0 – C7h
(Range/Field)

Ring Bus
TxMsg1_D0H/L

R/W W

488h / 48Ch D0 – D7h
(Range/Field)

Ring Bus
TxMsg1_D1H/L

Note: Maps to RB1 D1 H/L R/W W

450h C8h-CDh
(Range/Field)

Ring Bus TxMsg2_CTL Ring Bus2 (TxMsg) control R/W W

470h / 474h C0 – C7h
(Range/Field)

Ring Bus
TxMsg2_D0H/L

R/W W

490h / 494h D0 – D7h
(Range/Field)

Ring Bus
TxMsg2_D1H/L

Note: Maps to Ring Bus2 D1
H/L

R/W W

458h C8h-CDh
(Range/Field)

Ring Bus TxMsg3_CTL Ring Bus3 (TxMsg) control R/W W N/A

478h / 47Ch C0 – C7h
(Range/Field)

Ring Bus
TxMsg3_D0H/L

R/W W

498h / 49Ch D0 – D7h
(Range/Field)

Ring Bus
TxMsg3_D1H/L

Note: Maps to Ring Bus3 D1
H/L

R/W W

1 16 or 32 bytes mapped to RxByte Processor by datascope index: 0x00 to 0x1F (for 4 scopes per RxByte Processor, or 0x00 to 0x0F (for 8 scopes per RxByte
Processor).

2 0 / 1 refers to RxByte Processor register set 0 and 1 respectively.
3 The RxByte Processor uses little endian addressing for the bytes within this register (least significant byte is associated with the highest address).
4 The TxMsg_CTL register fields are spread out over a range of six (6) 1Byte registers (address 0CAh is not accessible) from the RxByte Processor’s

perspective (as listed). However, global accesses to the register can be done with one 32bit access.
5 Since the RxByte Processor accesses one Byte at a time, and the 5 Ring Bus Control fields (Avail, Type, Length, Destination, and Source) are less than a full

Byte, keep in mind that the fields are right-justified (that is, the Avail bit is at position 0 within the Avail Register (Ring Bus TxMsg0_CTL[31]).

Table 46 RxByte Processor Mapping and Details (continued)

GLOBAL ADDRESS
OFFSET FROM
0XBDE04000 (32BITS)
(RXBYTE0/RXBYTE1)

RXBYTE PROCESSOR
ADDRESS (8BITS) NAME DESCRIPTION

ACCESS
VIA
GLOBAL
BUS

ACCESS VIA
RXBYTE
PROCESSOR

ACCESS
VIA
HARDW
ARE
C5EC3EARCH-RM REV 04

218 CHAPTER 4: FABRIC PROCESSOR
Warning: Since there are two (2) sets of Ring Bus registers per RxByte Processor, yet only
one (1) set is visible for a given segment, the RxByte Processor’s microcode cannot
perform a single initialization of the Ring Bus fields. It must initialize both sets of Ring Bus
registers, or allow global initialization using the XP.

RxByte Processors Datascopes
The FPRx provides each of the two (2) RxByte Processors with a number of datascopes or
contexts into which it can store data. The number of datascopes per RxByte Processor
depends on the descriptor size:

• When 12Byte or 16Byte descriptors are being used, then each RxByte Processor has
eight (8) datascopes available to it.

• When 24Byte or 32Byte descriptors are being used, each RxByte Processor has four (4)
datascopes available to it.

There are times when datascopes are not available to a RxByte Processor because FPRx
has not finished consuming its contents. Because of this, microcode must wait until it is
granted ownership of a datascope before it begins processing a header. Microcode tests
for datascope availability using the RxStatus1 register bit [7] Ownership field. Refer to
Table 222 on page 692.

6 Segments are automatically assigned to one of the 4 sets of Ring Bus registers as indicated here:
.

7 For requests with a length of 2Slots (16Bytes), the second slot of data comes from the Ring Bus Tx Msg_D1 register. This is different from multi-slot
requests made from the CP (in the CPs, there is no TxMsg_D1 register; instead slots of data from multiple TxMsg_D0 registers are strung together).

RING BUS REGISTER SET AVAILABLE FOR USE BY:

0 RxByte0 segments with an even-numbered scope.

1 RxByte1 segments with an even-numbered scope.

2 RxByte0 segments with an odd-numbered scope.

3 RxByte1 segments with an odd-numbered scope.
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 219
When RxByte Processor’s microcode has finished processing a header, it passes ownership
for the datascope to hardware by setting the RxStatus1 register bit [7] Ownership field. This
indicates that all of the data has been set up and the hardware can begin processing the
segment. The hardware uses the datascope number as an index into extract space and
TLU response space. The datascope also serves to keep the PDUs in order. Once the
hardware is done handling the payload and enqueuing the PDU, the datascope is freed
up.

RxByte Processors Set Up Control Information
The RxByte Processor’s microcode must set up certain control information for each
segment. At a minimum it must set up two (2) items: a PDU ID, and a segment type. In
addition, the microcode must set up the PDU length unless, the default PDU length
option is enabled.

• The PDU ID is a 16bit value that associates the payload within the segment with the
payload from other segments from the same PDU. There is a configurable mask that
the FPRx applies to the PDU ID before this association is done. The PDU ID mask is
configured using the RxFCE_Configuration0 register bits [15:0] PDU IDMask field.
Typically the PDU ID is extracted from the header. The 16bit PDU ID value is written to
the RxFlowSeg1 register bits [15:0] PDUID field of the RxByte Processor. Refer to
“RxFCE_Configuration0 Register (FP Rx Configuration Function)” on page 706 and
Table 223 on page 694.

• The segment type indicates whether the segment is a first, middle, last, or only
segment for the PDU. Typically the segment type is extracted from the header.

• The PDU length indicates the number of bytes of payload in the PDU and is used to
find an appropriately sized buffer. Typically, the PDU length is extracted from the
header of a first or only segment and written to the RxFlowSz1 register. Refer to
Table 224 on page 694. When the PDU length is not known, the FPRx can optionally
use a default length value for all PDUs and thus, the PDU length need not be written by
microcode. In this case, the same PDU length is presumed for all PDUs and the default
length should be set up to be greater than or equal to the maximum PDU size. This
option is configured using the RxFCE_Configuration1 register. Refer to
“RxFCE_Configuration1 Register (FP Rx Configuration Function)” on page 707.
C5EC3EARCH-RM REV 04

220 CHAPTER 4: FABRIC PROCESSOR
When the default PDU length option is used, the FPRx error check which detects the
premature arrival of a last segment must be disabled; last segments may appear to be
premature because the PDU length is assumed to be a maximum length. Also, when this
mode is used, all PDUs are delivered to the same BMU pool because the length being
used to select a pool will always be the same.

RxByte Processors Writing to Extract Space
The RxByte Processors can write bytes to extract space, in order for those bytes to be
made available for descriptor building. The number of bytes available per datascope
depends on the descriptor size. When the FP is configured to use 12Byte or 16Byte
descriptors, 16Bytes of extract space are available. Otherwise, 32Bytes of extract space are
available.

Because the Descriptor Build Engine (DBE) may start building a descriptor as soon as it
receives ownership, microcode must finish writing all bytes to extract space before
passing ownership of the first segment to the hardware. Descriptors are not built for
either middle or last segments. Therefore, the microcode for those segment types need
not write any data to the extract space.

RxByte Processors Performing TLU Lookups
The RxByte Processor can launch requests on the Ring Bus to perform TLU (Table Lookup
Unit) lookups. In general, the requests are made using four (4) sets of Ring Bus TxMsgn_Ctl
and TxMsgn_Data0H/L registers (plus TxMsgn_Data1 in the case of 16Byte requests).
These registers are very similar to the Ring Bus Transmit registers in the CP; the exceptions
are detailed in Table 44 on page 209. Many of the register fields can be statically
configured via global writes: Type, Length of request (8Bytes or 16Bytes), Source Ring Bus
Node, and Destination Ring Bus Node. Fields which are unique to each segment can be
written by the RxByte Processor. Examples of these are the key and index, which are a part
of the Ring Bus data (that is,TxMsgn_Data0_H/L). After filling out any necessary request
fields and checking the Ring Bus TxMsgn_Ctl register bit [31] Avail field, the microcode can
clear the Avail bit to launch the request on to the Ring Bus.

The responses to the TLU lookups come back via a dedicated TLU->FP interface, as
opposed to via the Ring Bus. The data is placed in response memory (256Bytes) where it
can be accessed by the Descriptor Build Engine (DBE).
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 221
RxByte Processor Microcode Programming Guidelines for the TLU Interface
The following guidelines should be used when microcode programming the RxByte
Processor to interface with the TLU.

• Since the FP does not use the Ring Bus for responses (only requests), do not send any
Ring Bus messages to the FP. A message targeted for the FP would circulate the Ring
indefinitely, and enough of these would degrade Ring Bus performance to zero. For
this reason, the only node that the FP should send messages to is the TLU, which has a
dedicated response interface to the FP. The exception is proxy requests; the FP can
safely send these to any node on the Ring Bus because there is no response.

• Only one (1) TLU operation can be performed per-segment (that is, the sequence
number of the request and the index into response memory are determined by the
datascope, and there is only one (1) datascope per segment).

• TLU operations can only be launched on first/only segments, because those are the
only segment types for which a descriptor is built.

• TLU operations, if used, must always be launched on every first/only segment. If the
microcode wants to discard a segment via the Discard or Error indicators, it should set
the segment type to middle and not launch a TLU operation. If the segment type
remains first/only, a TLU operation would have to be launched.

• The response size can be 8Bytes, 16Bytes, or 32Bytes. This response size is a function of
fields within the lookup request data (that is, TxMsgn_Datan_H/L). The size of the
request and size of the response are independent, but the response size cannot be
greater than the size of the response memory (256Bytes) divided by the number of
datascopes. For example, with a 16-datascope configuration (that is, 16Byte
descriptors), the response size can be 8Bytes or 16Bytes. For 8-datascope
configurations (that is, 24Bytes or 32Bytes descriptors), the response size can be 8, 16,
or 32.

Do not use 32Byte responses with 16Byte descriptors.
C5EC3EARCH-RM REV 04

222 CHAPTER 4: FABRIC PROCESSOR
RxByte Shared Registers
There are a total of 8Bytes of shared registers (RxByte_Shared_Low and
RxByte_Shared_High) which are accessible by either RxByte Processor0 or RxByte
Processor1. These registers can be initialized via global writes. Both RxByte Processors
have read and write access to the 8Bytes of shared space. The RxByte Processors can read
any byte at any time. The microcode should prevent the RxByte Processors from writing
the same byte at the same time, or else the resulting value will be undefined. All other
combination of writes are allowed, including simultaneous writes to different bytes. Refer
to “RxByte_Shared_Low/” on page 215 in Table 46 on page 214.

RxByte General Purpose Configuration Registers
There are two (2) 4Byte general purpose configuration registers (RxByte 0 General Purpose
Configuration and RxByte1 General Purpose Configuration), one (1) for each RxByte
Processor. These registers can be initialized via global writes. The 4Byte configuration
registers act as separate, private storage for each RxByte Processor. Typically, they are used
to customize the execution behavior of one (1) RxByte Processor from the other. They are
configured via global writes, and can be read (not written) by the associated Byte
Processor. Refer to “RxByte0 General Purpose Configuration/” on page 215 in Table 46 on
page 214.

RxByte Processors Discarding Segments
Sometimes the RxByte Processor may want to discard a segment. A common use for
discarding segments would be to discard "idle" segments which only convey flow control
information.

To discard a segment, RxByte Processor’s microcode must:

• Set the segment type to be a middle segment

• Set the RxFlowSeg0 register bit [17] FlowDisc field or bit [16] FlowError field. Refer to
“RxFlowSeg0 Register (FP RxByte Processor Function)” on page 693. Either of these bits
causes the segment to be dropped, and increments a separate counter in the FPRx
statistics registers.

• Pass ownership of the segment to hardware

The result of discarding a segment is that any payload associated with the segment in the
payload FIFO is dropped and not written to any BMU buffer.
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 223
RxByte Processors Token Passing
If needed for synchronization purposes, a token can be passed between the two (2)
RxByte Processors. After reset, the token is owned by RxByte Processor0. To pass the token
to the other RxByte Processor, a RxByte Processor should set Token Out, which is bit [2] in
the Processor’s internal control register. Refer to the C-Ware Microcode Programming Guide
(part number CSTMCPG-UG/D) for specific details about the Token Out bit. The Token Out bit
must have been previously cleared, so that there is a 0 ->1 transition. Ownership of the
token bit can be tested by using the RxByte Processors external test condition bit 1.

A common reason for using a token is to implement a semaphore for writing the 8Bytes of
RxByte Shared Registers. For example, only the RxByte Processor that owns the token is
allowed to write to a certain location in the RxByte Shared Registers. This prevents data
corruption that could occur if both RxByte Processors wrote to the same location at the
same time.

FPRx Writing Payload As the FPRx receives PDUs it must determine which BMU buffer they will be stored in. The
FPRx can be configured to use buffers in up to four (4) of the BMU’s thirty (30) pools.
Which of the thirty (30) BMU pools the FPRx uses is configurable in the BMU. Refer to
“BMU Configuration Space” on page 307.

To prepare for incoming PDUs, the FPRx keeps a store of BTags for each pool that it is
using. It can store a maximum of 256 BTags (8 blocks of 32 BTags) per pool. When the FPRx
is enabled, it requests BTags from the BMU to fill its store for each pool up to a configured
maximum for each pool. As PDUs are received and BTags used, the FPRx BTag stores are
depleted. When the number of BTags in a store drops below a configurable threshold, the
FPRx begins requesting more BTags from the BMU and continues to do so until it has filled
to its configurable maximum.

If the FPRx requests BTags from the BMU and the BMU cannot satisfy that request, a
statistics register is incremented and the "No BTags available from BMU" interrupt (if
enabled) is sent to the XP. The FP Rx continues to request until the request is satisfied. If
the request cannot be completed after 16 attempts, a "BTag allocation timeout" interrupt
(if enabled) is generated.

FPRx buffer pool configuration is done using two (2) configuration registers; Pooln_CFG0
and Pooln_CFG1, where n=0,1,2,3. These two (2) registers are associated with each of the
four (4) buffer pools. Refer to“Pool0_CFG0 Register (FP Rx Pool Configuration Function)”
on page 710, and “Pool0_CFG1 Register (FP Rx Pool Configuration Function)” on page 711.
C5EC3EARCH-RM REV 04

224 CHAPTER 4: FABRIC PROCESSOR
Storing the Payload to the BMU Process
When the first segment of a PDU arrives, the RxByte Processor extracts the PDU length
from the header. This length is used by the FPRx to select a BMU buffer large enough for
the PDU. The FPRx compares this length to the buffer sizes for the four (4) pools that it has
been configured to use. It checks the pools in order (from FPRx pool0 to FPRx pool3) and
when the first match is found, it tries to use a buffer from that pool. If there are no BTags
available for that pool, that PDU is dropped.

Since the pools are checked in sequential order and the PDU assigned based on the first
fit, the FPRx should be configured to use buffer pools with monotonically increasing sized
buffers. For example, FPRx pool 0-3 might be assigned to buffer pools with buffers of size
64B, 256KB, 2KB, and 64KB respectively.

The BMU does not support a buffer size of 128Bytes.

If the length of the PDU cannot be extracted from the first segment, the FPRx can be
configured to use a default PDU length. If this default length is used, all PDUs are assumed
to be this length for purposes of buffer selection. As PDU payload is received, it is stored in
a buffer until a last segment for the PDU is received.

The entire content of that last segment is stored in the buffer because the FPRx has no
way of knowing how much of the segment’s payload is valid. The use of default PDU
length is configured via the RxFCE_Configuration1 register. Also, the PDU length check
must also be disabled if this feature is used. Refer to “RxFCE_Configuration1 Register (FP
Rx Configuration Function)” on page 707.

It is required that PDU segments be delivered to the FPRx interface in order. Payload Bytes
for a PDU are always stored in a BMU buffer in the order that they are received on the FP
interface beginning at offset 0 in the buffer. When writing payload to a BMU buffer, the FP
does not set the out-of-band bits of the BMU buffer to meaningful values, so they cannot
be used by any transmitting CP.

FPRx Data Memory (DMEM)
The FPRx hardware uses 12KBytes of data memory for storage. It uses 10KBytes for storing
payload in 64Byte increments (one for each of 159 concurrent flows), and 2KBytes for
storing BTags.
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 225
FPRx Building Descriptors As the FPRx receives PDUs it must build descriptors to be sent to the QMU. This is done
using the FPRx Descriptor Build Engine (DBE).

Descriptor Build Engine’s (DBE) Microcode Programming to Build the Descriptor
The microcode programmable Descriptor Build Engine (DBE) composes two (2) items:
descriptors, and the associated FP -> QMU descriptor control word. Figure 48 on page 213
shows the various inputs and outputs of the DBE.

Figure 49 Descriptor Build Engine (DBE) Inputs and Outputs

The descriptor build sequence is programmed using the Descriptor Build Engine’s (DBE)
microcode. The microcode control store has room for 64 52bit microinstructions. The
instruction set is limited to variations of Move Data (from Source to Destination) with bit
manipulation capabilities (mask, shift). Operations may be performed on words, half
words or bytes. A literal field can be used for mask operations, and/or to write absolute
data of up to 16bits. No jump, branch, or loop control exists, so all descriptors are built
with the same straight-line path through the microcode.

The DBE begins constructing a descriptor each time ownership of a first or only segment is
passed to hardware. The DBE has the option to use data from four (4) external sources,
plus “literals” in the DBE commands. The four (4) external sources include: Extract Space
Data, TLU Response Space Data, BTag and Pool Data, and TLU Error Status Data.

FPRx Extract
Space

FP RxByte
Processors

TLU -> FP
Interface

FPRx TLU Response
Space

0

31:21

Pool BTag

20:16 15:0

31 30:0

TLU Error Status

DBE

64Entries x 52bits
WCS

FPRx Descriptor
Table (5KBytes)

FPRx Flow
Table

Descr
iptor

Descr
iptor Co

ntrol Word

Enqueue requests
to QMU via
FP -> QMU Interface

Inputs Outputs

FPRx Buffer Pool
Management
Hardware
C5EC3EARCH-RM REV 04

226 CHAPTER 4: FABRIC PROCESSOR
To complete the build process, the microcode must write to the Valid bit in the descriptor
control word. This write operation signals to the hardware that the descriptor is ready to
be enqueued. The last micro-instruction should assert the Restart bit. The descriptors are
saved in a 5kBytes descriptor table, that can hold one (1) descriptor for each of 159
concurrent PDUs. When the descriptor has been built, and the entire PDU has been
received without an error, the descriptor and its control word are enqueued to the QMU.

FPRx Extract Space Data and TLU Response Space Data
Each of the extract and TLU response areas are divided into multiple datascopes to allow
pipelining. The Extract space is either 16Bytes or 32Bytes per datascope depending on the
configured descriptor size, and the responses are either 8Bytes, 16Bytes or 32Bytes
depending upon the response size configuration.The Extract Space Data is for the current
datascope. This is typically header data, which was copied to extract space by a RxByte
Processor. The TLU Response Data, (if any) is for the current datascope.

A descriptor build operation begins once the associated Byte Processor has passed extract
ownership to hardware (that is, written a 1 to the MSB of the status byte). Additionally, if
configured to do so, the DBE waits until the TLU has provided a response for the given
datascope. 32Bytes of descriptor table memory are always available for writing by the
DBE, however only the amount of the descriptor specified by the size, starting at relative
offset “0 “(in the datascope), is transferred to the QMU.

BTag/Pool Data
The FPRx buffer pool management hardware presents the BTag and Pool information for
each PDU to the DBE. Typically, the DBE is programmed to read this data information and
place it in the descriptor.

TLU Error Handling
If the DBE algorithm uses TLU Response Space Data, and the TLU fails, the FPRx DBE can
handle it in two (2) ways as described here:

• If desired, PDUs can be dropped when a TLU lookup fails. To implement this option,
the DBE should move the value of the TLU Error Status indication (bit31 of the source
data, where source index = 100) over to the Drop bit in the control word. The effect of
this instruction is to set the Drop bit when there is a TLU error. This instruction can
occur anywhere within the DBE sequence. When the DBE finishes building the
descriptor and its control word, the state of the Drop bit determines whether the
descriptor gets dropped or enqueued. Refer to Table 48 on page 227 and Table 49 on
page 228.
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 227
A failed TLU lookup has no valid response data associated with it.

• Enqueue the PDU using a configurable Default Queue Number when the TLU fails. For
applications that derive the queue number from TLU response data, this option allows
a configurable default queue number to be used when a TLU lookup fails. To enable
this option, configure the RxCFE_Configuration2 register bits [17:0] DefaultQNum field
and assert bit [18] DefaultQEn field. Refer to “RxFCE_Configuration2 Register (FP Rx
Configuration Function)” on page 709.

Descriptor Build Engine’s (DBE) Descriptor Control Word
In addition to building the descriptor, the DBE also builds the Descriptor Control Word that
gets sent to the QMU. The byte addressing is just like that of the descriptor; bits [31:24]
represent Byte0; bits [7:0] represent Byte3. Individual bits can be set using bit mask
operations, just as with a descriptor. Setting the Drop bit causes the PDU to be dropped in
the FPRx, without being sent to the QMU. To indicate to the hardware that the descriptor
and control word are complete, the BDE microcode should assert the Valid bit in the
control word.

Any write to the Valid bit causes it to be asserted, regardless of the value (0 or1) of the
source data. To write to the control word without setting the Valid bit, simply mask the
Valid bit off, or perform an operation that does not update byte 0.

Table 47 Control Word Format

Table 48 Descriptor Build Engine (DBE) Command Format

Bit Position 31 30 29 9 8 0

Field Name Drop Valid Rsvd Queue Number

Bit Position 51 50 49 48 47 46 44 43 39 38 34 33 30 29 28 16 15 0

Field Name Restart Op-Code Desc
Size Src Src Indx Dest Indx Src Shift Dest Rsvd Literal/Mask
C5EC3EARCH-RM REV 04

228 CHAPTER 4: FABRIC PROCESSOR
Table 49 Descriptor Build Engine (DBE) Command Format Fields

FIELD
NAME

BIT
POSITION DESCRIPTION

Restart 51 Restart — A micro-instruction with Restart=1 causes the micro-instruction pointer
to restart the algorithm for the next descriptor. Restart=0 has no effect on the
descriptor build process.
Note: Since the Restart effectively terminates the instruction flow for a given
descriptor, this bit should only be used on the last micro-instruction.

Op-Code 50:49 Operation — Operations to be performed on Descriptor. Legal values are detailed
here:

ENCODED
VALUE OPERATION

00 Move/Write from Src -> Dest

01 Move Mask/Read Modify Write

• Uses the literal/mask field to determine which bits of the
destination data should be updated. This operation can only be
used with byte and half-word operand sizes.

• For each bit in the mask that is a “1”, the corresponding bit is
updated in the destination data. For each “0”, the bit in the in
the desalination data retains its previous value.

• For byte operations, bits [15:8] of the literal/mask field act as the
mask; bits [7:0] can be used as a literal, if desired.

• For half-word operations, all 16bits of the literal/mask field are
used as the mask.

10 NOP — Reserved

11 NOP —Reserved
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 229
Operand
Size

48:47 Operand Size — Legal values are detailed here:

Data 46:44 Data — The source of the data. Legal values are detailed here:

Src Indx 43:39 Source Index — The byte offset into source (e.g. extract space offset, buffer offset).

Table 49 Descriptor Build Engine (DBE) Command Format Fields (continued)

ENCODED
VALUE OPERAND SIZE

00 Word

01 Byte

10 Half Word

11 Reserved

ENCODED
VALUE DATA SOURCE

000 Extract Space

001 TLU Response (The response comes back via the TLU-> FP
interface)

010 Buffer Memory Information

• Source data= {11’b0, PoolID[4:0], BTag[15:0]}

011 Literal

• The location of the literal data within the 32bit source data is
dependent on the operand size.

Note: Literals can only be used for byte and half-word operations.

• For Byte operations, source data= {Literal[7:0], 0x000000}

• For Half-word operations, source data= {Literal[15:0], 0x0000}

100 TLU Error indication

• When this source is selected, bit31 of the source data indicates
whether the TLU lookup encountered an error (1) or not (0).
This bit can be written to bit31 of the control word, which is the
Drop PDU bit.

101 Reserved

110 Reserved

111 Reserved
C5EC3EARCH-RM REV 04

230 CHAPTER 4: FABRIC PROCESSOR
Dest Indx 38:34 Destination Index — The byte offset into the destination descriptor data. Bits
[38:36] select which word of the descriptor to update. When the destination is the
control word instead of the descriptor then, bits [38:36] are a don’t care. In either
case, bits [35:34] select the offset within the 4Byte word.

Src Shift 33:30 Source Shift — Bit [33] of this field, indicates the direction of the shift. 1= indicates
shift left, 0= indicates shift right.
Bits [32:30] of this field, indicates the number of bits to shift. Legal range is 0 to 7.
Note: This is a shift and not a rotate operation; bits do not wrap. For Shift Right, 0’s
are shifted into the MSB. Likewise for Shift Left, 0’s are shifted into the LSB. Also,
shift operations occur prior to mask operations. The bits which get shifted outside
of the operand source field get dropped. The shift operation has no effect on which
destination bits get updated (the destination data is a function of the operand size,
the destination index, and optionally a bit mask).

Dest 29 Destination — This field determines whether the command’s output should be
written to the descriptor (0) or the control word (1):

Reserved 28:16 Reserved

Literal/
Mask

15:0 Literal/Mask Field — This field can be used as either: a source data (when
Source=011), or as a mask for a Move Mask operation.
Note: In either case, this field can only be used with byte or Half-word operand
sizes.

• When used as literal source data, the location of the literal data within the 32bit
source data is dependent on the operand size.

For byte operations: source data = {Literal[7:0], 0x000000}

For Half-word operations: source data = {Literal[15:0], 0x0000}

• When used as a mask, this field determines which of the bits in the destination
data should be updated and which should retain their previous value. Only
destination bits which have the corresponding mask bit set to “1”are updated.

For Move Mask operations with a size of 1Byte, bits [15:8] of this field act as the
mask. Thus, bits [7:0] can be used as a literal in this case.

For Move Mask operations with a size of a Half-word, bits [15:0] of this field act as
the mask.

Table 49 Descriptor Build Engine (DBE) Command Format Fields (continued)

ENCODED
VALUE DESTINATION

0 Descriptor

1 Control Word
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 231
Alignment
The source and destination indices must be consistent with the operand size. Refer to
Table 50 on page 231.

For example, assume a write operation is performed with source data = AABBCCDDh,
using the alignment rules in Table 50 on page 231. Refer to Table 51 on page 232 to see
what the destination data would look like after the write operation based on the
alignment and operand size. Certain destination bytes are updated, and others retain their
previous value.

Table 50 Source and Destination Alignments based on Operation

OPERAND
SIZE

ALLOWABLE OFFSETS (BITS [1:0] OF THE
SOURCE & DESTINATION INDICES)

Word 00

Half-word 00, 10

Byte 00, 01, 10, 11
C5EC3EARCH-RM REV 04

232 CHAPTER 4: FABRIC PROCESSOR
Table 51 DBE Operand Alignment Examples

OPERAND
SIZE SRC IDX[1:0] DST IDX[1:0] DESTINATION DATA (HEX)1

1 A dash in the Destination Data field means no change to existing destination
data.

Byte 00 00 AA------

01 --AA----

10 ----AA--

11 ------AA

01 00 BB------

01 --BB----

10 ----BB--

11 ------BB

10 00 CC------

01 --CC----

10 ----CC--

11 ------CC

11 00 DD------

01 --DD----

10 ----DD--

11 ------DD

Half
Word

00 00 AABB----

10 ----AABB

10 00 CCDD----

10 ----CCDD

Word 00 00 AABBCCDD
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 233
FPRx Enqueuing PDUs After the last, or only segment of a PDU is received and processed by a RxByte Processors
and a Descriptor built by the DBE, the FPRx enqueues the descriptor. The FPRx only does
unicast enqueues; it never does multicast enqueues. However, PDUs that need to be
multi-casted can be enqueued to the XP for further processing. The QMU assumes a
descriptor weight of one (1) for all enqueues from the FPRx.

There are three (3) FPRx enqueue configuration options and considerations: TLU Error
Handling, Enqueue Race Condition Handling, and Failed Enqueued Operation Handling.

The FPRx does not enqueue a descriptor if the DBE indicates that the PDU should be
dropped or, if some other error has been detected with the PDU in such a way that the
PDU will be dropped.

TLU Error Handling
The FPRx can be configured to enqueue descriptors to a default queue if a TLU error
occurs. This default queue is used instead of the queue indicated by the DBE. This is done
by setting up the default queue number and default queue enable fields in the
RxFCE_Configuration2 register. Refer to “RxFCE_Configuration2 Register (FP Rx
Configuration Function)” on page 709, as well as, “TLU Error Handling” on page 226.

Enqueue Race Condition Handling
Normally, a descriptor is enqueued to the QMU as soon as the PDU has been fully received
by the FPRx, even though the final Payload writes to the BMU may not have completed.
Though difficult, an application could theoretically create a race condition by dequeuing
the PDU and reading its Payload before the Payload has been written. Such theoretical
applications should avoid the race by simply asserting the RxFCE_Configuration2 register
bit [20] EnqWaitWrCB field which stalls the enqueue operations until the relevant Payload
writes are complete. Typical applications need not add this extra stall latency. Refer
to“RxFCE_Configuration2 Register (FP Rx Configuration Function)” on page 709.
C5EC3EARCH-RM REV 04

234 CHAPTER 4: FABRIC PROCESSOR
Failed Enqueue Operation Handling
When the FPRx sends an enqueue request, the QMU may sometimes respond with a
failure indication, due to a full queue. The FPRx handles these failed enqueues in two (2)
ways: either drop the PDU, or retry the enqueue request.

• The default is to simply drop the PDU and increment the Enqueue Error Counter. When
the PDU is dropped, the BTag is deallocated back to the BMU.

• The FPRx can be configured to retry the enqueue, using the RxFCE_Configuration2
register bit [22] RetryEnq field. In this mode, the enqueue operation continues to be
tried indefinitely until it finally succeeds. While an enqueue is being retried, the FP can
continue to make dequeue requests on the FP to QMU interface; however, no other
enqueue operation can start. If the QMU remains full for an extended period, the FPRx
may become congested, after which it applies backpressure to the external Fabric
interface so that no segments are lost. Refer to “RxFCE_Configuration2 Register (FP Rx
Configuration Function)” on page 709.

Congestion Handling The FPRx may encounter three (3) types of congestion that include: FPRx Payload FIFO,
FPRx Header FIFO, and FPRx Scope. Each of these congestion conditions can create
backpressure.

FPRx Payload FIFO Backpressure
The FPRx payload FIFO can hold up to 512Bytes of payload from segments. When the
number of bytes available in the payload FIFO becomes lower than a configurable XOFF
threshold, the FPRx requests link-level flow control. As the payload FIFO then drains and
the number of bytes available reaches a separate, configurable XON threshold, the FPRx
allows transmission to continue. Refer to “RxDS_Configuration Register (FP Rx
Configuration Function)” on page 701.

FPRx Header FIFO Backpressure
The two (2) FPRx header FIFO’s have a capacity of 64Bytes (16words) each. When a header
FIFO fills up beyond a configurable threshold, the FPRx applies link-level flow control to
the fabric. Since there is just a single threshold value (no hysteresis), the FPRx may cross
the threshold multiple times in quick succession, sending multiple link-level pause and
resume commands to the fabric.
C5EC3EARCH-RM REV 04

FP Receive (FPRx) Sequence 235
Those applications with large headers and a long flow control response time may
overwhelm the backpressure mechanism and cause header FIFO overflows. Therefore, the
microcode for such applications must check the header FIFO overflow test condition and
cleanly drop the offending segments. The header FIFO threshold that applies to both
FIFOs is configured using the RxDS_Configuration register bits [26:23] HdrFIFOXOFF field.
Refer to “RxDS_Configuration Register (FP Rx Configuration Function)” on page 701.

FPRx Scope Backpressure
In addition to payload and header FIFO congestion, a third type of congestion can occur:
lack of FPRx scopes. As segments are received, each is assigned to a particular scope (set of
hardware resources). The number of scopes available is dependent on the descriptor size.
For 32Byte descriptors there are eight (8) scopes, meaning the FPRx can actively process
eight (8) segments at a time. When all eight (8) scopes are in use, subsequent segments
are stalled because the RxByte Processor’s microcode must wait for a scope to become
available. Eventually the payload or header FIFO gets congested and applies backpressure
to the fabric.

Some applications may benefit from detecting the congestion earlier than at the payload
or header FIFOs, using the XOFF-No-Scope mechanism. When this mechanism is enabled,
link-level flow control asserts to the fabric as soon as a RxByte Processor encounters a “no
scope available” condition, and deasserts as soon as a scope becomes available, which
could happen immediately. Scopes are most likely to become a bottleneck with
applications using variable-length segments, since a string of short segments can be
received quickly. The XOFF-No-Scope mechanism is configured using the
RxFCE_Configuration2 register bit [21] XOFFNoScopeEn field. Refer to
“RxFCE_Configuration2 Register (FP Rx Configuration Function)” on page 709.
C5EC3EARCH-RM REV 04

236 CHAPTER 4: FABRIC PROCESSOR
FPRx Interrupts Six (6) events in the FPRx are logged in the RxFP_Interrupt_Event register. Each bit within
this register remains asserted until written with a ‘1’ (“write 1 to clear”), for instance by an
interrupt handler running on the XP. The RxFP_Interrupt_Enable_Mask register determines
which events cause an interrupt are sent to the XP. Refer to Table 52 on page 236.

Table 52 FPRx Interrupts

ITEM DESCRIPTION

Parity Error A parity error was detected on the receive interface.

No BTag Available on
Allocate

A BTag allocation request failed because none were available from
the BMU.

Buffer Write Errors The only condition which can cause a buffer write error would be
the BMU being unable to satisfy repeated buffer write attempts
because it is too busy.

BTag Programming Error Non-existent memory error - this would only occur if the BMU
were misconfigured to be storing BTags in a non-existent memory
location.

BTag ECC Error ECC error - BMU detects an ECC error when it reads a block of
BTags out of SDRAM.

BTag Allocation Retry
Time-out

Retry time-out - BMU is unable to satisfy the allocate request
because it is too busy.
C5EC3EARCH-RM REV 04

FPTx and FPRx General Considerations 237
FPTx and FPRx General
Considerations

There are five (5) functions that span both the FPRx and FPTx and need to be considered
based upon individual application requirements. They include: FP Flow Control (Link-Level
and Per-Queue), FP Descriptor Size, FP CRC, FP Endianness, and FP Payload Bus
Bandwidth. In the discussions that follow, the “direction” of the flow control is defined as
the direction of the request, not the direction of the traffic.

Link-Level Flow Control Link-Level flow control is available for both: Fabric to C-5e NP direction, and C-5e NP to
Fabric direction.

Fabric to C-5e NP Link-Level Flow Control
Fabric to C-5e NP link-level flow control occurs when the fabric asks the FPTx to stop
transmission for the entire link; that is, all queues. In UTOPIA modes, this is done using the
UTOPIA protocol flow control signaling. For non-UTOPIA modes, the fabric makes a flow
control request to the FPRx which gets passed to the FPTx. PowerX (CSIX-L0) fabrics send
out-of-band link-level requests using the control pins. CSIX-L1 and PRIZMA fabrics send
in-band messages, embedded in the segment header.

C-5e NP to Fabric Link-Level Flow Control
The C-5e NP applies link-level flow control to the fabric when the FPRx becomes
congested. The flow control request is either made using the UTOPIA protocols, or (in
non-UTOPIA modes) the FPRx asks the FPTx to transmit a flow control request to the fabric
on its behalf. Non-UTOPIA link-level flow control are covered in more detail in the
mode-specific sections. Refer to “CSIX-L1 Interface Mode” on page 243, “UTOPIA Interface
Modes” on page 250, “PRIZMA Interface Mode” on page 258, “PowerX(CSIX-L0) Interface
Mode” on page 263, and “UTOPIA3 Like to M-5 Interface Mode” on page 267.

Latency Considerations of Flow Control
Flow control operations have an inherent latency due to pipelining of data feeding the
FPRx header and payload FIFOs, delays in issuing a pause request to the fabric, and
latencies in a fabric's ability to pause. The XOFF thresholds should be set high enough so
that even with such latency, the incoming data does not overrun the payload or header
FIFOs. Refer to “RxDS_Configuration Register (FP Rx Configuration Function)” on
page 701.
C5EC3EARCH-RM REV 04

238 CHAPTER 4: FABRIC PROCESSOR
There is some latency between the time that a FIFO threshold is hit and the time a pause
is requested of the fabric. For example, with the various UTOPIA protocols, the flow enable
signal can only be deasserted at certain times during cell transmission. If the XOFF
condition is reached after that time has passed, the FPRx must be capable of receiving
another full cell after the one currently arriving.

The XOFF thresholds must be set with this in mind. Other protocols which request
link-level flow control via an FPTx transmission have analogous latencies that must be
considered when setting the thresholds.

The Payload FIFO XON threshold should always be set to a value greater than the XOFF
threshold.Typically it is set to a value high enough that the XOFF condition won’t
immediately recur.

Per-Queue Flow Control Per-Queue flow control is only available for the Fabric to C-5e NP direction. The C-5e NP
does not apply per-queue flow control to the fabric. It relies only on link-level flow control
in that direction.

Fabric to C-5e NP Per-Queue Flow Control
A fabric can request that the FPTx pause or resume transmission from a particular queue.

The flow control request is handled by the RxByte Processor, or in the case of CSIX-L1,
dedicated hardware. In either case, the FPRx passes a 16bit flow ID and a pause/resume
bit to the FPTx (this could be different from a PDU ID). This flow ID is qualified with a 16bit
mask (refer to “TxFCE_Configuration Register (FP Tx Configuration Function)” on
page 679) and then used for a lookup in the TxFlow Control CAM (content addressable
memory). The output of the CAM is a 7bit queue number which corresponds to one of the
128 FPTx queues; this is how the FPTx knows which queue to pause or resume. Refer to
Figure 50 on page 239.
C5EC3EARCH-RM REV 04

FPTx and FPRx General Considerations 239
Figure 50 Mapping Per-Queue Flow Control Requests to FPTx Queues

If the lookup matches a CAM entry, the corresponding queue is paused or resumed. If the
lookup does not match any CAM entry, no queue is paused or resumed. The default
mapping preloaded into the CAM by hardware is simply a one-to-one mapping, such that
match values of 0 to 127 correspond to queue numbers 0 to 127. The mask and CAM are
completely configurable to any mapping scheme. To enable flow control, assert the
TxFCE_Configuration register bit [19] FCEnable field. Refer to “TxFCE_Configuration
Register (FP Tx Configuration Function)” on page 679.

Except for CSIX-L1 mode, per-queue flow control requests are processed by the RxByte
Processors. To process these, the RxByte Processor must write 2Bytes to form a 16bit flow
ID and then write to the pause/resume register. If one of the flow ID Bytes is not being
used, (that is, it is masked off), then the RxByte Processor need not write to that byte. It is
the act of writing to the pause/resume register which sends the request to the FPTx, so
that must be done after the flow ID has been set up.

Per-queue flow control requests are buffered into a 4-deep FIFO for each RxByte Processor.
A single, 16-entry FIFO in the FPTx is fed alternately from the two (2) RxByte Processor’s
FIFOs. The FPTx can drain a flow control request from its FIFO every core clock cycle.

If a queue is paused while actively transmitting, no further segments are transmitted for
that PDU except segments already in the output FIFOs. When that queue is resumed, the
FPTx immediately restarts the PDU from the point in which it left off.

If a queue is paused while not actively transmitting, the FPTx will not begin transmission
from that queue even if it is non-empty. In this situation, once a resume occurs, the FPTx
transmits from that queue when that queue’s normal turn comes about.

Tx Flow
Control CAM
(Configurable)

16 bit Flow ID
From FP Rx

16 bit Mask
(Statically Configured)

7 bit Queue Number
(0 - 127)
C5EC3EARCH-RM REV 04

240 CHAPTER 4: FABRIC PROCESSOR
In non-CSIX-L1 modes. Because the FPTx FIFO is fed alternately from the two (2) RxByte
Processor’s FIFOs, there is no inherent ordering between flow control requests from the
two (2) RxByte Processors. This could be accomplished through microcode
synchronization if required.

There is no harm in sending a pause request for a queue that is already paused or a
resume request for a queue that has already been resumed. This has no effect on the
FPTx’s per-queue flow control.

TxFlow CAM Configuration Procedure
To configure the CAM, follow this procedure:

1 Set the TxFCE_Configuration register bit [15:0] FlowMask field to 0xffff.

2 Then delete the preloaded CAM entries by performing 128 writes to the TxFlowCAM
register; on each write set the DEL (delete) bit and the next 16bit Match value.

Remember that the preloaded match values are 0 through 127.

3 Next, write the desired entries into the CAM by writing to the TxFlowCAM register, with
bit [26] WT field asserted. The 16bit match value and 8bit write data will thus be
placed into the CAM.

Bit7 of the write data must be zero; bits [6:0] represent the 7bit queue number.

FP Descriptor Size The FP supports descriptor sizes of 12Bytes, 16Bytes, 24Bytes, and 32Bytes. The descriptor
size is configured using the TxFCE_Configuration register bits [25:24] DescSize field on the
FPTx and the RxFCE_Configuration0 register bits [25:24] DescSize field on the FPRx. The
encoded values for these two (2) fields are different; however, the important point is that
the descriptors sizes must be the same for both the FPRx and FPTx. Refer to
“TxFCE_Configuration Register (FP Tx Configuration Function)” on page 679 and
“RxFCE_Configuration0 Register (FP Rx Configuration Function)” on page 706.

FP CRC A 32bit CRC can optionally be generated and included in each segment. The region of the
segment for which CRC is calculated can be specified using the TxFI_CRC register bits
[23:16] FirstIndex field and bits [15:8] LastIndex field; and RxF_CRC register bits [23:16]
FirstIndex field and bits [15:8] LastIndex field. The start of the region (FirstIndex) is
configurable, but must be a multiple of 4. The end of the region (LastIndex) must extend
to end of the segment; the CRC value resides in the last 4Bytes of the segment.
C5EC3EARCH-RM REV 04

FPTx and FPRx General Considerations 241
The values in these 2 fields will not be exactly equal. With CRC checking enabled, the CRC
of each segment is checked for all segments that are received, and failing segments are
dropped. Refer to “TxFI_CRC Register (FP Tx Configuration)” on page 678, and “RxFI_CRC
Register (FP Rx Configuration Function)” on page 703.

The inclusion of CRC in each segment decreases the amount of payload included in each
segment.

The CRC cannot be used by the FPRx in conjunction with variable length cells.

FP Endianness (Byte and
Bit Ordering)

The FP can handle either Big Endian or Little Endian byte ordering. This is configurable
using the TxFI_Configuration register bit [4] BigEnd field and RxFI_Configuration register bit
[3] BigEnd field. Refer to “TxFI_Configuration Register (FP Tx Configuration Function)” on
page 673, and “RxFI_Configuration Register (FP Rx Configuration Function)” on page 696.

Refer toTable 53 on page 241 and Table 54 on page 241. The Byte Processors in both the
FPTx and FPRx processes the most significant byte first. Bit ordering is always fixed at [7:0]
within a byte.

Byte Order Requirements per Fabric Interface Mode
Specific byte order is required per specific Fabric Interface Modes as listed in Table 55 on
page 242.

Table 53 Big Endian Byte Ordering on Data Pins 31:0

Most Significant Byte Least Significant Byte

31:24 23:16 15:8 7:0

Table 54 Little Endian Byte Ordering on Data Pins 31:0

Least Significant Byte Most Significant Byte

31:24 23:16 15:8 7:0
C5EC3EARCH-RM REV 04

242 CHAPTER 4: FABRIC PROCESSOR
FP Payload Bus
Bandwidth

Depending on the bandwidth needed by an FP application, the Payload Bus should be
configured to allocate a higher proportion of its bandwidth to the FP. This is done using
the XP Miscellaneous Control register bit [9] ZBFP field. Refer to “XP Miscellaneous Control
Register (XP Configuration Function)” on page 611.

Table 55 Byte Order Requirements per Fabric Interface Mode

FABRIC INTERFACE MODE BYTE ORDER REQUIRED

CSIX-L1 Big Endian

PowerX (CSIX-L0) Little Endian

PRIZMA Big Endian

UTOPIA Either Big or Little Endian

UTOPIA3 Like to M-5 Big Endian
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 243
Fabric Interface Modes
and Configurations

The FP supports seven (7) different fabric interfaces that include:

• CSIX-L1

• UTOPIA3, UTOPIA2, and UTOPIA1

• PRIZMA

• PowerX (CSIX-L0)

• UTOPIA3 like to M-5

Details pertaining to each of the seven (7) fabric interfaces are provided in their applicable
sections. Topics include: supported and unsupported protocol items, unique protocol
items, configuration settings, and pin mapping.

Each data bus can be configured for widths of 8 (data bits 7:0 are used) , 16 (bits 15:0), or
32 (bits 31:0). In 8bit mode, data bits 31:8 are unused. In 16bit mode, data bits 31:16 are
unused.

For NP-to-NP operations (Back-to-back) where two (2) C-5e’s can be directly connected
via the Fabric Port (FP), the NPs should be configured in UTOPIA3 mode, with the FPTx's
configured as an ATM device and the FPRx's configured to be PHY devices.

CSIX-L1 Interface Mode The FP can be configured to operate using the Common Switch Interface level 1 (CSIX-L1)
protocol. CSIX-L1 is an industry standard interface between a network processor and a
switching fabric as specified by the Network Processing Forum, formerly CSIX/CPIX. For
specific CSIX-L1 specifications, refer to The Network Processing Forum’s CSIX-L1 Specification
located on their web site: http://www.npforum.org

Table 56 on page 243 lists the supported items, Table 57 on page 245 lists Freescale
optional extensions to CSIX-L1, and Table 58 on page 246 lists the unsupported items.

Table 56 CSIX-L1 Supported Items and Descriptions

ITEM DESCRIPTION

CSIX-L1 Compliant protocol C-5e supports.

LVCMOS I/O Buffer support for
either 2.5V or 3.3V.

C-5e supports.

32bit Data bus C-5e supports.

125MHz Fabric clock C-5e supports.
C5EC3EARCH-RM REV 04

www.npforum.org

244 CHAPTER 4: FABRIC PROCESSOR
Maximum frame size up to
180Bytes

C-5e supports.

Variable -size frames In general, there is no limitation on how small the frames can
be for typical applications. For example, the FPRx can handle a
12Byte data frame or an 8Byte flow control frame. If the FPRx
receives a string of short frames and the microcode can not
keep up, the header FIFO back-pressure mechanism kicks in
and the fabric is flow controlled without any overflow or lost
frames.
The only limitation regarding minimum frame size occurs with
applications with large headers (for example, 32Byte
descriptors). In this case, with large headers and short frames,
the header FIFO could overflow before the header FIFO
back-pressure mechanism has a chance to pause the fabric.
This happens because the CSIX-L1 link-level flow control is
in-band and has a long latency.
Applications with large headers can prevent header FIFO
overflow by enforcing a minimum frame size in the FPTx. This
allows all data frames to have enough padding which permits
the FPRx microcode to keep up. A drawback is that the extra
overhead of pad bytes are carried throughout the system.

Horizontal parity C-5e supports.

Frame types: Transmission Idle, unicast, multicast and broadcast.

Frame types: Reception Idle, unicast, multicast, broadcast and flow control. For other
types, see below.

Fabric-Generated Command &
Status/CSIX Reserved Frames

Although these frames are not fully defined in the CSIX-L1
specification, the C-5e provides some level of support for
receiving these on egress. They are treated just like a data
frame. The FPRx microcode can examine the frame type and
enqueue the messages to the XP for further handling.

Link-level flow control of the
“data queue” in both directions
(C-5e -> fabric and fabric -> C-5e)

The FP pauses the fabric when the FPRx runs out of a resource
(payload FIFO, header FIFO, scopes).

Table 56 CSIX-L1 Supported Items and Descriptions (continued)

ITEM DESCRIPTION
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 245
Ready bit for “control queue” is
ignored

• For fabric -> C-5e direction, the control ready is irrelevant
because C-5e does not transmit any flow control frames.
For the initialization sequence, C-5e only looks at the
incoming data ready. The CSIX-L1 specification indicates
the control ready and data ready bits need to be asserted
at the same time during initialization. Therefore, there is no
need to look at the incoming control ready.

• For C-5e -> fabric direction, the C-5e always asserts control
ready (after the initialization sequence). Thus, C-5e is
always ready to receive flow control frames.

Fabric flow control (per-queue) The incoming 4bit Speed Variable is decoded as:

• 0000= pause

• Everything else= resume

Fabric flow control with port and
class wildcarding

Handled by hardware.

Fabric flow control messages of
any type

C-5e supports.

Table 57 Freescale Optional Extensions to CSIX-L1

ITEM DESCRIPTION

Number of programmable dead cycles Although the CSIX-L1 specifies a single dead cycle,
the C-5e can handle anywhere from 0 to 8 dead
cycles on egress (FPRx).

CSIX Turbo Mode CSIX Turbo mode is an extension to the CSIX-L1 frame
format, which allows 4Bytes of overhead to be
eliminated per frame. Normally, the FPTx appends a
dummy word to each CSIX data frame to act as a
placeholder for the Vertical Parity field. In Turbo
mode, there is no Vertical Parity field and the last
word of each frame can be used for valid payload.
To implement Turbo mode, CRC must be disabled in
the FPTx, and the FPTx microcode must set the lowest
2bits of the payload length to 00 or 11.
For a fabric to support this mode, it must forward the
entire frame from the ingress C-5e to the egress C-5e
without modifying the field normally used for Vertical
Parity.

Table 56 CSIX-L1 Supported Items and Descriptions (continued)

ITEM DESCRIPTION
C5EC3EARCH-RM REV 04

246 CHAPTER 4: FABRIC PROCESSOR
Table 58 CSIX-L1 Unsupported Items and Descriptions

ITEM DESCRIPTION

CSIX RxClk The C-5e does not generate RxClk. An external device must
supply RxClk to the C-5e (RxClk connects to the FPTx) as well
as to the CSIX fabric.

Separate wildcarding of unicast
vs. multicast vs. broadcast

All wildcarding is applied across the C-5e’s 128 queues,
regardless of type. Essentially the type is assumed to be “All”
for wildcards.

Vertical parity checking and
generation

C-5e does not supports.

Pad Bytes =0 C-5e sometimes transmits pad bytes (extra Bytes between the
end of the Payload and the beginning of the Vertical Parity
field) whose value is not =0. The CSIX-L1 specification
indicates that these Bytes should be=0 for vertical parity
checking. C-5e does not support vertical parity checking.

C-5e-Generated Command &
Status /CSIX Reserved frames

C-5e does not generate frames of these types.

“Commence processing” of new
frame upon Unexpected SOF

Upon detecting an Unexpected SOF, the FP smoothly drops
the new frame as well as the previous one.

Ready bit for “control queue” is
ignored

• For fabric -> C-5e direction, control ready is irrelevant
because the C-5e does not transmit any flow control
frames. For initialization sequence, C-5e only looks at the
incoming data ready. The CSIX-L1 specifications indicate
the control ready and data ready bits need to be asserted
at the same time during initialization. Therefore, there is no
need to look at the incoming control ready.

• For C-5e -> fabric direction, C-5e always asserts control
ready (after the initialization sequence). Thus, C-5e is
always ready to receive flow control frames.

64bit, 96bit and 128bit data
buses

C-5e does not supports.

HSTL I/O buffers C-5e does not supports.

Fabric clock frequencies up to
250MHz

C-5e does not supports.

Interoperate with different
network processors

C-5e does not support interoperability with different network
processors.
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 247
CSIX-L1 Flow Control
The C-5e can handle any combination of CSIX-L1 flow control messages including:
back-to-back flow control frames, and multiple messages per frame (limited only by the
configured maximum payload size).

If a horizontal parity error is detected on a 4Byte word within a flow control frame, the
flow control messages which straddle that word are ignored, as are all subsequent
messages in that frame.

The FPRx extracts key bits from incoming 32bit flow control messages and sends them to
the FPTx flow control CAM, using the format in Table 59 on page 247. The CAM and its
mask value are highly configurable. Refer to “FPTx and FPRx General Considerations” on
page 237.

The FPRx indicates a pause or resume to the FPTx based upon the CSIX-L1 4bit Speed
Variable. A value of 0000 is treated as a pause; all others are treated as a resume. Based on
how the FPTx CAM is configured, flow control messages with unsupported types or
non-existent queues simply miss the CAM and are ignored. Messages that hit in the CAM
are mapped to any of 128 queues. The CAM actually has 160 entries; the extra 32 entries
can be used to provide some added flexibility.

Table 59 FPRx to FPTx Flow Control Format for CSIX-L1
Bit Position 15 14 13 12 11 3 2 0

Field Name ClassWild
Crd

PortWild
Crd Type Port# Class#

FIELD NAME BIT POSITION DESCRIPTION

ClassWildCrd 15 Class Wildcard — Refer to The Network Processing Forum’s CSIX-L1
Specification.

PortWildCrd 14 Port Wildcard — Refer to The Network Processing Forum’s CSIX-L1
Specification.
C5EC3EARCH-RM REV 04

248 CHAPTER 4: FABRIC PROCESSOR
The C-5e does not support the separate notion of unicast wildcarding vs. multicast
wildcarding vs. broadcast wildcarding. Thus, wildcarding applies to all 128 queues
regardless of “Type “ bits [13:12] in Table 59 on page 247.

Type 13:12 Type — Defines the type of message. Legal types are detailed
here:

Port# 11:3 Port Number— Defines the port. The port is extracted from the
lower 9bits of the 12bit destination address in the flow control
message. Typical applications have 16 or 32 ports; extra bits can
be masked off using the FPTx flow control mask.

Class# 2:0 Class Number — Defines the class. These bits are taken from the
upper bits [7:5] of the class in the base header, as mandated per
CSIX-L1. Typical applications have 4 or 8 priorities.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE TYPE

00 Unicast

01 Multicast

10 Broadcast

11 All
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 249
CSIX-L1 Configuration
The FP can be configured to operate with CSIX-L1 interface as follows. Refer toTable 60 on
page 249.

CSIX-L1 Pin Mapping
Refer to Table 61 on page 249.

For the CSIX-L1 Mode, VDDF= 2.5V.

Table 60 CSIX-L1 Configuration Settings

SETTING DETAILS

Set the RxFI_Configuration register bits [30:27]
Interface field to 0x2.

Refer to “RxFI_Configuration Register (FP Rx
Configuration Function)” on page 696.

Set the TxFI_Configuration register bit [7] Interface
field to 1.

Refer to “TxFI_Configuration Register (FP Tx
Configuration Function)” on page 673.

Set the TxFI_Configuration register bit [31]
CFIEnable field to 1. before setting the
RxFI_Configuration register bits [31] CFIEnable to 1.

Refer to “TxFI_Configuration Register (FP Tx
Configuration Function)” on page 673, and to
“RxFI_Configuration Register (FP Rx
Configuration Function)” on page 696.

Optionally, variable length frames can be set.
Set the TxFI_Configuration register bit [23]
VariableCells field, and deselect the
RxFI_Configuration register bit [23]
FixedSizeSegment field.

Table 61 C-5e NP to Fabric Interface Pin Mapping for CSIX-L1 Mode

FPRX SIGNALS FPTX SIGNALS

C-5E NP I/O CSIX-L1 NOTE C-5E NP I/O CSIX-L1 NOTE

FRxCTL0 Input n/a FTxCTL0 Input n/a

FRxCTL1 Input n/a FTxCTL1 Input n/a

FRxCTL2 Input TxSOF FTxCTL2 Output RxSOF

FRxCTL3 Input n/a FTxCTL3 Input n/a

FRxCTL4 Input n/a FTxCTL4 Input n/a

FRxCTL5 Input n/a FTxCTL5 Input n/a

FRxCTL6 Input TxPrty FTxCTL6 Output RxPrty
C5EC3EARCH-RM REV 04

250 CHAPTER 4: FABRIC PROCESSOR
UTOPIA Interface Modes The FPTx can be configured to operate using either the UTOPIA1/2 or UTOPIA 3 protocol.
For either protocol, it can be programmed to operate as either: the ATM (master) device or
the PHY (slave) device. In ATM mode, the interface can operate with an 8bit, 16bit, or 32bit
bus width. In PHY mode, it can only operate with a 16bit or 32bit bus width. Refer to
Table 62 on page 250.

UTOPIA Interpretation and C-5e Implementation
The UTOPIA specifications are ambiguous and subject to interpretation. Below is
Motorola’s interpretation of the specifications, as well as, information about the C-5e NP’s
implementation of the protocols. In addition, whether and/or how optional UTOPIA
specifications are handled by C-5e NP are described. Specific references to the UTOPIA
specifications from the ATM Forum Technical committee are noted where applicable. The
following UTOPIA documents were used:

• UTOPIA Specification Level 1, Version 2.01, af-phy-0017.000, March 21, 1994

• UTOPIA Level 2, Version 1.0, af-phy-0039.000, June 1995

• UTOPIA 3 Physical Layer Interface, af-phy-0136.000, November, 1999

Differences between the two (2) protocols (UTOPIA3, UTOPIA2) include: supported items,
the meaning of “cell transfer period”, and asserting and deasserting specifications
pertaining to control signals. There are a total of six (6) control signals used for Rx and Tx
purposes in both UTOPIA3 and UTOPIA2. Each control signal has unique specifications.
Each specification and its implementation is described.

Table 62 Freescale Supported UTOPIA Protocols, Modes and Their Bus Widths

BUS WIDTH
(BITS)

UTOPIA1
PHY

UTOPIA1
ATM

UTOPIA2
PHY

UTOPIA2
ATM

UTOPIA3
PHY

UTOPIA3
ATM

32 n/a n/a n/a n/a Yes Yes

16 n/a n/a Yes Yes Yes Yes

8 No Yes No Yes No Yes
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 251
UTOPIA3 Implementation
Table 63 on page 251 lists the supported and unsupported items of the C-5e NP in relation
to the UTOPIA3 interface.

Table 64 on page 252 lists the six (6) control signals for UTOPIA3 along with their
specifications and implementation using the following definition of “cell transfer period”
and the following definition of “asserted” and “deasserted”:

• The "cell transfer period" referred to in Table 64 on page 252, refers to the consecutive
bus cycles, starting with the cycle in which Start of Cell (SOC) is asserted and lasting
the number of bus cycles required to transfer the fixed cell size. The first cycle of a cell
transfer is the cycle in which SOC is asserted. All cycles during the cell transfer are valid
data cycles.

• The terms “asserted" and "deasserted" are used as logical terms, and correspond to
different logic values depending on the active state of the signal. For example, RxEnb
and TxEnb are active low, therefore asserted is a logic value of 0 and deasserted is a
logic value of 1.

Table 63 UTOPIA3 Supported and Unsupported Items

ITEM DESCRIPTION

Single PHY operation C-5e supports.

Multi-PHY operation Unsupported by C-5e directly, but can be supported with the M-5.

8bit, 16bit or 32bit interface C-5e supports all three

52Byte cells C-5e supports.

Parity pin C-5e supports.

Full transfer (cell-level
handshaking)

C-5e supports. Once cell transmission starts, the cell is transferred,
uninterrupted. (Section 2.2.5)

RxClk and TxClk Are inputs, thus are never driven by the C-5eNP.
C5EC3EARCH-RM REV 04

252 CHAPTER 4: FABRIC PROCESSOR
Table 64 UTOPIA3 Control Signal Specifications and Implementation

SIGNAL DESCRIPTION

TxClav • Asserted by PHY to indicate readiness to accept a cell.

• Can change from deasserted to asserted at any time.

• Can only change from asserted to deasserted two (2)cycles after the cycle in
which TxSOC is asserted (Section 3.2.1).

• Once asserted (indicating readiness to accept a cell), it must stay asserted until
associated “cell transfer” begins (Section 3.2.1).

TxEnb • Asserted during “cell transfer.”

• Can only change from deasserted to asserted if TxClav was asserted two (2) cycles
previously (Section 3.1.1).

• Can only change from deasserted to asserted with the assertion of TxSOC.

• Can only change from asserted to deasserted at end of “cell transfer.”

• Must be deasserted at end of cell if another cell is not starting immediately after
the current one.

Note: In UTOPIA3 mode, C-5e NP ignores the TxEnb signal and considers there to be
valid cell data on the data lines for consecutive cycles starting with an SOC cycle,
until the fixed cell size number of bytes have been received.

TxSOC • Asserted for one cycle to indicate first cycle of cell.

• Can only be asserted for a single cycle.

• Can only be asserted when TxEnb is asserted (Section 3.1.1).

• Can only be asserted when TxClav was asserted for the two (2) previous cycles.

• Cannot be asserted in the middle of “cell transfer.”

RxClav • Asserted by PHY whenever it has a cell available to transfer.

• Can only change from asserted to deasserted at the same time RxSOC changes
from deasserted to asserted (Section 3.2.2); that is, If the PHY does not have a
subsequent cell to transmit, it must indicate so at the beginning of the current
cell.

• Once asserted, it must stay asserted until the cycle after the next RxSOC assertion
(Section 3.2.2).

• Can change from deasserted to asserted at any time.
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 253
UTOPIA2 Implementation
Table 63 on page 251 lists the supported and unsupported items of the C-5e NP in relation
to the UTOPIA2 interface.

Freescale recommends that a UTOPIA1 or 2 PHY device tristate the RxSOC, RxData (and
we presume RxPrty) lines during cycles following cycles where RxEnb is not asserted. C-5e
NP implements this recommendation.

RxEnb • Asserted "in response" (Section 3.2.2) to RxClav assertion to "initiate" (Section
3.1.2) a “cell transfer.”

• Can only change from deasserted to asserted when RxClav was asserted two (2)
cycles before.

• Must remain asserted during the “cell transfer,” at least until two (2) cycles before
end of cell (Section 3.2).

• Must be deasserted two (2) cycles before end of cell if:

Another cell cannot be received or

RxClav has been deasserted during the “cell transfer.”

• Once asserted (indicating readiness to accept a cell), it must stay asserted until an
associated “cell transfer” begins.

RxSOC • Asserted for one (1) cycle to indicate first cycle of cell.

• Can only be asserted for a single cycle.

• Can only be asserted when RxEnb was asserted for the two (2) previous cycles.

• Cannot be asserted in the middle of “cell transfer.”

Table 65 UTOPIA2 Supported and Unsupported Items

ITEM DESCRIPTION

Handshaking
response time

Handshaking response time is expected to be one (1) cycle, not two (2) like
UTOPIA3. For example, if RxEnb is deasserted during the middle of a cell
transfer for one cycle, the UTOPIA PHY is expected to insert one (1) invalid
data cycle on the very next cycle.

Handshaking C-5e NP only supports cell-level handshaking.

Clocks Clocks are expected to be provided by (outputs from) the ATM device. The
C-5e NP does not drive any clocks. It requires them to be inputs.

54Byte segments Unsupported. C-5e segments must be 4Byte aligned.

Table 64 UTOPIA3 Control Signal Specifications and Implementation (continued)

SIGNAL DESCRIPTION
C5EC3EARCH-RM REV 04

254 CHAPTER 4: FABRIC PROCESSOR
Table 66 on page 254 lists the six (6) control signals for UTOPIA2 along with their
specifications and implementation using the following definition of “cell transfer period”
and the following definition of “asserted” and “deasserted”:

• The "cell transfer period" referred to in Table 66 on page 254, refers to the consecutive
bus cycles, starting with the cycle in which SOC is asserted and ending with the valid
bus cycle which transfers the last byte of the fixed cell size. During the cell transfer
there can be any number of invalid data cycles as indicated by deassertion of the Enb
signal. The first cycle of a cell transfer is the cycle in which SOC is asserted.

• The terms “asserted" and "deasserted" are used as logical terms, and correspond to
different logic values depending on the active state of the signal. For example, RxEnb
and TxEnb are active low, therefore asserted is a logic value of 0 and deasserted is a
logic value of 1.

Table 66 UTOPIA2 Control Signal Specifications and Implementation

SIGNAL DESCRIPTION

TxClav • Asserted by PHY to indicate readiness to accept a cell.

• Can change from deasserted to asserted at any time.

• Can change from asserted to deasserted any time.

• Once asserted (indicating readiness to accept a cell), it must stay asserted until
an associated “cell transfer” begins.

• Must deassert four (4) cycles before the end of a “cell transfer” to avoid transfer
of a subsequent cell. If asserted four (4) cycles before the end of a cell transfer, it
must stay asserted at least until a subsequent “cell transfer” begins.

Note: As recommended by the UTOPIA specification, C-5e NP keeps TxClav
asserted through the cell transfer until at least the fourth cycle before the end of the
cell.

TxEnb • Asserted during valid cycles of a “cell transfer.”

• Must be asserted with TxSOC.

• Can be deasserted during a “cell transfer” to indicate invalid data cycles. When
TxEnb is deasserted, data on TxData is invalid.

• Cannot be asserted when a “cell transfer” is not in progress.

Note: The C-5e NP will not deassert TxEnb during a “cell transfer.”
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 255
TxSOC • Asserted for one (1) cycle to indicate first cycle of cell.

• Can only be asserted for a single cycle.

• Can only be asserted when TxEnb is asserted.

• Can only be asserted when TxClav was asserted in the previous cycles.

Note: TxSOC cannot be asserted in the middle of “cell transfer.”

RxClav • Asserted by PHY whenever it has a cell available to transfer.

• Can change from deasserted to asserted at any time.

• Once asserted, it must stay asserted until the cycle after the next “cell transfer”
begins.

• Must remain asserted throughout a “cell transfer.”

• Must be asserted to coincide with the cycle following the last cycle of a “cell
transfer” to allow back-to-back “cell transfer.“

RxEnb • Asserted in response to RxClav assertion to a “cell transfer.”

• Must be asserted with RxSOC.

• Can only change from deasserted to asserted when RxClav was asserted in the
previous cycle.

• Must be deasserted one (1) cycle before end of cell if a subsequent cell cannot be
received.

• Can be deasserted during a “ell transfer” to indicate invalid data cycles. When
RxEnb is deasserted, data on RxData in the following cycle is invalid.

Note: C-5e NP will not deassert RxEnb during a “cell transfer.”

RxSOC • Asserted for one (1) cycle to indicate first cycle of cell.

• Can only be asserted for a single cycle.

• Can only be asserted when RxEnb was asserted in the previous cycle.

• Cannot be asserted in the middle of “cell transfer.”

Note: C-5e NP tristates RxSOC in cycles following cycles where RxEnb is deasserted.

Table 66 UTOPIA2 Control Signal Specifications and Implementation (continued)

SIGNAL DESCRIPTION
C5EC3EARCH-RM REV 04

256 CHAPTER 4: FABRIC PROCESSOR
UTOPIA Configuration
The FP can be configured to operate with UTOPIA2 or 3 interface as follows. Refer
toTable 67 on page 256.

UTOPIA Pin Mapping
Refer to Table 68 on page 256 for ATM mode, and Table 69 on page 257 for PHY mode.

Table 67 UTOPIA Configuration Settings

SETTING DETAILS

For UTOPIA2, set the TxFI_Configuration register
bit [24] U2Mode field and bit [25] U2TriEnable field
to 1.

Refer to “TxFI_Configuration Register (FP Tx
Configuration Function)” on page 673.

For UTOPIA2 or 3, set the RxFI_Configuration
register bits [30:27] Interface field appropriately
(to 0x0=UTOPIA3, to 0x5=UTOPIA1 and 2).
Note: The FPTx defaults to UTOPIA3 mode unless
one of the UTOPIA 2, PRIZMA, PowerX (CSIX-L0), or
CSIX-L1 mode bits is asserted in the
TxFI_Configuration register.

Refer to “RxFI_Configuration Register (FP Rx
Configuration Function)” on page 696.

Table 68 C-5e NP to Fabric Interface Pin Mapping for UTOPIA1, 2, 3 ATM Mode

FPRX SIGNALS FPTX SIGNALS

C-5E NP I/O UTOPIA NOTE C-5E NP I/O UTOPIA NOTE

FRxCTL0 Output RxEnb1

1 Both RxEnb and TxEnb are Active Low.

Pullup or No
Connection

FTxCTL0 Output TxEnb1 Pullup or No
Connection

FRxCTL1 Input RxClav FTxCTL1 Input TxClav

FRxCTL2 Input RxSOC FTxCTL2 Output TxSOC

FRxCTL3 Input n/a FTxCTL3 Input n/a

FRxCTL4 Input n/a FTxCTL4 Input n/a

FRxCTL5 Input n/a FTxCTL5 Input n/a

FRxCTL6 Input RxPrty FTxCTL6 Output TxPrty
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 257
Table 69 C-5e NP to Fabric Interface Pin Mapping for UTOPIA1, 2, 3 PHY Mode

FPRX SIGNALS FPTX SIGNALS

C-5E NP I/O UTOPIA NOTE C-5E NP I/O UTOPIA NOTE

FRxCTL0 Input TxEnb1

1 Both TxEnb and RxEnb are Active Low.

Pullup FTxCTL0 Input RxEnb1 Pullup

FRxCTL1 Output TxClav No Connection FTxCTL1 Output RxClav No Connection

FRxCTL2 Input TxSOC FTxCTL2 Output RxSOC

FRxCTL3 Input n/a FTxCTL3 Input n/a

FRxCTL4 Input n/a FTxCTL4 Input n/a

FRxCTL5 Input n/a FTxCTL5 Input n/a

FRxCTL6 Input TxPrty FTxCTL6 Output RxPrty
C5EC3EARCH-RM REV 04

258 CHAPTER 4: FABRIC PROCESSOR
PRIZMA Interface Mode The FP should be configured for PRIZMA mode when interfacing to the UDASL chip,
which in turn interfaces to the IBM PRIZMA-E or PRIZMA-EP switch fabric.

In PRIZMA fabric terminology, the segment is called a "packet". Therefore, the term
“packet” is used here.

There are five (5) PRIZMA items that need some additional discussion about FP handling.
They include: packet sizes, in-band flow control, link-level flow control, idle packets,
queue grants, and RxByte Processor’s drop mode.

Packet Sizes
The PRIZMA fabric supports packet sizes between 64 and 80Bytes. The C-5e NP supports
this range of packet sizes, but packet sizes must be a multiple of 4Bytes. The PRIZMA fabric
must be configured to place the packet qualifier byte as the first byte of the header.
Typically, the destination bitmap (on ingress to the fabric) or queue grants (on egress from
the fabric) would be the next Bytes of the header. Because microcode generates the
PRIZMA address bitmap and processes, the queue grant bits in the PRIZMA header, the
PRIZMA fabric can be configured to have 16 or 32 queues per priority.

In-Band Flow Control
When operating with a PRIZMA fabric, the fabric is configured to use in-band flow control
and the UTOPIA protocol Enb and Clav signals are not used. Therefore, Enb inputs to the
C-5e NP should be pulled down and the Clav inputs to the UDASL chip should be pulled
up. The SOC pins of the C-5e NP and the UDASL should be connected.

When using in-band flow control, the FPTx generates PRIZMA-format idle packets
whenever it has no segments to transmit or whenever it has been paused by the PRIZMA
fabric. Packets (data or idle) are transmitted from the C-5e NP in an absolutely
back-to-back fashion on the interface; that is, there will be no unused cycles on the bus.
The C-5e NP must be configured to generate idle packets using the TxFI_Configuration
register to enable idle packet generation and the TxDM_Header/Payload Delimiter register
to specify the length of idle packets so they are the same length as data packets. The
TxIdleData register must be programmed to a value of 0xCCCCCCCC so that the content of
idle packets is correct.

When idle packets are generated, no microcode generated header is used, so PRIZMA
microcode needs no support for idle packet header generation.
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 259
Refer to “TxFI_Configuration Register (FP Tx Configuration Function)” on page 673,
“TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function)” on page 675,
and “TxIdleData Register (FP Tx Configuration Function)” on page 688.

Link-Level Flow Control
If congestion occurs in the FPRx, link-level flow control is sent to the fabric via the FPTx.
The FPTx asserts the TxPause bits in the PRIZMA packet qualifier byte of the packets that it
transmits. The FPTx always asserts or deasserts all four (4) of the TxPause bits together; it
does not perform link-level flow control on a per-priority basis.

The C-5e NP presumes that the UDASL chip is configured to use full inband flow control in
such a way that, when the UDASL's input FIFO fills and it requires link-level flow control, it
is expected to deassert the shared memory grant bit, for at least one priority, in the packet
qualifier of packets that it transmits to the C-5e NP. The FPRx extracts PRIZMA shared
memory grant information from the packet qualifier byte of each packet; microcode does
not have to do this.

If a shared memory grant is lost for any priority, the C-5e NP pauses all data packet
transmission and transmits only idle packets to the fabric. Again, link-level flow control is
implemented as all-or-nothing, not per-priority. After the C-5e NP powers up, it does not
allow the FPTx to transmit until it has received a PRIZMA packet with a shared memory
grant, for each of the enabled priorities.

The number of desired priorities is set using the RxDS_Configuration register bits [29:28]
NumPri field. If the FPRx receives a shared memory grant for a priority that is not enabled,
that shared memory grant is ignored and has no effect on of link-level flow control.

Idle Packets
The FPRx expects that idle packets are received whenever the fabric has no data packets
to transmit or whenever the C-5e NP has paused the fabric. FPRx data splitting registers
must be configured to appropriately identify and split idle packets. Microcode must
recognize and discard idle packets. Refer to “RxByte Processors Discarding Segments” on
page 222.

When the PRIZMA fabric is paused, it stops transmitting data packets but continues to
transmit idle packets into the C-5e NP. Because some portion of these packets must be
directed into the payload FIFO, the payload FIFO may eventually overflow and lose some
of this idle packet data. This is not a problem because this payload would be discarded
when it is popped from the payload FIFO anyway. Refer to “RxByte Processor’s Drop Mode”
on page 260.
C5EC3EARCH-RM REV 04

260 CHAPTER 4: FABRIC PROCESSOR
Queue Grants
Queue grants in PRIZMA headers sent into the C-5e NP can be handled by FPRx
microcode so they generate per-queue flow control messages to the FPTx. The microcode
may only be able to process a subset of the Queue grants for a given packet; this
performance limitation is dependent on the number of Queue grants per packet, the
packet size, the core clock frequency, and the fabric interface clock frequency. As an
example, assume that microcode can only process eight (8) Queue grants per packet, in
an application with 128 queues (32 ports x 4 priorities). Therefore, it would take 16
packets before all Queues grants were processed. The processing task is split between the
two (2) Byte Processors, with the shared registers used as a scratch-pad area to keep track
of which Queue grants to process next. A token passing scheme could be implemented so
that the byte processors would not collide while accessing the shared registers. Refer to
“RxByte Processors Token Passing” on page 223.

RxByte Processor’s Drop Mode
When the amount of data in the payload FIFO passes the configurable XOFF threshold,
link-level flow control can be applied by the FPRx back to the fabric (refer to “FPRx Payload
FIFO Backpressure” on page 234). Despite this, PRIZMA applications continue to transmit
idle packets and those packets are forwarded to the header and payload FIFOs for in-band
per-queue flow control processing. Therefore, it is possible for the payload FIFO to
continue filling up well past its threshold. When it fills up to the maximum of 512Bytes,
Drop Mode is activated, causing subsequent payloads to be dropped.

CSIX-L1 also has idle packets, but they require no processing and therefore do not get
sent to the header/payload FIFOs. Thus, the Drop Mode only occurs with the PRIZMA
mode.

In Drop Mode, the RxByte Processors continue to process incoming headers. However,
there is no payload associated with these headers. Therefore, the RxByte Processor’s
microcode must not advance the datascope (which would pass the ownership of the
segment to the remainder of the hardware pipeline). Thus, the RxByte Processor’s
microcode needs to test for Drop Mode via external test condition6 (refer to“External Test
Conditions” on page 209), before deciding whether to advance the datascope.
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 261
To prevent a race between a Drop Mode assertion and the point at which the microcode
samples the Drop Mode external test condition, ensure the idle packet header and
payload regions are configured as described here:

• Header and payload regions for idle packets must not overlap, and

• Payload region must end before the end of the packet.

Refer to Figure 51 on page 261.

Figure 51 Idle Packet Configuration Requirements for FPRx to Prevent a Race Condition

PRIZMA Configuration
The FP can be configured to operate with the PRIZMA interface as follows. The
configuration is similar to the 32bit UTOPIA3 PHY operation with the differences listed in
Table 70 on page 261.

Table 70 PRIZMA Delta Configuration Settings

SETTING DETAILS

Set the TxFI_Configuration register bit [21] PRIZMA
field to 1.

Refer to “TxFI_Configuration Register (FP Tx
Configuration Function)” on page 673.

Set the TxFI_Configuration register bit [18] IdleCell
field to 1.

Set the RxFI_Configuration register bits [30:27]
Interface field to 0x4.

Refer to “RxFI_Configuration Register (FP Rx
Configuration Function)” on page 696.

Program the TxIdleData register bits [31:0] to
contain a value of 0xCCCCCCCC.

Refer to “TxIdleData Register (FP Tx
Configuration Function)” on page 688.

Header Region
(typically 8Bytes)

Payload Region
(typically 4Bytes,
data is a don't care)

There must be at least 1 word of unused data
after the end of the payload region.

Unused

Unused

No overlap allowed between these two regions.
C5EC3EARCH-RM REV 04

262 CHAPTER 4: FABRIC PROCESSOR
While the C-5e NP supports the basic protocol of the PRIZMA fabric, a particular
application may not be possible due to limitations of microcode space and cycle time.
Consult the PRIZMA application note to understand some of the trade-offs involved in
developing a PRIZMA application.

PRIZMA Pin Mapping
Refer to Table 71 on page 262.

Program TxDM_Header/Payload Delimiter bits
[23:16] IdleCellLen field with a value which is 1 less
than the number of fabric interface cycles required
to transmit a packet.

Ref to “TxDM_Header/Payload Delimiter
Register (FP Tx Configuration Function)” on
page 675.

Table 71 C-5e NP to Fabric Interface Pin Mapping for PRIZMA Mode

FPRX SIGNALS FPTX SIGNALS

C-5E NP I/O PRIZMA NOTE C-5E NP I/O PRIZMA NOTE

FRxCTL0 Input TxEnb1

1 Both TxEnb and RxEnb are Active Low.

Not connected
to fabric.

FTxCTL0 Input RxEnb1 Not connected
to fabric.

FRxCTL1 Output TxClav No Connection FTxCTL1 Output RxClav No Connection

FRxCTL2 Input TxSOP FTxCTL2 Output RxSOP

FRxCTL3 Input n/a FTxCTL3 Input n/a

FRxCTL4 Input n/a FTxCTL4 Input n/a

FRxCTL5 Input n/a FTxCTL5 Input n/a

FRxCTL6 Input TxPrty Optional FTxCTL6 Output RxPrty Optional

Table 70 PRIZMA Delta Configuration Settings (continued)

SETTING DETAILS
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 263
PowerX(CSIX-L0)
Interface Mode

The FP can be configured to operate with the PowerX (CSIX-L0) TeraChannel Switch
Fabric. Table 72 on page 263 lists both the supported, as well as, unsupported items of the
C-5e in relation to the PowerX (CSIX-L0) interface as follows.

PowerX(CSIX-L0) Constraints
The C-5e NP can be programmed to support any of the PowerX (CSIX-L0) frame types,
however it may not be possible to support all types in a single application given
microcode and configuration constraints.

The use of the service channel and urgency fields of the PowerX (CSIX-L0) header is
completely a function of the application microcode.

PowerX(CSIX-L0) Requirements
The payload length field of the PowerX (CSIX-L0) header must be generated by FPTx
microcode. FPTx hardware makes the current segment length available to microcode for
this purpose. FPRx hardware extracts the payload length field of the PowerX (CSIX-L0)
header on frames that it receives to determine when the frame has been completely
delivered. There is no need for FPRx microcode to process the payload length field.

The FPTx can optionally generate variable-length frames which the PowerX (CSIX-L0)
fabric supports. When configured to do so, the FPTx generates fixed, maximum-sized
frames for all frames of a PDU except the last one. For the last frame of the PDU, the FPTx
transmits the shortest possible frame (which is a multiple of 4Bytes).

For short frames, dead cycles are inserted as necessary to meet the minimum SOF-to-SOF
spacing. This is done using the TxDM_Header/Payload Delimiter register bits [28:24]
MinSOF-SOFSpacing field. The PowerX (CSIX-L0) fabric must be guaranteed a minimum
number of clock cycles between consecutive SOF cycles.

Table 72 PowerX (CSIX-L0) Supported and Unsupported Items

ITEM TYPE SUPPORTED ITEM UNSUPPORTED ITEM

Interface 32bit PowerX (CSIX-L0) 16bit PowerX (CSIX-L0)

Transmits Invalid data, start of frame data, valid frame data,
pause, and resume PowerX (CSIX-L0) bus cycles

Abort or flow control cycles

Receives Invalid data, start of frame data, valid frame
data, pause, and resume and flow control
bus cycles

Abort or reserved bus cycles
C5EC3EARCH-RM REV 04

264 CHAPTER 4: FABRIC PROCESSOR
Setting the MinSOF-SOFSpacing filed guarantees a minimum SOF-to-SOF gap by having a
minimum size variable frame length. Refer to “TxDM_Header/Payload Delimiter Register
(FP Tx Configuration Function)” on page 675.

If variable-length frames are not enabled, the FPTx always transmit maximum-sized
frames for all frames of a PDU. The use of variable-length frames can be enabled using the
TxFI_Configuration register bit [23] VariableCellSize field.

The use of variable-length frames is incompatible with the use of CRC in those frames. If
CRC is to be used, fixed frames must be used.

As PowerX (CSIX-L0) flow control bus cycles are received by the C-5e NP, the FPRx directs
the flow control messages to a control FIFO in one of the Byte Processors. The control
FIFOs parallel the header FIFOs in the two (2) Byte Processors and control messages are
delivered alternately to each of the Byte Processors. The C-5e NP should be configured to
direct only the 2 meaningful bytes of PowerX (CSIX-L0) flow control bus cycles to a control
FIFO. This is done using the RxDS_Configuration register bits [22:20] CtlWordSize field.
Refer to “RxDS_Configuration Register (FP Rx Configuration Function)” on page 701.

PowerX(CSIX-L0) Byte Processor Unloading
In PowerX (CSIX-L0) mode, when a Byte Processor unloads the header FIFO, it is really
unloading the control or header FIFO. Control FIFO contents take precedence over header
FIFO contents so that if a Byte Processor does a FIFO unload it gets a control FIFO byte if
there are any present. The Byte Processor can test whether the byte it has unloaded came
from the control FIFO instead of the header FIFO using the "control word" test condition. If
it is true, the byte came from the control FIFO and is part of a flow control message.

For PowerX (CSIX-L0) flow control messages (16bits), just as with headers, the byte
Processors process the most significant byte first. Since PowerX (CSIX-L0) uses Little
Endian byte ordering, the Byte Processor first sees the byte which was received on pins
7:0, and next sees the byte received on pins 15:8. Also, upon receiving a flow control
message, an FPRx Byte Processor can pause or resume the corresponding FPTx queue by
writing a flow control message to the FPTx.
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 265
PowerX(CSIX-L0) Configuration
The following configuration settings must be implemented for the FP to operate with a
PowerX (CSIX-L0) interface. Table 73 on page 265 lists the applicable configuration
settings.

Table 73 PowerX (CSIX-L0) Configuration Settings

SETTING DETAILS

Set the TxFI_Configuration register bit [19] PowerX
(CSIX-L0) field to 1.

Refer to “TxFI_Configuration Register (FP Tx
Configuration Function)” on page 673.

If variable size frames are desired, then set the
TxFI_Configuration register bit [23] VariableCellSize
to 1, set the TxFI_CRC register bit [31] Enable field
to 0, and set RxFI_Configuration register bit [23]
FixedSizeSegments to 0.

Refer to “TxFI_Configuration Register (FP Tx
Configuration Function)” on page 673), and
“RxFI_Configuration Register (FP Rx
Configuration Function)” on page 696.

Set the RxFI_Configuration register bits [30:27]
Interface field to 0x3 for PowerX (CISX-L0).

Refer to “RxFI_Configuration Register (FP Rx
Configuration Function)” on page 696.

Set the RxFI_Configuration register bit [26]
ByteParity field to 1 to select parity on each byte
lane.

Set the RxFI_Configuration register bits [22:16]
ParityCtlMask field to 0000111binary (7dec.) so
that control pins 2:0 are included in parity
calculations.

Set both the RxFI_Configuration register bit [3]
BigEnd field and the TxFI_Configuration register bit
[4] BigEnd field to 0 for little endianness.

Refer to “RxFI_Configuration Register (FP Rx
Configuration Function)” on page 696, and
(“TxFI_Configuration Register (FP Tx
Configuration Function)” on page 673.

Set both the RxFI_Configuration register bit [0]
RegInput field and the TxFI_Configuration bit [0]
RegInput field to 1.
Note: The TxFI_Configuration register bit [0]
RegInput field is a “don’t care” since in the PowerX
(CSIX-L0) mode there are no inputs to the FPTx.
However, we recommend setting this filed to 1.

Set the RxDS_Configuration register bit [19]
CtlWordDisable field to 0 for PowerX (CISX-L0)
mode.

Refer to “RxDS_Configuration Register (FP Rx
Configuration Function)” on page 701.

Set the RxDS_Configuration register bits [22:20]
CtlWordSize field to 2 for PowerX (CISX-L0).
C5EC3EARCH-RM REV 04

266 CHAPTER 4: FABRIC PROCESSOR
While the C-5e NP supports the basic protocol of the PowerX (CSIX-L0) fabric, a particular
application may not be possible due to limitations of microcode space and time. You
should consult the PowerX (CSIX-L0) Application Note to understand some of the
trade-offs involved in developing a PowerX (CSIX-L0) application.

PowerX(CSIX-L0) Pin Mapping
Refer to Table 71 on page 262.

Set the TxDM_Header/Payload Delimiter register
bits [28:24] MinSOF-SOFSpacing field to the
minimum SOF to SOF timing.

Refer to “TxDM_Header/Payload Delimiter
Register (FP Tx Configuration Function)” on
page 675.

Table 74 C-5e NP to Fabric Interface Pin Mapping for PowerX (CSIX-L0)

FPRX SIGNALS FPTX SIGNALS

C-5E NP I/O
POWERX
(CSIX-L0) NOTE C-5E NP I/O

POWERX
(CSIX-L0) NOTE

FRXCTL0 Input RxCtrl[0] FTXCTL0 Output TxCtrl[0]

FRXCTL1 Input RxCtrl[1] FTXCTL1 Output TxCtrl[1]

FRXCTL2 Input RxCtrl[2] FTXCTL2 Output TxCtrl[2]

FRXCTL3 Input RxPrty[3] FTXCTL3 Output TxPrty[3]

FRXCTL4 Input RxPrty[2] FTXCTL4 Output TxPrty[2]

FRXCTL5 Input RxPrty[1] FTXCTL5 Output TxPrty[1]

FRXCTL6 Input RxPrty[0] FTXCTL6 Output TxPrty[0]

Table 73 PowerX (CSIX-L0) Configuration Settings (continued)

SETTING DETAILS
C5EC3EARCH-RM REV 04

Fabric Interface Modes and Configurations 267
UTOPIA3 Like to M-5
Interface Mode

In general, the configuration for this mode is identical to UTOPIA3 PHY mode with two (2)
exceptions noted here:

• Variable length cells must be enabled. The FPRx hardware extracts the cell length from
the M-5 header.

• The RxClav signal (output of FPTx) is ignored by the M-5. Therefore, the FPTx to M-5
protocol is slightly different than UTOPIA3.

The protocol between the FPRx and M-5 is compliant with UTOPIA3.

Refer to M-5 Channel Adapter Architecture Guide (part number M5CAARCH-RM/D) for
additional information.
C5EC3EARCH-RM REV 04

268 CHAPTER 4: FABRIC PROCESSOR
FP Debug and Test The FP provides four (4) types of debug and test features. These include: FP Debug Mux,
FPRx Statistics Registers, FP Internal Debug State Registers, and Debug and Test of
Selected FP Internal Memories.

FP Debug Mux Through use of the configurable Debug MUX, certain FP events can be logged in event
counters located in the Executive Processor (XP). For instance, the number of PDUs that
are transmitted can be logged. For details about the specific FP events that can be
monitored, refer to “RxFP_Debug_Mux_Control Register (FP Rx Debug Function)” on
page 714, and “TxFP_Debug_Mux_Control Register (FP Tx Debug Function)” on
page 681. For information on how to use the XP event counters, refer to Chapter 3.

FPRx Statistics Registers The FPRx contains its own statistics registers for logging the number of received
segments, PDUs, errors, etc. These statistics are available through nineteen (19) registers.
These registers are automatically updated by hardware, and can be initialized to a value of
0 at any time by simply performing a global write to the particular statistics register. The
statistics can be read with global reads. Refer to “RxFP_Statistics Registers (FP Rx Statistics
Function)” on page 719.

FP Internal Debug State
Registers

Some internal FP state points are made visible through two (2) 32bit debug state
registers, one (1) in the FPTx and one (1) in the FPRx. These registers can be accessed with
global reads, and contain the current status of internal state machines and other key state
points. Refer to “TxDebug_Internal_State Register (FP Tx Debug Function)” on page 689
and “RxDebug_Internal_State Register (FP Rx Statistics Function)” on page 722.

Debug and Test of
Selected FP Internal

Memories

It is possible to write to and read from eight (8) of the internal memories in the FP for
debug and test purposes. They include: Rx PDU ID CAM, Rx Flow Table, Descriptor Table,
Tx Flow Table, Merge Space, DMEMs, TLU Response Space, FP Read and Write Control
Blocks (RdCBs and WrCBs). In addition, the WCSs and most CAMs are loaded by software
during initialization. Refer to “Initialization of Selected FP Internal Memories” on page 273.

While accessing the following memories, the FP should be disabled.
C5EC3EARCH-RM REV 04

FP Debug and Test 269
Rx PDU ID CAM Access
The Rx PDU ID CAM is updated and accessed by FPRx hardware to keep track of active PDU
IDs. For debug and test purposes, it can be read and written using the “RxPDU_ID_CAM
Register (FP Rx Debug Function)” on page 718. To write to the CAM, set up the 16-match
value and the corresponding 8bit data value, and assert the Write bit. To delete an entry,
write the match value to the register and assert the Delete bit.

To read an entry, set up the match value, set the Search bit, and then read out the 8bit
result by reading the register.

Rx Flow Table and Descriptor Table Access
The internal memory that the FPRx uses to save the current state of active PDUs, as well as,
the memory in which the Descriptor Build Engine (DBE) stores descriptors can be read and
written. These two (2) spaces are accessed via the “RxMemory_Data Register (FP Rx
Debug Function)” on page 717 and “RxMemory_Address Register (FP Rx Debug
Function)” on page 717, using the addresses listed below. To write a location in one of
these memories, set up the memory address register and then write the data to the
memory data register. The act of writing to the data register triggers the hardware to
perform the memory write. To read a location: simply set up the address register, and then
collect the result by reading the data register.

Bit [13] of the address register selects between the Descriptor Table (0) and RxFlow Table
(1).

• The Descriptor Table is organized as 1280 entries of 32bits. Bits [12:2] in the address
register select the entry. Address bits [1:0] are irrelevant because accesses are
performed in 32bit quantities.

• The RxFlow Table is organized as 160 entries of 72 bits. Bits [11:4] in the address
register select the entry. Bits [3:2] select between fields within the 72bit word. Refer to
Table 75 on page 270.

Refer to Figure 52 on page 270 Address Map for Descriptor Table and RxFlow Table.
C5EC3EARCH-RM REV 04

270 CHAPTER 4: FABRIC PROCESSOR
Figure 52 Address Map for Both Descriptor Table and RxFlow Table Memories for Debug Purposes

Tx Flow Table Access
The internal memory that the FPTx uses to save the current state of active PDUs can be
read and written. To read an entry, simply write the 7bit index (Tx queue number) to
TxFlowTbl register, and then read the resulting 60bit data from the high (upper 28 bits)
and low (lower 32 bits) data registers. To write an entry, set up the data registers first, then
write the 7bit address to TxFlowTbl register while asserting bit [16] WT field. Refer to the
descriptions of “TxFlowTbI Register (FP Tx Debug Function)” on page 684,
“TxFlowTbl_Data_Low Register (FP Tx Debug Function)” on page 684, and
“TxFlowTbl_Data_High Register (FP Tx Debug Function)” on page 685.

Table 75 RxFlow Table Memory, Field Selection

ADDRESS
[3:2] DATA[31:0]

00 btag[15:0], offset[15:2], 00

01 000, pool[4:0], buffer[7:0], length[15:0]

10 00000000, Drop, Queue Valid, 13bits of don’t care,
Queue[8:0]

11 Reserved

Rx Flow Table Memory
(2560Bytes)

0x0

Not Applicable

Descriptor Table Memory
(5KBytes)

0x1400

0x2000

0x2A00
Not Applicable

0x3000
C5EC3EARCH-RM REV 04

FP Debug and Test 271
Merge Space Access
Merge Space is an internal memory where the FPTx copies descriptors, to make their
content available to the Byte Processors for header construction. This space can be read
and written via the “TxMergeAddr Register (FP Tx Debug Function)” on page 687 and
“TxMergeData Register (FP Tx Debug Function)” on page 687.

DMEMs Access
The FPTx and FPRx each have a 12KBytes Data Memory (DMEM), for a total of 24KBytes,
that can be accessed with global reads and writes, using the global addresses from the
“TxByte Processor Memory Map” on page 196 and “RxByte Processor Memory Map” on
page 213.

• The FPTx uses 2KBytes for storing payload for its 8 active flows, 8KBytes for up to 128
descriptors, and the remainder for BTags to be deallocated.

• The FPRx uses 10KBytes for storing payload in 64B buffers (one for each of 159
concurrent flows), and 2KBytes for storing BTags.

TLU Response Space Access
The TLU response space in the FPRx (256Bytes) can be globally read for debug purposes
only, at the locations specified in the “RxByte Processor Memory Map” on page 213.

FP Read and Write Control Blocks (RdCBs and WrCBs) Access
The control blocks in the FP are controlled by hardware and are not software
programmable. This is quite different from how control blocks are used in the Channel
Processors (CPs). Refer to Table 76 on page 271.

Refer to “Using Multi-Use Control Blocks to Achieve Different Functions” on page 144 for
details regarding specific registers used to compose the control block. In addition, the
base global address for the FP control blocks are shown in Figure 44 on page 188 and
Figure 47 on page 206.

Table 76 Global Access for FP Control Blocks

PURPOSE CONTROL BLOCK
GLOBAL RD
ACCESS

GLOBAL WR
ACCESS

For internal
manufacturing testing
(Only)

FPTx Allowed Disallowed

FPRx Allowed Allowed
C5EC3EARCH-RM REV 04

272 CHAPTER 4: FABRIC PROCESSOR
FP Setup The FP must be initialized as described here. Using Global Bus operations, various
registers and internal memories must be written with appropriate values to allow the FP
to function. Initialization must be completed before the FP can be put online.

FP Initialization Steps The following steps should be performed in sequence to initialize the FP.

1 While keeping the FPRx and FPTx disabled, set up the configuration registers. Load all
FP control stores (microcode). Configure and enable all of the resources used by the FP
(BMU, QMU, TLU).

2 Enable the FPRx using the RxFP_Enable register bit [31] Enable field and the FPTx using
the TxFP_Enable register bit [31] Enable field.

3 After the FPRx has had time to acquire BTags for all of its pools, set the
RxFI_Configuration register bit [31] CFIEnable field.

4 Set the TxFI_Configuration register bit [31] CFIEnable field.

In CSIX-L1 mode, swap step 3 and step 4. This allows the FPTx to cleanly transmit idle
frames by the time the FPRx begins the CSIX-L1 initialization sequence.

Once initialized, the FP cannot be dynamically reconfigured and reinitialized. There must
be a full C-5e NP reset to reinitialize the FP.

Initialization Options for SDRAM
Another initialization issue has to do with SDRAM. When the FPRx receives payload and
writes it into SDRAM, the write is done with 16Byte granularity. This means the PDU
payload could end at address 0, 16, 32 or 48 within the last 64Byte block. If the PDU is later
transmitted by a CP’s SDP, the payload is read in 64Byte blocks, so there may be some
uninitialized data in the last block. This uninitialized data can cause an ECC error. There are
three (3) ways to handle this case:

• Initialize SDRAM at startup or,

• Disable ECC checking or,

• Configure the FPRx to always write in 64Byte blocks, using the RxFCE_Configuration2
register bit [10] Force64ByteWrCBTransfers field.
C5EC3EARCH-RM REV 04

FP Setup 273
Initialization of Selected
FP Internal Memories

There are six (6) internal memories that are loaded by software during initialization and
are accessible, they include: FPTx Flow Control CAM, TxByte Processor’s WCS, TxByte
Processor’s CAM, RxByte Processor’s WCS, RxByte Processor’s CAM, and RxDescriptor Build
Engine’s WCS.

FPTx Flow Control CAM
The FPTx Flow Control CAM, which the FPTx uses to map a per-queue flow control request
to a queue number, can be read and written, using the “TxFlowCAM Register (FP Tx Debug
Function)” on page 685. The default mapping initialized into the CAM by hardware is
simply a one-to-one mapping, such that the 7bit queue number equals the 16bit match
value, for the range of 0 to 127. The procedure to reconfigure the CAM is done using
software. Refer to “Fabric to C-5e NP Per-Queue Flow Control” on page 238.

TxByte Processor’s WCSs/CAMs Access
The two (2) TxByte Processors each contain a WCS and a CAM (not to be confused with the
FPTx Flow Control CAM). Each of these WCSs and CAMs must be loaded by Internal Scan
Chains accessible using the TxWCS_CAM register. As with the CPs SDPs these memories
must be loaded using an internal scan chain accessible in Global Address Space. Refer to
“TxWCS_CAM (Tx WCS CAM Function)” on page 683.

The two (2) FPTx Byte Processors are loaded in parallel. That is, the two TxByte Processors
run identical microcode.

RxByte Processor’s WCSs/CAMs and the RxDescriptor Build Engines’s WCS Access
The two (2) RxByte Processors each contain a WCS and a CAM. In addition, the
RxDescriptor Build Engine (DBE) contains a WCS. Of these three (3) WCSs and two (2)
CAMs, all five (5) may be read using the internal scan access, but only the two (2) CAMs
may be written using the internal scan access. The three (3) WCSs, may be written to using
a Special Byte Access. Both the scan access and special byte write access is provided using
the “RxWCS_CAM Register (FP RxWCS CAM Function)” on page 704. Refer to Table 77 on
page 274.
C5EC3EARCH-RM REV 04

274 CHAPTER 4: FABRIC PROCESSOR
The CAMs referred to are the RxByte Processor’s CAMs (not be confused with the FPRx
PDU ID CAM, which does not need to be loaded by software).

Warning: The mechanisms described below can only be used when the FPRx is held in
reset.

There are two (2) RxByte Processors in the FPRx. When writing or reading from the
associated stores, both are written and read at the same time. There is no mechanism to
separately load RxByte Processor0’s WCS/CAM and RxByte Processors1’s WCS/CAM. This
enforces RxByte Processor0 to run the same processor code/CAM data as RxByte
Processor1. The CAM must be written and read using the internal scan access as described
below. Refer to “Using the Internal Scan Access (Wr) for RxByte Processor’s CAMs” on
page 276, and “Using the Internal Scan Access (Rd) for RxByte Processor’s WCS/CAM” on
page 277.

The WCSs must be written via the byte write mechanism described below. Data may only
be read back from both the WCSs and CAMs via scan. This is intended for diagnostics use
only (i.e. memory validation), as such the procedure is rather complex and not optimized
for operational use. When the data is read back, via scan, the data from each of the two
RxByte Processors is streamed back to bits Scan_Out0 and Scan_Out1 respectively. Data
from the DBE is streamed to the DBE Scan Out bit.

The two (2) FPRx Byte Processors are loaded in parallel. That is, the two RxByte Processors
run identical microcode.

Table 77 RxByte Processor’s WCSs/CAMs and RxDBE’s WCS Access

STORE TYPE DESCRIPTION
SCAN ACCESS
RD WR

SPECIAL
BYTE
ACCESS
(WR ONLY)

RxByte Processor0 WCS 96-word Writable Control Store,
52bits each

Y N Y

RxByte Processor1 WCS 96-word Writable Control Store,
52bits each

Y N Y

RxDescriptor Build Engine WCS 64 -word Writable Control Store,
52bits each

Y N Y

RxByte Processors0 CAM 24-entry Content Addressable
Memory, 52bits each

Y Y N

RxByte Processors1 CAM 24-entry Content Addressable
Memory

Y Y N
C5EC3EARCH-RM REV 04

FP Setup 275
Using the Special Byte Access (Wr only) for the RxByte Processor’s WCSs and
RxDBE’s WCS
To byte write either the RxByte Processors or the RxDBE WCS’s, the FP must be placed in
reset. This ensures the byte 'Address' counter is pointing to Byte 0. There is no direct ability
to specify the addressing in RxByte Processors or RxDBE WCS’s. The WCSs are loaded left to
right, with the most significant byte first. The most significant byte of each word is only
half used, with the most significant 4bits of this byte as "don't care" values. Thus, each
WCS "word" is 7Bytes long as shown in Figure 53 on page 275.

Figure 53 Byte Load Sequence Mapping to DBE’s WCS and RxByte Processor’s WCS

Each of the three (3) WCS’s (of the RxByte Processors and RxDBE) has a byte pointer that
advances sequentially. The pointer starts with the most significant byte (nibble) of the
WCS, and increments through to the least significant byte of the WCS moving from WCS
location0 through to WCS location last. For RxDBE WCS the last location is 63, that is, left
(MSB) to right (LSB), bottom (Addr0) to top (Addr 63). For RxByte Processors WCS’s the last
location is 95, that is, left (MSB) to right (LSB), bottom (Addr0) to top (Addr 95).

Addr0

51

WCS Entry (52bits)

WCS Entry (52bits)

WCS Entry (52bits)

Byte0

Addr1

Addr2

Note: DBE's WCS is 64Words (Addr0 to Addr63) and RxByte Processor's WCS are 96Words (Addr0 to Addr95).

0 bits

Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Addr63 or Addr95

Addr62 or Addr94
Addr61 or Addr93

.

.

.

WCS Entry (52bits)
WCS Entry (52bits)

WCS Entry (52bits)

4bits of Byte6
are don't care.
C5EC3EARCH-RM REV 04

276 CHAPTER 4: FABRIC PROCESSOR
The byte write hardware along with the scan chain organization is designed and
optimized for byte write loading of the WCS (vs. scan loading). Specifically, the CAM is first
in the chain, followed by the WCS. This allows the CAM to be loaded first via scan with out
the need to shift bits down the entire chain for the WCS. When the CAM is loaded in this
fashion, the WCS will have undetermined data written to it. In this case, it is expected that
the WCS are loaded after the CAMs have been initialized.

Using the Internal Scan Access (Wr) for RxByte Processor’s CAMs
The CAM/WCS Scan Chain is 94bits long comprised of the following fields left to right
where the right most bit of the right most field is shifted in first: CAM Addr, CAM Group,
CAM Pattern, CAM Tag, WCS Data. The CAMs are at the near end of the chain (i.e. all WCS
fields are at the end of the chain). Refer to Table 78 on page 277.

The CAMs, if used, should be written prior to the WCS Byte loading. It is only required to
scan the 42bits of CAM fields and then perform an update operation using FPRx
WCS_CAM register bit [2] WCS/CAMScanUpdate field. Scanning to the CAM may be done
on a Random Access basis since the CAM Addr field selects the specific CAM location
during the update operation. Both RxByte Processor0 and RxByte Processor1 CAMs are
updated simultaneously. Refer to Figure 54 on page 276.

Figure 54 RxByte Processors Scan Chain

Scan In
51

Addr Scan OutWCS
060:5293:88 87:79 78:61

Group Pattern Tag

Match '0'
Match '1'

08
C5EC3EARCH-RM REV 04

FP Setup 277
 WARNING: Writing the CAMs can invalidate WCS entries. As such, the CAMs, if used,
should be written first followed by WCS Byte write operations to load the WCSs.

Using the Internal Scan Access (Rd) for RxByte Processor’s WCS/CAM
The CAM/WCS Scan Access (Rd) Chain is the same 94bit chain used in the Scan Access (Wr)
operation described above and is not optimized for operational reading (i.e. it is intended
for diagnostic manufacturing pass/fail screening). The address of the CAM during reads is
selected by the CAM Group and Match values, that is, the CAM addr field is not used. The
address of the WCS is selected by the byte write counter, requiring a destructive write to
the WCS prior to the SCAN CAPTURE selection via the FP WCSs register. To further
complicate matters, and to avoid writing the word or WCS intended to be read, bit 2 of the
byte address selection is inverted during the read so that you first write to location
0xABCD XOR 0x0004, to read 0xABCD. After you have captured the scan and scanned out
the results, you select the next WCS address by performing seven (7) additional byte
writes, thereby incrementing the WCS Byte address to the next word, and again
performing a SCAN CAPTURE. In reading the WCS in this destructive fashion, you must be
careful to either byte write original data back to 0xABCD XOR 0x0004 or to rewrite the
entire WCS between reads.

Table 78 RxByte Processors Scan Chain Fields

FIELD
NAME

BIT
POSITION DESCRIPTION

Addr 93:88 CAM Address — Six bits. Used during Writes only to select a CAM location
for initialization. The FPRx CAM is 24 entries long (i.e. Addr 0 to 23 valid).

Group 87:79 CAM Group — A nine bit index created by the RxByte Program Counter
used during reads to qualify the pattern match.

Pattern 78:61 CAM Match Pattern — A nine – two bit pattern used to qualify a match
on ‘1’, ‘0’, ‘X’. The Pattern may be driven from either RxByte Processor IREG3
from the Payload bus. Each two sequential bits of this field select: 00 –
Match ‘X’, 01 – Match ‘1’, 10 – Match ‘0’, 11 – Invalid entry (no match
possible).
Note: A ‘X’ is a don’t care.

Tag 60:52 CAM Tag — A nine bit value associated with a match. When a Match on a
pattern is made the Tag Value is available for use on the RxByte Processor
B-Bus.

WCS 51:0 Writable Control Store Data —
C5EC3EARCH-RM REV 04

278 CHAPTER 4: FABRIC PROCESSOR
In all cases where the WCS/CAM has been written, since the RxByte Processors0 and
RxByte Processor1 CAMs and WCSs are written at the same time, Scan Out0 should always
equal Scan Out1. Refer to C-Ware Microcode Programming Guide (part number
CSTMCPG-UG/D) for details regarding Scan Out.

Using the Internal Scan Access (Rd) for DBE’s WCS
The DBE Scan Chain is a separate 52bit Scan Chain but operates, using the appropriate
FPRx WCS_CAM register bits, precisely as described in “Using the Internal Scan Access (Rd)
for RxByte Processor’s WCS/CAM” on page 277.
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 5
BUFFER MANAGEMENT UNIT
Chapter Overview This chapter covers the following topics:

• Buffer Management Unit (BMU) Overview

• BMU Physical Memory Organization

• BMU Buffer Memory Organization

• Types of Transactions

• Buffer Memory Transactions

• BTag Management Transactions

• Multi-Use Counter (MUC) Management Transactions

• BMU Configuration Space

• BMU Setup
C5EC3EARCH-RM REV 04

280 CHAPTER 5: BUFFER MANAGEMENT UNIT
Buffer Management Unit
(BMU) Overview

The Buffer Management Unit (BMU) provides the interface to external SDRAM for the C-5e
NP. The BMU partitions the SDRAM into buffers accessible to the Channel Processors (CPs),
the Executive Processor (XP), and the Fabric Processor (FP) for payload storage. The BMU
also provides services for managing the buffer handles called Buffer Tags (BTags) and
services for maintaining BTag reference count tables called the Multi-Use Counters (MUC),
which are used for forwarding payload to multiple targets.

BMU Major Components The major components of the BMU are listed inTable 79 on page 280. In addition,
Figure 55 on page 281 shows the BMU Block Diagram.

Table 79 Major Components of the BMU and Their Functions

ITEM FUNCTION

Memory Controller Processes all requests for SDRAM transactions, primarily buffer memory
requests for Payload storage. Buffer access is made from CP or XP
application software, or the FP hardware using a Payload transaction
Control Block (WrCB0, RdCB0,RxCB0,TxCB0).

BTag Manager Handles BTag allocation and deallocation. BTag operations are made from
CP or XP application software, or the FP hardware using a Payload
transaction Control Block (WrCB0, RdCB0,RxCB0,TxCB0).

Multi-Use Counter
Manager

Handles Multi-Use Counter (MUC) allocation, decrement and automatic
BTag deallocation. MUC operations are made from CP or XP application
software using a Payload transaction Control Block (WrCB0, RdCB0,
RxCB0, TxCB0).

Configuration
Registers

Used for setting up physical and buffer memory configuration, and for
debug and test. Configuration operations are made from CP or XP
application software using loads/stores from/to Global memory space.
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Overview 281
Figure 55 BMU Block Diagram

BMU

SDRAM

Global
Bus

Interface

Payload
Bus

Interface

Multi-Use
Counters
 Manager

Configuration
Registers

Memory
Controller

BTag
Manager
C5EC3EARCH-RM REV 04

282 CHAPTER 5: BUFFER MANAGEMENT UNIT
BMU Physical Memory
Organization

The SDRAM memory array is organized as 128bit words operating in accordance with
Joint Electronic Device Engineering Council (JEDEC) specifications at 100MHz and
133MHz (depending on the SDRAM used). This provides a maximum bandwidth of
12.8Gbps or 16Gbps respectively. The BMU supports four-beat bursts of 16 Bytes each,
optimized for 64-Mbyte parts, and for similar parts with four (4) internal banks. The C-5e
NP supports one (1) physical bank of SDRAM, but a number of parts and arrays are
supported. Registered DIMMs can be supported by adjusting timing parameters.

In addition to the 128bit words of user data, the BMU can be configured to handle an
additional eleven (11) bits of data, two (2) Out-of-Band (OOB) bits and nine (9) ECC (Error
Correction Code) bits when ECC is enabled.

When the Out-of-Band (OOB) (2bits) and ECC (9bits) are used the total bits stored is
increased from 128bit words to 139bit words. Therefore, the number of parts increase to
accommodate the additional 11bits. Refer to Table 80 on page 282.

All transactions with the SDRAMs are 4 beat bursts=64Bytes of data. Writes of quantities
< 16Bytes are not supported due to the addition of SECDED (Single Error Correcting,
Double Error Detecting) ECC (Error Correction Code) support. Such writes would require
read-modify-write transactions using up twice the write bandwidth.

Table 80 Supported SDRAM Configurations

PARTS*

* The C-5e NP only supports 12bit row addressing SDRAM components.
The row address must be exactly 12bits. The column addressing can be
any number of bits, from 4 up to 12.

NUMBER OF
PARTS

CAPACITY OF
SDRAM CARD

ADDRESS
BITS

64Mbx8 18 128MB 27

64Mbx16 9 64MB 26

64Mbx32 5 32MB 25

128Mbx8 18 256MB 28

128Mbx16 9 128MB 27

128Mbx32 5 64MB 26

256Mbx16 9 256MB 28

256Mbx32 5 128MB 27
C5EC3EARCH-RM REV 04

BMU Physical Memory Organization 283
Out-of-Band Bits The Out-of-Band (OOB) bits hold control information that travels with payload data. The
bits are organized as 8bits per 64Bytes of data and stored as 2bits for each 16Bytes.
Therefore, to move all Out-of-Band (OOB) bits [7:0] with 64Bytes of user data the sequence
is: 2bits are stored with the first 16Bytes of data, then the next 2bits are stored with the
second 16Bytes of data, then the next 2bits are stored with the third 16Bytes of data, then
the next 2bits are stored with the fourth and final 16Bytes of user data. Refer toTable 22 on
page 127.

SECDED ECC Support Data stored in SDRAM can be protected by a Single Error Correcting, Double Error Detecting
(SECDED) Error Correction Code (ECC) if ECC is enabled and extra memory is included in the
system. Nine (9) ECC bits can correct all single bit errors and detect all double bit errors
across 130bits (128bits of data and 2bits for OOB) of data read/written per SDRAM clock
cycle. For each 130bit write, nine (9) ECC check bits are generated and stored along with
the user data (typically 128bits). When the data is read back from SDRAM, the nine (9)
check bits are re-generated and checked against the check bits that were stored. If they
are the same, then there is no error. If there is an odd number of bits that differ, then there
is a single bit error. If there is an even number of bits that differ then there is a double bit
error. This is implemented using the ECC Enable single bit register and the Single ECC Error
register, that counts the number of (ECC) errors that have occurred. Refer to Table 91 on
page 307.
C5EC3EARCH-RM REV 04

284 CHAPTER 5: BUFFER MANAGEMENT UNIT
BMU Buffer Memory
Organization

The Buffer Memory is organized as described in the following sections.

Buffer Pools The BMU divides SDRAM into sections called buffer pools. Pools are intended to provide
protection among the many users of buffer memory, and to allow the applications (via
chip configuration) to carve memory into different size buffers. Up to 30 buffer pools can
be configured. Each Pool Area= (Buffer Size * Number of Buffers). The Pool0 Base to Pool29
Base registers are used to define the base address in SDRAM for a pool (Buffer Memory).
Refer to Figure 56 on page 286.

Configuration software must ensure that pools do not overlap and that there is enough
physical memory to hold all the pools.

Buffers Each buffer pool contains up to 65,528 fixed size buffers. The number of buffers and size of
the buffers can be different for each buffer pool. The number of buffers in a pool must be
a multiple of eight (8) and the size of each buffer must be a power of two (2) between
64kBytes and 64Bytes, excluding 128Byte buffers. The Buffer Size is user selectable using
the Pool0 BTag Shift to Pool29 BTag Shift registers. Refer to Table 81 on page 285 and
Figure 56 on page 286.

Pools are generally configured during system initialization. Unpredictable behavior
results when a pool is accessed prior to initialization. Refer to “BMU Setup” on page 310.

Buffer Tags (BTags) Each buffer in a pool has a handle defined that identifies its location in the pool. These
handles are called Buffer Tags (BTags). There is a one to one relationship between Buffers
and BTags (1Buffer to 1BTag). Each BTag is 2Bytes. The BTags themselves are stored in
SDRAM and inside the BMU. To allocate (assign) a buffer to a CP or XP, software must issue
a BTag read (RdCB) request. Buffers are allocated in multiples of eight (8). The Num BTag0
to Num BTag29 registers are used to set the number of BTags in a Pool. The BTag FIFO
Base0 to BTag Base29 registers are used to define the base address in SDRAM for the Pool
BTag FIFO. Each Pool BTag FIFO Area= (2Bytes * Number of Buffers).

Storage Space (SDRAM Partitions)
The SDRAM space is partitioned using the variables shown in Table 81 on page 285. In
addition, refer to Figure 56 on page 286.
C5EC3EARCH-RM REV 04

BMU Buffer Memory Organization 285
Buffer Access All transactions with the SDRAM are 64Bytes in length. Access to buffers<64Bytes in
length still requires 64Byte transactions. Operations of <16Bytes of data are not supported
in the BMU. All buffer accesses must be aligned to 16Byte boundaries. The minimum size
of an internal data transfer is 64Bytes, taking four (4) 16Byte slots on the Payload Bus.
Buffer transfers of <64Bytes result in empty slots on the Payload Bus. Buffer writes
of<64Bytes use data masking to suppress the undesired writes to SDRAM.

The BMU is optimized for 64Byte aligned access to buffers. Unaligned transfers are
possible, but require special handling. Refer to “Unaligned Buffers” on page 290.

Table 81 Legal Ranges for SDRAM Partition Variables

ITEM RANGE

Number of Pools 0 to 29

Number of Buffers per Pool 0 to 65,528 (must be in multiples of 8)

Individual Buffer Size

Number of BTags per Pool 0 to 65,528 (must be in multiples of 8)

SIZE ENCODED VALUE

64kB 0

32kB 1

16kB 2

8kb 3

4kB 4

2kB 5

1kB 6

512B 7

256B 8

128B (Not Supported)

64B 10
C5EC3EARCH-RM REV 04

286 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 56 SDRAM Storage Space for User Data Example

Pool0

Pool0
Base Address

Pool0 BTag FIFO
Base Address

Buffer0 Buffer1 Buffer2

Buffern
Pool0 Area=
(Buffer Size * # of Buffers)

Pool0 BTag FIFO Area=
(2Bytes * # of Buffers)

BTag0 (2Bytes) BTag1 (2Bytes) BTag2 (2Bytes)

BTagn (2Bytes)

Pool8
Base Address Buffer0 Buffer1 Buffer2

Buffern

Pool0

Pool8

Pool8 Area=
(Buffer Size * # of Buffers)

Pool29
Base Address Pool29Area=

(Buffer Size * # of Buffers)

Buffer0 Buffer1 Buffer2

Buffern

Pool29

Pool8 BTag FIFO
Base Address

Pool8

BTag0 (2Bytes) BTag1 (2Bytes) BTag2 (2Bytes)

BTagn (2Bytes)

Pool8 BTag FIFO Area=
(2Bytes * # of Buffers)

Pool29 BTag FIFO
Base Address Pool29 BTag FIFO Area=

(2Bytes * # of Buffers)
BTag0 (2Bytes) BTag1 (2Bytes) BTag2 (2Bytes)

BTagn (2Bytes)
Pool29
C5EC3EARCH-RM REV 04

Types of Transactions 287
Types of Transactions The BMU supports seven (7) functions divided into three (3) categories. The different
functions are initiated by CPs, XP or the FP using the Multi-Use Control Blocks by just
changing the fields. Multi-Use Control Blocks use the following registers:
WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr, WrCB0_SDP_Addr; RxCB0_Sys_Addr,
RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr; RdCB0_Sys_Addr, RdCB0_Ctl,
RdCB0_DMA_Addr, RdCB0_SDP_Addr; and TxCB0_Sys_Addr, TxCB0_Ctl,
TxCB0_DMA_Addr, TxCB0_SDP_Addr. Refer to Table 82 on page 287, Table 83 on
page 288, and Table 84 on page 289.

Table 82 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx)

MODE CATEGORY FUNCTION FIELDS USED DETAILS

• CP to/from
BMU

• XP to/from
BMU

• FP to/from
BMU

Memory
Transactions

Buffer Memory
Transfer
Operation

PoolID, BTag,
Offset

See “Using Wr/Rd Control
Blocks for Payload
Transactions” on page 290
and “Using Rx/Tx Control
Blocks for Payload
Transactions” on
page 290.

BTag
Management
Transactions

Initializing BTags PoolID, BTag,
Command,
Pool

See“BTag Initialization
Operation” on page 292.

Allocating BTags See “BTag Allocation
Operation” on page 295.

Deallocating
BTags

See “BTag Deallocation
Operation” on page 297.

Multi-Use
Counter
Management
Transaction

Allocating
Multi-Use
Counters

See “MUC Allocation
Operation” on page 300.

Decrementing
Multi-Use
Counters

See “MUC Decrement
Operation” on page 303.

Reading
Multi-Use
Counters

See “MUC Read
Operation” on page 305.
C5EC3EARCH-RM REV 04

288 CHAPTER 5: BUFFER MANAGEMENT UNIT
Table 83 WrCB0_ Variables per Field for BMU

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_DMA_
Addr

PoolID 20:16 PoolID —

WrCB0_Sys_
Addr

BTag 31:16 Buffer Tag —

Offset 15:4 Offset —

CMD 15:9 Command —

Pool 8:4 Buffer Pool —

OPERATION TYPE VALUE
Buffer Memory Transfer 0 to 29

BTag 30

Multi-Use Counter 30

OPERATION TYPE VALUE
Buffer Memory
Transfer

Enter the BTag associated with the Buffer. Legal Range= 0 to 65528.

BTag 0

Multi-Use Counter Enter the BTag associated with the counter. Legal Range= 0 to 65528.

OPERATION TYPE VALUE
Buffer Memory Transfer Enter the Offset within a Buffer.

OPERATION TYPE VALUE
BTag Initialization 0

BTag Deallocate 1

Multi-Use Counter Allocation 2

Multi-Use Counter Decrement 3

OPERATION TYPE FUNCTION VALUE
BTag Initialization Enter the Pool to write to. 0 to 29

BTag Deallocation Enter the Pool of the Buffer being
deallocated.

Multi-Use Counter Allocation Enter the Pool associated with the counter.

Multi-Use Counter Decrement Enter the Pool associated with the counter.
C5EC3EARCH-RM REV 04

Types of Transactions 289
Table 84 RdCB0_ Variables per Field for BMU

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

RdCB0_DMA_
Addr

PoolID 20:16 PoolID —

RdCB0_Sys_
Addr

BTag 31:16 Buffer Tag —

Offset 15:4 Offset —

CMD 15:9 Command —

Pool 8:4 Buffer Pool —

OPERATION TYPE VALUE
Buffer Memory Transfer 0 to 29

BTag 30

Multi-Use Counter 30

OPERATION TYPE VALUE
Buffer Memory
Transfer

Enter the BTag associated with the Buffer. Legal Range= 0 to 65528.

BTag 0

Multi-Use Counter Enter the BTag associated with the counter. Legal Range= 0 to 65528.

OPERATION TYPE VALUE
Buffer Memory Transfer Enter the Offset within a Buffer.

OPERATION TYPE VALUE
BTag Allocation 0

Multi-Use Counter Read 1

OPERATION TYPE FUNCTION VALUE
BTag Allocation Enter the Pool from which to allocate the Buffers. 0 to 29

Multi-Use Counter Read Enter the Pool associated with the counter.
C5EC3EARCH-RM REV 04

290 CHAPTER 5: BUFFER MANAGEMENT UNIT
Buffer Memory
Transactions

Buffer Memory Transactions are Payload Data Block Moves using Control Blocks (WrCB0,
RdCB0, RxCB0 and TxCB0). Each is described here.

Using Wr/Rd Control
Blocks for Payload

Transactions

Writes to SDRAM and reads from SDRAM use: WrCB0_Sys_Addr, WrCB0_Ctl,
WrCB0_DMA_Addr registers and RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr
registers. Refer to “Write Control Blocks (WrCB0_ , WrCB1_)” on page 116 and “Read
Control Blocks (RdCB0_ , RdCB1_)” on page 120.

These registers (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr and RdCB0_Sys_Addr,
RdCB0_Ctl, RdCB0_DMA_Addr) are physically located in the respective CPs, XP, and FP and
not in the BMU Configuration Space.

Using Rx/Tx Control
Blocks for Payload

Transactions

Receiving payload to SDRAM and transmitting payload from SDRAM use:
RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr registers and
TxCB0_Sys_Addr,TxCB0_Ctl, TxCB0_DMA_Addr, TxCB0_SDP_Addr registers. Refer to “SDP
RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_)” on page 123 and “SDP TxByte
Processor Transmit Control Block (TxCB0_, TxCB1_)” on page 128.

These registers (RxCB0_Sys_Addr,RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr and
TxCB0_Sys_Addr, TxCB0_Ctl, TxCB0_DMA_Addr, TxCB0_SDP_Addr) are physically
located in the respective CPs, and XP and not in the BMU Configuration Space.

Read/Write Ordering
Since SDRAM is four-way bank interleaved, the BMU uses a round-robin algorithm to
choose requests for each bank. This can result in a read response returning in an order
other than the order they were issued or acknowledged on the buses.

Unaligned Buffers
The memory controller reads and writes to the SDRAM in naturally aligned 64Byte
quantities. Any portion of a naturally aligned 64Bytes block can be read or written;
however, special attention must be given to algorithms that require the crossing of a
64Byte boundary. Any transaction that attempts to read or write a data length from an
address that causes the least significant two (2) bits of offset to increment from 0x3 to 0x0
will wrap. That is, the other bits of the address are not affected. For example, a write of
length 48Bytes to an address with offset bit [1:0]== 0x2 will write memory as shown in
Figure 57 on page 291.
C5EC3EARCH-RM REV 04

Buffer Memory Transactions 291
Figure 57 Buffer Wrapping

If the intent is to write across the 64Byte boundary then two (2) writes are required. For
the same alignment as above, the first write is length 32Bytes at offset bits [1:0] == 0x2
and the second write is length 16Byte at the address of the next contiguous block. Refer to
Figure 58 on page 291.

Figure 58 Unaligned Buffer Access

Contents Beat 2 Beat 0 Beat 3

Address[1:0] 0 1 2 3 0 1 2 3

First Write Second Write

Contents Beat 0 Beat 1 Beat 0

Address[1:0] 0 1 2 3 0 1 2 3
C5EC3EARCH-RM REV 04

292 CHAPTER 5: BUFFER MANAGEMENT UNIT
BTag Management
Transactions

The BMU maintains a BTag FIFO for BTag allocation and deallocation.

Space for the entire BTag FIFO for each pool is located in the SDRAM, the location defined
in the BTag FIFO Base0 to BTag FIFO Base29 registers. BTags are allocated from the FIFO and
deallocated to the FIFO. The BMU reads BTags in groups of eight (8) and collects eight (8)
BTags before writing them back to the FIFO. The BMU maintains an on-chip,
hardware-managed cache that can temporarily store BTags from the various pools. The
BTag cache typically provides quicker access for allocation and deallocation of BTags and
reduces the use of SDRAM bandwidth for BTag management. When the BTag FIFO Cache
is empty, operations bypass directly to SDRAM FIFO space. The BTag FIFO Cache space and
BTag FIFO SDRAM space are extensions of each other rather than a subset/superset
relationship.

BTag Transaction
Functions (Operation and

Examples)

BTag transactions consist of three (3) different functions: Initialization, Allocation, and
Deallocation. BTag transactions are invoked using Control Blocks (WrCB0, and RdCB0).
Each is described here along with examples.

BTag Initialization Operation
Warning: All BTags must be initialized by software before allocating them to access
buffer memory.

BTag Initialization uses a control block (WrCB0) to write starting values from the DMEM of
either the requesting CP or XP to initialize BTag FIFO Space.

The base address of the BTag FIFO SDRAM Space is specified in the BTag FIFO Base address
register for each pool (BTag FIFO Base0 to BTag FIFO Base29). The size of the Pooln BTag
FIFO Area= (2Bytes * Number of Buffers). A BTag must be written for each buffer in the
pool. The number of BTags per pool must be a multiple of eight (8) because all BTags are
written, stored, and read in groups of eight (8).

BTags are 16bit values written to the BTag FIFO Space in groups of 8, 16, 24, or 32. The
write control blocks (WrCB) are used for this purpose. The software must generate a buffer
in local DMEM containing the 16bit BTags. The BTag numbers themselves can be in any
order but they must use all integral values for a given pool from 0 to the number of BTags
minus 1. Internally, BMU hardware takes care of allocating the BTags between BTag FIFO
Cache Space and BTag FIFO SDRAM Space.
C5EC3EARCH-RM REV 04

BTag Management Transactions 293
BTag Initialization Example
Buffer Initialization uses a control block (WrCB0) to write the BTags to the BMU from the
DMEM of either the requesting CP or XP.

The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 85 on page 293.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. All 32BTags, (16bit BTags, 128bits) are located inside the
64Byte DMEM as shown in Figure 59 on page 294.

Table 85 WrCB0_ Settings for BTag Initialization

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal range =16 to 64Bytes.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — Enter 0 for BTag Operation.

CMD 15:9 Command — Enter 0 for BTag Initialization.

Pool 8:4 Buffer Pool — Pool to write to.
Legal range= 0 to 29

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for BTag Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

LENGTH (BYTES) NUMBER OF BTAGS
16 8

32 16

48 24

64 32
C5EC3EARCH-RM REV 04

294 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 59 BTag Initialization Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

BTag8(16bits) BTag BTag BTag BTag BTag BTag BTag15
BTag0(16bits) BTag BTag BTag BTag BTag BTag BTag7

BTag16(16bits) BTag BTag BTag BTag BTag BTag BTag23
BTag24(16bits) BTag BTag BTag BTag BTag BTag BTag31

=128bits

=64Bytes
C5EC3EARCH-RM REV 04

BTag Management Transactions 295
BTag Allocation Operation
Buffer Allocation uses a control block (RdCB0) to read BTags from the BMU into the DMEM
of the requesting CP, XP, or FP. Allocation assigns a particular BTag (from the BMU) to be
used by a particular processor.

BTag Allocation Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 86 on page 295.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. All 32BTags, (16bit BTags, 128bits) are located inside the
64Byte DMEM as shown in Figure 60 on page 296.

Table 86 RdCB0_ Settings for BTag Allocation

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.
Legal range=16 to 64Bytes.

RdCB0_Sys_Addr BTag 31:16 Buffer Tag — Enter 0 for BTag Operation.

CMD 15:9 Command — Enter 0 to BTag Allocation.

Pool 8:4 Buffer Pool — Pool from which to allocate the
Buffers. Legal range= 0 to 29

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for BTag Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

LENGTH (BYTES) NUMBER OF BTAGS
16 8

32 16

48 24

64 32
C5EC3EARCH-RM REV 04

296 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 60 BTag Allocation Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

BTag8(16bits) BTag BTag BTag BTag BTag BTag BTag15
BTag0(16bits) BTag BTag BTag BTag BTag BTag BTag7

BTag16(16bits) BTag BTag BTag BTag BTag BTag BTag23
BTag24(16bits) BTag BTag BTag BTag BTag BTag BTag31

=128bits

=64Bytes
C5EC3EARCH-RM REV 04

BTag Management Transactions 297
BTag Deallocation Operation
Buffer Deallocation uses a control block (WrCB0) to write BTags back to the BMU from
DMEM by either the requesting CP, XP, or FP. Deallocation returns a particular BTag (from a
particular CP or XP) back to a pool in the BMU.

BTag Deallocation Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl and WrCB0_DMA_Addr are set as shown in
Table 87 on page 297.

The WrCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is 16Byte aligned. The first two Bytes inside the first 32bit word of the 64Byte DMEM
holds the BTag (the first two Bytes) as shown in Figure 61 on page 298.

Table 87 WrCB0_ Settings for BTag Deallocation

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to access 1 line of
DMEM.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — Enter 0 for BTag Operation

CMD 15:9 Command — Enter 1 for BTag Deallocation.

Pool 8:4 Buffer Pool — Pool of Buffers being
Deallocated. Legal range= 0 to 29

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for BTag Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

LENGTH (BYTES) NUMBER OF BTAGS
16 1
C5EC3EARCH-RM REV 04

298 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 61 BTag Deallocation Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Rest of 64Byte DMEM

BTag0(16bits)
C5EC3EARCH-RM REV 04

Multi-Use Counter (MUC) Management Transactions 299
Multi-Use Counter (MUC)
Management Transactions

Multi-Use Counters (MUC) are used to track buffer accesses when a buffer has multiple
targets (CPs, XP, or FP), such as, a multicast packet. Each time an application running on a
particular CP accesses the Multi-Use buffer, its Multi-Use Counter is decremented. When a
counter reaches zero, all users have accessed the buffer and the BTag is deallocated.

Typically, the software prefetches a number of BTags without knowing whether or not
they are going to be used as single BTags or Multi-Use BTags. That fact only becomes
apparent later during processing, after the buffer has been written to memory. At that
point the software tries to allocate a counter for the Multi-Use BTag from a particular Pool.

There are 1024 8bit counters available. One counter is associated with one (1) BTag at any
one time using a Content Addressable Memory (CAM) array. BTag & PoolID are stored in the
CAM to form the association. An initial Reference Count is stored in the counter. When the
software must associate a counter with a buffer, it sends a command to the BMU to
allocate a MUC. Refer to Figure 62 on page 300.
C5EC3EARCH-RM REV 04

300 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 62 Multi-Use Counter Table

MUC Transaction
Functions (Operation and

Examples)

MUC transactions consist of three (3) different functions: Allocation, Decrement, and
Read. MUC transactions are invoked using Control Blocks (WrCB0, and RdCB0). Each is
described here along with examples.

MUC Allocation Operation
MUC Allocation uses a control block (WrCB0) to write an initial reference count from
DMEM of the requesting CP or XP. MUC Allocation assigns the (BTag & Pool) to a MUC
(from the BMU) with the initial reference count.

MUC Allocation Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 88 on page 301.

CAM RAM

BTag & PoolID Counter1 (8Bits)

BTag & PoolID

BTag & PoolID Counter0 (8Bits)

Counter3 (8Bits)

BTag & PoolID Counter1023 (8Bits)
BTag & PoolID Counter1022 (8Bits)

Search Key=BTag3 & PoolID3

Counter Contents=
Reference Count

Match=

Returned Reference Count
for BTag3 & PoolID3

BTag3 & PoolID3 Counter2 (8Bits)
C5EC3EARCH-RM REV 04

Multi-Use Counter (MUC) Management Transactions 301
The WrCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is 16Byte aligned. The first Byte inside the first 32bit word of the 64Byte DMEM holds
the reference count as shown in Figure 63 on page 302.

Table 88 WrCB0_ Settings for Multi-Use Counter Allocation

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to access 1 line of
DMEM.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — The BTag associated with the
counter. Legal range= 0 to 65528.

CMD 15:9 Command — Enter 2 for Multi-use Counter
Allocation.

Pool 8:4 Buffer Pool — The Pool associated with the
counter. Legal range= 0 to 29.

WrCB0_DMA_Addr PoolID 20:16 Pool ID — Enter 30 for Multi-Use Counter
Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

LENGTH (BYTES) NUMBER OF BTAGS
16 1
C5EC3EARCH-RM REV 04

302 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 63 Multi-Use Counter Allocation Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Rest of 64Byte DMEM

Reference Count(8bits)
C5EC3EARCH-RM REV 04

Multi-Use Counter (MUC) Management Transactions 303
MUC Decrement Operation
MUC Decrement uses a control block (WrCB0) to identify a MUC in the BMU and
decrement the associated reference count. Only one (1) counter can be decremented per
operation. When the MUC decrements to zero, the BMU hardware automatically
deallocates the counter and the associated BTag.

MUC Decrement Example
The write control block (WrCB) is used to send the BMU MUC decrement command. The
bits for WrCB0_Sys_Addr, WRCB0_Ctl, and WrCB0_DMA_Addr are set as shown in Table 89
on page 303.

The WrCB0_DMA_Addr bits [13:4] LineAddr field is not used as shown in Figure 64 on
page 304.

Table 89 WrCB0_ Settings for Multi-Use Counter Decrement

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to generate a single
line operation.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — The BTag associated with the
counter. Legal Range= 0 to 65528.

CMD 15:9 Command — Enter 3 for Multi-Use Counter
Decrement.

Pool 8:4 Buffer Pool — The Pool associated with the
counter. Legal Range= 0 to 29.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for Multi-Use Counter
Operation.

LineAddr 13:4 DMEM Line Address — Not used.

LENGTH (BYTES) NUMBER OF BTAGS
16 1
C5EC3EARCH-RM REV 04

304 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 64 Multi-Use Counter Decrement Implementation

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)
C5EC3EARCH-RM REV 04

Multi-Use Counter (MUC) Management Transactions 305
MUC Read Operation
A control block (RdCB0) is used to read specific MUC contents from the BMU into DMEM
by either the requesting CP or XP. This function is intended for debug and test purposes. A
MUC read request can read one (1) counter per operation.

MUC Read Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 90 on page 305.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is 16Byte aligned. The first Byte inside the first 32bit word of the 64Byte DMEM holds
the reference count as shown in Figure 65 on page 306.

Table 90 RdCB0_ Settings for Multi-Use Counter Read

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to access 1 line
of DMEM.

RdCB0_Sys_Addr BTag 31:16 Buffer Tag — The BTag associated with the
counter. Legal Range= 0 to 65528.

CMD 15:9 Command — Enter 1 for Multi-Use Counter
Read.

Pool 8:4 Buffer Pool — The Pool associated with the
counter. Legal Range= 0 to 29.

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for Multi-Use Counter
Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

LENGTH (BYTES) NUMBER OF BTAGS
16 1
C5EC3EARCH-RM REV 04

306 CHAPTER 5: BUFFER MANAGEMENT UNIT
Figure 65 Multi-Use Counter Read Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Rest of 64Byte DMEM

Reference Count(8bits)
C5EC3EARCH-RM REV 04

BMU Configuration Space 307
BMU Configuration Space The BMU has memory-mapped Configuration Space that contains a number of registers.
The registers are used for three (3) purposes: physical memory configuration, buffer
memory configuration, and test and debug. Refer to Table 91 on page 307 for a list of BMU
registers by function.

Table 91 BMU Registers

BMU
REGISTER
TYPES REGISTER FUNCTION SPECIFIC REGISTER DETAILS

Physical
Memory
Configuration

Physical memory size in Bytes. This configuration
register is written with a value representing the
amount of physical memory that software had
determined was present in the system.

See “Memory Size Register
(Miscellaneous Function)”
on page 663.

SDRAM controller configuration register. A write to
this register tells the SDRAM controller the timing
properties of the SDRAM and also initiates the
SDRAM configuration process.

See “SDRAM Config
Register (Miscellaneous
Function)” on page 664.

A single bit in a register that enables the Single Error
Correction/Double Error Detecting (SECDED) error
code if set to 1. ECC is disabled if the register bit is
set to 0.

See “ECC Enable and Test
Enable Register
(Miscellaneous Function)”
on page 665.

Buffer
Memory
Configuration

Starting physical address in SDRAM for each Pool. See “Pool0 Base to Pool29
Base Registers (Buffer Pool
Base Address Function)” on
page 660.

BTag shift amount is an encoded version of buffer
size for each Pool telling hardware how much to
shift the BTag during address calculations.

See “Pool0 BTag Shift to
Pool29 BTag Shift Registers
(Buffer Size for a Pool
Function)” on page 661.

Starting physical address in SDRAM for the BTag
FIFO for each Pool.

See “BTag FIFO Base0 to
BTag FIFO Base29 Registers
(BTag FIFO Base Address
Function)” on page 662.

The number of BTags in each Pool. See “Num BTags0 to Num
BTags29 Registers (Number
of BTags in a Pool
Function)” on page 662.
C5EC3EARCH-RM REV 04

308 CHAPTER 5: BUFFER MANAGEMENT UNIT
Test and Debug Registers The BMU contains various registers to provide test and debug access to internal state.

Memory Error Reporting
The Single ECC Error register is reset to 0 by hardware. After reset, the register counts the
number of corrected single-bit ECC errors encountered during SDRAM access. Single-bit,
corrected errors are not reported anywhere else.

Error conditions detected by the BMU are generally reported back to the requester except
for single-bit ECC corrected errors and some violations on write transactions. The
Wr_Mem_Violation_Hi and Wr_Mem_Violation_Lo registers capture the global or payload
address of transactions that cause write violations.

Test and
Debug

This read-only register counts the number of single
Error Correction Code (ECC) errors that have
occurred.

See “Single ECC Errors
Register (Miscellaneous
Function)” on page 665.

Control for ECC read and write test modes. See “ECC Enable and Test
Enable Register
(Miscellaneous Function)”
on page 665.

BMU C-5e NP debug register in canonical format. See “Debug Config
Register (Miscellaneous
Function)” on page 666.

These two (2) registers capture the write address of
a transaction that led to a write memory violation.

See
“Wr_Mem_Violation_Hi
Register (Miscellaneous
Function)” on page 667
and
“Wr_Mem_Violation_Lo
Register (Miscellaneous
Function)” on page 667.

Table 91 BMU Registers (continued)

BMU
REGISTER
TYPES REGISTER FUNCTION SPECIFIC REGISTER DETAILS
C5EC3EARCH-RM REV 04

BMU Configuration Space 309
ECC Test Modes
The ECC_Enable and Test _Enable register controls error checking during normal operation.
In addition, the ECC Enable and Test Enable register provides ECC write and read test
modes for testing ECC RAMs and portions of the chip data path. When bit [1] ECC Write Test
field is enabled, the ECC WriteTest Bits field bits [10:2] provide the test ECC write data
directly rather than the normal ECC generation logic. When this mode is enabled, all four
(4) 16Byte beats of a payload write transaction write the same test ECC write data. When
ECC Read Test Enable field bit [11] is enabled, rather than checking the ECC, the ECC bits are
returned directly from SDRAM in the least significant 9bits of the data on a payload read
transaction. All four (4) 16Byte beats of the payload read return the associated ECC data
for the beat.

Debug Register
The BMU has a tap for the global debug logic. The Debug Config register controls
multiplexors that allow selection of various BMU events or transactions for routing to the
global debug counters located in the XP. Refer to “XP Debug Mode Register (XP Mode
Configuration Function)” on page 625, and “Debug Counter0 Control Register (XP
Configuration Function)” on page 618.

For complete details about specific registers go to their reference. Refer to “Buffer
Management Unit (BMU) Configuration Registers” on page 654.
C5EC3EARCH-RM REV 04

310 CHAPTER 5: BUFFER MANAGEMENT UNIT
BMU Setup Prior to the CP, XP, or FP accessing the SDRAM, the BMU must be set up properly,
configured, and initialized as described in the following steps and using the applicable
registers listed in Table 91 on page 307.

Warning: Attempting to access a buffer pool before it is set up results in unpredictable
behavior.

1 Configure physical memory:

a Write encoded physical memory size (either 64, 128, or 256MBytes) to the Memory
Size register.

b Write memory timing parameters to the SDRAM Config register.

c Hardware disables ECC error correction and detection on reset. Write a 1 to bit [0]
of the ECC Enable register to enable checking.

2 Configure buffer memory:

a Write the physical address for the starting location in SDRAM for each Pool used
into the Pool0 Base to Pool29 Base registers. Pool Base registers for unused Pools
need not be configured.

b Write the BTag shift amount to set buffer size for each Pool used into the Pool0 BTag
Shift to Pool29 BTag Shift registers. Pool BTag Shift registers for unused Pool need
not be configured.

c Write the physical address for the starting location in SDRAM for the BTag FIFO for
each Pool used into the BTag FIFO Base0 to BTag FIFO Base29 registers. BTag FIFO
Base registers for unused Pools need not be configured.

d Write number of BTags for each Pool used into the Num BTag0 to Num BTag29
registers. The number of BTags per pool must be a multiple of 8. Num BTag
registers for unused Pools need not be configured.

3 Initialize BTags:

a All BTags must be initialized before they can be allocated. Initialization software
must write the BTag values to the BTag FIFO for each Pool used using the BTag
initialization payload transaction. Refer to “BTag Initialization Example” on
page 293. BTags can be written in groups of 8, 16, 24, or 32 at a time.
C5EC3EARCH-RM REV 04

BMU Setup 311
Specific values can be written in any order, but when completely initialized each FIFO
must use all the BTags numbered from 0 to Pool size minus 1.

If memory size is not known at configuration time, software must auto size physical
memory. Hardware sets Memory Size to the maximum value at reset. Software
configures a temporary pool or fabricates a BTag directly (in this case 0) without
allocating and writes to location 0 of physical memory. Then software writes to location
64M and reads back location 0. If location 0 is overwritten, the physical memory limit has
been reached and the address wrapped. If location is not overwritten, software tests the
next physical memory boundary, that is, 128M, and so on until the physical memory limit
is discovered. Then the Memory Size register can be written and buffer memory
configured for normal operation.
C5EC3EARCH-RM REV 04

312 CHAPTER 5: BUFFER MANAGEMENT UNIT
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 6
TABLE LOOKUP UNIT
Chapter Overview This chapter covers the following topics:

• Table Lookup Unit (TLU) Overview

• TLU Flow Process

• TLU Supported Table Types

• TLU Operation Overview

• Software Algorithms

• TLU Commands Overview

• TLU Table Mapping

• TLU Configuration and Status Registers

• TLU Application Considerations

• TLU Special Applications
C5EC3EARCH-RM REV 04

314 CHAPTER 6: TABLE LOOKUP UNIT
Table Lookup Unit (TLU)
Overview

The Table Lookup Unit (TLU) provides access to application-defined routing topology,
control, and statistics tables in external SRAM. It accesses an external SRAM array
operating at up to 133MHz. Communication between the processors (CPs, XP, and FP) and
the TLU is carried out via messages passed on the Ring Bus. Each processor (16CPs, XP, and
FP), as well as the TLU is a node on the Ring Bus. The Ring Bus uses a 64bit wide data path.
Refer to “Ring Bus Overview” on page 477.

The internal architecture of the TLU is extensively pipelined. This allows the TLU to service
a number of outstanding requests simultaneously to ensure the most efficient use of the
available external SRAM cycles.

The TLU supports several types of table lookup algorithms and provides resources for
efficient generation of table entry addresses in SRAM, “hash” generation of addresses, and
binary table searching algorithms for both exact-match and longest-prefix match
strategies.

The TLU also provides resources for efficiently managing and manipulating table keys and
associated data. Table entry insertion and deletion can be performed by the XPRC, CPRCs,
or by memory mapped access to the Ring Bus registers on the XP from an external host
processor.

The TLU allows: the mapping of thirty-two (32) lookup tables, supports four (4) different
table types in hardware that can be used to support six (6) algorithms in software, and
configurable table sizes.

The associated data maintenance facilities of the TLU also serve as a high-performance
statistics accumulation resource and as an intermediate storage medium for
segmentation and reassembly (SAR) operations.

The C-5e NP uses external 68bit data bus, and a 31bit control bus to connect to ZBT
SRAMs (at frequencies up to 133MHz) for storage of its tables. The C-5e allows
implementation of tables up to 224x 64bit entries using up to 64Mbit SRAM technology.
C5EC3EARCH-RM REV 04

Table Lookup Unit (TLU) Overview 315
TLU Major Components The major components of the TLU are listed in Table 92 on page 315. In addition, Figure 66
on page 316 shows the TLU Block Diagram.

Table 92 Major Components of the TLU and Their Functions

ITEM FUNCTION

Table Lookup
Engine (TLE)

Performs table lookups. The TLE comprises nine (9) blocks: command
parser, TLU registers, initial index generation, address generation, compare
register fetch, SRAM data latch, PFX stage1, PFX stage2 and index
generation. In addition to these nine (9) blocks that comprise the TLE there
are two (2) blocks that comprise the TLU: Ring Bus interface and TLU SRAM.

Ring Bus Interface Connects the Table Lookup Engine (TLE) to the C-5e’s internal Ring Bus.

Command Parser Decodes the Table Lookup Engine (TLE) commands and reads/writes
internal control registers.

TLU Registers Contains all the internal TLU register values.

Initial Index
Generation

Calculates initial Index based upon table type and lookup key.

Address Generation Translates current index and table into an SRAM register.

Compare Register
Fetch

Compares previous SRAM key with lookup key. Fetches data from register
array.

SRAM Data Latch Latches incoming data from SRAM read.

PFX Stage1 Calculates the next index based on encoded data from the SRAM fetch.

PFX Stage2 Calculates the next index based on encoded data from the SRAM fetch.

Index Generation Generates the next index.

TLU SRAM The TLU’s SRAM internal Memory Controller is designed to maximize the
bandwidth utilization of the SRAMs. The SRAM Memory Controller
supports SRAM frequencies to 133MHz using 3.3V LVTTL., and physical
interface SRAM technologies up to 64Mbits.
C5EC3EARCH-RM REV 04

316 CHAPTER 6: TABLE LOOKUP UNIT
Figure 66 TLU Block Diagram

TLU

Ring
Bus

Interface

Address
Generation

Initial Index
Generation

TLU Registers

Command
Parser

Table Lookup Engine
(TLE)

Compare
Register

Fetch

SRAM
Data
Latch

PFX
 Stage1

PFX
 Stage2

Index
Generation

SRAM
C5EC3EARCH-RM REV 04

TLU Flow Process 317
TLU Flow Process The nine (9) blocks of the TLU allows the implementation of a variety of table lookup
algorithms to meet different application needs. In general, its functional blocks are
organized in a basic loop that performs the following functions:

1 Parses a Ring Bus command.

2 Calculates the initial index based on a Key (for example, the head of a Trie or an initial
hash value).

3 Evaluates the current table node.

a Fetches SRAM data based on initial index.

b Fetches a portion of the Key

c Uses SRAM data, table format and key information to either go to step 4 or step 5.

4 Calculates a new index (and then go back to step 3).

5 Fetches the data at the current index.

6 Returns the data to the CPs or XP via the Ring Bus, or to the FP via a dedicated path
between the TLU and FP.

Each block has several programmable, pipelined stages. Each stage, passes data to the
next downstream stage. At any given time, every stage can have valid data, allowing many
TLU operations to occur simultaneously.

The preceding TLU flow process applies specifically to Find, Findr and Findw operations.
The flow process is different for the other operations. Some commands, such as read and
some write commands only pass through the loop once.

TLU Flow Process Details This section describes the transactional flow through the entire TLU in more detail that
comprises all eleven (11) blocks. The blocks include: Ring Bus Interface, Command Parser,
TLU Registers, Initial Index Generation, Address Generation, Compare Register Fetch,
SRAM Data Latch, PFX Stage1, PFX Stage2, Index Generation and TLU SRAM.
C5EC3EARCH-RM REV 04

318 CHAPTER 6: TABLE LOOKUP UNIT
Ring Bus Interface and Command Parser
The Ring Bus Interface block of the TLU is the only interface between the TLU and the rest
of the C-5e NP. The Ring Bus comprises a receive (Rx) and a transmit (Tx) side.

• The Receive (Rx) section of the Ring Bus Interface monitors the Ring Bus for
commands destined for the TLU. When a command is received (Rx), the command is
removed from the Ring Bus and sent to the TLU’s Command Parser block. TLU
commands can be either an indication or a request message type.

– If an indication is received, the TLU immediately places a confirmation message on
the Ring Bus back to originating ring node. The purpose of the confirmation is to
reserve a slot on the Ring Bus so that the originating node can place a new
message on the Ring Bus. This indication-confirmation reservation technique is
useful for guaranteeing bandwidth on the Ring Bus under high-load conditions.
The Fabric Processor should always send indications to the TLU rather than
requests, as it requires dedicated Ring Bus bandwidth. Refer to Table 103 on
page 357 for list of the TLU commands, parameters, command ID’s returned data
and functions.

– If a request is received, the TLU responds in a similar nature as an indication
message type, except no confirmation is sent.

– During normal operations the TLU should never be busy; however, if it is busy, then
the TLU returns an error to the calling CP and terminates the request.

• The Transmit (Tx) side of the Ring Bus Interface is responsible for returning data to the
requesting CPs or XP. Each Ring Bus slot message returns at most 32Bytes. If more than
32Bytes are requested, then multiple messages are transmitted. Since all Ring Bus
responses are initiated by a specific request, the only command information passed
back to the requesting node (CPs, or XP) is the sequence number. Refer to“Ring Bus
Registers” on page 133, and “Ring Bus Overview” on page 477.

Responses sent to the TLU are discarded.

TLU Registers
Contains all the internal TLU register values.

Initial Index Generation
The Initial Index Generator block calculates the initial index into a table.
C5EC3EARCH-RM REV 04

TLU Flow Process 319
Address Generation
The Address Generation block calculates the SRAM address for the next SRAM access. An
address is calculated as follows:

SRAM address = (base_address * 256) + (index << entry size) + offset

The TLU does not support the burst access feature of the SRAMs. Instead, it has an
internal burst counter that automatically increments the address for consecutive reads
and writes. For non-data tables, the entry size should be set to 0 (8Bytes).

Compare Register Fetch
The Compare Register Fetch block is responsible for comparing the last SRAM read data
with the current key. Compares occur whenever a find type command (Find, Findw, or
Findr) accesses a Key table. Successful compares allow Findw commands to execute and
Findr commands to return TLU response data. PFX tables return the correct answer by
design, therefore, the compare function is skipped for these table types.

Each node compare of a Trie or Hash table takes a SRAM cycle.

SRAM Data Latch
The SRAM Data Latch block latches the data from an SRAM read so that it can be
processed by the next stage.

PFX Stage1 and PFX Stage2
The PFX algorithms requires two (2) pipe stages to decompress the code value from the
previous read.

Index Generation
The Index Generator block incrementally calculates the next index into a table. Branch
decisions are calculated by examining a number of different operands. These include: the
current Key, fields from the last entry fetch operation, the current index, and a variety of
internal registers. These internal registers are used to keep track of the current bit position
for tries, pointers for most significant prefix matching, and other general record keeping
functions. After the first calculation is performed, the Index Generation block calculates
the next index for iterative functions.
C5EC3EARCH-RM REV 04

320 CHAPTER 6: TABLE LOOKUP UNIT
The Index Generation block can be programmed on a per table basis using one of two (2)
methods for generating a new index. The two (2) methods include:

• Incrementing of the previous index. This method is used only for SRAM burst access.

• Using a entry fetch operation. This method is used for all tries and hashes. For lists with
multiple pointers (that is, tries), the previous stage passes control information to this
block describing the correct pointer to choose.

TLU SRAM
The TLU’s SRAM internal Memory Controller is designed to maximize the bandwidth
utilization of the SRAMs. The SRAM Memory Controller supports SRAM frequencies to
133MHz using 3.3V LVTTL. The maximum amount of memory supported by the TLU is
128MBytes in four banks, when SRAM technology supports 4M x 18pins parts. The SRAM
physical interface supports SRAM technologies up to 64Mbits. Refer to Table 93 on
page 320.

The TLU can perform a read or write operation every cycle using ZBT SRAMs. The physical
interface provides four (4) CEx (chip enable) and WEx (write enable). Each bank (up to 4)
gets its own CEx (CE0x, CE1x, CE2x or CE3x) and WEx (WE0x, WE1x, WE2x or WE3x).

The SRAM controller does not support bursting. Sequential accesses are generated using
an internal address incrementer.

Table 93 TLU SRAM Configurations

SRAM TECHNOLOGY MINIMUM TABLE SIZE, 1 BANK MAXIMUM TABLE SIZE, 4 BANKS

1Mb (32k x 32pins) 256kBytes 1MBytes

2Mb (64k x 32pins) 512KBytes 2MBytes

4Mb (256k x 18pins) 2MBytes 8MBytes

8Mb (512k x 18pins) 4MBytes 16MBytes

16Mbit (1M x 18pins) 8MBytes 32MBytes

32Mbit (2M x 18pins) 16MBytes 64MBytes

64Mb (4M x 18pins) 32MBytes 128MBytes
C5EC3EARCH-RM REV 04

TLU Supported Table Types 321
TLU Supported Table
Types

Networking systems use synchronized tables containing topology and control
information to make forwarding and characterization decisions. Such tables are accessed
in the forwarding path for lookup resolution and forwarding decisions, and are typically
managed by an agent that runs on an application processor that adds, removes, and
modifies entries in these tables. Examples of such databases would be an IP Routing Table
or an ATM Virtual Connection (VC) table.

The TLU hardware resolves table lookups by understanding four (4) different table types in
hardware. With each table type the TLU understands a variety of possible table format
transitions that can occur based on data software enters into the TLU SRAM. During a
table lookup operation: the TLU receives a Table Id value that is used to read data from the
TLU configuration register that tell the TLU what the hardware Table Type is, the expected
Initial Data Format, and how to use the Key to get to the first SRAM entry. The API software
currently uses the available data format transitions to create six (6) software algorithms.

Software algorithms fall into two (2) main categories: exact-match, and longest-prefix
match. Exact-match algorithms perform some sort of memory node structure traversal
and then uses data stored in memory to check against the key. In an exact-match
algorithm, a lookup returns data successfully only if the key matches. In contrast, in a
longest-prefix match algorithm, the TLU compares parts of the key to values stored in
memory and when it can no longer match the key, it returns data. Table 94 on page 321
lists the software algorithms, hardware table types and their functions.

The TLU supports four (4) different Key sizes: 32, 48, 96 and 112bit. In addition,
intermediate key sizes are supported by masking unused bits to zero.

Warning: Ensure all table memory areas are initialized before performing table inserts or
lookups. Possible unreported errors providing erroneous data could occur.

Table 94 Supported Table Types (Software Algorithms and Hardware)

SOFTWARE
ALGORITHMS

HARDWARE
TABLE TYPES
(INITIAL
FORMAT) FUNCTION

Hash-Trie-Key Hash Used for exact match algorithms. That is, algorithms that
require a lookup key to be matched exactly.

Chained Hash PFX
(Longest-Prefix
Match)

A special case of a PFX table where a portion of the key is
used for an initial index lookup. The results of the indexed
lookup is combined along with the hashed initial key to
create a second hashed lookup.
C5EC3EARCH-RM REV 04

322 CHAPTER 6: TABLE LOOKUP UNIT
For every table Id there is an associated configuration register. The TLU supports
thirty-two (32) tables. Tables are numbered from (0 to 31). There are thirty-two (32)
configuration registers (numbered from (0 to31)) and thirty-two (32) virtual table
registers (also numbered from (0 to31)). Refer to “TLU Configuration and Status Registers”
on page 383.

By programming the virtual table registers, a received table Id value is converted from the
virtual table Id to the physical table Id which maps directly to the configuration register
number to use. Within the configuration register for each physical table Id value is a base
table address configured by software. Also, in the configuration registers is the initial table
format to expect, the method of generating the initial index, and how an index value
maps to a physical memory address. This means all table entries can be accessed by an
index value, and individual bytes by an offset value. The entries can be 8Bytes to
1024Bytes in length.

Implementation
Considerations

Prior to implementation consider the following:

• The XOR command can only be used in tables 0 to 7.

• Only Data tables should use more than 8Bytes (1 slot) per entry. Refer to bits [23:21] in
the “Table_Configuration1 Register” on page 389.

Chained Index PFX
(Longest-Prefix
Match)

A portion of the key is used for an index lookup. The results of
the indexed lookup is combined with part of the initial key to
create a second index lookup.

PFX
(Longest-Prefix
Match)

PFX
(Longest-Prefix
Match)

Used for Longest-Prefix Matching searches for IPv4 and
TCP/IP routing.

Flat Data Table Data Contain the data associated with an entry. Data tables can be
used as a stand-alone table or as the last table (that contains
the associated data for a previously evaluated key) in a set of
tables.

External External Used to interface with external lookup engines when it is
swapped with a SRAM bank.

Table 94 Supported Table Types (Software Algorithms and Hardware) (continued)

SOFTWARE
ALGORITHMS

HARDWARE
TABLE TYPES
(INITIAL
FORMAT) FUNCTION
C5EC3EARCH-RM REV 04

TLU Operation Overview 323
TLU Operation Overview In general, the TLU performs a lookup using the nine (9) steps listed in Table 95 on
page 323.

Table 95 TLU General Operation Step/Action Table

STEP ACTION

1 TLU parses the Ring Bus message.

• Extracts all of the information it needs to perform it’s functions from the Ring Bus
data:

• Type of command (FIND, FINDR, FINDW).

• Table ID and key value.

What is expected back and how:

FIND returns an address like token to where the data is stored;

FINDR returns data of a volume and offset into the data entry specified in the Ring Bus
message;

FINDW uses the volume and offset information to do a write to the data entry instead
of a read.

• Ring Bus information contains which node to return the data to, and the response slot
to use.

2 TLU maps Virtual Tables to Physical Tables. The TLU uses the Table ID number from the
table lookup Ring Bus message as a virtual table ID number and checks the virtual table
ID registers to find the physical table ID that maps to the virtual table ID.

3 TLU reads the configuration registers. The TLU uses the physical table ID and it’s
associated configuration registers to determine:

• Initial data format to expect.

• Base address of the table.

• How table addressing works for this table.

4 TLU uses the current format as a state and computes:

• Next index to read= function of (key value, key size, data format, configuration
registers)

5 TLU converts the index to an address using:

• Address= (base address memory page number * 256) + next index * size of entry
programmed in configuration register).

NOTE: This occurs while format/state is not data.

6 TLU reads the SRAM data.

7 TLU computes the next index to read using:

• Next index to read= function of (key value, SRAM data, current format).
C5EC3EARCH-RM REV 04

324 CHAPTER 6: TABLE LOOKUP UNIT
TLU Operation Details At the core of the TLU’s operation is a state machine. The state machine uses a key, and the
data contents of the initial node to determine which state to expect. It can determine
which data format to expect next; therefore enabling it to generate the next node
address. The TLU operates in the following manner: reads the initial data format, checks
SRAM for the format data to act upon, generates the next address, traverses the table to
get to the associated data for a given key.

The seven (7) allowed TLU state transitions are listed in Table 96 on page 324.

Table 97 on page 325 lists the applicable TLU states as they relate to the six (6) algorithms
in software, lists the applicable hardware table types (initial format) as they relate to the
software algorithms, and lists the encoded values as they relate to the applicable
hardware table types (initial format).

The hardware table type is selected using the Table_Configuration1 register bits [31:28]
Type field which uses encoded values.

8 TLU computes next format based on: key value, key size, current format, and SRAM data.

9 TLU performs the required FIND response:

• FIND, returns current index value.

• FINDR, read from address + offset in Ring Bus message and returns that data.

• FINDW, write the data sent in the Ring Bus message.

NOTE: This occurs when format/state is data.

Table 95 TLU General Operation Step/Action Table (continued)

STEP ACTION

Table 96 TLU Allowed State Transitions

TRANSITION
STATES

Hash -> Trie

Hash -> Key

Trie -> Trie

Trie -> Key

PFX -> PFX

PFX -> Hash

PFX -> Data
C5EC3EARCH-RM REV 04

TLU Operation Overview 325
Table 97 Relationships of TLU States, Software Algorithms, Hardware Table Types, and Encoded
Values

TRANSACTION
STATES

SOFTWARE
ALGORITHMS

HARDWARE
TABLE TYPES
(INITIAL FORMAT)

ENCODED VALUES
(TABLE TYPE)

• Hash -> Trie

• Trie -> Trie

• Trie -> Key

Hash-Trie-Key Hash 3

• PFX -> PFX

• PFX -> Data

• PFX -> Hash

• Hash -> Trie

• Trie -> Trie

• Trie -> Key

Chained Hash PFX 1

• PFX -> PFX

• PFX -> Data

• PFX -> Hash

• Hash -> Trie

• Trie -> Trie

• Trie -> Key

Chained Index PFX 1

• PFX -> PFX

• PFX -> Data

• PFX -> Hash

• Hash -> Trie

• Trie -> Trie

• Trie -> Key

PFX PFX 1

N/A Flat Data Table Data 0

N/A External External 6
C5EC3EARCH-RM REV 04

326 CHAPTER 6: TABLE LOOKUP UNIT
TLU Operation Example As an example, if you program the configuration registers using the following parameters:
table type=3 (Hash table type, initial format of Hash), bit depth for the hash =5, and a
base address for the table. Then the TLU would take these inputs and then read in data
from SRAM, interpret the data and transverse the table.

When the initial format is hash, the TLU performs a hash function over the entire key bits,
takes the lowest few bits (in this particular example the least significant 5) and finds the
first node (a node is a set of data stored in a table).

By reading the node, and knowing it’s format the TLU knows if the next node is a key leaf
node or a trie node. When it is a trie node, the TLU understands the trie node’s format and
traverses the table knowing when to transition from trie format to key format (Trie -> Key)
automatically.

Once arriving at a key node, the TLU reads the key stored in SRAM and compares it to the
key being looked up, and upon a match returns the requested data. The TLU reacts to
what ever you stored in SRAM to determine it’s ultimate algorithm and behavior. The API
provides an implementation of a very common software algorithm called Hash-Trie-Key
that takes a key and payload data as insert/delete information and manages a table for
you.
C5EC3EARCH-RM REV 04

Software Algorithms 327
Software Algorithms This section describes each of the six (6) software algorithms: Hash-Trie-Key, Chained
Hash, Chained Index, PFX (Longest-Prefix Match), Flat Data Table, and External. Where
applicable, the transition states, recommended memory organization (conceptually),
block diagram, data format, and example is provided for each of the software algorithms.

Hash-Trie-Key Figure 67 on page 327 shows the Hash->Trie->Key state transitions and Table 98 on
page 327 lists their details.

Figure 67 Hash -> Trie -> Key State Transition Diagram

Table 98 Hash -> Trie -> Key State Transition Details

STEP ACTION

1 Initial state is set to Hash based on the configuration registers. In the hash state, the TLU
performs a memory read, then transitions to either the Trie or Key format states.
Specifically, the TLU:

• Computes the hash value based on the hash bit depth in the configuration register,
and the key. C-5e hash entries are stored two to a 64bit memory slot. The low order
bit of the hash value determines: if the upper 32bits (lowest bit=0) or if the lower
32bits (lowest bit=1) is to be used. The remaining bits are added to the Base Address
of the table to compute which SRAM 64bit memory address to read from.

• Parses the hash formatted data.

Hash

KeyTrie

1

32

5

64

Bit Position 31 30 24 23 0

Field Name Flag Count Link
C5EC3EARCH-RM REV 04

328 CHAPTER 6: TABLE LOOKUP UNIT
Software uses TLU write commands to initialize the SRAM values. Then these SRAM
values are read to determine the Hash, Trie, and Key state transitions. Software can set
flag, counts, and links to make the table perform a variety of algorithms. The hardware is
designed and tested against the API table services Hash-Trie-Key algorithm.
Furthermore, the same hardware is also used in part for the Chained Hash software
algorithm by setting the flags, counts, and links differently. Therefore, software uses
hardware to implement two (2) different algorithms.

Refer to Figure 68 on page 329 for the Hash-Trie-Key recommended memory
organization.

2 When the Flag value is set to zero (0), the next state is a Trie. The TLU reads in the 64bit
data slot associated with the Link value, and uses the bit in the key associated with the
Count value to determine: if the left (bit=0) high order 32bits of the Trie data is to be
used or if the right (bit=1) low order 32bits of the Trie data is to be used. Trie entries are
formatted as shown here:

By going left or right, either the left Flag bit [63] or the right Flag bit [31] is examined to
determine the next state. If the bit is a one (1), the TLU transitions to the Key state.
Otherwise it remains in it’s current state.

3 The TLU can transition from the Hash or Trie states to Key, if the Flag bit is set to one (1)
in the Hash or Trie formatted data.

4 Once it enters the Trie state, it remains in the Trie state until the TLU detects that the Flag
bit is set to one (1).

5 The TLU can transition from the Hash or Trie states to Key, if the Flag bit is set to one (1)
in the Hash or Trie formatted data.

6 Once the TLU enters the Key state, the TLU treats the Key and Data states almost as
equivalent. The TLU reads the Key data stored in the entry and matches the Key in the
Ring Bus message against the Key in the entry. When they match the lookup is
successful, and when they do not match the lookup fails.

Table 98 Hash -> Trie -> Key State Transition Details (continued)

STEP ACTION

Bit Position 63 62 56 55 32 31 30 24 23 0

Field Name Flag Count Link Flag Count Link

Upper 32=left=testbit=0 Lower 32=right=testbit=1
C5EC3EARCH-RM REV 04

Software Algorithms 329
Figure 68 on page 329 shows how memory is laid out conceptually by the API. This is not
hardware imposed, but a recommended map that can be useful to explain how the
hardware works conceptually.

Figure 68 Hash-Trie-Key Recommended Memory Organization (Conceptually)

Number Hash address =2 hash bit depth -1

Typical lookup
transitions

Key entries can also be stored anywhere in memory
above the Hash entries completely under software
control.
NOTE: The API software does cluster them into a
"sub-table" region for simplicity.

Trie entries can be stored anywhere in memory
above the Hash entries completely under
software control. It is recommended that they
be clustered into a set or "sub-table" so that
the software can be easily designed.
NOTE: The API software does cluster
the entries.

End of last address of the last Hash entry.
Software Reserved

Base Address programed into Configuration
register for this Physical Table ID.

Hash Entries

Trie Entries

Software Reserved

Key Entries

Software Reserved

Reserved areas can be implemented by software
to store information about what order things
were inserted, or what pieces of memory are in
use as the API does.

End of the memory space software reserved
for this table.
C5EC3EARCH-RM REV 04

330 CHAPTER 6: TABLE LOOKUP UNIT
Figure 68 on page 329 shows the recommended memory organization for Hash-Trie-Key
software algorithm. It basically uses a clustered set or “sub-table”. These three (3)
sub-tables as detailed here.

Hash Sub-Table
The hash function is a fixed function that produces a hash index of the lookup key.
Typically, the hash function exhibits good randomness such that changing one (1) bit in a
key causes approximately half of the bits (in the hash index) to change as a result.

Hash tables are used for exact match algorithms. That is, algorithms that require a lookup
key to be matched exactly. Hash tables evaluate the lookup key via a hash function. The
hash function returns an index into the Hash table that contains an entry that points to
another entry in another table. The table entry pointed to by the Hash table can be either:

• An entry in a Trie table (used for collision resolution).

• A key to be used for comparison in a key table.

You can calculate the number of collisions using a Chi2 distribution. Thus, the probability
of a collision based on random data is: # real entries/ # buckets. For example, if you have
64k real 32bit keys and hash to a 18bit index, your hash table would have 256k buckets.
Dividing the 64k entries by 256k indicates that there would be an average of one (1)
collision for every four (4) entries. At most one (1) bucket would have eight (8) entries, and
all of the other buckets would have something less than eight (8). Refer to Figure 69 on
page 331.
C5EC3EARCH-RM REV 04

Software Algorithms 331
Figure 69 Hash Sub-Table Block Diagram

Key_U1 Key_U2

[47:32]

Key_L1

[31:0] [63:32] [31:0]

Key_L2

16bits (Optional) 32bits (Optional)

+ BaseAddr Initial Index

First Memory Access

Initial Index

Hash Table

LINKRightLINKLeft

0 1

4 5
2 3

6 7
8 n

64bits

Hash

LSB (selects right or left columns)

>>1

32bits Key

LINKR points to either:
a Trie Sub-table OR a Key Table
depending on the value of the
FlagR field.

LINKRightLINKLeft

MASK [20:16]

64bit Hash Entry Format

FlagL
[63]

CNTR
[62:56]

LINKL
[55:32]

FlagR
[31]

CNTR
[30:24]

LINKR
[23:0]

Points to either: a Trie Sub-table

OR
Points to a Key Table

MASK picks MSB’s of the Key. The particular MSB is determined based on the
Encoded Value used in the KLEN field [27:24] of “Table_Configuration1
Register” on page 389.

64bits
C5EC3EARCH-RM REV 04

332 CHAPTER 6: TABLE LOOKUP UNIT
Hash Sub-Table Data Entry Format

The TLU format uses two (2) hash entries per 64bits. Therefore, a 64bit word # = hash
value/2. Consequently, a hash value/2 = 1 slot and the upper 32bits are used if it is a even
(left) hash value or the lower 32bits are used if it is a odd (right) hash value.

Hash Sub-Table Example
An example of a Hash table is an 802.1D Bridge Forwarding Table. Collisions can be
resolved by having entries that collide point to a Trie table. Ultimately, the entry key and
associated data are stored in a data table.

Trie Sub-Table
Trie tables are binary skip trees that provide an efficient means for resolving Hash table
collisions. A benefit of using Trie tables for collision resolution in conjunction with a Hash
table is that for n colliding keys that collide in the table, usually only log2(n) entries need
to be checked to resolve the collisions. For collision resolution, only the bits that differ in
the collided keys are checked. Leaf nodes point to a Key table entry that does a complete
key match of the input key. The size of each node of this table structure is 8Bytes or one (1)
SRAM location.

Bit Position 63 62 56 55 32 31 30 24 23 0

Field Name FlagL CNTL LINKL FlagR CNTR LINKR

FIELD NAME BIT POSITION DESCRIPTION

FlagL 63 Flag Left — A 1= points to the key entry, a 0= points to a trie
entry.

CNTL 62:56 Count Left — The total number of bits that match traversing
down the branch.

LINKL 55:32 Link Left — If Flag [63]= 0 index of associated data, or if Flag
[63]= 1 index to an element in the next table in the algorithm.

FlagR 31 Flag Right — A 1= points to the key entry, a 0= points to a trie
entry.

CNTR 30:24 Count Right — The total number of bits that match traversing
down the branch.

LINKR 23:0 Link Right — If Flag [31]= 0 index of associated data, or if Flag
[31]= 1 index to an element in the next table in the algorithm.
C5EC3EARCH-RM REV 04

Software Algorithms 333
Trie table entry resolves 1bit of collision at a time. As the table is traversed, the count fields
in the previous node are used to specify which bit of the key is to be evaluated in the
current node. The value (0 or 1) of the bit being evaluated indicates whether to take the
left branch or the right branch (0=left branch, 1=right branch) of the tree.

Trie Sub-Table Data Entry Format

Trie Sub-Table Example
The use of the count (CNT) field is shown in Figure 70 on page 334. The three (3) in the
Hash table’s CNT field means that the third MSB of the three (3) collision entries is to be
used when evaluating the lookup key in the next “node”. The index value of the entry in the
Hash table points the next entry.

Specifically in this example, the index value points to the “root” node in a new table (a Trie
table) to be used for collision resolution.

Bit Position 63 62 56 55 32 31 30 24 23 0

Field Name FlagL CNTL LINKL FlagR CNTR LINKR

FIELD NAME BIT POSITION DESCRIPTION

FlagL 63 Chain Flag Left — A 1= next node is a key, a 0= next node is a trie.

CNTL 62:56 Count Left — Specifies the position of the bit in the key that is
used to determine whether to take the left or right branch in the
next left branch node.
If the CNTL value is a non-zero, then the CNTL value refers to an
individual bit in the Key, and if the corresponding bit value is 0 take
left branch and if the bit is 1 take right branch.

LINKL 55:32 Link Left — If FlagL [63]= 0 index to the left branch of the Trie, or if
FlagL [63]= 1 to the next table.

FlagR 31 Chain Flag Right — A 1= next node is a key, a 0= next node is a
trie.

CNTR 30:24 Count Right — Specifies the position of the bit in the key that is
used to determine whether to take the left or right branch in the
next right branch node.
If the CNTR value is a non-zero, then the CNTR value refers to an
individual bit in the Key, and if the corresponding bit value is 0 take
left branch and if the bit is 1 take right branch.

LINKR 23:0 Link Right — If FlagR [31]= 0 index to the right branch of the Trie,
or If FlagR [31]= 1 the next table.
C5EC3EARCH-RM REV 04

334 CHAPTER 6: TABLE LOOKUP UNIT
Examining the third MSB of the collided values shows that one entry has a bit value of
zero (0) and the other two entries have bit values of one (1). In other words, the value of 0,
1, and 1. This value (0, 1) has the following meaning:

• The zero (0) value indicates to take the left branch from the root node.

• The one (1) value indicates to take the right branch from the root node.

Since there is only one entry with the third MSB equal to zero (0), the next left branch
node (level 2) in the Trie table can point to the Key table entry that contains the data.

In general, the trie rules are:

• A Flag of 1 means that the next link is a key.

• A Flag of 0 and CNT != 0 means that the next link is a trie.

Figure 70 Trie Sub-Table Showing Skip Function

0 0 0 1 0
0 0 1 0 1
0 0 1 1 0

Hash or Index Table

Root Node [00]

FlagL
[1]

CNTL
[0]

LINKL
[000]

FlagR
[0]

CNTR
[4]

LINKR
[001]

CNT = 3 Index

(MSB) Bit Position: 1 2 3 4 5

Node [001]

FlagL
[1]

CNTL
[0]

LINKL
[0010]

FlagR
[1]

CNTR
[0]

LINKR
[0011]

Key Table Entry

Key Table Entry Key Table Entry

Level 1

Level 2

A count (CNT) of 3 “skips” (or ignore) the first
two bits of the lookup key and use the third bit
to decide whether to take the left or right
branch of the next node. If the value of the
next bit is zero (0) take the left, and if the bit

A count of 4 for the right branch (CNTR)
indicates that the fourth bit of the lookup key
is the one to compare in the next right branch.

[0011][0010]

[000x]

Collision
Entries

A B

C D

A

BC
D

32bits
C5EC3EARCH-RM REV 04

Software Algorithms 335
However, there are two (2) “collision” entries with a value of (1) for their third bit (00101
and 00110). Thus, the program must move to a lower level in the tree to obtain the correct
indexes (to Key table entries) for each lookup key. Notice that the root node’s CNTR (count
right) field is set to four (4). This means that in the next right node (level 2), the fourth bit
of the lookup key should be evaluated. Again, a bit value of (0) indicates branch left and a
value of (1) indicates branch right, (0=left branch, 1=right branch).

Since there are only two (2) remaining collision entries and their fourth bits are different
(one is a 0 and the other is a 1), both the left and right nodes will match the first four bits
of one of the two unresolved entries and since the CNT is zero (0), each link points to the
correct index into the associated Key table.

The exact match on the lookup key takes place in the Key table. The Trie is used to resolve
search key values that collided in the Hash table. Thus, the depth of the Trie table needs to
be only deep enough to distinguish two (2) or more keys (depending on the number of
collisions) from each other.

The CNTL (count left) and CNTR (count right) fields also allow you to “ignore or skip” one
(1) or more bits in a lookup key and thus omit what would be the corresponding nodes on
a branch of the tree. Thus, if the values for a number of bits in the Trie entries are the same
across a number of entries, the TLU can perform an “exact” match without traversing a
level of the Trie for every bit in the lookup key.

Key Sub-Table
Key table are used in exact match algorithm, and contain both the key of an entry and the
associated data. The last step of an exact match algorithm compares the lookup key with
the key from the entry in the Key sub-table. The TLU supports key sizes of 32, 48, 96, and
112bits. The associated data portion of the entry in a Key sub-table is typically returned to
the requesting node (CP or XP) via the Ring Bus.
C5EC3EARCH-RM REV 04

336 CHAPTER 6: TABLE LOOKUP UNIT
Key Sub-Table Data Entry Format

A Key Data structure occupies the first one (1) or two (2) entries of a data entry. It is used
by the TLU to verify that a node’s data matches the search key. It is typically the
termination of Trie and Hash tables. For key sizes up to 48bits, only one (1) entry is used.
For larger key sizes, both fields are used.

Key Sub-Table Example
An example of an exact match algorithm that would be implemented using the TLU is an
802.1D forwarding table for layer 2 bridging applications. In this application, you would
use a Hash table for the initial index evaluation, a Trie table to resolve collisions (if
necessary), and a Key table to store both the key and associated data.

Bit Position 63 48 47 32 31 0

Field Name (optional) KEY_L1 KEY_L2

Field Name Reserved KEY_U1 KEY_U2

FIELD NAME BIT POSITION DESCRIPTION

KEY_L1* 63:32 Key Lower 1 — Contains the lower middle portion for 112bit and
96bit keys

KEY_L2* 31:0 Key Lower 2 — Contains the LSB for 112bit and 96bit keys.

Reserved 63:48 Read as zero.

KEY_U1*

1 For key sizes up to 48 bits, only one entry is used (KEY_U1 & KEY_U2). For larger key sizes, both fields are
used.

47:32 Key Upper 1 — The MSB of 48bit and 112bit keys.

KEY_U2* 31:0 Key Upper 2 — The MSB of 32bit and 96bit keys. Used also for the
upper middle portion of 112bit and 48bit keys.
C5EC3EARCH-RM REV 04

Software Algorithms 337
Chained Hash Figure 71 on page 337shows the Chained Hash Key state transitions and Table 99 on
page 337 lists their details.

Figure 71 Chained Hash State Transition Diagram

Table 99 Chained Hash State Transition Details

STEP ACTION

1 Initial state is set to PFX based on the configuration registers. In the PFX state, the TLU
performs a memory read, then transitions to either the Hash or Failure format states.
Specifically, the TLU:

• Computes the first address to read. The first address is the first N bits plus the Base
Address of the table where N is the bit depth programed into the configuration
register. hash value based on the hash bit depth in the configuration register, and the
key. C-5e hash entries are stored two to a 64bit memory slot. The low order bit of the
hash value determines: if the upper 32bits (lowest bit=0) or if the lower 32bits (lowest
bit=1) is to be used. The remaining bits are added to the Base Address of the table to
compute which SRAM 64bit memory address to read from.

• Parses the PFX index formatted data. On reading a PFX entry, there are a few bits that
determine the type and the link address. If the type= 0x2 the lookup has no
corresponding hash table to transition to, so the TLU lookup fails. If the type=3 then
the link points to the start of a hash table, and the TLU continues as if beginning a
Hash-Trie-Key lookup and the hash size, and start of the hash table are programmed
into the PFX entry.

Hash

KeyTrie

3

5

6

4

PFX IndexHash
2

1

Failure

7

8

C5EC3EARCH-RM REV 04

338 CHAPTER 6: TABLE LOOKUP UNIT
2 If the Type bits in the PFX entry = 0x2, then the index tells the TLU to return a lookup
miss condition.

3 Once the TLU enters the Hash state, the TLU performs a memory read, then transitions to
either the Trie or Key format states. Specifically, the TLU:

• Computes the Hash value based on hash bit depth contained in the LPPM index entry
and the Key. C-5e hash entries are stored two to a 64bit memory slot. The low order
bit of the hash value determines: if the upper 32bits (lowest bit=0) or if the lower
32bits (lowest bit=1) is to be used. The remaining bits are added to the Base Address
of the table to compute which SRAM 64bit memory address to read from.

• Parses the hash formatted data.

4 When the Flag value is set to zero (0), the next state is a Trie. The TLU reads in the 64bit
data slot associated with the Link value, and uses the bit in the key associated with the
Count value to determine: if the left (bit=0) high order 32bits of the Trie data is to be
used or if the right (bit=1) low order 32bits of the Trie data is to be used. Trie entries are
formatted as shown here:

By going left or right, either the left Flag bit [63] or the right Flag bit [31] is examined to
determine the next state. If the bit is a one (1), the TLU transitions to the Key state.
Otherwise it remains in it’s current state.

5 The TLU can transition from the Hash or Trie states to Key, if the Flag bit is set to one (1)
in the Hash or Trie formatted data.

6 Once it enters the Trie state, it remains in the Trie state until the TLU detects that the Flag
bit is set to one (1).

7 The TLU can transition from the Hash or Trie states to Key, if the Flag bit is set to one (1)
in the Hash or Trie formatted data.

8 Once the TLU enters the Key state, the TLU treats the Key and Data states almost as
equivalent. The TLU reads the Key data stored in the entry and matches the Key in the
Ring Bus message against the Key in the entry. When they match the lookup is
successful, and when they do not match the lookup fails.

Table 99 Chained Hash State Transition Details (continued)

STEP ACTION

Bit Position 31 30 24 23 0

Field Name Flag Count Link

Bit Position 63 62 56 55 32 31 30 24 23 0

Field Name Flag Count Link Flag Count Link

Upper 32=left=testbit=0 Lower 32=right=testbit=1
C5EC3EARCH-RM REV 04

Software Algorithms 339
Software uses TLU write commands to set the SRAM values. Then these SRAM values are
read to determine the Hash, Trie, and Key state transitions. Software can set flag, counts,
and links to make the table perform a variety of algorithms. The hardware is designed
and tested against the API table services Hash-Trie-Key algorithm. Furthermore, the
same hardware is also used in part for the Chained Hash software algorithm by setting
the flags, counts, and links differently. Therefore, software uses hardware to implement
two (2) different algorithms.

Refer to Figure 72 on page 340 for the Chained Hash recommended memory
organization.

Figure 72 on page 340 shows how memory is laid out conceptually by the API. This is not
hardware imposed, but a recommended map that can be useful to explain how the
hardware works conceptually.
C5EC3EARCH-RM REV 04

340 CHAPTER 6: TABLE LOOKUP UNIT
Figure 72 Chained Hash Recommended Memory Organization (Conceptually)

Chained hash table types supports the table topology imposed by IEEE 802.1Q VLANs
(Virtual Bridged LAN, a subset of Ethernet protocols). Refer to Figure 73 on page 341.

The Ethernet frame, (Ethernet MAC), shown here, contains a 12bit identifier called a
Virtual Local Area Network (VLAN) that maps in a many to one fashion to a Forwarding
Identifier (FID). Therefore, the FID should be a part of the bit pattern used to perform an
exact lookup along with other routing data in the Ethernet frame’s header.

Typical lookup
transitions

API software allows Index -> Hash mapping to be
a many -> one, or one -> one mapping under
software control.

API software uses the LPM Index entries to point
deeper into memory to within a set of Hash tables.
This way, Index resolves the first set of bits before
the H-T-K algorithm completes, the exact match
process. These Hash tables are run time allocated
on the fly from a fixed possible set (configured at
table initialization run time).

End of last address of the last Index entry.
Software Reserved

Base Address programed into Configuration
register for this Physical Table ID.

Index Entries

Hash Table1

Software Reserved

Reserved areas can be implemented by software
to store information about what order things
were inserted, or what pieces of memory are in
use as the API does.

End of the memory space software reserved
for this table.

API software keeps track of Trie format entries in
a collection pool that can be used for any of the
Hash tables.

API also keeps track of Keys in a collection pool
for on the fly allocation.

Hash Table2

Other Hash Tables

Hash Tablen

Pool of Trie Entries

Software Reserved

Pool of Key Entries

Software Reserved
C5EC3EARCH-RM REV 04

Software Algorithms 341
The Ethernet Media Access Control (MAC) frame has the following format:

Using the chained hash key format allows one lookup to find any required data within the
stored entry data. The entry data could consist of the FID, the egress port, which port the
address was learned from and other data. Refer to Figure 74 on page 342.

Chained Hash tables only support 48bit or 112bit keys.

Figure 73 Chained Hash Block Diagram

Number of Bits 48 48 16 1 3 12 =>44

Field Name MAC DA MAC SA Ethernet Type CFI Priority VLAN Payload

Key_U1 Key_U2

[47:32]

Key_L1

[31:0] [63:32] [31:0]

Key_L2

+ Hash

16bits Key 32bits (Optional)

PFX Data
Data

First Memory Access Second Memory Access

ActionVecf(ChType=9) =

32bits Key

64bit PFX Data Entry Format

ChType
[63:60]

KeySHLz
[59:56]

ChBase
[55:32]

ChCode
[31:0]

+ BaseAddr

((hash output +ChCode) & 0xffff>>(16-KeySHLz)) + ChBase:
C5EC3EARCH-RM REV 04

342 CHAPTER 6: TABLE LOOKUP UNIT
Chained Hash Data Entry Format
The chain hash data entry format uses the same format as PFX (Longest-Prefix Match).
Refer to “PFX (Longest-Prefix Match) Data Entry Format” on page 352.

Chained Hash Example

Figure 74 Chained Hash Ethernet Application Example

The application should be configured in the following manner to support IEEE 802.1Q
VLANs (Virtual Bridged LAN):

The key can consist of the VLAN and either MAC DA or MAC SA and other data. The
application uses a 96bit or greater key. This application performs separate lookups for
learning and egress port retrieval, but each lookup would be fast and not require VLAN to
FID conversion. This particular application is best for applications that require egress data
regularly, but use address port learning asynchronously.

Chained Hash Key Format:

VLAN using 16bits, Key_U1 [47:32] MAC DA or MAC SA using 48bits, Key_U2 [31:0] & Key_L1 [63:48]

VLAN Value

VLAN to FID
Index Table

FID Value

Value used to resolve the trie

Hash Table
Pointer to hash table
base, unique to this
FID value

Data entry

Hash

NOTE: Key_U1 [47:32] and Key_U2 [31:0] should be set to 0.
C5EC3EARCH-RM REV 04

Software Algorithms 343
Chained Index Figure 75 on page 343 shows the Chained Index state transitions and Table 100 on
page 343lists their details.

Figure 75 Chained Index Transition States

Table 100 Chained Index State Transition Details

STEP ACTION

1 Initial state is set to PFX based on the configuration registers. The configuration registers
hold a number that tells the TLU how many of the first few bits of the Key passed to it (up
to 16) to use to form the First Index Value. This value is then added to the Base Table
Address by the TLU, and the TLU reads the data slot (a 64bit word) from that location.
The data it reads is in the following format:

This is the format for a PFX Index entry. The TLU reads this information (previously
initialized and/or written to by software. The Type is either Index, or Fail. If the type is Fail
it transitions to the Fail state, otherwise it transitions to the Index state. If the type is not
set to Index, or Fail, the TLU reacts in a way inconsistent with this algorithm. The TLU
interprets it as a PFX type, and continues to perform a TLU lookup based on PFX
information.

2 If the Type is Fail, then no data is returned by the TLU.

PFX Index2

Data

3

5

PFX Index
2

1

Failure

4
Failure

Bit Position 63 60 59 56 31 0

Field Name Type BaseAddress Unused
C5EC3EARCH-RM REV 04

344 CHAPTER 6: TABLE LOOKUP UNIT
Refer to Figure 76 on page 345 for the Chained Index recommended memory
organization.

Figure 76 on page 345 shows how memory is laid out conceptually by the API. This is not
hardware imposed, but a recommended map that can be useful to explain how the
hardware works conceptually.

3 If the Type is Index, then the TLU uses the value of Size that it just read from the Index
TLU entry, and uses the next size+1 bits to form a Second Index Value. It then takes this
Second Index Value, and adds it to the Base Address stored in the entry it just read to
compute a new memory address, and then reads that entry. The TLU hardware then
reads this new PFX and interprets it the same way as in step 1, but software should
configure it to have a Type of either: a pointer to Data, or Fail. If the Type is a pointer to
Data, then the Base Address value is interpreted as a data pointer.

4 If the Type is Fail, then no data is returned by the TLU.

5 If the Type is Data, then the data is returned by the TLU.

Table 100 Chained Index State Transition Details (continued)

STEP ACTION
C5EC3EARCH-RM REV 04

Software Algorithms 345
Figure 76 Chained Index Recommended Memory Organization (Conceptually)

The Chained Index is another method for ATM circuit resolution, like a regular Index. Refer
to Figure 77 on page 346.

In ATM, a connection is uniquely identified by a combination of a Virtual Path Identifier
(VPI) + a Virtual Connection Identifier (VCI). This is a hierarchy where there can be a
number of VCIs that belong to a single VPI. For ATM, the Chained Index provides two (2)
functions:

Typical lookup
transitions

During the run time initialization API calls are
made to reserve a number of Second Index spaces
in the TLU SDRAM so that there is a pool of
Secondary Index Tables to allocate from at insert
time.

First Index data either
says to use a Second Index
Table starting at a programmed
Address, or to return a lookup
Failure.

Software Reserved

Base Address programed into Configuration
register for this
Physical Table ID. First Index Table

Second Index Table1

Among the reserved spaces, the API keeps track
of which Second Index Entries belong to First
Index Values so that find next works in
sequential key value order among the inserted
entries.

End of the memory space software reserved
for this table.

NOTE: Second Index entry is either a Fail,
or a Data Entry Address.

During the run time initialization API calls are
made to reserve a data entry pool space for data
entries to be allocated from.

Second Index Table2

Second Index Table3

Data Entry Pool

Software Reserved

Software Reserved

Software Reserved

Software Reserved

Key First Index Value

Second Index Value
C5EC3EARCH-RM REV 04

346 CHAPTER 6: TABLE LOOKUP UNIT
• A way to perform lookups on a combined VPI and VCI route for forwarding.

• A way to access each VCI within a given VPI group.

Therefore, Chained Index provides a means from the host side to send VPI + VCI to the TLU
and have that data record returned. This prevents having multiple tables.

Figure 77 Chained Index Block Diagram

Key Bit Stream

Key (Up to 112bits)

+ BaseAddr

Base Address
Index1 Sub-table

Index1 Value (1 to 16bits)

Index2 Sub-table

64bits

PFX Data

64bit PFX Data Entry Format

[63:60] =0 BitDepth
[59:56]

BaseAddr
[55:32] [31:0] =0

Index2 Value (1 to 16bits)

Link Address PFX Data
Index2

Data Sub-table

Data

64bit PFX Data Entry Format

[63:60] =1
BitDepth

[59:56]
BaseAddr

[55:32] [31:0] =0
C5EC3EARCH-RM REV 04

Software Algorithms 347
Chained Index Data Entry Format
The chain index data entry format uses the same format as PFX (Longest-Prefix Match).
Refer to “PFX (Longest-Prefix Match) Data Entry Format” on page 352.

Chained Index Example
For example, for a ATM application load VPI and the VCI. Up to 112bits could be used for
some other type of application. Refer to Figure 78 on page 347.

Figure 78 Chained Index ATM Application Example

The number of bits used for the VPI field or for the VCI field are not constants and can
vary from application to application.

Chained Index vs. Chained Hash
Either the Chained Index table type or a Chained Hash table type could be used to
perform a VPI/VCI lookup. In either case the data format would be the same (PFX-Data),
the only difference is the selected table type. The distinction between the two (2) types is
the relationship between cycle time versus memory resources. The two (2) cases are as
follows:

• Case 1: Using the Chained Index table type, takes one cycle to access 8bytes but
requires significantly more TLU memory to implement.

• Case 2: Using the Chained Hash table type, takes three cycles to access, but requires
less memory.

Key

VPI VCI

1 to 16bits

Programmable

Index1 Value

Use any key size

1 to 16bits

Programmable

Index2 Value

Padded bits
C5EC3EARCH-RM REV 04

348 CHAPTER 6: TABLE LOOKUP UNIT
PFX (Longest-Prefix
Match)

PFX (Longest-Prefix Match) tables are used for most-significant prefix match algorithms. For
example, in the case of searching for a 32bit IP address on a network, the PFX sub-table
would search using the specific 32bit address. However, if a match was not found on the
32bit search then the PFX sub-table would return a close match of 24bits (not necessarily
24bits). Therefore, the PFX compresses the routing tables down so you do not need to
know every host address on the network.

For example, consider a table with the following entries and depending on the lookup key
what is returned:

Table entries: (IPS / number of bits in the mask)

• A= 214.21.128.4/32

• B= 214.21.128/17

• C= 214.21/16

• D= 214/8

Lookups and returns:

• If the lookup key is 214.21.128.4, then key A is returned.

• If the lookup key is 214.21.130.5, then key B is returned.

• If the lookup key is 214.21.55.5, then key C is returned.

• If the lookup key is 214.44.55.5, then key D is returned.

• If the lookup key is 215.44.55.5, then a miss is returned.

The PFX (Longest-Prefix Match) data structure is a compressed trie with several
compression methods supported. The compression format used at each level of the trie is
encoded within the trie itself. The hardware engine (TLU) can decompress any of the
supported formats. Also, the build software (host via PCI or XP) determines dynamically
which compression method to use at each level of the trie. The PFX search procedure
always terminates with a match value for the search key. When a search key does not
match any prefix in the table, its search terminates with an associated-data that points to
a default route or no-match entry.

Figure 79 on page 349 shows the PFX (Longest-Prefix Match) state transitions and
Table 101 on page 349lists their details.
C5EC3EARCH-RM REV 04

Software Algorithms 349
Figure 79 PFX Transition States

Refer to Figure 80 on page 350 for the PFX recommended memory organization.

Figure 80 on page 350 shows how memory is laid out conceptually by the API. This is not
hardware imposed, but a recommended map that can be useful to explain how the
hardware works conceptually.

Table 101 PFX State Transition Details

STEP ACTION

1 Accesses into indexed sub-table, using MASK MSB’s of the key from the
Table_Configuration1 register. The results of this access is either: a pointer to associated
data, or a PFX table entry. The PFX table entry consists of:

• The base address of the next chunk (ChBase) that holds all the prefixes that are
extensions of the prefix from step #1.

• The number of bits of the key decoded to select an entry from the next chunk (that is,
log2 of the uncompressed chunk size), (KeySHLz).

• The compression format of the chunk (ChType).

• The summary code (ChCode) used to compute a random-access into the compressed
chunk.

2 • If the result of step #1 is ChType 1 (ActionVec), then ChBase points to the keys
associated data. Go to step #3.

• If the result of step #1 is ChType 2 then there is no match and a miss is returned.

For all other ChTypes, decode the next address, retrieve a new encoded entry and repeat
step #2.

3 Finally, dereference the associated data pointer.
NOTE: There is no compare step in the PFX trie search.

3

PFX
2

1

Failure
C5EC3EARCH-RM REV 04

350 CHAPTER 6: TABLE LOOKUP UNIT
Figure 80 PFX Recommended Memory Organization (Conceptually)

Typical lookup
transitions

During the run time initialization API calls are
made to reserve space for mapping information
in the TLU SDRAM so that there is a pool of
memory to allocate from at insert time.

The First Index reached either points to data,
or to return failure, or to the start of
another chunk of memory used to contain
table topological information in a
compressed format.

Software Reserved

Base Address programed into Configuration
register for this
Physical Table ID. PFX Initial Index Table

Compressed Topological Info.

End of the memory space software reserved
for this table.

During the run time initialization API calls are
made to reserve a data entry pool space for data
entries to be allocated from.

Data Entry Pool

Software Reserved

Software Reserved

Key First Index Value
C5EC3EARCH-RM REV 04

Software Algorithms 351
Figure 81 PFX Block Diagram

Key_U1 Key_U2

[47:32]

Key_L1

[31:0] [63:32] [31:0]

Key_L2

Mask (Table_Configuration1 register)

16bits Key 32bits (Optional)

PFX Data
Data

First Memory Access n Memory Accesses

PFX DataPfx =

32bits Key

64bit PFX Data Entry Format

ChType
[63:60]

KeySHLz
[59:56]

ChBase
[55:32]

ChCode
[31:0]

+ BaseAddr

(ChType, KeySHLz, ChCode, Key) + ChBase + BaseAddress:
C5EC3EARCH-RM REV 04

352 CHAPTER 6: TABLE LOOKUP UNIT
PFX (Longest-Prefix Match) Data Entry Format
The data entry format for PFX (Longest-Prefix Match) is described here:

Bit Position 63 60 59 56 55 32 31 0

Field Name ChType KeySHLz ChBase ChCode

FIELD NAME BIT POSITION DESCRIPTION

ChType 63:60 Chunk Type — Defines the type of compression used to encode
the chunk. Legal values are provided here:

KeySHLz 59:56 Key Shift Left — This is the number of key bits “consumed” by
the instruction minus one. Thus, the encoded value ranges from 0
to 15. This indicates how many positions to shift-left the key after
this stage. This is the log2 of the uncompressed size of the chunk.
Note: KeySHL= KeySHLz+1.

ChBase 55:32 Chunk Base Address — This is the beginning address where the
chunk is stored. Chunks are stored in contiguous locations
starting here.

ChCode 31:0 Chunk Summary Code — This allows the compressed chunk
contents to be decompressed without loss.
It also allows the search procedure to convert any desired offset in
the uncompressed chunk, into the appropriate offset in the
compressed chunk without having to read any of the compressed
chunk contents.
Note: The interpretation of this field is dependent on the ChType
[63:60].

ENCODED
VALUE

COMPRESSION
TYPE DETAILS

0 Initial See “Initial Chunk Type” on
page 353.

1 ActionVec See “ActionVec Chunk Type” on
page 353.

2 Fail (search
terminates)

See “Fail Chunk Type” on
page 353.

3 to 8 Proprietary N/A

9 Hash See “Hash Chunk Type” on
page 353.

10 to 15 Reserved N/A
C5EC3EARCH-RM REV 04

Software Algorithms 353
PFX (Longest-Prefix Match) Chunk Types Details
Each of the four (4) chunk types are described here:

Initial Chunk Type
The Initial chunk type indicates an uncompressed chunk. Typically, INIT is used for the root
node of a PFX trie. For example, the first SRAM access may be to an index sub-table of 64k
entries that fully decodes the high-order 16bits of the search key. The INIT chunk type
would be used, with the KeySHLz=15 and ChBase=0. The ChCode field is ignored.

ActionVec Chunk Type
The ActionVec chunk type indicates that a valid leaf (best matching prefix) has been
reached. The data word holds the 60bit associated data record to be fetched from the
table. This 60bit result may be the actual TLU return value, or a pointer that needs to be
dereferenced to yield a wider TLU return value.

Fail Chunk Type
The Fail chunk type indicates that a null leaf (no matching prefix) has been reached. The
data word is ignored and the TLU always returns a miss.

Hash Chunk Type
The Hash Chunk Type is used for Chained Hash table type operations.

To implement the chained hash, set the table type to PFX. The first memory access uses
the Key_U1 as an index into a table. A value is returned from the table lookup that has
base address, a pointer to a second table with a ChType=9, and a mask field (KeySHLz).
This second table is accessed using the base address specified + the hashed value of keys
Key_U2, (Key_L1 & Key_L2) masked with BitDepth.
C5EC3EARCH-RM REV 04

354 CHAPTER 6: TABLE LOOKUP UNIT
Figure 82 Hash Chunk Type Block Diagram

Flat Data Data tables contain the data associated with an entry. Data tables can be used as a
stand-alone table.

Address= BaseAddress + Index <<Log2 (Entry Size Slots)

A simple flat data table uses four (4) parameters that must be passed to the TLU. These
include: TableId, Base Address, Number of Bits from Key (Keybits) to use in address
generation (log2 of the number of entries), and Entry Size. The API is used to keep track of
four (4) items: which tables are in which TableId, which TableId’s are available, which
memory locations are already in use by other tables, and how much memory is needed by
the current table. Refer to Figure 83 on page 355.

Key_U1 Key_U2

[47:32]

Key_L1

[31:0] [63:32] [31:0]

Key_L2

+ Hash

16bits Key 32bits (Optional)

PFX Data Data

First Memory Access

Second
Memory
Access

ActionVec

32bits Key

64bit PFX Data Entry Format

ChType
[63:60]

KeySHL
[59:56]

ChBase
[55:32]

ChCode
[31:0]

+ BaseAddr

f(ChType=9) =

(((hash output +Chcode & (0xffff>>(15-KeySHLz>>1))) + Chbase:
C5EC3EARCH-RM REV 04

Software Algorithms 355
Figure 83 Flat Data Recommended Memory Organizational (Conceptually)

The API must mirror the lookup functionality of the hardware to perform inserts.

As this software algorithm provides a simple array to store data in and retrieve, it has no
concept of delete. Therefore, a insert call is needed to overwrite data using a delete sential
value. When the TLU is told to perform a lookup on a given key, regardless of the key size,
it only uses the key value stored in the Key_U2 portion of the key. Refer to Table 102 on
page 355.

Table 102 Key Format

Within the Key_U2 portion of the word, the hardware uses the least significant Keybits of
the word. Keybits are then shifted by the log of the Entry Size and added to the Base
Address to determine which address to read. The TLU reads the data and returns the data.
Because the hardware has no concept of memory maps, the TLU performs the calculation
and returns the data with no capacity for error checking or knowledge of what is
uninitialized data entries. It is a simple memory read. The API on the XP and host
processors provide bounds checking in software to help programers identify software
application flaws easier.

Flat Data Example
A common example of a stand-alone Data table would be the ATM VC table. Data can be
read and written to this table by an index. Typically the concatenated VPI/VCI makes up
the index. Another more specific example would be a implementing Partial CRC-32’s for

Bit Position 0 16 17 531 32 63 64 95 96 127

Field Name Padded Key_U1 Key_U2 Key_L1 Key_L2

Number Entries
Direction of
Increasing Address

Memory Map

Base Address

Entry Size

Value from Key

TLU's Response to a Lookup

Base Address

Calculated Address
C5EC3EARCH-RM REV 04

356 CHAPTER 6: TABLE LOOKUP UNIT
ATM Adaptation Layer-type 5 (AAL-5) reassembly that are stored in a Data table type
structure. Refer to “Partial CRC-32 Support” on page 400.

External The SRAM interface may alternatively be used to communicate with third party lookup
engines. One or more SRAM banks are replaced by dual ported memories accessible to
both the external lookup engine and the TLU. This memory serves as go-between for the
two (2) devices. An external lookup table is constructed in at least one (1) of the shared
memories. The table contains one (1) or more entries. Each entry must comply with the
“external table interface format”. These entries serve as mailboxes to synchronize data
transfer between the two (2) devices.

When a Find or Findr lookup command is used to access the external table, the least
significant 24 bits of the Key (32 or 48 bit keys only) are used to index the appropriate
entry. The TLU then proceeds to continuously poll the entry until the READY field bit [62] is
set by the external lookup engine. The TLU then checks the contents of the HIT field bit
[63], if set to one (1), the TLU returns the appropriate lookup data, if set to zero (0), a
lookup miss error (type 1) is returned.

The TLU polls for the READY field bit [62] assertion for up to 255 times before quitting and
returning a watchdog time (WDT) error (type 2).

Figure 84 External Table Interface Format

Bit Position 63 62 61 24 23 0

Field Name HIT READY User Defined IDX

TLU
External
Lookup
Engine

Index
Index
Index

Bank Replaced
with Dual Port

Dual Port SRAM

64bits
C5EC3EARCH-RM REV 04

TLU Commands Overview 357
TLU Commands Overview The following section describes the eleven (11) commands used to control the TLU. These
commands are sent to the TLU via the Ring Bus. Refer to Table 103 on page 357 for a list of
the TLU commands with their parameters, command ID, returned data, and function.

Table 103 TLU Commands

COMMAND
(PARAMETERS) COMMAND ID

RETURNED
DATA FUNCTION

Write
(VTBL#, IDX, MSK,
DATA, OFF, LEN)

0x5 None Write data into a virtual table at index
plus offset.

Read
(VTB#, IDX, OFF, LEN

0x4 Data Reads data from a virtual table at
index plus offset. Sets Ring Bus Error
Flag if key is not found.

Find
(VTBL#, KEY)

0x9 Physical Table
Value, or Error
with Index

Finds a key using VTBL#. Returns index
of data. Sets Ring Bus Error Flag if key
is not found.

Findw
(VTBL#, KEY, DATA,
OFF, LEN)

0x8 Physical Table
Value, or Error
with Index

Writes data into a table using a key.
Sets Ring Bus Error Flag if the key is
not found. Returns Index if found.

Findr
(VTBL#, KEY, DATA,
OFF, LEN)

0xc to 0xf Data, or Error
with Index

Reads length double words of data
from a vtable# using a key at offset
double words. Sets Ring Bus Error Flag
if the key is not found.

XOR
(VTBL#, IDX,
DATA/PCRC, OFF, MSK,
LAST)

0x7 None, or CRC
in CRC mode.

XORs up to a 32bit value to index plus
offset.
Note: A special CRC mode exists for
CRC calculations.

Add
(VTBL#, IDX, DATA,
OFF, MSK)

0x6 None Adds up to a 32bit value to index plus
offset.

WriteReg
(ADDR, DATA)

0x2 None Write data to TLU register at ADDR.

ReadReg
(ADDR, DATA)

0x3 Data Read data from TLU register at ADDR.

Echo
(DATA)

0x1 Data Return data from TLU. For test
purposes.

NOP
()

0x0 None Inserts a NOP into the TLU pipe. Used
to skip an SRAM access during that
cycle.
C5EC3EARCH-RM REV 04

358 CHAPTER 6: TABLE LOOKUP UNIT
A Ring Bus overflow error message is provided to indicate when a Ring Bus input FIFO is
full. When a destination node (CPs, XP, or FP) is busy, the Ring Bus node sends an error
message in the message FIFO back to the source node (CPs, XP or FP). The source node
can then decide whether to resend the message or generate an error condition.

Only errors for messages are generated. No errors are generated for responses. Responses
stay on the Ring Bus.

TLU Command Parameters The TLU command parameters along with their functions are listed in Table 104 on
page 358.

Table 104 TLU Command Parameters

TLU
COMMAND
PARAMETER
FIELD

TLU COMMAND
PARAMETER
NAME FUNCTION

VTBL# Virtual table
number

Virtual tables are mapped to a physical tables using the
Virtural_Table_Configuration register. The actual physical table
(TBL#) accessed is translated using the
Virtual_Table_Configuration register.

IDX Table index
number

The index number points to a specific entire in a table. The
index is used by the Read, Write, Add, and XOR commands. It is a
24bit value. An SRAM address is generated by multiplying the
index with the size field programmed in the
Table_Configuration1 register.

OFF Offset The offset in 8Byte increments into the table entry. The legal
range= 0 to 127. The actual SRAM address is given by:

(base_address [table# [vtable#]] * 256) + (index << size
[table# [vtable#]]) + offset

LEN Length The number of 8Byte words to read. Valid values are:

• 0 for 8Bytes

• 1 for 16Bytes

• 2 for 32Bytes

MSK Mask Byte mask for Writes and Arithmetic Logic Unit (ALU)
operations. Each bit corresponds to one (1) Byte.

KEY Key The key is used for all find commands (Find, Findw, Findr), to
generate an index using the VTBL#. The TLU supports four (4)
different Key sizes: 32, 48, 96 and 112bit. In addition,
intermediate key sizes are supported by masking unused bits
to zero.
C5EC3EARCH-RM REV 04

TLU Commands Overview 359
CRC parameter is only used in the CRC Mode associated with the XOR command. Refer to
“XOR Command” on page 372.

Detail TLU Commands Each of the eleven (11) TLU commands are described in the following section along with
its purpose, command ID, fields, bit positions. Also provided, where applicable are the
command’s data alignment rules, returned data and error types.

Write Command
The Write command is used to write data to the TLU’s SRAM. Two (2) types of writes are
available:

• The first type, is a masked write from one (1) to two (2) bytes in length. The bytes are
selected using the MSK field bits [31:24]. Bytes must be contiguous and aligned on
word boundaries (that is, a mask of 0x06 is illegal, while 0x03 and 0xc0 are both legal
mask values). The write data is contained in the DATA field bits [47:32] in the first
control word.

• The second type, uses consecutive Ring Bus slots to write to consecutive SRAM
locations. Since the write command occupies the first Ring Bus slot, up to three (3)
SRAM locations may be written consecutively. The TLU uses the value in the Ring Bus
length field to determine the actual number of SRAM location to write. For two-slot
writes, the mask can be set at either 0x0f or 0xf0 to write 32bits to the SRAM; or set to
0xff to write 64bits. For four-slot writes the mask field should be set to 0xff.

ADDR Address Address of a register to write or read.

DATA Data Data refers to the DATA field in each individual TLU command
format. The purpose of the data field varies based on the TLU
command. Therefore, for the specific definition of the DATA
field refer to the particular TLU command format.

CRC CRC enable This enables the CRC mode.

Table 104 TLU Command Parameters (continued)

TLU
COMMAND
PARAMETER
FIELD

TLU COMMAND
PARAMETER
NAME FUNCTION
C5EC3EARCH-RM REV 04

360 CHAPTER 6: TABLE LOOKUP UNIT
Data written with masks set to anything other than 0xff generate a read-modify write
cycle. This means that a read occurs and then six clocks later the value is written back to
the SRAM. Since this operation is not locked, another process could be executing a
read-modify write on the same address resulting in corrupted data.

Write Command Format
Purpose Writes data to the TLU’s SRAM.

Command ID 0x5

Bit Position 63 60 59 55 54 48 47 32 31 24 23 0

Field Name CMD VTBL# OFF DATA MSK IDX

Optional TABLE DATA

Optional TABLE DATA

Optional TABLE DATA

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x5 for Write.

VTBL# 59:55 Virtual Table Number — Identifies a Virtual table to use for the
lookup. Legal range= 0 to 31.

OFF 54:48 Offset — Offset (in 8Byte increments) into table for read/write.
Legal range= 0 to 127.

DATA 47:32 Data — Data field for 8 or 16bit (single bus slot) writes. MSK
field determines data alignment in SRAM.

MSK 31:24 Write Mask — Byte mask for single slot writes (8Bytes). The
mask is also used for two-slot and four-slot writes.

IDX 23:0 Index — Designates a table entry in a given TBL#.

TABLE DATA 63:0 Table Data — Data to write to SRAM. If these fields are present,
then the Data field bits [47: 32] in the first slot is ignored. Set
MSK field bits [31:24] to 0xff.
C5EC3EARCH-RM REV 04

TLU Commands Overview 361
Write Command Data Alignment Rules
• 8bit writes are placed in the DATA field of the first slot and aligned to a byte boundary.

– For masks of 0x01, 0x04, 0x10, and 0x40 data is stuffed into DATA field bits [39:32] of
slot1.

– For masks of 0x02, 0x08, 0x20, 0x80 data is stuffed into DATA field bits [47:40].

• 16bit writes are also placed in the DATA field bits [47:32] of the first slot.

• 32bit write data is stuffed into TABLE DATA field bits [31:0] of the second slot.

• 64bit write data is stuffed into TABLE DATA field bits [63:0] of the second slot.

• 192bit write data is stuffed into TABLE DATA field bits [63:0] of the second, third, and
fourth slot.

Write Command Returned Data
The Write command does not return any data.

Write Command Error Types
The Write command does not return any errors.
C5EC3EARCH-RM REV 04

362 CHAPTER 6: TABLE LOOKUP UNIT
Read Command
The Read command is used to read data from the TLU SRAM.

Read Command Format
.

Purpose Read data from the TLU’s SRAM.

Command ID 0x4

Bit Position 63 60 59 55 54 48 47 34 33 32 31 24 23 0

Field Name CMD VTBL# OFF Reserved LEN Reserved IDX

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x4 for Read.

VTBL# 59:55 Virtual Table Number — Identifies a Virtual table to use for the
lookup. Legal range= 0 to 31.

OFF 54:48 Offset — Offset (in 8Byte increments) into table for write. Legal
range= 0 to 127.

Reserved 47:34 Read as zero.

LEN 33:32 Length — Tells the TLU how many SRAM locations to access. All
SRAM reads are in multiples of 8Bytes. Number of 8Byte double
words to read - 1. Legal ranges are detailed here:

Reserved 31:24 Read as zero.

IDX 23:0 Index — Designates a table entry in a given TBL#.

ENCODED VALUE ACTUAL LENGTH

0 1

1 2

2 Illegal (Not supported)

3 4
C5EC3EARCH-RM REV 04

TLU Commands Overview 363
Read Command Data Alignment Rules
The Read command does not have these rules.

Read Command Returned Data
The Read command returns the requested data to the calling function (CP or XP). If index
or offset is out of range, the returned data is undefined.

Read Command Error Types
If a parity mismatch is found, then the Ring Bus error bit is set to one (1), the data field bits
[15:0] are set to 0x3, and bits [55:32] are set with the address of the parity error.
C5EC3EARCH-RM REV 04

364 CHAPTER 6: TABLE LOOKUP UNIT
Find Command
The Find command attempts to locate a key in a table using a preprogrammed table as
specified by VTBL#.

Prior to executing this command, ensure the Table_Configuration1 register is properly
setup. If not the Find command returns a indeterminate value.

Find Command Format
Purpose Find an index and a table, given a key.

Command ID 0x9

Bit Position 63 60 59 55 54 48 47 32 31 0

Field Name CMD VTBL# Rsvd KEY_U1 KEY_U2

Optional KEY_L1 KEY_L2

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x9 for Find.

VTBL# 59:55 Virtual Table Number — Identifies a Virtual table to use for the
lookup. Legal range= 0 to 31.

Reserved 54:48 Read as zero.

KEY_U1 47:32 Key Upper 1 — Upper 16bits of a 48bit or 112bit key.

KEY_U2 31:0 Key Upper 2 — All 32bits of a 32bit key; lower 32bits of 48bit
key; upper 32bits of 96bit key; upper-middle 32bits of 112bit key.

KEY_L1 63:32 Key Lower 1 — Middle 32bits of 96bit key; lower-middle 32bits
of 112bit key.

KEY_L2 31:0 Key Lower 2 — Lower 32bits of 96bit key or 112bit key.
C5EC3EARCH-RM REV 04

TLU Commands Overview 365
Find Command Data Alignment Rules
The Find command does not have these rules.

Find Command Returned Data
• The Find command returns a table value and an index. The data is formatted with the

index in the KEY_U2 field bits [31:0] and table in KEY_U1 field bits [35:32].

• If the key is not found, then undetermined data is returned to the calling function (CP
or XP) and the Ring Bus error bit is set to one (1).

Find Command Error Types
• If a Find command takes more than 255 SRAM accesses, the Find command times out,

the Ring Bus error bit is set to one (1), and the data field bits [31:0] is set to 0x2.

– In general, a time out error occurs while traversing a tree. Typically, this error occurs
because the table data is corrupted as a result of improper implementation of the
application software. For more details, refer to the C-Ware API User Guide.

• If the key is not found, then the Ring Bus error bit is set to one (1), the data field bits
[31:0] are set to 0x1, and bits [55:32] are set with the initial index.

The returned initial index is useful in hash tables since the initial index is simply a hash of
the key that has been masked off according to the settings in the Table_Configuration1
register.

• If a parity mismatch is found, then the Ring Bus error bit is set to one (1), the data field
bits [15:0] are set to 0x3, and bits [55:32] are set with the address of the parity error.
C5EC3EARCH-RM REV 04

366 CHAPTER 6: TABLE LOOKUP UNIT
Findw Command
The Findw command performs a Find followed by Write. As with a Find command, it
locates a key in a table using a preprogrammed table as specified by VTBL#.

Prior to executing this command, ensure the Table_Configuration1 register is properly
setup. If not the Findw command returns a indeterminate value.

Findw Command Format
The Findw has a similar format to Write, except it can only write 8Bytes of data, and does
not support write masks.

Findw 2-slot format:

Findw 4-slot format:

Purpose Find an index and a table, given a key and write data to the TLU’s SRAM.
Note: The Findw accommodates both a 2-slot and 4-slot format, as
shown here.

Command ID 0x8

Bit Position 63 60 59 55 54 48 47 32 31 0

Field Name CMD VTBL# OFF KEY_U1 KEY_U2

Field Name TABLE DATA

Bit Position 63 60 59 55 54 48 47 32 31 0

Field Name CMD VTBL# OFF KEY_U1 KEY_U2

Field Name KEY_L1 KEY_L2

Field Name TABLE DATA

Optional DUMMY DATA

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x8 for Findw.

VTBL# 59:55 Virtual Table Number — Identifies a Virtual table to use for
the lookup. Legal range= 0 to 31.

OFF 54:48 Offset — Offset (in 8Byte increments) into table for write.
Legal range= 0 to 127.

KEY_U1 47:32 Key Upper 1 — Upper 16bits of a 48bit or 112bit key.
C5EC3EARCH-RM REV 04

TLU Commands Overview 367
Findw Command Data Alignment Rules
The Findw command does not have these rules.

Findw Command Returned Data
• The Findw command returns a table value and an index. The data is formatted with the

index in the KEY_U2 field bits [31:0] and table in KEY_U1 field bits [35:32].

• If the key is not found, then undetermined data is returned to the calling function (CP
or XP) and the Ring Bus error bit is set to one (1).

Findw Command Error Types
• If the Findw command takes more than 255 SRAM accesses, the Findw command times

out, the Ring Bus error bit is set to one (1), and the data field bits [31:0] is set to 0x2.

– In general, a time out error occurs while traversing a tree. Typically, this error occurs
because the table data is corrupted as a result of improper implementation of the
application software. For more details, refer to the C-Ware API User Guide.

• If the key is not found, then the Ring Bus error bit is set to one (1), the data field bits
[31:0] are set to 0x1, and bits [55:32] are set with the initial index.

The returned initial index is useful in hash tables since the initial index is simply a hash of
the key that has been masked off according to the settings in the Table_Configuration1
register.

If a parity mismatch is found, then the Ring Bus error bit is set to one (1), the data field bits
[15:0] are set to 0x3, and bits [55:32] are set with the address of the parity error.

KEY_U2 31:0 Key Upper 2 — All 32bits of a 32bit key; lower 32bits of 48bit
key; upper 32bits of 96bit key; upper-middle 32bits of 112bit
key.

KEY_L1 63:32 Key Lower 1 — Middle 32bits of 96bit key; lower-middle
32bits of 112bit key.

KEY_L2 31:0 Key Lower 2 — Lower 32bits of 96bit key or 112bits key.

TABLE DATA 63:0 Table Data — Data to write to SRAM.

DUMMY DATA 63:0 Dummy Data — Dummy field sent when long keys (>48bits)
are used.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

368 CHAPTER 6: TABLE LOOKUP UNIT
Findr Command
The Findr command performs a Find on a key and then a Read. As with a the Find
command, it locates a key in a table using a preprogrammed table as specified by VTBL#.

Prior to executing this command, ensure the Table_Configuration1 register is properly
setup. If not the Findr command returns a indeterminate value.

Findr Command Format
Purpose Find an index and a table, given a key and read data from the TLU’s

SRAM.

Command ID 0xc - 0xf

Bit Position 63 62 61 60 59 55 54 48 47 32 31 0

Field Name CMD LEN VTBL# OFF KEY_U1 KEY_U2

Optional KEY_L1 KEY_L2

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:62 Command — Set to 0xc - 0xf for Findr.
Note: Command field is only 2bits.

LEN 61:60 Length — Tells the TLU how many SRAM locations to access. All
SRAM reads are in multiples of 8Bytes. Number of 8Byte double
words to read - 1. Legal ranges are detailed here:

VTBL# 59:55 Virtual Table Number — Identifies a Virtual table to use for the
lookup. Legal range= 0 to 31.

OFF 54:48 Offset — Offset (in 8Byte increments) into table entry for read.
Legal range= 0 to 127.

KEY_U1 47:32 Key Upper 1 — Upper 16bits of a 48bit or 112bit key.

ENCODED VALUE ACTUAL LENGTH

0 1

1 2

2 Illegal (Not supported)

3 4
C5EC3EARCH-RM REV 04

TLU Commands Overview 369
Findr Command Data Alignment Rules
The Findr command does not have these rules.

Findr Command Returned Data
The Findr command returns the requested data to the calling function (CP or XP). If offset
is out-of-range, the returned data is undefined.

Findr Command Error Types
• If a Findr command takes more than 255 SRAM accesses, the command times out, the

Ring Bus error bit is set to one (1), and the data field bits [31:0] is set to 0x2.

– In general, a time out error occurs while traversing a tree. Typically, this error occurs
because the table data is corrupted as a result of improper implementation of the
application software. For more details, refer to the C-Ware API User Guide.

• If the key is not found, then the Ring Bus error bit is set to one (1), the data field bits
[31:0] are set to 0x1, and bits [55:32] are set with the initial index.

The returned initial index is useful in hash tables since the initial index is simply a hash of
the key that has been masked off according to the settings in the Table_Configuration1
register.

• If a parity mismatch is found, then the Ring Bus error bit is set to one (1), the data field
bits [15:0] are set to 0x3, and bits [55:32] are set with the address of the parity error.

KEY_U2 31:0 Key Upper 2 — All 32bits of a 32bit key; lower 32bits of 48bit
key; upper 32bits of 96bit key; upper-middle 32bits of 112bit
key.

KEY_L1 63:32 Key Lower 1 — Middle 32bits of 96bit key; lower-middle 32bits
of 112bit key.

KEY_L2 31:0 Key Lower 2 — Lower 32bits of 96bit key or 112bit key.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

370 CHAPTER 6: TABLE LOOKUP UNIT
Add Command
The Add command behaves similarly to the Write command, except that data is added to
the existing data in the table. Add supports 8, 16, and 32bit add-ends.

• For 8 and 16bit add-ends, the data is packed in the DATA field bits [47:32] of the first
register. The MSK field bits [31:24] is used to identify the correct byte lane of the target
add.

• For 32bit add-ends, the data is located in the lower 32bits of the ADD DATA field bits
[31:0] in the optional register. The MSK field [31:24] is used to indicate if the target is
aligned in the upper half of the SRAM (0xf0) or the lower half (0x0f) of the SRAM. To
read the result of the Add, issue a Read at least four (4) clocks after the Add has been
issued.

The Add command generates a read-modify-write cycle. This means that a read occurs
and then six (6) clocks later the value is written back to the SRAM. This operation
currently is not locked. Another process could be executing a read-modify-write on the
same address resulting in corrupted data.

Add Command Format
Purpose Adds data to a Table Entry.

Command ID 0x6

Bit Position 63 60 59 55 54 48 47 32 31 24 23 0

Field Name CMD VTBL# OFF DATA MSK IDX

Optional Reserved ADD DATA

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x6 for Add.

VTBL# 59:55 Virtual Table Number — Identifies a Virtual table to use for the
lookup. Legal range= 0 to 31.

OFF 54:48 Offset — Offset (in 8Byte increments) into table entry for write.
Legal range= 0 to 127.

DATA 47:32 Data — Data field for 8 or 16bit (single bus slot) writes. MSK field
determines data alignment in SRAM.

MSK 31:24 Byte Mask — Byte mask for single slot writes (8Bytes).

IDX 23:0 Index — Designates a table entry in a given TBL#.
C5EC3EARCH-RM REV 04

TLU Commands Overview 371
Add Command Data Alignment Rules
• 8bit writes are placed in the DATA field bits [47:32] of the first slot and aligned to a byte

boundary.

– For masks of 0x01, 0x04, 0x10, and 0x40 data is stuffed into DATA field bits [39:32] of
slot1.

– For masks of 0x02, 0x08, 0x20, and 0x80 data is stuffed into DATA field bits [47:40].

• 16bit writes are placed in the DATA field bits [47:32] of the first slot.

• 32bit write data is stuffed into the ADD DATA field bits [31:0] of the optional register.

Add Command Returned Data
The Add command does not return any data.

Add Command Error Types
The Add command does not return any errors.

Reserved 63:32 Read as zero.

ADD DATA 31:0 Additional Data — Optional Data field for 32bit adds. MSK field
bits [31:24] determines data alignment in SRAM.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

372 CHAPTER 6: TABLE LOOKUP UNIT
XOR Command
The XOR command behaves similarly to the Add command when CRC field bits [56:55] is
set to 0x0. XOR supports 8, 16, and 32bit operands.

If the CRC field bits [56:55] are set to non-zero, 0x1, then the XOR command functions
differently. Refer to “CRC Mode (Using the Non-zero XOR Command Options)” on
page 374.

XOR Command Format
Purpose Performs partial XOR operation on table data.

Note: The XOR command provides an alternative CRC Mode function
using the available CRC field non-zero options.

Command ID 0x7

Bit Position 63 60 59 58 57 55 54 48 47 32 31 24 23 0

Field Name CMD CRC VTBL# OFF DATA MSK IDX

Optional Reserved PCRC or XOR DATA

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x7 for XOR operation.

CRC 59:58 CRC — This entry is the CRC as detailed here:

VTBL# 57:55 Virtual Table Number — Identifies a Virtual table to use for the
lookup. Legal range= 0 to 8.
Note: XOR command is restricted to the first 8 tables.

OFF 54:48 Offset — Offset (in 8Byte increments) into table for write. Legal
range= 0 to 127.

ENCODED
VALUE FUNCTION

00 XOR

01 CRC (non-last)

10 CRC Tx Last
Note: This ensures that the Ring Bus error
bit is not set.

11 CRC Rx Last
C5EC3EARCH-RM REV 04

TLU Commands Overview 373
XOR Command Data Alignment Rules
• 32bit write data is stuffed into bits [31:0] in the optional register, PCRC or XOR DATA

field bits [31:0].

• 16bit writes are placed in the DATA field bits [47:32] of the first slot.

• 8bit writes are placed in the DATA field bits [47:32] of the first slot and aligned to a byte
boundary.

– So for masks of 0x01, 0x04, 0x10, and 0x40 data is stuffed into DATA field bits [39:32]
of slot1.

– For masks of 0x02, 0x08, 0x20, and 0x80 data is stuffed into DATA field bits [47:40].

XOR Command Returned Data
The XOR command does not return any data.

XOR Command Error Types
XOR command does not return any errors.

DATA 47:32 Data — The data to be XORed when using 1-Slot. Mask
determines destination. The TLU always initializes this field to all
zeros at the end of the CRC calculation.

MSK 31:24 Byte Mask — Byte mask for single slot writes (8Bytes)

IDX 23:0 Index — Designates a table entry in a given TBL#.

Reserved 63:32 Read as zero.

PCRC 31:0 Partial CRC — Generated by the SDP. This value is XORed with the
value at VTBL#, IDX, and OFF.

XOR DATA XOR Data — Optional data for 32bit XORs.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

374 CHAPTER 6: TABLE LOOKUP UNIT
CRC Mode (Using the Non-zero XOR Command Options)
The CRC Mode also uses the same XOR command format. However, if the CRC field bits
[56:55] are set to non-zero, 0x1, then the XOR command functions differently. When a
non-zero value is selected three (3) CRC modes are available. Refer to Table 105 on
page 374.

The TLU expects the target data to be in the format as described in “Partial CRC-32
Support” on page 400. Refer to “Partial CRC-32 Support” on page 400 and this section for
a better understanding of the XOR command CRC Mode functions.

After a CRC Mode has been executed and completed, either a CRC Tx Last (10) or CRC Rx
Last (11). Their data is located in the DATA field bits [47:32] in the XOR command format,
and are transferred to the CRC_Len field bits [47:32] in the Partial CRC-32 Data Entry
Format. The DATA field [47:32] (16bits) should hold a zero (0) for CRC Tx Last (10),
whereas, it should hold a one (1) for CRC Rx Last (11). The DATA field bits [47:32] value is
transferred to the CRC_Len field bits [47:32] which is used to reset the cell counter, that is,
to either a zero (0) or a one (1). Refer to “Partial CRC-32 Support” on page 400.

Table 105 Non-zero CRC Modes, Their Names and Parity Error Status

ENCODED VALUE FUNCTION NAME PARITY ERROR STATUS

00 XOR No parity error

01 CRC (non-last)

10 CRC TX Last Potential for parity error

11 CRC Rx Last

Table 106 Non-zero CRC Modes and Their Functions

ENCODED
VALUE/
NAME FUNCTION DETAILS

01/CRC
(Non-last)

If set to 01,then the PCRC optional field bits [31:0] is XORed with the data at index and
offset. CRC_Len field bits [47:32] of the Partial CRC-32 Data Entry Format is
incremented by one (1). Refer to “Partial CRC-32 Data Entry Format” on page 401.

10/CRC
Tx Last

If set to 10, then PCRC field bits [31:0] is XORed as above except, the data is not
written back to SRAM. Instead, a 12bit index is generated from the upper 12bits of
CRC_Len field bits [47:32].

11/CRC
Rx Last

If set to 11, then PCRC field bits [31:0] is XORed as above except, the data is not
written back to SRAM. Instead, a 12bit index is generated from the upper 12bits of
CRC_Len field bits [47:32].
C5EC3EARCH-RM REV 04

TLU Commands Overview 375
CRC Mode Flow
The generated 12bit index, resulting from either a CRC Tx Last (10) or CRC Rx Last (11), is
used to access the Partial CRC table. The Partial CRC table is a 4K table that is used to
convert from CRC-32 to FCS or from FCS to CRC-32, starting at the
CRC-32_FCS_Correction_Table_Base_Address register. The data from this table is rotated
and XORed up to 16 times depending on the bottom four (4) bits of the CRC_Len field bits
[47:32] of the Partial CRC-32 Data Entry Format and finally XORed with the PCRC field bits
[31:0].

For CRC Rx Last (11) only, t he final value is compared with CRC 32_Checkvalue register bits
[31:0]. Next, the TLU returns the data in the CRC data structure with the Ring Bus error flag
set to one (1) to indicate the status of the compare.

For both the CRC Tx Last (10) and CRC Rx Last (11), the TLU resets the PCRC field bits [31:0]
to zero (0).

The XOR DATA field bits [47:32] are copied to the CRC_Len field bits [47:32] in the SRAM
entry.

If CRC field bits [56:55] are set to non-zero, then MSK field bits [31:24] must be set to 0x0f.

CRC Mode Data Alignment Rules
The alternative XOR function does not have these rules.

CRC Mode Returned Data
• For CRC (non-last) (01), does not return any data.

• For CRC Tx Last (10), the returned value is the actual (Full) CRC calculation. The CRC is loaded
in bits [31:0] and the length is in bits [47:32].

• For CRC Rx Last (11), returns: the calculated CRC is in bits [47:16], the cell length is in
bits [63:48] and a pass code of zero (0) in bits [15:0].

CRC Mode Error Types
• For CRC Rx Last (11) only:

– If the calculated CRC does not equal the CRC32_Checkvalue register, then the Ring
Bus error bit is set to one (1) and bits [15:0] are set to one (1).
C5EC3EARCH-RM REV 04

376 CHAPTER 6: TABLE LOOKUP UNIT
CRC Mode Parity Error
• For both CRC Tx Last (10) and CRC Rx Last (11):

– Reads to the TLU that generate a parity error return with the error bit set to one (1)
and the error code bits [15:0] set to three (3). Parity checking is disabled for read
modify write operations. Parity errors indicate an error in the FCS Correction table.
C5EC3EARCH-RM REV 04

TLU Commands Overview 377
Write Register Command
The WriteReg command writes data to the register at index.

WriteReg Command Format

WriteReg Command Data Alignment Rules
All registers are 32 bits.

WriteReg Command Returned Data
The WriteReg command does not return any data.

WriteReg Command Error Types
The WriteReg command does not return any errors.

Purpose Write data to a Register.

Command ID 0x2

Bit Position 63 60 59 49 48 47 32 31 0

Field Name CMD Reserved FLUSH ADDR Data

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x2 for Write Register command.

Reserved 59:49 Read as zero.

FLUSH 48 Flush — If set during a register write, then the TLU stalls until the
pipe is empty before updating the register. This bit MAY need to
be set if switching virtual tables on the fly.
Note: Using this bit significantly slows down the TLU.

ADDR 47:32 Address — Address of register to write.

Data 31:0 Write data.
C5EC3EARCH-RM REV 04

378 CHAPTER 6: TABLE LOOKUP UNIT
Read Register Command
The ReadReg command reads a register at an address.

ReadReg Command Format

ReadReg Command Data Alignment Rules
All registers are 32 bits.

ReadReg Command Returned Data
The ReadReg command returns data and returns the value of the register in the lower
32bits of the Ring Bus returned data, while the upper 32bits are undefined.

ReadReg Command Error Types
The ReadReg command does not return any errors.

Purpose Reads data from a Register.

Command ID 0x3

Bit Position 63 60 59 48 47 32 31 0

Field Name CMD Reserved ADDR Reserved

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x3 for a Read Register command.

Reserved 59:48 Read as zero.

ADDR 47:32 Address — Address of register to read.

Reserved 31:0 Read as zero.
C5EC3EARCH-RM REV 04

TLU Commands Overview 379
Echo Command
The Echo command “echoes” the input command and returns the input data to the
output. The length of the returned data is always 8Bytes.

Echo Command Format

Echo Command Data Alignment Rules
The Echo command does not have these rules.

Echo Command Returned Data
The Echo command does not return any data.

Echo Command Error Types
The Echo command does not return any errors.

Purpose Copy the input command to the output.

Command ID 0x1

Bit Position 63 60 59 32 31 0

Field Name CMD DATA_U1 DATA_U2

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:60 Command — Set to 0x1 for the Echo command.

DATA_U1 59:32 Data Upper 1 — Data to echo.

DATA_U2 31:0 Data Upper 2 — Data to echo.
C5EC3EARCH-RM REV 04

380 CHAPTER 6: TABLE LOOKUP UNIT
No-Operation (NOP) Command
The NOP command inserts an empty slot into the TLU control pipe, causing the TLU to
skip an SRAM access during that cycle.

Data Alignment Rules for NOP Commands
The NOP command does not have these rules.

Returned Data for NOP Commands
The NOP command does not return any data.

Error Types for NOP Commands
The NOP command does not return any errors.

Purpose Insert an empty slot into the TLU pipeline.

Command ID 0x0

Bit Position 63 60 59 0

Field Name CMD Reserved

FIELD NAME BIT POSITION DESCRIPTION

CMD 63:61 Command — Set to 0x0 for NOP.

Reserved 59:0 Read as zero.
C5EC3EARCH-RM REV 04

TLU Table Mapping 381
TLU Table Mapping The TLU uses virtual table numbers (VTBL#) to access physical tables (TBL#). The TLU has
thirty-two (32) virtual tables. These virtual tables are mapped to physical tables using the
Virtual_Table_Configuration register. Each virtual table can be mapped to anyone of the
thirty-two (32) physical tables. This provides the ability to change the virtual table to
physical table mapping on the fly.

In addition, virtual tables allow you to build and update one (1) copy of a topology table in
the TLU while another table is being used by the forwarding path for lookups. The TLU can
switch between these two (2) tables simply by adjusting the value of the
Virtual_Table_Configuration register to point to the new table. This technique is called hot
swapping of tables.

Hot swapping can also be used in two (2) other ways:

• To swap a new table in for an old table if the update would create a temporary
corrupted table.

• To swap a new table for other reasons. For example, seemlessly switching to a newer,
larger table when one grows too big.

Mapping Virtual Tables to
Physical Tables

The Virtual_Table_Configuration register controls the mapping of virtual tables to the
physical tables. By changing the value of the TBL# field in the Virtual_Table_Configuration
register, the application can start performing its lookups in the new table as soon as the
new value is written. The Virtual_Table_Configuration register is written to using the TLU
WriteReg (0x2) command.

Ensure the WriteReg command’s FLUSH field bit [48] is set. This guarantees that all table
lookups in progress are completed before changing the virtual to physical table
mapping.

Figure 85 on page 382 shows an example where there are two (2) copies of the Key table:

• One that is actively being used in the forwarding process

• The other is being populated by an application running on the XP or an external host
C5EC3EARCH-RM REV 04

382 CHAPTER 6: TABLE LOOKUP UNIT
Figure 85 Example of Two Copies of a Table

Original table

New table

HTK - Table 12

HTK - Table 13

(in use while “original”
table is being swapped)

(currently being swapped)

Table Number

Virtual Actual

5 5

7 6

12 12

12 13
C5EC3EARCH-RM REV 04

TLU Configuration and Status Registers 383
TLU Configuration and
Status Registers

TLU registers are 32bits wide, are accessed through the Ring Bus, and are addressed with a
16bit address. The TLU supports thirty-two (32) tables. Tables are numbered from (0 to 31).

For every table Id there is an associated configuration register. There are thirty-two (32)
configuration registers (numbered from (0 to31)) and thirty-two (32) virtual table
registers (also numbered from (0 to31)).

For TLU registers ≥ 0x100, the least significant byte defines the table number (TBL#) for the
associated register. For example, to write the Table _Configuration1 register for TBL#6, the
register address would be 0x206.

TLU Registers In general, the TLU configuration registers:

• Set the base address.

• Select the initial format.

• Calculates the initial address from a key.

Specifically, seven (7) registers are used to set up the TLU’s virtual tables. The registers are
used for three (3) purposes: CRC-32 mode operation, collecting TLU statistics, and
configuration of the tables.

Table 107 TLU Registers

TLU REGISTER
TYPE REGISTER FUNCTION SPECIFIC REGISTER DETAILS

CRC-32 Mode Compares the final CRC-32 checksums. See “CRC-32_Checkvalue Register”
on page 384

Contains base address of 2k Entry
Correction Table.

See
“CRC-32_FCS_Correction_Table_Ba
se_Address Register” on page 385

Statistics Records the minimum number of TLU FIFO
slots after register reset.

See “TLU_Statistics Register” on
page 386
C5EC3EARCH-RM REV 04

384 CHAPTER 6: TABLE LOOKUP UNIT
Each register is listed here along with its purpose, applicable fields, and parameters:

CRC-32_Checkvalue Register
This register compares the final CRC-32 checksums. It is used with the XOR command, CRC
Mode function.

 Table
Configuration

Configure the TLU SRAM interface. See “TLU_Memory Register” on
page 387.

Maps data tables to external tables. See “External_Data_Table Register”
on page 388.

Defines table type’s, key length, table entry
size, mask and base address.

See “Table_Configuration1
Register” on page 389.

Maps a virtual table to a physical table. See “Virtual_Table_Configuration
Register” on page 391.

Purpose Used to compare the final Cyclic Redundancy Check (CRC) 32 checksums.

Address 0x0

Bit Position 31 0

Field Name CRC-32CV

Reset Value 0xc704dd7b

FIELD NAME BIT POSITION DESCRIPTION

CRC-32CV 31:0 CRC-32 Check Value — Used to compare the final CRC-32
checksums.

Table 107 TLU Registers (continued)

TLU REGISTER
TYPE REGISTER FUNCTION SPECIFIC REGISTER DETAILS
C5EC3EARCH-RM REV 04

TLU Configuration and Status Registers 385
CRC-32_FCS_Correction_Table_Base_Address Register
This register contains the base address of the 2K Entry Correction Table used to convert
from CRC-32 to FCS or from FCS to CRC-32. The 2K Entry Correction Table is used by the
XOR command, CRC Mode function, to calculate a final CRC given a sequence of partial
CRCs.

Purpose Base address for the 2K Correction Factor table used to convert between FCS
and CRC-32.

Address 0x1

Bit Position 31 16 15 0

Field Name Reserved CRC/FCS Base

Reset Value raz 0x0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:16 Read as zero.

CRC/FCS Base 15:0 CRC/FCS Base Address — This is the base address of the 2k
Entry Correction Table used to convert from FCS to CRC or from
CRC to FCS. The base address format is the same as for
Table_Configuration1 register.
C5EC3EARCH-RM REV 04

386 CHAPTER 6: TABLE LOOKUP UNIT
TLU_Statistics Register
This register records the minimum number of TLU input FIFO slots after the register was
reset. The input TLU FIFO is 80 (0x50) slots deep. The register is reset to 0x50 at power up,
and can be reset again by writing any value to the register.

Purpose Records the minimum number of TLU input FIFO slots after the register
was reset.

Address 0x2

Bit Position 31 8 7 0

Field Name Rsvd MINFIFO

Reset Value 0x0 0x50

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:8 Read as zero.

MINFIFO 7:0 Minimum FIFO Slots — Records the minimum number of TLU
input FIFO slots after the register was reset.
C5EC3EARCH-RM REV 04

TLU Configuration and Status Registers 387
TLU_Memory Register
Purpose Configure the TLU SRAM interface.

Address 0x3

Bit Position 31 30 6 5 0

Field Name ParityEnb Rsvd BankConfig

Reset Value 0 0 0x1

FIELD NAME BIT POSITION DESCRIPTION

ParityEnb 31 Parity Enable — 1= enables parity checking, 0= disables parity
checking. The TLU always writes the parity bit regardless of the
state of the parity bit. When the parity bit is set, then any TLU
read that occurs is checked against the eight (8) parity lines on
the TLU SRAM. A mismatch causes the TLU to return with the
error flag set and an error code of 0x3 in bits [31:0]. Also, the TLU
returns the address of the parity error in bits [55:32].

Reserved 30:6 Read as zero.

BankConfig 5:0 Bank Configuration — Determines at what address the TLU
starts addressing a new bank. The TLU provides a separate CEx
line for each of the four (4) possible banks of the TLU Engine.
(TCE0x, TCE1x, TCE2x, and TCE3x). The BankConfig field [5:0]
determines at what address range each of the CEx lines becomes
active. Refer to description for detail settings. Settings detailed
here:

ENCODED
VALUE

NUMBER OF
ADDRESS
BITS

MEMORY
CAPACITY
PER BANK

000001 17 (default) 1MBytes

000010 18 2MBytes

000100 19 4MBytes

001000 20 8MBytes

010000 21 16MBytes

100000 22 32MBytes
C5EC3EARCH-RM REV 04

388 CHAPTER 6: TABLE LOOKUP UNIT
External_Data_Table Register
Purpose Maps data tables to external tables.

Address 0x4

Bit Position 31 5 4 0

Field Name Rsvd TBL#

Reset Value 0 0x0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:5 Read as zero.

TBL# 4:0 Table Number — Physical table number.
C5EC3EARCH-RM REV 04

TLU Configuration and Status Registers 389
Table_Configuration1 Register
This register defines the table’s type, key length, table entry size, mask and its base
address. The TLU SRAM is 64bits wide and all addressing is on an 8Byte boundary.
Therefore, a TLU SRAM address of 1 refers to byte 8, and an address of 8 refers to byte 64,
and so on. The base address in Table_Configuration1 register is the TLU SRAM address
divided by 256. Thus, the next base address is: current base address + (table entry size/8) x
number of entries) with the result rounded up to the next 2KByte boundary.

Purpose Defines the table type, key length, table entry size, mask and base
address.

Address 0x100 to 0x11f

Bit Position 31 28 27 24 23 21 20 16 15 0

Field Name TYPE KLEN SIZE MASK BADDR

Reset Value 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

TYPE 31:28 Table Type — Defines table type. Legal ranges are detailed here:

ENCODED
VALUE TABLE TYPE

0x0 Data

0x1 PFX (Longest-Prefix Match)

0x2 Reserved

0x3 Hash

0x4 Reserved

0x5 Reserved

0x6 External

0x7 to 0xF Reserved
C5EC3EARCH-RM REV 04

390 CHAPTER 6: TABLE LOOKUP UNIT
KLEN 27:24 Key Length — Defines the length of the key. Legal ranges are
detailed here:
Note: Intermediate key sizes are supported by masking unused
bits to zero.

SIZE 23:21 Table Entry Size — This field defines the size of an individual
table entry. The entry size is 2(Table_Entry_Size+3) + Size bytes.
Note: The minimum entry size is 8Bytes and the maximum is
1024Bytes.

MASK 20:16 Mask — Generally, it defines a mask to apply to the key for an
indexed lookup.This field is used by each table type in a slightly
different way as detailed here:

BADDR 15:0 Base Address — Defines the base SRAM offset (index) of a table.
The base SRAM offset is defined as (BADDR x 256). The upper
bounds of the table are not defined.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE KEY SIZE (BITS)

0x4 32

0xc 48

0x7 96

0xf 112

TABLE
TYPE MASK USAGE

Data Not used.

PFX Associates to KeySHLz field [59:56] in PFX data
entry format. Legal range= 0 to 15.

Hash The size of the hash table is defined as 2^Mask.
C5EC3EARCH-RM REV 04

TLU Configuration and Status Registers 391
Virtual_Table_Configuration Register
This register maps a virtual table (VTBL#) to a physical table (TBL#). All TLU commands use
a virtual table number (VTBL#) as an argument. The default reset value is the least
significant three (3) bits of the table address, so the default value of the register at address
0x306 is 0x6. All table references are through a virtual table (VTBL#).

Purpose Maps a virtual table to a physical table.

Address 0x300 to 0x31f

Bit Position 31 6 5 0

Field Name Rsvd TBL#

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:6 Read as zero.

TBL# 5:0 Table Number — Physical table number.
C5EC3EARCH-RM REV 04

392 CHAPTER 6: TABLE LOOKUP UNIT
TLU Application
Considerations

The following section covers issues that are important to application design. For more
information about how to implement tables in applications see the C-Ware Reference
Library document in the C-Ware Application Development Guide.

TLU/Ring Bus Control
Register Response Slot

Usage

TLU lookup results are returned via the Ring Bus and put into the RxRespn_Ctl register that
was specified during the Ring Bus launch. If a TLU response slot is currently “occupied”
with a previous response (Resp1) and a second lookup result (Resp2) destined for the
same slot is ready, the second response (Resp2) is placed in the eight (8) slot receive
response FIFO and remains in the FIFO until the first response is released and response
slot is cleared. A response slot is released by deasserting the AVAIL bit [31] in the Ring Bus’
RxRespn_Ctl register. Refer to Figure 86 on page 392.

Figure 86 TLU/Ring Bus Control Register Response Slot Usage

RxResp2n

RxResp3n

RxResp1b

Receive
Response
FIFO

RxResp1b is blocked from being
written to the RxResp1_Ctl register
and thus cannot be drained from the
Receive Response FIFO.

RxResp0
AVAIL = 0

RxResp1a
AVAIL = 1

RxResp2
AVAIL = 0

RxResp3
AVAIL = 0

RxResp7
AVAIL = 0

Because RxResp1b cannot be drained from the
Ring Bus Receive Response FIFO until RxResp1a
is cleared, RxResp1b continues occupying the "TLU
receive response" slot as it moves around the ring.
Thus, RxResp3 and RxResp2 remain stalled in the
FIFO because they cannot land in their target slot.

RxResp1b

Ring Bus

RxRespn_Ctl Registers (0 - 7)
C5EC3EARCH-RM REV 04

TLU Application Considerations 393
Responses move into the receive response FIFO on the destined processor (CP or XP). If
the response at the head of the FIFO can’t get into a response register slot because it’s
occupied by another response, then it is “trapped” at the head of the FIFO, causing
head-of-line blocking. When the entire response FIFO is full, then other responses
destined for this CP start circling the Ring Bus. Refer to “Ring Bus Overview” on page 477.

TLU Performance The following sections detail two elements of TLU performance: throughput and latency.

TLU Throughput
Refer to Figure 87 on page 393 and Table 108 on page 393.

Figure 87 Throughput Formula

To determine the average number of SRAM access per TLU command for an application,
first characterize the percentage of each command type. Then, refer to Table 108 on
page 393 and Table 109 on page 394 for the number of accesses for each type. Next,
calculate the average.

For instance, assume an application that uses 50% PFX FIND commands and 50% XOR
commands. The FINDs require 3 SRAM accesses and the XORs require 2 SRAM accesses.
The average is (.5(3) + .5(2)) = 2.5 SRAM accesses/command or (SRAM AVG.)

Table 108 SRAM Accesses per TLU Command

TLU COMMAND
TYPES SRAM ACCESSES

Write() Roundup (# bytes written/8)

Read() Roundup (# bytes read/8)

Add() or XOR() 2

Find() Refer to Table 109 on page 394.

Findw() Find + Roundup (# bytes written/8 +1)

Findr() Find + Roundup (# bytes read/8 +1)

Throughput (Commands/Sec)= SRAM Clock Frequency/Average # of SRAM Accesses per Command
Throughput Formula:

For Example:

 = 133MHz/2 Accesses/PFX Find Command= 66M PFX Find Commands/Second
C5EC3EARCH-RM REV 04

394 CHAPTER 6: TABLE LOOKUP UNIT
The number of SRAM accesses to issue a Find type command is highly dependent on the
algorithm being used and upon the table entries themselves. Estimated values are given
in Table 109 on page 394. For the Trie structures, assume an equally balanced tree with
64k nodes. If there are n keys and 2 x n hash buckets, the number of collisions is almost
always less than eight (8).

TLU Latency
Use the following as a general guideline for estimating the TLU latency. Performance
estimates are based on a ZBT SRAM. The TLU operation frequency is assumed to be equal
to and synchronous with the SRAM clock frequency. Synchronization to the C-5e core
clock occurs using the input and output FIFOs. Refer to Figure 88 on page 395.

Table 109 SRAM Access for Find Command

TABLE TYPE

SRAM ACCESSES

MIN. TYPICAL MAX.

Hash Trie Key 2 2 + log2 n 2 + n

PFX (Longest-Prefix
Match) Assumes a key
size of = 32bits.

1 2 3

Chained Index 2 2 3

Chained Hash 3 3 + log2 n 3 + n

External Vendor dependent
C5EC3EARCH-RM REV 04

TLU Application Considerations 395
Figure 88 TLU Pipeline Elements Affecting Latency Formula

For the worst case TLU latency, the rate at which the TLU pipeline advances is limited by
the rate at which commands complete all of their SRAM accesses. This rate can be
specified in terms of SRAM AVG. as described in “TLU Throughput” on page 393.

The Input FIFO delay is dependent on the FIFO backlog. The backlog is a function of the
input command rate versus the SRAM access rate. Fourteen (14) is the number of register
stages within the Front End TLU Pipeline. The Memory Controller depth is a fixed value of
6. It represents the number of register stages in the memory controller’s pipeline.

Table Sizing Examples To aid in sizing tables, examples using two (2) typical applications are described in this
section. Both examples are for a Layer 2/3 switch and list the required tables types,
number of entries, sizes of entry, and sizes for the tables.

TLU
Input FIFO

Request

Response

Front End
TLU Pipeline

14 TLU
Register
Stages

Memory
Controller
Pipeline

SRAM

1
2
3
4
5
6

Latency (ns)= 1000/Clock Speed (MHz) * (Round-Trip Ring Bus Delay + Input FIFO Delay + Front-End TLU Pipeline Delay + Memory Controller Delay)
Latency Formula:

6 Deep

NOTE: The Memory Controller
Pipeline consists of 6 stages,
resulting in a latency of 6 for
each SRAM access.

Address

DataMux

Best Case TLU Latency Worst Case TLU Latency
Item 1: 18 core clocks 90 core clocks (Note: Assumes Ring Bus request is accepted by the TLU and not recirculated or returned to sender).

Item 2: 1 TLU clock Number of request that are backlogged * SRAM AVG.

Item 3: 14 TLU clocks 14 * SRAM AVG. in TLU clocks

Item 4: 6 TLU clocks 6 * SRAM AVG. in TLU clocks

Note for Worst Case, Items 2,3 & 4: SRAM AVG. refers to the average number of SRAM accesses, for more details refer to the 'TLU Throughput" section.

Note for Best Case, Item 4: Best occurs for access to Index tables. Access to Complex table types require more than 6 TLU clocks.
C5EC3EARCH-RM REV 04

396 CHAPTER 6: TABLE LOOKUP UNIT
As the numbers indicate in the sizing examples shown in this section, an application
implementing both a Bridge Address table and an IP Routing table uses about 8.5M of
SRAM space. Refer to Table 110 on page 396, and Table 111 on page 396.

These examples do not include any other types of statistics or QoS tables, nor do they
count an external TLU device out one bank.

Bridge Address Table Sizing Example
The Bridge Address table consists of one (1) Index table that is used to map VIDs to FIDs
for 802.1Q, one (1) Hash table consisting of three (3) sub-tables used for the MAC address
lookup. The sub-tables consists of: Hash, Trie, and Key for the 24Bytes of associated data. A
typical size ranges from 10k to 128k entries. This example uses a 128k entry table.

IP Routing Table Sizing Example
The IP Routing table consists of a PFX table, and two entry types including: Table, and
Data. A typical size for an IP routing table ranges from 5k and 64k. This example uses 38k
entries with 16Bytes of associated data.

Table 111 on page 396 consists of preliminary numbers.

Table 110 Bridge Address Table Sizing Example

TABLE TYPE
SUB-TABLE
TYPES

NUMBER OF
ENTRIES

ENTRY SIZE
(BYTES)

TABLE SIZE
(BYTES)

Hash Trie Key Hash 256k 8 1M

Trie 32k 8 262k

Key 128k 32 4.1M

Table 111 IP Routing Table Sizing Example

TABLE TYPE ENTRY TYPE
NUMBER OF
ENTRIES

ENTRY SIZE
(BYTES)

TABLE SIZE
(BYTES)

PFX Table Entry 98k 8 800k

Data Entry 38k 16 608k
C5EC3EARCH-RM REV 04

TLU Special Applications 397
TLU Special Applications This section describes two (2) specific applications that are supported: long lookups and
partial CRC-32 for ATM Adaptation Layer-type 5 (AAL-5).

Using the RxByte
Processor for Long

Lookups

Some protocols that are implemented in the RxByte processor require that sophisticated,
long lookups be launched from the SDP to hide latency.

Since the RxByte processor only has access to two (2) of the TxMsg registers to launch
lookups from, the SDP can only launch lookups of keys that are up to 112bits in length.
The two (2) lookup slots are referred to as TxMsg0 and TxMsg1. The size of these registers
are listed in Table 112 on page 397.

When launching a lookup from the SDP, the TxMsgn_Ctl register contains control
information for putting the request onto the Ring Bus. Such information would contain
the source Ring Bus node, destination Ring Bus node, message length, return message
slot, and so on.

To use multi-slots, you must launch the lookup using the TxMsg0_Ctl register in addition
to the TxMsgn_Data_n registers. The keys are contained in some or all of TxMsg0_Data_H,
TxMsg0_Data_L, TxMsg1_Data_H, and TxMsg1_Data_L registers.

The TxMsgn_Data_n registers contain the actual data that the destination node (in this
case the TLU) processes. Information contained in the TxMsgn_Data_n registers would
include: the lookup table in the TLU, the command (Read, Findr, XOR, etc.) and most
importantly the lookup key.

For keys that are 48bits, 96bits, and 112bits, two (2) sets of the TxMsgn_Data_n registers
must be used. The formats of these registers are shown in Table 113 on page 398.

Table 112 TxMsgn Registers and Their Size

REGISTER SIZE (BITS)

TxMsgn_Ctl 32

TxMsgn_Data_H 32

TxMsgn_Data_L 32
C5EC3EARCH-RM REV 04

398 CHAPTER 6: TABLE LOOKUP UNIT
XXX = Reserved by TLU.
KU1 = Key upper 1 (upper 16b of key 1)
KU2 = Key upper 2 (lower 32b of key 1)
KL1 = Key lower 1 (upper 32b of key 2)
KL2 = Key lower 2 (lower 32b of key 2)

Depending on the configuration of the TLU table’s key size, the information looked up as
the key from the set of registers varies as listed in Table 114 on page 398.

Table 113 Large Key Data Format, >48bits

FIELD

MSB LSB

BYTE 0 BYTE 1 BYTE 2 BYTE 3

TxMsg0_Data_H XXX XXX KU1 KU1

TxMsg0_Data_L KU2 KU2 KU2 KU2

TxMsg1_Data_H KL1 KL1 KL1 KL1

TxMsg1_Data_L KL2 KL2 KL2 KL2

Table 114 Key Size versus Key Match

KEY SIZE
(BITS) KEY MATCH

32 Key match is done on contents of KU2 fields

48 Key match is done on contents of KU1 + KU2 fields

96 Key match is done on contents of KU2 + KL1 + KL2 fields

112 Key match is done on contents of KU1 + KU2 + KL1 + KL2 fields
C5EC3EARCH-RM REV 04

TLU Special Applications 399
Long Lookup Example for an Ethernet Application
For IEEE 802.1Q tagged frames, the Ethernet application must lookup the MAC address
and the VLAN ID of the frame which is: 48bits + 12bits = 60bits. Since there is no 60bit key
size available, use the next larger key size available which is (96bit). The format for the
lookup is listed in Table 115 on page 399.

XXX = Reserved by the TLU
UUU = Unused
VVV = VLAN ID
MMn = MAC address
PPP = Not used by application (padded). These bits should be cleared by the application when doing lookups

and when installing entries into the TLU.

From the SDP’s perspective, the TxMsgn_Data words are mapped as shown in Table 116
on page 399.

Table 115 Ethernet Application Lookup Format

FIELD

MSB LSB

BYTE 0 BYTE 1 BYTE 2 BYTE 3

TxMsg0_Ctl control information + length, indicating lookup uses both slots

TxMsg0_Data_H XXX XXX UUU UUU

TxMsg0_Data_L VVV VVV MM0 MM1

TxMsg1_Data_H MM2 MM3 MM4 MM5

TxMsg1_Data_L PPP PPP PPP PPP

Table 116 TxMsgn_Ctl Mapping

BIT MAPPING

TxMsg0_Data7 XXX

TxMsg0_Data6 XXX

TxMsg0_Data5 UUU

TxMsg0_Data4 UUU

TxMsg0_Data3 VVV

TxMsg0_Data2 VVV

TxMsg0_Data1 MM0

TxMsg0_Data0 MM1
C5EC3EARCH-RM REV 04

400 CHAPTER 6: TABLE LOOKUP UNIT
In this case, the fields that are matched (given that this is a 96bit key) are the VVV + MMn
fields, resulting in the lookup of the MAC address + VLAN ID according to the 802.1Q
specification.

Ethernet Application Example Implementation Notes
In the Ethernet application example, the SDP lookups just the VID + MAC DA (destination
address) in the RxByte processor if the frame is VLAN tagged. The CPRC gets the result of
that look up that provides the forwarding route.

If the frame is untagged, then the MAC DA address is used with the Port VLAN ID (PVID) of
the port from the SDP.

Only the TxMsg0_Ctl register can be used for multi-slot lookups.

Partial CRC-32 Support Partial CRC-32’s for ATM Adaptation Layer-type 5 (AAL-5) reassembly can be stored and
accumulated in a Data table type structure. The format and implementation steps are
described in this section.

This is achieved using the SDP in conjunction with the TLU to accumulate the partial CRC’s
for many Virtual Connections (VC). Specifically, this is supported using the TLU’s XOR
command, a VC data table, a CRC-32 Correction Table, the
CRC-32_Correction_Table_Base_Address register, and the CRC-32_Checkvalue register. The
XOR command automatically increments the CRC_Len field bits [47:32] after adding a new
partial CRC. Refer to “XOR Command” on page 372.

TxMsg1_Data7 MM2

TxMsg1_Data6 MM3

TxMsg1_Data5 MM4

TxMsg1_Data4 MM5

TxMsg1_Data3 PPP

TxMsg1_Data2 PPP

TxMsg1_Data1 PPP

TxMsg1_Data0 PPP

Table 116 TxMsgn_Ctl Mapping (continued)

BIT MAPPING
C5EC3EARCH-RM REV 04

TLU Special Applications 401
Partial CRC-32 Data Entry Format
The Cyclic Redundancy Check (CRC) entry is used for CRC error checking as part of a
Virtual Connection (VC) data table. The entry must conform to this format:

Partial CRC-32 General Setup
Follows these steps to implement the Partial CRC-32 Operation:

1 Create and initialize CRC-32 Correction Table. (Each entry contains a CRC calculated for
0xff plus 48 times the number of cells; that is, 4Bytes of zeros).

2 Set up CRC-32_Correction_Table_Base_Address register to the start address of the
newly created table (CRC-32 Correction Table).

3 In the SDPMode3 and SDPMode5 registers, set both the RxByteCRCinit field and
TxByteCRCinit field= 0 in order to initialize the CRC-32 block to zero when the CRCinit
command is executed by the RxByte and TxByte programmable processor’s
microcode.

Partial CRC-32 Rx Setup and Operation
Follow this step to implement the Rx side of the Partial CRC-32 Operation:

1 Set up Rx CRC data entry in the receive VC table as follows: CRC_Len= 1, PCRC= 0.

All cells except for the last end of message (EOM) cell are handled via the RxByte
programmable processor, as follows:

1 RxByte programmable processor calculates PCRC on current cell.

2 RxByte programmable processor sends TLU XOR command with current PCRC.

Bit Position 63 48 47 32 31 0

Field Name USER CRC_LEN PCRC

FIELD NAME BIT POSITION DESCRIPTION

USER 63:48 User Defined Data — The user can insert anything here.

CRC_LEN 47:32 CRC Length — Number of cells holding current packet.

PCRC 31:0 Partial CRC — The current partial CRC.
C5EC3EARCH-RM REV 04

402 CHAPTER 6: TABLE LOOKUP UNIT
TLU’s XOR command settings are indicated here:

3 TLU XORs PCRC with (accumulated) PCRC and obtains a (new accumulated) PCRC.
Then this value is shifted by 48Bytes and stored as the new PCRC in the VC table’s
CRC-32 Entry.

Last cell end of message (EOM) is handled via the RxByte programmable processor, as
follows:

1 RxByte programmable processor calculates PCRC on last cell.

2 RxByte programmable processor sends TLU XOR command with PCRC and sets the
XOR command bits [59:58] CRC field= 11 (Rxlast).

TLU’s XOR command settings are indicated here:

3 TLU receives request and XORs PCRC with (accumulated PCRC); TLU does a table
lookup based on PDU length to PCRC and adds the value looked up with the
(accumulated PCRC). TLU compares (accumulated PCRC) with CRC-32_Checkvalue
register. If the CRC_Checkvalue register does not match, the TLU sets a Ring Bus error
indication for the PCRC. TLU re-sets accumulated PCRC=0, and CRC_Len= 1.

Bit Position 63 60 59 58 57 55 54 48 47 32 31 24 23 0

Field Name/Setting CMD=7 CRC=
0x01

VTBL#=
User

Defined

OFF=User
Defined

Offset
N/A MSK=0x0f IDX=User Defined Index

Optional Reserved PCRC=From RxByte Calculation

Bit Position 63 60 59 58 57 55 54 48 47 32 31 24 23 0

Field Name/Setting CMD=7 CRC=
0x11

VTBL#=
User

Defined

OFF=User
Defined

Offset
N/A MSK=0x0f IDX=User Defined Index

Optional Reserved PCRC=From RxByte Calculation
C5EC3EARCH-RM REV 04

TLU Special Applications 403
Partial CRC-32 Tx Setup and Operation
Follow this step to implement the Tx side of the Partial CRC-32 Operation:

1 Initialize Tx CRC data entry in the transmit VC Table as follows: CRC_Len=0, and
PCRC=0.

All cells except for the last end of message (EOM) are implemented via the SDP, as follows:

1 CPRC make the cell available to SDP for transmission.

2 TxByte programmable processor calculates PCRC as it transmits the cell.

3 TxByte programmable processor sends TLU XOR command request containing PCRC;
TLU XORs with the PCRC, performs 48Byte shift and sends command to store this in the
table as the (new accumulated PCRC).

TLU’s XOR command settings are indicated here:

Last cell end of message (EOM) is implemented, as follows:

1 CPRC sends TLU XOR command (prior to giving last cell to SDP). The TLU does a lookup
into the CRC-32 Correction Table indexed by the CRC_Len field (which is equivalent to
the number of cells in the PDU -1). The TLU XORs this with the (accumulated) PCRC and
returns the PCRC (accumulated for all cells except the last) to the CPRC via the Ring
Bus. The TLU sets PCRC= 0, CRC_Len= 0 (based upon data field) after returning the
(accumulated PCRC) in the Partial CRC-32 Data Entry Format. The TLU sets the error bit
in the Ring Bus register.

TLU’s XOR command settings are indicated here:

2 CPRC writes (accumulated) PCRC to its merge register space.

Bit Position 63 60 59 58 57 55 54 48 47 32 31 24 23 0

Field Name/Setting CMD=7 CRC=
0x01

VTBL#=
User

Defined

OFF=User
Defined

Offset
N/A MSK=0x0f IDX=User Defined Index

Optional Reserved PCRC=From TxByte Calculation

Bit Position 63 60 59 58 57 55 54 48 47 32 31 24 23 0

Field Name/Setting CMD=7 CRC=
0x10

VTBL#=
User

Defined

OFF=User
Defined

Offset
N/A MSK=0x0f IDX=User Defined Index

Optional Reserved PCRC=0
C5EC3EARCH-RM REV 04

404 CHAPTER 6: TABLE LOOKUP UNIT
3 The TxByte programmable processor accumulates a PCRC for the last cell. It then XORs
this value with the (accumulated PCRC) from its CPRC’s merge space, performs the 1’s
complement and appends to the frame. SDP transmits cell with correct CRC.

Single cell packets are implemented, as follows:

1 CPRC writes PCRC Accumulated= 0xffffffff to merge register space.
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 7
QUEUE MANAGEMENT UNIT
Chapter Overview This chapter covers the following topics:

• Queue Management Unit (QMU) Overview

• QMU Flow Process

• Queue Organization

• QMU Variables

• Queue Mapping and Parameter Characteristics

• Queueing Operations

• Types of Transactions

• Queue Management Transactions

• QMU Multicast Support (Non-System Level)

• QMU Configuration Space

• QMU Setup

• QMU Performance

• Multicast Support (System Level)

• External Scheduler Mode

• Queue Management Transactions in External Mode
C5EC3EARCH-RM REV 04

406 CHAPTER 7: QUEUE MANAGEMENT UNIT
Queue Management Unit
(QMU) Overview

The Queue Management Unit (QMU) provides queueing service to all the processors (CPs,
XP and FP) on the C-5e NP. The QMU queues are used by the processors to switch payload
descriptors from input processors (CPs, XP and FP) to output processors (CPs, XP and FP)
using Control Blocks (WrCB0_ or RdCB0_) via the Payload Bus.

The C-5e NP processors generate the descriptor data in their respective (DMEM), then
write the data into a queue stored in the SRAM. The configurable QMU performs queue
management while simply passing the descriptor data through without modification; it
does not parse the data records that it enqueues.

The QMU provides up to five-hundred-twelve (512) queues using an on-chip memory
(internal SRAM) for control structures and off-chip memory (external SRAM) for descriptor
storage.

The C-5e provides two modes for managing queues. They consist of:

• Internal Mode (using the internal QMU only).

• External Mode. Refer to “External Scheduler Mode” on page 457.

Warning: Although the C-5e NP provides an External QMU Mode, it does not support an
external traffic manager device. In addition, the associated registers and fields should
not be implemented.

Queues can be allocated asymmetrically to processors, such that one (1) CP could have
zero (0) to one-hundred-twenty-eight (128) queues. Up to 16,384 descriptor buffers can
be enqueued simultaneously across all queues.

Generally, the data types enqueued in the QMU are either:

• A payload descriptor including a payload buffer tag (BTag), or

• A user-defined inter-processor message.

Payload Descriptors
Enqueued to the QMU

Payload Descriptors are small fixed-size (12, 16, 24, or 32Bytes) data structures that
contain all the information required to complete the forwarding of a received payload
data unit from the ingress processor, for example, the information required to build a
header at the output interface. Payload descriptors are created by the application
program running on the ingress processor, generally a Channel Processor RISC Core
(CPRC).
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Overview 407
Typically, the QMU queues are used as egress queues associated with specific data for
egress processors, (CPs, the XP, or the FP). Only one (1) egress processor can drain each
queue, but any of the ingress processors can write into any queue.

User-Defined
Inter-processor Messages

Enqueued to the QMU

Inter-processor messages are also small fixed-sized (12, 16, 24, or 32Bytes) data structures
that contain user defined information. Generally, inter-processor messages are used to
orchestrate control plane activities such as flow control, statistics gathering, or table
maintenance. For example, an ingress processor could build a message then enqueue it to
a queue serviced by the XP for off-line processing.

QMU Major Components The major components of the QMU are listed inTable 117 on page 407. In addition,
Figure 89 on page 409 shows the QMU Block Diagram.

Table 117 Major Components of the QMU and Their Functions

ITEM FUNCTION

Queue
Manage
ment
Engine

The Queue Management Engine (QME) manages all descriptor queues in SRAM and
maintains per-queue status information (descriptor weight, queue weight, and
queue length) that is delivered with each descriptor to the dequeueing processor
(CPs, XP, or FP).
The QME provides multicast elaboration for descriptors that must be replicated to
more than one queue. A single buffer descriptor can be enqueued to any number of
output processors (CPs, XP, or FP) with a single command (multicast enqueue) from
the descriptor generator (CPs, or XP). The descriptor is enqueued at a specified
queue level at each listed output port so that each port receives a copy of the
descriptor.
The QME implements and operates on a link-list of descriptors. Every descriptor buffer
in the QMU starts out as an entry on a free-descriptor buffer list. Then during an
enqueue operation, a descriptor buffer is removed from the free-descriptor buffer list
and the payload descriptor is copied into a queue. The reverse process happens for
dequeue operations.
The QME must perform (2) two functions to respond to a processor’s (CPs, XP, or FP)
enqueue or dequeue request. First, the descriptor must be stored in or retrieved from
the external QMU SRAM array. Second, the internal queue controls inside the internal
SRAM must be updated to add the entry onto or remove the entry from the desired
queue.
C5EC3EARCH-RM REV 04

408 CHAPTER 7: QUEUE MANAGEMENT UNIT
Direct
Access
Controller

Initialization, queue configuration changes, and read/write of the QMU internal
registers and QMU external memory are performed using loads and stores on the
Global Bus.
If the transaction is a read, the Direct Access Controller (DAC) gathers the value from
the addressed location in the QMU and returns it to the requesting processor on the
Global Bus.
When one of the QMU’s queues state changes from empty to non-empty as the result
of an enqueue operation, the Queue Ready Generator (QRG) takes the queue number,
determines the processor to notify, then generates the appropriate message.

Mailboxes Multi-Use Control Block (WrCB0_, RdCB0_) transfers from CPs and the XP arrive at the
QMU over the Payload Bus and are held in a Mailbox. Each processor (CPs, XP) has its
own Write Mailbox (CPn Wr MailBox) and its own Read Mailbox (CPn Rd Mailbox).
Each mailbox holds a single command used to perform specific operations. Queue
status and dequeue operations are performed using (RdCB0_). Unicast enqueue,
multicast enqueue, and configure queue operations are performed using (WrCB0_).
Each of the two (2) mailboxes for each CP or the XP operate independently of the
other. They each have their own available/busy status and success/fail status
information reported to the CP or XP independently.

Fabric
Port
Interface

The Fabric Port has a separate interface to the QMU because of its very high
throughput requirement. When the FP has queueing operations pending, it receives
no less than half the QMU’s descriptor throughput.
A dedicated path is used to write FP queueing operations from the FP to the QMU’s FP
command FIFO. The QMU returns descriptors to the FP over the Payload Bus. Queue
Ready Generator (QRG) reports from the QMU are sent to the FP, just like those for any
of the CPs or the XP.
The QMU buffers up to eight (8) enqueue operations and eight (8) dequeue
operations for the FP.

Data
Engine

The Data Engine moves payload descriptors or user-defined inter-processor messages
on and off the queues stored in external SRAM. This interface adjusts the timing of
the internal information (address and data) so that the setup and hold times on the
external memory interface are met for both memory writes and reads.

External
SRAM

The QMU uses external ZBT SRAM to hold the data enqueued in the QMU queues. The
interface is 32bits wide. The memory is organized in power-of-2 sized blocks big
enough to hold the configured descriptors.

Internal
SRAM

Contains queue configuration information that includes descriptor link-list,
descriptor weight, descriptor dynamic memory, queue head-tail, queue
length, queue weight, queue parameters, and dynamic descriptor Pooln
usage.

Table 117 Major Components of the QMU and Their Functions (continued)

ITEM FUNCTION
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Overview 409
Figure 89 QMU Block Diagram

Configura
tion
Registers

Used for mapping of queues to CPs, XP and FP, configuration of the QMU, QMU
debugging, and collecting QMU statistics.

Table 117 Major Components of the QMU and Their Functions (continued)

ITEM FUNCTION

QMU

Global
Bus

Interface

SRAM

Data
Engine

Queue
Mgmt

Engine
(QME)

Mailboxes
(CPs & XP)

Payload
Bus

Interface

FP
Interface

Direct Access
Controller
C5EC3EARCH-RM REV 04

410 CHAPTER 7: QUEUE MANAGEMENT UNIT
QMU Flow Process The QMU flow is described in this section.

Flow Details for CPs/XP
Inputs and FP Inputs

The front part of the input flow is a little different between the CPs/XP and the FP.
However, the activities occurring from the Command Processor on are the same for both
the CPs/XP and FP. The entire CPs/XP input flow is detailed first, then the front part of the
FP later.

CPs and XP Input Flow
Each processor (CPs, XP) writes the descriptor or message data (user-defined
inter-processor message) into its DMEM, then writes the data and a command using a
Control Block (WrCB0_) to the processors’ dedicated mailbox (CPn Wr Mailbox) via the
Payload Bus. This data remains in this holding register until the command processor (Cmd.
Proc.) arbitrates to determine which mailbox to execute next. The command status
generator (CSG) monitors the status of each mailbox throughout the process and reports
that status back to the processor. The mailbox empty or non-empty state is used to
determine when the applicable mailbox is available for a new operation.

The queueing management engine (QME), upon receipt of the command, manages the
free descriptor buffer list, queueing, and storage of queue data in the SRAM using a
link-list. A link-list tracks the free descriptor buffers, used descriptor buffers for queueing,
and the location of the data (descriptor data) in queues in the SRAM. The queue ready
generator (QRG), upon receipt of the data, notifies the processor that the queue is
non-empty. It determines the correct processor using the queue number and sends the
message over the Payload Bus. The data engine (DE), upon direction of the queue engine
(QE), physically transfers the data to/from the external SRAM. During a write (enqueue
operation), the data engine (DE) reads the content of the (CPn Wr Mailbox) that holds the
data, then writes that data into SRAM per the queueing engine (QE) and its link-list.
During a read (dequeue operation), the data engine (DE) reads the data (descriptor data)
from the SRAM per the queueing engine (QE) link-list, then FIFOs them to transmit back to
the CPs/XP using the (RdCB0_) via Payload Bus.
C5EC3EARCH-RM REV 04

QMU Flow Process 411
FP Input Flow
The FP writes the descriptor data and a command into its (DMEM), then writes the data
and a command using a dedicated interface to the FP command FIFO in the QMU. This
data is held in a FP command FIFO (FPCFIFO) until the command processor (Cmd. Proc.)
arbitrates to determine which holding register to execute next. At this point, the rest of
the FP input flow is identical to the CPs/XP flow starting with the command status
generator (CSG), as described in “CPs and XP Input Flow” on page 410.

Figure 90 QMU Flow Diagram

CPs & XP Input

Descriptor/
Message Data

WrCB0/RdCB0

Transaction

CPs or XP Mail Box

CP0 Wr Mailbox
CP0 Rd Mailbox
CPnWr Mailbox
CPn Rd Mailbox

XP Wr Mailbox
XP Rd Mailbox

CP15 Rd Mailbox
CP15 Wr Mailbox

Cmd. Proc.
Arbitrates

A: QMU Flow Using CPs/XP Input

B: QMU Flow Using FP Input

FP Input Dedicated HW

Transaction

FP Command FIFO

Comd. Slot
Comd. Slot

QM Engine

Dedicated Path

Data Engine
Transfers to/from
SRAM

QRdy Gen.
Status to CPs, XP
& FP

DMEM

DMEM

Via Payload Bus

Output to
CPs, XP, FP

Manages
 Link-list & Limits

Status to CPs, XP
& FP

Cmd. Status

Via Payload Bus

Comd. Slot
Comd. Slot
Comd. Slot
Comd. Slot
Comd. Slot
Comd. Slot

Descriptor/
Message Data

Descriptor
Data
C5EC3EARCH-RM REV 04

412 CHAPTER 7: QUEUE MANAGEMENT UNIT
Queue Organization The queue memory consists of both external and internal SRAM. Each is described here.

External SRAM The queue memory’s external SRAM is organized in the following manner:

Descriptor Buffer
Descriptor buffers are fixed-sized data structures that are written with payload descriptors
and linked to a queue during an enqueue operation. Descriptors are stored in the
descriptor buffers located in the QMU’s external (SRAM). The QMU allows (1 to 16,384)
total descriptor buffers using the Num_Descriptors register. The Descriptor buffer sizes
supported are (12, 16, 24, or 32Bytes), using the Descriptor_Size register. Refer to Figure 91
on page 413, and Table 119 on page 416.

Dynamic Descriptor Pools
The QMU maintains sections of SRAM called dynamic descriptor pools containing
descriptors. Pools are intended to provide protection among the many users of the
queues. Up to four (4) dynamic descriptor pools can be configured. Each Dynamic
Descriptor Pool Area= (Descriptor Buffer Size * Number of Descriptors per Pool). Each
Dynamic Descriptor Pooln can grow to contain a number of descriptors, the legal range is
(0 to 16K). A limit is used to guarantee a maximum number of descriptor buffers a queue
may hold within the (0 to 16K) range. This limit is implemented using a Dynamic
Descriptor Usage Limit Pool. There are four (4) of these registers:
Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3. Each Dynamic Descriptor Pool
has an associated Dynamic Descriptor Usage Limit Pool. Refer to Figure 91 on page 413
and Table 119 on page 416.
C5EC3EARCH-RM REV 04

Queue Organization 413
Figure 91 External SRAM Storage Space for Descriptor Buffer Data

Dynamic Descriptor Usage Limit Pooln
During a unicast enqueue to a queue, permission to take the next free descriptor buffer
and enqueue it on the queue is based on the state of that queue’s Dynamic Descriptor
Usage Limit. Each queue is assigned to one (1) of four (4) registers:
Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3. Each pool has a usage counter
and a usage limit parameter. The usage count is not allowed to exceed the usage limit
during unicast enqueues.

The idea behind the Dynamic Descriptor Buffer Usage Limit pools is to provide separation
between service classes that need to use dynamic buffering. For example, the use of
dynamic buffers by ATM’s Variable Bit Rate (VBR) service should not impact the availability
of dynamic buffers used by the Constant Bit Rate (CBR) service. The limit on each dynamic
pool’s descriptor usage is individually configurable because different services require
different degrees of traffic variability (burstyness).

Dynamic Descriptor Pool0

Descriptor0 Descriptor1 Desccriptor2

Descriptorn
Dynamic Descriptor
Pool0 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Dynamic Descriptor
Pool1 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Descriptor20 Descriptor16 Descriptorn

Dynamic Descriptor
Pool2 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Descriptor85 Descriptor521 Descriptor322

Descriptorn

Dynamic Descriptor Pool1

Dynamic Descriptor Pool3

Descriptor40 Descriptorn

Dynamic Descriptor Pool2

Dynamic Descriptor
Pool3 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Free Descriptor Buffer List

Free Descriptor Buffer Area=
(Total # of Descriptors
 - Dynamic Descriptor Pool Areas
 for (Pool0 to Pool3)

Desc. Buffer0 Desc. Buffer1 Desc. Buffer3

(0 to 16,384)
C5EC3EARCH-RM REV 04

414 CHAPTER 7: QUEUE MANAGEMENT UNIT
When an enqueue is requested to a queue that is in its dynamic range, the queue’s pool
descriptor usage is compared to that pool’s usage limit. If the current pool usage is below
the pool’s limit, the enqueue is done and the pool usage count is incremented. When that
descriptor is later dequeued, the pool usage count is decremented. Refer to “Queue
Length Allowance and Length Limit Parameters” on page 420.

When the QMU is initialized, the pool usage limits, the total number of descriptors, and
the allowances of all the initialized queues must be configured to work together. The total
number of Descriptors allocated among all four (4) pools of the
Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3 registers should be < the
number of dynamically enqueued descriptors. This way, there will be no depletions of the
supply of free descriptor buffers.

All queues that are members of a single multicast group should share the same pool. See
“Multicast Operation Throughput Considerations” on page 445 for more information.

Internal SRAM The queue memory’s internal SRAM contains all the data structures required to build the
queues, maintain queue status, and provide descriptor buffer management. The internal
memory is divided into the following sub-sections. Refer to Figure 92 on page 415, and
Table 118 on page 414.

Table 118 QMU Internal SRAM Sub-Sections and Their Functions

MEMORY SUB-SECTIONS FUNCTION

Descriptor Link-list Descriptor links that form the queues.

Descriptor Dynamic One (1) bit per descriptor that flags wether the descriptor was
allocated in a queue’s dynamic range.

Descriptor Weight The weight of each descriptor.

Queue Head-Tail Pointers to each queue’s head and tail.

Queue Length The length of each queue.

Queue Weight The accumulated weight of each queue.

Queue Parameters Configuration for each queue.

Free Descriptor List Head Pointer to free descriptor list head.

Free Descriptor List Tail Pointer to free descriptor list tail.

Free Descriptor List Length The length of free descriptor list.

Dynamic Descriptor Pool0 Usage
to Dynamic Descriptor Pool3

The number of dynamically enqueued descriptors in each
pool.
C5EC3EARCH-RM REV 04

Queue Organization 415
Figure 92 Internal SRAM Space

16,384 words (14bits each)

Descriptor Link-list
0xBDA40000

Descriptor Dynamic
Range Status
0xBDA50000

Link Linkn

Descriptor_Weight
0xDBA60000

Queue Head-Tail
0xBDA76000

Queue Length
0xBDA78000

Queue Weight
0xBDA78800

Queue Dyn. Pool [29:28] (2bits)

Flag

16,384 words (1bits each)

16,384 words (8bits each)

1024words (14bits each, 1words/queue)

512words (14bits each)

512words (22bits each)
Queue Parameters
0xBDA79000

512words (30bits each)

Queue Length Allowance [27:14] (14bits)
Queue Length Limit [13:0] (14bits)

Free Descriptor List Head
0xBDA7E000

 (14bits)
Free Descriptor List Tail
0xBDA7E004

 (14bits)

 (15bits)

Free Descriptor List Length
0xBDA7E008

 (14bits)

Dyn_Descriptor_ Pool0_Usage
0xBDA7E080

 (14bits)

 (14bits)

 (14bits)

Dyn_Descriptor_ Pool1_Usage
0xBDA7E084

Dyn_Descriptor_ Pool3_Usage
0xBDA7E08C

Memory Partitions

Dyn_Descriptor_ Pool2_Usage
0xBDA7E088

Weight Weight Weightn

Pointer Pointer Pointern

Length Length Lengthn

Weight Weight Weightn

Link

FlagnFlag
C5EC3EARCH-RM REV 04

416 CHAPTER 7: QUEUE MANAGEMENT UNIT
QMU Variables The QMU uses the following variables shown in Table 119 on page 416.

Table 119 Legal Ranges for SRAM Variables

ITEM RANGE

Number of Dynamic Descriptor Buffer Pools Up to 4

Number of Descriptor Buffers per Pool 0 to 16K

Number of Descriptors allowed in the QMU 1 to 16,384 as detailed here:

Individual Descriptor Size

Number of Descriptors Enqueued Dynamically
to the Queues Associated with a Pool

0 to 16K

PROGRAMMED
VALUE

NUMBER OF
DESCRIPTORS

0
.
.
.
16,383

1
.
.
.
16,384

SIZE (BYTES) ENCODED VALUE

12 0

16 1

24 2

32 3
C5EC3EARCH-RM REV 04

QMU Variables 417
Number of Queues Allowed in the QMU 0 to 511 as detailed here:

Number of Queues Mapped per Processor Up to 128

Queue Level Number (for Multicast Enqueue
Operations Only)

0 to 7

Table 119 Legal Ranges for SRAM Variables (continued)

ITEM RANGE

PROGRAMMED
VALUE

NUMBER OF
QUEUES

0
.
.
.
511

1
.
.
.
512
C5EC3EARCH-RM REV 04

418 CHAPTER 7: QUEUE MANAGEMENT UNIT
Queue Mapping and
Parameter Characteristics

The basic queue characteristics are described in this section.

Queue to Processor
Mapping

A queue is a FIFO that contains descriptor data.The QMU supports (0 to 511) queues
available to the entire C-5e NP. Up to 128 (of those 512) queues can be mapped to a given
processor, (CPs, XP, or FP).

The QMU uses a simple mapping scheme to establish a flexible association between
processors and their queues for both unicast enqueue and multicast enqueue operations.

The QMU maps individual queue numbers (0 to 511) to their respective processors (CPs,
XP, or FP) using the Base_Queue_CP0 to Base_Queue_CP15, Base_Queue_FP, and
Base_Queue_XP registers. Specifically, using the Base_Queue_Number bits [8:0] field
contained in the Base_Queue_CP0 to Base_Queue_CP15, Base_Queue_FP, and
Base_Queue_XP registers.

The Base_Queue_nnn is the lowest numbered queue owned by that processor. The rest of
a processor’s queues are located at offsets above the Base_Queue_nnn. The offset range
cannot be larger than one-hundred-twenty-eight (128). Each processor is assigned its
queues sequentially within the (0 to 511) queue number range.

These queues are the ones targeted by unicast and multicast enqueues to that processor,
and are the queues that stimulate queue non-empty transition notifications to the
processor. This scheme allows an arbitrary number of queues to be assigned to each
processor (the Base_Queue_ Number bits [8:0] fields are unconstrained). Refer to Figure 93
on page 419.
C5EC3EARCH-RM REV 04

Queue Mapping and Parameter Characteristics 419
Figure 93 Mapping Queues to Processors for Unicast/ Multicast Enqueue Operations Example

Queue to Processor Mapping Rules
The assignment of queues to processors must follow these rules:

• The ranges of queues starts with queue 0 for CP0.

• The range for CP1 follows immediately after the range for CP0 with no gap. This
pattern continues through the remaining CPs in increasing CP number, and then to the
FP and the XP.

• The last XP queue must not exceed the total number queues initialized.

• There can be no more than one-hundred-twenty-eight (128) queues per processor.

Base_Queue_CP0
Address Queue0

Base_Queue_FP
Address

Available Queues= 0 to 511

Queue1

Queue2

Queue3
Base_Queue_CP1
Address Queue4

Queue5

Queue6

Queue7

Queue8

Queue507

Queue505

Queue504

Queue509

Queue510

Queue511

Base_Queue_XP
Address

Queue508

Queue506
C5EC3EARCH-RM REV 04

420 CHAPTER 7: QUEUE MANAGEMENT UNIT
When there are no queues assigned to a processor, its Base_Queue_nnn register must still
be programmed. Its value should be the offset for the “next available queue” following the
last queue of the next lower numbered processor.

If a processor is assigned zero (0) queues, the next higher processor (based on Processor
ID) is assigned the same Base_Queue_Number bits [8:0] as the lower processor.
Therefore, two (or more) processors can have the same Base_Queue_Number bits [8:0]
value if the lower processor(s) has been assigned zero (0) queues.

If any descriptors are enqueued for a processor with no queues, those descriptors are
enqueued in a queue of the higher numbered processor. When one of the next-higher
numbered processor’s queues is non-empty, the notification is sent to the highest
numbered processor sharing the Base_Queue_Number bits [8:0] value, but the higher
numbered processor becomes the owner of the queue.

Queue Length Allowance
and Length Limit

Parameters

The supply of Descriptor Buffers within the QMU must be properly managed to prevent
the depletion of Descriptor Buffers for queues not at the “traffic hot-spots”. To avoid this
situation, a minimum number of Descriptor Buffers always needs to be available to each
queue regardless of the use of Descriptor Buffers by other queues. Two (2) parameters are
used to set the minimum and maximum amount of Descriptor Buffers used to provide a
free flow of Descriptor Buffers to the queues that need them at a given point in time. They
are: Queue Length Allowance and the Queue Length Limit. Allowance is the minimum
amount of the (0 to 16K) range, whereas, Limit is the maximum of the (0 to 16K) range.
Thus, each queue is initialized with these two (2) parameters:

• Queue Length Allowance — Is the guaranteed minimum allocation of Descriptor
Buffers of (0 to 16K) range. Buffers are implicitly reserved so that a queue can always fill
to its allowance. The sum of the allowances of all the queues is always smaller than the
total supply of Descriptor Buffers, typically much smaller.

• Queue Length Limit — Is the guaranteed maximum number of unicast Descriptor
Buffers a queue is allowed to hold in the range of (0 to 16K). The sum of the limits of all
the queues is typically much greater than the supply of Descriptor Buffers.

These parameters (Allowance and Limit) refer to the number of Descriptors enqueued in
a queue; they do not specify which Descriptor Buffers are enqueued in any given queue.

When a queue has filled to an amount between its Allowance and its Limit, it is in its
dynamic range. In this dynamic range, Descriptor Buffers may or may not be available to
the queue for enqueueing depending on the use of Descriptor Buffers by other queues.
C5EC3EARCH-RM REV 04

Queue Mapping and Parameter Characteristics 421
Whether or not a Descriptor Buffer is available in this situation depends on the number of
Descriptor Buffers currently enqueued in other queues.

Descriptor Buffer availability is dynamic in that it depends on the current state of the QMU
that results from the dynamic traffic pattern. If other queues are not using many
Descriptor Buffers at a given moment in time, a queue at the “traffic hot-spot” can get
more than its share. If there are a lot of enqueued Descriptor Buffers, each queue gets at
least its Allowance, (that is, its fair share under congestion). This gives the QMU the
appearance of many more Descriptor Buffers than it actually has if they had been
dedicated to specific queues.
C5EC3EARCH-RM REV 04

422 CHAPTER 7: QUEUE MANAGEMENT UNIT
Queueing Operations The QMU receives queue operation requests via the Payload Bus. Enqueue Operations use
a control block (WrCB0) to write the descriptor data into a queue in the QMU’s external
SRAM from the DMEM of either the requesting CP, or XP via the Payload Bus. In addition,
Dequeue Operations use a control block (RdCB0) to read descriptor data from a queue in
the QMU’s SRAM into the DMEM of the requesting CP, or XP via the Payload Bus.
Descriptor data is transferred to/from the QMU in 16Byte units; up to two (2) units
(32Bytes) can be transferred in one (1) Payload operation along with other information
contained in the payload transaction.

QMU Run Enable The QMU must be enabled to process queueing operation requests from the processors
(CPs, XP, or FP). The QMU_Run_Enable register has one (1) bit that enables the QMU to
process Payload Bus operations. This bit must be set after initialization to allow the QMU
to go online.

This bit can be cleared at any time. Once cleared, this bit disables the QMU from starting
the processing of any subsequent queue operations. A queue operation currently being
executed is not interrupted by the clearing of this bit, but no subsequent queue
operations are started. This allows a clean shutdown of the QMU so that its internal state is
not corrupted. Once the QMU is shut down, a processor (CPs, XP, or FP) can access all of
the internal state of the QMU (both registers and memory). Any queue commands left in
the mailboxes (Wr Mailbox/Rd Mailbox) are executed in normal order when the QMU is
re-enabled, just as if the QMU had never been disabled. Refer to “QMU_Run_Enable
Register (QMU Enable Queue Function)” on page 637.

Enqueue Operation Processors (CPs, XP, or FP) enqueue payload descriptors to designate to the output
processor how to forward packets/cells. Upon a successful enqueue, the requesting
processor is freed from having to keep track of the packet/cell buffer. It has effectively
handed this packet/cell buffer off to the output function by way of the QMU.

Payload (Wr/Rd) Servicing Order During Enqueue Operation
Queue operations arriving from the CPs and the XP are serviced from the mailboxes by
type (Wr/Rd) in the order of their arrival at the QMU over the Payload Bus. Payload write
(Wr) operations from any CP or the XP are executed in arrival order before any waiting
payload read (Rd) operations are executed in their arrival order. In order to facilitate the FP
operating at full capacity, the QME gives FP commands at least one half the queueing
bandwidth in proportion to its traffic bandwidth. The CP/XP operations, either read or
write operations, are interleaved with FP operations.
C5EC3EARCH-RM REV 04

Queueing Operations 423
Since only one (1) command of each type (Wr/Rd) can be buffered in the QMU from each
of the CPs and the XP, a mailbox status for each ensures that commands are not lost. Direct
wiring of mailbox status and command execution status information from the QMU to the
CP_Mode0 register ensures that the CPs do not need to spend system-level resources to
determine if the previous command completed successfully or not.

An attempt to over-write a busy mailbox causes a Payload Bus NACK. An attempt does not
disturb the previously written command.

Causes of Enqueue Failure
When an enqueue operation failure occurs, the requesting processor (CPs, XP, or FP) must
either retry the enqueue at a later time or drop the packet/cell and reuse the Buffer Tag
(BTag). An enqueue operation can fail for the following reasons:

• A Dyn_Descriptor_Pooln_Usage shows that the pool is empty when a queue is in its
dynamic range.

• The Free_Descriptor_Buffer_List has no descriptor buffers left.

• The unicast target queue has exceeded its buffer-use limit.

• The target queue does not exist (that is, it was never configured).

Dequeue Operation Because the QMU queues are output queues, there must be a single processor that owns
each active queue. That owner is responsible for draining the queue. A successful
dequeue operation triggers the entire forwarding process. Therefore, when a dequeue
failure occurs, there is no descriptor to drive a packet/cell transmission.

Queue Servicing Policy During Dequeueing Operation
The dequeueing processors (CPs, XP, or FP) determine the queue service policy, not the
QMU. In addition, several queues can be assigned to each CP for Quality of Service (QoS)
purposes. The dequeueing processor is free to implement any priority, service weighting,
or scheduling policy.

Dequeueing processors are responsible for scheduling their own workloads. To aid in this,
the QMU provides weights for each queue. Each queue entry has a weighting factor
associated with it. In typical frame-switching applications, each descriptor is assigned a
weight which is related to the length of the frame stored in the associated BMU buffer. The
sum of the enqueued descriptor weights is kept for each QMU queue.
C5EC3EARCH-RM REV 04

424 CHAPTER 7: QUEUE MANAGEMENT UNIT
Each enqueue and dequeue operation updates the value for its queue. For multicast
enqueue operations, the queue weight is adjusted for all the specified queues.

When a descriptor is dequeued from a queue, the descriptor’s weight, the queue’s new
weight, and the queue’s length are returned to the processor’s DMEM along with the
descriptor itself. Refer to “Dequeue Operation” on page 441.

Causes of Dequeue Failures
A dequeue operation can fail for these reasons:

• The target queue is empty.

• The target queue does not exist (that is, it was never configured).

Status Reporting Status is reported on Mailboxes and Queues. Queue status information is made up of
three (3) types: Empty to Non-Empty State Notification, Dequeue Operation, and Buffer
Management.

Mailbox Availability and Status Reporting of Mailboxes
The QMU maintains a write (CPn Wr Mailbox) and a read (CPn Rd Mailbox) mailbox for
each CP and the XP (XP Wr Mailbox, and XP Rd Mailbox). These mailboxes are invisible to
application developers except that the state of each is reported via the CP_Mode0 register
for the processor. Specifically, the CP_Mode0 register, bits [23:22] QMURdMbxStatus field
and bits [21:20] QMUWrMbxStatus field are visible. Using these two (2), two (2) bit fields,
status states reported include: operation success, operation error, busy-wait, or
busy-executing. The mailbox scheme provides a single holding register per source (that is,
only one (1) command is outstanding per mailbox at a time).

This allows success/fail operation information to be conveyed back to the requesting
processor (CPs or XP) in an orderly fashion. Errors reported (set to 1) in the CP_Mode0
register occur when the previous queue operation encountered an error and should be
repeated. Generally, it means the queue operation failed, because of a resource error such
as queue non-empty or descriptor buffer pool limit was exceeded.

Mailbox status is also reported through both Event0 and Event1 registers. Specifically,
Event0 register bit [60] QMUError field, as well as the Event1 register bit [31] QRdMbxAvail
field, bit [26] QRdMbxBusy field, bit [15] QWrMbxAvail field, and bit [10] QWrMbxBusy field
are used to determine when the applicable mailbox is available for a new queue. The avail
bits indicate the mailbox made a state transition from busy to empty.
C5EC3EARCH-RM REV 04

Queueing Operations 425
The busy bits indicate a transition from empty to busy. The error bit indicates a transition
from busy to error.

Queue Status Information
There are several types of queue status information that can be accessed to inform the
processors (CP, XP, or FP) in their forwarding tasks:

• Queue non-empty transition notifications presented via Queue_Status0,
Queue_Status1, Queue_Status2 and Queue_Status3 registers, as well as, the Event0 and
Event1 registers.

• Dequeue status information (the Queue’s weight and length) that is included with a
descriptor when it is dequeued. Refer to “Dequeue Operation” on page 441.

• Buffer management status that is included in the Free_Descriptor_Buffer_List and
Dyn_Descriptor_Pooln_Usage registers.

Queue Empty to Non-empty State Notification Process Information
Queue status is made visible to the processors (CPs, XP, or FP) via the Event1 register and
the Queue_Status0, Queue_Status1, Queue_Status2, Queue_Status3 registers in each
processor’s configuration space. Payload operations (RdCB0) can be used to read the
complete queue status from the QMU when the normal updates that come with a
dequeue are insufficient. Refer to “Queue Status Operation” on page 433. Autonomous
announcements of queue status by the QMU are made on the Global Bus and are handled
by CP and XP hardware.

When a queue becomes non-empty, its dequeueing processor (CP, XP, or FP) can begin to
drain it. The QMU announces this change of state (empty to non-empty) to the queue’s
dequeueing processor indicating the queue is now ready to be serviced. The dequeueing
processor’s software is then responsible to keep track of the ready status of the queue
until the queue is completely drained.

Queue change of state (empty to non-empty) notifications are issued whether the
enqueued descriptor came from a unicast or a multicast enqueue. Each multicast target
queue is treated individually in the generation of these notifications.

Queue status non-empty transitions are automatically loaded into the four (4) queue
status registers, where they can be read by the CPRC. Queue_Status0, Queue_Status1,
Queue_Status2, Queue_Status3 bits are set to one (1) when a queue state changes from
empty to non-empty.
C5EC3EARCH-RM REV 04

426 CHAPTER 7: QUEUE MANAGEMENT UNIT
The dequeueing processor is responsible for clearing these bits when it handles the status
change (that is, before it begins to read descriptors from the queue). The logical OR of the
bits in these status registers also provides a level-sensitive event for input to the Event1
register. Refer to “Queue_Status0 Register (CP Queue Status Function)” on page 549,
Table 177 on page 549.

Dequeue Status Information
The dequeueing processor (CPs, XP, or FP) of the descriptors is given a queue and
descriptor status with each dequeue operation. The QMU sends the following three (3)
types of status information to DMEM along with the descriptor being delivered:

• Descriptor Weight, Queue Weight, and Queue Length

– The Descriptor Weight — The weight of that descriptor.

– The Queue Weight — Accumulated weight of the queue after the dequeue of this
descriptor.

– Queue Length — The queue length after the dequeue of this descriptor.

The queue status information can also be obtained using the Queue Status Operation.
Refer to“Queue Status Operation” on page 433.

Buffer Management Information
The processor receives an update of the queue’s length with each descriptor read (RdCB0
for Dequeue Operation and Queue Status Operations). When the reported queue length
drops to zero (0), the processor has just received the last enqueued descriptor and should
stop issuing descriptor reads until it receives a queue non-empty transition notification
for that queue.

Additional QMU status information can be read during on-line operation via Global Bus
transactions using Load operations from an egress processor. These Global reads deliver
the values of these registers instantaneously. Their values typically vary (very rapidly and
widely) when the QMU is active. Some form of sampling and time-averaging is necessary
to get an accurate sense of the congestion level.

The QMU makes available status information about the processors level of congestion.
That status information is contained in the Free_Descriptor_Buffer_List and
Dyn_Descriptor_Pooln_Usage registers. These two (2) registers can be read using Global
reads when the QMU is on-line to access the status information.
C5EC3EARCH-RM REV 04

Queueing Operations 427
Refer to “Free_Descriptor_Buffer_List Register (QMU Control Function)” on page 652,
“Dyn_Descriptor_Pool0_Usage Register (QMU Status Function)” on page 653, and
Table 215 on page 653.

Processors can also read the instantaneous contents of the various statistics counters
using Loads over the Global Bus. There are sixteen (16) QMU Statistics registers that are
available. Refer to “QMU Registers” on page 447.
C5EC3EARCH-RM REV 04

428 CHAPTER 7: QUEUE MANAGEMENT UNIT
Types of Transactions The QMU supports six (6) Queueing functions. The different functions are initiated by CPs
or the XP using the Multi-Use Control Blocks by just changing the fields. Multi-Use Control
Blocks use the following registers: WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr,
WrCB0_SDP_Addr; and RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr,
RdCB0_SDP_Addr. Refer to Table 120 on page 428, Table 121 on page 429, and Table 122
on page 430.

Table 120 Multi-Use Control Blocks (for Wr and Rd)

MODE CATEGORY FUNCTION FIELDS USED DETAILS

• CP to/from
QMU

• XP to/from
QMU

Queue
Management
Transactions

Configure Queue Mail Box#,
Queue#, Cmd,
PoolID

See “Configure Queue
Operation” on page 431.

Queue Status See “Queue Status
Operation” on page 433.

Unicast Enqueue See “Unicast Enqueue
Operation” on page 435.

Speculative
Unicast Enqueue

See “Speculative Unicast
Enqueue Operation” on
page 437.

Multicast
Enqueue

Mail Box#,
QueueLevel#,
Cmd, PoolID

See “Multicast Enqueue
Operation” on page 439.

Dequeue Mail Box#,
Queue#, Cmd,
PoolID

See “Dequeue Operation”
on page 441.
C5EC3EARCH-RM REV 04

Types of Transactions 429
Table 121 WrCB0_ Variables per Field for QMU

REGISTER
FIELD
NAME

BIT
POSIT
ION DESCRIPTION

WrCB0_DMA_Addr PoolID 20:16 PoolID —

WrCB0_Sys_Addr Mail
Box#

28:24 Mail Box Number —

Queue# 20:12 Queue Number —

QLevel# 18:16 Queue Level Number —

CMD 10:8 Command —

OPERATION TYPE VALUE
Configure Queue 31

Unicast Enqueue

Multicast Enqueue

OPERATION TYPE VALUE
Configure Queue Enter the number of the processor’s mailbox. Legal range=0 to

16. Generally, the initiating processors ID. Unicast Enqueue

Multicast Enqueue

OPERATION TYPE VALUE
Configure Queue Queue to configure. Legal range=0 to 511.

Unicast Enqueue Queue to write to. Legal range=0 to 511.

OPERATION TYPE VALUE
Multicast Enqueue Index to the Queue Number to write to. Legal range=0 to 7.

OPERATION TYPE VALUE
Configure Queue 1

Speculative Unicast Enqueue 3

Unicast Enqueue 4

Multicast Enqueue 6
C5EC3EARCH-RM REV 04

430 CHAPTER 7: QUEUE MANAGEMENT UNIT
Table 122 RdCB0_ Variables per Field for QMU

REGISTER
FIELD
NAME

BIT
POSITI
ON DESCRIPTION

RdCB0_DMA_Addr PoolID 20:16 PoolID —

RdCB0_Sys_Addr Mail
Box#

28:24 Mail Box Number —

Queue# 20:12 Queue Number—

CMD 10:8 Command —

OPERATION TYPE VALUE
Queue Status 31

Dequeue

OPERATION TYPE VALUE
Queue Status Enter the number of the processor’s mailbox. Legal range=0 to 16.

Generally, the initiating processors ID.Dequeue

OPERATION TYPE VALUE
Queue Status Queue Status being read. Legal range=0 to 511.

Dequeue Queue being Dequeued. Legal range=0 to 511.

OPERATION TYPE VALUE
Queue Status 2

Dequeue 5
C5EC3EARCH-RM REV 04

Queue Management Transactions 431
Queue Management
Transactions

Queue transactions consist of six (6) different functions (Configure Queue, Queue Status,
Unicast Enqueue, Speculative Unicast Enqueue, Multicast Enqueue, and Dequeue). Queue
transactions are invoked using Control Blocks (WrCB0, and RdCB0).

Queue Transaction
Functions (Operation and

Examples)

Each is described here along with examples.

Configure Queue Operation
Configure Queue uses a control block (WrCB0) to send configuration information from the
(DMEM) of either the requesting CP or XP to the QMU’s Queue Management Engine
(QME).

Configure Queue Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 123 on page 431.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Descriptor Limit [45:32] (14bits), Descriptor Pool
[15:14] (2bits) and Descriptor Allowance [13:0] (14bits) are located in the first 128bit line

Table 123 WrCB0_ Settings for Configure Queue

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.

WrCB0_Sys_Addr Mail Box# 28:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue to write to configure.
Legal range=0 to 511.

Cmd 10:8 Command — Enter 1 for Configure Queue
Operation.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Queue Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

LENGTH (BYTES)
64
C5EC3EARCH-RM REV 04

432 CHAPTER 7: QUEUE MANAGEMENT UNIT
inside the 64Byte DMEM as shown in Figure 94 on page 432. The second, third and fourth
128bit lines are not used.

Figure 94 Configure Queue Implementation

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Des. Limit [45:32](14bits) Des. Pool [15:14](2bits) Des. Allowance [13:0] (14bits)

Not Used

=128bits

=64Bytes

Not Used

Not Used
C5EC3EARCH-RM REV 04

Queue Management Transactions 433
Queue Status Operation
Queue Status uses a control block (RdCB0) to read a single queue’s length and weight
from the QMU into the (DMEM) of the requesting CP, or XP.

Queue Status Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 124 on page 433.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Queue’s Weight [53:32] (22bits) and its Length [13:0]
(14bits) are located in the first 128bit line inside the 64Byte DMEM as shown in Figure 95
on page 434. The second, third and fourth 128bit lines are not used.

Table 124 RdCB0_ Settings for Queue Status

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.

RdCB0_Sys_Addr MailBox# 28:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue Status being read.
Legal range=0 to 511.

Cmd 10:8 Command — Enter 2 for Queue Status
Operation.

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Queue Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

LENGTH (BYTES)
64
C5EC3EARCH-RM REV 04

434 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 95 Queue Status Implementation

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

RrCB0_Sys_Addr (32bits)

RdCB0_Ctl (32bits)

RdCB0_DMA_Addr (32bits)

64Byte DMEM

Queue Weight [53:32](22bits) Queue Length [13:0] (14bits)

Not Used

=128bits

=64Bytes

Not Used

Not Used
C5EC3EARCH-RM REV 04

Queue Management Transactions 435
Unicast Enqueue Operation
Unicast Enqueue uses a control block (WrCB0) to write the Descriptor data into a queue in
the QMU’s (SRAM) from the (DMEM) of either the requesting CP or XP.

Unicast Enqueue Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 125 on page 435.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Sequence Number [124:112], Descriptor Weight [7:0]
are located in the first 128bit line followed with descriptors (depending on 12, 16, 24, or
32Byte sizes) located in the second and third 128bit lines inside the 64Byte DMEM as
shown in Figure 96 on page 436. The fourth 128bit line is not used.

Table 125 WrCB0_ Settings for Unicast Enqueue

REGISTER/
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.

WrCB0_Sys_Addr Mail Box# 28:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue to write to. Legal
range=0 to 511.

Cmd 10:8 Command — Enter 4 for Unicast Enqueue
Operation.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

LENGTH (BYTES)
64
C5EC3EARCH-RM REV 04

436 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 96 Unicast Enqueue Implementation

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

SeqNum [124:112] Descriptor Weight [7:0]

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)
C5EC3EARCH-RM REV 04

Queue Management Transactions 437
Speculative Unicast Enqueue Operation
Speculative Unicast Enqueue uses a control block (WrCB0) to write the Descriptor data
into a queue in the QMU’s (SRAM) from the (DMEM) of either the requesting CP or XP.

Speculative Unicast Enqueue Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 126 on page 437.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Sequence Number [124:112], and Descriptor Weight
[7:0] are located in the first 128bit line followed with descriptors (depending on 12, 16, 24,
or 32Byte sizes) located in the second and third 128bit lines inside the 64Byte DMEM as
shown in Figure 107 on page 465. The fourth 128bit line is not used.

Table 126 WrCB0_ Settings for Speculative Unicast Enqueue

REGISTER/
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.

WrCB0_Sys_Addr Mail Box# 28:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue to write to. Legal
range=0 to 511.

Cmd 10:8 Command — Enter 3 for Speculative Unicast
Enqueue Operation.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

LENGTH (BYTES)
64
C5EC3EARCH-RM REV 04

438 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 97 Speculative Unicast Enqueue Implementation in Internal Mode

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

SeqNum [124:112] Descriptor Weight [7:0]

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)
C5EC3EARCH-RM REV 04

Queue Management Transactions 439
Multicast Enqueue Operation
Multicast Enqueue uses a control block (WrCB0) to write a Descriptor’s data into multiple
queues in the QMU’s SRAM from the DMEM of either the requesting CP, or XP.

Multicast Enqueue Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 127 on page 439.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Multicast Vector [63:32], and Descriptor Weight [7:0]
are located inside the first 128bit line followed with descriptors (12, 16, 24, or 32Byte sizes)
located in the second and third 128bit lines inside the 64Byte DMEM as shown in
Figure 98 on page 440. The fourth 128bit line is not used.

Table 127 WrCB0_ Settings for Multicast Enqueue

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.

WrCB0_Sys_Addr Mail Box# 28:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

QLevel# 18:16 Queue Level Number — Index to the Queue
Number to write to. Legal range=0 to7.

Cmd 10:8 Command — Enter 6 for Multicast Enqueue
Operation.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

LENGTH (BYTES)
64
C5EC3EARCH-RM REV 04

440 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 98 Multicast Enqueue Implementation

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Multicast Vector [63:32] (32bits) Descriptor Weight [7:0] (8bits)

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)
C5EC3EARCH-RM REV 04

Queue Management Transactions 441
Dequeue Operation
Dequeue uses a control block (RdCB0) to read Descriptor data from a queue in the QMU’s
SRAM into the DMEM of the requesting CP, or XP. Dequeue frees a Descriptor Buffer from a
queue.

Dequeue Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 128 on page 441.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Sequence Number [124:112], Descriptor Parity Errors
[103:96], Descriptor Weight [71:64], Queue Weight [53:32], Dry [22], Invalid [21], Queue
Status Number [20:14], Queue Length [13:0] (14bits) are located inside the first 128bit line
followed with descriptors (depending on 12, 16, 24, or 32Byte sizes) located in the second
and third 128bit lines inside the 64Byte DMEM as shown in Figure 99 on page 442. The
fourth 128bit line is not used.

Table 128 RdCB0_ Settings for Dequeue

REGISTER
FIELD
NAME

BIT
POSITION DESCRIPTION

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.

RdCB0_Sys_Addr MailBox# 28:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue being Dequeued.
Legal range=0 to 511.

Cmd 10:8 Command — Enter 5 for Dequeue Operation.

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Queue Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

LENGTH (BYTES)
64
C5EC3EARCH-RM REV 04

442 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 99 Dequeue Implementation

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

SeqNum [124:112] DesParityErrs [103:96] DesWeight [71:64] QWeight [53:32] ...

Not Used

=128bits

=64Bytes
Descriptors (128bits)
Descriptors (128bits)

... Dry [22], Inval [21], QStatNum [20:14], QLength [13:0]
C5EC3EARCH-RM REV 04

QMU Multicast Support (Non-System Level) 443
QMU Multicast Support
(Non-System Level)

Multicast enqueue operations take a single multicast descriptor from the DMEM of a
processor (CPs, or XP) and copy it to the designated target queue numbers. To get from
the DMEM to the selected targeted queue number requires two (2) items::

• User-defined target queue represented as a 32bit Multicast Vector

• Queue Level Number

The multicast operation is implemented using the Control Blocks (WrCB0_). Specifically,
the WrCB0_Sys_Addr register, bits [18:16] QLevel# field that is used to select the queue
level number (0 to 7). This allows eight (8) multicast queueing levels to be mapped to as
many as eight (8) queues for each processor. Processors can have < 8 multicast-enabled
queues if desired. Generally, the multicast vector is fetched from a multicast table in the
TLU by the processor that built the descriptor.

The 32bit Multicast Vector, plus the QLevel#, are combined to provide the Queue_Number
address (0 to 255) into the Multicast Destination Table. The table is set up with 9bit queue
numbers, by using the Multicast_Destination0 to Multicast_Destination255 registers bits
[8:0] Queue_Number field.

One of the QMU’s setup steps is to map individual queue numbers (0 to 511) to their
respective processors (CPs, XP, or FP) using the Base_Queue_CP0 to Base_Queue_CP15,
Base_Queue_FP, and Base_Queue_XP registers. This provides the association between the
queue numbers and their mapped processors.
C5EC3EARCH-RM REV 04

444 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 100 Multicast Enqueue Operation Example

Multicast elaboration is performed by copying the descriptor into a descriptor buffer for
each of the appropriate queues. Other than the availability of Free_Descriptor_Buffer_List
and Dyn_Descriptor_Pooln_Usage, the QMU imposes no limit on the number of
descriptors that can simultaneously be in the queues as the result of multicast operations.
Refer to “Multi-Use Counter (MUC) Management Transactions” on page 299. A single
multicast enqueue can have a maximum of 32 targets. However, the external switching
fabric must be capable of multicast replication for multiple fabric ports from a single
multicast queue.

CPs, XP, FP Input

Multicast Operation
(QLevel# & M.C. Vector)

0

Single Multicast
Descriptor
DMEM

M.C. Vector (32bits)

Descriptor

32bit Multicast Vector
31 0

1 000 1 0

1

QLevel# (0 to 7)=1

0 7

31
30

Each block contains a 9bit Queue Number

1 6

Multicast Destination Table
C5EC3EARCH-RM REV 04

QMU Multicast Support (Non-System Level) 445
Multicast Operations
Success or Failure

Descriptors enqueued in the QMU correspond to payload buffers located in the BMU. If a
descriptor does not make it to a destination processor, the corresponding payload buffer
is effectively lost as well because it is not deallocated. In a multicast operation, a payload
buffer is assigned a destination count equal to the number of destination processors to
receive a copy of the descriptor. When all the destination processors have received their
copy of the descriptor, the payload buffer is released because the destination-count
reaches zero (0).

It is critical that the QMU succeed at multicasting the descriptor to all the destination
processors. If it does not, one or more processors never receive a copy of the buffer
descriptor, and the payload buffer’s destination count never reaches zero (0) and the
payload buffer is never released. This would cause a “memory leak”. If the QMU cannot
successfully enqueue a descriptor to all the specified destinations, it rejects the entire
multicast enqueue request. When a multicast enqueue request fails, the requesting
processor can either retry the multicast enqueue, or drop the payload.

Multicast Operation
Throughput

Considerations

An N-way multicast enqueue operation cannot take longer than N unicast enqueues if the
C-5e NP is to maintain its throughput. Therefore, the QMU cannot afford to take the time
to visit each target queue to determine if its length is over its limit before actually
beginning to do the series of enqueues. Since the QMU cannot check ahead of time and it
cannot fail to enqueue to each queue, it cannot check the queue limit while it is doing the
enqueues. This means that a multicast operation can push a queue above its length limit.

Before the QMU begins the individual enqueues of a multicast enqueue operation, it
checks that there are enough free descriptor buffers (Free_Descriptor_Buffer_List register)
and enough room within the dynamic pool (Dyn_Des_Usage_Lim_Pooln register) to
complete the series of enqueues. As with the queue length limit, the QMU cannot know
ahead of actually doing the individual enqueues how many of the target queues will be
above their allowances and therefore need a dynamic descriptor buffer. The initial pool
usage check insures that there will be enough dynamic buffers no matter what. However,
the pool usage check might find that there are not enough buffer credits left if all the
target queues need one, when, in actuality, there are enough pool credits available for the
number of queues that actually need them. In this case, the multicast operation will be
rejected when it could have succeeded.

Because the QMU only has time to check the dynamic pool of the first queue, all member
queues of a multicast group must share the same dynamic buffer pool.
C5EC3EARCH-RM REV 04

446 CHAPTER 7: QUEUE MANAGEMENT UNIT
Queue Levels Supported in
Multicast Operations

The QMU supports eight (8) levels (0 to 7) of multicast queueing. The purpose of using
levels is to assign a specific queue to each level in order to implement a multicast
operation. In a multicast operation, a single payload descriptor is simply copied to each of
the targeted queues specified using the Queue Level Number field (QLevel#) in the
WrCB0_Sys_Addr. The Queue Level Number is an index to the Queue Number to write to.

Although levels are available only through multicast commands, unicast descriptors can
also use queueing levels if enqueued via a multicast command with a fanout of 1. A
multicast descriptor specifies only the multicast vector and the queueing level; the QMU
then maps that onto the specific queue corresponding to the given level for each target
processor. The presumption is that a given descriptor is associated with a class-of-service
that applies at each output port (CPs, XP, or FP). When different queueing levels are
needed at different output ports, multiple multicast enqueues can be issued so that each
one covers the destinations at each of the required queueing levels.

Multicast mapping uses a configurable look-up table(Multicast Destination Table) to store
the queue number for each combination of target queue and queueing level. For the
32bit Multicast Vector and eight (8) queueing levels, this requires two-hundred-fifty-six
(256) entries. Each entry holds a 9bit target queue number. With this scheme, each
processor with eight (8) or more queues can have up to eight (8) queues for transmitting
multicast traffic. These queues could also receive unicast traffic. Target processors can
accept < 8 queues. Refer to “Multicast_Destination0 to Multicast_Destination255
Registers (QMU Configuration Function)” on page 651.

The actual mapping depends on the particular relationship of queueing levels to service
classes in each application.

Multicasting to the Fabric
Processor

The FP multicast vector bit in the descriptor is set by the originating processor and directs
the descriptor to one FP queue at the appropriate queueing level.
C5EC3EARCH-RM REV 04

QMU Configuration Space 447
QMU Configuration Space The QMU has memory-mapped Configuration Space that contains a number of registers.
The registers are used for four (4) purposes: mapping of queues to CPs, XP and FP,
configuration of the QMU, QMU debugging, and collecting QMU statistics. Refer to
Table 129 on page 447.

Table 129 QMU Registers

QMU REGISTER
TYPES REGISTER FUNCTION SPECIFIC REGISTER DETAILS

CP’s Queue
Mapping

These registers specify the base address
for a CP’s queues.

See “Base_Queue_CP0 to
Base_Queue_CP15 Registers (QMU
CP’s Queue Allocation Function)” on
page 640.

XP’s Queue
Mapping

These registers specify the base address
for a XP’s queues.

See “Base_Queue_XP Register (QMU
XP’s Queue Allocation Function)” on
page 641.

FP’s Queue
Mapping

These registers specify the base address
for a FP’s queues.

See “Base_Queue_FP Register (QMU
FP’s Queue Allocation Function)” on
page 640.

QMU
Configuration

Specifies the number of descriptor
buffers to be available in the QMU.

See “Num_Descriptors Register
(QMU Configuration Function)” on
page 642.

Specifies the maximum number of
descriptors that can be enqueued
dynamically to the queues associated
with Pooln.

See “Dyn_Des_Usage_Lim_Pool0
Register (QMU Configuration
Function)” on page 642.

Specifies the operating mode of the
QMU.
Note: The External Mode is not
supported.

See “Operation_Mode Register (QMU
Configuration Function)” on
page 643.

Specifies the size of the data stored for
each descriptor in an encoded form.

See “Descriptor_Size Register (QMU
Configuration Function)” on
page 644.

Provides the mapping of the multicast
destination port and queue level to a
target queue number for each leaf of a
multicast elaboration.

See “Multicast_Destination0 to
Multicast_Destination255 Registers
(QMU Configuration Function)” on
page 651.
C5EC3EARCH-RM REV 04

448 CHAPTER 7: QUEUE MANAGEMENT UNIT
QMU Status Designates the total number of free
descriptors.

See “Free_Descriptor_Buffer_List
Register (QMU Control Function)” on
page 652.

Designates how many buffers are in use
in Pooln.

See “Dyn_Descriptor_Pool0_Usage
Register (QMU Status Function)” on
page 653.

QMU Statistics Count of Queue Configuration
Operations.

See “Config_Q_Cnt Register (QMU
Statistics Function)” on page 644.

Count of Read Status operations. See “Rd_Q_Status_Cnt Register
(QMU Statistics Function)” on
page 644.

Count of Unicast Enqueues from the CPs. See “CP_Uni_Enq_Cnt Register (QMU
Statistics Function)” on page 645.

Count of Multicast Enqueues from the
CPs.

See “CP_Multi_Enq_Cnt Register
(QMU Statistics Function)” on
page 645.

Count of Total Multicast Enqueues
Targets from the CPs.

See “CP_Multi_Enq_Target_Cnt
Register (QMU Statistics Function)”
on page 645.

Count of Dequeue operations from the
CPs.

See “CP_Dequeue_Cnt Register
(QMU Statistics Function)” on
page 645.

Count of Unicast Enqueues from the FP. See “FP_Uni_Enq_Cnt Register (QMU
Statistics Function)” on page 645.

Count of Multicast Enqueues from the FP. See “FP_Multi_Enq_Cnt Register
(QMU Statistics Function)” on
page 645.

Count of Total Multicast Enqueues
Targets from the FP.

See “FP_Multi_Enq_Target_Cnt
Register (QMU Statistics Function)”
on page 646.

Count of Dequeue Operations from the
FP.

See “FP_Dequeue_Cnt Register
(QMU Statistics Function)” on
page 646.

Count of QMU Idle Clock Cycles. See “QMU_Idle_Cycles Register
(QMU Statistics Function)” on
page 646.

Table 129 QMU Registers (continued)

QMU REGISTER
TYPES REGISTER FUNCTION SPECIFIC REGISTER DETAILS
C5EC3EARCH-RM REV 04

QMU Configuration Space 449
For complete details about specific registers go to their reference. Refer to “Queue
Management Unit (QMU) Configuration Registers” on page 633.

QMU Statistics
(continued)

Count of Payload NACKs. See “Payload_NACK_Cnt Register
(QMU Statistics Function)” on
page 646.

Count of Global NACKs. See “Global_NACK_Cnt Register
(QMU Statistics Function)” on
page 646.

Count of Payload Read Failures. See “Payload_Read_Failures_Cnt
Register (QMU Statistics Function)”
on page 646.

Count of Command Processor Errors,
illegal opcodes and out of range queue
numbers.

See “Cmd_Processor_Err_Cnt
Register (QMU Statistics Function)”
on page 647.

Counts errors in dequeued descriptors in
both internal and external modes.

See “Dq_H_Par_Err_Cnt Register
(QMU Sequence Numbers Function)”
on page 647

Counts errors in dequeued descriptors in
internal mode

See “Dq_L_Par_Err_Cnt Register
(QMU Sequence Numbers Function)”
on page 648

Clears the Statistics Registers. See “Clear_Statistics Register (QMU
Statistics Function)” on page 637.

QMU
Sequence
Numbers

Provides a 32bit field for a saturating
count of the number of sequence
numbers missing in front port enqueues
to the QMU.

See “Missing_Front_Seq_Num_Cnt
Register (QMU Sequence Numbers
Function)” on page 648

Provides fields for the ingress and egress
sequence numbers used with front-ports.

See “Front_Seq_Num Register (QMU
Sequence Numbers Function)” on
page 649

Provides a field for the egress sequence
numbers used with back ports.

See “Back_Seq_Num Register (QMU
Sequence Numbers Function)” on
page 649

Provides fields that control a time out
associated with sequence number on
enqueue.

See “Front_Seq_Num_Timeout
Register (QMU Sequence Numbers
Function)” on page 650

Table 129 QMU Registers (continued)

QMU REGISTER
TYPES REGISTER FUNCTION SPECIFIC REGISTER DETAILS
C5EC3EARCH-RM REV 04

450 CHAPTER 7: QUEUE MANAGEMENT UNIT
QMU Setup The QMU must be initialized to operate. Using Global Bus operations, various registers and
memories must be written with appropriate values to allow the QMU to function.
Initialization must be completed before the QMU can be put online. See Table 129 on
page 447 for more complete descriptions of the registers listed below.

As with most C-5e NP components, QMU initialization is completely handled by
Motorola’s programming interface, so that programmers never directly deal with the
registers listed in this section.

Initializing the QMU involves writing the following:

1 Configure the pools using the following registers:

– Operation_Mode register (Internal=0x1)

Warning: The External Mode is not supported.

– Descriptor_Size register (12, 16, 24, 32Bytes)

– Num_Descriptors register (1 to 16, 384)

– Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3 registers for each of the
four (4) Dyn_Descriptor_Pooln_Usage registers

2 Map the queues to their applicable processors (CPs, XP, or FP):

This maps specific processors to specific queues to be used for Unicast Enqueue
Operations, as well as mapping specific processors to specific queues to be used for
Multicast Enqueue Operations.

– Base_Queue_CP0 to Base_Queue_CP15, Base_Queue_XP and Base_Queue_FP
registers for each of the eighteen (18) processors need to be initialized.

– 144 mapping table entries need to be written for Multicast Enqueue Operations.

3 Establish the Free_Descriptor_Buffer_List:

– This requires coordinated initialization of the Free Descriptor Buffer List register
(head pointer, tail pointer, and length) and the internal descriptor linkage-list
pointers. If there are 16,384 descriptors buffers, 16,383 linkage pointers must be
initialized to point one to the next. The last descriptor’s buffer linkage pointer is a
don’t-care.
C5EC3EARCH-RM REV 04

QMU Setup 451
4 Set the queue parameters:

– Queue Length Allowance — The guaranteed minimum amount (0 to 16K-1) of
descriptor buffers available for this queue. Implemented using the Configure
Queue Operation.

– Queue Length Limit — The maximum number of descriptor buffers available (0 to
16K-1) for a particular queue. In other words, Allowance is the minimum amount of
the (0 to 16K-1) range, where as, Limit is the maximum of the (0 to 16K-1) range.
Implemented using the Configure Queue Operation. Refer to “Configure Queue
Operation” on page 431.

5 Set the queue Link-lists:

– The queue lengths must be initialized to zero. With a length of zero, the queue
head and tail pointers are don’t-cares.

6 Enable the QMU_Run_Enable bit:

– The QMU must be run enabled before it can process queueing operations. The
QMU_Run_Enable register is written with a “1” to do this.
C5EC3EARCH-RM REV 04

452 CHAPTER 7: QUEUE MANAGEMENT UNIT
QMU Performance The QMU uses pipelining, so that the execution latency of the queueing operations (i.e.,
the time between the request, at the QMU, until the descriptor is returned to the
requester) is greater than the time interval between the beginning of the execution of the
descriptors.

Execution Speed and
Descriptor Size

Relationship

Both the C-5e NP and C-3e NP use a separate external clock circuit. For the C-5e NP the
clock runs at 160MHz (maximum), and for the C-3e NP it runs at 150MHz (maximum). The
actual maximum number of queue operations achievable by the QMU is determined by
both the clock frequency of the Queue Management Engine (QME) and the size of the
descriptor. One (1) QME clock cycle for each (32bit word) is required for the descriptor
storage/retrieval process. Their are four (4) allowed descriptor sizes: 12Bytes, 16Bytes,
24Bytes and 32Bytes.

For example, using a QME clock frequency of 160MHz and a 32Byte descriptor, the
maximum number of queue operations is found using the formula shown in Figure 101
on page 452. Also, refer to Table 130 on page 452.

Figure 101 QMU Performance Formula

Table 130 QMU Performance Results Using the Formula and Typical QMU Speeds

FREQUENCY
OF THE QME
CLOCK (MHZ)

FOR DESCRIPTOR
SIZE =12BYTES

FOR DESCRIPTOR
SIZE =16BYTES

FOR DESCRIPTOR
SIZE =24BYTES

FOR DESCRIPTOR
SIZE =32BYTES

150 50.00M/s 37.50M/s 25.00M/s 18.75M/s

160 53.33M/s 40.00M/s 26.67M/s 20.00M/s

175 58.33M/s 43.75M/s 29.17M/s 21.88M/s

Number of Queue Operations per Second (M/s) = 1/((1/f) * (Descriptor Size/4))

Number of Queue Operations per Second (M/s) = 1/((1/160MHz) * (32/4))

Number of Queue Operations per Second (M/s) = 1/ ((6.25e-9) * (8))

Number of Queue Operations per Second (M/s) =1/5e-8

Number of Queue Operations per Second (M/s) = 20M/s

Using:

QME Clock Frequency=160MHz

Descriptor Size=32Bytes
C5EC3EARCH-RM REV 04

Multicast Support (System Level) 453
Multicast Support (System
Level)

The C-5e NP supports multicasting Ethernet packets and multi-pointing ATM frames or
cells. Several C-5e NP components are involved in the multicast process.

Multicast elaboration from the Fabric Processor (FP) to the QMU is not supported for this
version of the C-5e NP.

Multicast Flow in the
C-5e NP

The overall multicast transaction flow is described below. It has been separated into the
receive and the transmit portions for clarity.

Multicast Receive Flow Transaction Process
The following describes the receive flow for a multicast transaction. Refer to Figure 102 on
page 454.

1 RxSDP receives the “multicast/multipoint” packet/cell.

2 Based on a combination of SDP processing, table lookup, and CPRC processing, the CP
determines that the packet/cell requires a multicast forwarding operation.

3 The CPRC requests and assigns a multiuse Buffer Tag (BTag) to the packet/cell and
requests the BMU to associate a multi-use counter (MUC) BTag with the BTag.

4 The BMU assigns a multi-use counter (MUC) BTag (the count equals the number of
transmit ports) and associates the counter with a buffer.

5 The CPRC can perform additional processing and then sends the descriptor to the
QMU.

6 The QMU removes the multicast vector and queue level information and then tries to
enqueue the descriptor to the specified output queues. It assesses the supply of
descriptor buffers and if there are enough, it proceeds to do the enqueues.

Each descriptor queue maintains an allocated descriptor count and an overall
descriptor usage limit. The QMU checks the dynamic buffer pool for the first output
queue, and if that pool has enough buffers to match the number of transmit ports, the
QMU proceeds. Otherwise, it signals a failure of the enqueue operation and does not
complete the multicast operation. Thus, all members of a multicast group should share
the same dynamic buffer pool.
C5EC3EARCH-RM REV 04

454 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 102 Multicast Application Receive Process Flow

enqueues copies of the descriptor into all

External QMU

External BMU

CPRC

Forwarding
Descriptor

Multicast
Descriptor

Extract
Space

RxSDP

Packet/Cell

QMU

Inbound “multicast”
serial data stream

Receiving Channel Processor

External TLU

Forwarding

Statistics

SRAM

SDRAM

Ring Bus
Registers

TLU

Buffer

SRAM

Queues

RxSDP launches
table lookup to

TLU returns lookup
indicating multicast

CPRC forwards single “multicast”
descriptor to QMU for enqueueing.

Buffers

Transmit Transmit Transmit

QMU takes single descriptor from CPRC and

“multicast table”
in TLU.

CPRC requests pool of BTags;
BTags given to CPRC. When a multicast

operation, the CPRC sends separate
 request to initialize the BTag counter.

Pool
of

BTags

operation to CPRC.
(Lookup includes list
of Tx ports and service

Transmit CP queues listed in CPRC descriptor.

level.)

CP CP CP

1

2
3

5

BMU

4 BMU sets multiuse BTag counter.

6

Tables

Tables
C5EC3EARCH-RM REV 04

Multicast Support (System Level) 455
Multicast Transmit Flow Transaction Process
The multicast transmit process is identical to a unicast operation. The following describes
the transmit flow for a multicast transaction. Refer to Figure 103 on page 456.

1 The CPRC requests the descriptor in its assigned queue.

2 The CPRC processes the descriptor (if necessary) and then forwards it to the TxSDP.

3 The TxSDP drains the corresponding buffer and appends the header.

4 The CPRC drains the buffer and then sends a message to the BMU to decrement the
counter. When the multi-use counter (MUC) BTag reaches 0 (all buffers associated with
this multicast operation have been drained), the BTag is deallocated.

5 The TxSDP forwards the packet. Each port sends the packet/cell out when it is able,
based on the amount of traffic that is queued for that port.
C5EC3EARCH-RM REV 04

456 CHAPTER 7: QUEUE MANAGEMENT UNIT
Figure 103 Multicast Application Transmit Process Flow

TxSDP

Merge
Space

RISC Core

Forwarding
Descriptor QMU

Packet Cell

Transmitting Channel Processor

Outbound serial
data stream

External BMU
SDRAM

Buffer

forwards it to Transmit CPRC

External QMU

Multicast
Descriptor

SRAM

Queues

Buffers

Transmit

QMU dequeues descriptor and

associated with that queue.

it if necessary. It then forwards the descriptor to
CPRC processes descriptor and modifies/merges

the TxSDP.

The TxSDP forwards the packet.

BMU

the counter is zero, the BMU deallocates BTag.
BMU decrements BTag counter. When

1

CP
Transmit

CP

Transmit
CP

5

The TxSDP drains the buffer.3

4

2

C5EC3EARCH-RM REV 04

External Scheduler Mode 457
External Scheduler Mode The C-5e provides two modes for managing queues. They consist of:

• Internal Mode (using the internal QMU only)

• External Mode

The operation of the External Mode is described in the following section.

Warning: Although the C-5e NP provides an External QMU Mode, it does not support an
external traffic manager device. In addition, the associated registers and fields should
not be implemented.

Operation of the External
Scheduler Mode

The External Mode uses the QMU’s SRAM (200MHz, 55 signal) interface and internal
structures are reconfigured and new internal data-paths are added. The interface is
divided into two sections: one (1) for enqueues and one (1) for dequeues.
Source-synchronous clocking is used to minimize skew and ease system analysis and
design.

The QMU must have data-paths to bypass the normal processing of enqueues and pass
these commands directly onto the external device. Additional information from the first
beat of the queue message on the Payload Bus is passed to the external device along with
the descriptor using some new fields. The QMU fills in the type, multicast bit, and srcID
fields needed by the external devicein these enqueue data messages.

When handling speculative enqueues and the corresponding commit commands, the
scrID field enables the external device to correlate the commit with a previous enqueue.
Commits are transferred to the external device using a special one (1) word message on
the descriptor enqueue path (NQD [23:0]). Commits to the external device are always sent
sometime after the associated speculative enqueue; the commit can never precede the
enqueue. The srcID in enqueue and commit messages determine the mailbox number.

The Q5 controls the content and rate of outgoing data by pushing descriptors to the
transmitting ports. This is done by reconfiguring the memories for QMU buffer links (8k x
32b) and weights (4k x 32b) into descriptor Virtual Output Ports (VOPs) for a total of
48kBytes of storage. VOPs are descriptor FIFOs that are written by the external device
when the credit based scheme indicates an open entry and read by a transmit port using
conventional dequeue requests. The QMU supports 512 VOPs, each of which has an
independently configured size. The QMU reports status of the VOPs to the transmit ports
in the same way it reports queue status in internal mode, namely using broadcast empty
C5EC3EARCH-RM REV 04

458 CHAPTER 7: QUEUE MANAGEMENT UNIT
to non-empty queue status transitions and using dequeues to indicate that a VOP is
empty.

Queue weights are not used when the QMU is in External Mode. When speculative
enqueues are used, the external device will not push descriptors to the QMU until they
are committed.

The items stored in VOPs are called VOP-descriptors. A VOP-descriptor contains a normal
descriptor plus 8Bytes of auxiliary dequeue data. The auxiliary dequeue data can be used
to pass information from the external device to first beat of the dequeue message on the
Payload Bus. The external device uses new fields that can be passed for this purpose.
VOP-descriptors use new fields to accommodate the extra information on the Payload
Bus.

The total number of VOP-descriptors, legal range is (1024 to 2048), depends on the
descriptor size configured. The number of descriptors in each VOP is configured through
Configure-Queue operations. There is a new format of these operations in External Mode.
VOP queue lengths are statically allocated, and there are no dynamic buffer pools.

Implementation of External Scheduler Mode
• Using the Operation_Mode register bits [3:0] queueing mode field (External mode=10,

external scheduler mode).

• New enqueue and dequeue formats for Payload Bus.

• New configure queue function for the external scheduler mode. When in external
scheduler mode, the configure queue function is used to specify the size of each VOP.
This specifies the starting and ending descriptor number for each VOP. The range of
descriptor numbers available depends on the 2bit encoded value programmed in the
Descriptor _Size register of the external device. Refer to Table 131 on page 459.

VOP Descriptors for CPs and/or FPTx
In addition to the normal descriptor, additional information associated with a PDU is
needed by the transmit ports (CPs and/or FPTx). This additional information is contained
in the new VOP-descriptor. The VOP-descriptor contains: the descriptor (12 to 32Bytes) and
an auxiliary dequeue data (8Bytes).

The auxiliary dequeue data contains the following two (2) items:

• Two 24bit fields of external device dequeue data (Q5DeqData0 bits [23:0] and
Q5DeqData1 bits [23:0]) that are sent from the external device along with each
C5EC3EARCH-RM REV 04

External Scheduler Mode 459
dequeued descriptor. When this information is needed by the transmit engine (CPs
and/or FPTx), it must be stored in the VOP.

• A 13bit field [12:0] SeqNum is used only for virtual queueing to the back port (FP).
When the virtual queue bit is set in a external device dequeue message, a back port
(FP) sequence number is generated by the QMU as the descriptor is placed in the VOP.
The SeqNum field provides a way to carry these numbers to the FP. When the virtual
queue is = 0, the SeqNum field is set to = 0. In contrast, for front ports (CPs) sequence
numbering, the sequence numbers are generated when the descriptors are taken out
of the VOP. Therefore, they do not need to be stored in the VOPs. Refer to Table 131 on
page 459.

QMU Multicast in External Mode
When configuring the Multicast table, the values used are 9bit absolute queue numbers
instead of 7bit offsets from the base_queue_number. Therefore, there is no limitation on
the number of destinations per targeted port (CP, XP or FP).

Queue Organization in External Mode
Compared to the internal mode, three (3) of the internal SRAM data structures have
changed, one (1) added and two (2) are not used when in the external mode. Refer to
Figure 104 on page 461.

• Descriptor Link-list holds descriptors in external mode.

Table 131 VOP Descriptor Capacities

ENCODED
VALUE

DESCRIPTOR SIZE
(BYTES)

VOP DESCRIPTOR CAPACITY
(WHEN IN EXTERNAL MODE

0 12 2048
Note: The External Mode is not
supported.

1 16 2048
Note: The External Mode is not
supported.

2 24 1536
Note: The External Mode is not
supported.

3 32 1024
Note: The External Mode is not
supported.
C5EC3EARCH-RM REV 04

460 CHAPTER 7: QUEUE MANAGEMENT UNIT
• Commit requires no configuration.

• Queue Parameters contain the starting and ending VOP-descriptor numbers for each
Virtual Output Port (VOP). The VOP-descriptor numbers, from the starting number to
the ending number (inclusive) are used as a FIFO for descriptors pushed out of the
external device, but not yet read by the transmit port. The total number of
VOP-descriptors available depends on the descriptor size selected using
Descrip_Config register (12, 16, 24 and 32Bytes). Up to 512 VOPs can be programmed.

The starting to ending range should be programmed during initialization and not
changed during data transmission. In addition, their programmed range for each VOP
must not overlap with the range of any other VOP.

• Queue Head-Tail contains head and tail pointers for each VOP. The head pointer
indicates where the next VOP-descriptor will be written. The tail pointer indicates
where the next VOP-descriptor will be read. Each VOP consists of a range of
VOP-descriptor numbers defined by the starting and ending values in queue
parameter memory. This range is used as a ring buffer, i.e., the head and tail pointers
are incremented from the Vop_Start value to the Vop_End value, and then the next
increment causes them to wrap back to the Vop_Start value again. Head pointers are
in odd addresses and tail pointers are in even addresses.

The head pointer and tail pointer for each VOP must be initialized to the Vop_Start value
for that VOP. In addition, their programming should be done during initialization and
not changed during transmission.
C5EC3EARCH-RM REV 04

External Scheduler Mode 461
Figure 104 Internal SRAM Space Using External Mode

8192words (32bits each)

Descriptor Link-list
0xBDA40000

Commit Memory
0xBDA48000

DescFIFOs (VOPs)n

Descriptor_Weight
0xDBA60000

Queue Head-Tail
0xBDA76000

Queue Length
0xBDA78000

Comt(Desc's0-7)

2048 words (8bits each) 1bit/queue descriptor

4096words (32bits each)

1024words (14bits each, 2words/queue)

512words (14bits each)
Queue Parameters
0xBDA79000

512words (32bits each)
Free Descriptor List Head
0xBDA7E000

 (14bits)
Free Descriptor List Tail
0xBDA7E004

 (14bits)

 (15bits)

Free Descriptor List Length
0xBDA7E008

 (14bits)

Dyn_Descriptor_ Pool0_Usage
0xBDA7E080

 (14bits)

 (14bits)

 (14bits)

Dyn_Descriptor_ Pool1_Usage
0xBDA7E084

Dyn_Descriptor_ Pool3_Usage
0xBDA7E08C

Memory Partitions

Dyn_Descriptor_ Pool2_Usage
0xBDA7E088

DescFIFOs (VOPs) DescFIFOs (VOPs)n

PointerTail[0] PointerTail[1] PointerTailn

Length[0] Length[1] Lengthn

DescFIFOs (VOPs)

Comt(Desc'sn)

DescFIFOs (VOPs)

DescFIFOs (VOPs)

VOP_Start & VOP_End

PointerHead[0] PointerHead[1] PointerHeadn

Comt(Desc's8-15)

Each VOP Desc.
occupies 6to12
words, based
on desc. size
C5EC3EARCH-RM REV 04

462 CHAPTER 7: QUEUE MANAGEMENT UNIT
QMU Setup in External Mode
The QMU must be initialized to operate. Using Global Bus operations, various registers and
memories must be written with appropriate values to allow the QMU to function.
Initialization must be completed before the QMU can be put online.

• Reset the C-5e NP.

• Configure the external device dequeue interface to drive valid NQ_RDY, DQ_ARDY, and
PARITY pins.

• Place C-5e/QMU in internal mode to perform configuration and initialization using
Operation_Mode register (Internal=01).

• Set C-5e/QMU to external mode using the Operation_Mode register (External=10).

• Configure the external device enqueue interface to operate.

Warning: Although the C-5e NP provides an External QMU Mode, it does not support an
external traffic manager device. In addition, the associated registers and fields should
not be implemented.
C5EC3EARCH-RM REV 04

Queue Management Transactions in External Mode 463
Queue Management
Transactions in External
Mode

Queue transactions consist of five (5) different functions (Queue Status, Unicast Enqueue,
Speculative Unicast Enqueue, Multicast Enqueue, and Dequeue). Queue transactions are
invoked using Control Blocks (WrCB0, and RdCB0).

Warning: Although the C-5e NP provides an External QMU Mode, it does not support an
external traffic manager device. In addition, the associated registers and fields should
not be implemented.

Queue Transaction
Functions (Operation and

Examples) in External
Mode

Each is described here along with examples.

Queue Status Operation in External Mode
Queue Status uses a control block (RdCB0) to read a single queue’s length from the QMU
into the (DMEM) of the requesting CP, or XP.

Queue Status Example in External Mode
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in the
internal mode.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The queue’s length [13:0] (14bits) are located in the first
128bit line inside the 64Byte DMEM as shown in Figure 105 on page 463. The second, third
and fourth 128bit lines are not used.

Figure 105 Queue Status Implementation in External Mode

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

RrCB0_Sys_Addr (32bits)

RdCB0_Ctl (32bits)

RdCB0_DMA_Addr (32bits)

64Byte DMEM

 Queue Length [13:0] (14bits)

Not Used

=128bits

=64Bytes

Not Used

Not Used
C5EC3EARCH-RM REV 04

464 CHAPTER 7: QUEUE MANAGEMENT UNIT
Unicast Enqueue Operation in External Mode
Unicast Enqueue uses a control block (WrCB0) to write the Descriptor data into a queue in
the QMU’s (SRAM) from the (DMEM) of either the requesting CP or XP.

Unicast Enqueue Example in External Mode
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
internal mode.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Sequence Number [124:112], End of Message [83],
Traffic Queue Identifier [81:64], Discard Priority [50:48], and Packet Byte Length [47:32] are
located in the first 128bit line followed with descriptors (depending on 12, 16, 24, or
32Byte sizes) located in the second and third 128bit lines inside the 64Byte DMEM as
shown in Figure 106 on page 464. The fourth 128bit line is not used.

Figure 106 Unicast Enqueue Implementation in External Mode

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

SeqNum [124:112] Eom [83] TqId [81:64] DiscPrity [50:48] PktByteLen [47:32]

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)
C5EC3EARCH-RM REV 04

Queue Management Transactions in External Mode 465
Speculative Unicast Enqueue Operation in External Mode
Speculative Unicast Enqueue uses a control block (WrCB0) to write the Descriptor data
into a queue in the QMU’s (SRAM) from the (DMEM) of either the requesting CP or XP.

Speculative Unicast Enqueue Example in External Mode
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
internal mode.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Sequence Number [124:112], End of Message [83],
Traffic Queue Identifier [81:64], Discard Priority [50:48], and Packet Byte Length [47:32] are
located in the first 128bit line followed with descriptors (depending on 12, 16, 24, or
32Byte sizes) located in the second and third 128bit lines inside the 64Byte DMEM as
shown in Figure 107 on page 465. The fourth 128bit line is not used.

Figure 107 Speculative Unicast Enqueue Implementation in External Mode

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

SeqNum [124:112] Eom [83] TqId [81:64] DiscPrity [50:48] PktByteLen [47:32]

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)
C5EC3EARCH-RM REV 04

466 CHAPTER 7: QUEUE MANAGEMENT UNIT
Multicast Enqueue Operation in External Mode
Multicast Enqueue uses a control block (WrCB0) to write a Descriptor’s data into multiple
queues in the QMU’s SRAM from the DMEM of either the requesting CP, or XP.

Multicast Enqueue Example in External mode
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
internal mode.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Sequence Number [124:112], End of Message [83],
Multicast Group [81:64], Discard Priority [50:48], and Packet Byte Length [47:32] are
located inside the first 128bit line followed with descriptors (12, 16, 24, or 32Byte sizes)
located in the second and third 128bit lines inside the 64Byte DMEM as shown in
Figure 108 on page 466. The fourth 128bit line is not used.

Figure 108 Multicast Enqueue Implementation in External Mode

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

SeqNum [124:112] Eom [83] MCGrp [81:64] DiscPrity [50:48] PktByteLen [47:32]

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)
C5EC3EARCH-RM REV 04

Queue Management Transactions in External Mode 467
Dequeue Operation in External Mode
Dequeue uses a control block (RdCB0) to read Descriptor data from a queue in the QMU’s
SRAM into the DMEM of the requesting CP, or XP. Dequeue frees a Descriptor Buffer from a
queue.

Dequeue Example in External Mode
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
internal mode.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The Sequence Number [124:112], External Mode Parity
Error [110], Descriptor Parity Errors [109:96], Multicast Replication Identifier [87:80],
Discard Reason [74:72], End of Message [67], Type [66:64], Discard Reason [55:53],
Congestion Indicator [49], Discard Priority [48], Packet Byte Remainder [47:32], Dry [22],
Invalid [21], Queue Status Number [20:14], Queue Length [13:0] are located inside the first
128bit line followed with descriptors (depending on 12, 16, 24, or 32Byte sizes) located in
the second and third 128bit lines inside the 64Byte DMEM as shown in Figure 109 on
page 467. The fourth 128bit line is not used.

The DiscardReason field is duplicated for internal reasons.

Figure 109 Dequeue Implementation in External Mode

Refer Table 132 on page 468 for detail descriptions of these fields.

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

SeqNum [124:112] ExtModPartErr [110] DesParErrs [109:96] MCRepId [87:80]

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)

... DiscRes [74:72] Eom [67] Type [66:64] DiscReas [55:53] Ci [49] DiscPri [48] ...

... PktByteRemain [47:32] Dry [22] Inval [21] QStatNum [20:14] QLength [13:0]
C5EC3EARCH-RM REV 04

468 CHAPTER 7: QUEUE MANAGEMENT UNIT
Response Field Descriptions for Internal and External Modes
Table 132 on page 468 describes the individual response fields for both the internal and
external modes.

Warning: Although the C-5e NP provides an External QMU Mode, it does not support an
external traffic manager device. In addition, the associated registers and fields should
not be implemented.

Table 132 Response Field Descriptions

FIELD NAME DESCRIPTION

SeqNum Sequence Number — Number used by QMU to order enqueues. Used only
when the SeqNum bit is set in the QOP enqueue command. Otherwise this field
is reserved.

DesParErrs Descriptor Parity Errors — When bits are 1 they indicate parity errors received
on the external device interface (covering external device pins DQD[23:0],
DQPAR, NQRDY, and QARDY). Bit 109 indicates a parity error in the idle time
before the descriptor was sent. The remaining bits are each for one word of the
dequeue data message received from the external device dequeue interface,
where bit 96 corresponds to the first word in the descriptor. Descriptors legal
range= 3, 4, 6, or 8 words long. Unused bits =0, and errors =1’s.
Note: The External Mode is not supported.

Dry Dry — Is 1 if the dequeue failed because the queue was empty. Otherwise is 0.

Inval Invalid — Is 1 for a descriptor that was speculatively enqueued and then
committed as invalid. Otherwise is 0.

QStatNum Queue Status Number — Gives the queue number relative to the base queue
number of the transmit engine that requested the dequeue.

QLength Queue Length — Number of PDUs left on the queue after this dequeue.

ExtModeParErr External Mode Parity Error — Is 1 if there has been at least one parity error
reported from the external device interface since the QMU’s last Payload Bus
message. The error is not necessarily in the accompanying descriptor.

EOM End of Message —
Note: The External Mode is not supported.

TqId Traffic Queue Identifier —
Note: The External Mode is not supported.

DiscPriority Discard Priority —
Note: The External Mode is not supported.

PktByteLen Packet Byte Length —
Note: The External Mode is not supported.
C5EC3EARCH-RM REV 04

Queue Management Transactions in External Mode 469
MCastGrp Multicast Group —
Note: The External Mode is not supported.

MCastRepId Multicast Replication Identifier —
Note: The External Mode is not supported.

DiscReason Discard Reason —
Note: The External Mode is not supported.

Type Type —
Note: The External Mode is not supported.

Ci Congestion Indicator —
Note: The External Mode is not supported.

PktByteRemain
der

Packet Byte Remainder —
Note: The External Mode is not supported.

Table 132 Response Field Descriptions (continued)

FIELD NAME DESCRIPTION
C5EC3EARCH-RM REV 04

470 CHAPTER 7: QUEUE MANAGEMENT UNIT
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Chapter 8
INTERNAL BUSES
Chapter Overview This chapter covers the following topics:

• Internal Buses Overview

• Payload Bus Overview

• Ring Bus Overview

• Global Bus Overview
C5EC3EARCH-RM REV 04

472 CHAPTER 8: INTERNAL BUSES
Internal Buses Overview The C-5e NP contains three (3) independent data buses that provide internal
communication paths between the C-5e NP’s eighteen (18) processors (16CPs, XP, and FP)
and three (3) coprocessors (TLU, QMU, and BMU), thus supporting concurrent processing.
Refer to Table 133 on page 472. In addition, Figure 110 on page 472 shows the internal
buses.

Figure 110 Internal Custom Buses

Table 133 C-5e NP Interconnect Components

ITEM DEVICE TYPE FUNCTION

Payload
Bus

Slotted,
multichannel, shared,
arbitrated bus

Carries payload data and payload descriptors between the
processors and the BMU and QMU.

Ring Bus Slotted ring-topology
bus

Provides bounded latency transactions between the
processors and the TLU. It also supports inter-processor
communication.

Global
Bus

Slotted,
multichannel, shared,
arbitrated bus

Supports inter-processor communication via a conventional
flat memory-mapped addressing scheme.

Payload
Bus

Ring Bus

Global Bus (Flat Memory Space)

CP-15 XP FP TLU QMU BMU

Mem Mem Mem Reg Reg

CP-0 CP-1

Mem Mem

Reg Reg Reg Reg Reg
C5EC3EARCH-RM REV 04

Internal Buses Overview 473
Internal Buses
Characteristics

The three (3) buses have the bandwidth, bus width, and transfer size characteristics
defined in Table 134 on page 473 for C-5e NP and Table 135 on page 473 for C-3e NP.

Bus Bandwidth General Formulas
The bandwidth values summarized above were derived using the general formulas in
Figure 111 on page 474 and Figure 112 on page 474.

Table 134 C-5e NP Bus Characteristics Summary

BUS BANDWIDTH BUS WIDTH
TRANSFER
SIZE

Payload Bus 54.5Gbps Max. 128bits 64Bytes

Ring Bus 17.0Gbps Max. 64bits 8Byte to
32Bytes

Global Bus • 3.4Gbps to/from BMU/QMU Max.

• 1.7Gbps among CPs Max.

32bits 4Bytes

Internal
Aggregate
Bandwidth
(all three
internal
buses)

76.6Gbps total Max. N/A N/A

Table 135 C-3e NP Bus Characteristics Summary

BUS BANDWIDTH BUS WIDTH
TRANSFER
SIZE

Payload Bus 36.9Gbps Max. 128bits 64Bytes

Ring Bus 11.5Gbps Max. 64bits 8Byte to
32Bytes

Global Bus • 2.3Gbps to/from BMU/QMU Max.

• 1.2Gbps among CPs Max.

32bits 4Bytes

Internal
Aggregate
Bandwidth
(all three
internal
buses)

51.9Gbps total Max. N/A N/A
C5EC3EARCH-RM REV 04

474 CHAPTER 8: INTERNAL BUSES
Figure 111 C-5e NP Bandwidth Formulas

Figure 112 C-3e NP Bandwidth Formulas

Payload Bus:

266MHz * 2busses * 128bits/bus * .8TDM useage= 54.5Gbps Max.

Ring Bus:

266MHz * 64bits = 17.0Gbps Max.

Global Bus:

266MHz * 2busses * 32bits * .2TDM useage= 3.4Gbps to/from BMU/QMU Max.

266MHz * 32bits * .2TDM useage= 1.7Gbps among CPs Max.

Payload Bus:

180MHz * 2busses * 128bits/bus * .8TDM useage= 36.9Gbps Max.

Ring Bus:

180MHz * 64bits = 11.5Gbps Max.

Global Bus:

180MHz * 2busses * 32bits * .2TDM useage= 2.3Gbps to/from BMU/QMU Max.

180MHz * 32bits * .2TDM useage= 1.2Gbps among CPs Max.
C5EC3EARCH-RM REV 04

Payload Bus Overview 475
Payload Bus Overview The Payload Bus is a slotted, multichannel, shared, arbitrated bus that provides a high
bandwidth path for C-5e NP’s (16CPs, XP, and FP) to shared services in the BMU and QMU.
It has a guaranteed arbitration latency to satisfy CP programming constraints, a retry
feature, and a bus acknowledgment to indicate when a transaction is complete.

Payload Bus Operation The Payload Bus uses a 128bit wide data path in four-cycle bursts to transfer up to
64 Bytes of payload data, descriptors, buffer tags, and other information to or from a
processor on each of two (2) independent channels. To achieve high bus utilization,
operations are pipelined and reads are split into a read request and a write response.
Typical payload operations are described in Table 136 on page 475.

Payload Bus Latency The Payload Bus arbitrates differently for the FP than for other clients (CPs and XP). This
behavior is configurable by a ZBFP bit [9] in the XP Miscellaneous Control register. Refer to
“XP Miscellaneous Control Register (XP Configuration Function)” on page 611. Setting this
bit provides the FP with three (3) additional slots on the Payload Bus. Thus, you can
optimize for greater FP access to the Payload Bus by setting this bit to 1, or optimize for
better CP/XP access to the Payload Bus by setting this bit to 0 (the default configuration).

Table 136 Typical Payload Operations

OPERATION TYPE OF INFORMATION QUANTITY/PDU

Rx Transactions

Payload read BTags (32 BTags are
passed together)

1 per 32 PDUs

Payload write Data PDU size/64Bytes

Payload write Descriptor 1

Tx Transactions

Payload read Descriptor 1

Payload read Data PDU size/64Bytes

Payload write BTag 1
C5EC3EARCH-RM REV 04

476 CHAPTER 8: INTERNAL BUSES
Payload Bus Latency (Default Mode)
In default mode (ZBFP = 0), the bus assigns/reserves one (1) bus slot for each processor.
The default mode latency is shown in Table 137 on page 476.

Payload Bus Latency (FP Mode)
In FP mode (ZBFP = 1), additional bus slots are allocated to the TxFP for reads and to the
RxFP for writes. This ensures that the FP can maintain a high data flow rate to the fabric.
The FP mode latency is shown in Table 138 on page 476.

Table 137 Payload Bus Arbitration Delay in Default Mode

LATENCY READS WRITES

Minimum 10 cycles 10 cycles

Maximum CPs, XP, and FP = 110 cycles CPs, XP, and FP = 110 cycles

Table 138 Payload Bus Arbitration Delay in FP Mode

LATENCY READS WRITES

Minimum 10 cycles 10 cycles

Maximum • TxFP = 40 cycles

• CPs, XP, and RxFP = 140 cycles

• RxFP = 40 cycles

• CPs, XP, and TxFP = 140 cycles
C5EC3EARCH-RM REV 04

Ring Bus Overview 477
Ring Bus Overview The C-5e NP implements a ring-topology bus for communication between the TLU and
the eighteen (18) processors (16CPs, XP, and FP), each of which is a node on the ring. It
uses a 64bit wide data path and is clocked at the C-5e NP core clock rate. The Ring Bus
supports the following types of message transactions:

• Unacknowledged transaction

• Hardware acknowledged transaction

• Software acknowledged transaction

Ring Bus Major
Components

A Ring Bus node consists of four (4) items. Refer to Table 139 on page 477 and Figure 113
on page 478.

Table 139 Ring Bus Components

ITEM FUNCTION

Message FIFO To pass messages to the Receive Message registers.

Response FIFO To pass messages to the Receive Response registers.

Expansion FIFO Where messages/responses passed from upstream are temporarily held
when the active slot is busy.

Fixed-Size Active
Slot

Where the upstream messages/responses or the local node’s
messages/responses are forwarded on the Ring Bus to the downstream
node. The active slot comprises one (1) clock cycle, and the Ring Bus
supports simultaneous node transmission and reception on each clock
cycle.
C5EC3EARCH-RM REV 04

478 CHAPTER 8: INTERNAL BUSES
Figure 113 Ring Bus Node Block Diagram

Ring Bus Node Operation A Ring Bus node can perform the following actions:

• Sending Downstream

– Send a new message or response to a downstream node.

• Receiving from Upstream

– Receive a message destined for the local node.

– Receive a response destined for the local node.

– Pass through a message or response to a downstream node.

A node can send on the Ring Bus as long as the active slot (the slot currently available to
the node) is free. Table 140 on page 479 lists the Ring Bus node IDs for the CPs, XP, FP, and
TLU.

From
Upstream

Node

From Local
CP (Send)

To Downstream
Node

To Receive
Message
Control Regs

To Receive
Response
Control Regs

Message FIFO

Response FIFO

Expansion FIFO

Active
Slot

Ring Bus
Node
C5EC3EARCH-RM REV 04

Ring Bus Overview 479
Sending Downstream
A local node uses its active slot to send downstream. When the local node is in the process
of sending and then receives an upstream message targeted for a downstream node, the
upstream message is placed in one of the local node’s four (4) Expansion FIFO slots until
the local node completes sending. Then the node passes the upstream message to the
next node on the bus.

Contiguous “multi-slot” messages can be transmitted on the Ring Bus. Multi-slot
messages are treated as one (1) message and are not divided as they move on the Ring
Bus. The local node can send contiguous “multi-slot” messages (2 or 4 slots in length) as
long as there are sufficient slots in the Expansion FIFO to hold the upstream messages. For
example, if the local node wants to send a message requiring two slots, there must be two
slots available in the Expansion FIFO. A four (4) slot message requires the expansion FIFO
to be completely empty.

Table 140 Ring Bus Node IDs

UNIT NODE ID UNIT NODE ID

CP0 0 CP10 10

CP1 1 CP11 11

CP2 2 CP12 12

CP3 3 CP13 13

CP4 4 CP14 14

CP5 5 CP15 15

CP6 6 XP 24

CP7 7 FP*

* Transmit only. The FP cannot read messages on the Ring Bus. Thus
any messages sent to the FP cannot be removed from the Ring Bus,
eventually filling up the Ring Bus.

30

CP8 8 TLU 31

CP9 9
C5EC3EARCH-RM REV 04

480 CHAPTER 8: INTERNAL BUSES
Receiving from Upstream
When a node receives a message or response from an upstream neighbor, it processes
that message or response in one of three (3) ways:

• If a message is destined for the local node, it is forwarded through the four-slot (4)
Message FIFO to the Receive Message registers. When the program reads these
registers, the FIFO is popped. Refer to “Ring Bus (Rx) Receive Message Registers” on
page 482.

• If a response is destined for this local node, it is forwarded through the eight-slot (8)
Response FIFO to the Receive Response registers. A sequence number in the response
dictates how the Receive Response registers are filled. If the target receive response
block is already used in the register, then the FIFO can become blocked, possibly filling
up the entire ring if incoming messages continue. The program must clear the Receive
Response Register. Refer to “Ring Bus Receive (Rx) Response Registers” on page 483.

• If the node is simply forwarding a message/response downstream, it can send if the
local node is not trying to send a message simultaneously. If its local node is sending a
message, then the upstream message/response is placed in the local node’s four-slot
(4) Expansion FIFO. If this FIFO reaches capacity, the first item on the stack takes
priority over the local node sending its own message/response and gets forwarded to
the active slot.

Ring Bus Latency When describing the Ring Bus’s latency, it is important to understand that a “complete”
transaction usually requires a round trip of the entire Ring Bus. For example, CP13 is
located two nodes upstream from the TLU. If CP13 sends a request to the TLU, the
“request” latency is three (3) clock cycles assuming that the TLU node is not busy.
However, since the Ring Bus is unidirectional, the minimum latency to return data from
the TLU to CP13 is 17 clock cycles. Thus round trip latency is 20 cycles, best case. Refer to
Figure 114 on page 481.
C5EC3EARCH-RM REV 04

Ring Bus Overview 481
Figure 114 Nodes on the Ring Bus

Because of the unidirectional nature of the Ring Bus and the fact that transactions on the
Ring Bus are usually request/response, latency is not affected by which node delivers
messages to the ring first. Therefore, the position of nodes on the Ring Bus should not be
a consideration when designing your program.

The latency is also affected by the fact that the Ring Bus is expandable. Nodes (with the
exception of the one (1) dummy node) can expand from one (1) slot to four (4) additional
slots to increase Ring Bus node accessibility. The expansion is automatic. When upstream
data is injected into a node, the node can expand to guarantee that the receiving node
can still output data to the Ring Bus. This expansion enables the node to send four (4) slots
of contiguous data.

Taking into account that Ring Bus message transactions are one-way operations and that
nodes can expand up to four (4) additional slots, we can see that the worst case round trip
latency is:

((19 nodes x 5 slots) + (the one dummy node)) = 96 clock cycles (assuming that the target
node is not busy when the message arrives).

In rare cases, the latency might increase due to the target node being busy. In this case,
the message continues around the bus and until it arrives at the target node again. If the
target node is free, the transaction is completed.

A TLU response to the FPRx does not use the Ring Bus. Rather, these responses are sent via
a dedicated path between the TLU and the FPRx.

CP6

CP4

CP9

CP8

CP7

CP11
CP10

CP5 CP2

CP13 CP12

CP3 CP0

CP15 CP14

CP1

TLUFPRx

D

XP

20 Ring Bus Nodes
(including one dummy (D) node)
C5EC3EARCH-RM REV 04

482 CHAPTER 8: INTERNAL BUSES
Ring Bus Interface
Registers

This section describes three (3) type of Ring Bus functions and their registers as shown in
Table 141 on page 482.

For complete details about specific registers go to their references. Refer to: “TxMsg0_Ctl
Register (CP Ring Bus Tx Message Control Function)” on page 510, “TxMsg0_Data_H
Register (CP Ring Bus Tx Message Control Function)” on page 512, “TxMsg0_Data_L
Register (CP Ring Bus Tx Message Control Function)” on page 512, “RxResp0_Ctl Register
(CP Ring Bus Rx Response Control Function)” on page 513, “RxResp0_Data_H Register (CP
Ring Bus Rx Response Control Function)” on page 514, “RxResp0_Data_L Register (CP
Ring Bus Rx Response Control Function)” on page 515, “RxMsg_Ctl Register (CP Ring Bus
Rx Message Control Function)” on page 515, and “RxMsg_FIFO Register (CP Ring Bus Rx
Message Control Function)” on page 517.

Ring Bus Transmit (Tx) Message Registers
Configuration Space includes four (4) sets of registers used to transmit messages on the
Ring Bus. Refer to “Ring Bus Transmit (Tx) Messages Registers” on page 133.

Ring Bus (Rx) Receive Message Registers
Configuration Space includes a set of registers used to receive unsolicited messages. Refer
to “Ring Bus (Rx) Receive Message Registers” on page 134.

Table 141 CP Registers by Function

CP FUNCTION SPECIFIC REGISTERS

Ring Bus Tx Message Control TxMsg0_Ctl, TxMsg0_Data_H, TxMsg0_Data_L;
TxMsg1_Ctl, TxMsg1_Data_H, TxMsg1_Data_L;
TxMsg2_Ctl, TxMsg2_Data_H, TxMsg2_Data_L;
TxMsg3_Ctl, TxMsg3_Data_H, TxMsg3_Data_L

Ring Bus Rx Response Control RxResp0_Ctl, RxResp0_DataH, RxResp0_DataL;
RxResp1_Ctl, RxResp1_DataH, RxResp1_DataL;
RxResp2_Ctl, RxResp2_DataH, RxResp2_DataL;
RxResp3_Ctl, RxResp3_DataH, RxResp3_DataL;
RxResp4_Ctl, RxResp4_DataH, RxResp4_DataL;
RxResp5_Ctl, RxResp5_DataH, RxResp5_DataL;
RxResp6_Ctl, RxResp6_DataH, RxResp6_DataL;
RxResp7_Ctl, RxResp7_DataH, RxResp7_DataL

Ring Bus Rx Message Control RxMsg_Ctl, RxMsg_FIFO
C5EC3EARCH-RM REV 04

Ring Bus Overview 483
Ring Bus Receive (Rx) Response Registers
Messages initiated by the CPRC as a request type expect to receive a subsequent response
type message, for example TLU requests. Configuration space includes eight (8) sets of
registers used to receive responses. Refer to “Ring Bus Receive (Rx) Response Registers” on
page 134.
C5EC3EARCH-RM REV 04

484 CHAPTER 8: INTERNAL BUSES
Global Bus Overview The Global Bus is a slotted, multichannel, shared, arbitrated bus that supports
inter-processor I/O using a single, flat memory model and provides direct access (via
load/store operations) to all C-5e NP memory regions except CPRC IMEM, TLU table
storage memory, SDP control stores, PCI configuration registers, and some XP
configuration registers.

The Global Bus uses a 32bit wide data path with separate control and address path. It can
transfer 4Bytes of data on each of two (2) independent data channels. It also has a
guaranteed arbitration latency and a bus acknowledgment feature to indicate transaction
completion. To achieve high bus utilization, operations are pipelined and reads are split
into a read request and a write response. Retry selection is per CP (not per transaction).

Table 142 Global Bus Latency

WORST CASE AVERAGE CASE BEST

110 cycles (Total global bandwidth/2) / (Num. of active processors) 10 cycles
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Appendix A
C-5E NP REGISTERS
Appendix Overview This appendix covers the following topics:

• “Channel Processor (CP) Configuration Registers” on page 486

• “Executive Processor (XP) Configuration Registers” on page 576

• “Queue Management Unit (QMU) Configuration Registers” on page 633

• “Buffer Management Unit (BMU) Configuration Registers” on page 654

• “Fabric Processor (FP) Configuration Registers” on page 668

Although specific ranges of memory are allocated to specific functions, the entire area
may not be used.
C5EC3EARCH-RM REV 04

486 APPENDIX A: C-5E NP REGISTERS
Channel Processor (CP)
Configuration Registers

Configuration Space in the CPs is an area that contains a number of registers. The CPRC
uses these registers to communicate with the SDP and the bus controllers (Payload Bus
and Global Bus). The CP’s registers can also be accessed by other components of the C-5e
NP (XP and other CPs).

CP Registers The following is a list of each CP register along with its address, function, and reference to
its detailed parameters. The detailed parameters provide: purpose, field name, bit
positions and descriptions. Refer to Table 143 on page 486.

Table 143 CP Registers

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS

0xBCn00000 DMEM_Base CP DMEM See “Data Memory (DMEM)”
on page 106

0xBCn04000
to
0xBCn0403C

RxSDP0_Ext0 to
RxSDP0_Ext15

CP Rx Extract Space0 See page 492

0xBCn04080 RxCB0_Sys_Addr CP Rx Control Block0 See page 493

0xBCn04084 RxCB0_Ctl See page 494

0xBCn04088 RxCB0_DMA_Addr See page 497

0xBCn0408C RxCB0_SDP_Addr See page 498

0xBCn04090 RxCtl0_Status See page 498

0xBCn04100
to
0xBCn0413C

TxSDP0_Merge0 to
TxSDP0_Merge15

CP Tx Merge Space0 See page 492

0xBCn04180 TxCB0_Sys_Addr CP Tx Control Block0 See page 505

0xBCn04184 TxCB0_Ctl See page 506

0xBCn04188 TxCB0_DMA_Addr See page 507

0xBCn0418C TxCB0_SDP_Addr See page 508

0xBCn04190 TxCtl0_Status See page 509

0xBCn04200
to
0xBCn0423C

RxSDP1_Ext0 to
RxSDP1_Ext15

CP Rx Extract Space1 See Table 144 on page 492
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 487
0xBCn04280 RxCB1_Sys_Addr CP Rx Control Block1 See Table 146 on page 493

0xBCn04284 RxCB1_Ctl See Table 148 on page 496

0xBCn04288 RxCB1_DMA_Addr See Table 149 on page 497

0xBCn0428C RxCB1_SDP_Addr See Table 150 on page 498

0xBCn04290 RxCtl1_Status See Table 151 on page 499

0xBCn04300
to
0xBCn0433C

TxSDP1_Merge0 to
TxSDP1_Merge15

CP Tx Merge Space1 See Table 145 on page 493

0xBCn04380 TxCB1_Sys_Addr CP Tx Control Block1 See Table 158 on page 505

0xBCn04384 TxCB1_Ctl See Table 159 on page 507

0xBCn04388 TxCB1_DMA_Addr See Table 160 on page 508

0xBCn0438C TxCB1_SDP_Addr See Table 161 on page 508

0xBCn04390 TxCtl1_Status See Table 162 on page 509

0xBCn04400 WrCB0_Sys_Addr CP Wr Control Block0 See page 499

0xBCn04404 WrCB0_Ctl See page 500

0xBCn04408 WrCB0_DMA_Addr See page 501

0xBCn04410 WrCB1_Sys_Addr CP Wr Control Block1 See Table 152 on page 499

0xBCn04414 WrCB1_Ctl See Table 153 on page 501

0xBCn04418 WrCB1_DMA_Addr See Table 154 on page 501

0xBCn04420 RdCB0_Sys_Addr CP Rd Control Block0 See page 502

0xBCn04424 RdCB0_Ctl See page 503

0xBCn04428 RdCB0_DMA_Addr See page 504

0xBCn04430 RdCB1_Sys_Addr CP Rd Control Block1 See Table 155 on page 502

0xBCn04434 RdCB1_Ctl See Table 156 on page 504

0xBCn04438 RdCB1_DMA_Addr See Table 157 on page 504

Table 143 CP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

488 APPENDIX A: C-5E NP REGISTERS
0xBCn04440 TxMsg0_Ctl Ring Bus Tx Message
Control

See page 510

0xBCn04448 TxMsg1_Ctl See Table 164 on page 511

0xBCn04450 TxMsg2_Ctl

0xBCn04458 TxMsg3_Ctl

0xBCn04460 TxMsg0_Data_H See page 512

0xBCn04464 TxMsg0_Data_L See page 512

0xBCn04468 TxMsg1_Data_H See Table 165 on page 512

0xBCn0446C TxMsg1_Data_L See Table 166 on page 512

0xBCn04470 TxMsg2_Data_H See Table 165 on page 512

0xBCn04474 TxMsg2_Data_L See Table 166 on page 512

0xBCn04478 TxMsg3_Data_H See Table 165 on page 512

0xBCn0447C TxMsg3_Data_L See Table 166 on page 512

0xBCn04480 RxResp0_Ctl Ring Bus Rx Response
Control

See page 513

0xBCn04484 RxResp1_Ctl See Table 167 on page 513

0xBCn04488 RxResp2_Ctl

0xBCn0448C RxResp3_Ctl

0xBCn04490 RxResp4_Ctl

0xBCn04494 RxResp5_Ctl

0xBCn04498 RxResp6_Ctl

0xBCn0449C RxResp7_Ctl

0xBCn044A0 RxResp0_Data_H See page 514

0xBCn044A4 RxResp0_Data_L See page 515

0xBCn044A8 RxResp1_Data_H See Table 168 on page 514

0xBCn044AC RxResp1_Data_L See Table 169 on page 515

Table 143 CP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 489
0xBCn044B0 RxResp2_Data_H Ring Bus Rx Response
Control (continued)

See Table 168 on page 514

0xBCn044B4 RxResp2_Data_L See Table 169 on page 515

0xBCn044B8 RxResp3_Data_H See Table 168 on page 514

0xBCn044BC RxResp3_Data_L See Table 169 on page 515

0xBCn044C0 RxResp4_Data_H See Table 168 on page 514

0xBCn044C4 RxResp4_Data_L See Table 169 on page 515

0xBCn044C8 RxResp5_Data_H See Table 168 on page 514

0xBCn044CC RxResp5_Data_L See Table 169 on page 515

0xBCn044D0 RxResp6_Data_H See Table 168 on page 514

0xBCn044D4 RxResp6_Data_L See Table 169 on page 515

0xBCn044D8 RxResp7_Data_H See Table 168 on page 514

0xBCn044DC RxResp7_Data_L See Table 169 on page 515

0xBCn044E0 RxMsg_Ctl Ring Bus Rx Message
Control

See page 515

0xBCn044E4 RxMsg_FIFO See page 517

0xBCn04500
to
0xBCn0457C

Rx_SONETOH0 to
Rx_SONETOH31

SONET Rx Control See page 517

0xBCn04580
to
0xBCn045FC

Tx_SONETOH0 to
Tx_SONETOH31

SONET Tx Control See page 517

0xBCn04600 RxCtl_ByteSeq0 SDP Rx Control See page 518

0xBCn04604 RxCtl_ByteSeq1 See Table 170 on page 518

0xBCn04608 RxCtl_SyncSeq See page 518

0xBCn0460C RxCtl_BitSeq0 See page 518

0xBCn04610 RxCtl_BitSeq1 See Table 171 on page 519

0xBCn04620 TxCtl_ByteSeq0 SDP Tx Control See page 519

0xBCn04624 TxCtl_ByteSeq1 See Table 172 on page 519

0xBCn0462C TxCtl_BitSeq0 SDP Tx Control
(continued)

See page 519

0xBCn04630 TxCtl_BitSeq1 See Table 173 on page 519

Table 143 CP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

490 APPENDIX A: C-5E NP REGISTERS
0xBCn04640 CP_Mode0 CP Mode Configuration See page 520

0xBCn04644 CP_Mode1 See page 523

0xBCn04648 SDP_Mode2 See page 526

0xBCn0464C SDP_Mode3 See page 529

0xBCn04650 SDP_Mode4 See page 536

0xBCn04654 SDP_Mode5 See page 538

0xBCn04658 Debug_Mode See page 544

0xBCn0465C PIN_Mode See page 546

0xBCn04660 Queue_Status0 CP Queue Status See page 549

0xBCn04664 Queue_Status1 See Table 177 on page 549

0xBCn04668 Queue_Status2

0xBCn0466C Queue_Status3

0xBCn04670 Queue_Update0 See page 550

0xBCn04674 Queue_Update1 See Table 178 on page 550

0xBCn04678 Queue_Update2

0xBCn0467C Queue_Update3

0xBCn04680 Queue_Empty Aggregated Queueing See page 550

0xBCn04684 Event_Timer CP Miscellaneous
Control

See page 550

0xBCn04688 Cycle_Count_H See page 551

0xBCn0468C Cycle_Count_L See page 551

0xBCn04690 Queue_Ctl Aggregated Queueing See page 551

Table 143 CP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 491
0xBCn046A0 Event0 CP Event and Interrupt
Control

See page 552

0xBCn046A4 Event1 See page 555

0xBCn046A8 Event_Mask0 See page 557

0xBCn046AC Event_Mask1 See Table 179 on page 557

0xBCn046B0 Event_Access See page 557

0xBCn046B4 Mask_Access See page 559

0xBCn046B8 Interrupt_Mask0 See page 559

0xBCn046BC Interrupt_Mask1 See Table 180 on page 560

0xBCn046C0 SONET_Event See page 560

0xBCn046C4 SONET_Mask See page 569

0xBCn04700 RdCB0_BTag_Alloc CP Rd Control Block0
Fixed

See page 569

0xBCn04704 RdCB0_Dequeue See page 570

0xBCn04710 RdCB1_BTag_Alloc CP Rd Control Block1
Fixed

See Table 182 on page 569

0xBCn04714 RdCB1_Dequeue See Table 183 on page 570

0xBCn04720 WrCB0_BTag_Dealloc CP Wr Control Block0
Fixed

See page 571

0xBCn04724 WrCB0_MUC_Alloc See page 571

0xBCn04728 WrCB0_MUC_Decr See page 572

0xBCn04730 WrCB0_Uni_Enq See page 573

0xBCn04734 WrCB0_Multi_Enq See page 574

0xBCn04738 WrCB0_Spec_Uni_Enq See page 575

0xBCn04740 WrCB1_BTag_Dealloc CP Wr Control Block1
Fixed

See Table 184 on page 571

0xBCn04744 WrCB1_MUC_Alloc See Table 185 on page 572

0xBCn04748 WrCB1_MUC_Decr See Table 186 on page 572

0xBCn04750 WrCB1_Uni_Enq See Table 187 on page 573

0xBCn04754 WrCB1_Multi_Enq See Table 188 on page 574

0xBCn04758 WrCB1_Spec_Uni_Enq See Table 189 on page 575

Table 143 CP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

492 APPENDIX A: C-5E NP REGISTERS
CP Detailed Descriptions The following is a detailed description of each of the CP registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

RxSDP0_Ext0 to RxSDP0_Ext15 Registers (CP Rx Extract Space0 Function)

TxSDP0_Merge0 to TxSDP0_Merge15 Registers (CP Tx Merge Space0 Function)

Purpose Used to pass fields extracted from the receive data stream by the RxSDP
to the CPRC. These registers are used only for receive datascope0. See
Table 144 on page 492 for similar registers.

Address 0xBCn04000 to 0xBCn0403C

Access CPRC Read, CPRC Write only writable for test purposes when
SDP_Mode3 RxResetx==0, SDP RxByte Processor Write - byte
addressable.

Bit Position 31 0

Field Name Data

Table 144 RxSDP1_Ext0 to RxSDP1_Ext15 Registers (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

RxSDP1_Ext0 to
RxSDP1_Ext15

Same as registers RxSDP0_Ext0 to
RxSDP0_Ext15, but for datascope1.

0xBCn04200 to 0xBCn0423C

Purpose Used to pass fields from the CPRC to the TxSDP to merge in with the
transmit data stream. These registers are used only for transmit
datascope0. See Table 145 on page 493 for similar registers.

Address 0xBCn04100 to 0xBCn0413C

Access CPRC Read, CPRC Write, SDP TxByte Processor Read - byte addressable

Bit Position 31 0

Field Name Data
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 493
RxCB0_Sys_Addr Register (CP Rx Control Block0 Function)

Table 145 TxSDP1_Merge0 to TxSDP1_Merge15 Registers (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

TxSDP1_Merge0 to
TxSDP1_Merge15

Same as registers TxSDP0_Merge0 to
TxSDP0_Merge15, but pertains to transmit
datascope1.

0xBCn04300 to 0xBCn0433C

Purpose Provides an address consisting of a Pool ID, BTag and offset for
datascope0. See Table 146 on page 493 for similar register.

Address 0xBCn04080

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

FIELD NAME BIT POSITION DESCRIPTION

BTag 31:16 Buffer Tag — Address.
Legal range is a physical limit= 0 to 65,532Bytes or 0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to Table 23 on page 145
Legal range= 0 to 65,520Bytes, or 0 to 0xFFF0. Values must be
16Byte aligned.

Reserved 3:0 Read as zero.

Table 146 RxCB1_Sys_Addr Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

RxCB1_Sys_Addr Same asRxCB0_Sys_Addr, except for datascope1. 0xBCn04280
C5EC3EARCH-RM REV 04

494 APPENDIX A: C-5E NP REGISTERS
RxCB0_Ctl Register (CP Rx Control Block0 Function)
Purpose Controls DMA for payload receive operation for datascope0. See

Table 148 on page 496 for similar register.

Address 0xBCn04084

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 0

Field Name Avail NoRetry EOP Protect
EOP Error Own

1
Own

0 Ctx SDP
state Rsvd DMA

state RxLength

Reset Value 1 x 0 raz x x x x 0 raz 00 x

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — 1=RxCB is available to the CPRC, 0=Start the
DRAM DMA engine.

NoRetry 30 No Retry — 1=Do not retry the transaction on bus NACK,
0=Retry, up to 16 (Max.) times before reporting an error.

EOP 29 End-of-Packet — Typically this is set by the SDP when scope is
switched and cleared by the DMA engine when a transfer
completes successfully.

Protect EOP 28 Protect End-of-Packet — When set during a RxCB_Ctl write, the
EOP bit contained in field [29] is not written. When cleared
during a RxCB_Ctl write, the EOP bit is written.

Error 27:24 Error — When a DMA operation completes and the Avail bit [31]
=1, then a non-zero value indicates that the DMA operation
completed with an error. Refer to Table 147 on page 495 for error
code definitions.

Own1 23 Block Ownership Bit — 0=SDP owns, 1= DMA owns.

Own0 22 Block Ownership Bit — 0=SDP owns, 1= DMA owns.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. When the Avail bit is
cleared to launch the DRAM DMA operation the Ctx field is
automatically set with the current CPRC Register File Context
number (0 to 3). This filed has no impact on the operation.

SDP state 19 SDP State — Shows the state of the SDP engine:
0=Ready, 1=Wait for line update.
During a RxCBn_Ctl write, this field is updated if Avail bit [31] is
set, and not changed if Avail bit [31] is clear.

Reserved 18 Read as zero.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 495
State 17:16 DMA State — Shows the state of the DMA engine:
00 = Idle,10 = Request, 01 = Grant.
During a RxCBn_Ctl write, this field is updated if Avail bit [31] is
set, and not changed if Avail bit [31] is clear.

RxLength 15:0 Receive Length — Count of bytes in the receive payload.

Table 147 Transfer Control Block Error Codes

ERROR TYPE
ENCO
DING

READ/
WRITE TARGET DESCRIPTION

Success 0 Wr, Rx,
Rd, Tx

Buffer
memory:
PID== 0-29
BMU:PID==30
QMU:PID==31

The payload bus transaction completed
successfully.

RxSDP Error 8 Rx Not Applicable The SDP RxByte sequencer indicated an error by
writing to the RxCtl_Status bit [30].

NACK Retry
Limit

9 Wr, Rx,
Rd, Tx

Buffer
memory:
PID== 0-29

The BMU was unable to accept a buffer memory
transaction. The payload bus transaction was
attempted until the NACK retry limit was reached.

NACK Retry
Limit

9 Wr BMU: PID==30 The BMU was unable to accept BTag command, or
the multi-use counter table was full on an allocate
command. The payload bus transaction was
attempted until the NACK retry limit was reached.

NACK Retry
Limit

9 Rd BMU: PID==30 The BMU was unable to accept BTag or multi-use
counter command. The payload bus transaction
was attempted until the NACK retry limit was
reached.

NACK Retry
Limit

9 Wr QMU:PID==31 The QMU was unable to accept a command
because the write mailbox was full. The payload
bus transaction was attempted until the NACK
retry limit was reached.

NACK Retry
Limit

9 Rd QMU:PID==31 The QMU was unable to accept a command
because the read mailbox was full. The payload
bus transaction was attempted until the NACK
retry limit was reached.

Bad Pool A Rd BMU:PID==30 BTag allocate command requested a non-existent
pool.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

496 APPENDIX A: C-5E NP REGISTERS
Bad BMU
Command

A Wr BMU:PID==30 Any of the following conditions occurred:

• BMU command requested a non-existent pool,

• BTag write found more BTags written than
configured,

• Multi-use counter allocate found a counter
already allocated for this pool/BTag,

• Multi-use counter decrement to a non-existent
counter.

BTag
Unavailable

C Rd BMU:PID==30 BTag allocate command found insufficient BTags
to complete the allocation.

QMU Read
Error

C Rd QMU:PID==31 QMU detected a dequeue of an empty queue.

Payload ECC
Error

D Rd Buffer
memory:
PID==0-29

Un-correctable ECC error occurred on a buffer
memory read.

BTag ECC
Error

D Rd BMU:PID==30 Uncorrected ECC error occurred then reading
memory for a BTag allocate command.

Non-Existen
t memory

E Rd Buffer
memory:
PID==0-29

A payload read of buffer memory that was out of
bounds due to an error in the way software
configured the BMU.

Non-Existen
t memory

E Rd BMU:PID==30 A BTag read from memory was out of bounds due
to an error in the way software configured the
BMU.

No Match
on
Multi-use
Counter
Read

F Rd BMU:PID==30 A multi-use counter read command of a
non-existent counter.

Table 148 RxCB1_Ctl Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

RxCB1_Ctl Same as RxCB0_Ctl, except for datascope1. 0xBCn04284

Table 147 Transfer Control Block Error Codes (continued)

ERROR TYPE
ENCO
DING

READ/
WRITE TARGET DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 497
RxCB0_DMA_Addr Register (CP Rx Control Block0 Function)
Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID

of the buffer to write for datascope0. See Table 149 on page 497 for
similar register.

Address 0xBCn04088

Access CPRC Read/Write

Bit Position 31 21 20 16 15 14 13 4 3 0

Field Name Reserved Pool ID Rsvd LineAddr Rsvd

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:21 Read as zero.

PoolID 20:16 Pool ID — Pool to write too. Legal range= 0 to 31.

Reserved 15:14 Read as zero.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA. It is
auto-incremented during DMA; bits [6:4] cleared by the DMA
engine when a transfer completes successfully.

Reserved 3:0 Read as zero.

Table 149 RxCB1_DMA_Addr Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

RxCB1_DMA_Addr Same as RxCB0_DMA_Addr, except for datascope1. 0xBCn04288
C5EC3EARCH-RM REV 04

498 APPENDIX A: C-5E NP REGISTERS
RxCB0_SDP_Addr Register (CP Rx Control Block0 Function)

RxCtl0_Status Register (CP Rx Control Block0 Function)

Purpose Supplies the address of a byte in DMEM for DMA. It is auto-incremented
during DMA for datascope0. See Table 150 on page 498 for similar
register.

Address 0xBCn0408C

Access CPRC Read/Write

Bit Position 31 16 15 0

Field Name Reserved ByteAddr

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:16 Read as zero.

ByteAddr 15:0 DMEM Byte Address — DMEM byte address for DMA. It is
auto-increment during DMA; bits [6:0] cleared by the DMA engine
when a transfer completes successfully.

Table 150 RxCB1_SDP_Sys_Addr Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

RxCB1_SDP_Sys_Addr Same as RxCB0_SDP_Addr, except for datascope1. 0xBCn0428C

Purpose Semaphores governing SDP receive operation for datascope0. See
Table 151 on page 499 for similar register.

Address 0xBCn04090

Access CPRC Read/Write, SDP Receive Byte Sequencer Read/Write - byte
addressable

Bit Position 31 30 29 28 27 26 25 24 23 0

Field Name Avail Error L5 L4 L3 L2 L1 L0 Rsvd

Reset Value 1 0 0 0 0 0 0 0 raz
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 499
WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function)

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, CPRC owns. When the bit is
0, SDP owns the scope.

Error 30 RxSDP Error — SDP sets this bit to indicate an error during
receive processing.

L5 to L0 29:24 SDP Level Bits — SDP sets the corresponding bit to indicate level
of processing, software defined.

Reserved 23:0 Read as zero.

Table 151 RxCtl1_Status Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

RxCtl1_Status Same as RxCtl0_Status, except for datascope1. 0xBCn04290

Purpose Provides an address consisting of a Pool ID, BTag and offset. See
Table 152 on page 499 for similar register.

Address 0xBCn04400

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

FIELD NAME BIT POSITION DESCRIPTION

BTag 31:16 Buffer Tag — Legal range is a physical limit= 0 to 65,532Bytes or
0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to “Using Multi-Use Control
Blocks to Achieve Different Functions” on page 144. Legal range=
0 to 65,520Bytes, or 0 to 0xFFFF. Values must be 16Bytes aligned.

Reserved 3:0 Read as zero.

Table 152 WrCB1_Sys_Addr Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_Sys_Addr Same as WrCB0_Sys_Addr, except for control block1. 0xBCn04410
C5EC3EARCH-RM REV 04

500 APPENDIX A: C-5E NP REGISTERS
WrCB0_Ctl Register (CP Wr Control Block0 Function)
Purpose Controls DMA for payload write operation. See Table 153 on page 501

for similar register.

Address 0xBCn04404

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 13 0

Field Name Avail NoRetry Mod64 Rsvd Error Rsvd Ctx Rsvd State Rsvd Length

Reset Value 1 x x raz x raz x raz 0 raz x

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — 1= WrCB is available to the CPRC,
0=Start the DRAM DMA engine.

NoRetry 30 No Retry — 1= Do not retry the transaction on bus NACK,
0=Retry 16 (Max.) times before reporting an error.

Mod64 29 Modulo 64 — 1=Increment WrCB0_Sys_Addr bits [15:4] Offset
field and WrCB0_DMA_Addr bits [13:4] LineAddr field modulo
64Bytes during DMA to perform a wrap.
0=Increment WrCB0_Sys_Addr bits [15:4] Offset field and
WrCB0_DMA_Addr bits [13:4] LineAddr field linearly during DMA
that steps through memory.

Reserved 28 Read as zero.

Error 27:24 Error — When Avail bit [31]=1 and a non-zero value is returned
after a DMA operation completes, the DMA operation encountered
an error. See Table 147 on page 495 for error code definitions.

Reserved 23:22 Read as zero.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. When the Avail bit is
cleared to launch the DRAM DMA operation the Ctx field is
automatically set with the current CPRC Register File Context
number (0 to 3). This filed has no impact on the operation.

Reserved 19:18 Read as zero.

State 17:16 DMA State — Shows the state of the DMA engine:
00 = Idle, 10 = Request, 01 = Grant.
During a WrCBn_Ctl write, this field is updated if Avail bit [31] is set
and not changed if Avail bit [31] is clear.

Reserved 15:14 Read as zero.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 501
WrCB0_DMA_Addr Register (CP Wr Control Block0 Function)

Length 13:0 Length — Length of DMA transfer in Bytes.
Legal range is a physical limit=12Kbytes.

Table 153 WrCB1_Ctl Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_Ctl Same as WrCB0_Ctl, except for control block1. 0xBCn04414

Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID
of the buffer to write. See Table 154 on page 501 for similar register.

Address 0xBCn04408

Access Global Read/Write

Bit Position 31 21 20 16 15 14 13 4 3 0

Field Name Rsvd Pool ID Rsvd LineAddr Rsvd

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:21 Read as zero.

PoolID 20:16 Pool ID — Pool to write too. Legal range= 0 to 31.

Reserved 15:14 Read as zero.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA. It is
auto-increment during DMA.

Reserved 3:0 Read as zero.

Table 154 WrCB1_DMA_Addr Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_DMA_Addr Same as WrCB0_DMA_Addr, except for control block1. 0xBCn04418

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

502 APPENDIX A: C-5E NP REGISTERS
RdCB0_Sys_Addr Register (CP Rd Control Block0 Function)
Purpose Provides an address consisting of a pool ID, BTag, and offset. See

Table 155 on page 502 for similar register.

Address 0xBCn04420

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

FIELD NAME BIT POSITION DESCRIPTION

BTag 31:16 Buffer Tag — Address
Legal range is a physical limit= 0 to 65,532Bytes or 0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to “Using Multi-Use Control
Blocks to Achieve Different Functions” on page 144.
Legal range= 0 to 65,520Bytes, or 0 to 0xFFFF. Values must be
16Bytes aligned.

Reserved 3:0 Read as zero.

Table 155 RdCB1_Sys_Addr register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

RdCB1_Sys_Addr Same as RdCB0_Sys_Addr, except for control block1. 0xBCn04430
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 503
RdCB0_Ctl Register (CP Rd Control Block0 Function)
Purpose Controls DMA for payload read operation. See Table 156 on page 504 for

similar register.

Address 0xBCn04424

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 13 4 3 0

Field Name Avail NoRetry Mod64 Rsvd Error Rsvd Ctx Rsvd State Rsvd Length Rsvd

Reset Value 1 x x raz x raz x raz 0 raz x

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — 1=RdCB is available to the CPRC, 0=Start the
DRAM DMA engine.

NoRetry 30 No Retry — 1=Do not retry the transaction on bus NACK,
0=retry, up to 16 (Max.) times.

Mod64 29 Modulo 64 — 1=Increment RdCB0_Sys_Addr bits [15:4] Offset
field and RdCB0_DMA_Addr bits [13:4] LineAddr field modulo
64Bytes during DMA to perform a wrap.
0=Increment RdCB0_Sys_Addr bits [15:4] Offset field and
RdCB0_DMA_Addr bits [13:4] LineAddr field linearly during DMA
that steps through memory.

Reserved 28 Read as zero.

Error 27:24 Error — When Avail bit [31]=1 and a non-zero value is returned
after a DMA operation completes, the DMA operation
encountered an error. Refer to Table 147 on page 495 for error
code definitions.

Reserved 23:22 Read as zero.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. When the Avail bit is
cleared to launch the DRAM DMA operation the Ctx field is
automatically set with the current CPRC Register File Context
number (0 to 3). This filed has no impact on the operation.

Reserved 19:18 Read as zero.

State 17:16 DMA State — Shows the state of the DMA engine (read only):
00 =Idle, 10 = Request, 01 = Grant.
During a RdCBn_Ctl write, this field is updated if Avail bit [31] is
set and not changed if Avail bit [31] is clear.
C5EC3EARCH-RM REV 04

504 APPENDIX A: C-5E NP REGISTERS
RdCB0_DMA_Addr Register (CP Rd Control Block0 Function)

Reserved 15:14 Read as zero.

Length 13:0 Length — Length of DMA transfer in bytes. Legal range is a
physical limit=12KBytes.

Table 156 RdCB1_Ctl Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

RdCB1_Ctl Same as RdCB0_Ctl, except for control block1. 0xBCn04434

Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID
for buffer to read. See Table 157 on page 504 for similar register.

Address 0xBCn04428

Access CPRC Read/Write

Bit Position 31 21 20 16 15 14 13 4 3 0

Field Name Rsvd Pool ID Rsvd LineAddr Rsvd

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:21 Read as zero.

PoolID 20:16 Pool ID — Pool to read too. Legal range= 0 to 31.

Reserved 15:14 Read as zero.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA
operation. It is auto-incremented during DMA.

Reserved 3:0 Read as zero.

Table 157 RdCB1_DMA_Addr Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

RdCB1_DMA_Addr Same as RdCB0_DMA_Addr, except for control block1. 0xBCn04438

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 505
TxCB0_Sys _Addr Register (CP Tx Control Block0 Function)
Purpose Provides an address consisting of a Pool ID, BTag and offset for

datascope0. See Table 158 on page 505 for similar register.

Address 0xBCn04180

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

FIELD NAME BIT POSITION DESCRIPTION

BTag 31:16 Buffer Tag — Address Legal range is a physical limit= 0 to
65,532Bytes or 0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to “Using Multi-Use Control
Blocks to Achieve Different Functions” on page 144.
Legal range= 0 to 65,520Bytes, or 0 to 0xFFF0. Values must be
16Byte aligned.

Reserved 3:0 Read as zero.

Table 158 TxCB1_Sys_Addr Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

TxCB1_Sys_Addr Same as TxCB0_Sys_Addr, except for datascope1. 0xBCn04380
C5EC3EARCH-RM REV 04

506 APPENDIX A: C-5E NP REGISTERS
TxCB0_Ctl Register (CP Tx Control Block0 Function)
Purpose Controls DMA for payload transmit operation for datascope0. See

Table 159 on page 507 for similar register.

Address 0xBCn04184

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 0

Field Name Avail NoRetry EOP OOB Error Own1 Own0 Ctx SDP
state

DMA
state TxLength

Reset Value 1 x 0 x x 0 0 x 0 00 x

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — 1=TxCB is available to the CPRC, 0=Start the
DRAM DMA engine.

NoRetry 30 No Retry — 1=Do not retry the transaction on bus NACK,
0=Retry, up to 16 (Max.) times before reporting an error.

EOP 29 End of Packet — Typically this is set by the SDP when scope is
switched and cleared by the DMA engine when a transfer
completes successfully.
During a TxCBn_Ctl write, this field is updated if Avail bit [31] is set,
and not changed if Avail bit [31] is clear.

OOB 28 Out of Band — 1=Use out-of-band (OOB) bits, 0=Use the length
field to determine end-of-frame.

Error 27:24 Error — When a DMA operation completes and the Avail bit [31]
=1, then a non-zero value indicates that the DMA operation
completed with an error. Refer to Table 147 on page 495 for error
code definitions.

Own1 23 Block Ownership Bit — 1=SDP owns, 0=DMA owns.

Own0 22 Block Ownership Bit — 1=SDP owns, 0=DMA owns.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. When the Avail bit is
cleared to launch the DRAM DMA operation the Ctx field is
automatically set with the current CPRC Register File Context
number (0 to 3). This filed has no impact on the operation.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 507
TxCB0_DMA_Addr Register (CP Tx Control Block0 Function)

SDP state 19:18 SDP State — Shows the state of the SDP engine for CPs , or PCI
engine for XP. 0=Waiting for data, Non-zero value= Ready for
transmit.
During a TxCBn_Ctl write, this field is updated if Avail bit [31] is set,
and not changed if Avail bit [31] is clear.

State 17:16 DMA State — Shows the state of the DMA engine:
00 = Idle,10 = Request, 01 = Grant.
During a TxCBn_Ctl write, this field is updated if Avail bit [31] is set,
and not changed if Avail bit [31] is clear.

TxLength 15:0 Transmit Length — Counts down the bytes of transmit payload.

Table 159 TxCB1_Ctl Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

TxCB1_Ctl Same as TxCB0_Ctl, except for datascope1. 0xBCn04384

Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID
of buffer to read for datascope0. See Table 160 on page 508 for similar
register.

Address 0xBCn04188

Access CPRC Read/Write

Bit Position 31 21 20 16 15 14 13 4 3 0

Field Name Rsvd Pool ID Rsvd LineAddr Rsvd

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:21 Read as zero.

Pool ID 20:16 Pool ID — Pool to read too. Legal range= 0 to 31.

Reserved 15:14 Read as zero.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA. It is
auto-incremented during DMA; bits [6:4] cleared by DMA engine
when a transfer completes successfully.

Reserved 3:0 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

508 APPENDIX A: C-5E NP REGISTERS
TxCB0_SDP_Addr Register (CP Tx Control Block0 Function)

Table 160 TxCB1_DMA_Addr Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

TxCB1_DMA_Addr Same as TxCB0_DMA_Addr, except for datascope1. 0xBCn04388

Purpose Supplies the address of a byte in DMEM for DMA for transmit
datascope0. See Table 161 on page 508 for similar register.

Address 0xBCn0418C

Access CPRC Read/Write

Bit Position 31 24 23 16 15 0

Field Name OutOfBand0 OutOfBand1 ByteAddr

FIELD NAME BIT POSITION DESCRIPTION

OutOfBand0 31:24 Out of Band0 — The eight (OOB) bits accompanying DMEM
buffer 0.

OutOfBand1 23:16 Out of Band1 — The eight (OOB) bits accompanying DMEM
buffer 1.

ByteAddr 15:0 DMEM Byte Address — DMEM byte address for DMA. It is
auto-incremented during DMA; bits [6:0] cleared by the DMA
engine when a transfer completes successfully.

Table 161 TxCB1_SDP_Addr Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

TxCB1_SDP_Addr Same as TxCB0_SDP_Addr, except for datascope1. 0xBCn0438C
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 509
TxCtl0_Status Register (CP Tx Control Block0 Function)
Purpose Semaphores governing SDP transmit operation for data cope0. See

Table 162 on page 509 for similar register.

Address 0xBCn04190

Access Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 0

Field Name Avail Error L5 L4 L3 L2 L1 L0 Rsvd

Reset Value 1 x x x x x x x raz

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, CPRC owns. When the bit is 0,
SDP owns the scope.

Error 30 TxSDP Error — SDP sets this bit to indicate and error during
transmit processing.

L5 - L0 29:24 SDP Level Bits — SDP sets the corresponding bit to indicate level
of processing, software defined.

Reserved 23:0 Read as zero.

Table 162 TxCtl1_Status Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

TxCtl1_Status Same as TxCtl0_Status, except for datascope1. 0xBCn04390
C5EC3EARCH-RM REV 04

510 APPENDIX A: C-5E NP REGISTERS
TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function)
Purpose Provides the control portion of an outgoing Ring Bus message. See

Table 164 on page 511 for similar registers.

Address 0xBCn04440

Access CPRC Read/Write = Byte addressable, SDP Receive Byte Sequence: Write
= field addressable (all fields), Read = field addressable (Available bit)

Bit Position 31 30 24 23 22 20 19 18 17 15 14 10 9 5 4 0

Field Name Avail Rsvd Error Rsvd Type Len Seq Dst Src

Reset Value 1 raz x raz x x x x x

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, slot is available to the CPRC
or SDP. When the bit is 0, start the Ring Bus transmit engine.

Reserved 30:24 Read as zero.

ErrorFlag 23 Error Flag — Error bit of transmit message definable by the
transmitter.

Reserved 22:20 Read as zero.

Type 19:18 Transmit Message Type:

Len 17:15 Transmit Message Length — Length field of transmit message
in 8-byte slots. Valid values= 1, 2, and 4. Writing a length of 2 and
4, clears the Avail bit in subsequent slots.

Seq 14:10 Transaction Sequence Number — Transaction sequence
number of transmit message.
Note: That the low-order three bits of this field specify the Receive
Response Slot on which the message to be transmitted will be
received.

ENCODED
VALUE TYPE

0 Indication

1 Confirmation

2 Request

3 Response
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 511
Dst 9:5 Transaction Message Destination — Message destination,
(Processor ID) typically the TLU.

Src 4:0 Transmit Message Source — Source of transmit message,
typically the processor’s Ring Bus node ID. See Table 163 on page
511.

Table 163 Ring Bus Processor IDs

PROCESSOR RING BUS NODE ID PROCESSOR RING BUS NODE ID

CP0 0 CP10 10

CP1 1 CP11 11

CP2 2 CP12 12

CP3 3 CP13 13

CP4 4 CP14 14

CP5 5 CP15 15

CP6 6 XP 24

CP7 7 FP*

* can only send messages on the Ring Bus. There is a direct connection from the
TLU to the FP for responses. If some other node tries to send to the FP, the
messages will circulate forever on the Ring Bus.

30

CP8 8 TLU 31

CP9 9

Table 164 TxMsgn_Ctl Registers (for Messages 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

TxMsg1_Ctl Same as TxMsg0_Ctl. 0xBCn04448

TxMsg2_Ctl Same as TxMsg0_Ctl, but not writable from RxByte
Processor.

0xBCn04450

TxMsg3_Ctl Same as TxMsg0_Ctl, but not writable from RxByte
Processor.

0xBCn04458

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

512 APPENDIX A: C-5E NP REGISTERS
TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function)

TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function)

Purpose Bits [63:32] of the transmit message data slot (big endian bytes 0-3). See
Table 165 on page 512 for similar registers.

Address 0xBCn04460

Access CPRC Read/Write, RxByte Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 165 TxMsgn_Data_H Registers (for Messages 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

TxMsg1_Data_H Same as TxMsg0_Data_H. 0xBCn04468

TxMsg2_Data_H Same as TxMsg0_Data_H, but not writable form RxByte
Processor.

0xBCn04470

TxMsg3_Data_H Same as TxMsg0_Data_H, but not writable form RxByte
Processor.

0xBCn04478

Purpose Bits [31:0] of the transmit message data slot (big endian bytes 4-7). See
Table 166 on page 512 for similar registers.

Address 0xBCn04464

Access CPRC Read/Write, RxByte Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 166 TxMsgn_Data_L Registers (for Messages 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

TxMsg1_Data_L Same as TxMsg0_Data_l. 0xBCn0446C

TxMsg2_Data_L Same as TxMsg0_Data_l, but not writable from RxByte
Processor.

0xBCn04474

TxMsg3_Data_L Same as TxMsg0_Data_l, but not writable from RxByte
Processor.

0xBCn0447C
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 513
RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function)
Purpose The control portion of an incoming Ring Bus response. See Table 167 on

page 513 for similar registers.

Address 0xBCn04480

Access CPRC Read/Write

Bit Position 31 30 24 23 22 18 17 15 14 10 9 5 4 0

Field Name Avail Rsvd Error Rsvd Len Seq Rsvd Src

Reset Value 0 raz x raz x raz x

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, slot is valid for the CPRC.
When the bit is 0, allow Ring Bus to fill.

Reserved 30:24 Read as zero.

ErrorFlag 23 Error Flag — Error bit of response definable by user
programming.

Reserved 22:18 Read as zero.

Len 17:15 Receive Message Length — Length field of receive message in
8Byte slots. Valid values= 1, 2, and 4. Writing a length of 2 and 4,
clears the Avail bit in subsequent slots.

Seq 14:10 Response Sequence Number — Sequence number of the
response, bits [12:10] match RxRespCtl register number.

Reserved 9:5 Read as zero.

Src 4:0 Response Source — Source field of the response, typically the
processor’s Ring Bus node ID. See Table 163 on page 511.

Table 167 RxRespn_Ctl Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7)

REGISTER NAME PURPOSE ADDRESS

RxResp1_Ctl Same as RxResp0_Ctl. 0xBCn04484

RxResp2_Ctl Same as RxResp0_Ctl. 0xBCn04488

RxResp3_Ctl Same as RxResp0_Ctl. 0xBCn0448C

RxResp4_Ctl Same as RxResp0_Ctl. 0xBCn04490

RxResp5_Ctl Same as RxResp0_Ctl. 0xBCn04494
C5EC3EARCH-RM REV 04

514 APPENDIX A: C-5E NP REGISTERS
RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function)

RxResp6_Ctl Same as RxResp0_Ctl. 0xBCn04498

RxResp7_Ctl Same as RxResp0_Ctl. 0xBCn0449C

Purpose Bits [63:32] of the data portion of an incoming Ring Bus response (big
endian bytes 0-3). See Table 168 on page 514 for similar registers.

Address 0xBCn044A0

Access CPRC Read/Write

Bit Position 31 0

Field Name Data

Table 168 RxRespn_Data_H Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7)

REGISTER NAME PURPOSE ADDRESS

RxResp1_Data_H Same as RxResp0_Data_H. 0xBCn044A8

RxResp2_Data_H Same as RxResp0_Data_H. 0xBCn044B0

RxResp3_Data_H Same as RxResp0_Data_H. 0xBCn044B8

RxResp4_Data_H Same as RxResp0_Data_H. 0xBCn044C0

RxResp5_Data_H Same as RxResp0_Data_H. 0xBCn044C8

RxResp6_Data_H Same as RxResp0_Data_H. 0xBCn044D0

RxResp7_Data_H Same as RxResp0_Data_H. 0xBCn044D8

Table 167 RxRespn_Ctl Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) (continued)

REGISTER NAME PURPOSE ADDRESS
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 515
RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function)

RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function)

Purpose Bits [31:0] of the data portion of an incoming Ring Bus response (big
endian bytes 4-7). See Table 169 on page 515 for similar registers.

Address 0xBCn044A4

Access CPRC Read/Write

Bit Position 31 0

Field Name Data

Table 169 RxRespn_Data_L Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7)

REGISTER NAME PURPOSE ADDRESS

RxResp1_Data_L Same as RxResp0_Data_L. 0xBCn044AC

RxResp2_Data_L Same as RxResp0_Data_L. 0xBCn044B4

RxResp3_Data_L Same as RxResp0_Data_L. 0xBCn044BC

RxResp4_Data_L Same as RxResp0_Data_L. 0xBCn044C4

RxResp5_Data_L Same as RxResp0_Data_L. 0xBCn044CC

RxResp6_Data_L Same as RxResp0_Data_L. 0xBCn044D4

RxResp7_Data_L Same as RxResp0_Data_L. 0xBCn044DC

Purpose The top of the control portion of the Ring Bus receive message FIFO.

Address 0xBCn044E0

Access CPRC Read/Write

Bit Position 31 30 29 24 23 22 20 19 18 17 15 14 10 9 5 4 0

Field Name State Rsvd Error Rsvd Type Len Seq Rsvd Src

Reset Value 0 raz x raz x x x raz x
C5EC3EARCH-RM REV 04

516 APPENDIX A: C-5E NP REGISTERS
FIELD NAME BIT POSITION DESCRIPTION

State 31:30 Receive Message State: If State equals 1, there is at least one
valid message is in the receive FIFO available to the CPRC process.
State equals 1 for as long as any portion of a valid message
remains in the FIFO.

Reserved 29:24 Read as zero.

ErrorFlag 23 Error Flag — Error bit of receive message definable by user
programming.

Reserved 22:20 Read as zero.

Type 19:18 Receive Message Type:

Len 17:15 Length — Length of receive message in 8Byte slots. Valid values
are 1, 2, or 4.

Seq 14:10 Transaction Sequence Number — Transaction sequence
number of receive message.

Reserved 9:5 Read as zero.

Src 4:0 Source — Source field of receive message, typically the
processor’s Ring Bus node ID. See Table 163 on page 511.

ENCODED
VALUE STATE

00 Empty

10 High word

11 Low word

ENCODED
VALUE TYPE

0 Indication

1 Confirmation

2 Request
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 517
RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function)

Rx_SONETOH0 to Rx_SONETOH31 Registers (CP SONET Rx Control Function)

Tx_SONETOH0 to Tx_SONETOH31 Registers (CP SONET Tx Control Function)

Purpose The next four bytes of data from the Ring Bus receive message FIFO.

Address 0xBCn044E4

Access CPRC Read – Reading any portion of this register advances the receive
FIFO. CPRC Write for test purposes only, writes the register but does not
effect the receive FIFO.

Bit Position 31 0

Field Name Data

Purpose Used for passing SONET Overhead fields extracted from the receive data
stream by the framer to the CPRC.

Address 0xBCn04500 to 0xBCn0457C

Access CPRC Read, CPRC Write (during test), SDP Receive SONET Framer Write,
and is byte addressable

Bit Position 31 0

Field Name Data

Purpose Used for merging SONET Overhead fields from the CPRC into the
transmit data stream.

Address 0xBCn04580 to 0xBCn045FC

Access CPRC Read, CPRC Write, SDP Transmit SONET Framer Read, and is byte
addressable

Bit Position 31 0

Field Name Data
C5EC3EARCH-RM REV 04

518 APPENDIX A: C-5E NP REGISTERS
RxCtl_ByteSeq0 Register (CP SDP Rx Control Function)

RxCtl_SyncSeq Register (CP SDP Rx Control Function)

RxCtl_BitSeq0 Register (CP SDP Rx Control Function)

Purpose Provides an area for passing information between the CPRC and RxByte
Processor. See Table 170 on page 518 for similar register.

Address 0xBCn04600

Access CPRC Read/Write, SDP Receive Byte Sequencer Read/Write, and is byte
addressable

Bit Position 31 0

Field Name Data

Table 170 RxCtl_ByteSeq1 Register (for Byte Sequence1)

REGISTER NAME PURPOSE ADDRESS

RxCtl_ByteSeq1 Same as RxCtl_ByteSeq0. 0xBCn04604

Purpose Provides an area for passing information between the CPRC and RxSync
Processor.

Address 0xBCn04608

Access CPRC Read/Write, RxSync Sequencer Read/Write, and is byte
addressable

Bit Position 31 0

Field Name Data

Purpose Provides an area for passing information between the CPRC and RxBit
Processor. See Table 171 on page 519 for similar register.

Address 0xBCn0460C

Access CPRC Read/Write, RxBit Sequencer Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 519
TxCtl_ByteSeq0 Register (CP SDP Tx Control Function)

TxCtl_BitSeq0 Register (CP SDP Tx Control Function)

Table 171 RxCtl_BitSeq1 Register (for Bit Sequence1)

REGISTER NAME PURPOSE ADDRESS

RxCtl_BitSeq1 Same as RxCtl_BitSeq0. 0xBCn04610

Purpose Provides an area for passing information between the CPRC and TxByte
Processor. See Table 172 on page 519 for similar register.

Address 0xBCn04620

Access CPRC Read/Write, TxByte Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 172 TxCtl_ByteSeq1 Register (for Byte Sequence1)

REGISTER NAME PURPOSE ADDRESS

TxCtl_ByteSeq1 Same as TxCtl_ByteSeq0. 0xBCn04624

Purpose Provides an area for passing information between the CPRC and TxBit
Processor. See Table 173 on page 519 for similar register.

Address 0xBCn0462C

Access CPRC Read/Write, TxBit Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 173 TxCtl_BitSeq1 Register (for Bit Sequence1)

REGISTER NAME PURPOSE ADDRESS

TxCtl_BitSeq1 Same as TxCtl_BitSeq0. 0xBCn04630
C5EC3EARCH-RM REV 04

520 APPENDIX A: C-5E NP REGISTERS
CP_Mode0 Register (CP Mode Configuration Function)
Purpose Collects mode and control bits relevant to general CPRC and CP

configuration.

Address 0xBCn04640

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

Field Name
RC

Reset
x

Win
d

Dow
n

CP to
XP IRQ

CP to
all IRQ Rsvd

SendS
pecul

Comm
it

Valid/
Invali

d

QMU
rdmbx

QMU
wrmbx Rsvd Imode

Retry

Glob
al

WCS
Write
Byte

Scan
Data
Out

RxWCS
Write

TxWCS
Write Rsvd

Scan
Capt
ure

Scan
Updat

e

Scan
DataI

n1

Scan
DataIn0

Reset Value 0 raz raz raz raz 0 0 0 0 raz 0 0 raz x raz raz raz raz raz raz raz

FIELD NAME BIT POSITION DESCRIPTION

RC_Resetx 31 CPRC Resetx — The active low CPRC Resetx bit powers up
asserted, that is, = 0, so that the CPRC is in the reset state. It
must be set by the XP or another CPRC to release the reset
and enable the CPRC to begin the boot sequence. A CP can
not enable itself.

WindDown 30 Wind Down — When the bit is written to 1, it asserts a
global signal informing all chip functions to wind down as
soon as possible, and to leave as much predictable error
recovery state around as possible.

CPtoXPIRQ 29 CP to XP IRQ — When the bit is written to 1, it asserts a
global signal causing an XP interrupt from this CP.

CPtoAllIRQ 28 CP to All IRQ — When the bit is written to 1, it asserts a
global signal that causes an interrupt to every CP.

Reserved 27:26 Read as zero.

SendSpeculCommit 25 Send Speculative Commit — 1= Initialize transfer
0= No action.

Valid/Invalid 24 Valid/Invalid — 0= Commit, valid descriptor
1= Commit, invalid descriptor
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 521
QMU rdmbx 23:22 QMU rdmbx Status — Legal ranges are detailed here:

QMU wrmbx 21:20 QMU wrmbx Status — Legal ranges are detailed here:

Reserved 19 Read as zero.

Imode 18:17 IMEM Configuration Mode — Legal ranges are detailed
here:

When using cluster memory, only CP0,4,8 & 12 use these 2
bits, therefore, CP1-3, 5-7, 9-11 & 13-15 do not use these 2
bits.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE STATUS

00 QMU idle or operation finished
successfully

01 operation finished with error
(probably resource error, see above)

10 busy, waiting to begin execution

11 busy, executing in QMU engine

ENCODED
VALUE STATUS

00 QMU idle or operation finished
successfully

01 operation finished with error
(probably resource error, see above)

10 busy, waiting to begin execution

11 busy, executing in QMU engine

ENCODED
VALUE MODE

00 Unshared memory

11 4-way shared memory

01 Unsupported

10 Unsupported
C5EC3EARCH-RM REV 04

522 APPENDIX A: C-5E NP REGISTERS
RetryGlobal 16 Global Bus Transaction Retry — This bit causes global
load and store operations through the Global bus
controller to be retried up to 256 times when NACK’d.
When 256 tries have been NACK’d, the bus controller
terminates the operation and asserts a bus error.

WCS Write Byte 15:8 Writable Control Store Write Byte — Writing this byte
coincident with writing bit 6 and/or bit 5 causes the byte
data to be written to SDP control store.

ScanDataOut 7 Scan Chain Data Out — the value of this last bit in the
SDP scan chain.

RxWCSWrite 6 RxWritable Control Store Write — When the bit is 1, it
causes the data in the WCS Write Byte field to be loaded
into RxSDP control store at a value pointed to by the
internal SDP WCS load address register, and the address to
increment.

TxWCSWrite 5 TxWritable Control Store Write — When the bit is 1, it
causes the data in the WCS Write Byte field to be loaded
into Transmit SDP control store at a value pointed to by the
internal SDP WCS load address register, and the address to
increment.

Reserved 4 Read as zero.

ScanCapture 3 Scan Capture — Parallel load of the SDP scan chain with
chip state.

ScanUpdate 2 Scan Update — Parallel drive SDP scan chain data into
chip state.

ScanDataIn1 1 Scan Data In 1 — Shift a 1 serially into the SDP scan chain.

ScanDataIn0 0 Scan Data In 0 — Shift a 0 serially into the SDP scan chain.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 523
CP_Mode1 Register (CP Mode Configuration Function)
Purpose Collects mode and status bits relevant to general CP configuration.

Address 0xBCn04644

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 16

Field Name
POH

Avail

TOH

Avail
SONET J1

Avail LOS RxByte
Req

RxSync
Req

RxBit
Req

TBI
Error

OH
Avail

TxByte
Req

TxBit
Req Rsvd

Bit Position 15 12 11 8 7 5 4 3 2 1 0

Field Name PErrStat GErrStat Rsvd NXM LFOF SFOF LFUF SFUF

FIELD NAME BIT POSITION DESCRIPTION

POH Avail 31 SONET Payload Overhead Address Avail — When set,
indicates that the final byte of path overhead (Z5) has just
been written to the receive SONET overhead register area.
All desired path overhead must be read out before the next
time this signal is asserted or it will be overwritten

TOH Avail 30 SONET Transport Overhead Address Avail — When set,
indicates that the final byte of transport overhead (E2) has
just been written to the receive SONET overhead register
area. All desired transport overhead must be read out before
the next time this signal is set to a one or it will be
overwritten. This bit is also available in SONET event register.

SONET J1 Avail 29 SONET J1 Avail — Indicates that the new j1 index written
by the CPRC now has the corresponding J1 in the J1
overhead register area. This is cleared by writing a new j1
index. This is set by writing a J1 byte to the overhead
register. This bit is also available in SONET event register.

LOS 28 Loss of Signal — This signal is either loss of
synchronization or loss of frame as a function of other mode
bits.

RXSONET
ENABLE

LOS
MODE FUNCTION

0 0 Gigabit ethernet loss of sync

0 1 Fibre channel loss of sync

1 x All zeros received for > 2.3
µseconds
C5EC3EARCH-RM REV 04

524 APPENDIX A: C-5E NP REGISTERS
RxByteReq 27 SDP RxByte Service Request — When set, RxByte
processor microcode needs attention of the CPRC. This is
also connected to the CP event register. This bit is written by
the RxByte processor.

RxSyncReq 26 SDP RxSync Service Request — When set, RxSync
processor microcode needs attention of the CPRC. This is
also connected to the CP event register. This bit is written by
the RxSync processor.

RxBitReq 25 SDP RxBit Service Request — When set, RxBit processor
microcode needs the attention of the CPRC. This is also
connected to the CP event register. This bit is written by the
RxBit processor.

TBI Error 24 Ten Bit Interface Symbol Error — When set to a one,
indicates that there has been a ten bit symbol error since
this bit was last cleared. This bit is set by the ten bit decoder
and cleared by the CPRC by writing a one to this bit. It is
readable by the CPRC.
This cannot be used for error counting, but it does give
some indication as to the health of the link.

OH Avail 23 SONET Overhead Avail — show the current value of the
SDP Transmit SONET Framer’s address bit 6 into the SONET
overhead registers.

TxByteReq 22 SDP TxByte Service Request — When set, TxByte
processor microcode needs attention of the CPRC. This is
also connected to the CP event register. This bit is written by
the TxByte processor.

TxBitReq 21 SDP TxBit Service Request — When set, TxBit processor
microcode needs attention of the CPRC. This is also
connected to the CP event register. This bit is written by the
TxBit processor.

Reserved 20:16 Read as zero.

PErrStat 15:12 Payload Error Status — loaded when a Payload Error
occurs and is locked until the CPRC Process clears the PErr
bit. The individual control blocks can be interrogated to
determine the specific offender. Write 1 to clear. Refer to
Table 147 on page 495 for error code definitions.

GErrStat 11:8 Global Error Status — loaded when a Global Error occurs
and locked until the RC process clears the GErr bit. Codes are
shown in Table 174. Write 1 to clear.

Reserved 7:5 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 525
NXM 4 Cluster Non-Existent Memory — CPRC reference to
cluster space addressed non-existent Data Memory (DMEM)
or non-local configuration register space. Write 1 to clear.

LFOF 3 Receive Large FIFO Overflow — Receive Large FIFO
overflow condition. Write 1 to clear.

SFOF 2 Receive Small FIFO Overflow —Receive Small FIFO
overflow condition. Write 1 to clear.

LFUF 1 Transmit Large FIFO Underflow — Transmit Large FIFO
underflow condition. Write 1 to clear.

SFUF 0 Transmit Small FIFO Underflow — Transmit Small FIFO
underflow condition. Write 1 to clear.

Table 174 Global Bus Error Status Encoding

ERROR TYPE ENCODING READ/WRITE DESCRIPTION

Success 0 R, W The transaction completed successfully. If an
error is reported, it is due to a non-cluster
local DMEM reference.

NACK Retry Limit 9 R, W The target was unable to accept a global
memory request. The global bus transaction
was attempted until the NACK retry limit was
reached.

Non-Existent
Memory

A R, W Reference made to an un-subscribed 1MByte
CP block.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

526 APPENDIX A: C-5E NP REGISTERS
SDP_Mode2 Register (CP Mode Configuration Function)
Purpose Collects SONET/SDH alarm and status information.

Address 0xBCn04648

Access CPRC Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 22 21 16 15 8 7 6 5 0

Field Name LOS LOF ASI-L REI-L RDI-L LOP-P ASI-P REI-P RDI-P LCD-P Rsvd SONET_C2_Exp Rsvd SONET_Rx J1_Idx

FIELD NAME BIT POSITION DESCRIPTION

LOS 31 Loss Of Signal — This bit is meaningful for SONET/SDH,
Gigabit Ethernet, and Fibre Channel applications. For
SONET/SDH, it is defined as: the occurence of all-zeros (no line
transitions) are detected on the receive SONET/SDH line: 2.3µs
for OC-3c, or 4.6µs for OC12/c. LOS clears when the
FRAMELOSS bit in the control/status register (ireg14) in RxBit
programmable processor is cleared. This meets the Telcordia
GR-253 standard. RxBit must set or clear FRAMELOSS based
upon receiving the correct A1/A2 framing pattern.
Note: The LOS indication requires the transmit SONET/SDH
block be enabled and the SONET/SDH Transmit clock set to the
correct frequency because LOS detection is timed through the
TxSONET transmit logic. Note: That detection of LOS is
dependent upon the transceiver's transmitting zeros when no
optical power is being received. Check the optical transceiver
documentation to implement the desired behavior. This bit is
read-only.

LOF 30 SONET Loss Of Framing — This bit is set when a severely erred
frame (SEF) condition has been detected for 3ms on the receive
SONET/SDH stream. This bit is cleared when framing has been
achieved for 3ms (A1, A2 bytes). This bit is controlled through
the RxBit processor within the SDP. RxBit microcode must set or
clear the FRAMELOSS bit in the control/status register (ireg14
bit 6) indicating whether it has achived or lost SONET/SDH
frame synchronization (SEF). The SONET/SDH block then times
out this condition for 3ms (24 frames) before setting the LOF
bit. 24 valid frames are required to clear LOF. This bit is
read-only.
Note: The RxSONET block does not forward data when LOF is
set.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 527
AIS-L 29 SONET/SDH Line Alarm Indication Signal — Set when five
consecutive frames have been detected which contain the
value (111) in bits 6,7, and 8 of the K2 byte. Cleared when five
consecutive frames have been detection which do not contain
the value (111) in bits 6,7, and 8 of the K2 byte. This bit is
read-only.

REI-L 28 SONET/SDH Line Remote Error Indicator — Set when the M1
byte is between 1 and 24 for OC3c, or between 1 and 96 for
OC12c for the current received SONET/SDH frame. M1 indicates
the number of B2 errors detected on our transmitted
SONET/SDH stream by the far-end equipment. This bit is
cleared if zero errors are detected in the M1 byte or if the
number of errors is outside the valid range. This bit is read-only.

RDI-L 27 SONET/SDH Line Remote Defect Indicator — Set when bits
6,7, and 8 of the K2 byte contain the value '110' for five
consecutive frames. Cleared when bits 6,7, and 8 contain any
pattern other than the code '110' in five consecutive frames.
This bit is read-only.

LOP-P 26 SONET/SDH Path Loss Of Pointer — LOP-P is set when ten
frames of invalid pointers or NDF enabled indications are
observed. LOP-P is cleared when the same valid pointer with
normal NDF is detected for 3 consecutive frames. This bit is
read-only.
Note: The RxSONET block does not forward data when LOP-P is
set.

AIS-P 25 SONET/SDH Path Alarm Indication Signal — AIS-P is set
when the H1 and H2 bytes for the first STS-1 contains an
all-ones pattern in 3 consecutive frames. AIS-P is cleared after 3
good pointers have been received. This bit is read-only.

REI-P 24 SONET/SDH Path Remote Error Indicator — When G1[1:4]
contains a value between 1 and 8 for the last frame, this bit is
set. If G1 is a value other than those values, the bit is cleared.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

528 APPENDIX A: C-5E NP REGISTERS
RDI-P 23 SONET/SDH Path Extended Remote Defect Indication —
The following table illustrates what this bit is set to depending
upon the value of G1[5:7]. 10 consecutive frames of the same
ERDI-P code must be received before the value in the G1
RxSONET_OH overhead register is changed.

LCD-P 22 Loss of Cell/Packet Delineation - Path — This bit is set when
a Loss of Cell Delineation condition has been detected by the
RxSync SDP microengine. This bit is controlled through the
RxSync processor within the SDP. RxSync microcode must set or
clear the DELINLOSS bit in the control/status register (ireg14 bit
6) indicating whether it has achieved or lost ATM cell
synchronization (LCD) based upon verification of the ATM HEC.
This bit is read-only. This bit is controlled through the RxSync
processor within the SDP. When LCD_P is ON, and ManualFEBE
is cleared, the appropriate ERDI-P code is transmitted. See the
ManualFEBE bit in SDP_Mode3 for more information.

Reserved 21:16 Read as zero.

Sonet_C2_Exp 15:8 SONET C2 Expected — This is the value of the C2 Path Signal
Label that is expected to be received from the far end
SONET/SDH link. PLM-P and Path Unequipped alarms can be
determined through the use of this register and the C2_ERROR
bit in the SONET_Event register. See the SONET_Event register
bit 8 C2_ERROR for more information.

Reserved 7:6 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION

BITS [5:7]
VALUES IN
ERDI-P STATE RDI_P BIT [23] SETTING

110 1

101 1

100 1 for backwards compatibility with RDI-P.

010 1

001 0

000 0 for backwards compatibility with RDI-P.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 529
SDP_Mode3 Register (CP Mode Configuration Function)

Sonet_J1_Idx 5:0 RxSONET J1 Index — Indicate which of the 64Byte path trace
(J1) message should be written to the receive overhead
location for J1. Changing this field clears J1_AVAIL in the
SONET_EVENT register. J1_AVAILbecomes set when the J1 is
actually written to the overhead register.

Purpose Collects configuration mode bits relevant for programming the RxSDP
machines.

Address 0xBCn0464C

Access CPRC Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 22 21

Field Name RxResetx RxEnable RxByteEna RxBitEna RxSonetEna RxSyncEna RxByte
Loopback

RxBit
Loop
back

RxAgg
Mode

RxSync
CRC16/32

Reset Value 0 0 0 0 0 0 x x x x

Bit Position 20 19 18 17 16 15 14 13 12 11 10

Field Name RxSyncCRC
Init RxSyncFOL RxSonet

Concat
RxSync
CRCInv LOSenable LOSmode Rsvd Manual_FEBE RxBitInWidth SonetOC

Reset Value x x x x x x x x x x

Bit Position 9 8 7 6 5 4 3 2 1 0

Field Name SonetDscr RxByteCRCInit RxByteCRC
16/32

RxByteCRC
Inv

RxByteFirst
OnLeft

RxBitFirst
OnLeft

Payload
Dscr

RxFifo
ExDis Rx10Bit Bit2Bit

Source

Reset Value x x x x x x x x x x

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

530 APPENDIX A: C-5E NP REGISTERS
FIELD NAME BIT POSITION DESCRIPTION

RxResetx 31 RxSDP Master Reset — When 0, puts RxSDP in reset
state. When 1, RxSDP is in run state. This must be low
(asserted) in order to load the microcode.
NOTE: For CP0, CP4, CP8, and CP12 in each cluster, the
RxSDP Master Reset bit [31] must be 1 (reset disasserted)
for any cluster that is to be used for RxSDP processing.
Without this, data is not passed from the receive pins to
the individual CPs. For example, if CP10 is to be used for
RxSDP processing, then the RxSDP Master Reset bit [31] in
the CP8 SDP_Mode3 register must be set to 1, in addition
to setting the SDP_Mode register for CP10.

RxEnable 30 RxSDP Master Enable — When 1, enables all Rx
Sequencers. Allows all Rx processors and the SONET/SDH
logic to be enabled at once.

RxByteEnable 29 RxByte Processor Enable — Enables the RxByte
processor, when set to 1. Freezes the micropc at the
current microaddress when disabled. Receive master
enable must be set in order for this bit to have an effect.
The RxByte processor should be enabled for all
applications.

RxBitEnable 28 RxBit Processor Enable — Enables the RxBit processor,
when set to 1. Freezes the processor at the current
microaddress when disabled. Receive master enable must
be set in order for this bit to have an effect. This processor
should be enabled for all applications.

RxSonetEnable 27 RxSONET Enable — When a one, the SONET/SDH pointer
interpreter, payload demultiplexer and overhead
termination logic is enabled. When a zero, this SONET/SDH
logic is disabled and bypassed. Effects operation of the
loss of sync signal bit.

RxSyncEnable 26 RxSync Enable — Enables the rxsync processor, when set
to a one. Freezes the micropc at the current microaddress
when disabled. Receive master enable must be set in order
for this bit to have an effect.

RxSDP Configuration 25:0 Each of the individual bits [25:0] are described in detail
below:

RxByteLoopback 25 RxByte Loopback Enable — Connects network side of
transmit large FIFO to network side of receive large FIFO,
when set to a one.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 531
RxBitLoopback 24 RxBit Loopback Enable — Connects network side of
transmit small FIFO to network side of receive small FIFO,
when set to a one. Only works for aggregation mode = 0
(groups of one). The pin logic is not included in this
loopback.

RxAggMode 23:22 SDP Receive Aggregation Mode — Controls the
number of receive SDPs in a cluster that work as a unit.

00 = Each SDP works independently
01 = Reserved
10 = SDPs work as one group of four
11 = Reserved

RxSyncCRC16/32 21 RxSync CRC 16/32 — When a one, selects CRC-16
operation. When a zero, selects CRC-32 operation.

RxSyncCRCInit 20 RxSync CRC Initialize to Ones — When a one, resetting
the CRC register sets the CRC register to all ones. When a
zero, resetting the CRC register sets the CRC register to all
zeroes.

RxSyncFOL 19 RxSync CRC First on Left — Calculate CRC on the data
assuming that the first bit received is the left-most bit of
the byte. Must be set the same as RxBitFirstOnLeft.

RxSonetConcat 18 RxSONET Concatenation Mode — When in OC-12 mode
and set to a one, the receive logic is configured to SONET
OC-12c / SDH STM-4 VC-4-4c (one pipe). When in OC-12
mode and set to a zero, the receive logic is configured to
SONET OC-12 (four OC-3c streams) / SDH STM-4 (four
VC-4-1c streams).
Note: When RXSONET OC-12/OC-3 is set to a zero (OC-3
mode), this bit must be set.

RxSyncCRCInv 17 RxSync CRC Output Invert — Read the ones
complement of the CRC register, when a one. When a zero,
read the CRC register directly.

LOSenable 16 Loss of Synchronization Enable — When set, the 8 bit
10 bit (TBI) decoder runs the loss of synchronization state
machine on the incoming ten bit data. The loss of sync
signal bit is a one if this enable is set to zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

532 APPENDIX A: C-5E NP REGISTERS
LOSmode 15 Loss of Synchronization Mode — This signal is either
loss of synchronization or loss of frame as a function of
other mode bits

Reserved 14 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION

RXSONET
ENABLE

LOS
MODE FUNCTION

0 0 Gigabit ethernet loss of sync

0 1 Fibre channel loss of sync

1 x All zeros received for
> 2.3 µseconds
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 533
Manual_FEBE 13 Manual FEBE — When a one, the transmitted values of
K2, M1 and G1 are completely determined by the contents
of the TxSONET overhead registers. When a zero, all of M1,
G1 and the Remote Error Indication portion of K2 are
automatically generated by the hardware as a function of
the receive data.
Note: The SONET/SDH byte terminology is as follows:
M1[1:8] indicates bits 1 through 8 of the M1 byte where bit
1 is the msb and bit 8 is the lsb of the byte. Bytes are
transmitted msb to lsb. This terminology is taken from
Telcordia GR-253 core.
When Manual_FEBE is cleared the M1, G1 and K2 are
affected as follows:

• M1[1:8] contains the number of B2 errors detected on
the received SONET/SDH signal (0-24) OC3c or (0-96)
OC12/c.

• G1[1:4] contains the number of B3 errors detected on
the received SONET/SDH signal (0-8).

• G1[5:7] contains the Extended RDI-P value depending
upon the state of the received SONET/SDH signal as
detailed here:

• K2[6:8] is written to the value 110 indicating RDI-L
when LOS, LOF or AIS-L defects are detected on the
received SONET/SDH signal.

Note: K2 reverts back to the value read from the TxSONET
overhead register when an RDI-L condition is not being
transmitted.

FIELD NAME BIT POSITION DESCRIPTION

RECEIVED SONET SIGNAL STATE ERDI-P TX
BITS [5:7] VALUE

AIS-P, LOP-P 101

UNEQ-P, TIM-P 110

PLM-P, LCD-P 010

No Defects 001
C5EC3EARCH-RM REV 04

534 APPENDIX A: C-5E NP REGISTERS
Manual_FEBE
(Continued)

13 K2 Operational Details:
If ForceLineAIS in the SDP_Mode5 Register is set, then the
K2 byte reflects the AIS code (all 1’s). Otherwise, if
Manual_FEBE in the SDP_Mode3 is set, then K2 reflects
the value in the Transmit SONET/SDH Transport Overhead
K2 Byte Register. Otherwise, if RDI_L is asserted, then the 3
(lsb) are forced to value 6 and the upper 5 (msb) come
from the Transmit SONET/SDH Transport Overhead K2
Byte Register. Finally, if none of the above conditions are
present, then the default K2 reads its value from the
Transmit SONET/SDH Transport Overhead K2 Byte
Register.
Note: The signal used to select the RDI_L state above is
actually filtered, so that if RDI_L is detected on the Receive
(RX) side (sometime after the K1 byte), then it asserts
RDI_L to this Transmit (TX) logic and holds it for at least 20
frames.

RxBitInWidth 12:11 RxBit Input Width — Determines the input data width
received by RxBit. If the ten bit decoder is enabled, this
field is ignored.

SonetOC 10 RxSONET OC12/OC3 Select — When a one, the
SONET/SDH receive logic is configured to receive SONET
OC-12 / SDH STM-4. When a zero, this receive logic is
configured to receive SONET OC-3c / SDH STM-1 VC-4-1c.

SonetDscr 9 SONET Descramble Enable — Enables the SONET / SDH
descramble operation, when set to a one. When a zero, no
descrambling occurs. Normally enabled if SONET/SDH is
enabled.

RxByteCRCInit 8 RxByte CRC Initialize to Ones — When a one, resetting
the CRC register sets the CRC register to all ones. When a
zero, resetting the CRC register sets the CRC register to all
zeroes.

FIELD NAME BIT POSITION DESCRIPTION

RXBIT INPUT WIDTH INPUT WIDTH IN BITS

0 1

1 2

2 4

3 8
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 535
RxByteCRC16/32 7 RxByte CRC 16/32 — When a one, selects CRC-16
operation. When a zero, selects CRC-32 operation.

RxByteCRCInv 6 RxByte CRC Output Invert — Read the ones
complement of the CRC register, when a one. When a zero,
read the CRC register directly.

RxByteFirstOnLeft 5 RxByte CRC First on Left — Calculate CRC on the data
assuming that the first bit received is the left-most bit of
the byte. Must be set the same as RxBitFirstOnLeft.

RxBitFirstOnLeft 4 RxBit First on Left — When a zero, the first bit on
received is on the right-most bit of the byte. When a one,
the first bit received is on the left-most bit of the byte.
Set to zero for Ethernet. Set to one for SONET/SDH.

PayloadDscr 3 RxSync Payload Descramble Enable — When a one,
self-synchronous payload descrambling is applied to the
receive data if the microcode also enables it. When a zero,
data is not descrambled.

RxFifoExDis 2 RxFIFO Exception Disable — When set to a zero, allows
the RxSDP overflow handler to empty the RxSDP pipeline
in the event of FIFO overflow. When set to a one, inhibit
the SDP overflow handler from emptying the RxSDP in the
event of FIFO overflow.
Note: For diagnostics. This bit is normally set to zero.

Rx10Bit 1 Fix 10 Bit Decoder Mode — When set, the 8 bit to 10 bit
decoder is enabled. The Rxbit input width is set to 10 bits.
When clear, the 8 bit to 10 bit decoder is disabled and
Rxbit input width is determined by the Rxbit input width
field as described above.
Note: This is used for gigabit ethernet 1000BaseX and
Fibre Channel.

Bit2BitSource 0 Receive Bit-tobit Source — When set to one 1, selects
the bit-to-bit signal from RxBit processor 0 of its neighbor
cluster. If we call the four clusters 0, 1, 2, and 3. 0 and 1 are
neighbors. Clusters 2 and 3 are also neighbors. When set
to 0, selects the bit-to-bit signal from an RxBit processor in
the local cluster. Which RxBit processor of the four is
selected is a function of the aggregation mode.
The bit-to-bit signal is readable by the RxBit processor.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

536 APPENDIX A: C-5E NP REGISTERS
SDP_Mode4 Register (CP Mode Configuration Function)
Purpose Configures the TxLarge FIFO and Aggregation Multiplexer.

Address 0xBCn04650

Access CPRC Read/Write

Bit Position 31 30 26 25 24 23 11 10 9 8 7 6 0

Field Name FrameMode Reserved AgMux
State FrameCnt Idle

Cell
Idle

Insert
Auto

Token Rsvd Large FIFO
Watermark

Reset Value 0 raz 0 0 x x x raz x

FIELD NAME BIT POSITION DESCRIPTION

FrameMode 31 SONET APS Frame Mode — When set, this bit turns
FrameMode on. In FrameMode the FrameCnt field is
used to determine the number of frames to wait
before causing an interrupt when a B1, B2, B3, REI-L
or REI-P error is observed in the incoming
SONET/SDH stream. A rising edge on this bit causes
the FrameCnt field to be re-read by the hardware.
Additionally, the internal accumulated counters for
B1, B2, B3, REI-L and REI-P are reset to zero. When set,
alternative secondary definitions for the B1_Error,
B2_Error and B3_Error SONET_Event register bits
apply. See the SONET_Event register for these
definitions.

Reserved 30:26 Read as zero.

AgMuxState 25:24 Aggregation Multiplexer State — Allows the base
CPRC of an aggregate group to determine which
CPRC of the aggregate group is currently selected by
the aggregation multiplexer.

FrameCnt 23:11 SONET APS Frame Count — When FrameMode is
enabled, this field indicates the number of frames the
hardware delays before causing a B1_Error, B2_Error
or B3_Error event to occur in the SONET_Event
register if any of these errors have occurred in the last
FrameCnt frames. This value indicates the number of
complete SONET/SDH frames following the write to
this register which causes an interrupt. Zero implies
interrupt on the very next frame boundary.
Note: The frameCnt value is updated after the last
column of the Z5 POH byte is updated.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 537
Idle Cell 10 Idle Cell Mode — If the Idle Insertion Enable bit is set
to 1, Idle Cell Mode determines what is inserted in to
the data stream when no other data is available.

0 = insert a packet over SONET/SDH flag character
1 = insert an ATM idle cell

Idle Insert 9 Idle Insertion Enable — If set to 1, the transmit
pipeline inserts either a packet over SONET/SDH flag
(0x7E) or an ATM idle cell (if there is no other data
available) depending on the state of the idle cell
mode bit. This insertion occurs either before or after
the aggregation multiplexer, depending on the state
of the Scramble/Insertion mode bit in SDP_MODE5
register. If set to a 0, no insertion takes place.

Auto Token 8 AutoToken Enable — When set to 1 and the
aggregation group size is four, the token is passed
without micro sequencer intervention whenever
data_nine is read from the aggregation multiplexer
output stage.

Reserved 7 Read as zero.

Large FIFO
Watermark

6:0 Large FIFO Watermark — The TxLarge FIFO (128
words) has a watermark associated with it. Starting
from the empty state, the FIFO remains empty until
the entry count becomes greater than the watermark
at which point it then becomes not-empty.
The watermark depth is recalculated each time the
last byte of a packet or cell has been transmitted. The
last byte is defined as any byte with the 9th bit set. If
the FIFO depth is less than the watermark number of
bytes when the last byte is transmitted from the FIFO,
the FIFO appears empty.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

538 APPENDIX A: C-5E NP REGISTERS
SDP_Mode5 Register (CP Mode Configuration Function)
Purpose Collects configuration mode bits relevant for programming the TxSDP

machines.

Address 0xBCn04654

Access CPRC Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 22

Field Name TxResetx TxEnable TxByteEna TxBitEna TxSonetEna ForceLineAIS TxSonetOh
Comp

ForceSonet
PErr TxAggMode

Reset Value 0 0 0 0 0 x x x x

Bit Position 21 20 19 18 17 16 15 14 13 12 11 10

Field Name TxFifoExDisab TxBitPHY TxSonet
ConcMode

ForcePath
AIS3

ForcePath
AIS2

ForcePath
AIS1

ForcePath
AIS0

Sonet
j1Mis

TxBitOut
Width

TxSonet
OC

Reset Value x x x x x x x x x x

Bit Position 9 8 7 6 5 4 3 2 1 0

Field Name TxSonetScr TxByteByte
CRCInit1

TxByteCRC
16

TxByte
CRCInv

TxByteFirst
OnLeft

TxBitFirst
OnLeft

Payload
ScrEna

Payload
ScrMode Tx10bit ForceLOS

Reset Value X x x x x x x x x x

FIELD NAME BIT POSITION DESCRIPTION

TxResetx 31 TxSDP Master Reset — When 0, puts TxSDP in reset
state. When 1, puts TxSDP in run state. Must be low
(asserted) in order to load the microcode.

TxEnable 30 TxSDP Master Enable — When 1, enables all Rx
Sequencers. This allows all of the processors and the
SONET/SDH logic to be started at the same time.

TxByteEna 29 TxByte Enable — Enables the TxByte processor,
when set to 1. Freezes the micropc at the current
microaddress when disabled. TxEnable must be set in
order for this bit to have an effect. This processor
should be enabled for all applications.

TxBitEna 28 TxBit Enable — Enables the TxBit processor, when
set to a one. Freezes the micropc at the current
microaddress when disabled. Transmit master enable
must be set in order for this bit to have an effect. The
TxBit processor should be enabled for all
applications.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 539
TxSonetEna 27 TxSONET Enable — When one, enables the
TxSONET logic. When a zero, TxSONET logic is
disabled and bypassed. When enabled this logic
inserts SONET/SDH transport and path overhead into
the data stream.

ForceLineAIS 26 TxSONET Force Line Alarm Indicator Signal —
When a one, force the transmission of line alarm
indication signal (AIS-L). However, when set to a one
when sonet_force_path_alarm_indication_signal is
set to a one, this bit does not force AIS-L; it enables
transmission of new data flag in H1.

TxSonetOhComp 25 TxSONET Overhead Complete — When set to a
one, the final element (E2) of transmit path and
transport overhead has been read from the
SONET/SDH transmit overhead buffer. Indicates that
one more J1 has been updated in the J1 portion of
that buffer.
Operation of this indicator is complicated by the
following: The SONET/SDH transmit pointer is fixed at
decimal 40. Because of this, a complete set of path
overhead is read in this order: Z3 Z4 Z5 J1 B3 C2 G1
F2 H4, not in the expected order of J1... Z5 This bit is
also available in the SONET event register.

ForceSONETPErr 24 TxSONET Force Parity Error — When a one,
transmits parity errors on all bit lanes of B1 B2 and B3.
For diagnostics.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

540 APPENDIX A: C-5E NP REGISTERS
TxAggMode 23:22 SDP Transmit Aggregation Mode — Controls the
number of TxSDPs in a cluster that work as a unit.

00 = Each SDP works independently
01 = Reserved
10 = SDPs work as one group of four
11 = SDPs work as one group of four, output is
byte-interleaved. Output bytes are selected in
round robin order from CP0,1,2,3 to create a
merged output stream. When using this mode, all
four txbyte processors provide one data byte in
turn which are merged following the tx large fifo
and presented to either the tx sonet block or the
txbit processor (depending on the state of
TxSonetEna). If the fifo watermark logic is also
enabled, each valid byte must have the data nine
flag asserted. One invalid byte must also be
inserted into each fifo to indicate packet boundary
for the watermark logic. This mode of operation is
typically used with the M-5 Channel Adapter.

TxFifoExDisab 21 TXFIFO Exception Disable — When set to 0, allow
the TxSDP underflow handler to transmit
well-formed, but benign PDUs in the case of FIFO
underflow. When set to 1, prevent this mechanism
from operating, which will cause the last data in the
Tx small FIFO to be repeated until new data is
available.
For diagnostics. This bit is normally set to zero.

TxBitPHY 20:19 TxBit PHY Status Select — Selects how the physical
layer status bits from the PHY or transceiver chips are
connected to the TxBit processor. The TxBit processor
has two PHY status tests: phy_status_0 and
phy_status_1. See Table 175.

TxSonetConcMode 18 TxSONET Concatenation Mode — When in OC-12
mode and set to 1, the transmit logic is configured to
SONET OC-12c / SDH STM-4 VC4-4c (one pipe). When
in OC-12 mode and set to zero, the transmit logic is
configured to SONET OC-12 (four OC-3c streams) /
SDH STM-4 (four VC-4-1c streams).
When TxSonetOC is set to a zero (OC-3 mode), this bit
must be set.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 541
ForcePathAIS3 17 SONET Force Path Alarm Indicator Signal 3 —
When a one, forces the path alarm indication signal
(AIS-P) to be transmitted. The operation of this varies
according to the SONET mode selected.
For OC-3c mode only, CPs 3, 7, 11, 15 - AIS is
controlled by the setting in ForcePathAIS3.
In OC-12c mode, the ForcePathAIS0 of CP0 is the
only bit that is used. In OC-12 non-concatenated
mode, each of the four bits in CP0 only controls one
of the four OC-3c tributaries.
When set to 1 and the
sonet_force_line_alarm_indication_signal is set to 1,
this bit does not force AIS-P; it enables transmission
of new data flag in H1.

ForcePathAIS2 16 SONET Force Path Alarm Indicator Signal 2 — See
ForcePathAIS3.
For OC-3c mode only, CPs 2, 6, 10, 14 - AIS is
controlled by the setting in ForcePathAIS2.

ForcePathAIS1 15 SONET Force Path Alarm Indicator Signal 1 — See
ForcePathAIS3.
For OC-3c mode only, CPs 1, 5, 9, 13 - AIS is controlled
by the setting in ForcePathAIS1.

ForcePathAIS0 14 SONET Force Path Alarm Indicator Signal 0 — See
ForcePathAIS3.
For OC-3c mode only, CPs 0, 4, 8, 12 - AIS is controlled
by the setting in ForcePathAIS0.

SonetJ1Mis 13 SONET J1 Mismatch — When 1, the path extended
remote defect indication field (ERDI-P), is set to
reflect this condition. This bit is to be set when the
received 64Byte J1 message does not match the
message that is expected.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

542 APPENDIX A: C-5E NP REGISTERS
TxBitOutWidth 12:11 TxBit Output Width — Determines the output data
width transmitter by TxBit.

Overridden if the ten bit encoder is enabled

TxSonetOC 10 TxSONET OC12/OC3 Select — When a one, the
SONET/SDH transmit logic is configured to transmit
SONET OC-12 / SDH STM-4. When a zero, this
transmit logic is configured to transmit SONET OC-3c
/ SDH STM-1 VC-4-1c.

TxSonetScr 9 TxSONET Scramble Enable — When 1, the data is
frame-synchronously scrambled. When zero, the data
is not scrambled.

TxByteCRCInit1 8 TxByte CRC Initialize to Ones — When a one,
resetting the CRC register sets the CRC register to all
ones. When a zero, resetting the CRC register sets the
CRC register to all zeroes.

TxByteCRC16 7 TxByte CRC 16/32 — When a one, selects CRC-16
operation. When a zero, selects CRC-32 operation.

TxByteCRCInv 6 TxByte CRC Output Invert — Read the ones
complement of the CRC register, when a one. When a
zero, read the CRC register directly.

TxByteFirstOnLeft 5 TxByte First on Left — Calculate CRC on the data
assuming that the first bit received is the left-most bit
of the byte. Must be set the same as RxBitFirstOnLeft.

TxBitFirstOnLeft 4 TxBit First on Left — When 0, the first bit
transmitted is the right-most bit of the byte. When 1,
the first bit transmitted is the left-most bit of the
byte.
Set to 0 for Ethernet. Set to 1 for SONET/SDH.

FIELD NAME BIT POSITION DESCRIPTION

TXBIT OUTPUT WIDTH INPUT WIDTH IN BITS

0 1

1 2

2 4

3 8
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 543
PayloadScrEna 3 TxByte Payload Scramble Enable — When set to a
one, enables the self-synchronous payload scrambler
if the microcode also enables it. Otherwise, data is
transferred without scrambling. Usually set if
SONET/SDH is enabled.

PayloadScrMode 2 TxByte Payload Scramble Insertion Mode —
Selects whether optional insertion and/or payload
scrambling of is done before or after aggregation
multiplexing. When zero, insert/scramble before
multiplexing. When one, insert/scramble after
multiplexing.
OC-12c applications must set this to a one. OC-3c and
OC-12 non concatenated applications must set this
to a zero.

Tx10bit 1 Tx Ten Bit Enable — When set, the 8 bit to 10 bit
encoder is enabled. The TxBit output width is set to
10 bits. When clear, the 8 bit to 10 bit encoder is
disabled and TxBit output width is determined by the
TxBit output width field as described below. This is
used for Gigabit Ethernet 1000BaseX and Fibre
Channel.

ForceLOS 0 TxSONET Force Loss Of Signal — When a one,
turns the entire SONET/SDH frame, post-scrambling
to zeroes.
For diagnostics. To the receiver this looks just like a
fiber cut.

Table 175 PHY Status Bit - TxBit Processor Connections

SELECT
FIELD OPERATION

0 or 3 phy_status_0 is connected to receive data signal A
phy_status_1 is connected to receive data signal B
Where signals A and B are the following:

PIN MODE SIGNAL A SIGNAL B

DS1/3 frame sync undefined

OC-3 undefined signal detect

OC-12 frame pulse PLL lock detect

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

544 APPENDIX A: C-5E NP REGISTERS
Debug_Mode Register (CP Mode Configuration Function)

1 phy_status_0 is connected to carrier sense (RMII)
phy_status_1 is connected to collision (RMII)

2 phy_status_0 is connected to carrier sense (GMII)
phy_status_1 is connected to collision (GMII)

Purpose Configures the CP debug tap for the global debug counters.

Address 0xBCn04658

Access CPRC Read/Write

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name Enb0 Rsvd MUX0 Enb1 Rsvd MUX1 Enb2 Rsvd MUX2 Enb3 Rsvd MUX3

Reset Value 0 raz x 0 raz x 0 raz x 0 raz x

FIELD NAME BIT POSITION DESCRIPTION

Enb0 31 Global Debug Wire 0 Enable — Enable the driver onto global
debug wire 0.

reserved 30:28 Read as zero.

MUX0 27:24 Global Debug Wire 0 MUX — Select 1 of 16 debug events onto
global debug wire 0.

Enb1 23 Global Debug Wire 1 Enable — Enable the driver onto global
debug wire 1.

reserved 22:20 Read as zero.

MUX1 19:16 Global Debug Wire 1 MUX — Select 1 of 16 debug events onto
global debug wire 1.

Enb2 15 Global Debug Wire 2 Enable — Enable the driver onto global
debug wire 2.

reserved 14:12 Read as zero.

MUX2 11:8 Global Debug Wire 2 MUX — Select 1 of 16 debug events onto
global debug wire 2.

Table 175 PHY Status Bit - TxBit Processor Connections (continued)

SELECT
FIELD OPERATION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 545
There are four global debug wires that carry inputs to the global debug counter block.
Each CP has a multiplexor that can select one of the 16 events enumerated in Table 176 to
drive on each of the respective debug wires. Each multiplexor has a 4bit register to select
what event to drive, and an enable bit to turn on the debug wire driver. Chip-wide, only
one debug wire driver should be enabled at any time. Because of this restriction, the
recommended procedure for software to manipulate debug taps is as follows:

1 Clear the master debug enable bit in the global debug configuration register space in
the XP.

2 Clear the set driver enable bits. It may be safest to invoke a routine that clears all driver
enable bits on every change regardless of the previous configuration.

3 Set one chip-wide driver enable bit and its corresponding multiplexor select value for
each global debug wire.

4 Set up the global debug configuration bits and master debug enable.

Enb3 7 Global Debug Wire 3 Enable — Enable the driver onto global
debug wire 3.

reserved 6:4 Read as zero.

MUX3 3:0 Global Debug Wire 3 MUX — Select 1 of 16 debug events onto
global debug wire 3.

Table 176 Debug Multiplexor Select Encodings

MUX INPUT ENCODING DESCRIPTION

1 15 Always selects 1 for multiplexor.

0 14:8 Always selects 0 for multiplexor (unused).

SDP service
request

7 Logical OR of all SDP sequencers service requests.

SDP TXByte 6 SDP TxByte sequence moved a byte of payload from DMEM.

SDP RxByte 5 SDP RxByte sequence moved a byte of payload to DMEM.

Istall 4 CPRC instruction stall cycle.

Stall 3 CPRC data read or write stall cycle.

CPRC Read 2 CPRC data read.

CPRC Write 1 CPRC data write.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

546 APPENDIX A: C-5E NP REGISTERS
PIN_Mode Register (CP Mode Configuration Function)

DebugMatch 0 The CPRC data, data address, or instruction address matches the
programmed match registers in the CPRC.

Purpose Provides programmable pin configuration state.

Refer to Configuring the SDP Pin Logic on the C-5e NP document for
configuring protocol services not supported in the CPI.

Address 0xBCn0465C

Access CPRC Read/Write

Bit Position 31 23 22 21 20 18 17 14 13 7 6 0

Field Name Reserved DataCnfg RxClkMUX TxClkMUX Reserved TxDataEna

Reset Value raz 0 0 0 raz 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:23 Read as zero.

DataCnfg 22:21 Pin Data Configuration — Sets CP configuration pins:

0,1 = CP pins in read-only mode
2 = CP pins in LVTTL mode (all other configurations)
3 = CP pins in PECL mode (OC-3)

Note: When in PECL mode, this enables CPn_2 and CPn_3 drivers,
independent of the settings for TxDataEna field.

Table 176 Debug Multiplexor Select Encodings (continued)

MUX INPUT ENCODING DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 547
RxClkMUX 20:18 Receive Clock MUX Control — For CP0, CP4, CP8, and CP12 in
each cluster, the receive clock MUX control cannot be disabled (set
to a value of 0) for any cluster that is to be used for either RxSDP or
TxSDP processing since this is how clock is driven throughout the
SDPs for that cluster. For example, if the cluster consisting of CP0 -
CP3 is being used to receive data, CP0 could be set to RxClkMux =
TxClkMux (5) and the TxClkMux must select a driven input clock.
RxClkMUX configurations are:

1 = local (CPn_1)
2 = x2 aggregate (CPn_1 of the aggregation pair)
3 = TBI - recovered from CP2_1 and CP3_1 in a four CP cluster
4 = PECL (for OC-3, from CPn_0 and CPn_1 differential input)
5 = transmit clock (for RMII)
6 = inverted transmit clock (for local loopback)
7 = x4 aggregate (CP2_1 is the clock in a four CP Cluster)
0 = disable receive clock (set internally to 0)

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

548 APPENDIX A: C-5E NP REGISTERS
TxClkMUX 17:14 Transmit Clock MUX Control — Indicates the source of the
TxClock used by the SDP:

Reserved 13:7 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE SOURCE

SUGGESTED
PROTOCOL
FREQUENCIES APPLICABLE NOTES

1 CCLK0 T1 N/A

2 CCLK1 E1

3 CCLK2 E3

4 CCLK3 T3

5 CCLK4 RMII CCLK4-7 are internally
tied to 0 in C-3e NP.

6 CCLK5 Fibre Channel

7 MII clk
(CPn_1 in
each
cluster)

MII To be used by MII Mode
for GMII autonegotiate
down to 100/10BaseT.

9 CCLK6 GMII/Gigabit
Ethernet

CCLK4-7 are internally
tied to 0 in C-3e NP

A CCLK7 OC3

B internal0 Internal0 and internal1
are internally buffered
versions of the receive
clocks on CP4 and CP8,
respectively.

C internal1

D receive
clock

Use the 'even' receive
clock in an 'even-odd'
pair, for example CP8
and CP9 will use receive
clock from CP8.

E receive
clock

N/A

0,8,F = transmit clock disabled (internally set to 0) for both C-5e
and C-3e
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 549
Queue_Status0 Register (CP Queue Status Function)

TxDataEna 6:0 Transmit Data Enable — Selects transmit or receive mode for
each of the CP’s pins:

0 = Receive
1 = Transmit

Bits 0 - 6 map individually to each of the seven pins in each CP. Bit 1
maps CPn_1, bit 2 maps to CPn_2, and so on. Thus pins 0-4 could
be in Rx mode while pins 5 and 6 could be in Tx mode.
Note: When PECL mode is selected by DataCnfg field, then
TxDataEna field is irrelevant. PECL drivers are predetermined to
transmit on CPn_2/3 (tx data) and receive on CPn_0/1, CPn_4/5
and CPn_6 (clk, rx data, and signal_detect).

Purpose Stores queue status broadcast by the queue controller. See Table 177 on
page 549 for similar registers.

Address 0xBCn04660

Access CPRC Read, Write one to clear

Bit Position 31 0

Field Name Status

Table 177 Queue_Statusn Registers (for Queue Status 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

Queue_Status1 Same as Queue_Status0. 0xBCn04664

Queue_Status2 Same as Queue_Status0. 0xBCn04668

Queue_Status3 Same as Queue_Status0. 0xBCn0466C

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

550 APPENDIX A: C-5E NP REGISTERS
Queue_Update0 Register (CP Queue Status Function)

Queue_Empty Register (Aggregated Queueing Function)

Event_Timer Register (CP Miscellaneous Control Function)

Purpose Address through which bits are set in the queue status registers. See
Table 178 on page 550 for similar registers.

Address 0xBCn04670

Access CPRC write one to set the corresponding bit of the queue status register.

Bit Position 31 0

Field Name Update

Table 178 Queue_Updaten Registers (for Queue Updates 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

Queue_Update1 Same as Queue_Update0. 0xBCn04674

Queue_Update2 Same as Queue_Update0. 0xBCn04678

Queue_Update3 Same as Queue_Update0. 0xBCn0467C

Purpose Used to clear a bit of the Queue_Status registers.

Address 0xBCn04680

Access Write only

Bit Position 31 19 20 14 13 0

Field Name Rsvd EncodedQStatusNum QLength

Purpose Cycle counter used to schedule timed events.

Address 0xBCn04684

Access CPRC Read/Write

Bit Position 31 0

Field Name Event Timer
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 551
Cycle_Count_H Register (CP Miscellaneous Control Function)

Cycle_Count_L Register (CP Miscellaneous Control Function)

Queue_Ctl Register (Aggregated Queueing Function)

Purpose Most significant four bytes of the 64bit cycle counter, updated
whenever Cycle_Count_L is read.

Address 0xBCn04688

Access CPRC Read

Bit Position 63 32

Field Name Frozen Count

Reset Value 0

Purpose Least significant four bytes of the 64bit cycle counter.

Address 0xBCn0468C

Access CPRC Read

Bit Position 31 0

Field Name Count

Reset Value 0

Purpose Used to select queue aggregation level.

Address 0xBCn04690

Access Global Read/Write

Bit Position 31 2 1 0

Field Name Rsvd QueueAggrMode

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:2 Read as zero.
C5EC3EARCH-RM REV 04

552 APPENDIX A: C-5E NP REGISTERS
Event0 Register (CP Event and Interrupt Function)

QueueAggrMode 1:0 Queue Aggregation Mode — Selects queue aggregation
mode as detailed here:

Purpose Collects event bits relevant to datascope independent tasks.

Address 0xBCn046A0

Access CPRC Read, CPRC Write 1 bit to clear.

Bit Position 63 32

Field Name Datascope independent events

FIELD NAME BIT POSITION DESCRIPTION

WindDown 63 Wind Down — When unmasked, this global input is a request
to wind down all CP activity as soon as possible, and leave as
much predictable error recovery state around as possible.

GlobalError 62 CPRC Global Reference Error - when asserted, this bit means
a CPRC Write received an error on the Global Bus or a
non-existent memory error within the cluster.

PayloadError 61 Payload Error — Indicates an unrecoverable error occurred
during a request sent to the BMU or QMU. An error status code
is stored in the cp_mode_register, and also in the control block
that initiated the request. Table 147 on page 495 for further
description of causes of the error. Specifically, Error Codes A, C,
D, E, and F cause MCError to be set.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE MODE

00 Single CP queueing (x1) (1CP)

01 Cluster aggregation (x4) (4CPs clustered)

10 Full-chip aggregation (x16) (all 16CPs
clustered)

11 Reserved
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 553
QMUError 60 QMU Error — Indicates an unrecoverable error occurred
during a request sent to the QMU. An error status code is
stored in the cp_mode_register.

XPInterrupt 59 XP Interrupt Request —The XP issued an interrupt request to
this CP.

PayloadAlert 58 Payload Request Alert — A non-fatal bus error has occurred
while trying to send a request to the BMU or QMU. Refer to
Table 147 on page 495 for further description of causes of the
alert. Specifically, the five (5) Error Codes encoded 9 cause
PayloadAlert to be set.

DebugMatch 57 CPRC Debug Match — The CPRC data, or data address
matched the programmed match registers in the CPRC.

TLUError 56 TLU Error — Indicates that an unrecoverable error occurred
during a request sent to the TLU.

TxSDPError 55 TxSDP Error — Indicates that the SDP has encountered an
error during processing. An error status code is stored in the
sdp_mode register. This bit is the logical OR of the following
conditions which are represented as bits in the CP_MODE1
register:

SDP TxBit service request [21]
SDP TxByte service request [22]
TxSmallFIFO underflow (SFUF) [0]
TxLargeFIFO underflow (LFUF) [1]

as well as these two bits:
TxCtl0_Status [30] and TxCtl1_Status [30] error bit set (by
TxByte)

RxSDPError 54 RxSDP Error — Indicates that the SDP has encountered an
error during processing. An error status code is stored in the
sdp_mode register.This bit is the logical OR of the following
conditions which are represented as bits in the CP_MODE1
register:

SDP RxBit service request [25]
SDP RxSync service request [26]
SDP RxByte service request [27]
RxSmallFIFO overflow (SFOF) [2]
RxLargeFIFO overflow (LFOF) [3]

as well as these two bits:
RxCtl0_Status [30] and RxCtl1_Status [30] error bit set (by
RxByte)

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

554 APPENDIX A: C-5E NP REGISTERS
RxMsgFIFO 53 Ring Bus Receive Message Available — This bit indicates
the availability of a Ring Bus message in the receive FIFO, and
corresponds to RxMsgCtl.State [31].

TimerEvent 52 Event Timer Time-out — This bit indicates the event timer
counted down to 0.

AllCpInt 51 All CPs Interrupt Request — One CP has interrupted all other
CPs.

SonetOH 50 SONET Overhead Event — Masked OR of all bits in the SONET
Event register. This bit is level sensitive.

Reserved 49:48 Software controlled.

RxResp7-0 47:40 Ring Bus Receive Response Available — These eight bits
correspond to the available bit for the eight Ring Bus receive
response available bits. Bit 47 represents RxResp7Ctl.Avail, and
bit 40 represents RxRespCtl0.Ctl. The events are triggered on a
message basis, that is, one event for the beginning slot per
multi-slot message.

TxMsg3-0 39:36 Ring Bus Transmit Message Available — These four bits
correspond to the available bit for the four Ring Bus transmit
message control registers. Bit 39 represents TxMsg3Ctl.Avail,
and bit 36 represents TxMsg0Ctl.Avail.

WrCB 35:34 Write Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus write control blocks. Bit
35 corresponds to WrCB1Ctl.Avail, and bit 34 corresponds to
WrCB0Ctl.Avail.

RdCB 33:32 Read Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus read control blocks. Bit 33
corresponds to RdCB1Ctl.Avail, and bit 32 corresponds to
RdCB0Ctl.Avail.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 555
Event1 Register (CP Event and Interrupt Function)
Purpose Collects together event bits relevant to transmit and receive

datascopes.

Address 0xBCn046A4

Access CPRC Read, CPRC Write 1 bits to clear

Bit Position 31 0

Field Name Transmit and receive scope events

FIELD NAME BIT POSITION DESCRIPTION

QRdMbxAvail 31 Queue Read Mailbox Available — This bit indicates that
this CP’s read mailbox in the QMU went from busy to
available.

TxCB1_Avail 30 TxCB1 Available — Indicates that the available bit for
datascope 1 Payload bus transmit control block
TxCB1Ctl.Avail was set.

TxStatus1_Avail 29 TxStatus1 Available — Indicates that the TxSDP has set
the TxStatus1.Avail.

TxStatus1_L1 28 TxStatus1 Bit 1 — Indicates that the TxSDP has set the
TxStatus1 bit 1.

TxStatus1_L0 27 TxStatus1 Bit 0 — Indicates that the TxSDP has set the
TxStatus1 bit 0.

QRdMbxBusy 26 Queue Read Mailbox Busy — This bit indicates that this
CP’s read mailbox in the QMU went from available to busy.

TxCB0_Avail 25 TxCB0 Available — Indicates that the available bit for
datascope 0 payload bus transmit control block
TxCB0Ctl.Avail was set.

TxStatus0_Avail 24 TxStatus0 Available — Indicates that the TxSDP has set
the TxStatus0.Avail.

TxStatus0_L1 23 TxStatus0 Bit 1 — Indicates that the TxSDP has set the
TxStatus0 bit 1.

TxStatus0_L0 22 TxStatus0 Bit 0 — Indicates that the TxSDP has set the
TxStatus0 bit 0.

QueueStatus 21 Queue Status — This bit corresponds to the logical OR of
all the bits in the four Queue_Status registers. The bit is level
sensitive.
C5EC3EARCH-RM REV 04

556 APPENDIX A: C-5E NP REGISTERS
SoftEvent2 [4:0] 20:16 Software Events 2 [4:0] — These five bits correspond to
events that are set explicitly by software.

QWrMbxAvail 15 Queue Write Mailbox Available — This bit indicates that
this CP’s write mailbox in the QMU went from busy to
available.

RxCB1_Avail 14 RxCB1 Available — Indicates that the available bit for
datascope 1 payload bus receive control block
RxCB1Ctl.Avail was set.

RxStatus1_Avail 13 RxStatus1 Available — Indicates that the RxSDP has set
the RxStatus1.Avail.

RxStatus1_L1 12 RxStatus1 Bit 1 — Indicates that the RxSDP has set the
RxStatus1 bit 1.

RxStatus1_L0 11 RxStatus1 Bit 0 — Indicates that the RxSDP has set the
RxStatus1 bit 0.

QWrMbxBusy 10 Queue Write Mailbox Busy — This bit indicates that this
CP’s write mailbox in the QMU went from available to busy.

RxCB0_Avail 9 RxCB0 Available — Indicates that the available bit for
datascope 0 payload bus receive control block
RxCB0Ctl.Avail was set.

RxStatus0_Avail 8 RxStatus0 Available — Indicates that the RxSDP has set
the RxStatus0.Avail.

RxStatus0_L1 7 RxStatus0 Bit 1 — Indicates that the RxSDP has set the
RxStatus0 bit 1.

RxStatus0_L0 6 RxStatus0 Bit 0 — Indicates that the RxSDP has set the
RxStatus0 bit 0.

Reserved 5 Software controlled.

SoftEvent3 [5:0] 4:0 Software Events 3 [5:0] — These six bits correspond to
events that are set explicitly by software. Bit 5 corresponds
to software_event3_5.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 557
Event_Mask0 Register (CP Event and Interrupt Function)

Event_Access Register (CP Event and Interrupt Function)

The Read Format is:

Purpose Provides mask that selects bits in the Event0 register for event access. A
1 enables, a 0 disables interupts for the corresponding bit in the Event0
register. See Table 179 on page 557 for similar register.

Address 0xBCn046A8

Access CPRC Read, CPRC Write

Bit Position 31 0

Field Name Event Mask Bits [63:32]

Table 179 Event_Mask1 Register (for Mask1)

REGISTER NAME PURPOSE ADDRESS

Event_Mask1 Same as Event_Mask0, except it masks events [31:0] 0xBCn046AC

Purpose Provides access to next high bit (1) of Event register pair (Event0 and
Event1) that is set in Event_Mask register pair (Event_Mask0 and
Event_Mask1) and also provides event summaries.

Note: The fields for this register change when performing a Read as
opposed to performing a Write.

Address 0xBCn046B0

Access CPRC Read, CPRC Write to set/clear Event register bit.

Bit Position 31 30 16 15 14 8 7 2 1 0

Field Name All Rsvd None Rsvd EventNumber Rsvd

Reset Value x raz x raz x raz

FIELD NAME BIT POSITION DESCRIPTION

All 31 All — Provides logical-AND of EVENT register bits that are
active in the mask.

Reserved 30:16 Read as zero.
C5EC3EARCH-RM REV 04

558 APPENDIX A: C-5E NP REGISTERS
The Write Format is:

None 15 None — Provides logical-NOR of EVENT register bits that are
active in the mask.

Reserved 14:8 Read as zero.

EventNumber 7:2 Event Number — Denotes the highest number selected
event.

Reserved 1:0 Read as zero.

Bit Position 31 24 23 18 17 8 7 2 1 0

Field Name Rsvd SetBit Rsvd ClearBit Rsvd

Reset Value raz x raz x raz

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:24 Read as zero.

SetBit 23:18 Set Bit — Sets an individual bit in the EVENT_MASKn
register.

Reserved 17:8 Read as zero.

ClearBit 7:2 Clear Bit — Clears an individual bit in the EVENT_MASKn
register.

Reserved 1:0 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 559
Mask_Access Register (CP Event and Interrupt Function)

Interrupt_Mask0 Register (CP Event and Interrupt Function)

Purpose Provides decoder to access bits in Event_Mask register pair
(Event_Mask0 and Event_Mask1)one at a time.

Address 0xBCn046B4

Access CPRC Write

Bit Position 31 24 23 18 17 8 7 2 1 0

Field Name Rsvd SetBit Rsvd ClearBit Rsvd

Reset Value raz x raz x raz

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:24 Read as zero.

SetBit 23:18 Set Bit — Sets an individual bit in the EVENT_MASKn
register.

Reserved 17:8 Read as zero.

ClearBit 7:2 Clear Bit — Clears an individual bit in the EVENT_MASKn
register.

Reserved 1:0 Read as zero.

Purpose Provides mask that select bits in the Event register pair (Event0 and
Event1) for interrupt reporting events [63:48] for IRQ0 and events [47:32]
for IRQ1. See Table 180 on page 560 for similar register.

Address 0xBCn046B8

Access CPRC Read/ Write

Bit Position 31 16 15 0

Field Name Interrupt Mask Bits [63:48] OR IRQ0 Interrupt Mask Bits [47:32] OR IRQ1
C5EC3EARCH-RM REV 04

560 APPENDIX A: C-5E NP REGISTERS
SONET_Event Register (CP Event and Interrupt Function)

Table 180 Interrupt_Mask1 Register (for Mask Events [31:16] and [15:0])

REGISTER NAME PURPOSE ADDRESS

Interrupt_Mask1 Same as Interrupt_Mask0, except it masks events [31:16] for
IRQ2 and events [15:0] for IRQ3.

0xBCn046BC

Purpose Collects together SONET/SDH event bits from the rxSONET and txSONET
blocks in the SDP.

For all the _DELTA fields only, a 1 indicates a change in that bit’s state
since it was last cleared. _DELTA bits require reading the corresponding
SDP_Mode2 register bits [31:22]. For the current values in the
SONET/SDH receive overhead, see registers starting at Rx_SONETOH0 to
Rx_SONETOH31 in Appendix C. All of the bits in the SONET_Event
register can cause an interrupt to be generated on the CPRC. To enable
these interrupts, unmask the corresponding bit in the SONET_Mask
register and enable the SonetOH bit [50] in the Event_Mask0 register.

Refer to Table 181 on page 568 for CP configurations for monitoring in
an aggregated application.

Address 0xBCn046C0

Access CPRC Read, CRC Write 1 bit to clear.

Bit Position 31 0

Field Name SONET_EVENT

FIELD NAME BIT POSITION DESCRIPTION

LOS_DELTA 31 Loss of Signal State Changed — Loss of Signal State
Changed: LOS_DELTA indicates a change has occurred in the
LOS state (either ON or OFF). This bit is latched and remains
set until cleared by software. Write 1 to clear. LOS is
determined through monitoring of edges detected on the
line signal. See LOS in SDP_Mode2 for the current state and
detailed definition of SONET/SDH LOS.
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 561
LOF_DELTA* 30 Loss of Framing State Changed — LOF_DELTA indicates a
change has occurred in the LOF state. This bit is latched and
remains set until cleared by software. Write 1 to clear. LOF is
determined through monitoring of the A1 and A2 bytes
(row, column, sts) (1,1,1) through OC3c(1,2,3)
OC12/c(1,2,12). See LOF in SDP_Mode2 for the current state
and definition of SONET/SDH LOF.

AIS_L_DELTA 29 Line Alarm Indication Signal State Changed —
AIS_L_DELTA indicates a change has occurred in the AIS_L
state since the last time this bit was cleared. This bit is
latched and remains set until cleared by software. Write 1 to
clear. AIS_L is determined by information in the K2 byte
(5,3,1). See AIS_L in SDP_Mode2 for the current state and
definition of SONET/SDH AIS_L.

REI_L/Z2_DELTA 28 Line Remote Error Indicator —

• For OC3c: REI_L errors occurred since the last time this bit
was cleared by software. REI_L errors are observed in the
M1 line overhead byte (9,2,3). Up to 24 (OC3c) or 96
(OC12/c) far end errors can be detected via this byte. This
bit is latched and remains set until cleared by software
after an error occurs. Write 1 to clear.

• For OC12/c - third CP of cluster, REI-L (STS-3) Third CP of
cluster: REI_L errors occurred since the last time this bit
was cleared by software. REI_L errors are observed in the
M1 line overhead byte (9,2,3) on the third CP in the
cluster. Up to 96 far end errors can be detected via this
byte. This bit is latched and remains set until cleared by
software after an error occurs. Write 1 to clear.

Z2_Delta —
For OC12/c first, second or fourth CP of cluster, Z2_Delta Z2
value changed: Z2 STS 1,2 or 4 has Changed: The indicated
Z2 growth byte row 9, column 2, STS 1,2,4 value has
changed. STS 9 is available on the first CP in the cluster and
the remaining STS follow consecutively on the remaining
CPs. Located in the Z2 growth byte, this bit indicates that
the value of Z2 has changed since the last time this bit was
cleared. This bit is latched and remains set until cleared by
software. Write 1 to clear.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

562 APPENDIX A: C-5E NP REGISTERS
RDI_L_DELTA 27 Line Remote Defect Indicator State Changed —
RDI_L_DELTA indicates a change has occurred in the RDI_L
state since the last time this bit was cleared. RDI_L is
determined by information in the K2 byte (5,3,1). This bit is
latched and remains set until cleared by software. Write 1 to
clear. See RDI_L in SDP_Mode2 for the current state and
definition of RDI_L.

LOP_P_DELTA 26 Path Loss Of Pointer State Changed — LOP_P_DELTA
indicates a change has occurred in the LOP_P state since the
last time this bit was cleared. This bit is latched and remains
set until cleared by software. Write 1 to clear. LOP_P is
determined through information in the H1, H2 and H3 bytes
(4,1,1) through (4,3,3) OC3c (4,3,12) OC12/c. See LOP_P in
SDP_Mode2 for the current state and definition of LOP_P.

AIS_P_DELTA 25 Path Alarm Indication Signal State Changed —
AIS_P_DELTA indicates a change has occurred in the AIS_P
state since the last time this bit was cleared. This bit is
latched and remains set until cleared by software. Write 1 to
clear. AIS_P is determined through the H1, H2 and H3 bytes
(4,1,1) through OC3c (4,3,3) OC12/c (4,3,12). See AIS_P in
SDP_Mode2 for the current state and definition of AIS_P.

REI_P 24 Path Remote Error Indicator — REI_P errors occurred
since the last time this bit was cleared by software. REI_P
errors are observed in the G1 path overhead byte of the SPE
(Synchronous Payload Envelope). For OC12, there are 4 G1
bytes located in the SPE. This bit is latched and remains set
until cleared by software after an error occurs.

ERDI_P_DELTA 23 Path Extended Remote Defect Indicator State Changed
— ERDI_P_DELTA indicates a change has occurred in the
ERDI_P state since the last time this bit was cleared. This bit
is latched and remains set until cleared by software. Write 1
to clear. See RDI_P in SDP_Mode2 for the current state and
definition of RDI_P.

LCD_P_DELTA 22 Loss of Cell (or Packet) Delineation State Changed —
LCD_P_DELTA indicates a change has occurred in the LCD_P
state since the last time this bit was cleared. This bit is
latched and remains set until cleared by software. Write 1 to
clear. See LCD_P in SDP_Mode2 for the current state and
definition of LCD_P.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 563
APS_ERROR 21 APS Inconsistency Error —Automatic Protection
Switching Inconsistency Error: This bit indicates that in the
previous 12 frames, there were no three consecutive frames
that had the same value for K1 or K2. This bit is latched and
remains set until cleared by software. Write 1 to clear.

B1_ERROR/FRAME
CNT_REACHED

20 If SDP_Mode4 FrameMode bit is set to 0, this field is defined
as B1_ERROR. If the FrameMode bit is set to 1, this field is
defined as FRAMECNT_REACHED.
B1 Section Parity Error —The B1 byte is located in the B1
byte (2,1,1). This bit indicates that 1 or more B1 parity errors
were detected on the incoming frame. See the
Rx_SONETOH register 0xbcn04503 for the total number of
errors (0-8) in the last frame.
Frame Count Reached —The number of frames set in the
SONET APS FrameCnt field in SDP_Mode4 have completed.
Note, that this interrupt could be used to perform some user
specific overhead monitoring every FrameCnt frames.
This bit is latched and remains set until cleared by software.
Write 1 to clear.

B2_ERROR/
B2_ACCUM_FRAM
ECNT

19 If SDP_Mode4 FrameMode bit is set to 0, this field is defined
as B2_ERROR. If the FrameMode bit is set to 1, this field is
defined as B2_ACCUM_FRAMECNT.
B2 Line Parity Error — B2 is located in (1,5,1) through
(1,5,3) for OC3c and (1,5,12) for OC12/c B2 bytes. This bit
indicates that 1 or more B2 parity errors were detected in
the incoming frame. For OC3c there are 3 B2 bytes and for
OC12/c there are 12 B2 bytes. See the Rx_SONETOH
registers for the total number of errors (0-96) for OC12/c or
(0-24) for OC3c.
B2 Accumulated Errors in Last Frame Count Interval —
The number of frames set in the SONET/SDH APS FrameCnt
field in SDP_Mode4 have completed and B2 errors have
been observed in the last FrameCnt frames. See the
associated RxSONET_OH accumulated B2 counts.
Note: This bit is designed primarily for SONET APS SD/SF Bit
Error Rate determination.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

564 APPENDIX A: C-5E NP REGISTERS
Z2_1_DELTA 18 Z2-1 Value Changed —

• For OC3c, Z2 STS 2 Changed: The indicated Z2 growth
byte row 9, column 2, STS 2 has changed. Located in the
Z2 growth byte, this bit indicates that the value of Z2 has
changed since the last time this bit was cleared. This bit
is latched and remains set until cleared by software.
Write 1 to clear.

• For OC12/c, Z2 STS 9,10,11 or 12 has Changed: The
indicated Z2 growth byte row 9, column 2, STS 9,10,11,12
value has changed. STS 9 is available on the first CP in
the cluster and the remaining STS follow consecutively
on the remaining CPs. Located in the Z2 growth byte,
this bit indicates that the value of Z2 has changed since
the last time this bit was cleared. This bit is latched and
will remain set until cleared by software. Write 1 to clear.

Z2_0_DELTA 17 Z2-0 Value Changed —

• For OC3c, Z2 STS 1 Changed: The Z2 growth byte row 9,
column 2, STS 1 has changed. Located in the Z2 growth
byte, this bit indicates that the value of Z2 has changed
since the last time this bit was cleared. This bit is latched
and remains set until cleared by software. Write 1 to
clear.

• For OC12c, Z2 STS 5,6,7,8 Changed: The Z2 growth byte
row 9, column 2, STS 5,6,7,8 value has changed. STS 5 is
available on the first CP in the cluster and the remaining
STS follow consecutively on the remaining CPs. Located
in the Z2 growth byte, this bit indicates that the value of
Z2 has changed since the last time this bit was cleared.
This bit is latched and remains set until cleared by
software. Write 1 to clear.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 565
Z1_2_DELTA 16 Z1-1 Value Changed —

• For OC3c, Z1 STS 2 Changed: The Z1 growth byte row 9,
column 1, STS 2 has changed. Located in the Z1 growth
byte, this bit indicates that the value of Z2 has changed
since the last time this bit was cleared. This bit is latched
and remains set until cleared by software. Write 1 to
clear.

• For OC12c, Z1 STS 9,10,11,12 Changed: The Z1 growth
byte row 9, column 1, STS 9,10,11,12 value has changed.
STS 9 is available on the first CP in the cluster and the
remaining STS follow consecutively on the remaining
CPs. Located in the Z2 growth byte, this bit indicates that
the value of Z1 has changed since the last time this bit
was cleared. This bit is latched and remains set until
cleared by software. Write 1 to clear.

Z1_1_DELTA 15 Z1-0 Value Changed —

• For OC3c, Z1 STS 1 Changed: The Z1 growth byte row 9,
column 1, STS 1 has changed. Located in the Z1 growth
byte, this bit indicates that the value of Z2 has changed
since the last time this bit was cleared. This bit is latched
and remains set until cleared by software. Write 1 to
clear.

• For OC12 c, Z1 STS 5,6,7,8 Changed: The Z1 growth byte
row 9, column 1, STS 5,6,7,8 value has changed. STS 5 is
available on the first CP in the cluster and the remaining
STS follow consecutively on the remaining CPs. Located
in the Z2 growth byte, this bit indicates that the value of
Z1 has changed since the last time this bit was cleared.
This bit is latched and remains set until cleared by
software. Write 1 to clear.

S1_DELTA 14 S1 Value Changed — S1 row 9, column 1 STS 1, value has
changed. This bit indicates that the value of S1 has changed
since the last time this bit was cleared. This bit is latched
and remains set until cleared by software. Write 1 to clear.

APS_DELTA 13 APS Value Changed — The values of K1 (5,2,1) or K2 (5,3,1)
bits have changed to a new value and remained consistent
for 3 frames in a row. Note: If the value of K1 or K2 does not
remain consistent for 3 frames in a row after changing to a
new value, this bit is not set. The update to the K1
RxSONETOH registeris only made if the value remains
consistent.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

566 APPENDIX A: C-5E NP REGISTERS
J0_DELTA 12 J0 Value Changed — The value of J0 (1,3,1) has changed
since the last time this bit was cleared. This bit is latched
and remains set until cleared by software.

B3_ERROR/BIP_AC
CUM_FRAMECNT

11 If SDP_Mode4 FrameMode bit is set to 0, this field is defined
as B3_ERROR. If the FrameMode bit is set to 1, this field is
defined as BIP_ACCUM_FRAMECNT.
B3 Path Parity Error — This bit indicates that 1 or more B3
parity errors were detected in the incoming frame. For
OC3c/OC12c there is 1 B3 bytes and for OC12 there are 4 B3
bytes. See the Rx_SONETOH registers for the total number
of errors detected in the last frame (0-8) for OC3c/OC12c or
(32) for OC12. This bit is latched and remains set until
cleared by software.
BIP Accumulated Errors in Last Frame Count Interval —
The number of frames set in the SONET/SDH APS FrameCnt
field in SDP_Mode4 have gone by and B1, B2, B3, REI-L or
REI-P errors have been observed in the last FrameCnt
frames. See the associated RxSONET_OH accumulated B1,
B2, B3, REI-L and REI-P counts. Refer to Table 181 on
page 568 that maps for an aggregated application, which
CPs should monitor the indicated accumulated parity count.

PTR_JUST_EVENT 10 Pointer Justification Event — The value of the pointer
(evaluating H1, H2, H3) has incremented or decremented
(implementing the 8 of 10 rule). This bit is latched and
remains set until cleared by software. Write 1 to clear.

NDF 9 New Data Flag in Pointer — If the most significant nibble
of H1 is set to 9, a new data flag indication has been
received. Under normal opeartion this nibble is set to 6.
This bit is latched and remains set until cleared by software.
Write 1 to clear.

C2_DELTA 8 Path Payload Label Mismatch or Unequipped — When
the value of C2 received does not match that written to the
SDP_Mode2 Sonet_C2_Exp[15:8] value for 5 consecutive
frames this bit is set. This bit is set if a transition from the
states of matched, mismatched or unequipped occurs. This
bit is latched and remains set until cleared by software.
Write 1 to clear.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 567
J1_AVAIL 7 Receive J1 Available — The value of J1 indexed by the
SDP_Mode2 SONET_J1_Idx[5:0] value (0-63) has been
written to the rxSONETOH registers since the last time this
bit was cleared. This bit is latched and remains set until
cleared by software. J1 could be monitored as slowly as
once every 64 frames. To do this, set the SONET_J1_Idx[5:0]
value to zero after every J1_Available SONET event.

Z5_DELTA 6 Z5 Value Changed — The value of the path overhead
growth byte Z5 has changed since the last time this event
was cleared. This bit is latched and remains set until cleared
by software. Write 1 to clear.

Z4_DELTA 5 Z4 Value Changed — The value of the path overhead
growth byte Z4 has changed since the last time this event
was cleared. This bit is latched and remains set until cleared
by software. Write 1 to clear.

Z3_DELTA 4 Z3 Value Changed — The value of the path overhead
growth byte Z3 has changed since the last time this event
was cleared. This bit is latched and remains set until cleared
by software. Write 1 to clear.

H4_DELTA 3 H4 Value Changed — The value of the H4 byte has
changed since the last time this event was cleared. This bit
is latched and remains set until cleared by software. Write 1
to clear.

TX_OH_COMPLETE 2 Transmit Overhead Complete — The last CS1 byte ((9,3,3)
OC3c or (9,3,12) OC12c) has been transmiited for the current
frame by the txSONET block. Software can use this as an
indicator for when to write new transmit overhead data to
the transmit SONET/SDH registers. Software has 37 * the
number of STS (3 or 12) byte times to update transmit
SONET/SDH overhead registers before the first byte of
transport overhead is read by the TxSONET block.

RX_POH_AVAIL 1 Receive Path Overhead Available — The last Z5 byte or
fixed stuff byte (OC12c) has been written to the RxSONET
registers. Software can use this as an indicator for when to
read the rxSONET registers for the current frame. Software
has 90 * the number of STS (3 or 12) byte times to read the
RxSONET overhead registers before the path overhead
starts to be overwritten by the RxSONET block.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

568 APPENDIX A: C-5E NP REGISTERS
Table 181 on page 568 indicates for an aggregated application, which CPs should monitor
the indicated accumulated parity count.

Invalid results may be observed if not used in this configuration.

RX_TOH_AVAIL 0 Receive Transport Overhead Available — The last CS1
byte has been written to the rxSONET registers. Software
can use this as an indicator for when to read the rxSONET
transport overhead registers for the current frame. Software
has 87 * the number of STS (3 or 12) byte times to read the
RxSONET overhead registers before the path overhead
starts to be overwritten by theRxSONET block.

* The LOS indication requires the transmit logic enabled and the SONET/SDH clock set to the correct
frequency.

Table 181 CP Configurations to Monitor Accumulated Parity Counts in an Aggregated Application

BIP CPn CPn+1 CPn+2 CPn+3

B1 X

B2 X

B3 OC12c
OC12nc

OC12nc OC12nc OC12nc

REI_L X

REI_P OC12c
OC12nc

OC12nc OC12nc OC12nc

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 569
SONET_Mask Register (CP Event and Interrupt Function)

RdCB0_BTag_Alloc (CP Rd Control Block0 Fixed Function)

Purpose Provides mask that selects bits in the SONET_Event register for event
access. See bit field definitions in SONET_Event register.

When SONET_Event register logical AND SONET_Mask register results in
any bit=1, then the CP Event0 register SONETOH Event field bit [50]=1.

Address 0xBCn046C4

Access CPRC Read/ Write

Bit Position 31 0

Field Name SONET_MASK

Purpose Launches a 32 BTag allocate command with a single store. See Table 182
on page 569 for similar register.

Address 0xBCn04700

Access CPRC Write Only

Bit Position 14 10 9 0

Field Name PoolNum LineAddr

FIELD NAME BIT POSITION DESCRIPTION

PoolNum 14:10 Pool Number — Pool number from which to allocate BTags.

LineAddr 9:0 Line Address — Block address in DMEM for allocated BTags.

Table 182 RdCB1_BTag_Alloc Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

RdCB1_BTag_Alloc Same as RdCB0_BTag_Alloc, except for control block1. 0xBCn04710
C5EC3EARCH-RM REV 04

570 APPENDIX A: C-5E NP REGISTERS
RdCB0_Dequeue (CP Rd Control Block0 Fixed Function)
Purpose Launches a QMU dequeue command with a single store. Waits for QMU

read mailbox to be ready before launching control block transfer. See
Table 183 on page 570 for similar register.

Address 0xBCn04704

Access CPRC Write Only

Bit Position 28 24 23 21 20 12 11 10 9 0

Field Name Mailbox# Rsvd QueueNum Rsvd LineAddr

FIELD NAME BIT POSITION DESCRIPTION

Mailbox# 28:24 Mailbox Number — QMU mailbox number, generally the
CP_ID.

Reserved 23:21 Read as zero.

QueueNum 20:12 Queue Number — Queue number from which to dequeue.

Reserved 11:10 Read as zero.

LineAddr 9:0 Line Address — Block address in DMEM for descriptor data.

Table 183 RdCB1_Dequeue Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

RdCB1_Dequeue Same as RdCB0_Dequeue, except for control block1. 0xBCn04714
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 571
WrCB0_BTag_Deallocate (CP Wr Control Block0 Fixed Function)

WrCB0_MUC_Allocate (CP Wr Control Block0 Fixed Function)

Purpose Launches a BTag deallocate command with a single store. See Table 184
on page 571 for similar register.

Address 0xBCn04720

Access CPRC Write Only

Bit Position 14 10 9 0

Field Name PoolNum LineAddr

FIELD NAME BIT POSITION DESCRIPTION

PoolNum 14:10 Pool Number — Pool number from which to deallocate BTags.

LineAddr 9:0 Line Address — Block address in DMEM to allocated.

Table 184 WrCB1_BTag_Deallocate Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_BTag_Deall
ocate

Same as WrCB0_BTag_Deallocate, except for control block1. 0xBCn04740

Purpose Launches a Multi-Use Counter allocate command with a single store.
See Table 185 on page 572 for similar register.

Address 0xBCn04724

Access CPRC Write Only

Bit Position 31 16 15 14 10 9 0

Field Name BTag Rsvd PoolNum LineAddr

FIELD NAME BIT POSITION DESCRIPTION

BTag 31:16 BTag — BTag to associate with allocated counter.

Reserved 15 Read as zero.

PoolNum 14:10 Pool Number — Pool number from which to deallocate BTags.

LineAddr 9:0 Line Address — Block address in DMEM for allocated BTags.
C5EC3EARCH-RM REV 04

572 APPENDIX A: C-5E NP REGISTERS
WrCB0_MUC_Decrement (CP Wr Control Block0 Fixed Function)

Table 185 WrCB1_MUC_Allocate Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_MUC_Alloc
ate

Same as WrCB0_MUC_Allocate, except for control block1. 0xBCn04744

Purpose Launches a Multi-Use Counter decrement command with a single store.
See Table 186 on page 572 for similar register.

Address 0xBCn04728

Access CPRC Write Only

Bit Position 31 16 15 14 10 9 0

Field Name BTag Rsvd PoolNum Rsvd

FIELD NAME BIT POSITION DESCRIPTION

BTag 31:16 BTag — BTag associated with counter to decrement.

Reserved 15 Read as zero.

PoolNum 14:10 Pool Number — Pool number associated with counter to
decrement.

Reserved 9:0 Read as zero.

Table 186 WrCB1_MUC_Decrement Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_MUC_Decr
ement

Same as WrCB0_MUC_Decrement, except for control block1. 0xBCn04748
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 573
WrCB0_Uni_Enq (CP Wr Control Block0 Fixed Function)
Purpose Launches a QMU Unicast Enqueue command with a single store. Waits

for QMU write mailbox to be ready before launching control block
transfer. See Table 187 on page 573 for similar register.

Address 0xBCn04730

Access CPRC Write Only

Bit Position 28 24 23 21 20 12 11 10 9 0

Field Name Mailbox# Rsvd QueueNum Rsvd LinaAddr

FIELD NAME BIT POSITION DESCRIPTION

Mailbox# 28:24 Mailbox Number — QMU mailbox number, generally the
CP_ID.

Reserved 23:21 Read as zero.

QueueNum 20:12 Queue Number — Queue to enqueue.

Reserved 11:10 Read as zero.

LineAddr 9:0 Line Address — Block address in DMEM for descriptor data.

Table 187 WrCB1_Uni_Enq Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_Uni_Enq Same as WrCB0_Uni_Enq, except for control block1. 0xBCn04750
C5EC3EARCH-RM REV 04

574 APPENDIX A: C-5E NP REGISTERS
WrCB0_Multi_Enq (CP Wr Control Block0 Fixed Function)
Purpose Launches a QMU Multicast Enqueue command with a single store. Waits

for QMU write mailbox to be ready before launching control block
transfer. See Table 188 on page 574 for similar register.

Address 0xBCn04734

Access CPRC Write Only

Bit Position 28 24 23 19 18 16 15 10 9 0

Field Name Mailbox# Rsvd QueueLvl Rsvd LinaAddr

FIELD NAME BIT POSITION DESCRIPTION

Mailbox# 28:24 Mailbox Number — QMU mailbox number, generally the
CP_ID.

Reserved 23:19 Read as zero.

QueueLvl 18:16 Queue Level — Queue level to map through multicast
enqueue table.

Reserved 15:10 Read as zero.

LineAddr 9:0 Line Address — Block address in DMEM for descriptor data.

Table 188 WrCB1_Multi_Enq Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_Multi_Enq Same as WrCB0_Multi_Enq, except for control block1. 0xBCn04754
C5EC3EARCH-RM REV 04

Channel Processor (CP) Configuration Registers 575
WrCB0_Spec_Uni_Enq (CP Wr Control Block0 Fixed Function)
Purpose Launches a Speculative QMU Unicast Enqueue command with a single

store. Waits for QMU write mailbox to be ready before launching control
block transfer. See Table 189 on page 575 for similar register.

Address 0xBCn04738

Access CPRC Write Only

Bit Position 28 24 23 21 20 12 11 10 9 0

Field Name Mailbo# Rsvd QueueNum Rsvd LinaAddr

FIELD NAME BIT POSITION DESCRIPTION

Mailbox# 28:24 Mailbox Number — QMU mailbox number, generally the
CP_ID.

Reserved 23:21 Read as zero.

QueueNum 20:12 Queue Number — Queue to enqueue.

Reserved 11:10 Read as zero.

LineAddr 9:0 Line Address — Block address in DMEM for descriptor data.

Table 189 WrCB1_Spec_Uni_Enq Register (for Control Block1)

REGISTER NAME PURPOSE ADDRESS

WrCB1_Spec_Uni_
_Enq

Same as WrCB0_SPec_Uni_Enq, except for control block1. 0xBCn04758
C5EC3EARCH-RM REV 04

576 APPENDIX A: C-5E NP REGISTERS
Executive Processor (XP)
Configuration Registers

Configuration Space in the XP is an area that contains a number of registers. The XPRC
uses these registers to communicate with the host and the bus controllers (Payload Bus
and Global Bus). The XP’s registers can also be accessed by other components of the C-5e
NP (all CPs).

XPSlot 24 Configuration
Registers

The following is a list of each XP Slot 24 register along with its address, function, and
reference to its detailed parameters. The detailed parameters provide, purpose, field
name, bit position, and descriptions. Refer to Table 190 on page 576.

Table 190 XP Registers

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS

0xBD808000 PCI Device ID PCI Configuration See page 588

0xBD808002 PCI Vendor ID See page 589

0xBD808004 PCI Status See page 589

0xBD808006 PCI Command See page 591

0xBD808008 PCI Class Code See page 592

0xBD80800B PCI Revision ID See page 593

0xBD80800D PCI Header Type See page 594

0xBD80800E PCI Latency Timer See page 594

0xBD808010 PCI Inbound Memory Base
Address0

See page 595

0xBD808014 PCI Inbound Memory Base
Address1

See Table 193 on page
595.

0xBD808018 PCI Inbound Memory Base
Address2

See page 596

0xBD80801C PCI Inbound Memory Base
Address3

See Table 194 on page
596.

0xBD808020 PCI Inbound Memory Base
Address4

0xBD808024 PCI Inbound Memory Base
Address5

0xBD80802C PCI Subsystem ID (Read Only) See page 597

0xBD80802E PCI Subsystem Vendor ID (Read
Only)

See page 597
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 577
0xBD80803E PCI Interrupt Pin PCI Configuration
(continued)

See page 597

0xBD80803F PCI Interrupt Line See page 597

0xBD808040 PCI Inbound BAR0 Translation See page 598

0xBD808044 PCI Inbound BAR1 Translation See page 598

0xBD808048 PCI Auxiliary Control See page 599

0xBD80804C PCI Subsystem ID (Read/Write) See page 600

0xBD80804E PCI Subsystem Vendor ID
(Read/Write)

See page 600

0xBD808050 PCI Inbound Byte Swap Control See page 600

0xBD808054 PCI Inbound BAR2 Translation See page 601

0xBD808058 PCI Inbound BAR3 Translation See Table 195 on page
602.

0xBD80805C PCI Inbound BAR4 Translation

0xBD808060 PCI Inbound BAR5 Translation

0xBD808100 Serial Bus Configuration XP Miscellaneous
Control

See page 602

0xBD808104 Serial Bus Data See page 603

0xBD808108 XP to CP Interrupt Request See page 604

0xBD80810C Software Warm Reset Request See page 605

0xBD808200 Outbound PCI Base Address0 XP Configuration See page 606

0xBD808204 Outbound PCI Base Address1

0xBD808208 Outbound PCI Base Address2

0xBD80820C Outbound PCI Base Address3

0xBD808210 Outbound PCI Base Address4

0xBD808214 Outbound PCI Base Address5

0xBD808218 Outbound PCI Base Address6

0xBD80821C Outbound PCI Base Address7

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

578 APPENDIX A: C-5E NP REGISTERS
0xBD808220 Outbound BAR0 Translation XP Configuration
(continued)

See page 607

0xBD808224 Outbound BAR1 Translation

0xBD808228 Outbound BAR2 Translation

0xBD80822C Outbound BAR3 Translation

0xBD808230 Outbound BAR4 Translation

0xBD808234 Outbound BAR5 Translation

0xBD808238 Outbound BAR6 Translation

0xBD80823C Outbound BAR7 Translation

0xBD808240 DMA Transmit Channel0 PCI
Target

See page 608

0xBD808244 DMA Transmit Channel1 PCI
Target

See Table 198 on
page 609

0xBD808248 DMA Receive Channel0 PCI
Target

See page 609.

0xBD80824C DMA Receive Channel0 PCI
Target Count

See page 609

0xBD808250 DMA Receive Channel1 PCI
Target

See Table 199 on
page 609

0xBD808254 DMA Receive Channel1 PCI
Target Count

See Table 200 on
page 610

0xBD808258 XP Miscellaneous Control See page 611.

0xBD80825C XP Auxiliary Event See page 612

0xBD808260 Inbound PCI Mailbox0 See page 613

0xBD808264 Inbound PCI Mailbox1

0xBD808268 Inbound PCI Mailbox2

0xBD80826C Inbound PCI Mailbox3

0xBD808270 Inbound PCI Mailbox4

0xBD808274 Inbound PCI Mailbox5

0xBD808278 Inbound PCI Mailbox6

0xBD80827C Inbound PCI Mailbox7

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 579
0xBD808280 IMEM Overlay Target Address XP Configuration
(continued)

See page 614

0xBD808284 RxCB #25 Transfer Count See page 614

0xBD808288 XP Diagnostic See page 615

0xBD80828C PCI Outbound Byte Swap Control See page 616

0xBD808300 Debug Counter0 Start Value See page 617

0xBD808304 Debug Counter1 Start Value See Table 203 on
page 620

0xBD808308 Debug Counter2 Start Value

0xBD80830C Debug Counter3 Start Value

0xBD808340 Debug Counter0 Control See page 618

0xBD808344 Debug Counter1 Control See Table 203 on
page 620

0xBD808348 Debug Counter2 Control

0xBD80834C Debug Counter3 Control

0xBD808380 Debug Counter0 Current Value See page 620

0xBD808384 Debug Counter1 Current Value See Table 204 on
page 620

0xBD808388 Debug Counter2 Current Value

0xBD80838C Debug Counter3 Current Value

0xBD804080 RxCB0_Sys_Addr XP DMEM#24
Transfer RxControl
Block0
These registers are
used to set up a
DMA transaction
from the PCI bus to
SDRAM via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

 See “CP Registers” on
page 486

0xBD804084 RxCB0_Ctl

0xBD804088 RxCB0_DMA_Addr

0xBD80408C RxCB0_SDP_Addr

0xBD804090 RxCtl0_Status XP DMEM#24
Transfer RxControl
Block0 (continued)

See page 621

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

580 APPENDIX A: C-5E NP REGISTERS
0xBD804180 TxCB0_Sys_Addr XP DMEM#24
Transfer TxControl
Block0
These registers are
used to set up a
DMA transaction
from the SDRAM to
the PCI bus via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 486 and page 622

0xBD804184 TxCB0_Ctl

0xBD804188 TxCB0_DMA_Addr

0xBD80418C TxCB0_SDP_Addr

0xBD804190 TxCtl0_Status XP DMEM#24
Transfer TxControl
Block0 (continued)

See page 622

0xBD804280 RxCB1_Sys_Addr XP DMEM#24
Transfer RxControl
Block1
These registers are
used to set up a
DMA transaction
from the PCI bus to
SDRAM via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 486

0xBD804284 RxCB1_Ctl

0xBD804288 RxCB1_DMA_Addr

0xBD80428C RxCB1_SDP_Addr

0xBD804290 RxCtl1_Status XP DMEM#24
Transfer RxControl
Block1 (continued)

See Table 205 on
page 621

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 581
0xBD804380 TxCB1_Sys_Addr XP DMEM#24
Transfer TxControl
Block1
These registers are
used to set up a
DMA transaction
from the SDRAM to
the PCI bus via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 486 and Table 206
on page 622 0xBD804384 TxCB1_Ctl

0xBD804388 TxCB1_DMA_Addr

0xBD80438C TxCB1_SDP_Addr

0xBD804390 TxCB1_Status XP DMEM#24
Transfer TxControl
Block1 (continued)

See Table 207 on
page 623

0xBD804400 WrCB0_Sys_Addr XP DMEM#24
Transfer WrControl
Block0 (continued)
These registers are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 486

0xBD804404 WrCB0_Ctl

0xBD804408 WrCB0_DMA_Addr

0xBD804410 WrCB1_Sys_Addr XP DMEM#24
Transfer WrControl
Block1 (continued)
These registers are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 486

0xBD804414 WrCB1_Ctl

0xBD804418 WrCB1_DMA_Addr

0xBD804420 RdCB0_Sys_Addr XP DMEM#24
Transfer RdControl
Block0 (continued)

See “CP Registers” on
page 486

0xBD804424 RdCB0_Ctl

0xBD804428 RdCB0_DMA_Addr

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

582 APPENDIX A: C-5E NP REGISTERS
0xBD804430 RdCB1_Sys_Addr XP DMEM#24
Transfer RdControl
Block1 (continued)

See “CP Registers” on
page 486

0xBD804434 RdCB1_Ctl

0xBD804438 RdCB1_DMA_Addr

0xBD804440
to
0xBD8044E4

XP Ring Bus Control
Configuration Registers

These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804640 XP_Mode XP Mode
Configuration

See page 623

0xBD804658 Debug_Mode See page 625

0xBD804660 Queue_Status0 Queue Status
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804664 Queue_Status1

0xBD804668 Queue_Status2

0xBD80466C Queue_Status3

0xBD804670 Queue_Update0

0xBD804674 Queue_Update1

0xBD804678 Queue_Update2

0xBD80467C Queue_Update3

0xBD804684 Event_Timer Miscellaneous
Control
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804688 Cycle_Counter_H

0xBD80468C Cycle_Counter_L

0xBD8046A0 Event0 Event and Interrupt
Control

See page 627

0xBD8046A4 Event1 See page 629

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 583
0xBD8046A8 Event_Mask0 Event and Interrupt
Control
(continued)
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD8046AC Event_Mask1

0xBD8046B0 Event_Access

0xBD8046B4 Mask_Access

0xBD8046B8 Interrupt_Mask0

0xBD8046BC Interrupt_Mask1

0xBD804700 RdCB0_BTag_Alloc XP DMEM#24 Rd
Control Block0
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804704 RdCB0_Dequeue

0xBD804710 RdCB1_BTag_Alloc XP DMEM#24 Rd
Control Block1
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804714 RdCB1_Dequeue

0xBD804720 WrCB0_BTag_Dealloc XP DMEM#24 Wr
Control Block0
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804724 WrCB0_MUC_Alloc

0xBD804728 WrCB0_MUC_Decr

0xBD804730 WrCB0_Uni_Enq

0xBD804734 WrCB0_Multi_Enq

0xBD804738 WrCB0_Spec_Uni_Enq

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

584 APPENDIX A: C-5E NP REGISTERS
0xBD804740 WrCB1_BTag_Dealloc XP DMEM#24 Wr
Control Block1
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804744 WrCB1_MUC_Alloc

0xBD804748 WrCB1_MUC_Decr

0xBD804750 WrCB1_Uni_Enq

0xBD804754 WrCB1_Multi_Enq

0xBD804758 WrCB1_Spec_Uni_Enq

0xBD804880 RxCB0_Sys_Addr XP DMEM#25
Transfer RxControl
Block0 (continued)
Theses registers are
used to initialize
SDRAM. The fields
of these registers
are identical to
their counterparts
in the CP.

 See “CP Registers” on
page 486

0xBD804884 RxCB0_Ctl

0xBD804888 RxCB0_DMA_Addr

0xBD80488C RxCB0_SDP_Addr

0xBD804890 RxCtl0_Status XP DMEM#25
Transfer RxControl
Block0 (continued)

See page 631

0xBD804980 TxCB0_Sys_Addr XP DMEM#25
Transfer TxControl
Block0 (continued)
These registers are
used to set up a
DMA transaction
from the SDRAM to
the XP’s IMEM. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 486

0xBD804984 TxCB0_Ctl

0xBD804988 TxCB0_DMA_Addr

0xBD80498C TxCB0_SDP_Addr

0xBD804990 TxCtl0_Status XP DMEM#25
Transfer Control
Block0 (continued)

See page 632

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 585
0xBD804A80 RxCB1_Sys_Addr XP DMEM#25
Transfer Control
Block1 (continued)
Theses registers are
used to initialize
SDRAM. The fields
of these registers
are identical to
their counterparts
in the CP.

See “CP Registers” on
page 486

0xBD804284 RxCB1_Ctl

0xBD804A88 RxCB1_DMA_Addr

0xBD804A8C RxCB1_SDP_Addr

0xBD80A290 RxCB1_Status XP DMEM#25
Transfer Control
Block1 (continued)

See page 632

0xBD804B80 TxCB1_Sys_Addr XP DMEM#25
Transfer TxControl
Block1 (continued)
These registers are
used to set up a
DMA transaction
from the SDRAM to
the XP’s IMEM. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 486

0xBD804B84 TxCB1_Ctl

0xBD804B88 TxCB1_DMA_Addr XP DMEM#25
Transfer TxControl
Block1 (continued)
These registers are
used to set up a
DMA transaction
from the SDRAM to
the XP’s IMEM. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 486

0xBD804B8C TxCB1_SDP_Addr

0xBD804B90 TxCB1_Status XP DMEM#25
Transfer Control
Block1 (continued)

See page 632

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

586 APPENDIX A: C-5E NP REGISTERS
0xBD804C00 WrCB0_Sys_Addr XP DMEM#25
Transfer Control
Block0 (continued)
These registers are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 486

0xBD804C04 WrCB0_Ctl

0xBD804C08 WrCB0_DMA_Addr

0xBD804C10 WrCB1_Sys_Addr XP DMEM#25
Transfer Control
Block1 (continued)
These registers are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 486

0xBD804C14 WrCB1_Ctl

0xBD804C18 WrCB1_DMA_Addr

0xBD804C20 RdCB0_Sys_Addr XP DMEM#25
Transfer Control
Block0 (continued)

See “CP Registers” on
page 486

0xBD804C24 RdCB0_Ctl

0xBD804C28 RdCB0_DMA_Addr

0xBD804C30 RdCB1_Sys_Addr XP DMEM#25
Transfer Control
Block1 (continued)

See “CP Registers” on
page 486

0xBD804C34 RdCB1_Ctl

0xBD804C38 RdCB1_DMA_Addr

0xBD804F00 RdCB0_BTag_Alloc XP DMEM#25 Rd
Control Block0
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804F04 RdCB0_Dequeue

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 587
0xBD804F10 RdCB1_BTag_Alloc XP DMEM#25 Rd
Control Block1
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804F14 RdCB1_Dequeue

0xBD804F20 WrCB0_BTag_Dealloc XP DMEM#25 Wr
Control Block0
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804F24 WrCB0_MUC_Alloc

0xBD804F28 WrCB0_MUC_Decr

0xBD804F30 WrCB0_Uni_Enq

0xBD804F34 WrCB0_Multi_Enq

0xBD804F38 WrCB0_Spec_Uni_Enq

0xBD804F40 WrCB1_BTag_Dealloc XP DMEM#25 Wr
Control Block1
Fixed
These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 486

0xBD804F44 WrCB1_MUC_Alloc

0xBD804F48 WrCB1_MUC_Decr

0xBD804F50 WrCB1_Uni_Enq

0xBD804F54 WrCB1_Multi_Enq

0xBD804F58 WrCB1_Spec_Uni_Enq

Table 190 XP Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

588 APPENDIX A: C-5E NP REGISTERS
XP Detailed Descriptions The following is a detailed description of each of the XPSlot 24 registers and their
individual parameters. The detailed parameters provide: purpose, field name, bit positions
and descriptions.

PCI Device ID Register (XP PCI Configuration Function)
Purpose Uniquely Identifies the Device.

Address 0xBD808000

Reset Vaule Refer to Table 191 on page 588.

Access Global Read

Bit Position 15 0

Field Name Device

Reset Value 0x010

FIELD NAME BIT POSITION DESCRIPTION

Device ID 15:0 Device ID — Identifies the device.

Table 191 PCI Device ID (Reset Value)

NP REVISION

DEVICE ID (RESET
VALUE)
FOR 0XBD808000

REVISION ID
(RESET VALUE)
FOR 0XBD80800B

C-5 A0 0x1 0x10

C-5 A1 0x11

C-5 A2 0x12

C-5 B0 0x20

C-5 C0 0x30

C-5 D0 0x40

C-5e A0 0x2 0x10

C-5e A1 0x11

C-5e B0 0x20
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 589
PCI Vendor ID Register (XP PCI Configuration Function)

PCI Status Register (XP PCI Configuration Function)

C-3e A0 0x3 0x10

C-3e A1 0x11

C-3e B0 0x20

Purpose Uniquely Identifies the Device Vendor.

Address 0xBD808002

Access Global Read

Bit Position 15 0

Field Name Vendor

Reset Value 0x150E

FIELD NAME BIT POSITION DESCRIPTION

Vendor ID 15:0 Vendor ID — Identifies the vendor. This field is read-only.

Purpose Captures Status Information for PCI bus related events.

Address 0xBD808004

Access Global Read/Write, write 1 to clear

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Field Name DPE SSE RMA RTA STA DEVSEL DPE FBC UDF 66M NCP Rsvd

Reset Value 0 0 0 0 0 01 0 1 0 1 0 0000

FIELD NAME BIT POSITION DESCRIPTION

DPE 15 Detected Parity Error — This bit is set by the device whenever it
detects a parity error, even if parity error handling is disabled (as
controlled by bit 6 in the Command Register).

Table 191 PCI Device ID (Reset Value)

NP REVISION

DEVICE ID (RESET
VALUE)
FOR 0XBD808000

REVISION ID
(RESET VALUE)
FOR 0XBD80800B
C5EC3EARCH-RM REV 04

590 APPENDIX A: C-5E NP REGISTERS
SSE 14 Signaled System Error — This bit is set whenever the device
asserts SERR#.

RMA 13 Received Master Abort — This bit is set by the master whenever
its transaction is terminated with a Master Abort.

RTA 12 Received Target Abort — This bit is set by the master whenever
its transaction is terminated with a Target Abort.

STA 11 Signaled Target Abort — This bit is set by the target whenever it
terminates a transaction wit a Target Abort.

DEVSEL 10:9 DEVSEL Timing — These two read-only bits are hardwired to
“01” indicating the medium DEVSEL response time of this device.

DPE 8 Data Parity Error Detected — This bit is set when three
conditions are met: 1) this device asserted PERR# itself or
observed PERR# asserted; 2) this devices was acting as the bus
master for the operation in which the error occurred; 3) the Parity
Error Response bit (Command Register) is set.

FBC 7 Fast Back-to-Back Capable — This read-only bit is hardwired to
1 indicating that this device is capable of performing fast
back-to-back transactions.

UDF 6 UDF Supported — This read-only bit is hardwired to 0 indicating
that User Definable Features is not supported.

66M 5 66MHz Capable — This read-only bit is hardwired to 1 indicating
that this device is capable of 66MHz operation.

NCP 4 New Capabilities Pointer Support — This read-only bit is
hardwired to 0 indicating that there are no new capabilities
pointers supported in the configuration register space.

Reserved 3:0 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 591
PCI Command Register (XP PCI Configuration Function)
Purpose Provides control over the device’s ability to generate and respond to PCI

transactions.

Address 0xBD808006

Access Global Read/Write

Bit Position 15 10 9 8 7 6 5 4 3 2 1 0

Field Name Rsvd FB2B SERR WAIT PERR Rsvd MWI SPC MST MEM IO

Reset Value 000000 0 0 0 0 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 15:10 Read as zero.

FB2B 9 Fast Back-to-Back — When the bit is 0, the PCI Master will
generate no fast back-to-back transactions. When the bit is 1, the
PCI Master will generate fast back-to-back transactions
whenever possible.

SERR 8 System Error — When the bit is 0, the System Error indication is
masked off. When the bit is 1, all System Errors will be reported.

WAIT 7 Wait — This bit is used to control whether or not a device does
address/data stepping. This device never does address/data
stepping, therefore this bit is hardwired to 0 and is read-only.

PERR 6 Parity Error — This bit controls the device’s response to parity
errors. When the bit is set to 1, the device will take its normal
action when a parity error is detected. When the bit is 0, all parity
errors are ignored.

Reserved 5 Read as zero.

MWI 4 Memory Write and Invalidate — This is an enable bit for using
the Memory Write and Invalidate command. This device will
never generate a MWI command, therefore this bit is hardwired
to 0 and is read-only.

SPC 3 Special Cycles — This device always ignores special cycles,
therefore this bit is hardwired to 0 and is read-only.

MST 2 PCI Master — This bit controls the device’s ability to act as a
master on the PCI bus. When the bit is 0, it disables the device
from generating PCI accesses. When the bit is 1, it allows the
device to behave as a bus master.
C5EC3EARCH-RM REV 04

592 APPENDIX A: C-5E NP REGISTERS
PCI Class Code Register (XP PCI Configuration Function)

MEM 1 Memory Space — This bit controls the device’s response to
Memory Space accesses. When the bit is 0, it disables the device’s
response. When the bit is 1, it allows the device to respond to
Memory Space accesses

IO 0 Input/Output Mapping — This device requires no I/O spacing
mappings, therefore this bit is hardwired to 0 and is read-only.

Purpose Identifies the generic function of the device.

Address 0xBD808008

Reset Value 0xFF0000

Access Global Read

Bit Position 31 24 23 16 15 8

Field Name BCC SCC RLPI

Reset Value 0xFF 0x00 0x00

FIELD NAME BIT POSITION DESCRIPTION

BCC 31:24 Base Class Code — Hardwired to FFh indicating that the device
does not fit in any of the PCI pre-defined classes.

SCC 23:16 Sub-Class Code — Hardwired to 00h. This field has no real
meaning since the device has a base class code of FFh.

RLPI 15:8 Register-Level Programming Interface — Hardwired to 00h.
This field has no real meaning since the device has a base class
code of FFh

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 593
PCI Revision ID Register (XP PCI Configuration Function)
Purpose Provides a device specific revision identifier.

Address 0xBD80800B

Reset Value Refer to See Table 192 on page 593.

Access Global Read only

Bit Position 7 0

Field Name Revision

Reset Value 0x10

FIELD NAME BIT POSITION DESCRIPTION

Revision 7:0 Revision — Indicates the revision level of the device.

Table 192 PCI Revision ID (Reset Value)

NP REVISION

DEVICE ID
(RESET VALUE)
FOR 0XBD808000

REVISION ID
(RESET VALUE)
FOR 0XBD80800B

C-5 A0 0x1 0x10

C-5 A1 0x11

C-5 A2 0x12

C-5 B0 0x20

C-5 C0 0x30

C-5 D0 0x40

C-5e A0 0x2 0x10

C-5e A1 0x11

C-5e B0 0x20

C-3e A0 0x3 0x10

C-3e A1 0x11

C-3e B0 0x20
C5EC3EARCH-RM REV 04

594 APPENDIX A: C-5E NP REGISTERS
PCI Header Type Register (XP PCI Configuration Function)

PCI Latency Timer Register (XP PCI Configuration Function)

Purpose Identifies the PCI Configuration Register layout.

Address 0xBD80800D

Reset Value 0x00

Access Global Read

Purpose Limits the master’s tenure on the bus in the presence of other bus
access requests.

Address 0xBD80800E

Reset Value 0x00

Access Global Read/Write

Bit Position 7 3 2 0

Field Name LAT Rsvd

Reset Value 00000 000

FIELD NAME BIT POSITION DESCRIPTION

LAT 7:4 Latency Timer Value — The high order 5bits of an 8bit latency
timer counting the number of PCI clock cycles that the master has
tenure on the PCI bus.

Reserved 2:0 Read as zero.
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 595
PCI Inbound Memory Base Address0 Register (XP PCI Configuration Function)
Purpose Provides the Base Address for a 1MByte window into C-5e NP Address

Space. See Table 193 on page 595 for similar register.

Address 0xBD808010

Reset Value 0x0008

Access Global Read/Write

Bit Position 31 20 19 4 3 2 1 0

Field Name BA Rsvd PREF TYPE IO/M

Reset Value 0x000 0x0_000 1 00 0

FIELD NAME BIT POSITION DESCRIPTION

BA 31:20 Base Address — Provides the top 12bits of a 1MByte aligned
address used for decoding and to identify PCI bus transactions for
which this device is to act as a target.

Reserved 19:4 Read as zero.

PREF 3 Prefetchable — This read-only bit is hardwired to 1 indicating
that there are no side effects on reads. The device returns all bytes
on reads regardless of byte enables, and host bridges can merge
processor writes into this range without causing errors.

TYPE 2:1 Address Type — These read-only bits are hardwired to 00
indicating that the base address can be set to locate this window
anywhere in the 32bit PCI address space.

IO/M 0 I/O or Memory Indicator — This read-only bit is hardwired to 0
to indicate that this register is a memory space base address
register.

Table 193 PCI Inbound Memory Base Addressn Register (for Base Address1)

REGISTER NAME PURPOSE ADDRESS

PCI Inbound Memory Base
Address1

Same as PCI Inbound Memory Base Address0, but
for Base Address1.

0xBD808014
C5EC3EARCH-RM REV 04

596 APPENDIX A: C-5E NP REGISTERS
PCI Inbound Memory Base Address2 Register (XP PCI Configuration Function)
Purpose Provides the Base Address for a 4MByte window into C-5e NP Address

Space. See Table 194 on page 596 for similar registers.

Address 0xBD808018

Reset Value 0x0008

Access Global Read/Write

Bit Position 31 22 21 4 3 2 1 0

Field Name BA Rsvd PREF TYPE IO/M

Reset Value 0000_0000_00 00_0000_0000_0000_0000 1 00 0

FIELD NAME BIT POSITION DESCRIPTION

BA 31:22 Base Address — Provides the top 10bits of a 4MByte aligned
address used for decoding, and to identify PCI bus transactions
for which this device is to act as a target.

Reserved 21:4 Read as zero.

PREF 3 Prefetchable — This read-only bit is hardwired to 1 indicating
that there are no side effects on reads. The device returns all bytes
on reads regardless of byte enables, and host bridges can merge
processor writes into this range without causing errors.

TYPE 2:1 Address Type — These read-only bits are hardwired to 00
indicating that the base address can be set to locate this window
anywhere in the 32bit PCI address space.

IO/M 0 I/O or Memory Indicator — This read-only bit is hardwired to 0
to indicate that this register is a memory space base address
register.

Table 194 PCI Inbound Memory Base Addressn Register (for Base Address3, 4, and 5)

REGISTER NAME PURPOSE ADDRESS

PCI Inbound Memory Base
Address3

Same as PCI Inbound Memory Base Address2, but
for BAR3.

0xBD80801C

PCI Inbound Memory Base
Address4

Same as PCI Inbound Memory Base Address2, but
for BAR4.

0xBD808020

PCI Inbound Memory Base
Address5

Same as PCI Inbound Memory Base Address2, but
for BAR5.

0xBD808024
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 597
PCI Subsystem ID Register (Read Only) (XP PCI Configuration Function)

PCI Subsystem Vendor ID Register (Read Only) (XP PCI Configuration Function)

PCI Interrupt Pin Register (XP PCI Configuration Function)

PCI Interrupt Line Register (XP PCI Configuration Function)

Purpose Used to uniquely identify the subsystem where the PCI device resides.

Address 0xBD80802C

Reset Value 0x0000

Access Global Read

Purpose Used to uniquely identify the vendor of the subsystem where the PCI
device resides.

Address 0xBD80802E

Reset Value 0x0000

Access Global Read

Purpose Indicates that interrupt pin INTA# is the one being used.

Address 0xBD80803E

Reset Value 0x01

Access Global Read/Write

Purpose Used to communicate interrupt line routing information.

Address 0xBD80803F

Reset Value 0x00

Access Global Read/Write
C5EC3EARCH-RM REV 04

598 APPENDIX A: C-5E NP REGISTERS
PCI Inbound BAR0 Translation Register (XP PCI Configuration Function)

PCI Inbound BAR1 Translation Register (XP PCI Configuration Function)

Purpose Provides Address Translation and Control for the associated PCI Inbound
Memory Base Address0 Register [Address: 10-13h].

Address 0xBD808040

Reset Value 0xA000

Access Global Read/Write

Bit Position 31 29 28 20 19 0

Field Name 101 TRANS Rsvd

Reset Value 101 0_0000_0000 0000_0000_0000_0000_0000

FIELD NAME BIT POSITION DESCRIPTION

101 31:29 “101” Translation Address — Bits [31:29] of the transaction
address are always translated to 101. This limits the translated
address to the range of 0xA0000000 to 0xBFFFFFFF.

TRANS 28:20 Translation Address — Provides the replacement values for
bits [28:20] of the transaction address to translate it to a
different 1MByte window in C-5e NP Address Space.

Reserved 19:0 Read as zero.

Purpose Provides Address Translation and Control for the associated PCI Inbound
Memory Base Address1 Register [Address: 14-17h].

Address 0xBD808044

Reset Value 0xA000

Access Global Read/Write

Bit Position 31 29 28 20 19 0

Field Name 101 TRANS Rsvd

Reset Value 101 0_0000_0000 0000_0000_0000_0000_0000
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 599
PCI Auxiliary Control Register (XP PCI Configuration Function)

FIELD NAME BIT POSITION DESCRIPTION

101 31:29 “101” Translation Address — Bits [31:29] of the transaction
address are always translated to 101. This limits the translated
address to the range of 0xA0000000 to 0xBFFFFFFF.

TRANS 28:20 Translation Address — Provides the replacement values for bits
[28:20] of the transaction address to translate it to a different
1MByte window in C-5e NP Address Space.

Reserved 19:0 Read as zero.

Purpose Provides Control for Miscellaneous Functions within the PCI interface.

Address 0xBD808048

Reset Value 0x00

Access Global Read/Write

Bit Position 31 3 2 1 0

Field Name Rsvd P2S MA2S TA2S

Reset Value 0000_0000_0000 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:3 Read as zero.

P2S 2 Map Parity Errors to SERR# — When the bit is 1, any PCI parity
error that is detected and reported will result in the device
signaling SERR#.

MA2S 1 Map Master Abort to SERR# — When the bit is 1, whenever the
master has a transaction terminated by a Master Abort, the device
will signal SERR#.

TA2S 0 Map Target Abort to SERR# — When the bit is 1, whenever the
master has a transaction terminated by a Target Abort the device
will signal SERR#.
C5EC3EARCH-RM REV 04

600 APPENDIX A: C-5E NP REGISTERS
PCI Subsystem ID Register (XP PCI Configuration Function)

PCI Subsystem Vendor ID Register (XP PCI Configuration Function)

PCI Inbound Byte Swap Control Register (XP PCI Configuration Function)

Purpose Writable image of the PCI Subsystem ID.

Address 0xBD80804C

Reset Value 0x0000

Access Global Read/Write

Purpose Writable image of the PCI Subsystem Vendor ID.

Address 0xBD80804E

Reset Value 0x0000

Access Global Read/Write

Purpose Provides control of the byte swapping feature for inbound transactions.

Address 0xBD808050

Reset Value 0x0000

Access Global Read/Write

Bit Position 31 6 5 4 3 2 1 0

Field Name Rsvd SWAP5 SWAP4 SWAP3 SWAP2 SWAP1 SWAP0

Reset Value 0000_0000_0000_0000_0000_0000_00 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:6 Read as zero.

SWAP5 5 BAR5 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address5 register.

SWAP4 4 BAR4 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address4 register.

SWAP3 3 BAR3 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address3 register.
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 601
PCI Inbound BAR2 Translation Register (XP PCI Configuration Function)

SWAP2 2 BAR2 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address2 register.

SWAP1 1 BAR1 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address1 register.

SWAP0 0 BAR0 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address0 register.

Purpose Provides Address Translation and Control for the associated PCI Inbound
Memory Base Address2 Register [Address: 18-1Bh]. See Table 195 on
page 602 for similar registers.

Address 0xBD808054

Reset Value 0xA000

Access Global Read/Write

Bit Position 31 29 28 22 21 0

Field Name 101 TRANS Rsvd

Reset Value 101 0_0000_00 00_0000_0000_0000_0000_0000

FIELD NAME BIT POSITION DESCRIPTION

101 31:29 “101” Translation Address — Bits [31:29] of the transaction
address are always translated to 101. This limits the translated
address to the range of 0xA0000000 to 0xBFFFFFFF.

TRANS 28:22 Translation Address — Provides the replacement values for
bits [28: 22] of the transaction address to translate it to a
different 4MByte window in C-5e NP Address Space.

Reserved 21:0 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

602 APPENDIX A: C-5E NP REGISTERS
Serial Bus Configuration Register (XP Miscellaneous Control Function)

Table 195 PCI Inbound BARn Translation Register (for BAR3, 4 and 5)

REGISTER NAME PURPOSE ADDRESS

PCI Inbound BAR3
Translation

Same as PCI Inbound BAR2 translation, but for BAR3 and
therefore, associated with the PCI Inbound Memory
Base Address3 Register [Address: 1C-1Fh].

0xBD808058

PCI Inbound BAR4
Translation

Same as PCI Inbound BAR2 translation, but for BAR4 and
therefore, associated with the PCI Inbound Memory
Base Address4 Register [Address: 20-23h].

0xBD80805C

PCI Inbound BAR5
Translation

Same as PCI Inbound BAR2 translation, but for BAR5 and
therefore, associated with the PCI Inbound Memory
Base Address5 Register [Address: 24-27h].

0xBD808060

Purpose Sets the configuration of the Serial Bus.

Address 0xBD808100

Reset Value 0x000001F4

Access Global Read/Write

Bit Position 31 13 12 11 10 9 8 0

Field Name Reserved MDIO_Cycles EN PROTOCOL PRE_SUPP CLKDIV

Reset Value 0 0 0 0 0 1_1111_0100

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:13 Read as zero.

MDIO_Cycles 12 MDIO Turn Around Cycles — When deasserted, which is the
default, enables one turnaround cycle. When asserted, enables
two turnaround cycles on reads.

EN 11 Serial Bus Enable — This is an enable control bit for the serial
bus. When the bit is 1, the bus is enabled.

PROTOCOL 10 Protocol Select — Determines which of 2 possible protocols will
be followed by the C-5e NP on the serial bus. A value of 0 selects
the MDIO protocol and a value of 1 selects the low-speed serial
bus protocol.

PRE_SUPP 9 MDIO Preamble Suppression — When this bit is 1, the 32bit
preamble pattern will be skipped during MDIO transfers.
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 603
Serial Bus Data Register (XP Miscellaneous Control Function)

CLKDIV 8:0 Core Clock Divider — With the value N programmed into this
9bit field, the C-5e NP core clock will be divided by a factor of 4xN
to form the Serial bus clock. The default value of “500” causes the
166 MHz core clock to be divided by 4*500, generating a 83kHz
Serial bus clock.
Note: That when this CLKDIV field equals 0, the divider will be 512,
resulting in a factor of 4*512=2048.

Purpose Specifies the address, data, and write/read of a serial bus transfer. A
transfer will be initiated when the REQ bit gets set.

Address 0xBD808104

Reset Value 0x00000000

Access Global Read/Write

Bit Position 31 30 29 28 27 18 17 16 15 0

Field Name REQ Rsvd WR ADDR AACK DACK DATA

Reset Value 0 00 0 00_0000_0000 0 0 0000_0000_0000_0000

FIELD NAME BIT POSITION DESCRIPTION

REQ 31 Request — Indicates that a serial bus transfer is pending.
Software should set this bit to a 1 to begin a serial bus transfer.
When the REQ bit is set, the transfer will be performed using the
values of WR and ADDR in this register, and using the
configuration from the Serial Bus Configuration Register. The REQ
bit will remain a 1 until the transfer is done (also indicated by the
SB_TRANSFER_DONE bit in XP EVENT0), after which it is cleared by
the hardware. Writes to the serial bus data register are delayed
until the serial bus is idle (and the REQ bit is deasserted). It is
acceptable to set the REQ bit with the same register access that
sets up the proper values of WR, ADDR, and DATA fields.

Reserved 30:29 Read as zero.

WR 28 Write — Specifies whether the serial bus transfer is a write or a
read: 1 = write, 0 = read.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

604 APPENDIX A: C-5E NP REGISTERS
XP to CP Interrupt Request Registers (XP Miscellaneous Control Function)

ADDR 27:18 Address — Specifies the address of the serial bus transfer. In
MDIO mode, bits [27:23] act as the PHY address, and bits [22:18]
act as the register address. In low-speed serial bus mode, bits
[24:18] make up the 7bit address (bits [27:25] are unused).

AACK 17 Address Acknowledge — This bit indicates the address
acknowledge value captured on the serial bus. It is read-only (and
is not affected by writes to this register) and applies only to the
low-speed serial bus mode. When the bit is a 1, the previously
attempted access failed due to a missing address
acknowledgement.

DACK 16 Data Acknowledge — This bit indicates the data acknowledge
value captured on the serial bus. It is read-only (and is not
affected by writes to this register) and applies only to low-speed
serial bus mode. When the bit is a 1, the previously attempted
access failed due to a missing data acknowledgement.

DATA 15:0 Data — For writes to the serial bus, this field indicates the data to
be written. For reads from the serial bus, this field contains the
data that was read from the bus. The data is valid once the
transfer is done, as indicated by the deassertion of the REQ bit and
also by the SB_TRANSFER_DONE bit in XP EVENT0.
Note: That bits [15:0] are valid for MDIO mode. For the low-speed
serial bus mode, bits [15:8] are undefined and only bits [7:0] are
valid.

Purpose Initiates Interrupt Requests from the XP to individual CPs

Address 0xBD808108

Reset Value 0x00

Access Write only

Bit Position 31 19 18 17 16 15 0

Field Name Rsvd PCI_IRQ Rsvd XP2CP_IRQ

Reset Value raz raz N/A

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:19 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 605
Software Warm Reset Request Register (XP Miscellaneous Control Function)

PCI_IRQ 18 PCI Interrupt Request — Provides a way for software to cause a
PCI interrupt. When set to 1, the PCI Interrupt Line will be asserted.

Reserved 17:16 Read as zero.

XP2CP_IRQ 15:0 XP to CP Interrupt Request Vector — When the bit is 1, an
interrupt request is sent to the CP corresponding to the bit
number.

Purpose Trigger Reset Sequences for the C-5e NP and the XP.

Address 0xBD80810C

Reset Value 0x00

Access Write only

Bit Position 31 30 29 28 0

Field Name DCPRST XPURST WARM_XPUHOT Rsvd

Reset Value N/A N/A N/A N/A

FIELD NAME BIT POSITION DESCRIPTION

NPRST 31 NP Warm Reset Request — When the bit is 1, a state machine
is triggered that waits for PCI inbound and outbound activity to
idle, asserts reset to the entire C-5e NP, waits for 128 C-5e NP
core clock cycles, and then deasserts reset.

XPURST 30 XP Warm Reset Request — When the bit is 1, a state machine
is triggered that waits for XP activity to idle, asserts reset to the
XPRC, waits for 128 C-5e NP core clock cycles, and then
deasserts reset.

WARM_XPUHOT 29 Warm XPUHOT — When a C-5e NP warm reset or XP warm
reset is requested (using one of the above bits), this bit specifies
whether the XP will be turned on (XPUHOT=1) or off
(XPUHOT=0) after the warm reset completes. This only applies
to warm resets; on cold resets, the XP will be turned on based
on how the XPUHOT external pin is sampled.

Reserved 28:0 Read as zero

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

606 APPENDIX A: C-5E NP REGISTERS
Outbound PCI Base Address0 Register (XP Configuration Function)
Purpose Provides the Base Address for a variable size window for the XP into PCI

Space. See Table 196 on page 606 for similar registers.

Address 0xBD808200

Reset Value 0x00

Access Global Read/Write

Bit Position 31 14 13 0

Field Name BA Rsvd

Reset Value 0000_0000_0000_0000_00 00_0000_0000_0000

FIELD NAME BIT POSITION DESCRIPTION

BA 31:14 Base Address — Provides the high order address bytes used for
decoding an access by the XP into a window into PCI Space. The
number of bits used in the decode depends on the size
specification for the window.

Reserved 13:0 Read as zero.

Table 196 Outbound PCI Base Addressn Registers (for BAR 1, 2, 3, 4, 5, 6 and 7)

REGISTER NAME PURPOSE ADDRESS

Outbound PCI Base Address1 Same as Outbound PCI Base
Address0 Register, except for BAR 1.

0xBD808204

Outbound PCI Base Address2 Same as Outbound PCI Base
Address0 Register, except for BAR 2.

0xBD808208

Outbound PCI Base Address3 Same as Outbound PCI Base
Address0 Register, except for BAR 3.

0xBD80820C

Outbound PCI Base Address4 Same as Outbound PCI Base
Address0 Register, except for BAR 4.

0xBD808210

Outbound PCI Base Address5 Same as Outbound PCI Base
Address0 Register, except for BAR 5.

0xBD808214

Outbound PCI Base Address6 Same as Outbound PCI Base
Address0 Register, except for BAR 6.

0xBD808218

Outbound PCI Base Address7 Same as Outbound PCI Base
Address0 Register, except for BAR 7.

0xBD80821C
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 607
Outbound BAR0 Translation Register (XP Configuration Function)
Purpose Provides the Translation Address and control for a variable size window

for the XP into the PCI Space. See Table 197 on page 608 for similar
registers.

Address 0xBD808220

Reset Value 0x00

Access Global Read/Write

Bit Position 31 14 13 4 3 1 0

Field Name TRANS Rsvd SIZE EN

Reset Value 0000_0000_0000_0000_00 raz 000 0

FIELD NAME BIT POSITION DESCRIPTION

TRANS 31:14 Translation Address — Provides the high order address bits to
replace the high order address bits from the original address to
create an address in PCI space. The number of bits replaced
depends on the size specification for the window.

Reserved 13:4 Read as zero

SIZE 3:1 Window Size — Specifies the size of the address region viewed
by the window.
Note: That the base address and the translation address will be
interpreted as being size aligned.

ENCODED VALUE WINDOW SIZE

000 16 kB

001 32 kB

010 64 kB

011 128 kB

100 256 kB

101 512 kB

110 1 MB

111 2 MB
C5EC3EARCH-RM REV 04

608 APPENDIX A: C-5E NP REGISTERS
DMA Transmit Channel0 PCI Target Register (XP Configuration Function)

EN 0 BAR Enable — This bit controls whether or not the corresponding
BAR is used to decode XP accesses to PCI. When the bit is 1, the
corresponding BAR is used in transaction decode. When the bit is
0, the BAR will be ignored.

Table 197 Outbound BARn Translation Registers (for BAR1, 2, 3, 4, 5, 6 and 7)

REGISTER NAME PURPOSE ADDRESS

Outbound Bar1 Translation Same as Outbound BAR0 Translation Register,
except for BAR1.

0xBD808224

Outbound Bar2 Translation Same as Outbound BAR0 Translation Register,
except for BAR2.

0xBD808228

Outbound Bar3 Translation Same as Outbound BAR0 Translation Register,
except for BAR3.

0xBD80822C

Outbound Bar4 Translation Same as Outbound BAR0 Translation Register,
except for BAR4.

0xBD808230

Outbound Bar5 Translation Same as Outbound BAR0 Translation Register,
except for BAR5.

0xBD808234

Outbound Bar6 Translation Same as Outbound BAR0 Translation Register,
except for BAR6.

0xBD808238

Outbound Bar7 Translation Same as Outbound BAR0 Translation Register,
except for BAR7.

0xBD80823C

Purpose Provides the PCI Target Address for the DMA Transmit Channel0. See
Table 198 on page 609 for similar registers.

Address 0xBD808240

Reset Value 0x00

Access Global Read/Write

Bit Position 31 4 3 0

Field Name ADDR Rsvd

Reset Value 0000_000 raz

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 609
DMA Receive Channel0 PCI Target Register (XP Configuration Function)

FIELD NAME BIT POSITION DESCRIPTION

ADDR 31:4 Target Address — Provides a 16Byte aligned PCI address to start
an outbound PCI write of data coming from Transmit Channel0.

Reserved 3:0 Read as zero.

Table 198 DMA Transmit Channel1 PCI Target Register (for Channel1)

REGISTER NAME PURPOSE ADDRESS

DMA Transmit Channel1 PCI
Target

Same as DMA Transmit Channel0 PCI Target,
except for channel1.

0xBD808244

Purpose Provides the PCI Target Address for DMA Receive Channel0. See
Table 199 on page 609 for similar registers.

Address 0xBD808248

Reset Value 0x00

Access Global Read/Write

Bit Position 31 4 3 0

Field Name ADDR Rsvd

Reset Value 0000_000 raz

FIELD NAME BIT POSITION DESCRIPTION

ADDR 31:4 Target Address — Provides a 16Byte aligned PCI address to start
an outbound PCI read of data going to Receive Channel 0.

Reserved 3:0 Read as zero.

Table 199 DMA Receive Channel1 PCI Target Register (for Channel1)

REGISTER NAME PURPOSE ADDRESS

DMA Receive Channel1 PCI
Target

Same as DMA Receive Channel0 PCI Target, except
for channel1.

0xBD808250
C5EC3EARCH-RM REV 04

610 APPENDIX A: C-5E NP REGISTERS
DMA Receive Channel0 Transfer Count Register (XP Configuration Function)
Purpose Provides the transfer count for DMA Receive Channel0. See Table 200 on

page 610 for similar register.

Address 0xBD80824C

Reset Value 0x0000

Access Global Read/Write

Bit Position 31 14 13 0

Field Name Rsvd COUNT

Reset Value raz 00_0000_0000_0000

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:14 Read as zero.

COUNT 13:0 Transfer Count — Specifies the number of 4Byte transfers to be
initiated on the PCI Bus when retrieving data for DMA Receive
Channel 0. The transfer count legal range is 1 to 16k. The value of
16k is denoted by a programmed value of 0.

Table 200 DMA Receive Channel1 Transfer Count Register (for Channel1)

REGISTER NAME PURPOSE ADDRESS

DMA Receive Channel1
Transfer Count

Same as DMA Receive Channel0 Transfer Count,
except for channel1.

0xBD808254
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 611
XP Miscellaneous Control Register (XP Configuration Function)
Purpose Provides control for the PROM and PCI interrupt line.

Address 0xBD808258

Reset Value 0x00

Access Global Read/Write

Bit Position 31 24 23 22 21 20 19 10 9 8 3 2 0

Field Name Rsvd PCI_IMSK3 PCI_IMSK2 PCI_IMSK1 PCI_IMSK0 Rsvd ZBFP Rsvd PROMCLK

Reset Value 0 0 0 0 0 0 0 raz 000

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:24 Read as zero.

PCI_IMSK3 23 PCI Interrupt Mask 3 — When the bit is 1, any interrupt
intended for the XP on IRQ3 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

PCI_IMSK2 22 PCI Interrupt Mask 2 — When the bit is 1, any interrupt
intended for the XP on IRQ2 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

PCI_IMSK1 21 PCI Interrupt Mask 1 — When the bit is 1, any interrupt
intended for the XP on IRQ1 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

PCI_IMSK0 20 PCI Interrupt Mask 0 — When the bit is 1, any interrupt
intended for the XP on IRQ0 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

Reserved 19:10 Read as zero.

ZBFP 9 Payload Bus Arbiter FP More Slots — When the bit is 1, the FP
is given more slots on the Payload Bus.

Reserved 8:3 Read as zero.

PROMCLK 2:0 PROM Clock Divider — Specifies the clock divider applied to
the core clock to generate the PROM Interface serial clock. The
default is zero which, sets the clock divider to 16. All other
values result in a clock divider that is 2 times the value.
C5EC3EARCH-RM REV 04

612 APPENDIX A: C-5E NP REGISTERS
XP Auxiliary Event Register (XP Configuration Function)
Purpose Contains flags for CP Interrupts and PCI Mailbox Interrupts.

Address 0xBD80825C

Reset Value 0x00

Access Global Read/Write, write 1 clear

Bit Position 31 30 29 28 27 26 25 24 23 19 18 17 16 15 0

Field Name R7 R6 R5 R4 R3 R2 R1 R0 Rsvd PCI_INT FPTx_INT FPRX_INT CP_INT

Reset Value 0 0 0 0 0 0 0 0 raz 0 0 0 0000

FIELD NAME BIT POSITION DESCRIPTION

R7 31 Mailbox Register 7 Status Bit — This bit is set by hardware
when an inbound PCI transaction writes to Inbound PCI Mailbox
Register 7, and is reset by hardware when the XP reads from
Inbound Mailbox Register 7.
This bit can also be reset by software by writing a 1 to the bit
position.

R6 30 Mailbox Register 6 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 6.

R5 29 Mailbox Register 5 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 5.

R4 28 Mailbox Register 4 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 4.

R3 27 Mailbox Register 3 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 3.

R2 26 Mailbox Register 2 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 2.

R1 25 Mailbox Register 1 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 1.

R0 24 Mailbox Register 0 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 0.

Reserved 23:19 Read as zero.

PCI_INT 18 PCI Interrupt — Indicates that a PCI interrupt is active. (A PCI
interrupt request can be made by setting a bit in the XP To CP
Interrupt Request Register.)
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 613
Inbound PCI Mailbox0 Register (XP Configuration Function)

FPTx_INT 17 TxFP Interrupt Status Bits — When read as 1, indicates that
an interrupt request was made by the TxFP unit.

FPRx_INT 16 RxFP Interrupt Status Bits — When read as 1, indicates that
an interrupt request was made by the RxFP unit.

CP_INT 15:0 CP Interrupt Status Bits — When read as 1, indicates that an
interrupt request was made by the CP corresponding to the bit
number.

Purpose Inbound PCI mailbox registers. See Table 201 on page 613 for similar
registers.

Address 0xBD808260

Reset Value 0x0000

Access Global Read/Write

Bit Position 31 0

Field Name Message

Reset Value 00000000_00000000_00000000_00000000

FIELD NAME BIT POSITION DESCRIPTION

Message 31:0 Mailbox Message

Table 201 Inbound PCI Mailboxn Registers (for Mailbox 1, 2, 3, 4, 5, 6 and 7)

REGISTER NAME PURPOSE ADDRESS

Inbound PCI Mailbox1 Same as Inbound PCI Mailbox0 Register,
except for mailbox 1.

0xBD808264

Inbound PCI Mailbox2 Same as Inbound PCI Mailbox0 Register,
except for mailbox 2.

0xBD808268

Inbound PCI Mailbox3 Same as Inbound PCI Mailbox0 Register,
except for mailbox 3.

0xBD80826C

Inbound PCI Mailbox4 Same as Inbound PCI Mailbox0 Register,
except for mailbox 4.

0xBD808270

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

614 APPENDIX A: C-5E NP REGISTERS
IMEM Overlay Target Address Register (XP Configuration Function)

Inbound PCI Mailbox5 Same as Inbound PCI Mailbox0 Register,
except for mailbox 5.

0xBD808274

Inbound PCI Mailbox6 Same as Inbound PCI Mailbox0 Register,
except for mailbox6.

0xBD808278

Inbound PCI Mailbox7 Same as Inbound PCI Mailbox0 Register,
except for mailbox7.

0xBD80827C

Purpose IMEM Overlay Target Address Register.

Address 0xBD808280

Access Global Read/Write

Bit Position 31 18 17 16 15 2 1 0

Field Name IMEM ADDR0 Rsvd IMEM ADDR1 Rsvd

Reset Value 0000_0000_0000_00 raz 0000_0000_0000_00 raz

FIELD NAME BIT POSITION DESCRIPTION

IMEM ADDR0 31:18 IMEM ADDR0 – This is the target address into the IMEM that is
used during transfers driven by DataScope0 of the TxCB#25.

Reserved 17:16 Read as zero.

IMEM ADDR1 15:2 IMEM ADDR1 – This is the target address into the IMEM that is
used during transfers driven by DataScope1 of the TxCB#25.

Reserved 1:0 Read as zero.

Table 201 Inbound PCI Mailboxn Registers (for Mailbox 1, 2, 3, 4, 5, 6 and 7) (continued)

REGISTER NAME PURPOSE ADDRESS
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 615
RxCB #25 Transfer Count Register (XP Configuration Function)

XP Diagnostic Register (XP Configuration Function)

Purpose RxCB #25 Transfer Count Register.

Address 0xBD808284

Reset Value 0x0

Access Global Read/Write

Bit Position 31 0

Field Name Address

Reset Value 0x00000000

Purpose Retains data through warm reset. Used for diagnostic purposes.

Address 0xBD808288

Reset Value 0x0 (hard reset only; retains data on warm reset)

Access Global Read/Write

Bit Position 31 0

Field Name Address

Reset Value 0x00000000
C5EC3EARCH-RM REV 04

616 APPENDIX A: C-5E NP REGISTERS
PCI Outbound Byte Swap Control Register (XP Configuration Function)
Purpose Provides control of the byte swapping feature for outbound

transactions.

Address 0xBD80828C

Reset Value 0x0000

Access Global Read/Write

Bit Position 31 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Name Rsvd TX1 TX0 RX1 RX0 BAR7 BAR6 BAR4 BAR4 BAR3 BAR2 BAR1 BAR0

Reset Value 0x00000 0 0 0 0 0 0 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:12 Read as zero.

TX1 11 TX1 Byte Swap Enable — When set to 1, byte swapping occurs as
data passes through the PCI interface for any transaction
associated with DMA Transmit Channel 1 register.

TX0 10 TX0 Byte Swap Enable — When set to 1, byte swapping occurs as
data passes through the PCI interface for any transaction
associated with DMA Transmit Channel 0 register.

RX1 9 RX1 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
associated with DMA Receive Channel 1 register.

RX0 8 RX0 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
associated with DMA Receive Channel 0 register.

BAR7 7 BAR7 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 7 register.

BAR6 6 BAR6 Byte Swap Enable — When set to1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 6 register.

BAR5 5 BAR5 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 5 register.

BAR4 4 BAR4 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 4 register.
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 617
Debug Counter0 Start Value Register (XP Configuration Function)

BAR3 3 BAR3 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 3 register.

BAR2 2 BAR2 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 2 register.

BAR1 1 BAR1 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 1 register.

BAR0 0 BAR0 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 0 register.

Purpose Provides the start value for the associated 32bit debug event counter.
See Table 202 on page 618 for similar registers.

Note: That following a RESET, this register contains the boot address
read by the XP’s IROM.

Address 0xBD808300

Reset Value 0xBFC00000

Access Global Read/Write

Bit Position 31 0

Field Name Start Value

Reset Value 0x0000_0000

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

618 APPENDIX A: C-5E NP REGISTERS
Debug Counter0 Control Register (XP Configuration Function)

Table 202 Debug Countern Start Value Registers (for Debug Counter 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS RESET VALUE

Debug Counter1 Start Value Same as DebugCounter0
Start Value Register, except
for debug counter 1.

0xBD808304 0x00000000

Debug Counter2 Start Value Same as DebugCounter0
Start Value Register, except
for debug counter 2.

0xBD808308

Debug Counter3 Start Value Same as DebugCounter0
Start Value Register, except
for debug counter 3.

0xBD80830C

Purpose Provides control for the associated debug counter register. See
Table 203 on page 620 for similar registers.

Address 0xBD808340

Reset Value 0x00008888

Access Global Read/Write

Bit Position 31 30 20 19 18 17 16 15 12 11 8 7 4 3 0

Field Name DEBUG_EN Rsvd INC_ED LD_ED STRT_ED STP_ED INCSEL LDSEL STRTSEL STPSEL

Reset Value raz 0 0 0 0 1000 1000 1000 1000

FIELD NAME BIT POSITION DESCRIPTION

DEBUG_EN 31 Debug Enable — When the bit is 1, it enables all debug
counters. When the bit is 0, it disables all debug counters. The
Debug Enable bit [31] is only valid in debug counter0 control
register, this bit in debug control register 1, 2, and 3 is not
interpreted. This bit in debugcounter0 control register is the
master enable bit, it enables all or none.

Reserved 30:20 Read as zero.

INC_ED 19 Increment Control Edge Detect Enable — When the bit is 1, a
rising edge detect is performed on the signal selected as the
increment signal for the debug counter, providing a one core
clock long pulse for each rising edge appearing on the input
signal. When the bit is 0, the raw signal is used as the increment
signal.
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 619
LD_ED 18 Load Control Edge Detect Enable — When the bit is 1, a rising
edge detect is performed on the signal selected as the load signal
for the debug counter, providing a one core clock long pulse for
each rising edge appearing on the input signal. When the bit is 0,
the raw signal is used as the load signal.

STRT_ED 17 Start Control Edge Detect Enable — When the bit is 1, a rising
edge detect is performed on the signal selected as the start signal
for the debug counter, providing a one core clock long pulse for
each rising edge appearing on the input signal. When the bit is 0,
the raw signal is used as the start signal.

STP_ED 16 Stop Control Edge Detect Enable — When the bit is 1, a rising
edge detect is performed on the signal selected as the stop signal
for the debug counter, providing a one core clock long pulse for
each rising edge appearing on the input signal. When the bit is 0,
the raw signal is used as the stop signal.

INCSEL 15:12 Increment Control Select — Selects the signal to use to control
the increment line for the debug counter as listed below.

LDSEL 11:8 Load Control Select — Selects the signal to use to control the
load line for the debug counter. The selection values are the same
as shown above for INCSEL.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE CONTROL VALUE

0000 Debug bus 0

0001 Debug bus 1

0010 Debug bus 2

0011 Debug bus 3

0100 Counter0 overflow

0101 Counter1 overflow

0110 Counter2 overflow

0111 Counter3 overflow

1000 0

1001 1

1010 -1111 Reserved
C5EC3EARCH-RM REV 04

620 APPENDIX A: C-5E NP REGISTERS
Debug Counter0 Current Value Register (XP Configuration Function)

STRTSEL 7:4 Start Control Select — Selects the signal to use to enable the
debug counter for counting. The selection values are the same as
shown above for INCSEL.

STPSEL 3:0 Stop Control Select — Selects the signal to use to disable the
debug counter for counting. The selection values are the same as
shown above for INCSEL.

Table 203 Debug Countern Control Registers (for Debug Counter 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

Debug Counter1 Control Same as Debug Counter0 Control Register, except for
debug counter 1.

0xBD808344

Debug Counter2 Control Same as Debug Counter0 Control Register, except for
debug counter 2.

0xBD808348

Debug Counter3 Control Same as Debug Counter0 Control Register, except for
debug counter 3.

0xBD80834C

Purpose Provides access to the current value of the associated 32bit debug event
counter. See Table 204 on page 620 for similar registers.

Address 0xBD808380

Reset Value 0x00

Access Global Read

Bit Position 31 0

Field Name Current Value

Reset Value 0x0000_0000

Table 204 Debug Countern Current Value Registers (for Debug Counter 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

Debug Counter1 Current Value Same as Debug Counter0 Current Value Register,
except for counter 1.

0xBD808384

Debug Counter2 Current Value Same as Debug Counter0 Current Value Register,
except for counter 2.

0xBD808388

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 621
All of the registers that pertain to XP DMEM #24 (0xBD804000 to 0xBD80443C) are
identical to their counterparts in the Channel Processors (CP) except for those (6) registers
documented here. These same (6) registers are also found in the (CP), however, the
registers provide different functions for the XP versus the CP. By changing the use of the
individual bits inside these registers they are capable of providing the different functions
needed in the XP and CPs.

RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function)

Debug Counter3 Current Value Same as Debug Counter0 Current Value Register,
except for counter 3.

0xBD80838C

Purpose Semaphores governing PCI DMA receive operation for datascope0. See
Table 205 on page 621 for similar register.

Address 0xBD804090

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, the XP owns receive
datascope 0. When the bit is 0, PCI DMA owns receive
datascope0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.

Table 205 RxCtl1_Status Register (for Datascope1)

REGISTER NAME PURPOSE ADDRESS

RxCtl1_Status Same as RxCtl0_Status, but pertains to datascope1. 0xBD804290

Table 204 Debug Countern Current Value Registers (for Debug Counter 1, 2 and 3) (continued)

REGISTER NAME PURPOSE ADDRESS
C5EC3EARCH-RM REV 04

622 APPENDIX A: C-5E NP REGISTERS
TxCB0_Ctl Register (XP DMEM#24 Transfer Tx Control Block0 Function)

TxCtl0_Status Register (XP DMEM#24 Transfer Tx Control Block0 Function)

Purpose Controls PCI DMA for payload transmit operation for datascope0. See
Table 206 on page 622 for similar register.

Address 0xBD804184

Reset Value 1x0xx00x000x

Access CPRC Read/Write. Usage is the same as for the CPs with the exception
that when using TxCB0_CTL to perform DMAs on the PCI bus, the
transfer length (TxLength) must be a multiple of four bytes.

Table 206 TxCB1_CTL Register

REGISTER NAME PURPOSE ADDRESS ACCESS

TxCB1_CTL Same as TxCB0_CTL, but pertains
to transmit datascope1.

0xBD804384 Same as TxCB0_CTL

Purpose Semaphores governing PCI DMA transmit operation for datascope0.
See Table 207 on page 623 for similar register.

Address 0xBD804190

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, the XP owns transmit
datascope 0. When the bit is 0, PCI DMA owns transmit
datascope 0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 623
All of the registers that pertain to XP Mode, Queue Status and Event (0xBD804500 to
0xBD8046C0) are identical to their counterparts in the Channel Processors (CP) except for
those (4) registers documented here. These same (4) registers are also found in the (CP),
however, the registers provide different functions for the XP versus the CP. By changing
the use of the individual bits inside these registers they are capability of providing the
different functions needed in the XP and CPs.

XP_Mode Register (XP Mode Configuration Function)

Table 207 TxCtl1_Status Register (for Datascope1)

REGISTER NAME PURPOSES ADDRESS

TxCtl1_ Status Same as TxCtl0_Status, but pertains to transmit
datascope1.

0xBD804390

Purpose Collects mode and error status bits relevant to general XP configuration.

Address 0xBD804640

Access Upper 16 bits are XP Read/Write, Lower 16 bits are Write 1 to clear, hardware
update, except for QMU rdmbx and QMU wrmbx which are read only.

Bit Position 31 30 29 17 23 22 21 20 19 17 16 15 13 12 11 10 8 7 6 4 3 2 0

Field Name XP Reset Wind
Down Rsvd QMU

rdmbx
QMU

wrmbx Rsvd Retry
Global Rsvd NXM PErr

#24
PErr Status

#24
PErr
#25

PErr Status
#25 GErr GErr

Status

Reset Value XPUHOT raz raz 0 0 raz 0 raz 0 000 0 000 0 000

FIELD NAME BIT POSITION DESCRIPTION

XP Reset 31 XP Reset — When the bit is 0, the XP is held in reset state. If the
XPUHOT pin is held low upon cold reset, then this bit must be
set to 1 with a PCI inbound transaction to bring the XP out of
reset. Upon warm reset, the state of this bit is copied from the
WARM_XPUHOT bit in the “Software Warm Reset Request
Register (XP Miscellaneous Control Function)” on page 605.

WindDown 30 WindDown — When the bit is 1, this bit asserts a global signal
informing all chip functions to wind down as soon as possible,
and leave as much predictable error recovery state around as
possible. This bit is readable, allowing a process to determine
that the global signal was caused by a process setting this bit,
however, the write causes only a single global wind down
request.
C5EC3EARCH-RM REV 04

624 APPENDIX A: C-5E NP REGISTERS
Reserved 29:24 Read as zero.

QMU rdmbx 23:22 QMU Read Mailbox Status (read only):

QMU wrmbx 21:20 QMU Write Mailbox Status (read only):

Reserved 19:17 Read as zero.

RetryGlobal 16 Global Bus Transaction Retry — This bit causes global load
and store operations through the Global bus controller to be
retried up to 256 times when NACK’d. When 256 tries have been
NACK’d, the bus controller terminates the operation and asserts
a bus error.

Reserved 15:13 Read as zero.

NXM 12 Non-Existent Memory — Indicates that an access has
occurred to a non-existent memory location (NXM). This bit is
write 1 to clear.

PErr #24 11 Payload #24 Error — An error was detected on a payload bus
read or write on Payload Bus Node #24.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE STATUS

00 QMU idle or operation finished successfully

01 operation finished with error (probably resource
error, see above

10 busy, waiting to begin execution

11 busy, executing in QMU engine

ENCODED
VALUE STATUS

00 QMU idle or operation finished successfully

01 operation finished with error (probably resource
error, see above

10 busy, waiting to begin execution

11 busy, executing in QMU engine
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 625
XP Debug Mode Register (XP Mode Configuration Function)

PErr Status #24 10:8 Payload #24 Error Status — Loaded when a Payload Error
occurs in Payload Bus Node #24, and is locked until the XPRC
clears the Payload #24 Error bit. The individual control blocks
can be interrogated to determine the specific offender.

PErr #25 7 Payload #25 Error — An error was detected on a payload bus
read or write on Payload Bus Node #25.

PErr Status #25 6:4 Payload #25 Error Status — Loaded when a Payload Error
occurs in Payload Bus Node #25, and locked until the XPRC
clears the Payload #25 Error bit. The individual control blocks
can be interrogated to determine the specific offender.

GErr 3 Global Bus Controller Error — An error was detected on a
Global read or write attempted by the XPRC.

GErr Status 2:0 Global Bus Error Status — Loaded when a global error occurs,
and is locked until the XPRC process clears the global error bit.
Status codes are identical to those for the CPs.

Purpose Configures the XP debug tap for the global debug counters.

Address 0xBD804658

Access XP Read/Write

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name Enb0 Rsvd MUX0 Enb1 Rsvd MUX1 Enb2 Rsvd MUX2 Enb3 Rsvd MUX
3

Reset Value 0 raz x 0 raz x 0 raz x 0 raz x

FIELD NAME BIT POSITION DESCRIPTION

Enb0 31 Enable Driver 0 — Enable the driver onto global debug wire 0.

Reserved 30:28 Read as zero.

MUX0 27:24 Mux 0 — Select 1 of 16 debug events onto global debug wire 0.

Enb1 23 Enable Driver 1 — Enable the driver onto global debug wire 1.

reserved 22:20 Read as zero.

MUX1 19:16 Mux 1 — Select 1 of 16 debug events onto global debug wire 1.

Enb2 15 Enable Driver 2 — Enable the driver onto global debug wire 2.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

626 APPENDIX A: C-5E NP REGISTERS
There are four (4) global debug wires that carry inputs to the global debug counter block.
Each CP and XP have a multiplexor that can select one of the 16 events. The selectable
events in the XP to drive on each of the respective debug wires are enumerated in
Table 208. Each multiplexor has a 4bit register to select what event to drive, and an enable
bit to turn on the debug wire driver. Since chip-wide only one debug wire driver should
be enabled at any time, the recommended procedure to use the debug taps is:

1 Clear the master debug enable bit in the global debug configuration register space in
the XP.

2 Clear the set driver enable bits. It may be safest to invoke a routine that clears all driver
enable bits on every change regardless of the previous configuration.

3 Set one chip-wide driver enable bit and its corresponding multiplexor select value for
each global debug wire.

4 Set up the global debug configuration bits and master debug enable.

reserved 14:12 Read as zero.

MUX2 11:8 Mux 2 — Select 1 of 16 debug events onto global debug wire 2.

Enb3 7 Enable Driver 3 — Enable the driver onto global debug wire 3.

reserved 6:4 Read as zero.

MUX3 3:0 Mux 3 — Select 1 of 16 debug events onto global debug wire 3.

Table 208 XP Debug Multiplexor Select Encodings

MUX INPUT ENCODING DESCRIPTION

0 16:13 Select 0 for multiplexor

ISM_TRAN 12 PCI Master Transaction Initiated

ISM_WRXFER 11 PCI Master has completed a write data phase

ISM_RDXFER 10 PCI Master has completed a read data phase

ISM_DISC 9 PCI Master transaction has been disconnected by addressed
target

TSM_TRAN 8 PCI Target has decoded a new inbound transaction

TSM_WRXFER 7 PCI Target has completed a write data phase

TSM_RDXFER 6 PCI Target has completed a read data phase

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 627
Event0 Register (Event and Interrupt Control Function)

TSM_LATTO 5 PCI Target has disconnected due to a data latency time-out

Bubble 4 XPRC has inserted a bubble into its pipeline

Stall 3 XPRC data read or write stall cycle

RC Read 2 XPRC data Read

RC Write 1 XPRC data Write

Debug/Match 0 The XPRC data, data address, or instruction address matches the
programmed match registers in the XPRC

Purpose Collects together event bits relevant to datascope independent tasks.

Address 0xBD8046A0

Access XPRC Read/Write, write 1 to clear.

Bit Position 63 32

Field Name Datascope independent events

FIELD NAME BIT POSITION DESCRIPTION

WindDown 63 Wind Down — When unmasked, this global input is a request
to wind down all CP activity as soon as possible, and leave as
much predictable error recovery state around as possible.

GlobalError 62 CPRC Global Reference Error— When asserted, this bit
means a CPRC Write received an error on the Global Bus or a
non-existent memory error within the cluster.

PayloadError 61 Payload Error — Indicates an unrecoverable error occurred
during a request sent to the BMU. An error status code is stored
in the xp_mode_register, and also in the control block that
initiated the request. Refer to Table 147 on page 495 for further
description of causes of the error. Specifically, Error Codes A, C,
D, E, and F cause MCError to be set.

QMUError 60 QMU Error — Indicates an unrecoverable error occurred
during a request sent to the QMU. An error status code is
stored in the xp_mode_register.

Table 208 XP Debug Multiplexor Select Encodings (continued)

MUX INPUT ENCODING DESCRIPTION
C5EC3EARCH-RM REV 04

628 APPENDIX A: C-5E NP REGISTERS
CP_Interrupt 59 CP Interrupt Request — One of the CPs issued an interrupt
request to the XP.

PayloadAlert 58 Payload Request Alert — A non-fatal bus error has occurred
while trying to send a request to the BMU or QMU. Refer to
Table 147 on page 495 for further description of causes of the
alert. Specifically, the five (5) Error Codes encoded 9 cause
PayloadAlert to be set.

DebugMatch 57 XPRC Debug Match — The XPRC data, or data address
matched the programmed match registers in the XPRC.

TLUError 56 TLU Error — Indicates that an unrecoverable error occurred
during a request sent to the TLU.

SB_TransDone 55 Serial Bus Transfer Done — Indicates that a read or write
transfer completed on the serial bus.

Reserved 54 Read as zero.

RxMsgFIFO 53 Ring Bus Receive Message Available — This bit indicates
the availability of a Ring Bus message in the receive FIFO, and
corresponds to RxMsgCtl.State [31].

TimerEvent 52 Event Timer Time-out — This bit indicates the event timer
counted down to 0.

PCI Mailbox 51 PCI Mailbox Interrupt — One of the PCI mailbox registers has
been written to by an inbound PCI transaction and contains a
pending message.

Reserved 50 Read as zero.

Reserved 49:48 Software controlled.

RxResp7-0 47:40 Ring Bus Receive Response Available — These eight bits
correspond to the available bit for the eight Ring Bus receive
response available bits. Bit 47 represents RxResp7Ctl.Avail, and
bit 40 represents RxRespCtl0.Ctl.

TxMsg3-0 39:36 Ring Bus Transmit Message Available — These four bits
correspond to the available bit for the four Ring Bus transmit
message control registers. Bit 39 represents TxMsg3Ctl.Avail,
and bit 36 represents TxMsg0Ctl.Avail.

WrCB 35:34 Write Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus write control blocks. Bit
35 corresponds to WrCB1Ctl.Avail, and bit 34 corresponds to
WrCB0Ctl.Avail.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 629
Event1 Register (Event and Interrupt Control Function)

RdCB 33:32 Read Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus read control blocks. Bit 33
corresponds to RdCB1Ctl.Avail, and bit 32 corresponds to
RdCB0Ctl.Avail.

Purpose Collects together event bits relevant to transmit and receive
datascopes.

Address 0xBD8046A4

Access CPRC Read/Write, write 1 to clear

Bit Position 31 0

Field Name Transmit and receive scope events

FIELD NAME BIT POSITION DESCRIPTION

QRdMbxAvail 31 Queue Read Mailbox Available — This bit indicates that
this XP’s read mailbox in the QMU went from busy to
available.

TxCB1_Avail
(DMEM #24)

30 Transmit Control Block Available — Indicates that the
available bit for datascope1 Payload Bus transmit control
block #24 (TxCB1Ctl.Avail) was set.

TxStatus1_Avail
(DMEM #24)

29 PCI Transmit Datascope1 Available — Indicates that the
PCI transmit state machine has set TxStatus1.Avail.

TxCB1_Avail
(DMEM #25)

28 Transmit Control Block Available — Indicates that the
available bit for datascope1 Payload Bus transmit control
block #25 (TxCB1Ctl.Avail) was set.

TxStatus1_Avail
(DMEM #25)

27 IMEM Loader Datascope1 Available — Indicates that the
IMEM Loader state machine has set TxStatus1_Avail.

QRdMbxBusy 26 Queue Read Mailbox Busy — This bit indicates that this
XP’s read mailbox in the QMU went from available to busy.

TxCB0_Avail
(DMEM #24)

25 Transmit Control Block Available — Indicates that the
available bit for datascope0 payload bus transmit control
block #24 (TxCB0Ctl.Avail) was set.

TxStatus0_Avail
(DMEM #24)

24 PCI Transmit datascope0 Available — Indicates that the
PCI transmit state machine has set TxStatus0.Avail.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

630 APPENDIX A: C-5E NP REGISTERS
TxCB0_Avail
(DMEM #25)

23 Transmit Control Block Available — Indicates that the
available bit for datascope0 payload bus transmit control
block #25 (TxCB0Ctl.Avail) was set.

TxStatus0_Avail
(DMEM #25)

22 IMEM Loader Datascope0 Available — Indicates that the
IMEM Loader state machine has set TxStatus0_Avail.

QueueStatus 21 Queue Status — This bit corresponds to the logical OR of
the bits within each of the four Queue_Status registers. The
bit is level sensitive.

Reserved 20 Read as zero.

WrCB1-0
(DMEM #25)

19:18 Write Control Block Available — These two bits
correspond to the available bit for the two payload bus
write control blocks associated with DMEM #25. Bit 19
corresponds to WrCB1Ctl, and bit 18 corresponds to
WrCB0Ctl.Avail.

RdCB1-0
(DMEM #25)

17:16 Read Control Block Available — These two bits
correspond to the available bit for the two payload bus read
control blocks associated with DMEM #25. Bit 19
corresponds to RdCB1Ctl, and bit 18 corresponds to
RdCB0Ctl.Avail.

QWrMbxAvail 15 Queue Write Mailbox Available — This bit indicates that
this XP’s write mailbox in the QMU went from busy to
available.

RdCB1_Avail
(DMEM #24)

14 Receive Control Block Available — Indicates that the
available bit for datascope1 payload bus receive control
block #24 (RxCB1_Ctl.Avail) was set.

RxStatus1_Avail
(DMEM #24)

13 PCI Receive Datascope1 Available — Indicates that the
PCI receive state machine has set RxStatus1.Avail.

RdCB1_Avail
(DMEM #25)

12 Receive Control Block Available — Indicates that the
available bit for datascope1 payload bus receive control
block #25 (RxCB1_Ctl.Avail) was set.

RxStatus1_Avail
(DMEM #25)

11 #25 Receive Datascope1 Available — Indicates that the
#25 receive state machine has set RxStatus1.Avail.

QWrMbxBusy 10 Queue Write Mailbox Busy — This bit indicates that this
XP’s write mailbox in the QMU went from available to busy.

RxCB0_Avail
(DMEM #24)

9 Receive Control Block Available — Indicates that the
available bit for datascope0 payload bus receive control
block #24 (RxCB0_Ctl.Avail) was set.

RxStatus0_Avail
(DMEM #24

8 PCI Receive Datascope0 Available — Indicates that the
PCI receive state machine has set RxStatus0.Avail.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Executive Processor (XP) Configuration Registers 631
All of the registers that pertain to XP DMEM #25 (0xBD804800 to 0xBD804C3C) are
identical to their counterparts in the Channel Processors (CP) except for those (4) registers
documented here. These same (4) registers are also found in the (CP), however, the
registers provide different functions for the XP versus the CP. By changing the use of the
individual bits inside these registers they are able of providing the different functions
needed in the XP and CPs.

RxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)

RxCB0_Avail
(DMEM #25)

7 Receive Control Block Available — Indicates that the
available bit for datascope0 payload bus receive control
block #25 (RxCB0_Ctl.Avail) was set.

RxStatus0_Avail
(DMEM #25

6 #25 Receive Datascope0 Available — Indicates that the
#25 receive state machine has set RxStatus0.Avail.

Ext_Interrupt 5 External PHY Interrupt — A PHY generated external
interrupt that comes in through the XPU_HOT pin when not
in reset, causes an event in this bit.

PCI Master Abort 4 PCI Master Transaction Aborted — The PCI Master has
experienced either a Master Abort, a Target Abort, or an
abort caused by the PCI Master being disabled.

Debug Events 3:0 Debug Events — Bits 3:0 correspond to debug counters
3:0, and are set whenever a debug counter triggers its event
signal.

Purpose Semaphores governing PCI DMA receive operation for datascope0. See
Table 209 on page 632 for similar register.

Address 0xBD804890

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

632 APPENDIX A: C-5E NP REGISTERS
TxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, the XP owns receive
datascope0. When the bit is 0, PCI DMA owns receive
datascope0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.

Table 209 RxCtl1_Status Register

REGISTER NAME PURPOSE ADDRESS

RxCtl1_Status Same as RxCtl0_Status, but for datascope1. 0xBD80A290

Purpose Semaphores governing PCI DMA transmit operation for datascope0.
See Table 210 on page 632 for similar register.

Address 0xBD804990

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

FIELD NAME BIT POSITION DESCRIPTION

Avail 31 Availability Bit — When the bit is 1, the XP owns transmit
datascope0. When the bit is 0, PCI DMA owns transmit
datascope0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.

Table 210 TxCtl1_Status Register

REGISTER NAME PURPOSE ADDRESS

TxCtl1_Status Same as TxCtl0_Status, but pertains
to transmit datascope1.

0xBD804B90
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 633
Queue Management Unit
(QMU) Configuration
Registers

Configuration Space in the QMU is an area that contains a number of registers. The QMU
occupies 1MByte within the C-5e NP’s Configuration Space starting at 0xBDA00000 to
0xBDAFFFFF. The QMU only supports 32bit aligned operations. The QMU uses these
registers to: map queues to CPs, XP and FP, configure the QMU, debug the QMU, and
collect QMU statistics. Processor registers (WrCB0, and RdCB0) are described in Chapter 2
to move data through the internal QMU and external QMU to/from SRAM from/to the
DMEM of either the requesting CPs, or XP.

These registers (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr and RdCB0_Sys_Addr,
RdCB0_Ctl, RdCB0_DMA_Addr) are physically located in the Configuration Space of their
respective CPs, or XP and not in the QMU Configuration Space.

Warning: When the QMU is run-enabled, an attempt to read or write many of the
internal registers and memories will interfere with the operation of the QMU.

Warning: Although the C-5e NP provides an External QMU Mode, it does not support an
external traffic manager device. In addition, the associated registers and fields should
not be implemented.
C5EC3EARCH-RM REV 04

634 APPENDIX A: C-5E NP REGISTERS
QMU Registers The following is a list of each QMU register along with its address, function, and reference
to its detailed parameters. The detailed parameters provide: purpose, field name, bit
position, and descriptions.

Table 211 QMU Registers

ADDRESS REGISTER NAME FUNCTION
DETAILED
PARAMETERS

0xBDA00000 QMU_Run_Enable Enables QMU See page 637

0xBDA00020 Clear_Statistics QMU Statistics See page 637

0xBDA00040 Base_Queue_CP0 CP’s Queue
Allocation

See page 637

0xBDA00044 Base_Queue_CP1

0xBDA00048 Base_Queue_CP2

0xBDA0004C Base_Queue_CP3

0xBDA00050 Base_Queue_CP4

0xBDA00054 Base_Queue_CP5

0xBDA00058 Base_Queue_CP6

0xBDA0005C Base_Queue_CP7

0xBDA00060 Base_Queue_CP8

0xBDA00064 Base_Queue_CP9

0xBDA00068 Base_Queue_CP10

0xBDA0006C Base_Queue_CP11

0xBDA00070 Base_Queue_CP12

0XBDA00074 Base_Queue_CP13

0xBDA00078 Base_Queue_CP14

0xBDA0007C Base_Queue_CP15

0xBDA000C0 Base_Queue_FP FP’s Queue
Allocation

See page 640

0xBDA000C8 Base_Queue_XP XP’s Queue
Allocation

See page 641
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 635
0xBDA000D0 Num_Queues QMU Configuration See page 641

0xBDA000D4 Num_Descriptors See page 642

0xBDA000DC Dyn_Des_Usage_Lim_Pool0 See page 642

0xBDA000E0 Dyn_Des_Usage_Lim_Pool1

0xBDA000E4 Dyn_Des_Usage_Lim_Pool2

0xBDA000E8 Dyn_Des_Usage_Lim_Pool3

0xBDA000F0 Operation_Mode
Note: The External Mode is not
supported.

See page 643

0xBDA000F4 Descriptor_Size See page 644

0xBDA00180 Config_Q_Cnt QMU Statistics See page 644

0xBDA00184 Rd_Q_Status_Cnt See page 644

0xBDA00188 CP_Uni_Enq_Cnt See page 645

0xBDA0018C CP_Multi_Enq_Cnt See page 645

0xBDA00190 CP_Multi_Enq_Target_Cnt See page 645

0xBDA00194 CP_Dequeue_Cnt See page 645

0xBDA00198 FP_Uni_Enq_Cnt See page 645

0xBDA0019C FP_Multi_Enq_Cnt See page 645

0xBDA001A0 FP_Multi_Enq_Target_Cnt See page 646

0xBDA001A4 FP_Dequeue_Cnt See page 646

0xBDA001A8 QMU_Idle_Cycles See page 646

0xBDA001AC Payload_NACK_Cnt See page 646

0xBDA001B0 Global_NACK_Cnt See page 646

0xBDA001B4 Payload_Rd_Failures_Cnt See page 646

0xBDA001B8 Cmd_Processor_Err_Cnt See page 647

0xBDA001C0 Dq_H_Par_Err_Cnt See page 647

0xBDA001C4 Dq_L_Par_Err_Cnt See page 648

Table 211 QMU Registers (continued)

ADDRESS REGISTER NAME FUNCTION
DETAILED
PARAMETERS
C5EC3EARCH-RM REV 04

636 APPENDIX A: C-5E NP REGISTERS
0xBDA001C8 Missing_Front_Seq_Num_Cnt QMU Sequence
Numbers

See page 648

0xBDA001CC Front_Seq_Num See page 649

0xBDA001D0 Back_Seq_Num See page 649

0xBDA001D4 Front_Seq_Num_Timeout See page 650

0xBDA00400
to
0xBDA0063C

Multicast_Destination0 to
Multicast_Destination255

QMU Configuration See page 651

0xDBA7E000 Free_Descriptor_List _Head QMU Control See page 651

0xDBA7E004 Free_Descriptor_List_Tail See page 652

0xBDA7E008 Free_Descriptor_Buffer_List See page 652

0xBDA7E080 Dyn_Descriptor_Pool0_Usage QMU Status See page 653

0xBDA7E084 Dyn_Descriptor_Pool1_Usage See Table 215 on
page 653.

0xBDA7E088 Dyn_Descriptor_Pool2_Usage

0xBDA7E08C Dyn_Descriptor_Pool3_Usage

Table 211 QMU Registers (continued)

ADDRESS REGISTER NAME FUNCTION
DETAILED
PARAMETERS
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 637
QMU Detailed
Descriptions

The following is a detailed description of each of the QMU registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

QMU_Run_Enable Register (QMU Enable Queue Function)

Clear_Statistics Register (QMU Statistics Function)

Purpose When this one bit wide register is 1, it enables the QMU’s processing of
queue operations. When this bit is 0, it disables the QMU’s execution of
queue operations. The QMU powers up when this bit is clear. This bit
must be set to a “1” before the QMU can process any queue operations.

Address 0xBDA00000

Access Global Read/Write

Bit Position 31 1 0

Field Name Rsvd Enable

Purpose Enables/Disables and clears QMU statistics counters. There are 16
counters as defined here.

Address 0xBDA00020

Access Global Read/Write

Bit Position 31 16 15 0

Field Name Reserved QMU Statistics Counter Bits

Reset Value 0000_0000_0000-0000 0000_0000_0000-0000

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:16: Read as zero.

DeqParErrCtr 15 Dequeue Parity Error Count/Clear — When this bit is set
to a 0, the DqHParErrCnt and DqLParErrCnt registers begin
counting parity errors. WHen set to a 1, these registers are
cleared and the counting is disabled.
C5EC3EARCH-RM REV 04

638 APPENDIX A: C-5E NP REGISTERS
CmdProcErrCtr 14 Command Processor Error Count/Clear — When this bit
set to a 0, the Cmd_Processor_Err_Cnt register begins
counting Cmd_Processor errors, illegal opcodes, and out of
range queue numbers. When set to a 1, the
Cmd_Processor_Err_Cnt register is cleared and the
counting is disabled.

PayRdFailCtr 13 Payload Read Failure Count/Clear — When this bit set to
a 0, the Payload_Read_Failures_Cnt register begins
counting payload read failures. When set to a 1, the
Payload_Read_Failures_Cnt register is cleared and the
counting is disabled.

GlbNACKCtr 12 Global NACK Count/Clear — When this bit set to a 0, the
Global_Nack_Cnt register begins counting global NACKs.
When set to a 1, the Global_Nack_Cnt register is cleared and
the counting is disabled.

PayNACKCtr 11 Payload NACK Count/Clear — When this bit set to a 0, the
Payload_Nack_Cnt register begins counting global NACKs.
When set to a 1, the Payload_Nack_Cnt register is cleared
and the counting is disabled.

QMUIdlCycCtr 10 QMU Idle Cycles Count/Clear — When this bit set to a 0,
the Qmu_Idle_Cycles register begins counting QMU idle
cycles. When set to a 1, the Qmu_Idle_Cycles register is
cleared and the counting is disabled.

FPDeqCtr 9 FP Dequeue Count/Clear — When this bit set to a 0, the
Fp_Dequeue_Cnt register begins counting FP dequeues.
When set to a 1, the Fp_Dequeue_Cnt register is cleared
and the counting is disabled.

FPMultiEnqTarCtr 8 FP Multicast Enqueue Target Count/Clear — When this
bit set to a 0, the Fp_Multi_Enq_Target_Cnt register begins
counting FP multicast enqueue targets. When set to a 1, the
Fp_Multi_Enq_Target_Cnt register is cleared and the
counting is disabled.

FPMultiEnqCtr 7 FP Multicast Enqueue Count/Clear — When this bit set to
a 0, the Fp_Multi_Enq_Cnt register begins counting FP
multicast enqueue s. When set to a 1, the
Fp_Multi_Enq_Cnt register is cleared and the counting is
disabled.

FPUniEnqCtr 6 FP Unicast Enqueue Count/Clear — When this bit set to a
0, the Fp_Uni_Enq_Cnt register begins counting FP unicast
enqueue s. When set to a 1, the Fp_Uni_Enq_Cnt register is
cleared and the counting is disabled.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 639
CPDeqCtr 5 CP Dequeue Count/Clear — When this bit set to a 0, the
Cp_Dequeue_Cnt register begins counting CP dequeues.
When set to a 1, the Cp_Dequeue_Cnt register is cleared
and the counting is disabled.

CPMultiEnqTarCtr 4 CP Multicast Enqueue Target Count/Clear — When this
bit set to a 0, the Cp_Multi_Enq_Target_Cnt register begins
counting CP mutlicast enqueue targets. When set to a 1, the
Cp_Multi_Enq_Target_Cnt register is cleared and the
counting is disabled.

CPMultiEnqCtr 3 CP Multicast Enqueue Count/Clear — When this bit set to
a 0, the Cp_Multi_Enq_Cnt register begins counting CP
mutlicast enqueues. When set to a 1, the
Cp_Multi_Enq_Cnt register is cleared and the counting is
disabled.

CPUniEnqCtr 2 CP Unicast Enqueue Count/Clear — When this bit set to a
0, the Cp_Uni_Enq_Cnt register begins counting CP unicast
enqueues. When set to a 1, the Cp_Uni_Enq_Cnt register is
cleared and the counting is disabled.

RdQueStatCtr 1 Read Queue Status Count/Clear — When this bit set to a
0, the Rd_Q_Status_Cnt register begins counting read
status operations. When set to a 1, the Rd_Q_Status_Cnt
register is cleared and the counting is disabled.

QueConfCtr 0 Queue Configuration Count/Clear — When this bit set to
a 0, the Config_Q_Cnt register begins counting queue
configuration operations. When set to a 1, the
Config_Q_Cnt register is cleared and the counting is
disabled.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

640 APPENDIX A: C-5E NP REGISTERS
Base_Queue_CP0 to Base_Queue_CP15 Registers (QMU CP’s Queue Allocation
Function)

Base_Queue_FP Register (QMU FP’s Queue Allocation Function)

Purpose These registers specify the base address for a CP’s queues.

Addresses 0xBDA00040 (CP 0 base address), 0xBDA00044 (CP 1 base address)
0xBDA00048 (CP 2 base address), 0xBDA0004C (CP 3 base address)
0xBDA00050 (CP 4 base address), 0xBDA00054 (CP 5 base address)
0xBDA00058 (CP 6 base address), 0xBDA0005C (CP 7 base address)
0xBDA00060 (CP 8 base address), 0xBDA00064 (CP 9 base address)
0xBDA00068 (CP 10 base address), 0xBDA0006C (CP 11 base address)
0xBDA00070 (CP 12 base address), 0xBDA00074 (CP 13 base address)
0xBDA00078 (CP 14 base address), 0xBDA0007C (CP 15 base address)

Access Global Read/Write

Bit Position 31 9 8 0

Field Name Rsvd base_queue_num

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:9 Read as zero.

Base_Queue_Num 8:0 Establishes the base queue address for the CP (0 to 15).

Purpose This register specifies the base address for the FP’s queues.

Address 0xBDA000C0

Access Global Read/Write

Bit Position 31 9 8 0

Field Name Rsvd base_queue_num

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:9 Read as zero.

Base_Queue_Num 8:0 Specifies the base address for the FP’s queues
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 641
Base_Queue_XP Register (QMU XP’s Queue Allocation Function)

Num_Queues Register (QMU Configuration Function)

Purpose This register specifies the base address for the XP queues. It has the
same data format as Base_Queue_FP register.

Address 0xBDA000C8

Access Global Read/Write

Purpose This nine bit wide field specifices the total number of queues in the
QMU. This register is checked in the command processor to determine
whether a queue specified in a command is in the valid configured
range. The number of queues specified does not have to equal the
maximum number of queues supported by the operating mode.

In internal-queue mode, the maximum number of queues is 512. Legal
range= 0 to 511 as detailed here:
.

Address 0xBDA000D0

Access Global Read/Write

Bit Position 31 9 8 0

Field Name Rsvd Data

PROGRAMMED
VALUE

NUMBER OF
QUEUES

0

.

.

.
511

1

.

.

.
512
C5EC3EARCH-RM REV 04

642 APPENDIX A: C-5E NP REGISTERS
Num_Descriptors Register (QMU Configuration Function)

Dyn_Des_Usage_Lim_Pool0 Register (QMU Configuration Function)

Purpose This 14 bit wide register specifies the number of descriptor buffers to be
available in the QMU. Legal range= 0 to 16,383 as detailed here:

Address 0xBDA000D4

Access Global Read/Write

Bit Position 31 14 13 0

Field Name Rsvd Data

Purpose Specify the maximum number of descriptors that can be enqueued
dynamically to Pool0. Legal range 0 to 16K -1.

The total number of Descriptors allocated among all four (4) pools of
the Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3 registers
should be < the number of dynamically enqueued descriptors. See
Table 212 on page 643 for similar registers.

Address 0xBDA000DC

Access Global Read/Write

Bit Position 31 14 13 0

Field Name Rsvd Data

PROGRAMMED
VALUE

NUMBER OF
DESCRIPTORS

0
.
.
.
16,383

1
.
.
.
16,384
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 643
Operation_Mode Register (QMU Configuration Function)

Table 212 Dyn_Des_Usage_Lim_Pooln Registers (for Descriptor Pools 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

Dyn_Des_Usage_Lim_Pool1 Same as Dyn_Des_Usage_Lim_Pool0, except for
descriptor pool1.

0xBDA000E0

Dyn_Des_Usage_Lim_Pool2 Same as Dyn_Des_Usage_Lim_Pool0, except for
descriptor pool2.

0xBDA000E4

Dyn_Des_Usage_Lim_Pool3 Same as Dyn_Des_Usage_Lim_Pool0, except for
descriptor pool2.

0xBDA000E8

Purpose This four bit wide register specifies the operating mode of the QMU. The
codes for the modes are listed in Table 213.

Address 0xBDA000F0

Access Global Read/Write

Bit Position 31 4 3 0

Field Name Rsvd
Queueing

Mode

Table 213 Queue Operating Mode Codes

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:4 Read as zero.

QueueingMode 3:0 Queueing Mode:

ENCODED
VALUE MODE

01 Internal queueing mode (QMU performs
queueing using external descriptor memory.

10 External scheduler mode.
Note: The External Mode is not supported.

0011 to
1111

Reserved
C5EC3EARCH-RM REV 04

644 APPENDIX A: C-5E NP REGISTERS
Descriptor_Size Register (QMU Configuration Function)

Config_Q_Cnt Register (QMU Statistics Function)

Rd_Q_Status_Cnt Register (QMU Statistics Function)

Purpose This two bit wide register specifies the size of the data stored for each
descriptor in an encoded form. When in external mode, it indicates the
VOP-Descriptor capacity.
Note: The External Mode is not supported.

Address 0xBDA000F4

Access Global Read/Write

Bit Position 31 2 1 0

Field Name Rsvd Data

Table 214 Descriptor Size and VOP-Descriptor Capacity Values

ENCODED
VALUE

DESCRIPTOR
SIZE (BYTES)

VOP-DESCRIPTOR CAPACITY
(WHEN IN EXTERNAL MODE

0 12 2048
Note: The External Mode is not supported.

1 16 2048
Note: The External Mode is not supported.

2 24 1536
Note: The External Mode is not supported.

3 32 1024
Note: The External Mode is not supported.

Purpose Count of Queue Configuration operations.

Address 0xBDA00180

Access Global Read

Purpose Count of Read Status operations.

Address 0xBDA00184

Access Global Read
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 645
CP_Uni_Enq_Cnt Register (QMU Statistics Function)

CP_Multi_Enq_Cnt Register (QMU Statistics Function)

CP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)

CP_Dequeue_Cnt Register (QMU Statistics Function)

FP_Uni_Enq_Cnt Register (QMU Statistics Function)

FP_Multi_Enq_Cnt Register (QMU Statistics Function)

Purpose Count of Unicast Enqueues from the CPs.

Address 0xBDA00188

Access Global Read

Purpose Count of Multicast Enqueues from the CPs.

Address 0xBDA0018C

Access Global Read

Purpose Count of Total Multicast Enqueues Targets from the CPs.

Address 0xBDA00190

Access Global Read

Purpose Count of Dequeue operations from the CPs.

Address 0xBDA00194

Access Global Read

Purpose Count of Unicast Enqueues from the FP.

Address 0xBDA00198

Access Global Read

Purpose Count of Total Multicast Enqueues from the FP.

Address 0xBDA0019C

Access Global Read
C5EC3EARCH-RM REV 04

646 APPENDIX A: C-5E NP REGISTERS
FP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)

FP_Dequeue_Cnt Register (QMU Statistics Function)

QMU_Idle_Cycles Register (QMU Statistics Function)

Payload_NACK_Cnt Register (QMU Statistics Function)

Global_NACK_Cnt Register (QMU Statistics Function)

Payload_Read_Failures_Cnt Register (QMU Statistics Function)

Purpose Count of Multicast Enqueue Targets from the FP.

Address 0xBDA001A0

Access Global Read

Purpose Count of Dequeue operations from the FP.

Address 0xBDA001A4

Access Global Read

Purpose Count of QMU Idle Clock Cycles.

Address 0xBDA001A8

Access Global Read

Purpose Count of payload NACKs.

Address 0xBDA001AC

Access Global Read

Purpose Count of Global NACKs.

Address 0xBDA001B0

Access Global Read

Purpose Count of payload read failures.

Address 0xBDA001B4

Access Global Read
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 647
Cmd_Processor_Err_Cnt Register (QMU Statistics Function)

Dq_H_Par_Err_Cnt Register (QMU Sequence Numbers Function)

Purpose Count of command processor errors, illegal opcodes and out of range
queue numbers.

Address 0xBDA001B8

Access Global Read

Purpose Counts errors in dequeued descriptors in both internal and external
modes.
Note: The External Mode is not supported.

Address 0xBDA001C0

Access Global Read

Bit Position 31 16 15 0

Field Name Reserved DqHParErrCnt

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:16 Read as zero.

DqHParErrCnt 15:0 Dequeue High Parity Error Count — In Internal Mode =
counts the number of parity errors received on the high half
of the external data bus (QD [31:16]).
In External Mode= counts the number of descriptors with
parity errors received from the Q-5 (covers the 24bit data
bus, NQRDY and QARDY). Parity error sensing for a
descriptor also covers any idle time before the descriptor.
Note: The External Mode is not supported.
Note: This is a saturating counter.
C5EC3EARCH-RM REV 04

648 APPENDIX A: C-5E NP REGISTERS
Dq_L_Par_Err_Cnt Register (QMU Sequence Numbers Function)

Missing_Front_Seq_Num_Cnt Register (QMU Sequence Numbers Function)

Purpose Counts errors in dequeued descriptors in internal mode.
Note: The External Mode is not supported.

Address 0xBDA001C4

Access Global Read

Bit Position 31 16 15 0

Field Name Reserved DqLParErrCnt

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:16 Read as zero.

DqLParErrCnt 15:0 Dequeue Low Parity Error Count — In Internal Mode =
counts the number of parity errors received on the low half
of the external data bus (QD [15:0]).
Note: Not used in External Mode.
Note: This is a saturating counter.

Purpose Provides a 32bit field for a saturating count of the number of sequence
numbers missing in front port enqueues to the QMU.

Address 0xBDA001C8

Access Global Read/Write

Bit Position 31 0

Field Name MissingFrontSeqNumCnt

FIELD NAME BIT POSITION DESCRIPTION

MissingFrontSeqN
umCnt

31:0 Missing Front Sequence Number Count — A saturating
count of the number of sequence numbers missing in front
port enqueues to the QMU.
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 649
Front_Seq_Num Register (QMU Sequence Numbers Function)

Back_Seq_Num Register (QMU Sequence Numbers Function)

Purpose Provides fields for the ingress and egress sequence numbers used with
front-ports.

Note: There is no need to monitor or set these values. Access is provided
for test and initialization purposes only. Any writes during normal
operation results in loss of a large number of PDUs.

Address 0xBDA001CC

Access Global Read/Write

Bit Position 31 29 28 16 15 13 12 0

Field Name Rsvd FrontIngrSeqNum Rsvd FrontEgrSeqNum

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:29 Read as zero.

FrontIngrSeqNum 28:16 Front Ingress Sequence Number — Contains the next
sequence number the QMU looks for in enqueueing
descriptors from the front ports.

Reserved 15:13 Read as zero.

FrontEgrSeqNum 12:0 Front Egress Sequence Number — Contains the next
sequence number the QMU supplies with a descriptor sent
to the front ports.

Purpose Provides a field for the egress sequence numbers used with back ports.

Note: There is no need to monitor or set these values. Access is provided
for test and initialization purposes only. Any writes during normal
operation results in loss of a large number of PDUs.

Address 0xBDA001D0

Access Global Read/Write

Bit Position 31 13 12 0

Field Name Rsvd BackEgrSeqNum
C5EC3EARCH-RM REV 04

650 APPENDIX A: C-5E NP REGISTERS
Front_Seq_Num_Timeout Register (QMU Sequence Numbers Function)

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:13 Read as zero.

BackEgrSeqNum 12:0 Back Egress Sequence Number — Contains the next
sequence number the QMU supplies with a descriptor sent
to the back ports.

Purpose Provides fields that control a time out associated with sequence
number on enqueue.

Address 0xBDA001D4

Access Global Read/Write

Bit Position 31 17 16 15 0

Field Name Rsvd EnableTi
meOut TimeOutValue

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:17 Read as zero.

EnableTimeOut 16 Enable Time Out — When set =1 and front port sequence
numbers are enabled, then the missing sequence number
time out is enabled. Each time an enqueue is read from a
mail box the time out starts. If when the counter reaches
zero (0) there are still some write mail boxes not-empty,
then the FrontIngrSeqNum increments and the time out is
reset to the initial value given in [15:0] of this register.

TimeOutValue 15:0 Time Out Value — A 16bit value that is loaded into a
decrementing counter as described above. The counter is
decremented each core clock cycle when enabled.
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 651
Multicast_Destination0 to Multicast_Destination255 Registers (QMU Configuration
Function)

Free_Descriptor_List_Head Register (QMU Control Function)

Purpose Provide the mapping of the multicast destination port and queue level
number to target a queue number for each leaf of a multicast
elaboration.

Address 0xBDA00400 — 0xBBA007FC

Access Global Read/Write

Bit Position 31 7 8 0

Field Name Reserved queue_number

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:7 Read as zero.

queue_number 8:0 Destination Queue Number — Provide the mapping of
the multicast destination port and queue level number to
target a queue number for each leaf of a multicast
elaboration.

Purpose The descriptor number at the head of the linked list of free descriptors
(the next free descriptor to be used).

Address 0xBDA7E000

Access Global Read/Write (writes are for diagnostics purposes only). Any writes
to this register are likely to corrupt all traffic, resuiring a hard reset.

Bit Position 31 14 13 0

Field Name Reserved Free_Des_Head

Reset Value raz 00_0000_0000_0000
C5EC3EARCH-RM REV 04

652 APPENDIX A: C-5E NP REGISTERS
Free_Descriptor_List_Tail Register (QMU Control Function)

Free_Descriptor_Buffer_List Register (QMU Control Function)

Purpose The descriptor number at the tail of the linked list of free descriptors.

Address 0xBDA7E004

Access Global Read/Write (writes are for diagnostics purposes only). Any writes
to this register are likely to corrupt all traffic, resuiring a hard reset.

Bit Position 31 14 13 0

Field Name Reserved Free_Des_Tail

Reset Value raz 00_0000_0000_0000

Purpose Designates the total number of free descriptors.

Address 0xBDA7E008

Access Global Read/Write (writes are for diagnostics purposes only). Any writes
to this register are likely to corrupt all traffic, resuiring a hard reset.

Bit Position 31 14 13 0

Field Name Reserved Free_Des_Buffer

Reset Value raz 00_0000_0000_0000
C5EC3EARCH-RM REV 04

Queue Management Unit (QMU) Configuration Registers 653
Dyn_Descriptor_Pool0_Usage Register (QMU Status Function)
Purpose Designates how many dynamic descriptor buffers are in use in Pool0.

Legal range= 0 to 16K-1. For example, if the queue allowance is 10 and
the limit is 15, the 11th descriptor-enqueue will trigger the usage
register to move from 0 to 1 (and up to 5 if all 15 descriptors are
enqueued). See Table 215 on page 653 for similar register.

Address 0xBDA7E080

Access Global Read/Write

Table 215 Dyn_Descriptor_Buffer_Usage_Pooln Register (for Pool1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

Dyn_Descriptor_Pool1_Usage Same as Dyn_Descriptor_Pool0_Usage, but for
pool1.

0xBDA7E084

Dyn_Descriptor_Pool2_Usage Same as Dyn_Descriptor_Pool0_Usage, but for
pool2.

0xBDA7E088

Dyn_Descriptor_Pool3_Usage Same as Dyn_Descriptor_Pool0_Usage, but for
pool3.

0xBDA7E08C
C5EC3EARCH-RM REV 04

654 APPENDIX A: C-5E NP REGISTERS
Buffer Management Unit
(BMU) Configuration
Registers

Configuration Space in the BMU contains a number of registers. The BMU uses these
registers to configure and operate the BMU. The BMU uses others registers (WrCB0,
RdCB0, RxCB0 and TxCB0) as described in Chapter 2 to move data through the BMU
to/from SDRAM from/to the DMEM of either the requesting CPs, XP or FP.

These registers (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr, WrCB0_SDP_Addr;
RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr, RdCB0_SDP_Addr; RxCB0_Sys_Addr,
RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr; and TxCB0_Sys_Addr, TxCB0_Ctl,
TxCB0_DMA_Addr, TxCB0_SDP_Addr) are physically located in the Configuration Space
of their respective CPs and not in the BMU Configuration Space.

The BMU registers are located in the KSEG1 region, (0xA0000000 to 0xBFFFFFFF), which is
uncached, starting at address 0xBDB00000. Refer to “C-5e NP Address Mapping” on
page 69.

Warning: Attempting to access a buffer pool before it is setup results in unpredictable
behavior.
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Configuration Registers 655
BMU Registers The following is a list of each register along with its address, function and reference to its
detailed parameters. The detailed parameters provide: purpose, field name, bit positions
and descriptions.

Table 216 BMU Registers

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS

0xBDB00000 Pool0 Base Buffer Pool Base
Address

See page 660

0xBDB00004 Pool1 Base

0xBDB00008 Pool2 Base

0xBDB0000C Pool3Base

0xBDB00010 Pool4 Base

0xBDB00014 Pool5 Base

0xBDB00018 Pool6 Base

0xBDB0001C Pool7 Base

0xBDB00020 Pool8 Base

0xBDB00024 Pool9 Base

0xBDB00028 Pool10 Base

0xBDB0002C Pool11 Base

0xBDB00030 Pool12 Base

0xBDB00034 Pool13 Base

0xBDB00038 Pool14 Base

0xBDB0003C Pool15 Base

0xBDB00040 Pool16 Base

0xBDB00044 Pool17 Base

0xBDB00048 Pool18 Base

0xBDB0004C Pool19 Base
C5EC3EARCH-RM REV 04

656 APPENDIX A: C-5E NP REGISTERS
0xBDB00050 Pool20 Base Buffer Pool Base
Address
(continued)

See page 660

0xBDB00054 Pool21 Base

0xBDB00058 Pool22 Base

0xBDB0005C Pool23 Base

0xBDB00060 Pool24 Base

0xBDB00064 Pool25 Base

0xBDB00068 Pool26 Base

0xBDB0006C Pool27 Base

0xBDB00070 Pool28 Base

0xBDB00074 Pool29 Base

0xBDB10000 Pool0 BTag Shift Encoded Buffer
Size

See page 661

0xBDB10004 Pool1 BTag Shift

0xBDB10008 Pool2 BTag Shift

Table 216 BMU Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Configuration Registers 657
0xBDB1000C Pool3 BTag Shift Encoded Buffer
Size l (continued)

See page 661

0xBDB10010 Pool4 BTag Shift

0xBDB10014 Pool5 BTag Shift

0xBDB10018 Pool6 BTag Shift

0xBDB1001C Pool7 BTag Shift

0xBDB10020 Pool 8 BTag Shift

0xBDB10024 Pool9 BTag Shift

0xBDB10028 Pool10 BTag Shift

0xBDB1002C Pool11 BTag Shift

0xBDB10030 Pool12 BTag Shift

0xBDB10034 Pool13 BTag Shift

0xBDB10038 Pool14 BTag Shift

0xBDB1003C Pool15 BTag Shift

0xBDB10040 Pool16 BTag Shift

0xBDB10044 Pool17 BTag Shift

0xBDB10048 Pool18 BTag Shift

0xBDB1004C Pool19 BTag Shift

0xBDB10050 Pool20 BTag Shift

0xBDB10054 Pool21 BTag Shift

0xBDB10058 Pool22 BTag Shift

0xBDB1005C Pool23 BTag Shift

0xBDB10060 Pool24 BTag Shift

0xBDB10064 Pool25 BTag Shift

0xBDB10068 Pool26 BTag Shift

0xBDB1006C Pool27 BTag Shift

0xBDB10070 Pool28 BTag Shift

0xBDB10074 Pool29 BTag Shift

0xBDB20000 BTag FIFO Base0 BTag FIFO Base
Address

See page 662

Table 216 BMU Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

658 APPENDIX A: C-5E NP REGISTERS
0xBDB20004 BTag FIFO Base1 BTag FIFO Base
Address
(continued)

See page 662

0xBDB20008 BTag FIFO Base2

0xBDB2000C BTag FIFO Base3

0xBDB20010 BTag FIFO Base4

0xBDB20014 BTag FIFO Base5

0xBDB20018 BTag FIFO Base6

0xBDB2001C BTag FIFO Base7

0xBDB20020 BTag FIFO Base8

0xBDB20024 BTag FIFO Base9

0xBDB20028 BTag FIFO Base10

0xBDB2002C BTag FIFO Base11

0xBDB20030 BTag FIFO Base12

0xBDB20034 BTag FIFO Base13

0xBDB20038 BTag FIFO Base14

0xBDB2003C BTag FIFO Base15

0xBDB20040 BTag FIFO Base16

0xBDB20044 BTag FIFO Base17

0xBDB20048 BTag FIFO Base18

0xBDB2004C BTag FIFO Base19

0xBDB20050 BTag FIFO Base20

0xBDB20054 BTag FIFO Base21

0xBDB20058 BTag FIFO Base22

0xBDB2005C BTag FIFO Base23

0xBDB20060 BTag FIFO Base24

0xBDB20064 BTag FIFO Base25

0xBDB20068 BTag FIFO Base26

0xBDB2006C BTag FIFO Base27

0xBDB20070 BTag FIFO Base28

0xBDB20074 BTag FIFO Base29

Table 216 BMU Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Configuration Registers 659
0xBDB30000 Num BTag0 Number of BTags
in a Pool

See page 662

0xBDB30004 Num BTag1

0xBDB30008 Num BTag2

0xBDB3000C Num BTag3

0xBDB30010 Num BTag4

0xBDB30014 Num BTag5

0xBDB30018 Num BTag6

0xBDB3001C Num BTag7

0xBDB30020 Num BTag8

0xBDB30024 Num BTag9

0xBDB30028 Num BTag10

0xBDB3002C Num BTag11

0xBDB30030 Num BTag12

0xBDB30034 Num BTag13

0xBDB30038 Num BTag14

0xBDB3003C Num BTag15

0xBDB30040 Num BTag16

0xBDB30044 Num BTag17

0xBDB30048 Num BTag18

0xBDB3004C Num BTag19

0xBDB30050 Num BTag20

0xBDB30054 Num BTag21

0xBDB30058 Num BTag22

0xBDB3005C Num BTag23

0xBDB30060 Num BTag24

0xBDB30064 Num BTag25

0xBDB30068 Num BTag26

0xBDB3006C Num BTag27

Table 216 BMU Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS
C5EC3EARCH-RM REV 04

660 APPENDIX A: C-5E NP REGISTERS
BMU Detailed
Descriptions

The following is a detailed description of each of the BMU registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

Pool0 Base to Pool29 Base Registers (Buffer Pool Base Address Function)
Buffer pools must be configured during system initialization. Unpredictable behavior
results when a pool is accessed prior to its initialization. The following registers are used to
initialize buffer pools.

0xBDB30070 Num BTag28 Number of BTags
in a Pool
(continued)

See page 662

0xBDB30074 Num BTag29

0xBDB40000 Memory Size Physical Memory
Configuration, Test
and Debug

See page 663

0xBDB40008 SDRAM Config See page 664

0xBDB4000C Single ECC Errors See page 665

0xBDB40010 ECC Enable and Test
Enable

See page 665

0xBDB40014 Debug Config See page 666

0xBDB40018 Wr_Mem_Violation_Hi See page 667

0xBDB4001C Wr_Mem_Violation_Lo See page 667

Table 216 BMU Registers (continued)

ADDRESS REGISTER NAME FUNCTION DETAILED PARAMETERS

Purpose Buffer pool base address. Width depends upon physical memory size:
minimum value is 0, maximum value is the physical memory limit.

Software is responsible for ensuring that there is enough space to hold
all of the pool’s buffers.

Note: That the buffer pool “ends” at the next allocated piece of memory.

Address 0xBDB00000 - 0xBDB00074

Access Global Read/Write

Bit Position 31 24 23 0

Field Name Rsvd Pool Base
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Configuration Registers 661
Pool0 BTag Shift to Pool29 BTag Shift Registers (Buffer Size for a Pool Function)
Purpose BTag shift amount for address calculation. This value encodes the buffer

size for a pool. Table 217 lists legal buffer sizes and their encodings.

Minimum value is 0. Maximum value is 10.

Address 0xBDB10000 - 0xBDB10074

Access Global Read/Write

Bit Position 31 4 3 0

Field Name Reserved Pool BTag Shift

Table 217 BTag Shift Values and Corresponding Buffer Sizes

BTAG SHIFT BUFFER SIZE BTAG SHIFT BUFFER SIZE

0 64kB 6 1kB

1 32kB 7 512B

2 16kB 8 256B

3 8kB 9 Not Supported

4 4kB 10 64B

5 2kB
C5EC3EARCH-RM REV 04

662 APPENDIX A: C-5E NP REGISTERS
BTag FIFO Base0 to BTag FIFO Base29 Registers (BTag FIFO Base Address Function)

Num BTags0 to Num BTags29 Registers (Number of BTags in a Pool Function)

Purpose Buffer pool BTag FIFO base address. Used for BTag FIFO management.

Software is responsible for ensuring that there is enough space to hold
all of the pool’s BTags.

Note: That the FIFO “ends” at the next allocated piece of memory. Each
BTag consumes two bytes of memory.

Minimum value is 0. Maximum value is the physical memory limit.

Address 0xBDB20000 - 0xBDB20074

Access Global Read/Write

Bit Position 31 24 23 0

Field Name Rsvd BTag Base

Purpose Number of BTags in pool, in multiples of eight. Default value of 0 = 0
BTags allocated.

Address 0xBDB30000 - 0xBDB30074

Access Global Read/Write

Bit Position 31 13 12 0

Field Name Rsvd Num BTags
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Configuration Registers 663
Memory Size Register (Miscellaneous Function)
Purpose Physical memory size in bytes. Software determines the amount of

physical memory by writing and reading bit patterns to SDRAM. This
configuration register is written with a value representing the amount
of physical memory that software had determined that was present in
the system.

Address 0xBDB40000

Reset Value 10

Access Global Read/Write

Bit Position 31 2 1 0

Field Name Reserved physMemSize

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:2 Read as zero.

phyMemSize 1:0 Physical Memory Size — Size of physical memory in bytes.
Legal ranges are detailed here:

ENCODED
VALUE SIZE

00 64MB

01 128MB

10 256MB

11 Reserved
C5EC3EARCH-RM REV 04

664 APPENDIX A: C-5E NP REGISTERS
SDRAM Config Register (Miscellaneous Function)
Purpose SDRAM controller configuration register.

A write to this register tells the SDRAM controller the timing properties
of the SDRAM and also initiates the SDRAM configuration process.

Note: That SDRAMs require a manufacturer specific initial settling time
before the configuration process can begin. It is software’s responsibility
to ensure that this time has elapsed before the SDRAM configuration
register is written.

Address 0xBDB40008

Reset Value 0

Access Global Read/Write

Bit Position 31 29 28 26 25 23 22 20 19 16 15 4 3 0

Field Name Tmrd Trp Tcas Trcd Trc Refresh RfrNum

FIELD NAME BIT POSITION DESCRIPTION

Tmrd 31:29 Timing Mode Register Delay

Trp 28:26 Precharge Command Period Timing

Tcas 25:23 CAS Timing — CAS timing.

Trcd 22:20 Timing From Active to Command — Active to command
timing.

Trc 19:16 Timing RAS Cycle Time — RAS cycle time.

Refresh 15:4 Refresh Period — Refresh rate of SDRAM. For Micron SDRAM
memory parts, this value is computed as 15.625 µsec times the
clock rate for the memory. For example: for 100MHz Micron
SDRAM parts, this value must be less than or equal to 1562.

RfrNum 3:0 Refresh Number — Number of initial refreshes.
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Configuration Registers 665
Single ECC Errors Register (Miscellaneous Function)

ECC Enable and Test Enable Register (Miscellaneous Function)

Purpose This read only register counts the number of single Error Correction
Code (ECC) errors that have occurred.

Address 0xBDB4000C

Reset Value 0

Access Global Read

Purpose During normal operation, the Single Error Correction/Double Error
Detecting (SECDED) error code if bit [0] is set to 1. ECC is disabled if bit
[0] is set to 0. ECC test modes are controlled by bits [11:1].

Address 0xBDB40010

Reset Value 0

Access Global Read/Write

Bit Position 11 10 2 1 0

Field Name ECC Read Test Enable ECC Write Test Bits ECC Write Test Enable ECC Enable

FIELD NAME
BIT
POSITION DESCRIPTION

ECC Read Test Enable 11 ECC Read Test Enable – This enables the ECC read test
function, placing ECC bits directly on the Payload Bus.

ECC Write Test Bits 10:2 ECC Write Test Bits – Provides ECC bits for ECC write test.

ECC Write Test Enable 1 ECC Write Test Enable –This bit enables the ECC write test
function, writing ECC write test bits directly to SDRAM.

ECC Enable 0 ECC Enable – This bit enables ECC checking during normal
operation.
C5EC3EARCH-RM REV 04

666 APPENDIX A: C-5E NP REGISTERS
Debug Config Register (Miscellaneous Function)
Purpose BMU C-5e NP debug register in canonical format.

Address 0xBDB40014

Access Global Read/Write

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name Enb0 Rsvd MUX0 Enb1 Rsvd MUX1 Enb2 Rsvd MUX2 Enb3 Rsvd MUX3

Reset Value 0 raz 0 0 raz 0 0 raz 0 0 raz 0

Table 218 BMU Debug Inputs

MUXN VALUE EVENT CHOSEN

15 Payload read

14 Payload write

13 Global read

12 Global write

11 BTag read

10 BTag write

9 BTag deallocation

8 Counter allocation

7 Counter decrement

6 Global read to SDRAM

5 Global write to SDRAM

4 BTag write to SDRAM

3 BTag deallocation to SDRAM

2 Counter decrement deallocation to SDRAM

1 BTag read to SDRAM

0 Write causing a memory violation
C5EC3EARCH-RM REV 04

Buffer Management Unit (BMU) Configuration Registers 667
Wr_Mem_Violation_Hi Register (Miscellaneous Function)

Wr_Mem_Violation_Lo Register (Miscellaneous Function)

Purpose Captures the global or payload address of transactions that led to the
write error. Used in conjunction with Wr_Mem_Violation_Lo register.

Address 0xBDB40018

Access Global Read

Bit Position 7 6 5 0

Field Name Error Bus Payload_Addr_Ctl [37:32]

Reset Value 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Error 7 Error — 1=Error, 0=No error.

Bus 6 Bus — 1=Global bus, 0=Payload bus.

Bus Addr 0:5 Bus Addr — Records the high order of the Payload bus error
bits that caused the error.

Purpose Captures the global or payload address of transactions that led to the
write error. Used in conjunction with Wr_Mem_Viloation_Hi.

Address 0xBDB4001C

Access Global Read

Bit Position 31 0

Field Name Global_Addr [31:0] or Payload_Addr [31:0]

Reset Value 0

FIELD NAME BIT POSITION DESCRIPTION

Bus Addr 31:0 Bus Addr — Records the Global or Payload bus that caused the
error. If Payload this register capture only the low order bits.
Where as, the high order are recorded in the
Wr_Mem_Violation_Hi register.
C5EC3EARCH-RM REV 04

668 APPENDIX A: C-5E NP REGISTERS
Fabric Processor (FP)
Configuration Registers

Configuration Space in the FP is an area that contains a number of registers. The FP uses
these registers to communicate with the SDP and the bus controllers (Payload Bus and
Global Bus). The FP performs flow mapping and management to and from the switching
fabric.

FP Registers The following is a list of each FP register and its address, function, and reference to its
detailed parameters. The detailed parameters provide: purpose, field name, bit positions
and descriptions. You should also refer to “TxByte Processor’s Memory Space and
Registers” on page 194.

Table 219 Fabric Processor Registers

ADDRESS REGISTER NAME FUNCTION
DETAILED
PARAMETERS

0xBDD04000 TxFP_Enable FP Tx Enable See page 672

0xBDD04004 TxFI_Configuration FP Tx Configuration See page 673

0xBDD04008 TxDescInfo See page 675

0xBDD0400C TxDM_Header/Payload Delimiter See page 675

0xBDD04010 TxQueueWeight_Configuration See page 676

0xBDD04014 TxSysConfig See page 678

0xBDD04018 TxFI_CRC See page 678

0xBDD0401C TxFCE_Configuration See page 679

0xBDD04020 TxFP_Debug_Mux_Control FP Tx Debug See page 681

0xBDD04024 TxWCS_CAM FP TxWCS CAM See page 683

0xBDD0402C TxFlowTbl FP Tx Debug See page 684

0xBDD04030 TxFlowTbl_Data_Low See page 684

0xBDD04034 TxFlowTbl_Data_High See page 685

0xBDD04038 TxFlowCAM FP Tx Configuration See page 685

0xBDD0403C TxMergeAddr FP Tx Debug See page 687

0xBDD04040 TxMergeData See page 687

0xBDD04044 TxIdleData FP Tx Configuration See page 688

0xBDD04048 TxByte_Ctl0 FP TxByte General
Purpose

See page 688

0xBDD0404C TxByte_Ctl1 See page 689
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 669
0xBDD04050 TxDebug_Internal_State FP Tx Debug See page 689

0xBDD04054 Absolute Priority_Configuration FP Tx Configuration See page 690

0xBDE04000
to
0xBDE0407F

RxExtractSpace0 FP RxByte Processor0 See page 691

0xBDE04090 RxStatus0 See page 692

0xBDE04094 RxFlowSeg0 See page 693

0xBDE04098 RxFlowSize0 See page 694

0xBDE0409C RxTxCgs0 See page 695

0xBDE04200
to
0xBDE0427F

RxExtractSpace1 FP RxByte Processor1 See Table 221
on page 691

0xBDE04290 RxStatus1 See Table 222
on page 692

0xBDE04294 RxFlowSeg1 See Table 223
on page 694

0xBDE04298 RxFlowSize1 See Table 224
on page 694

0xBDE0429C RxTxCgs1 See Table 225
on page 695

0xBDE04600 RxFP_Enable FP Rx Enable See page 696

0xBDE04604 RxFI_Configuration FP Rx Configuration See page 696

0xBDE04608 RxDS_Header_Change1 See page 699

0xBDE0460C RxDS_Header_Change2 See Table 226
on page 699

0xBDE04610 RxDS_Header/Payload_Delimiter0 See page 700

0xBDE04614 RxDS_Header/Payload_Delimiter1 See Table 227
on page 700

0xBDE04618 RxDS_Header/Payload_Delimiter2 See Table 227
on page 700

0xBDE0461C RxDS_Configuration See page 701

0xBDE04620 RxFI_CRC See page 703

Table 219 Fabric Processor Registers (continued)

ADDRESS REGISTER NAME FUNCTION
DETAILED
PARAMETERS
C5EC3EARCH-RM REV 04

670 APPENDIX A: C-5E NP REGISTERS
0xBDE04624 RxWCS_CAM FP RxWCS CAM See page 704

0xBDE04628 RxByte0 General Purpose
Configuration

FP Rx Configuration See page 705

0xBDE0462C RxByte1 General Purpose
Configuration

See Table 228
on page 706

0xBDE04630 RxFCE_Configuration0 See page 706

0xBDE04634 RxFCE_Configuration1 See page 707

0xBDE04638 RxFCE_Configuration2 See page 709

0xBDE04640 Pool0_CFG0 FP Rx Pool Configuration See page 710

0xBDE04648 Pool1_CFG0 See Table 229
on page 710.

0xBDE04650 Pool2_CFG0

0xBDE04658 Pool3_CFG0

0xBDE04644 Pool0_CFG1 See page 711

0xBDE0464C Pool1_CFG1 See Table 230
on page 711.

0xBDE04654 Pool2_CFG1

0xBDE0465C Pool3_CFG1

0xBDE04660 RxByte_Shared_Low FP RxByte Shared See page 712

0xBDE04664 RxByte_Shared_High See page 712

0xBDE04680 RxFP_Interrupt_Event FP Rx Interrupt See page 713

0xBDE04684 RxFP_Interrupt_Enable See page 714

0xBDE04688 RxFP_Debug_Mux_Control FP Rx Debug See page 714

0xBDE04690 RxMemory_Address See page 717

0xBDE04694 RxMemory_Data See page 717

0xBDE04698 RxPDU_ID_CAM See page 718

0xBDE046A0 SEGs_Rcvd FP Rx Statistics See page 719.

0xBDE046A4 PDUs_Rcvd

0xBDE046A8 SEGs_Lost

0xBDE046AC PDUs_Lost

Table 219 Fabric Processor Registers (continued)

ADDRESS REGISTER NAME FUNCTION
DETAILED
PARAMETERS
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 671
0xBDE046C0 CParity_Err FP Rx Statistics
(continued)

See Table 232
on page 719

0xBDE046C4 Err_Hdr

0xBDE046C8 Parity_Err

0xBDE046CC Length_Err

0xBDE046D0 Reserved

0xBDE046D4 CRC_Err

0xBDE046D8 Odd_PDU

0xBDE046DC Seq_Err

0xBDE046E0 Seq_Dis

0xBDE046E4 Lost_PDU

0xBDE046E8 No_Flow_Tbl

0xBDE046EC No_BTag

0xBDE046F0 BTag_Err

0xBDE046F4 Alloc_Err

0xBDE046F8 Enque_Err

0xBDE04700 RxDebug_Internal_State FP Rx Debug See page 722

Table 219 Fabric Processor Registers (continued)

ADDRESS REGISTER NAME FUNCTION
DETAILED
PARAMETERS
C5EC3EARCH-RM REV 04

672 APPENDIX A: C-5E NP REGISTERS
FP Details Descriptions The following is a detailed description of each of the FP registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

TxFP_Enable Register (FP Tx Enable Function)
The transmit path is enabled via the TxEnable register.

The FPTx cannot be re-enabled after it has been disabled.

Purpose Provides TxFP enable/disable.

Address 0xBDD04000

Access Global Read/Write

Bit Position 31 30 0

Field Name Enable Reserved

Reset Value 0 0

FIELD NAME BIT POSITION DESCRIPTION

Enable 31 Tx Fabric Port Enable — 1 enables the internal FPTx logic; 0
disables the FPTx and holds it in reset.

Reserved 30:0 Read/write.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 673
TxFI_Configuration Register (FP Tx Configuration Function)

Purpose Allows physical configuration of the TxFP Interconnect.

Address 0xBDD04004

Access Global Read/Write

Bit Position 31 30 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

Field Name CFIEna
ble Rsvd

U2PHY
Tri

Enable

U2Mo
de

Variab
le

CellSiz
e

Rsvd PRIZMA Rsvd PowerX IdleCe
ll Rsvd Rsvd SEG

Size Rsvd Bus
Width BigEnd ATM OddP Rsvd RegIn

Reset Value 0

FIELD NAME BIT POSITION DESCRIPTION

CFIEnable 31 CFI Enable — 1 enables the external Freescale Fabric Interface; 0
disables (external pins are tri-stated).

Reserved 30:26 Read/write

U2PHYTriEna
ble

25 UTOPIA2PHYTri-state Enable — Enables tri-stating of FPTx
output pins. Should be set to 1 when the FPTx is configured for
U2PHY mode. Must be set to 0 for U2ATM and all other modes.

U2Mode 24 UTOPIA2 Mode Enable — 1 enables UTOPIA2 mode; 0 disables
UTOPIA2 mode.

VariableCellSi
zes

23 Variable Cell Size Enable — 1 enables variable length cells; 0
disables.

Reserved 22 Read/write

PRIZMA 21 PRIZMA Mode Enable — 1 enables PRIZMA fabric mode; 0
disables the PRIZMA fabric mode. Cannot be set with PowerX
bit [19].

Reserved 20 Read/write

PowerX 19 PowerX (CSIX-L0) Mode Enable — 1 enables PowerX mode; 0
deselects PowerX mode. Cannot be set with PRIZMA bit [21].

IdleCell 18 Idle Cell Enable — 1 generates idle cell when the transmit FIFO is
empty; 0 inhibits generation of idle cell.
Note: Idle cells are only supported for PRIZMA mode, and must be
set in PRIZMA mode.

Reserved 17 Read/write

Reserved 16 Must be set to a 1.
C5EC3EARCH-RM REV 04

674 APPENDIX A: C-5E NP REGISTERS
SEG Size 15:8 Segment Size — Configures segment size of fabric (legal values
are from 40 to 204Bytes).
Note: The segment size must be a multiple of four Bytes (1 word).
Unpredictable results may occur for values outside of this range or
non word aligned.

CSIX-L1 7 CSIX-L1 Mode Enable — 1 enables CSIX-L1 mode; 0 deselects
CSIX-L1 mode.

Bus Width 6:5 Bus Width — Specifies Fabric bus width. Legal values are detailed
here:

BigEnd 4 Select Big Endian — 1 selects big endian; 0 selects little endian.

ATM 3 ATM — Selects ATM or PHY mode for UTOPIA. 1 selects ATM; 0
selects PHY.

OddP 2 Odd Parity — 1 selects odd parity; 0 selects even parity.

Reserved 1 Read/write

RegIn 0 Select Registered Inputs — 1 selects registered inputs; 0 selects
non-registered inputs. Configurations are detailed here based on
the mode:

Note: Must be configured to 0 for UTOPIA2 mode. Must be a 1 for
UTOPIA3 and PRIZMA. This bit is a “don’t care” for PowerX(CSIX-L0)
and CSIX-L1 modes since there are no inputs to the FPTx.,
however, it is recommended to set the bit to a 1.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE WIDTH (BITS)

00 8

01 16

10 undefined

11 32

SETTING MODE

0 UTOPIA2

1 UTOPIA3, CSIX-L1, PRIZMA, PowerX
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 675
TxDescInfo Register (FP Tx Configuration Function)

TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function)

Purpose Describes descriptor layout allowing TxFCE to extract key information.

Address 0xBDD04008

Access Global Read/Write

Bit Position 31 24 23 16 15 8 7 0

Field Name Multicast Position Length Position Pool Position BTag Position

Reset Value 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Multicast Position 31:24 Multicast Position — Offset bit position in descriptor of
multicast bit.

Length Position 23:16 Length Position — Offset bit position in descriptor of PDU
length.

Pool Position 15:8 Pool Position — Offset bit position in descriptor of Pool ID.

BTag Position 7:0 BTag Position — Offset bit position in descriptor of BTag.

Purpose Used by the Data Merge hardware to prepend the header to the payload.

Address 0xBDD0400C

Access Global Read/Write

Bit Position 31 29 28 24 23 16 15 8 7 0

Field Name Reserved MinSOF-SOF IdleCellLen HeaderLen2 HeaderLen1

Reset Value 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:29 Read/write

MinSOF-SOF
Spacing

28:24 Minimum Cell Size — Specifies minimum Start of Frame
(SOF)-to-SOF timing, in terms of fabric clocks for short cells in
PowerX mode.

IdleCellLen 23:16 Idle Cell Length — Length of Idle Cell in bus cycles. (Used in
conjunction with TxFI Configuration register’s Idle Cell Enable
field and the Idle Cell Header register). Only in PRIZMA mode.

HeaderLen2 15:8 Header Length 2 — Length of middle and last segment
headers in Bytes.
C5EC3EARCH-RM REV 04

676 APPENDIX A: C-5E NP REGISTERS
TxQueueWeight_Configuration Register (FP Tx Configuration Function)

HeaderLen1 7:0 Header Length 1 — Length of first and only segment headers
in Bytes.

Purpose A globally accessible register that allows the configuration of FP weight
counters and minimum quantum counters.

Address 0xBDD04010

Access Global Read/Write

Bit Position 31 17 16 15 14 11 10 7 6 0

Field Name Reserved Write Reserved MQShiftVal WgtCtrVal QueueNumber

Reset Value raz 0 raz 1111 0001 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:17 Read as zero.

Write 16 Write — Setting this bit to a 1 causes the MQShiftVal [14:11]
and WgtCtrVal [10:7] to be written into the FPTx weighting
algorithm memory for the associated Queue Number. To fully
configure the weighting algorithm, perform one (1) write for
each queue (up to 128). This Write bit [16] is automatically
cleared by hardware after each assertion.
NOTE: Write to both fields, MQShiftVal [14:11] and WgtCtrVal
[10:7] for a given queue, to make a change to either field.

Reserved 15 Read as zero.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 677
MQShiftVal 14:11 Minimum Quantum Shift Value — This field contains the
amount to shift the initial weight counter value (WgtCtrVal
[10:7]) for the minimum quantum counter of the queue
specified. Legal ranges are detailed here:

WgtCtrVal 10:7 Weight Counter Value — This field contains the initial value
for the weight counter (also the refresh value) for the queue
specified. Legal ranges are detailed here:

QueueNumber 6:0 Queue Number — Number of the queue to be accessed.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE

RESULTING MINIMUM QUANTUM
COUNTER VALUE

0000 0 WgtCtrVal >>0

0001 1 WgtCtrVal >>1

0010 2 WgtCtrVal >>2

. .

. .

1111 15 WgtCtrVal >>15

ENCODED
VALUE

WEIGHT COUNTER
(16K*N BYTES)

0001 16K

0010 32K

0011 48K

. .

. .

1111 16K * 15 (240KBytes)
C5EC3EARCH-RM REV 04

678 APPENDIX A: C-5E NP REGISTERS
TxSysConfig Register (FP Tx Configuration Function)

TxFI_CRC Register (FP Tx Configuration)

Purpose Sets the base queue number for the FP.

Address 0xBDD04014

Access Global Read/Write

Bit Position 31 25 24 16 15 0

Field Name Reserved QueueOffset FabricID

Reset Value 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:25 Read/write

Queue ffset 24:16 Queue Offset — Base queue number for FP block of 128
queues in QMU.

FabricID 15:0 Reserved

Purpose The TxFI_CRC register configures the CRC function. The result can be
configured in two (2) ways:

• Initial value of the CRC accumulator (0 or all 1s)

• Inverted (one’s complement)

Also, the TxFI_CRC provides index fields that allow the CRC to be
calculated over any sequential portion of the segment, and then
appended or inserted anywhere afterward.

Address 0xBDD04018

Access Global Read/Write

Bit Position 31 30 28 27 26 25 24 23 16 15 8 7 0

Field Name Enable Reserved Rsvd CRC Ini1 Rsvd Invert FirstIndex LastIndex Append Index

Reset Value 0 0 1 0 or 1 0 0 or 1 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Enable 31 CRC Enable — 1 enables CRC mechanism; 0 disables and leaves
the CRC mechanism in reset.

Reserved 30:28 Read/write
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 679
TxFCE_Configuration Register (FP Tx Configuration Function)

Reserved 27 Must be set to 1.

Init1 26 CRC Initialization — 1 initializes the CRC register to all 1s; 0
initializes it to a 0.

Reserved 25 Must be set to 0

Invert 24 Invert CRC — 1 selects CRC to be inverted prior to being
appended to Segment; 0 selects not inverted.

FirstIndex 23:16 First Index — Offset from Byte 0 of segment to start of CRC
accumulation Byte. FirstIndex must be a multiple of 4.

LastIndex 15:8 Last Index — Must be equal to (cell size - 4). This represents the
offset (plus 1 byte) from byte 0 of segment to the last byte to be
part of the CRC accumulation.

Append
Index

7:0 Append Index — Byte offset from byte 0 of segment to
appended CRC (currently not supported).

Purpose Configures FCE descriptor size, queue configuration, and flow mask.

Address 0xBDD0401C

Access Global Read/Write. Bits [31:28] are read only from a global perspective;
they are written by FP hardware.

FIELD NAME BIT POSITION DESCRIPTION

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0

Field Name QMU Parity
Error

RdErr
or

WrErr
or

QMU
Error

IntAc
k

IntEna
ble

DescSiz
e Rsvd QMU Parity

Error Enable
PDU

Pause
FCEn

ab.
Queue
Depth Rsvd

Debug
Shift

Enable
Flow Mask

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

FIELD NAME BIT POSITION DESCRIPTION

QMUParityError 31 QMU Parity Error — Indicates QMU dequeue parity error
status.

RdError 30 Read Error — Indicates the TxFCE Read Control Block transfer
failed.

WrError 29 Write Error — Indicates the TxFCE Write Control Block transfer
failed.

QMUError 28 QMU Error — Indicates the TxFCE dequeue operation failed.

IntAck 27 Interrupt Acknowledge — Set to a 1 to acknowledge and
clear an interrupt, then set to 0.
C5EC3EARCH-RM REV 04

680 APPENDIX A: C-5E NP REGISTERS
IntEnable 26 Interrupt Enable — 1 enables interrupts to be generated to
the XP for the following errors:

• QMU parity error, bit [31] of this register.

• Read error, bit [30] of this register.

• Write error, bit [29] of this register.

• QMU error, bit [28] of this register.

DescSize 25:24 Descriptor Size — Legal ranges are detailed here:
:_

Reserved 23:22 Read/write

QMU Parity
Error Enable

21 QMU Parity Error Enable — 1 enables QMU dequeue parity
error checking, 0 disables parity checking.

PDU Pause 20 Reserved. Must be set to zero

FCEnable 19 Flow Control Enable — 1 enables per-queue flow control; 0
disables per-queue flow control.

Queue Depth 18 Queue Depth — 1 selects 16 queues x eight priorities; 0 selects
32 queues x four priorities.

Reserved 17 Must be set to 1.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE SIZE (BYTES)

00 12

01 16

10 24

11 32
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 681
TxFP_Debug_Mux_Control Register (FP Tx Debug Function)
For the purposes of debug, most of the internal registers are made visible via Global
Address Space, and a limited number of events (usually used to count) can be viewed via
the TxFP_Debug_Mux_Control register.

Debug Shift
Enable

16 Debug Shift Enable — Must be set =0.
When this bit is set (=1) the weight counter and minimum
quantum counter values are shifted right by eight (8) on
initialization and on refresh.
Note: This is a Test-Only mode for debug purposes.

Flow Mask 15:0 Flow Mask — Used to mask ‘x’ bits of 16bit Flow ID during CAM
operation on congestion messages.
When matching entries in the Tx Flow ID CAM using the
TxFlowCAM register (0xBDD0438), you must be sure to also set
this register’s Flow Mask field. The value of the Flow Mask is
AND’ed with the value of the TxFlowCAM register’s Match field to
obtain the result submitted to the CAM. The default value for
the Flow Mask is zero. Hence failing to set the Flow Mask means
you will never match any entry in the CAM.

Purpose Allows you to monitor events for FPTx debug purposes. These events are
selectable. See Table 220 on page 682. Any event can be viewed in
association with any of the four (4) selection fields, including
simultaneously being selected in more than one field (that is, viewed
multiple times).

For the purposes of debug, specific monitoring points with in the FPTx
are wired to the event register as selected by the
TxFP_Debug_Mux_Control register.

Address 0xBDD04020

Access Global Read, TxByte Processor Read/Write,

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name EN0 RSVD SEL0 EN1 RSVD SEL1 EN2 RSVD SEL2 EN3 RSVD SEL3

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

682 APPENDIX A: C-5E NP REGISTERS
FIELD NAME BIT POSITION DESCRIPTION

EN0 31 TxDebug Event Mux Control Enable 0 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 30:28 Read/write

SEL0 27:24 TxDebug Event Mux Control Select 0 — Selects one (1) of
the eight (8) FPTx events to be viewed for the corresponding
field.

EN1 23 TxDebug Event Mux Control Enable 1 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 22:20 Read/write

SEL1 19:16 TxDebug Event Mux Control Select 1 — Selects one (1) of
the eight (8) FPTx events to be viewed for the corresponding
field.

EN2 15 TxDebug Event Mux Control Enable 2 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 14:12 Read/write

SEL2 11:8 TxDebug Event Mux Control Select 2 — Selects one of the
eight (8) FP Tx events to be viewed for the corresponding field.

EN3 7 TxDebug Event Mux Control Enable 3 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 6:4 Read/write

SEL3 3:0 TxDebug Event Mux Control Select 3 — Selects one (1) of
the eight (8) FPTx events to be viewed for the corresponding
field.

Table 220 FPTx_Debug Monitored Events

SELECT VALUE MONITORED EVENT DESCRIPTION

0 Per-queue pause Pulses once per per-queue pause request from the FPRx.

1 Cell complete Pulses once per cell.

2 PDU complete Pulses once per complete PDU transmitted.

3 DMA request Pulses once per payload DMA.

4 PDU resume Pulses once per PDU resumed after a per -queue pause.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 683
TxWCS_CAM (Tx WCS CAM Function)

5 Fabric FIFO empty Active for every clock that the transmit FIFO is empty.

6 Send pause Pulses once per FPRx request to send a link-level pause.

7 Pause Pulses once per FPRx request to link-level pause.

Purpose Interface in global address space to initialize FP TxByte Processor’s WCSs
and CAMs.

Address 0xBDD04024

Access Global Read / Write (bits [7:6] are read only)

Table 220 FPTx_Debug Monitored Events (continued)

SELECT VALUE MONITORED EVENT DESCRIPTION

Bit Position 31 16 15 8 7 6 5 4 3 2 1 0

Field Name Reserved WCSWriteData WCSScanOut WCSWriteCmd CAMReset CAMUpdate WCS/CAM
Capture

WCS ATA
IN1

WCSDATA
IN0

Reset Value 0 0 0 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:16 Read/write

WCSWriteData 15:8 TxWCS_CAM WCS Write — Data to be written to both WCSes
via the Byte write interface.

WCSScanOut 7:6 TxWCS_CAM WCS Scan — Read only. WCS scan shift out for
Byte processors 1 & 0 (in that order).

WCSWriteCmd 5 TxWCS_CAM WCS Write Cmd — Setting this to a 1 launches a
Byte write to both WCSes. Cleared by hardware.

CAMReset 4 TxWCS_CAM Reset — Setting this to a 1 resets the TxByte
CAM.

CAMUpdate 3 TxWCS_CAM Update — Setting this to a 1 updates the CAM
array from the CAM’s shift registers. Cleared by hardware.

WCS/CAMCap
ture

2 TxWCS_CAM WCS/CAM Capture — Setting this to a 1
launches a WCS and CAM scan capture for diagnostic purposes
(loads data into the WCS and CAM shift registers). Cleared by
hardware.

WCSDATAIN1 1 TxWCS_CAM WCS DATAIN1 — Setting this to a 1 shifts a 1 into
the WCSes. Cleared by hardware.
C5EC3EARCH-RM REV 04

684 APPENDIX A: C-5E NP REGISTERS
TxFlowTbI Register (FP Tx Debug Function)

TxFlowTbl_Data_Low Register (FP Tx Debug Function)

WCSDATAIN0 0 TxWCS_CAM WCS DATAIN0 — Setting this to a 1 shifts a 0 into
the WCSes. Cleared by hardware.

Purpose Allows access to global address space read flow table inside the TxFCE.

Address 0xBDD0402C

Access Global Read/Write, 128 60bit entries

Bit Position 31 17 16 15 8 7 0

Field Name Reserved WT Reserved ADDR

Reset Value 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:17, 15:8 Read/write.

WT 16 Write Flow Table — Writing a 1 initiates a flow table write. This
bit is automatically cleared by hardware.

ADDR 7:0 Flow Table Address — Address of flow table to write or read.
Note: Only the first128 entries are valid.

Purpose Least significant word of Tx flow table data.

Address 0xBDD04030

Access Global Read/Write

Bit Position 31 0

Field Name DATA_LOW

Reset Value Undefined

FIELD NAME BIT POSITION DESCRIPTION

DATA_LOW 31:0 This is the low order data which was read from a flow table read,
or the data to be written on a flow table write.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 685
TxFlowTbl_Data_High Register (FP Tx Debug Function)

TxFlowCAM Register (FP Tx Debug Function)

Purpose Most significant word of Tx flow table data.

Address 0xBDD04034

Access Global Read/Write

Bit Position 31 28 27 0

Field Name Reserved DATA_HIGH

Reset Value raz Undefined

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:28 Read As Zero (raz)

DATA_HIGH 27:0 This is the high order data which was read from a flow table read,
or the data to be written on a flow table write.

Purpose Interface to global address space to initialize the TxByte Processor’s
TxFlow CAM store.

Address 0xBDD04038

Access Global Read/Write

Bit Position 31 27 26 25 24 23 8 7 0

Field Name Reserved WT DEL SRCH Match CAM WT Data

Reset Value raz raz raz raz raz (except bit 8) 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:27 Read as zero.

WT 26 Write CAM Location — This bIt is always read as zero. Writes
the location matched, or the next free location if nothing
matches (for diagnostic purposes only). Setting this bit to a 1
launches a CAM write of the write data. After the CAM write, the
bit is cleared by the hardware.

1 = write Cam entry
0 = do not write Cam entry
C5EC3EARCH-RM REV 04

686 APPENDIX A: C-5E NP REGISTERS
DEL 25 Delete CAM Entry — This bit is always read as zero.Deletes
CAM entry matched (for diagnostic purposes only). Setting this
bit to a 1 launches a CAM delete of the entry corresponding to
the previous match value. The Match [23:8] value must be set
first, and then the DEL CAM [25] bit set with a separate write to
this register. After the CAM write, the bit is cleared by the
hardware.

SRCH 24 CAM Search — 1 selects CAM search. This bit is always read as
zero.

Match 23:8 16Bit CAM Match Value — Value to search on. On reads, bits
23:9 return zeros, while bit 8 returns the CAM free indication.
When matching entries in the Tx Flow ID CAM using this
register, you must be sure to also set the TxFCE Configuration
(0xBDD0438) register’s Flow Mask field. The value of the Flow
Mask is AND’ed with the value of the TxFlowCam register’s Match
field to obtain the result submitted to the CAM. The default
value for the Flow Mask is zero. Hence, failing to set the Flow
Mask means you will never match any entry in the CAM.

CAM WT Data 7:0 CAM Write Data — CAM data read from the CAM, or to be
written to the CAM. Field is 6:0, but bit 7 is always set to 0.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE CAM ACTION

1 Delete Cam entry

0 Do not delete Cam
entry
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 687
TxMergeAddr Register (FP Tx Debug Function)

TxMergeData Register (FP Tx Debug Function)

Purpose Used to select the Merge Block address and access (read/write). Bit [5]
selects merge block 1/ 0, and bits [4:0] select the word offset (0-31).

Global Address 0xBDD0403C

Access Global Read, Global Write

Bit Position 31 17 16 15 8 5 0

Field Name Reserved WMB Reserved ADDR

Reset Value raz 0 raz 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:17 Read as zero.

WMB 16 Write Merge Block — 1 selects write; 0 selects read.

Reserved 15:8 Read as zero.

ADDR 5:0 Merge Space Address — Address of Merge Space to write/read.

Purpose Used to Write / Read Data from each Merge block.

Global Address 0xBDD04040

Access Global Read, Global Write

Bit Position 31 0

Field Name DATA

Reset Value 0
C5EC3EARCH-RM REV 04

688 APPENDIX A: C-5E NP REGISTERS
TxIdleData Register (FP Tx Configuration Function)

This register is meaningful only in PRIZMA mode.

TxByte_Ctl0 Register (FP TxByte General Purpose Function)

Purpose Provides data for idle cells.

Address 0xBDD04044

Access Global Read/Write

Bit Position 31 0

Field Name Idle Cell Data

Reset Value 0

FIELD NAME BIT POSITION DESCRIPTION

Idle Cell Data 31:0 Idle Cell Data — Four Bytes of data for Idle cell generation.
(Used in conjunction with the TxFI Configuration register’s Idle
Cell Enable field, and the TxDM Header Payload Delimiter register).

Purpose General purpose data which is accessible globally and by the TxByte
Processor. There are two (2) 32bit registers (TxByte_CTL0, TxByte_CTL1).

Address 0xBDD04048

TxByte
Processor
Address

 0x0A0 - 0x0A7

Access Global Read/ Write, TxByte Processor Read

Bit Position 31 0

Field Name Data

Reset Value 0

FIELD NAME BIT POSITION DESCRIPTION

Data 31:0 Global Read/Write, TxByte Processor Read
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 689
TxByte_Ctl1 Register (FP TxByte General Purpose Function)

TxDebug_Internal_State Register (FP Tx Debug Function)

Purpose General purpose data which is accessible globally and by the TxByte
Processor. There are two (2) 32bit registers (TxByte_CTL0, TxByte_CTL1).

Address 0xBDD0404C

TxByte
Processor
Address

 0x0A0 - 0x0A7

Access Global Read/ Write, TxByte Processor Read

Bit Position 31 0

Field Name Data

Reset Value 0

FIELD NAME BIT POSITION DESCRIPTION

Data 31:0 Global Read/Write, TxByte Processor Read

Purpose The TxDebug_Internal_State register has four (4) 8bit fields that provide
a internal signal debug information for the eight (8) internal scopes.

While the FPTx handles 128 flows, only eight flows (flows 0 to 7) are
active at any one time. Thus the bit fields indicate the state of each
active flow (within each field the LSB identifies flow 0 and the MSB
identifies flow 7).

Address 0xBDD04050

Access Global Read, Written by FPTx hardware

Bit Position 31 24 23 16 15 8 7 0

Field Name seg_pending dma_pending pause_flow flow_valid
C5EC3EARCH-RM REV 04

690 APPENDIX A: C-5E NP REGISTERS
Absolute Priority_Configuration Register (FP Tx Configuration Function)

FIELD NAME BIT POSITION DESCRIPTION

seg_pending 31:24 Segment Pending — 1 indicates the flow(s) (0 to 7) have
started to transmit a segment and are waiting for the
segment transmit to complete prior to getting the PDU
segment.

dma_pending 23:16 DMA Pending — 1 indicates the flow(s) (0 to 7) have
requested a PDU segment to be DMA’ed from DRAM to
DMEM and are currently awaiting the segment DMA to
complete so that it can be transmitted.

pause_flow 15:8 Pause Flow — 1 indicates the flow(s) (0 to 7) is being
paused (that is, flow controlled) and will be moved to
the ’sleep’ state to allow another ready flow to go active.
Only asserted for one core clock cycle.

flow_valid 7:0 Flow Valid — 1 indicates the flow(s) (0 to 7) are actively
transmitting. 0 indicates that the active flow slot is not
being used, that is, there are no additional queues ready
to be serviced.

Purpose A globally accessible register that allows enabling of absolute queues.

Address 0xBDD04054

Access Global Read/Write

Bit Position 31 0

Field Name Absolute Priority Queue Enable

FIELD NAME BIT POSITION DESCRIPTION

AbsPriEnable 31:0 Absolute Priority Queue Enable — 1= Enables
corresponding port’s absolute queue, 0= Disable
corresponding port’s absolute priority queue.
For a 16x8 configuration: bit[0] is port 0, bit[15] is port
15, and bits [31:16] are unused.
For a 32x4 configuration: bit[0] is port 0 and bit[31] is
port 31.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 691
RxExtractSpace0 Space (FP RxByte Processor0 Function)
Purpose Used for Extracting data from the headers by RxByte0 Processor and

storing it for building descriptors . See Table 221 on page 691 for similar
register.

Address 0xBDE04000 to 0xBDE0407F

RxByte
Processor
Address

0x00 to 0x1F (for 4 scopes per RxByte Processor), or

0x00 to 0x0F (for 8 scopes per RxByte Processor).

Access Global Read/Write, RxByte Processor Write, Hardware Read

Bit Position 31 0

Field Name Data

Reset Value 0

Table 221 RxExtractSpace0 Space (for RxByte Processor1)

REGISTER NAME PURPOSE ADDRESS
RXBYTE PROCESSOR
ADDRESS

RxExtractSpace1 Same as RxExtractSpace0, except
for RxByte Processor1.

0xBDE04200
to
0xBDE0427F

• 0x00 to 0x1F (for 4
scopes per RxByte
Processor), or

• 0x00 to 0x0F (for 8
scopes per RxByte
Processor).
C5EC3EARCH-RM REV 04

692 APPENDIX A: C-5E NP REGISTERS
RxStatus0 Register (FP RxByte Processor0 Function)

Purpose Read/modified Writes governing RxByte Processor receive operation for
datascope0. See Table 222 on page 692 for similar register.

Address 0xBDE04090

RxByte
Processor
Address

0x80 to 0x83

Access Global Read/Write, RxByte Processor Read/Write, Hardware Read/Write

Bit Position 7 6 1 0

Field Name Own Reserved Reserved

Reset Value 1 raz 0

FIELD NAME BIT POSITION DESCRIPTION

Own 7 Extract Space Ownership — 1 = FCE owns; 0 = RxByte Processor
owns.

Reserved 6:1 Read as zero.

Reserved 0 Reserved — Must be set to 0.

Table 222 RxStatus1 Register (for RxByte Processor1)

REGISTER NAME PURPOSE ADDRESS

RXBYTE
PROCESSOR
ADDRESS

RxStatus1 Same as RxStatus0, except for RxByte
Processor1.

0xBDE04290 0x80 to 0x83
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 693
RxFlowSeg0 Register (FP RxByte Processor Function)
The Flow Segment0 register is used by the RxByte Processor to associate a segment with a
flow. Specifically, the RxByte Processor writes the Flow ID, Segment type, and whether the
segment is part of a multicast flow.

Purpose Associates a received Segment to a Flow. See Table 223 on page 694 for
similar register.

Address 0xBDE04094

RxByte
Processor
Address

0x84 to 0x87

Access Global Read/Write, RxByte Procesor Write, Hardware Read

Bit Position 31 27 26 25 24 23 18 17 16 15 0

Field Name Reserved Multicast Seg Type Reserved FlowDisc FlowError PDU ID

Reset Value raz 0 0 raz 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:27 Read as zero.

Mulitcast 26 Multicast Enable — Reserved. Must be set to 0.

Seg Type 25:24 Segment Type — Defines the Segment (PDU Segment). Legal
values are detailed here:

Reserved 23:18 Read as zero.

FlowDisc 17 Flow Discard — 1 = Discards flow; 0 = does not discard flow.

ENCODED
VALUE TYPE

00 Continuation of Message (COM), (middle)
segment

01 End of Message (EOM), (last) segment

10 Beginning of Message (BOM), (first) segment

11 First and only Message (FOM), (first and last)
segment
C5EC3EARCH-RM REV 04

694 APPENDIX A: C-5E NP REGISTERS
RxFlowSize0 Register (FP Rx Byte Processor Function)

FlowError 16 Flow Error — 1 = RxByte Processor detects error (packet
discarded with error); 0 = RxByte Processor detects no error.

PDU ID 15:0 PDU ID — The 16bit PDU ID.

Table 223 RxFlowSeg1 Register (for RxByte Processor1)

REGISTER NAME PURPOSE ADDRESS

RXBYTE
PROCESSOR
ADDRESS

RxFlowSeg1 Same as RxFlowSeg0, except for RxByte
Processor1.

0xBDE04294 0x84 to 0x87

Purpose Identifies the Length of the PDU for a given flow. See Table 224 on
page 694 for similar register.

Address 0xBDE04098

RxByte
Processor
Address

0x88 to 0x8B

Access Global Read/Write, RxByte Processor Write, Hardware Read

Bit Position 15 0

Field Name Rx Flow Size

Reset Value 0

FIELD NAME BIT POSITION DESCRIPTION

Rx Flow Size 15:0 Receive Flow Size — Length in Bytes of PDU of the current flow.

Table 224 RxFlowSize1 Register (for RxByte Processor1)

REGISTER NAME PURPOSE ADDRESS

RXBYTE
PROCESSOR
ADDRESS

RxFlowSize1 Same as RxFlowSize0, except for RxByte
Processor1.

0xBDE04298 0x88 to 0x8B

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 695
RxTxCgs0 Register (FP Rx Byte Processor Function)

Purpose Transmit Congestion Flow ID, signals transmit side that a specific flow has
congestion and should be stopped. See Table 225 on page 695 for similar
register.

Address 0xBDE0409C

RxByte
Processor
Address

0x8C to 0x8F

Access Global Read/Write, RxByte Processor Write, Hardware Read

Bit Position 31 22 21 20 16 15 0

Field Name Reserved PAUSE_RES Reserved Flow ID

Reset Value raz 0 raz 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:22 Read as zero.

PAUSE_RES 21 Pause Resume — 1 = disable transmit (Pause), 0 = enables or
resumes transmit.
Note: Writing the PAUSE_RES bit validates the data in the register.
This bit MUST be written last.

Reserved 20:16 Read as zero.

Flow ID 15:0 Flow ID — 16bit Flow ID (FID) that is sent to the FPTx, where it is
masked and then mapped to a 7bit queue number by the FPTx
Flow Control CAM.

Table 225 RxTxcgs1 Register (for RxByte Processor1)

REGISTER NAME PURPOSE ADDRESS

RXBYTE
PROCESSOR
ADDRESS

RxTxcgs1 Same as RxTxcgs0, except for RxByte
Processor1.

0xBDE0429C 0x8C to 0x8F
C5EC3EARCH-RM REV 04

696 APPENDIX A: C-5E NP REGISTERS
RxFP_Enable Register (FP Rx Enable Function)
The internal FP Rx logic is enabled via the RxEnable Register.

A separate enable bit exists in the RxFI register for the FPRx external fabric interface.

RxFI_Configuration Register (FP Rx Configuration Function)
The FP contains eight (8) configuration registers residing in global address space allocated
to the FP block. The eight (8) registers include: RxFI_Configuration,
RxDS_Header_Change1, RxDS_Header_Change2, RxDS_Header/Payload_Delimiter0,
RxDS_Header/Payload_Delimiter1, RxDS_Header/Payload_Delimiter2,
RxDS_Configuration, and RxFI_CRC. These registers enable configuration of each of the
stages and are defined below.

Purpose Setting the enable to a 1 turns on the internal FPRx logic.

Address 0xBDE04600

Access Global Read/Write

Bit Position 31 30 0

Field Name Enable Reserved

Reset Value 0 raz

FIELD NAME BIT POSITION DESCRIPTION

Enable 31 FPRx Enable — 1 enables FPRx; 0 disables FPRx and holds it in
reset.

Purpose Allows physical configuration of the FPRx Interconnect.

Address 0xBDE04604

Access Global Read/ Write

Bit Position 31 30 27 26 25 24 23 22 16 15 8 7 6 5 4 3 2 1 0

Field Name CFI
Enable Inf BytePar

ity
Odd

Parity
Check
Parity

Fixed
Size

Segm
ent

Parity
Ctl

Mask

SEG
Size CLH Fab

Size
Fabric
Width BigEnd Rsvd ATM RegInp

ut

Reset Value 0 0 0 1 0 0 0 0 1 0 0 1 raz 0 1
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 697
FIELD NAME BIT POSITION DESCRIPTION

CFIEnable 31 Interface Enable Bit — 1 enables the Fabric Interface state
machines and I/O buffers; 0 disables Fabric Interface (external
pins are tri-stated). This enable, separate from the Rx Enable,
allows software to delay the asynchronous payload from
entering the port until the C-5e NP synchronous portions of the
FP are ready.

Interface 30:27 Interface Type — Selects the Interface type. Legal values are
detailed here:

ByteParity 26 Byte Parity — 1 selects parity on each Byte lane. 0 deselects
Byte lane parity. Used in PowerX mode only. When selected, one
bit of parity is matched for each Byte of fabric width (pins
CFI_CTL [6:3] = P[0:3]). Must be 1 for PowerX mode, 0 for all other
modes.

Odd Parity 25 Odd Parity — 1 selects odd parity check, 0 selects even parity.

Check Parity 24 Check Parity — 1 enables parity checking, 0 disables parity
checking.

FixedSizeSegm
ents

23 Fixed Size Segments — 1 selects fixed sized segments, 0
selects variable sized segments.
Must be set to 1 for UTOPIA2, UTOPIA3 and PRIZMA. Can be set
to 0 for UTOPIA3Like to M-5, CSIX-L1 and PowerX modes if
desired.

ParityCtl Mask 22:16 Parity Control Mask — Only used in PowerX mode and
must be set to 7. Must be set to 0 in non-PowerX modes.
Mask used to identify the valid CFI control pins that parity is
calculated over. (Parity of selected control pins is always XOR’ed
to least significant parity bit).

ENCODED
VALUE INTERFACE

0x0 UTOPIA3

0x1 Reserved

0x2 CSIX-L1

0x3 PowerX (CSIX-L0)

0x4 PRIZMA

0x5 UTOPIA1 and 2

0x6 to 0xF Reserved
C5EC3EARCH-RM REV 04

698 APPENDIX A: C-5E NP REGISTERS
SEG Size 15:8 Segment Size — Configures segment size of fabric (legal values
are from 8 to 204Bytes).
Note: The segment size must be a multiple of four Bytes (1 word).
Unpredictable results may occur for values outside of this range
or non word aligned.

CLH 7 Cell Level Handshake — Must be set to 1. When selected, flow
control threshold values in RxDS Header register (see page 699)
enable flow control on nearest cell boundary. When not selected,
flow control threshold values are directly used to assert flow
control.

Fabric Size 6 Reserved

Fabric Width 5:4 Fabric Bus Width — Specifies Fabric bus width. Legal ranges
are detailed here:

BigEnd 3 Big Endian — 1 selects Big Endian mode, 0 selects Little Endian
mode.

Reserved 2 Read as zero.

ATM 1 ATM Mode — 1 selects ATM mode, 0 selects PHY mode. This bit
is meaningful only in UTOPIA mode.

RegInput 0 Register Control and Data Input Pins — Asserted in all modes
except UTOPIA1 and 2. 1 selects Registered Input; 0 selects
non-Registered Input.

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE WIDTH (BITS)

00 8

01 16

10 Reserved

11 32
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 699
RxDS_Header_Change1 Register (FP Rx Configuration Function)

Purpose Configures Data Separator use of Payload Delimiter0 and Payload
Delimiter1 registers. See Table 226 on page 699 for similar register.

Address 0xBDE04608

Access Global Read/Write

Bit Position 31 30 24 23 16 15 8 7 0

Field Name Change Reserved Change Index Change Value Change Mask

Reset Value 0 raz 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Change 31 Change — Enable ability to switch from RxDS Header Delimiter0
register to RxDS Header Delimiter1 register.

Reserved 30:24 Read as zero.

Change Index 23:16 Change Index — Index into segment for match comparison
Byte.

Change Value 15:8 Change Value — Value to match against.

Change Mask 7:0 Change Mask — Mask to apply to match comparison Byte.

Table 226 RxDS_Header_Change2 Register

REGISTER NAME PURPOSE ADDRESS

RxDS_Header_Change2 Same as RxDS_Header_Change1. 0xBDE0460C
C5EC3EARCH-RM REV 04

700 APPENDIX A: C-5E NP REGISTERS
RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function)

Purpose Used by the Data Separator hardware to separate the header from the
payload. SeeTable 227 on page 700 for similar registers.

Address 0xBDE04610

Access Global Read/Write

Bit Position 31 24 23 16 15 8 7 0

Field Name Reserved Header Last Index Payload First Index Payload Last Index

Reset Value raz 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:24 Read as zero.

Header Last
Index

23:16 Header Last Index — Byte position offset from 0 Byte (first
Byte) of cell identifying the last Byte of the header. Must be less
than or equal to (Segment Size -5). .

Payload First
Index

15:8 Payload First Index — Byte position offset from 0 Byte (first
Byte) of cell identifying the first Byte of the payload.

Payload Last
Index

7:0 Payload Last Index — Byte position offset from 0 Byte (first
Byte) of cell identifying the last Byte of the payload.
Must be > 3, and must be > Payload First Index and Payload Last
Index must be > Header Last Index.
Note: The Payload Last Index typically equals (Segment Size -1),
using the Segment Size value programmed into the
RxFI_Configuration register. Refer to RxFI_Configuration
Register (FP Rx Configuration Function).

Table 227 RxDS_Header/Payload_Delimiter1 and 2 (for Payload Delimiter1 and 2)

REGISTER NAME PURPOSE ADDRESS

RxDS_Header/Payload_ Delimiter1 Same as RxDSHeader/Payload Delimiter0,
except for Payload Delimiter1.

0xBDE04614

RxDS_Header/Payload_ Delimiter2 Same as RxDSHeader/Payload Delimiter0,
except for Payload Delimiter2.

0xBDE04618
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 701
RxDS_Configuration Register (FP Rx Configuration Function)

Purpose Configures the Data Separator Hardware.

Address 0xBDE0461C

Access Global Read/Write

Bit Position 31 30 29 25 29 28 27 25 26 23 22 20 19 18 17 16 15 8 7 0

Field Name QueGntDis SharMem
GntDis Rsvd NumPri Rsvd HdrFIFO

XOFF
Ctl Word

Size
CtlWord
Disable Rsvd Drop

Hdr
Rx Byte

EOH
Data XOFF
Threshold

Data XON
Threshold

Reset Value 0 0 raz 0 raz 0 0 raz 0 32 32

FIELD NAME BIT POSITION DESCRIPTION

QueGntDis 31 Queue Grant Disable, (PRIZMA mode only) — Must be set
to 1. 0 enables hardware interpretation of Queue Grants to
link-level flow control Tx side of C-5e NP. 1 disables hardware
so that RxByte microcode can invoke per-flow flow control.
When enabled, link-level flow control is asserted whenever
any of the Queue Grants are not enabled.

SharMemGntDis 30 Shared Memory Grant Disable, (PRIZMA mode only) —
Must be set to 0. A 0 value enables hardware interpretation of
Shared Memory Pool Grants to link-level flow control Tx side of
C-5e NP. 1 disables hardware so that RxByte microcode can
invoke per-flow flow control. When this bit is zero, link-level
flow control is asserted whenever any of the Shared Memory
Grants are not asserted.

NumPri 29:28 Number of Priorities — This is the number of shared
memory grant priorities that are enabled.
Note: This is only applicable to PRIZMA/UDASL applications.
Encoded values are detailed here:

Reserved 27:25 Read as zero.

ENCODED
VALUE NUMBER OF PRIORITIES ENABLED

1 1 priority (priority “0”, which is the highest level)

2 2 priorities (0 and 1)

3 3 priorities (0, 1 and 2)

0 All 4 priorities (0, 1, 2 and 3)
C5EC3EARCH-RM REV 04

702 APPENDIX A: C-5E NP REGISTERS
HdrFIFOXOFF 26:23 Header FIFO Flow Control Threshold for XOFF — The level
of 4Byte words available in either header FIFO at which flow
control is asserted. When the available count drops to this
threshold or below, a link-level pause is asserted. When the
available count rises above this, a resume occurs.
When a header FIFO is empty, its available count is 16
(64Bytes). When full, its count is 0 (0Bytes). The valid range for
the threshold is 15 to 0.

CtlWordSize 22:20 Control Word Size, (PowerX only) — Must be set to 2.
Indicates the size of control words for fabrics which support
them. For instance, 0=disabled, 010b=2 bytes, 100b=4 bytes.
Control words are directed to the appropriate Byte processor
between cells. Between cells, a Byte processor needs to test a
control word condition prior to each cell being processed. The
Byte processor needs to handle all control words prior to
handling the next cell.

CtlWordDisable 19 Control Word Disable — Must be set to 0 for PowerX and 1
for all other modes. 1 deselects the Control word FIFO
operation; 0 enables CTL word FIFO operation. By deselecting
the CTL word FIFO, control words are ignored by the Data
Splitter logic and not presented to the Byte processor.

Reserved 18 Read as zero.

DropHdr 17 Drop Header — Must be set to 0. 1 selects header to be
dropped when payload is being dropped due to congestion; 0
selects header to be forwarded to Byte processors even when
payload is being dropped.

Rx Byte
processor EOH

16 Receive Byte Processor End of Header Indication — 1
selects RxByte Byte processor Data9 test condition to be set
true coincident with the last Byte of the header (PDU + SFR).
Refer to C-Ware Microcode Programming Guide (part number
CSTMCPG-UG/D). 0 selects RxByte Data9 test condition to be
set true coincident with the first Byte of the header.

Data XOFF
Threshold

15:8 Payload FIFO Flow Control threshold for XOFF — Number
of 32bit words available in the payload input FIFO when flow
control is asserted. Valid Range 0-126.
Note: The XOFF threshold must be less than the XON
threshold. When empty, there are 128 words available in the
Payload FIFO (512Bytes).

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 703
RxFI_CRC Register (FP Rx Configuration Function)

Data XON
Threshold

7:0 Payload FIFO Flow Control threshold for XON — Number
of 32bit words -1 available in the payload input FIFO when
flow control is deasserted. Valid Range: 1-127.
Note: The XON should always be greater than the Data XOFF
Threshold. If Data XON Threshold is less than Data XOFF,
unpredictable results will occur. When empty, there are 128
words available in the Payload FIFO (512Bytes).

Purpose The RxFI_CRC register configures the CRC function.

• Initial Value of the FP accumulator (0 or all 1s)

• Inverted (ones complement)

The RxFI_CRC provides INDEX fields which allow the CRC to be calculated
over any sequential portion of the Segment and then appended or
inserted anywhere afterward.

Address 0xBDE04620

Access Global Read/Write

Bit Position 31 30 28 27 26 25 24 23 16 15 8 7 0

Field Name Enable Rsvd Rsvd Init1 Reflect Invert FirstIndex LastIndex Rsvd

Reset Value 0 raz 0 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Enable 31 CRC Enable — 1 enables CRC mechanism; 0 disables and leaves
the CRC mechanism in reset.

Reserved 30:28 Read/write

Reserved 27 Must be set to 1

Init1 26 CRC Initialization — 1 initializes the CRC register to all 1s; 0
initializes it to a 0.

Reflect 25 Reserved. Must be set to 0.

Invert 24 Invert CRC — 1 selects CRC to be inverted prior to being
appended to Segment; 0 selects not inverted.

FirstIndex 23:16 First Index — Offset from byte 0 of segment to start of CRC
accumulation byte. FirstIndex must be a multiple of 4.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

704 APPENDIX A: C-5E NP REGISTERS
RxWCS_CAM Register (FP RxWCS CAM Function)

LastIndex 15:8 Last Index — Must be set to (cell size - 1). Represents the offset
from byte 0 of segment to the last byte of the CRC value itself (not
the last byte of the CRC accumulation region). Must be equal to or
less than (cell size -1), even if CRC is not enabled.

Reserved 7:0 Append Index — Unused. Byte offset from byte 0 of segment to
appended CRC.

Purpose Interface in Global address space to initialize the FP RxByte Processor’s
WCSs and CAMs along with the DBE WCS.

Address 0xBDE04624

Access Global Read / Write

FIELD NAME BIT POSITION DESCRIPTION

Bit Position 31 24 23 22 21 20 19 18 17 16

Field Name DBE Data In DBE Scan
Out Rsvd DBE Write Rsvd DBE Scan

Capture Rsvd DBE Scan1
In

DBE Scan0
In

Reset Value 0 x raz 0 raz 0 R/W 0 0

Bit Position 15 8 7 6 5 4 3 2 1 0

Field Name WCS Data In WCS Scan1
Out

WCS Scan0
Out WCS Write Rsvd

WCS /CAM
Scan

Capture

WCS /CAM
Scan Update

WCS /CAM
Scan1 In

WCS /CAM
Scan0 In

Reset Value 0 x x 0 raz 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

DBE Data in 31:24 DBE Data In — DBE WCS Byte wide data

DBE Scan Out 23 DBE Scan Out — Output of DBE Scan Chain (Read Only).

DBE Write 21 DBE Write — DBE WCS Byte Write (1 Selects Write)

DBE Scan Capture 19 DBE Scan Capture — Capture data from selected
address field from the DBE WCS to the DBE Scan Chain

Reserved 18 Read and Write.

DBE Scan1 In 17 DBE Scan1 In — Shift a 1 into the DBE Scan Chain.

DBE Scan0 in 16 DBE Scan0 In— Shift a 0 into the DBE Scan Chain.

Reserved 22, 20, 4 Read as Zero.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 705
RxByte0 General Purpose Configuration Register (FP Rx Configuration Function)

WCS Data in 15:8 WCS Data In — WCS Byte wide data

WCS Scan1 Out 7 WCS Scan1 Out — Output of WCS1 Scan Chain (Read
Only).

WCS Scan0 Out 6 WCS Scan0 Out — Output of WCS0 Scan Chain (Read
Only).

WCS Write 5 WCS Write — WCS Byte Write (1-Selects Write)

WCS/CAM Scan
Capture

3 WCS/CAM Scan Capture — Capture data from selected
address fields from WCS/CAM to WCS/CAM Scan Chain.

WCS/CAM Scan
Update

2 WCS/CAM Scan Update — Store or Update the CAM
entry as defined on the CAM Addr bits with the 36 bits of
data in the CAM Group, CAM Pattern, and CAM Tag.

WCS/CAM Scan1 In 1 WCS/CAM Scan1 In — Shift a 1 into the Scan Chain.

WCS/CAM Scan0 in 0 WCS/CAM Scan0 In —Shift a 0 into the Scan Chain.

Purpose The FP RxByte0 General Purpose Configuration register provides an area
for passing information between the XP and the RxByte Processor0.
SeeTable 228 on page 706 for similar register.

Global Address 0xBDE04628

RxByte
Processor
Address

0xA0 – 0xA3

Access Global Read/Write, RxByte Processor Read – Byte addressable

Bit Position 31 0

Field Name Data

Reset Value 0

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

706 APPENDIX A: C-5E NP REGISTERS
RxFCE_Configuration0 Register (FP Rx Configuration Function)
The RxFCE contains configuration registers that reside in global address space and are
allocated to the FP block. These registers enable configuration of descriptors and Buffer
Pools as defined below.

Table 228 RxByte1 General Purpose Configuration Register (for RxByte Processor1)

REGISTER NAME PURPOSE ADDRESS

RXBYTE
PROCESSOR
ADDRESS

RxByte1 General
Purpose
Configuration

Same as RxByte0 General Purpose
Configuration, except for RxByte Processor1.

 0xBDE0462C 0xA0 – 0xA3

Purpose Configures RxFCE descriptor size, Ring Bus response size, and flow
mask.

Address 0xBDE04630

Access Global Read/Write,

Bit Position 31 26 25 24 23 22 18 17 16 15 0

Field Name Reserved DescSize TLU Resp Reserved Resp Size PDUIDMask

Reset Value raz 10 0 R/W 10 0xFFFF

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:26 Read as zero.

DesSize 25:24 QMU Descriptor Size — Selects the Descriptor Size and
implicitly selects the extract space. For 16Byte x 16 scopes
(Desc Size = 12 or 16). For 32Byte x 8 scopes (Desc Size = 24
or 32). Legal ranges are detailed here:

ENCODED
VALUE SIZE (BYTES)

00 32

01 12

10 16

11 24
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 707
RxFCE_Configuration1 Register (FP Rx Configuration Function)

TLU Resp 23 Enable TLU Response — Force DBE to wait until TLU
response is complete before beginning to build a
descriptor.

1= enabled
0 = disabled

Reserved 22:18 Read and Write.

Resp Size 17:16 Response Size — Selects the TLU Response Size. For
16Byte x 16 scopes, (Resp Size = 16). For 32Byte x 8 scopes,
(Resp Size = 16 or 32). Legal ranges are detailed here:

PDUID Mask 15:0 PDU ID Mask — Used to mask bits of PDU ID.
Note: This could be used in lieu of microcode to
automatically mask a PDU ID of less than 16bits.

Purpose Configures the RxFCE.

Address 0xBDE04634

Access Global Write Only

Bit Position 31 16 15 14 13 10 9 8 7 0

Field Name PDU Size DfltSzEn PDULEen
CkDis Rsvd DropOnFlow Drop on

BTag
Allocation

Delay

Reset Value 0 raz 0 raz 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

ENCODED
VALUE SIZE (BYTES)

00 32

01 8

10 16

11 reserved
C5EC3EARCH-RM REV 04

708 APPENDIX A: C-5E NP REGISTERS
FIELD NAME BIT POSITION DESCRIPTION

PDU_Size 31:16 Default PDU Size — Used in place of the RxFlowSz register
value if bit 15 (Dflt SzEn) is selected.

DfltSzEn 15 Default Size Enable — 1 selects default size; 0 requires
RxByte processor code to fill out PDU length (usually obtained
from first PDU segment header) in the RxFlowSz register.

PDULenCkDis 14 PDU Length Check Disable — 1 disables PDU length check;
0 enables PDU length check. The PDU Length Check needs to
be disabled for applications that do not specify an accurate
PDU length. Typically this applies to applications that use a
Default PDU Size. With the PDU Length Check disabled, the
PDUs are enqueued without error even when the number of
bytes received is fewer than expected.

Reserved 13:10 Read as zero.

DropOnFlow 9 Drop on Flow — This bit must be set to 1. 1 selects drop
segment if a Flow Table CAM entry is not available; 0 selects
do not drop flow and wait for a Flow Table entry to become
available.

Drop on BTag 8 Drop on BTag — This bit should be set to 1. 1 selects drop
segment if BTag is not available; 0 selects wait for BTag to
become available. Leaving this set to 0 presumes that under a
worst case scenario, the BTag will become available prior to
the first segment fully arriving.

Allocation Delay 7:0 Allocation Delay — This bit must be set to 0. Back-off time
delay between retries when the FPRx Buffer Pool Manager is
replenishing BTags. The default is 0. Can change using
(number of core clocks 8), but not recommended.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 709
RxFCE_Configuration2 Register (FP Rx Configuration Function)

Purpose Configures the FCE.

Address 0xBDE04638

Access Global Write Only (Global Reads return inaccurate data).

Bit Position 31 23 22 21 20 19 18 17 0

Field Name Reserved RetryEnq XOFFNoScope
En EnqWaitWrCB

 Force
64Byte
WrCB

Transfers

DefaultQEn DefaultQNum

Reset Value R/W 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:23 Read and Write.

RetryEnq 22 Retry Enqueue — When set to 1, the FPRx retries failed
enqueue operations to the QMU until they succeed. When set
to 0, the FPRx drops the PDU upon a failed enqueue
operation.

XOFFNoScopeEn 21 XOFF No Scope Enable — When enabled, the FPRx asserts a
link-level pause when a “no scope available” condition is
encountered in an RxByte Processor; a resume is issued when
the scope becomes available.

EnqWaitWrCB 20 Enqueue Wait WrCB — When set to 1, enqueue requests are
stalled until all WrCB DMAs associated with the PDU are
complete. When set to 0, enqueue requests are issued as early
as possible. Typical applications should deassert this bit.

Force 64Byte
WrCBTransfers

19 Force 64Byte WrCB Transfers — When asserted, the FPRx
write control blocks (WrCB’s) always perform a 64Byte DMA
transfer to SDRAM. Otherwise, DMA transfers are in 16Byte
increments (16, 32, 48 or 64).

DefaultQEn 18 Default Queue Enable — 1 selects the use of the Default
Queue (see Default Queue field) in the event of a TLU error; 0
disables the use of the default queue.
Note: To use this feature ensure that the DBE microcode does
not set the Drop bit in the descriptor control word, or else the
PDU will be dropped after a TLU error.

DefaultQNum 17:0 Default Queue Number — Queue number to be used if
DfltQEn bit set and a TLU_ERROR occurs. In QMU Internal
Mode the queue is represented by bits [8:0]. In QMU External
Mode, the queue is represented by bits [17:0].
C5EC3EARCH-RM REV 04

710 APPENDIX A: C-5E NP REGISTERS
Pool0_CFG0 Register (FP Rx Pool Configuration Function)
Associated with each of the four (4) buffer pools are two (2) configuration registers
Pooln_CFG0 and Pooln_CFG1, where n=0,1,2,3.

Purpose Configures FCE Buffer Pool0 ID and buffer size parameters. See Table 229
on page 710 for similar registers.

Address 0xBDE04640

Access Global Read/Write

Bit Position 31 21 20 16 15 6 5 0

Field Name Reserved Pool ID Buffer Size Reserved

Reset Value raz 0 0 raz

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:21 Read as zero.

Pool Id 20:16 Pool ID — Maps to BMU Pool.

Buffer Size 15:6 Buffer Size — Must match BMU buffer size (between 64 and
64Kbytes) for specified pool ID. The sizes are in terms of 64 Byte
blocks. Buffer Size[15:6]=1 corresponds to a size of 64. Buffer
Size[15:6]=0b1111111111 corresponds to a size of 64K-64.
Note: A size of 0 is not applicable; Buffer Size[15:6]=0 corresponds
to a size of 64K.

Reserved 5:0 Read as zero.

Table 229 Pooln_CFG0 Registers (for Pools 1, 2, and 3)

ADDRESS REGISTER NAME PURPOSE
COUNTER
WIDTH (BITS)

0xBDE04648 Pool1_CFG0 Same as Pool0_CFG0, except for pool 1. 32

0xBDE04650 Pool2_CFG0 Same as Pool0_CFG0, except for pool 2. 32

0xBDE04658 Pool3_CFG0 Same as Pool0_CFG0, except for pool 3. 32
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 711
Pool0_CFG1 Register (FP Rx Pool Configuration Function)

Purpose Configures FCE Buffer Pool0, allocation threshold, and last block
parameters. See Table 230 on page 711 for similar registers.

Address 0xBDE04644

Access Global Read/Write

Bit Position 31 26 25 24 23 11 10 8 7 3 2 0

Field Name Reserved Reserved Reserved Alloc Threshold Rsvd Last Block

Reset Value raz n raz 0 raz 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:26 Read as zero.

Reserved 25:24 Must be set to n. Where n is the Pooln_CFG1 register. This field
resets to n. For example, n=0 for Pool0, n=1 for Pool1, n=2 for
Pool2, n=3 for Pool3.

Reserved 23:11 Read as zero.

Alloc
Threshold

10:8 Allocation Threshold — Specifies a threshold value such that
when the number of blocks drops below that threshold,
additional BTags are fetched until the 'Last Block' level is reached.
Rules:

Allocation Threshold must ALWAYS be ≤ Last Block.
Last Block = 0 disables pool refill.

Reserved 7:3 Read as zero.

Last Block 2:0 Last Block of BTags — Specifies the blocks (0-7) that are to be
filled. Specifying a Last block of 0 disables a given pool. Therefore
the useful range is 1 to 7, where a value of 1 with an Allocation
Threshold = 1 fills two blocks (0 and 1).

Table 230 Pooln_CFG1 Registers (for Pools 1, 2 and 3)

REGISTER NAME PURPOSE ADDRESS

Pool1_CFG1 Same as Pool0_CFG1, except for pool 1. 0xBDE0464C

Pool2_CFG1 Same as Pool0_CFG1, except for pool 2. 0xBDE04654

Pool3_CFG1 Same as Pool0_CFG1, except for pool 3. 0xBDE0465C
C5EC3EARCH-RM REV 04

712 APPENDIX A: C-5E NP REGISTERS
RxByte_Shared_Low Register (FP Rx Shared Function)
The RxByte Processor provides two (2), 4Byte shared registers (RxByte_Shared_Low and
RxByte _Shared_High) that are accessible by both the RxByte Processors (RxByte
Processor0 and RxByte Processor1). Therefore, a total of 8Bytes is accessible by either
RxByte Processor0 or RxByte Processor1. The registers are Byte writable from each of the
Byte processors.

The use of the RxByte_Shared_Low and RxByte _Shared_High registers are application
specific. For example, they could be used by the RxByte Processor’s microcode to pass
information between the RxByte Processor0 and RxByteProcessor1.

One Byte of these registers could serve as a read/modified write, (where the value of the
read/modified write is passed to each Byte Processor from the RxByte General Purpose
Configuration register), if needed by the application.

RxByte_Shared_High Register (FP Rx Shared Function)

Purpose Provides 4Bytes for passing information between the FP’s RxByte
Processor0 and RxByte Processor1.

Global Address 0xBDE04660

RxByte
Processor
Address

0xB0 – 0xB3

Access Global Read, RxByte Processor Read/Write – Byte addressable

Bit Position 31 0

Field Name Data

Reset Value 0

Purpose Same as the RxByte_Shared_Low register, except that this register
provides an additional 4Bytes for passing information between the FP’s
RxByte Processor0 and the RxByte Processor1.

Global Address 0xBDE04664

RxByte
Processor
Address

0xB4 – 0xB7
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 713
RxFP_Interrupt_Event Register (FP Rx Interrupt Function)
Purpose Access to interrupt events (interrupts directed to the XP via the

RxFP_Interrupt_Enable register).

Address 0xBDE04680

Access Global Read/Write, Write 1 to Clear

Bit Position 31 6 5 4 3 2 1 0

Field Name Reserved ParityError
No

BTags
on Alloc

WrFail BTagPRG BTagECC Alloc
Timeout

Reset Value raz 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:6 Read as zero.

ParityError 5 Parity Error — Indicates a parity error was detected on the
Freescale Fabric interface.

No BTags on
Allocation

4 No BTags on Allocation — BTag allocation failed because of no
BTags available from the BMU.

WrFail 3 Payload Fail — Indicates a Payload Bus error during a Payload
Write via the WrCB (that is, time-out after 16 retries).

BTagPRG 2 BTag PRG — Indicates either bad pool request (code 0x2) or a
non-existent memory location (code 0x6) was attempted by the
RdCB. These result from an inconsistent programming of the FPRx
Pools relative to the FPRx BTag.

BTagECC 1 BTag ECC — Indicates a double ECC error was returned as a result
of an attempt by the RxCB to transfer BTags from the BMU. A code
of 0x5 is returned by the RdCB.

Allocation
Timeout

0 Allocation Time-out— Indicates the number of BTag allocation
retries exceeded, (16 max.)
C5EC3EARCH-RM REV 04

714 APPENDIX A: C-5E NP REGISTERS
RxFP_Interrupt_Enable Register (FP Rx Interrupt Function)

RxFP_Debug_Mux_Control Register (FP Rx Debug Function)
Four (4) of thirteen (13) events can be viewed via the RxFP_Debug_ Mux_Control register.
The selectable events are shown in Table 231. Many of these events relate to FIFO full
conditions which, if the FPRx is programmed correctly, should never occur.

Any event can be viewed in association with any of the four (4) selection fields, including
simultaneously being selected in more than one field, that is, viewed multiple times.

Purpose Enable interrupts for the corresponding bits in the RxFP_Interrupt_Event
register. Set a bit to 1 to enable the interrupt.

Address 0xBDE04684

Access Global Read/ Write

Bit Position 31 6 5 4 3 2 1 0

Field Name Reserved Parity
ErrorEN

No BTags
on Alloc

EN
WrFailEN BTagPRG

EN
BTagECC

EN
AllocTime

outEN

Reset Value raz 0 0 0 0 0 0

Purpose For the purposes of diagnostics and debug. Enables key test points to the
system event register to be viewed.

Address 0xBDE04688

Access Global Read, RxByte Processor Read/Write,

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name En0 Rsvd Sel0 En1 Rsvd Sel1 En2 Rsvd Sel2 En3 Rsvd Sel3

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

En0 31 Enable0 — 1 enables the associated selected events; 0
disables the associated event from being viewed.

Reserved 30:28 Read as zero.

Sel0 27:24 Select0 — Selects one of the thirteen (13) FPRx events to be
viewed for the corresponding field. See Table 231 on page 715.

En1 23 Enable1 — 1 enables the associated selected events; 0
disables the associated event from being viewed.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 715
Reserved 22:20 Read as zero.

Sel1 19:16 Select1 — Selects one (1) of the thirteen (13) FPRx events to
be viewed for the corresponding field. See Table 231 on
page 715.

En2 15 Enable2 — 1 enables the associated selected events; 0
disables the associated event from being viewed.

Reserved 14:12 Read as zero.

Sel2 11:8 Select2 — Selects one (1) of the thirteen (13) FPRx events to
be viewed for the corresponding field. See Table 231 on
page 715.

En3 7 Enable3 — 1 enables the associated selected events; 0
disables the associated event from being viewed.

Reserved 6:4 Read as zero.

Sel3 3:0 Select3 — Selects one (1) of the thirteen (13) RxFP events to
be viewed for the corresponding field. See Table 231 on
page 715.

Table 231 RxFP Thirteen (13) Viewable Events

SELECT VALUE EVENT NAME DESCRIPTION

0 RxNextSeg Indicates that internal hardware is requesting the next
segment for processing. This event should occur normally
as a result of correct FP operation for each segment
received independent of whether an error is detected in
the segment or not. The only exception is a parity error
that occurs on the first word of a segment; in such case
the data is dropped at the fabric interface and no
segment is received.

1 RxFlow Indicates a good Queue status has been received from
the QMU as a result of an enqueue operation. This event
normally occurs as a result of correct operation of the
RxFP for non-errored PDUs.

2 RxSegmentErr Indicates one or more of the errors (as defined in the
error statistics table) has occurred on a segment. This
event occurs operationally as a result of the non-fatal
interface type errors.

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

716 APPENDIX A: C-5E NP REGISTERS
3 RxPDUErr Indicates that a DPU is being dropped and the BTag is
being deallocated. This occurs anytime a PDU encounters
an error and the BTag has already been allocated for that
PDU.

4 BPMErrAlloc Indicates that a BTag allocate error occurred due to no
BTags available in the BMU.

5 AsyncFIFOFull Indicates Async Fabric Interface FIFO is full. This should
never occur under any circumstances and would indicate
a hardware failure. This FIFO is ‘deallocated’ upon the
condition that it is not empty, that is, data is moved out
on the following clock cycle. Data is dropped at the
synchronous payload FIFO under congested operation.

6 HdrFIFOFull Indicates one of the header FIFOs is full. This FIFO is filled
by the Data Splitter with the selected header Bytes as
configured in the header/payload Delimiter registers.

7 EFIFOFull Indicates an internal FIFO that detects segment errors is
full. This condition should never occur.

8 PFIFOPause Indicates the payload FIFO pause (XOFF) threshold has
been exceeded. This typically occurs during a congested
or flow-controlled situation.

9 FlowFull Either of two Internal ‘Flow FIFOs’ are full. Each of the Rx
Byte processors, upon selecting scope ‘Avail’, push the
current flow forward into the flow handling hardware of
the FP Rx. A ‘Flow Full’ event indicates that one of these
FIFOs is full and in effect the flow handling hardware is
stalled for some reason. Typically this is due to Internal
hardware pending upon lack of some resource such as
BTags (although DROP_ON_BTAG should be selected to
prevent this). This event should never occur.

10 DBEFull An Internal FIFO that passes segments information to the
DBE. This event should never occur. This type of an event
could occur if the DBE or TLU is improperly programmed
so that the DBE is stalled, for example, waiting for a TLU
operation to complete.

11 EnqFull Indicates that the 16-deep enqueue request FIFO is full.
Typically this would only occur in Retry-Enqueue mode,
where the FPRx keeps retrying a single enqueue request
when the QMU indicates the enqueue failed (that is, QMU
queue is full).

Table 231 RxFP Thirteen (13) Viewable Events (continued)

SELECT VALUE EVENT NAME DESCRIPTION
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 717
RxMemory_Address Register (FP Rx Debug Function)

RxMemory_Data Register (FP Rx Debug Function)

12 DeqFull FPRx Dequeue Request FIFO Full. This event should never
occur. This indicates that FPTx is requesting Dequeue
operations to the FPRx faster than they can be sent via
the FP->QMU interface.

Purpose Configures the target memory address for accessing the Rx Flow Table or
Descriptor Table. Refer to “Rx Flow Table and Descriptor Table Access” on
page 269.

Address 0xBDE04690

Access Global Read/Write

Bit Position 31 0

Field Name Address

Reset Value 0

Purpose Used to write or read target Rx Flow Table or Descriptor Table locations.
Refer to Table 75 on page 270.

Address 0xBDE04694

Access Global Read/Write

Bit Position 31 0

Field Name Data

Reset Value 0

Table 231 RxFP Thirteen (13) Viewable Events (continued)

SELECT VALUE EVENT NAME DESCRIPTION
C5EC3EARCH-RM REV 04

718 APPENDIX A: C-5E NP REGISTERS
RxPDU_ID_CAM Register (FP Rx Debug Function)
Purpose Provides access to the FPRx PDU_ID CAM for debug purposes.

The PDU_ID CAM is a 160-entry CAM in the FPRx that maps a 16bit PDU
ID to an 8bit internal PDU index used by hardware. The CAM can be
accessed by software only for debug purposes.

Address 0xBDE04698

Access Global Read/Write. The CAM hardware updates the Free bit
continuously. The hardware updates the CAM data field after a Search
operation.

Bit Position 31 28 27 26 25 24 23 8 7 0

Field Name Reserved Free Write Delete Search Match CAM Data

Reset Value raz 0 raz raz 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31:28 Read as zero.

Free 27 Free - Indicates that at least one entry in the CAM is free
(available for use). This bit is read-only.

Write 26 Write CAM Location — Writes the location matched, or the
next free location if nothing matches (for diagnostic purposes
only). Setting this bit to a 1 launches a CAM write of the write
data. The bit will then be cleared by the hardware. It is always
read as zero.

Delete 25 Delete CAM Entry — Deletes CAM entry matched (for
diagnostic purposes only). Setting this bit to a 1 launches a CAM
delete of the entry corresponding to the match value. The bit
will then be cleared by the hardware. It is always read as zero.
Legal values are detailed here:

ENCODED
VALUE CAM ACTION

1 Delete CAM entry

0 Do not delete CAM entry
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 719
RxFP_Statistics Registers (FP Rx Statistics Function)
The FPRx provides nineteen (19) registers that accumulate statistics. These registers are
only accessible via the global bus. Table 232 defines these registers and provides their
Global Bus address. The RxFP Statistics Registers are read in 32bit quantities. For counters
that are only 16bits, the upper 16bits of the register are read as zero (raz) and the lower
16bits hold the contents of the requested counter. A global write to one of these registers,
regardless of the write data, resets the counter to 0.

When a counter reaches its maximum value, it rolls over to 0 and starts counting again.

Search 24 Search — 1 selects CAM search, using the match value. After
the search, the result is returned via the CAM data field in this
register.

Match 23:8 16bit CAM Match Value — Value to search on.

CAM Data 7:0 CAM Data - Contains the 8bit value that was read out of the
CAM after the most recent Search operation. Alternatively, this
represents the data that is written into the CAM on a Write
operation.

Table 232 Global Bus Receive FP Statistics Registers Map

ADDRESS NAME DESCRIPTION

COUNTER
WIDTH
(BITS)

0xBDE046A0 Segs_Rcvd Number of segments received. 32

0xBDE046A4 PDUs_Enq Number of PDUs successfully enqueued. 32

0xBDE046A8 Segs_Err Number of segments with an error. 32

0xBDE046AC PDUs_Err Number of PDUs that were dropped due to an error
and had their BTag deallocated. (does not include
PDUs that were dropped before a BTag could be
allocated, for instance due to an early parity error).

32

0xBDE046C0 CParity_Err Number of Control Word Parity Errors (PowerX only). 16

0xBDE046C4 Err_Hdr Number of Headers lost due to a header FIFO
overflow.

16

FIELD NAME BIT POSITION DESCRIPTION
C5EC3EARCH-RM REV 04

720 APPENDIX A: C-5E NP REGISTERS
0xBDE046C8 Parity_Err Number of received parity errors.
If a parity error occurs during an assertion of SOF
(the first clock cycle of a new segment), the parity
error counter is incremented and the data is
dropped immediately (no header or payload data is
received into the FIFOs).
If a parity error occurs after the SOF and while the
segment is being received, one parity error is
logged (only one per segment); the RxByte
Processor would still have to process the header,
after which the segment and its associated PDU are
automatically dropped.

16

0xBDE046CC Length_Err Number of segment length errors. 16

0xBDE046D0 Reserved Reserved. Read as zero. 16

0xBDE046D4 CRC_Err Number of CRC errors. Each error causes the
segment and its associated PDU to be dropped.

16

0xBDE046D8 Odd_Seg Number of odd Segments (COMs and EOMs
received without an associated BOM).

16

0xBDE046DC Seq_Err Number of sequencer errors (set by RxByte
processor).

16

0xBDE046E0 Seq_Dis Number of sequencer discards (set by RxByte
processor).

16

0xBDE046E4 Lost_Len_Err Number of PDUs dropped due to a PDU length
error. There are three (3) cases that cause this error:

• The number of received length bytes do not
match the expected payload length (only
flagged if PDU length checking is enabled).

• A second BOM is received for an already active
PDU.

• A segment is labelled as a BOM or COM, implying
that there are more segments to come, yet the
entire PDU length has already been received.

16

0xBDE046E8 No_Flow_Tbl Number of times no Flow Table entry available (all
160 flows are in use).

16

0xBDE046EC No_BTag Number of times no BTag available from the Pool
Cache in the FPRx.

16

Table 232 Global Bus Receive FP Statistics Registers Map (continued)

ADDRESS NAME DESCRIPTION

COUNTER
WIDTH
(BITS)
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 721
0xBDE046F0 BTag_Err Bits [23:16] represent the number of BTag
Programming Errors, for example, because of a bad
Pool ID. Bits [7:0] represent the number of BTag ECC
errors. The remaining bits are unused.

32
(contains
two 8bit
counters)

0xBDE046F4 Alloc_Err Number of BTag allocation errors, due to lack of
available BTags in the BMU.

16

0xBDE046F8 Enque_Err Number of enqueue errors (QMU responded with a
NAK, that is, due to a full queue).

16

Table 232 Global Bus Receive FP Statistics Registers Map (continued)

ADDRESS NAME DESCRIPTION

COUNTER
WIDTH
(BITS)
C5EC3EARCH-RM REV 04

722 APPENDIX A: C-5E NP REGISTERS
RxDebug_Internal_State Register (FP Rx Statistics Function)

Each state machine runs off the core clock and requires at least one clock cycle to
transition to the exit state. States are either conditional, that is, waiting for one or more
conditions to become true so they can exit to an alternate state, or they are transitional
whereby they will always exit to an alternate state in a single clock cycle.

While transitional states may have conditions that allow them to transition to one or more
possible states, if no condition is true, a default exit state ensures that they cannot remain
in the current state. The importance of this distinction is that when asynchronously
polling the RxDebug_Internal_State register, it is important to realize that by chance you
may hit upon transitional states that indicate that the machine is operating and that a cell
is being processed by the FPRx.

Purpose Enables viewing key internal states including: RxByte0/1 Program
Counter, Buffer State Machine States, Descriptor Build Engine Program
Counter, Transfer Control Block Programming States, and FP-QMU State
Machine States.

Address 0xBDE04700

Access Global Read Only

Bit Position 31 30 25 24 19 18 14 13 8 7 6 5 0

Field Name Rsvd RxByte0_PCtr RxByte1_PCtr BfrState DBEPrgCtr XCB FP-QMU

Reset Value 0 0 0 0 0 0 0

FIELD NAME BIT POSITION DESCRIPTION

Reserved 31 Read a zero.

RxByte0_PCtr 30:25 RxByte 0 Program Counter — Program Counter0 for the RxByte0
Processor [5:0], bit 6 is not available.

RxByte1_PCtr 24:19 RxByte1 Program Counter — Program Counter1 for the RxByte1
Processor [5:0], bit 6 is not available.

BfrState 18:14 Buffer State Machine States — See Table 235 on page 723.

DBEPrgCtr 13:8 Descriptor Build Engine Program Counter — Program counter
for the Descriptor Build Engine.

XCB 7:6 Transfer Control Block Programming States — See Table 234
on page 723.

FP-QMU 5:0 FP-QMU State Machine States — See Table 233 on page 723.
C5EC3EARCH-RM REV 04

Fabric Processor (FP) Configuration Registers 723
Consistently seeing a conditional state indicates that the machine is most likely waiting
for a condition to be fulfilled. This can help you identify a related illegal configuration.

Whether a state is conditional (C) or transitional (T) is called out in the following Machine
State tables.

Table 233 FP-QMU State Machine States

STATE
NUMBER

STATE
TYPE STATE NAME DESCRIPTION / EXIT CONDITION

0 C Idle Idle state awaiting enqueue request, or dequeue request
from the FPTx. This same state machine handles both
enqueue and dequeue operations on the FP->QMU
interface.

1 T Pend Pend State provided for timing purposes. Used by both
enqueue and dequeue operations.

10 T PrgCtl Program Control Information to QMU; such as PDU length,
and information from the Descriptor Control Word.

18 - 11 T Enq8-Enq1 Program Words 8 – 1.
Note: For 32Byte descriptors states Enq8-1 are transitioned,
24Byte descriptors Enq6-1, 16Byte descriptors Enq4-1, 12
Byte descriptors Enq3-1. Once an Enq state is entered they
cycle down to Enq1, then Pend, then back to idle, all one
clock per state.

Table 234 Transfer Control Block Programing States

STATE
NUMBER

STATE
TYPE STATE NAME DESCRIPTION / EXIT CONDITION

0 C Idle/ PrgDMA Idle State awaiting BFR Payload DMEM flush to DRAM. Upon
which Write CB DMA Register being programmed.

1 T PrgSys Write CB System Register is programmed as state is exited.

2 T PrgCtl Write CB Control Register being programmed.

Table 235 Buffer State Machine States

STATE
NUMBER

STATE
TYPE STATE NAME DESCRIPTION / EXIT CONDITION

0 C Idle Idle, waiting for Valid Segment Indication from RxByte0
Processor and RxByte Processor1 in alternating order.

1 T CAMWait PDU ID (PDU ID) CAM lookup delay state.
C5EC3EARCH-RM REV 04

724 APPENDIX A: C-5E NP REGISTERS
2 C Search Match PDU ID to produce Flow Index (FIN), Determines
Segment type. Requires available PDU ID CAM entry OR
DropOnFlow bit enabled (bit [9] selected to 1 in the
RxFCE_Configuration1 register).

3 T RdTable FIN is used to index into RxFlow Table.

4 C GetBTag For beginning of messages (firsts), state to get a BTag.
Technically this state is Transitional, however if no BTags
exist, the Bfr will alternate between states 2 and 4 until
BTags with correctly sized buffers become available.

5 C XfrData Transfer Data from Payload FIFO to 64Byte DMEM Buffer.
Xfr DMEM to DRAM every 64Byte boundary. Stays in this
state until End of Segment (EOS) or End of Packet (EOP).

6 C DropData Discard state for pad Bytes of last segment or discard due
to Segment/Flow error. Exit upon EOS.

7 C EnqQueue Enqueue Assessment state. Waits if Enqueue and no room
in Enqueue Request FIFO.

8 T Error Delay state to wait for worst case parity / FP errors.

9 C NewBfr State to get a new 64Byte DMEM buffer as XFR to buffer
DRAM BTag. Wait in this state until a new DMEM buffer is
available.

10 C PendBfr Special case where end of segment and 64 byte DMEM
buffer are full. Need to get a new buffer before updating
state table. Wait in this state until new DMEM buffer is
available.

11 T RtnPend Special delay state to allow DMEM buffer to be returned
during transfer if an error detected.

Table 235 Buffer State Machine States (continued)

STATE
NUMBER

STATE
TYPE STATE NAME DESCRIPTION / EXIT CONDITION
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Appendix B
USING AGGREGATE MODE
Appendix Overview This appendix covers the following topics:

• Purpose of the C-5e NP Channel Aggregate Mode

• Aggregate Mode Requirements on the C-5e NP

• Packet/Cell Ordering Handling for Rx in Aggregate Mode

• Packet/Cell Ordering Handling for Tx in Aggregate Mode

• Clock Distribution in Aggregate Mode

• Aggregate Mode Application Examples
C5EC3EARCH-RM REV 04

726 APPENDIX B: USING AGGREGATE MODE
Purpose of the C-5e NP
Channel Aggregate Mode

The C-5e NP Aggregate Mode enables you to scale serial bandwidths. The CPs can be
aggregated into parallel clusters for wider data streams. The C-5e NP’s 16 CPs can be
partitioned into four (4) groups of four (4) CPs called clusters. Clusters allow the CPs to
share resources (IMEM and DMEM) and support aggregation. A cluster of CPs can be
configured, for example, to work together to support one physical interface (such as
OC-12), or either the receive or transmit portion of one physical interface (such as Gigabit
Ethernet).

The types of physical interfaces that require aggregation in the C-5e NP include: Gigabit
Ethernet, FibreChannel, OC-12 and OC-12c.

Aggregate Mode
Requirements on the C-5e
NP

Aggregation requires that the C-5e NP fulfill two (2) requirements for processing data
from high-speed physical interface. These are needed to ensure that the C-5e NP is able to
keep up with the speed of these high-bandwidth physical interfaces, as well as effectively
use the processing power of the C-5e NP; the following requirements must be met:

1 Individual packets and cells must be distributed among the CPs in a cluster to
effectively share the processing load.

2 Packet and cell ordering between the ingress and egress physical interfaces must be
preserved.

Supporting these two (2) requirements have the following implications for the Serial Data
Processor (SDP) and Channel Processor RISC Core (CPRC) components as described in
Table 236 on page 726.

Table 236 Aggregate Mode Implications (for SDP and CPRC)

COMPONENT IMPLICATION

RxSDP The RxSDP must distribute incoming packets and cells to the different CPs within
a cluster in a round robin fashion.

CPRC The CPRC receive program must ensure that order is maintained with enqueue
operations to the QMU within a cluster.

The CPRC transmit program must ensure that order is maintained with dequeue
operations from the QMU within a cluster.

TxSDP The TxSDP must serialize outgoing packets and cells from the CPs within a cluster
to a single physical interface correctly.
C5EC3EARCH-RM REV 04

Packet/Cell Ordering Handling for Rx in Aggregate Mode 727
Packet/Cell Ordering
Handling for Rx in
Aggregate Mode

Most network protocols at Layer 2 and Layer 3 require that the forwarding component
maintain ordering, but some do not. At the physical layer the distinction between these
two (2) scenarios cannot be made. To solve this problem, the C-5e NP maintains ordering
of all packets and cells that it processes from a physical interface when aggregated.

To support distribution of packets or cells evenly to the CPs within a cluster, the C-5e NP
uses two (2) types of tokens:

• Hardware tokens in the RxSDP to deliver packets and cells to CPs in a round-robin
fashion

• The CPRC software receive programs use software tokens to serialize enqueue
operations. This maintains the ordering of descriptors to the QMU

Hardware Receive Tokens The RxSDP processor provides four (4) token buses that run among the RxBit processors,
the RxSONET Framer blocks, the RxSync processors, and the RxByte processors within a
cluster. Refer to Figure 115 on page 728. The token buses in the RxSDP pass tokens
between sequencers. A sequencer cannot forward a packet or cell upstream in the RxSDP
until it has the token. The token passing function is asserted by a microprogram running
in an RxSDP sequencer, and the token is typically passed by a microprogram based on
packet or cell delineation. This ensures that different packets and cells are delivered to
different CPs within a cluster in a round robin fashion.
C5EC3EARCH-RM REV 04

728 APPENDIX B: USING AGGREGATE MODE
Figure 115 RxSDP Token Buses

Software Receive Tokens The CPRC receive program is typically notified of packet or cell arrival from the RxSDP. It
then makes a forwarding decision and enqueues a descriptor to the QMU for forwarding
to the egress interface. In the aggregated case, the software program running on the
receive CPRC must ensure that the QMU receives application-defined descriptors in the
same order that the packets that the descriptors represent arrived from the physical
interface. To achieve this requirement, the software programs running on the CPRC must
ensure that the descriptor enqueue operations are serialized.

The CPRC programs achieve this by using a piece of shared DMEM as a software token.
A CPRC program only enqueues when it owns the token. The program passes the token to
its neighbor after enqueueing the descriptor.

This operation ensures that transactions to the QMU are in the same order in which the
packets arrived on the physical interface.

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

Token
Bus

Token
Bus

Token
Bus

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

Token
Bus

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor
C5EC3EARCH-RM REV 04

Packet/Cell Ordering Handling for Tx in Aggregate Mode 729
Packet/Cell Ordering
Handling for Tx in
Aggregate Mode

Like receive aggregation, transmit aggregation must maintain ordering from the QMU to
the physical interface. This requires the same level of synchronization and ordering as
receive aggregation.

Hardware Transmit Tokens There is a single hardware token bus that is used in the TxByte processor. Refer to
Figure 116 on page 730. The management of this token bus is controlled by the
microcode running in the TxByte processor. This token controls the draining of the large
FIFO downstream of the TxByte processor.

This function allows the TxByte processors to prime the FIFOs even if they do not happen
to own the token. When the TxByte processor does own the token, the large FIFO is filled
with enough data to keep the TxBit processor — and the physical interface — full.

There is only one (1) TxBit processor that operates per aggregated cluster. This processor
gets the data from the large FIFO selected by the TxByte token that is being passed in a
round-robin fashion.

Software Transmit Tokens The CPRC transmit program maintains a software token in shared DMEM for the cluster
doing transmit processing for the aggregated physical interface. The transmit program
can only send the packet or cell to its TxSDP when it owns the token. After the TxSDP
begins packet or cell transmission, the CPRC transmit program passes the token to its
neighbor so it can begin the same process.
C5EC3EARCH-RM REV 04

730 APPENDIX B: USING AGGREGATE MODE
Figure 116 TxSDP Token Bus

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

Token
Bus

TxByte
Processor

TxByte
Processor

TxByte
Processor

TxByte
Processor
C5EC3EARCH-RM REV 04

Clock Distribution in Aggregate Mode 731
Clock Distribution in
Aggregate Mode

The pad data and clocks are wired so that they can be accessed equally by all CPs in the
cluster.

Latching is performed at the pads using the configured clock, with the latched data
circulated to the SDPs. The pads are grouped such that two (2) CPs have sufficient pads to
meet the needs of either transmit or receive. During aggregation, the receive clock from
one (1) CP cluster becomes the master receive clock for all of the pads in the two (2) CP
clusters. In addition, the PHY chip in OC-12c generates the transmit clock, so the clock is
received and then forwarded through the transmit clock mux to become the master
transmit clock for the cluster.

The transmit data and clock are available to all four (4) transmit SDPs in CPs 0 to 3 through
busing from the pins. Similarly, the receive data and clock is available for all four (4) receive
SDPs in CPs 4 to 7 through busing from the pins. OC-12 aggregation of four (4) CPs has the
transmit pins allocated from CPs 0 and 2 and receive pins allocated from CPs 1 and 3.

Aggregate Mode
Application Examples

Each application that uses CP aggregation (Gigabit Ethernet, FibreChannel, OC-12 and
OC-12c) has a slightly different implementation. This section provides details on each.

Gigabit Ethernet and
FibreChannel Applications

Both Gigabit Ethernet and FibreChannel use the TBI (ten-bit interface) physical layer
encoding. Even though Layer 2 and above of the protocol is different, each of these
protocols implements aggregation in the same fashion. GMII for Gigabit Ethernet also
follows this same aggregation scheme.

PHY Connectivity
The pins that connect the TBI/GMII and the C-5e NP are spread across all of the pins in a CP
cluster. It so happens that the transmit pins from the TBI/GMII are on CP0 and CP1 of the
cluster and the receive pins are on CP2 and CP3 of the cluster. Since every CP only has 7
pins associated with it, this configuration is necessary for processing of TBI/GMII protocols.
For complete descriptions of Gigabit Ethernet and FibreChannel pinouts, see the C-5e NP
Data Sheet.

After the pins are routed inside the C-5e NP, they are muxed together and sent as a single
10bit stream to each CP in the cluster for processing as a single stream. Refer to Figure 117
on page 733.
C5EC3EARCH-RM REV 04

732 APPENDIX B: USING AGGREGATE MODE
SDP Components
The RxSDP components that are used by these protocols are the 8b/10b Decode block,
the RxBit processor, the RxSync processor, and the RxByte processor. The TxSDP
components that are used by these protocols are the TxByte processor, the TxBit
processor, and the 8b/10b Encode block. The receive path is shown in Figure 117 on
page 733, and the transmit path is shown in Figure 118 on page 735.

8b/10b Decode Block
Since Gigabit Ethernet and FibreChannel are 10bit protocols, they each use the 8b/10b
Decode block in the RxSDP to convert the 10bit physical layer encoding into the 8bit data
on which the C-5e NP can operate.

FibreChannel has a slightly different Loss-of-Synchronization state machine than Gigabit
Ethernet that is implemented in this block.

RxBit Processor
The RxBit processor delivers received packets to the RxSync processor. Functionally, the
RxBit processor is used in these applications for frame delineation, stripping of control
characters, and preamble for delivery of the packet without physical layer or control
information into the RxSync processor.

RxSync and RxByte Processors
The RxSync processor is used in both FibreChannel and Gigabit for auxiliary processing.
The RxByte processor is used for function parsing and processing of Layer 2 and above in
Gigabit Ethernet and FibreChannel. In addition, the RxByte processor forwards packets
when it owns the token. It then passes the token to the next RxByte processor in line. If
the token is not owned by the RxByte processor, the packet is dropped.
C5EC3EARCH-RM REV 04

Aggregate Mode Application Examples 733
Figure 117 SDP Receive Path for Gigabit Ethernet and FibreChannel

TxByte Processor
The TxByte processor is used in these protocols to distribute packets from the cluster of
CPs to a single physical interface by way of the TxBit processor. This is done by each of the
TxByte processors in a cluster filling the large FIFO with bytes, but not allowing the TxBit
processor to empty its FIFO until it owns the hardware token.

C-
5e

NP

 B
ou

nd
ar

y
PHY Clock Core Clock

Large
FIFO

8b/10b
Decode
Block

CP0 RxSDP

PHY Clock Core Clock

Large
FIFOCP1 RxSDP

PHY Clock

10

5

5

PHY

TBI/
GMII

Core Clock

Large
FIFOCP2 RxSDP

PHY Clock Core Clock

Large
FIFOCP3 RxSDP

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxBit
Processor

RxBit
Processor

RxBit
Processor

RxBit
Processor

Small
FIFO

Small
FIFO

Small
FIFO

Small
FIFO

8b/10b
Decode
Block

8b/10b
Decode
Block

8b/10b
Decode
Block

M
U

X

11 (TBI)/13 (GMII)

Token Bus
C5EC3EARCH-RM REV 04

734 APPENDIX B: USING AGGREGATE MODE
Functionally, the TxByte processor does header updating and replacement, CRC and
checksum recalculation of data flowing through to the physical interface.

TxBit Processor
The TxBit processor is used to send the 8bit data bytes to the 8b/10b block for 10bit
encoding and transmission out to the physical interface. The TxBit processor appears to
receive a single stream of data from the set of large FIFOs from other TxSDPs (in order of
what TxByte processor owns the hardware token). Functionally, the TxBit processor is
responsible for inserting idle characters, control characters, and inter-packet gaps.

8b/10b Encode Block
The 8b/10b Encode block takes the 8bit data from the TxBit processor and does the
proper 10bit encoding before transmission to the physical interface.

In the case of FibreChannel, this encoder inserts the correct End-of-Frame (EOF) word
based on the 8b/10b running disparity. There is no such requirement in Gigabit Ethernet.
C5EC3EARCH-RM REV 04

Aggregate Mode Application Examples 735
Figure 118 SDP Transmit Path for Gigabit Ethernet and FibreChannel

PHY Clock

C-
5e

 N
P

Bo
un

da
ry

Core Clock

RxBit
Processor

Large
FIFOCP4 TxSDP

PHY Clock Core Clock

CP5 TxSDP

PHY Clock

10

5

5

PHY

TBI/
GMII

Core Clock

CP6 TxSDP

PHY Clock Core Clock

CP7 TxSDP

11 (TBI)/13 (GMII)DE
M

U
X

TxBit
Processor

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

TxByte
Processor

Large
FIFO

Small
FIFO

TxByte
Processor

TxByte
Processor

TxByte
Processor

8b/10b
Encode
Block

Large
FIFO

Large
FIFO

Token Bus
C5EC3EARCH-RM REV 04

736 APPENDIX B: USING AGGREGATE MODE
Implementation Options
Both Gigabit Ethernet and FibreChannel can be implemented in two (2) different designs.

Non-blocking Operation
This is how the reference applications in the C-Ware Applications Library are implemented.
Clusters 0 and 2 are dedicated to receive processing and clusters 1 and 3 are dedicated to
transmit processing.

The physical design implications are that the transmit pins on CP0 and CP1 on clusters 0
and 2 are tied down since they are not used. Likewise, the receive pins on CP2 and CP3 on
clusters 1 and 3 are tied down since they are not used.

Blocking Operation
To have a system with twice the port density, but potentially blocks the C-5e NP, can be
configured to have four (4) Gigabit Ethernet or FibreChannel ports by wiring all the
receive and transmit data pins on a cluster.

That is each cluster would have a full-duplex PHY connected to it by wiring all the pins on
the cluster to one (1) PHY.
C5EC3EARCH-RM REV 04

Aggregate Mode Application Examples 737
OC-12 and OC-12c
Applications

Both OC-12 and OC-12c applications, which include Packet-Over-SONET (POS) and ATM,
can be implemented with the C-5e NP using CP aggregation. Both of these protocols use
the SDP in the same configuration but have subtle differences in serialization and
synchronization of the SDPs.

PHY Connectivity
The pins that the physical interface are wired to on the C-5e NP are spread out over the
cluster. This is because each CP on the C-5e NP only has 7 external pins associated with it
and that is too few to support OC-12 or OC-12c. Internally, the OC-12 or OC-12c data pins
are replicated and sent to each of the CPs within the cluster for processing. For complete
descriptions of OC-12/OC-12c pinouts, see the C-5e NP Data Sheet.

SDP Components
The RxSDP components that are used by these protocols are the RxBit processor, the
RxSONET Framer block, the RxSync processor, and the RxByte processor. The TxSDP
components that are used by these protocols are the TxByte processor, the TxSONET
Framer block, and the TxBit processor. The receive path is shown in Figure 119 on
page 738, and the transmit path is shown in Figure 120 on page 740.

RxBit Processor
The RxBit processor is used to perform SONET Frame delineation, that is, it locates the
A1/A2 bytes and determines when it is in the Loss-Of-Frame (LOF).

RxSONET Framer
The RxSONET Framer block has different responsibilities in OC-12 and OC-12c.

• In OC-12, each SONET frame contains four (4) independent OC-3c streams. Each
RxSONET Framer block processes the SONET overhead for its OC-3c stream and sends
the associated payload up to the RxSync processor.

• In OC-12c, each RxSONET Framer block processes the overhead for the entire OC-12c
SONET frame and sends all SONET payload up to the RxSync processor.

RxSync Processor
The RxSync processor performs ATM cell delineation for an STM cell stream, or a
Point-to-Point Protocol (PPP) packet processing for Packet-over-SONET (POS) data stream.

The data stream is sightly different between OC-12 and OC-12c applications.

• In OC-12, the RxSync processor receives one (1) of the four (4) OC-3c payload streams.
C5EC3EARCH-RM REV 04

738 APPENDIX B: USING AGGREGATE MODE
• In OC-12c, each RxSync processor receives all of the payload for the entire OC-12c
stream.

RxByte Processor
The RxByte processor does functional parsing of ATM cells or PPP packets and has no
special aggregation function.

Figure 119 SDP Receive Path for OC-12 and OC-12c

C-
5e

 N
P

Bo
un

da
ry

PHY Clock Core Clock

OC-12 OC-12c

Large
FIFOCP0 RxSDP

PHY Clock Core Clock

Large
FIFOCP1 RxSDP

PHY Clock

10

5

5

PHY

OC-12/
OC-12c

Core Clock

CP2 RxSDP

PHY Clock Core Clock

CP3 RxSDP

9M
U

X

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

RxBit
Processor

Small
FIFO

Small
FIFO

Small
FIFO

Small
FIFO

RxSONET
Framer
Block

RxSONET
Framer
Block

RxBit
Processor

Large
FIFO

RxSONET
Framer
Block

RxBit
Processor

Large
FIFO

RxSONET
Framer
Block

RxBit
Processor

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor
C5EC3EARCH-RM REV 04

Aggregate Mode Application Examples 739
TxByte Processor
Functionally, the TxByte processor does any type of translation, re-encapsulation, or
checksum/CRC regeneration for the protocol.

Transmit FIFO Automatic Token Passing:
The C-5e NP uses a automatic token passing mechanism. The method is for the
TxLargeFIFO to check whether the Merge9 bit is set on a payload byte. When it sees the
ninth bit set, it automatically passes the token enabling the TxLargeFIFO on the next
Channel Processor.

To enable this feature for the C-5e NP, set the Auto Token Enable bit in the SDP_MODE4
register. Refer to “SDP_Mode4 Register (CP Mode Configuration Function)” on page 536.

TxSONET Framer
The TxSONET Framer block in these applications adds the correct SONET overhead to the
OC-12 or OC-12c payload for transmission out onto the physical medium. The output of
the TxSONET Framer block goes to the TxBit processor in the base CP of the cluster.

TxBit Processor
The TxBit processor sends the data bytes to the physical interface for transmission by way
of the small FIFO.
C5EC3EARCH-RM REV 04

740 APPENDIX B: USING AGGREGATE MODE
Figure 120 SDP Transmit Path for OC-12 and OC-12c

PHY Clock
C-

5e

NP
 B

ou
nd

ar
y

Core Clock

RxBit
Processor

Large
FIFOCP4 TxSDP

PHY Clock Core Clock

CP5 TxSDP

PHY Clock

10

5

5

PHY

TBI/
GMII

Core Clock

CP6 TxSDP

PHY Clock Core Clock

CP7 TxSDP

9DE
M

U
X

TxBit
Processor

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

TxByte
Processor

Large
FIFO

Small
FIFO

TxByte
Processor

TxByte
Processor

TxByte
Processor

Large
FIFO

Large
FIFO

TxSONET
Framer
Block
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Appendix C
SONET/SDH CP SUPPORT
Appendix Overview This appendix covers the following topics:

• C-5e NP SONET Support Overview

• SONET/SDH Overview

• SONET/SDH Overhead Access

• CP Configuration Space (SONET/SDH Specific)

• SONET/SDH Monitoring Example

• Automatic Protection Switch (APS) Overview

• Determining Signal Degrade/Signal Failure Conditions with C-5e NP
C5EC3EARCH-RM REV 04

742 APPENDIX C: SONET/SDH CP SUPPORT
C-5e NP SONET Support
Overview

SONET monitoring is available to all SONET applications for OC-3, OC-12 and OC-12c rates.
The C-5e NP RxSonet and TxSonet SDP logic blocks perform a portion of the SONET
monitoring task. The tasks are performed using both hardware and software as described
here:

• Specific SONET monitoring tasks are performed by hardware portions of the C-5e NP
during monitoring include:

– SONET OC-3c/OC-12c framing/mapping (RxSonet/TxSonet Block in SDP).

– Identification and notification of defect conditions by the SONET framer (RxSonet
block writes CREGs). The hardware times out defect conditions, not “soak”
conditions.

– Configurable SONET interrupt to notify the CPRC of interesting SONET events.

– Configurable automatic forwarding of RDI_L, RDI_P, REI_L, and REI_P via clearing of
Manual FEBE bit in SDP_Mode3 register.

– Visibility into received SONET framers via RxSonet CREGs.

– Ability to insert transmit overhead into the transmit SONET stream via TxSonet
CREGs.

– Accumulates up to one (1) second of B1, B2, B3, REI_P, REI_L errors for Automatic
Protection Switch (APS).

– The remaining portion of the SONET monitoring is shared between the XP and the
CPRC.

• The C-Ware API’s SONET Protocol Services, software, include a module that provides
access and configuration control to the SONET blocks in the hardware. Specific
monitoring tasks are performed by software portions of the C-Ware API’s SONET
Protocol Services during monitoring include:

– Configure fixed transmit overhead.

– Monitor and soak defects, for example, LOS, LOF and others.

Also, SONET Reference Applications are provided that implement the features of the C-5e
NP and the API.
C5EC3EARCH-RM REV 04

SONET/SDH Overview 743
SONET/SDH Overview SONET/SDH (Synchronous Optical Network/Synchronous Digital Hierarchy) is a standard
for optical transport that defines optical carrier levels and their electrically equivalent
synchronous transport signals. SONET allows for a multi-vendor environment and
positions the network for transport of new services, synchronous networking, and
enhanced Operation, Administration, Maintenance and Provisioning (OAM&P).

The C-5e NP SONET/SDH transmit support consists of inserting payload into the
SONET/SDH frame on the transmit side. The SONET/SDH frame overhead data is read from
the Channel Processor (CP) Configuration registers.

The SONET/SDH receive support consists of extracting payload from the SONET/SDH
frame and forwarding this payload to the large FIFO of the CPRC. The SONET/SDH frame
overhead data is written to the Channel Processor (CP) Configuration registers.

The C-5e NP allows access to a large portion of the SONET/SDH Overhead Read Directory
by the CPRC or the XP/Host via the Global Bus. This allows a given application the
flexibility to add code to support such features as Orderwire or Data Communication
Channels.

The C-5e NP Supports three (3) SONET/SDH configurations internally:

• OC-3c,

• OC-12c,

• OC-12 with 4 separate OC-3c embedded streams.

With the addition of the M-5 Channel Adapter and an external OC-48 framer device the
C-5e NP can also support OC-48.

The C-5e NP conforms with both SONET and SDH standards. Therefore, OC-3 is used
instead of (STS-3/STM-1), OC-12 is used instead of (STS-12/STM-4, and OC-48 is used
instead of (STS-48/STM-16).

In addition, to the SONET/SDH Overhead access on both the transmit (Tx) and receive (Rx)
side, the SONET/SDH block provides a function for defect monitoring purposes.
SONET/SDH defect events are flagged in the SONET_Event register. An example of the
types of events supported are listed in Table 237 on page 744.
C5EC3EARCH-RM REV 04

744 APPENDIX C: SONET/SDH CP SUPPORT
In addition, the SONET block can automatically forward far-end alarm indications on the
same port when errors are detected on the line (for example, LOS, LOF, B1, etc.) This is
done when the SDP_Mode3 register bit [13] Manual_FEBE field is set to 0.

Table 237 Example of Events Reported in the SONET_Event Register

EVENT CATEGORY EXAMPLES USE

Defects
(Non-Pointer
related)

LOS, LOF, C2 error (PLM-P), LCD-P Near-end fault detection.

AIS-L, RDI-L, AIS-P, RDI-P Far-end fault detection.

Counters B1, B2, B3 Near-end error rate detection.

REI-L, REI-P Far-end error rate detection.

Pointer Defects LOP-P, PTR-Change, NDF, H4 Change Near-end fault detection.

APS Support APS-Error, K2 Change Switching protection.

Other OH Support Z1, Z2, Z3, Z4, Z5 Change, S1 Change Synchronization states and country
specific SDH support.

Trail Trace Support J0 Change, J1 Available J0/J1 Path & Section trace support.

General Support Tx overhead complete, Rx transport
overhead available, Rx path
overhead available

Useful for updating overhead on Tx
and checking other SONET overhead
on Rx when no other interrupt is
available.
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 745
SONET/SDH Overhead
Access

Configuration Space of the CPs includes a number of registers that pertain to
implementing and using the SONET/SDH functions. Primarily, sixty-four (64) (4Byte)
(256Byte total) registers are used for storing receive (Rx) and transmit (Tx) SONET
overhead. The SDP RxSONET Framer block writes bytes to the space in a manner similar to
way the SDP RxByte Processor writes to Extract Space. The CPRC can read the Receive
SONET registers at any time. The CPRC can write to the Receive SONET registers, but only
during initialization and test periods (when the SDP_Mode3 register bit [30] RxEnable field
is clear).

The SDP TxSONET Framer block reads bytes from the space, similar to the way merge
registers are used by the SDP TxByte Processor. The CPRC process can read or write the
Transmit SONET registers at any time. Refer to “Rx_SONETOH0 to Rx_SONETOH31
Registers (CP SONET Rx Control Function)” on page 517 and “Tx_SONETOH0 to
Tx_SONETOH31 Registers (CP SONET Tx Control Function)” on page 517.

For detail descriptions of the SONET/SDH transport overhead bytes. Refer to Telcordia
GR-253 Core Synchronous Optical Network (SONET) Transport Systems: Common Generic
Criteria, (Issue 3, September 2000).

SONET/SDH Frame Format
Overview

The basic frame format consists of 9 x 90Bytes (9rows x 90columns) called an STS-1. An
STS-1 frame contains 810Bytes and is transmitted in 125µs for a bit rate of 51.840Mbps.
Higher aggregate data rates can be accommodated by combining multiple STS-1 frames
to create STS-N frames. STS-N frames consist of N Byte interleaved STS-1 frames. To carry
single higher rate payloads, frames can be interleaved with fixed phase alignment to form
concatenated frames. For example, an STS-3c (concatenated) frame can be used to
transport a payload with bit rate up to 155.52Mbps where a STS-3 frame can carry three
(3) distinct 51.840Mbps payloads.

The SONET/SDH frame format is divided into two (2) main areas: Synchronous Payload
Envelope (SPE) and Transport Overhead (TOH). The SPE contains the information being
transported by the frame. The TOH supports the Operation, Administration, Maintenance
and Provisioning (OAM&P) functions of SONET/SDH, and includes a data communication
channel that provides an OAM&P communication path between multiple interconnected
SONET/SDH network elements.
C5EC3EARCH-RM REV 04

746 APPENDIX C: SONET/SDH CP SUPPORT
The ninety (90) columns are allocated as follows: the first three (3) columns are reserved
for the TOH, while the remaining eighty-seven (87) columns are for the SPE. Transmission
is row by row starting with the byte in the upper left corner and ending with the byte in
the lower right corner. The nine (9) rows of the TOH are allocated: first three (3) are the
STS-1 Section Overhead, while the remaining six (6) rows are for the STS-1 Line Overhead.
The TOH is able to couple the functions of certain overhead bytes to the network
architecture by using the Section OH and the Line OH. Also the TOH provides a pointer or
pointers to the SPE(s). The STS Path Overhead (STS POH) is part of the SPE. The STS POH
has the task of monitoring quality and indicating the contents of SPE. The TOH’s pointer
points to a different destination based on the STS level. For OC-3c and OC-12c, it points to
the STS-3c or STS-12c Path overhead J1 byte. For OC-12, four (4) separate pointers identify
four (4) separate J1 bytes. Refer to Figure 122 on page 747.

Figure 121 on page 746 shows the receive SONET pointer state machines operation. Refer
to Table 239 on page 750 and Table 244 on page 763 for the corresponding transport
overhead byte H1, STS #1 for receive SONET/SDH OC-3c and OC-12/OC-12c.

Figure 121 Receive SONET Pointer State Machine

Valid Pointer Loss of Pointer

AIS-P

3 good pointers or
1 NDF set with valid 0-782

AIS (3 sequential frames)

10 NDF or 10 invalid pointer

AIS (3 sequential frames)

10 NDF set or 10 invalid pointers

RESET of SONET block

3 good pointers

Invalid pointer is declared as follows:
If all ones, Valid pointer
If 8 of 10 rule is met for increment or decrement decision - VALID Pointer
Else If out of range (0-782) INVALID Pointer
If NDF clear, and doesn't match previous pointer - INVALID Pointer
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 747
Figure 122 SONET/SDH Frame Format

STS-3c

STS-3c Path
Overhead
for OC-3c

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

Payload Capacity

STS-12 Path
Overhead
for OC-12

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

Payload Capacity

STS-12c

STS-12c Path
Overhead
for OC-12c

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

Payload CapacityFix
ed Stu

ff

Synch. Payload Encelope (87Bytes x N)

Row1STS1 Section
Overhead

STS1 Line
Overhead

J0

F1

D3

H3

B2

K1

D6

D9

E2

Z0

CS

H3

K1

CS

Z0

CS

H3

K2

CS

A1

B1

D1

H1

B2

D4

D7

D10

S1

A1

MD

MD

H1

B2

Z2

A1

MD

MD

H1

B2

Z1

A2

E1

D2

H2

K1

D5

D8

D11

Z2

A2

MD

MD

H2

Z2

A2

H2

M1

Row2

Row3

Row4

Row5

Row6

Row7

Row8

Row9

Column1 Column2 Column3

ST
S#

1
ST

S#
2

...
N

Transport Overhead (3Bytes x N)

For OC-3c and OC-12c:
X points to J1 of STS Path OH

For OC-12:
X points to 4 sepreate J1's
of STS Path OH
using 4 separate pointers.

Pointer=X, See details here:

SONET Frame (90Bytes x N)

A1

B1

D1

H1

B2

D4

D7

D10

S1

A2

E1

D2

H2

K1

D5

D8

D11

Z2

J0

F1

D3

H3

B2

K1

D6

D9

E2

Co
lu
mn1

Presentation example of a single STS. Specifically (STS1,Column1,2,3):

Co
lu
mn2

Co
lu
mn3

Row1

Row9

NOTE: For OC-3c, there are 9Rows x 90Columns x 3sets of STS's for a total of 2,430Bytes.

NOTE: For OC-12c, there are 9Rows x 90Columns x 12sets of STS's for a total of 9,720Bytes.

ST
S#

1
ST

S#
2

...
N

ST
S#

1
ST

S#
2

...
N

ST
S-
3c

#2

ST
S-
3c

#3

ST
S-
3c

#4

ST
S-
3c

#1
C5EC3EARCH-RM REV 04

748 APPENDIX C: SONET/SDH CP SUPPORT
The SONET OC-3c, SONET OC-12 and OC-12c Overhead positions and definitions for both
the Rx (readable) and Tx (writable) sides, as well as, detail mapping information listing the
SONET/SDH overhead definitions and C-5e NP addresses and whether the overhead
contents are Transport or Path bytes are covered in the following sections. Refer to
Table 238 on page 748.

SONET/SDH OC-3c
Overhead Bytes

This section provides the SONET/SDH OC-3c Overhead positions and definitions for both
the Rx (readable) and Tx (writable) sides. Also, the detail mapping information listing the
SONET/SDH overhead definitions and C-5e NP addresses and whether the overhead
contents are Transport or Path bytes. For the Rx side, refer to Figure 123 on page 749,
Table 239 on page 750, Table 240 on page 754 and Table 241 on page 755. For the Tx side,
refer to Figure 124 on page 757, Table 242 on page 758, Table 243 on page 761 and
Table 246 on page 777.

Table 238 Quick Reference to Applicable SONET/SDH Information

STANDARD FLOW POSITIONS
TRANSPORT
DEFINITIONS

PATH
DEFINITIONS

STATISTICS
COUNTER
DEFINITIONS
(TRANSPORT &
PATH)

SONET
Overhead
OC-3c

Rx See Figure 123
on page 749.

See Table 239
on page 750.

See Table 240
on page 754.

See Table 241
on page 755.

Tx See Figure 124
on page 757.

See Table 242
on page 758.

See Table 243
on page 761.

N/A

SONET
Overhead
OC-12/OC-12c

Rx See Figure 125
on page 762.

See Table 244
on page 763.

See Table 245
on page 774.

See Table 246
on page 777.

Tx See Figure 126
on page 781.

See Table 247
on page 782.

See Table 248
on page 790.

N/A
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 749
Receive OC-3c Readable Overhead Bytes Positions
Figure 123 on page 749 shows the readable bytes in the OC-3c SONET/SDH Overhead.

Figure 123 Rx SONET/SDH OC-3c Readable Overhead Bytes

A1

B1
0x4503

H1
0x4511

B2
0x4513

D4
0x4518

D7
0x451b

D10
0x451e

S1
0x4522

D1
0x450b

A1

H1

B2
0x4515

Z1
0x4524

A1

MD0_2
0x4504

H1

B2
0x4514

Z1
0x4523

J1
0x452c

B3
0x452d

G1
0x452f

F2
0x4530

H4
0x4531

Z3
0x4532

Z4
0x4533

Z5
0x4534

C2
0x452e

Path
Overhead

A2

E1
0x4506

H2
0x4512

K1
0x4516

D5
0x4519

D8
0x451c

D11
0x451f

Z2
0x4525

D2
0x450e

A2

H2

Z2
0x4526

A2

H2

M1
0x4527

J0
0x4500

F1
0x4508

H3

K2
0x4517

D6
0x451a

D9
0x451d

D12
0x4520

E2
0x4528

D3
0x4510

Z0_2
0x4501

CS0_2
0x4509

H3

CS1
0x4529

Z0_3
0x4502

CS0_3
0x450a

H3

CS1
0x452a

1 2 3 1 2 3 1 2 3

1

2

3

4

5

6

7

8

9

Column

R
o
w

STS

Section
Overhead

Line
Overhead

= Reserved for future use

MD0_3
0x4505

MD1_2
0x4507

MD2_2
0x450c

MD2_3
0x450d

MD3_2
0x450f

1 2 3

= Unconditionally readable SONET overhead bytes

= H1 and H2 bytes contain pointer status information. See register decode for specific details.

= Contains the count of errors received in the last frame.
 Note: For B2, there is an additional B2_SUM register at offset 0x4521 that contains the total B2 errors.

NOTE: Receive frame synchronization of the A1 & A2 Bytes is performed by the RxBit Programmable Processor.

Rx Pointer Byte
(H1 and H2)
C5EC3EARCH-RM REV 04

750 APPENDIX C: SONET/SDH CP SUPPORT
Receive OC-3c Transport Overhead Definitions
Table 239 on page 750 lists the SONET/SDH Transport Overhead definitions and
addresses.

Table 239 Receive SONET/SDH OC-3c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD BYTE C-5E NP ADDRESS NOTES

J0 0xBCn04500 The J0 value received in (1,3,1) (row, column, STS)
position of the last frame is written to this location.

Z0, STS #2 0xBCn04501 Z0 growth byte value received in last frame for
position (1,3,2).

Z0, STS #3 0xBCn04502 Z0 growth byte value received in last frame for
position (1,3,3).

B1_SSH1 0xBCn04503 The actual B1 (2,1,1) parity byte value is not written to
the B1_SSH1 register. Instead, the number of bit lanes
in error is provided. The number of errors reported is
therefore 0 through 8 reported in the lower 5 bits of
B1_SSH1. The upper 2 bits of this register indicate the
value of the SS bits received in the H1 byte.

MD0, STS #2 0xBCn04504 SDH Media Dependent byte value received in last
frame for position (2,1,2).

MD0, STS #3 0xBCn04505 SDH Media Dependent byte value received in last
frame for position (2,1,3).

E1 0xBCn04506 Orderwire E1 byte value received in last frame for
position (2,2,1).

MD1, STS #2 0xBCn04507 SDH Media Dependent byte value received in last
frame for position (2,2,2).

F1 0xBCn04508 F1 byte value received in last frame for position (2,3,1).

CS0, STS #2 0xBCn04509 SDH Country Specific byte value received in last frame
for position (2,3,2).

CS0, STS #3 0xBCn0450A SDH Country Specific byte value received in last frame
for position (2,3,3).

D1 0xBCn0450B Datacom Channel 1 byte value received in last frame
for position (3,1,1).

Bit Position 7 6 5 4 0

Field Name SS Rsvd B1Cnt
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 751
MD2, STS #2 0xBCn0450C SDH Media Dependent byte value received in last
frame for position (3,1,2).

MD2, STS #3 0xBCn0450D SDH Media Dependent byte value received in last
frame for position (3,1,3).

D2 0xBCn0450E Datacom Channel 2 byte value received in last frame
for position (3,2,1).

MD3, STS #2 0xBCn0450F SDH Media Dependent byte value received in last
frame for position (3,2,2).

D3 0xBCn04510 Datacom Channel 3 byte value received in last frame
for position (3,3,1).

H1, STS #1 0xBCn04511 For this H1 (4,1,1) location, it is not the actual values of
H1 that is written, but the pointer processing results
listed here:

The SONET pointer interpreter meets the following
GR-253 Issue 3 requirements:

• R3-98 - NDF 3 of 4 bits correct determines NDF set -
tolerant of single bit errors.

• O3-96 - 8 of 10 voting for pointer increment
decrement decision.

• R3-104 - is met for pointer interpretation.

Table 239 Receive SONET/SDH OC-3c Transport Overhead Byte Addresses (continued)

TRANSPORT
OVERHEAD BYTE C-5E NP ADDRESS NOTES

BITS DESCRIPTION

[7:6] Pointer State
Where:
0=Valid Pointer
2=AIS-P is observed (pointer is all 1’s)
3= Loss of Pointer (LOP-P)

[5] New Data Flag occurred (NDF)

[4] Pointer Increment occurred

[3] Pointer Decrement occurred

[2] Zero

[1] Current Pointer Value bit9

[0] Current Pointer Value bit8
C5EC3EARCH-RM REV 04

752 APPENDIX C: SONET/SDH CP SUPPORT
H2, STS #1 0xBCn04512 For this H2 location, it is not the actual values of H2
(4,2,1) that is written, but the value of the current
pointer value bits 7:0.

B2_CNT, STS #1 0xBCn04513 The actual B2 parity byte value in (5,1,1) is not written
to the B2_CNT STS #1 register. Instead, the sum of the
number of bit lanes in error for B2 STS #1 is provided.
The number of errors reported is therefore 0 through
8.

B2_CNT, STS #2 0xBCn04514 The actual B2 parity byte value in (5,1,2) is not written
to the B2_CNT STS #2 register. Instead, the sum of the
number of bit lanes in error for B2 STS #2. This value
ranges from 0-8.

B2_CNT, STS #3 0xBCn04515 The actual B2 parity byte value in (5,1,3) is not written
to the B2_CNT STS #3 register. Instead, the sum of the
number of bit lanes in error for B2 STS #3 is provided.
This value ranges from 0-8.

K1 0xBCn04516 The K1 byte (5,2,1) is written to the registers only
when three identical bytes have been received in
consecutive frames.

K2 0xBCn04517 The K2 byte (5,3,1) is written to the registers only
when three identical bytes have been received in
consecutive frames.

D4 0xBCn04518 Datacom Channel 4 byte value received in last frame
for position (6,1,1).

D5 0xBCn04519 Datacom Channel 5 byte value received in last frame
for position (6,2,1).

D6 0xBCn0451A Datacom Channel 6 byte value received in last frame
for position (6,3,1).

D7 0xBCn0451B Datacom Channel 7 byte value received in last frame
for position (7,1,1).

D8 0xBCn0451C Datacom Channel 8 byte value received in last frame
for position (7,2,1).

D9 0xBCn0451D Datacom Channel 9 byte value received in last frame
for position (7,3,1).

D10 0xBCn0451E Datacom Channel 10 byte value received in last frame
for position (8,1,1).

Table 239 Receive SONET/SDH OC-3c Transport Overhead Byte Addresses (continued)

TRANSPORT
OVERHEAD BYTE C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 753
D11 0xBCn0451F Datacom Channel 11 byte value received in last frame
for position (8,2,1).

D12 0xBCn04520 Datacom Channel 12 byte value received in last frame
for position (8,3,1).

B2_SUM 0xBCn04521 The sum of all B2 errors received in the last frame is
written to this register. For OC3c, this is the same value
as that received in B2, STS #1 above.

S1 0xBCn04522 S1 Synchronization Status byte value received in last
frame for position (9,1,1).

Z1, STS #2 0xBCn04523 Z1 growth byte value received in last frame for
position (9,1,2).

Z1, STS #3 0xBCn04524 Z1 growth byte value received in last frame for
position (9,1,3).

Z2, STS #1 0xBCn04525 Z2 growth byte value received in last frame for
position (9,2,1).

Z2, STS #2 0xBCn04526 Z2 growth byte value received in last frame for
position (9,2,2).

M1 0xBCn04527 M1 REI-L byte value received in last frame for position
(9,2,3).

E2 0xBCn04528 Orderwire E2 byte value received in last frame for
position (9,3,1).

CS1, STS #2 0xBCn04529 SDH Country Specific 1 byte value received in last
frame for position (9,3,2).

CS1, STS #3 0xBCn0452A SDH Country Specific 1 byte value received in last
frame for position (9,3,3).

Table 239 Receive SONET/SDH OC-3c Transport Overhead Byte Addresses (continued)

TRANSPORT
OVERHEAD BYTE C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

754 APPENDIX C: SONET/SDH CP SUPPORT
Receive OC-3c Path Overhead Definitions
Table 240 on page 754 lists the SONET/SDH Path Overhead definitions and addresses.

Table 240 Receive SONET/SDH OC-3c Path Overhead Byte Addresses

PATH OVERHEAD
BYTE C-5E NP ADDRESS NOTES

J1, STS #1 0xBCn0452C The J1 register contains the Nth J1 of the 64 (or 16) byte
path trace message. The value N is obtained by the
hardware from the RxSonet J1 Index field of the
SDP_Mode2 register and is under CPRC software
control. To read the complete message for the first time,
increment the index N after every frame.

B3_CNT, STS #1 0xBCn0452D The actual B3 parity byte value is not written to the
B3_CNT STS #1 register. Instead, the sum of the number
of bit lanes in error for B3 STS #1 is provided. The
number of errors reported is therefore 0 through 8.

C2, STS #1 0xBCn0452E C2 path signal label value received in the last frame.

G1, STS #1 0xBCn0452F G1 path overhead value received in the last frame.

F2, STS #1 0xBCn04530 F2 path overhead value received in the last frame.

H4, STS #1 0xBCn04531 H4 path overhead value received in the last frame.

Z3, STS #1 0xBCn04532 Z3 path overhead value received in the last frame.

Z4, STS #1 0xBCn04533 Z4 path overhead value received in the last frame.

Z5, STS #1 0xBCn04534 Z5 path overhead value received in the last frame.
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 755
Receive OC-3c Statistics Counters for Both Transport and Path Overhead
Table 241 on page 755 lists the SONET/SDH Statistics Counters for both Transport and
Path Overhead. Their definitions and addresses are provided. Statistics Counters collect
both SONET/SDH Transport and Path Overhead on a per frame basis and can be read on a
one second basis.

Table 241 Receive SONET/SDH OC-3c Statistics Counters Byte Addresses

TRANSPORT AND
PATH OVERHEAD
BYTES C-5E NP ADDRESS NOTES

B1_ACCUM[15:8] 0xBCn04536 Bits [15:8] of B1_ACCUM, the Accumulated B1 Bit
Interleaved Parity Error registers. The accumulated B1
registers contain a running total of the number of B1
errors. If a rising edge is observed on the FrameMode
signal, this count is cleared to zero and begins
incrementing again as errors are observed.
Note: These registers are sized to allow up to 1
seconds worth of errors to be accumulated before
wrapping.

B1_ACCUM[7:0] 0xBCn04537 Bits [7:0] of B1_ACCUM, the Accumulated B1 Bit
Interleaved Parity Error registers.

B2_ACCUM[19:16] 0xBCn04538 Bits [19:16] of B2_ACCUM, the Accumulated B2 Bit
Interleaved Parity Error registers. The accumulated B2
registers contain a running total of the number of B2
errors. If a rising edge is observed on the FrameMode
signal, this count is cleared to zero and begins
incrementing again as errors are observed. Note that
these registers are sized to allow up to 1 seconds
worth of errors to be accumulated before wrapping.

B2_ACCUM[15:8] 0xBCn04539 Bits [15:8] of B2_ACCUM, the Accumulated B2 Bit
Interleaved Parity Error registers.

B2_ACCUM[7:0] 0xBCn0453A Bits [7:0] of B2_ACCUM, the Accumulated B2 Bit
Interleaved Parity Error registers.

B3_ACCUM[15:8] 0xBCn0453C Bits [15:8] of B3_ACCUM, the Accumulated B3 Bit
Interleaved Parity Error registers. The accumulated B3
registers contain a running total of the number of B3
errors. If a rising edge is observed on the FrameMode
signal, this count is cleared to zero and begins
incrementing again as errors are observed.
Note: These registers are sized to allow up to 1
seconds worth of errors to be accumulated before
wrapping.
C5EC3EARCH-RM REV 04

756 APPENDIX C: SONET/SDH CP SUPPORT
B3_ACCUM[7:0] 0xBCn0453D Bits [7:0] of B3_ACCUM, the Accumulated B3 Bit
Interleaved Parity Error registers.

REI_P_ACCUM[15:8] 0xBCn0453E Bits [15:8] of REI_P_ACCUM, the Accumulated Path
Remote Error Indication registers. The accumulated
REI_P registers contain a running total of the number
of REI_P errors seen by the far end. If a rising edge is
observed on the FrameMode signal, this count is
cleared to zero and begins incrementing again as
errors are observed.
Note: These registers are sized to allow up to 1
seconds worth of errors to be accumulated before
wrapping.

REI_P_ACCUM[7:0] 0xBCn0453F Bits [7:0] of REI_P_ACCUM, the Accumulated Path
Remote Error Indication registers.

REI_L_ACCUM[19:16] 0xBCn04541 Bits [19:16] of REI_L_ACCUM, the Accumulated Line
Remote Error Indication registers. The accumulated
REI_L registers contain a running total of the number
of REI_L errors seen by the far end. If a rising edge is
observed on the FrameMode signal, this count is
cleared to zero and begins incrementing again as
errors are observed.
Note: These registers are sized to allow up to 1
seconds worth of errors to be accumulated before
wrapping.

REI_L_ACCUM[15:8] 0xBCn04542 Bits [15:8] of REI_L_ACCUM, the Accumulated Line
Remote Error Indication registers.

REI_L_ACCUM[7:0] 0xBCn04543 Bits [7:0] of REI_L_ACCUM, the Accumulated Line
Remote Error Indication registers.

Table 241 Receive SONET/SDH OC-3c Statistics Counters Byte Addresses (continued)

TRANSPORT AND
PATH OVERHEAD
BYTES C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 757
Transmit OC-3c Writable Overhead Bytes Positions
Figure 124 on page 757 shows the writable bytes in the OC-3c SONET/SDH Overhead.

Figure 124 Tx SONET/SDH OC-3c Writable Overhead Bytes

A1

B1

H1

B2

D4
0x4593

D7
0x4596

D10
0x4599

S1
0x459c

D1
0x458b

A1

H1

B2

Z1
0x459e

A1

MD0_2
0x4584

H1

B2

Z1
0x459d

J1
0x45ac-eb

G1
0x45a6

F2
0x45a7

H4
0x45a8

Z3
0x45a9

Z4
0x45aa

Z5
0x45ab

C2
0x45a5

Path
Overhead

A2

E1
0x4586

K1
0x4591

D5
0x4594

D8
0x4597

D11
0x459a

Z2
0x459f

D2
0x458e

A2

H2

Z2
0x45a0

A2

H2

M1
0x45a1

J0
0x45f0-ff

F1
0x4588

H3

K2
0x4592

D6
0x4595

D9
0x4598

D12
0x459b

E2
0x45a2

D3
0x4590

Z0_2
0x4581

CS0_2
0x4589

H3

CSE2
0x45a3

Z0_3
0x4582

CS0_3
0x458a

H3

CSE2
0x45a4

1 2 3 1 2 3 1 2 3

1

2

3

4

5

6

7

8

9

Column

R
o
w

STS

Section
Overhead

Line
Overhead

= Reserved for future use

MD0_3
0x4585

MD1_2
0x4587

MD2_2
0x458c

MD2_3
0x458d

MD3_2
0x458f

1 2 3

= Special Manual FEBE

= Unconditionally writable SONET overhead bytes

H2

= J0 and J1 values are read from J0_BUF (16Bytes) and J0_BUF (64Bytes) register arrays.

Tx Pointer Byte
(H1 and H2)
C5EC3EARCH-RM REV 04

758 APPENDIX C: SONET/SDH CP SUPPORT
Transmit OC-3c Transport Overhead Definitions
Table 242 on page 758 lists the SONET/SDH Transport Overhead definitions and
addresses.

Table 242 Transmit SONET/SDH OC-3c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE C-5E NP ADDRESS NOTES

Z0, STS #2 0xBCn04581 Z0 growth byte value to be sent in the next frame for position
(1,3,2) (row, column, STS).

Z0, STS #3 0xBCn04582 Z0 growth byte value to be sent in the next frame for position
(1,3,3).

MD0, STS #2 0xBCn04584 SDH Media Dependent byte position (2,1,2).

MD0, STS #3 0xBCn04585 SDH Media Dependent byte position (2,1,3).

E1 0xBCn04586 Orderwire E1 byte value to be sent in the next frame for
position (2,2,1).

MD1, STS #2 0xBCn04587 SDH Media Dependent byte value to be sent in the next frame
for position (2,2,2).

F1 0xBCn04588 F1 byte value to be sent in the next frame for position (2,3,1).

CS0, STS #2 0xBCn04589 SDH Country Specific byte value to be sent in the next frame for
position (2,3,2).

CS0, STS #3 0xBCn0458A SDH Country Specific byte value to be sent in the next frame for
position (2,3,3).

D1 0xBCn0458B Datacom Channel 1 byte value to be sent in the next frame for
position (3,1,1).

MD2, STS #2 0xBCn0458C SDH Media Dependent byte value to be sent in the next frame
for position (3,1,2).

MD2, STS #3 0xBCn0458D SDH Media Dependent byte value to be sent in the next frame
for position (3,1,3).

D2 0xBCn0458E Datacom Channel 2 byte value to be sent in the next frame for
position (3,2,1).

MD3, STS #2 0xBCn0458F SDH Media Dependent byte value to be sent in the next frame
for position (3,2,2).

D3 0xBCn04590 Datacom Channel 3 byte value to be sent in the next frame for
position (3,3,1).

K1 0xBCn04591 The K1 byte value to be sent in the next frame for position
(5,2,1).
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 759
K2 0xBCn04592 The K2 byte value to be sent in the next frame for position
(5,3,1). See Manual_FEBE description in SDP_Mode3 register for
exceptions.

D4 0xBCn04593 Datacom Channel 4 byte value to be sent in the next frame for
position (6,1,1).

D5 0xBCn04594 Datacom Channel 5 byte value to be sent in the next frame for
position (6,2,1).

D6 0xBCn04595 Datacom Channel 6 byte value to be sent in the next frame for
position (6,3,1).

D7 0xBCn04596 Datacom Channel 7 byte value to be sent in the next frame for
position (7,1,1).

D8 0xBCn04597 Datacom Channel 8 byte value to be sent in the next frame for
position (7,2,1).

D9 0xBCn04598 Datacom Channel 9 byte value to be sent in the next frame for
position (7,3,1).

D10 0xBCn04599 Datacom Channel 10 byte value to be sent in the next frame for
position (8,1,1).

D11 0xBCn0459A Datacom Channel 11 byte value to be sent in the next frame for
position (8,2,1).

D12 0xBCn0459B Datacom Channel 12 byte value to be sent in the next frame for
position (8,3,1).

S1 0xBCn0459C S1 Synchronization Status byte value to be sent in the next
frame for position (9,1,1).

Z1, STS #2 0xBCn0459D Z1 growth byte value to be sent in the next frame for position
(9,1,2).

Z1, STS #3 0xBCn0459E Z1 growth byte value to be sent in the next frame for position
(9,1,3).

Z2, STS #1 0xBCn0459F Z2 growth byte value to be sent in the next frame for position
(9,2,1).

Z2, STS #2 0xBCn045A0 Z2 growth byte value to be sent in the next frame for position
(9,2,2).

M1 0xBCn045A1 M1 REI-L byte value to be sent in the next frame for position
(9,2,3). See Manual_FEBE description in SDP_Mode3 register for
exceptions.

Table 242 Transmit SONET/SDH OC-3c Transport Overhead Byte Addresses (continued)

TRANSPORT
OVERHEAD
BYTE C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

760 APPENDIX C: SONET/SDH CP SUPPORT
E2 0xBCn045A2 Orderwire E2 byte value to be sent in the next frame for
position (9,3,1).

CSE2, STS #2 0xBCn045A3 SDH Country Specific 1 byte value to be sent in the next frame
for position (9,3,2).

CSE2, STS #3 0xBCn045A4 SDH Country Specific 1 byte value to be sent in the next frame
for position (9,3,3).

J0_BUF 0xBCn045F0 to
FF

The J0 section trace message to be transmitted is written to
these registers.

H1_SS, STS
#1

0xBCn45EC For SDH, the transmit SS bits must be initialized for backward
compatibility. This register allows the SS bits of the pointer to
be initialized. The two LSB of the register are written to the H1
SS bits of the Transmit SONET/SDH frame.

Table 242 Transmit SONET/SDH OC-3c Transport Overhead Byte Addresses (continued)

TRANSPORT
OVERHEAD
BYTE C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 761
Transmit OC-3c Path Overhead Definitions
Table 243 on page 761 lists the SONET/SDH Path Overhead definitions and addresses.

Table 243 Transmit SONET/SDH OC-3c Path Overhead Byte Addresses

PATH OVERHEAD
BYTE

C-5E NP
ADDRESS NOTES

C2, STS #1 0xBCn045A5 C2 path signal label value to be transmitted in the next
frame.

G1, STS #1 0xBCn045A6 G1 path overhead value to be transmitted in the next frame.
See Manual_FEBE description in SDP_Mode3 register for
exceptions.

F2, STS #1 0xBCn045A7 F2 path overhead value to be transmitted in the next frame.

H4, STS #1 0xBCn045A8 H4 path overhead value to be transmitted in the next frame.

Z3, STS #1 0xBCn045A9 Z3 path overhead value to be transmitted in the next frame.

Z4, STS #1 0xBCn045AA Z4 path overhead value to be transmitted in the next frame.

Z5, STS #1 0xBCn045AB Z5 path overhead value to be transmitted in the next frame.

J1_BUF, STS #1 0xBCn045AC to
0xBCn045EB

The J1 path trace message to be transmitted is written to
these registers.

• To support a 64Byte path, write the complete 64Byte
message to these registers.

• To support a 16Byte path trace, write the 16Byte message
consecutively 4 times to these registers.
C5EC3EARCH-RM REV 04

762 APPENDIX C: SONET/SDH CP SUPPORT
SONET/SDH OC-12 and
OC-12c Overhead Bytes

This section provides the SONET/SDH OC-12 and OC-12c Overhead positions and
definitions for both the Rx (readable) and Tx (writable) sides. Also, the detail mapping
information listing the SONET/SDH overhead definitions and C-5e NP addresses and
whether the overhead contents are Transport or Path bytes. For the Rx side, refer to
Figure 125 on page 762, Table 244 on page 763 and Table 245 on page 774. For the Tx
side, refer to Figure 126 on page 781, Table 247 on page 782 and Table 248 on page 790.

Receive OC-12/OC-12c Readable Overhead Bytes
Figure 125 on page 762 shows the readable bytes in the OC-12/OC-12c SONET/SDH
Overhead.

Figure 125 Rx SONET/SDH OC-12/OC-12c Readable Overhead Bytes

1 2 3

A1

B1

D1

H1

B2

D4

D7

D10

S1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

B2

Z1

MD0

MD2

B2

Z1

MD0

MD2

B2

Z1

MD0

MD2

B2

Z1

MD0

MD2

B2

Z1

A1 A1 A1 A1 A1

MD0

MD2

B2

Z1

A1

MD0

MD2

B2

Z1

A1

MD0

MD2

B2

Z1

A2

E1

D2

H2

K1

D5

D8

D11

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

M1

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

Z2

A2

MD1

MD3

Z2

A2

MD1

MD3

Z2

A2

MD1

MD3

Z2

A2

Z2

A2

Z2

A2

Z2

A2

Z2

J0

F1

D3

H3

K2

D6

D9

D12

E2

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

CS1

Z0

CS0

CS1

Z0

CS0

CS1

Z0

CS0

CS1

Z0

CS0

CS1

Z0

CS0

CS1

Z0

CS0

CS1

Z0

CS0

CS1

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

R
o
w

1

2

3

4

5

6

7

8

9

Column

STS

= Unconditionally readable SONET overhead bytes

Section
Overhead

Line
Overhead

= Reserved for future use

STS 1

Path
Overhead
for OC-12c

= H1 and H2 bytes contain pointer status information from H1, H2 and H3. See register decode for specific details.

CPn+ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

Path
Overhead
for OC-12

STS 1 2 3 4

= Fixed Stuff

H1 H1 H1 H1 H1 H1 H1 H1 H2 H2 H2 H2 H2 H2 H2 H2 H3 H3 H3 H3 H3 H3 H3 H3 Rx Pointer Byte
(H1 and H2)

= B1, B2 and B3 bytes contain error sums. See register decode for specific details.
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 763
Receive OC-12/OC-12c Transport Overhead Definitions
Table 244 on page 763 lists the SONET/SDH Transport Overhead definitions and
addresses.

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES

J0 0 0xBCn04500 The J0 value received in (1,3,1) (row, column,
STS) position of the last frame is written to this
location.

Z0, STS #2 1 0xBC(n+1)04500 Z0 growth byte value received in last frame for
position (1,3,2).

Z0, STS #3 2 0xBC(n+2)04500 Z0 growth byte value received in last frame for
position (1,3,3).

Z0, STS #4 3 0xBC(n+3)04500 Z0 growth byte value received in last frame for
position (1,3,4).

Z0, STS #5 0 0xBCn04501 Z0 growth byte value received in last frame for
position (1,3,5).

Z0, STS #6 1 0xBC(n+1)04501 Z0 growth byte value received in last frame for
position (1,3,6).

Z0, STS #7 2 0xBC(n+2)04501 Z0 growth byte value received in last frame for
position (1,3,7).

Z0, STS #8 3 0xBC(n+3)04501 Z0 growth byte value received in last frame for
position (1,3,8).

Z0, STS #9 0 0xBCn04502 Z0 growth byte value received in last frame for
position (1,3,9).

Z0, STS #10 1 0xBC(n+1)04502 Z0 growth byte value received in last frame for
position (1,3,10).

Z0, STS #11 2 0xBC(n+2)04502 Z0 growth byte value received in last frame for
position (1,3,11).

Z0, STS #12 3 0xBC(n+3)04502 Z0 growth byte value received in last frame for
position (1,3,12).
C5EC3EARCH-RM REV 04

764 APPENDIX C: SONET/SDH CP SUPPORT
B1_SSH1 0 0xBCn04503 The actual B1 parity byte value is not written to
the B1_SSH1 register. Instead, the number of bit
lanes in error is provided. The number of errors
reported is therefore 0 through 8 reported in the
lower 5 bits of B1_SSH1. The upper 2 bits of this
register indicate the value of the SS bits received
in the H1 byte.

MD0, STS #2 1 0xBC(n+1)04503 SDH Media Dependent byte value received in
last frame for position (2,1,2).

MD0, STS #3 2 0xBC(n+2)04503 SDH Media Dependent byte value received in
last frame for position (2,1,3).

MD0, STS #4 3 0xBC(n+3)04503 SDH Media Dependent byte value received in
last frame for position (2,1,4).

MD0, STS #5 0 0xBCn04504 SDH Media Dependent byte value received in
last frame for position (2,1,5).

MD0, STS #6 1 0xBC(n+1)04504 SDH Media Dependent byte value received in
last frame for position (2,1,6).

MD0, STS #7 2 0xBC(n+2)04504 SDH Media Dependent byte value received in
last frame for position (2,1,7).

MD0, STS #8 3 0xBC(n+3)04504 SDH Media Dependent byte value received in
last frame for position (2,1,8).

MD0, STS #9 0 0xBCn04505 SDH Media Dependent byte value received in
last frame for position (2,1,9).

MD0, STS #10 1 0xBC(n+1)04505 SDH Media Dependent byte value received in
last frame for position (2,1,10).

MD0, STS #11 2 0xBC(n+2)04505 SDH Media Dependent byte value received in
last frame for position (2,1,11).

MD0, STS #12 3 0xBC(n+3)04505 SDH Media Dependent byte value received in
last frame for position (2,1,12).

E1 0 0xBCn04506 Orderwire E1 byte value received in last frame
for position (2,2,1).

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES

Bit Position 7 16 5 4 0

Field Name SS Rsvd B1Cnt
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 765
MD1, STS #2 1 0xBC(n+1)04506 SDH Media Dependent byte value received in
last frame for position (2,2,2).

MD1, STS #3 2 0xBC(n+2)04506 SDH Media Dependent byte value received in
last frame for position (2,2,3).

MD1, STS #4 3 0xBC(n+3)04506 SDH Media Dependent byte value received in
last frame for position (2,2,4).

MD1, STS #5 0 0xBCn04507 SDH Media Dependent byte value received in
last frame for position (2,2,5).

MD1, STS #6 1 0xBC(n+1)04507 SDH Media Dependent byte value received in
last frame for position (2,2,6).

MD1, STS #7 2 0xBC(n+2)04507 SDH Media Dependent byte value received in
last frame for position (2,2,7).

MD1, STS #8 3 0xBC(n+3)04507 SDH Media Dependent byte value received in
last frame for position (2,2,8).

F1 0 0xBCn04508 F1 byte value received in last frame for position
(2,3,1).

CS0, STS #2 1 0xBC(n+1)04508 SDH Country Specific byte value received in last
frame for position (2,3,2).

CS0, STS #3 2 0xBC(n+2)04508 SDH Country Specific byte value received in last
frame for position (2,3,3).

CS0, STS #4 3 0xBC(n+3)04508 SDH Country Specific byte value received in last
frame for position (2,3,4).

CS0, STS #5 0 0xBCn04509 SDH Country Specific byte value received in last
frame for position (2,3,5).

CS0, STS #6 1 0xBC(n+1)04509 SDH Country Specific byte value received in last
frame for position (2,3,6).

CS0, STS #7 2 0xBC(n+2)04509 SDH Country Specific byte value received in last
frame for position (2,3,7).

CS0, STS #8 3 0xBC(n+3)04509 SDH Country Specific byte value received in last
frame for position (2,3,8).

CS0, STS #9 0 0xBCn0450A SDH Country Specific byte value received in last
frame for position (2,3,9).

CS0, STS #10 1 0xBC(n+1)0450A SDH Country Specific byte value received in last
frame for position (2,3,10).

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

766 APPENDIX C: SONET/SDH CP SUPPORT
CS0, STS #11 2 0xBC(n+2)0450A SDH Country Specific byte value received in last
frame for position (2,3,11).

CS0, STS #12 3 0xBC(n+3)0450A SDH Country Specific byte value received in last
frame for position (2,3,11).

D1 0 0xBCn0450B Datacom Channel 1 byte value received in last
frame for position (3,1,1).

MD2, STS #2 1 0xBC(n+1)0450B SDH Media Dependent byte value received in
last frame for position (3,1,2).

MD2, STS #3 2 0xBC(n+2)0450B SDH Media Dependent byte value received in
last frame for position (3,1,3).

MD2, STS #4 3 0xBC(n+3)0450B SDH Media Dependent byte value received in
last frame for position (3,1,4).

MD2, STS #5 0 0xBCn0450C SDH Media Dependent byte value received in
last frame for position (3,1,5).

MD2, STS #6 1 0xBC(n+1)0450C SDH Media Dependent byte value received in
last frame for position (3,1,6).

MD2, STS #7 2 0xBC(n+2)0450C SDH Media Dependent byte value received in
last frame for position (3,1,7).

MD2, STS #8 3 0xBC(n+3)0450C SDH Media Dependent byte value received in
last frame for position (3,1,8).

MD2, STS #9 0 0xBCn0450D SDH Media Dependent byte value received in
last frame for e position (3,1,9).

MD2, STS #10 1 0xBC(n+1)0450D SDH Media Dependent byte value received in
last frame for position (3,1,10).

MD2, STS #11 2 0xBC(n+2)0450D SDH Media Dependent byte value received in
last frame for position (3,1,11).

MD2, STS #12 3 0xBC(n+3)0450D SDH Media Dependent byte value received in
last frame for position (3,1,12).

D2 0 0xBCn0450E Datacom Channel 2 byte value received in last
frame for position (3,2,1).

MD3, STS #2 1 0xBC(n+1)0450E SDH Media Dependent byte value received in
last frame for position (3,2,2).

MD3, STS #3 2 0xBC(n+2)0450E SDH Media Dependent byte value received in
last frame for position (3,2,3).

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 767
MD3, STS #4 3 0xBC(n+3)0450E SDH Media Dependent byte value received in
last frame for position (3,2,4).

MD3, STS #5 0 0xBCn0450F SDH Media Dependent byte value received in
last frame for position (3,2,5).

MD3, STS #6 1 0xBC(n+1)0450F SDH Media Dependent byte value received in
last frame for position (3,2,6).

MD3, STS #7 2 0xBC(n+2)0450F SDH Media Dependent byte value received in
last frame for position (3,2,7).

MD3, STS #8 3 0xBC(n+3)0450F SDH Media Dependent byte value received in
last frame for position (3,2,8).

D3 0 0xBCn04510 Datacom Channel 3 byte value received in last
frame for position (3,3,1).

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

768 APPENDIX C: SONET/SDH CP SUPPORT
H1, STS #1 0 0xBCn04511 For this H1 location, it is not the actual values of
H1 (4,1,1) that is written, but the pointer
processing results listed here:

The SONET pointer interpreter meets the
following GR-253 Issue 3 requirements:

• R3-98 - NDF 3 of 4 bits correct determines
NDF set - tolerant of single bit errors.

• O3-96 - 8 of 10 voting for pointer increment
decrement decision.

• R3-104 - is met for pointer interpretation.

H1, STS #2 1 0xBC(n+1)04511 For OC12nc, this byte contains the pointer
processing results for the second of 4 OC3c
flows. See H1, STS #1 for decode.

H1, STS #3 2 0xBC(n+2)04511 For OC12nc, this byte contains the pointer
processing results for the third of 4 OC3c flows.
See H1, STS #1 for decode.

H1, STS #4 3 0xBC(n+3)04511 For OC12nc, this byte contains the pointer
processing results for the last of 4 OC3c flows.
See H1, STS #1 for decode.

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES

BITS DESCRIPTION

[7:6] Pointer State
Where:
0=Valid Pointer
2=AIS-P is observed (pointer is all 1’s)
3=Loss of Pointer (LOP-P)

[5] New Data Flag occurred (NDF)

[4] Pointer Increment occurred

[3] Pointer Decrement occurred

[2] Zero

[1] Current Pointer Value bit9

[0] Current Pointer Value bit8
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 769
H2, STS #1 0 0xBCn04512 For this H2 location, it is not the actual values of
H2 (4,1,2) that is written, but the value of the
current pointer value bits 7:0.

H2, STS #2 1 0xBC(n+1)04512 For OC12nc, this byte contains the pointer
processing results for the second of 4 OC3c
flows. For this H2 location, it is not the actual
values of H2 that is written, but the value of the
current pointer value bits 7:0.

H2, STS #3 2 0xBC(n+2)04512 For OC12nc, this byte contains the pointer
processing results for the third of 4 OC3c flows.
For this H2 location, it is not the actual values of
H2 that is written, but the value of the current
pointer value bits 7:0.

H2, STS #4 3 0xBC(n+3)04512 For OC12nc, this byte contains the pointer
processing results for the last of 4 OC3c flows.
For this H2 location, it is not the actual values of
H2 that is written, but the value of the current
pointer value bits 7:0.

B2, STS #1 0 0xBCn04513 The actual B2 parity byte value in (5,1,1) is not
written to the B2_CNT STS #1 register. Instead,
the sum of the number of bit lanes in error for B1
STS #1 is provided. The number of errors
reported is therefore 0 through 8.

B2, STS #2 1 0xBC(n+1)04513 The actual B2 parity byte value in (5,1,2) is not
written to the B2_CNT STS #2 register. Instead,
the sum of the number of bit lanes in error for B2
STS #2. This value ranges from 0-8.

B2, STS #3 2 0xBC(n+2)04513 The actual B2 parity byte value in (5,1,3) is not
written to the B2_CNT STS #3 register. Instead,
the sum of the number of bit lanes in error for B2
STS #3 is provided. This value ranges from 0-8.

B2, STS #4 3 0xBC(n+3)04513 The actual B2 parity byte value in (5,1,4) is not
written to the B2_CNT STS #4 register. Instead,
the sum of the number of bit lanes in error for B2
STS #4 is provided. This value ranges from 0-8.

B2, STS #5 0 0xBCn04514 The actual B2 parity byte value in (5,1,5) is not
written to the B2_CNT STS #5 register. Instead,
the sum of the number of bit lanes in error for B2
STS #5 is provided. This value ranges from 0-8.

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

770 APPENDIX C: SONET/SDH CP SUPPORT
B2, STS #6 1 0xBC(n+1)04514 The actual B2 parity byte value in (5,1,6) is not
written to the B2_CNT STS #6 register. Instead,
the sum of the number of bit lanes in error for B2
STS #6 is provided. This value ranges from 0-8.

B2, STS #7 2 0xBC(n+2)04514 The actual B2 parity byte value in (5,1,7) is not
written to the B2_CNT STS #7 register. Instead,
the sum of the number of bit lanes in error for B2
STS #7 is provided. This value ranges from 0-8.

B2, STS #8 3 0xBC(n+3)04514 The actual B2 parity byte value in (5,1,8) is not
written to the B2_CNT STS #8 register. Instead,
the sum of the number of bit lanes in error for B2
STS #8 is provided. This value ranges from 0-8.

B2, STS #9 0 0xBCn04515 The actual B2 parity byte value in (5,1,9) is not
written to the B2_CNT STS #9 register. Instead,
the sum of the number of bit lanes in error for B2
STS #9 is provided. This value ranges from 0-8.

B2, STS #10 1 0xBC(n+1)04515 The actual B2 parity byte value in (5,1,10) is not
written to the B2_CNT STS #10 register. Instead,
the sum of the number of bit lanes in error for B2
STS #10 is provided. This value ranges from 0-8.

B2, STS #11 2 0xBC(n+2)04515 The actual B2 parity byte value in (5,1,11) is not
written to the B2_CNT STS #11 register. Instead,
the sum of the number of bit lanes in error for B2
STS #11 is provided. This value ranges from 0-8.

B2, STS #12 3 0xBC(n+3)04515 The actual B2 parity byte value in (5,1,12) is not
written to the B2_CNT STS #12 register. Instead,
the sum of the number of bit lanes in error for B2
STS #12 is provided. This value ranges from 0-8.

K1 0 0xBCn04516 The K1 byte (5,2,1) is written to the registers only
when three identical bytes have been received
in consecutive frames. For non-base CPs, STS
positions (5,2,2), (5,2,3) and (5,2,4) are written.

K2 0 0xBCn04517 The K2 byte (5,3,1) is written to the registers only
when three identical bytes have been received
in consecutive frames. For non-base CPs, STS
positions (5,3,2), (5,3,3) and (5,3,4) are written.

D4 0 0xBCn04518 Datacom Channel 4 byte value received in last
frame for position (6,1,1).

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 771
D5 0 0xBCn04519 Datacom Channel 5 byte value received in last
frame for position (6,2,1).

D6 0 0xBCn0451A Datacom Channel 6 byte value received in last
frame for position (6,3,1).

D7 0 0xBCn0451B Datacom Channel 7 byte value received in last
frame for position (7,1,1).

D8 0 0xBCn0451C Datacom Channel 8 byte value received in last
frame for position (7,2,1).

D9 0 0xBCn0451D Datacom Channel 9 byte value received in last
frame for position (7,3,1).

D10 0 0xBCn0451E Datacom Channel 10 byte value received in last
frame for position (8,1,1).

D11 0 0xBCn0451F Datacom Channel 11 byte value received in last
frame for position (8,2,1).

D12 0 0xBCn04520 Datacom Channel 12 byte value received in last
frame for position (8,3,1).

B2_SUM 0 0xBCn04521 The sum of all B2 errors received in the last frame
is written to this register.

S1 0 0xBCn04522 S1 Synchronization Status byte value received in
last frame for position (9,1,1).

Z1, STS #2 1 0xBC(n+1)04522 Z1 growth byte value received in last frame for
position (9,1,2).

Z1, STS #3 2 0xBC(n+2)04522 Z1 growth byte value received in last frame for
position (9,1,3).

Z1, STS #4 3 0xBC(n+3)04522 Z1 growth byte value received in last frame for
position (9,1,4).

Z1, STS #5 0 0xBCn04523 Z1 growth byte value received in last frame for
position (9,1,5).

Z1, STS #6 1 0xBC(n+1)04523 Z1 growth byte value received in last frame for
position (9,1,6).

Z1, STS #7 2 0xBC(n+2)04523 Z1 growth byte value received in last frame for
position (9,1,7).

Z1, STS #8 3 0xBC(n+3)04523 Z1 growth byte value received in last frame for
position (9,1,8).

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

772 APPENDIX C: SONET/SDH CP SUPPORT
Z1, STS #9 0 0xBCn04524 Z1 growth byte value received in last frame for
position (9,1,9).

Z1, STS #10 1 0xBC(n+1)04524 Z1 growth byte value received in last frame for
position (9,1,10).

Z1, STS #11 2 0xBC(n+2)04524 Z1 growth byte value received in last frame for
position (9,1,11).

Z1, STS #12 3 0xBC(n+3)04524 Z1 growth byte value received in last frame for
position (9,1,12).

Z2, STS #1 0 0xBCn04525 Z2 growth byte value received in last frame for
position (9,2,1).

Z2, STS #2 1 0xBC(n+1)04525 Z2 growth byte value received in last frame for
position (9,2,2).

M1 2 0xBC(n+2)04525 M1 REI-L byte value received in last frame for
position (9,2,3).

Z2, STS #4 3 0xBC(n+3)04525 Z2 growth byte value received in last frame for
position (9,2,4).

Z2, STS #5 0 0xBCn04526 Z2 growth byte value received in last frame for
position (9,2,5).

Z2, STS #6 1 0xBC(n+1)04526 Z2 growth byte value received in last frame for
position (9,2,6).

Z2, STS #7 2 0xBC(n+2)04526 Z2 growth byte value received in last frame for
position (9,2,7).

Z2, STS #8 3 0xBC(n+3)04526 Z2 growth byte value received in last frame for
position (9,2,8).

Z2, STS #9 0 0xBCn04527 Z2 growth byte value received in last frame for
position (9,2,9).

Z2, STS #10 1 0xBC(n+1)04527 Z2 growth byte value received in last frame for
position (9,2,10).

Z2, STS #11 2 0xBC(n+2)04527 Z2 growth byte value received in last frame for
position (9,2,11).

Z2, STS #12 3 0xBC(n+3)04527 Z2 growth byte value received in last frame for
position (9,2,12).

E2 0 0xBCn04528 Orderwire E2 byte value received in last frame
for position (9,3,1).

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 773
CS1, STS #2 1 0xBC(n+1)04528 SDH Country Specific 1 byte value received in
last frame for position (9,3,2).

CS1, STS #3 2 0xBC(n+2)04528 SDH Country Specific 1 byte value received in
last frame for position (9,3,3).

CS1, STS #4 3 0xBC(n+3)04528 SDH Country Specific 1 byte value received in
last frame for position (9,3,4).

CS1, STS #5 0 0xBCn04529 SDH Country Specific 1 byte value received in
last frame for position (9,3,5).

CS1, STS #6 1 0xBC(n+1)04529 SDH Country Specific 1 byte value received in
last frame for position (9,3,6).

CS1, STS #7 2 0xBC(n+2)04529 SDH Country Specific 1 byte value received in
last frame for position (9,3,7).

CS1, STS #8 3 0xBC(n+3)04529 SDH Country Specific 1 byte value received in
last frame for position (9,3,8).

CS1, STS #9 0 0xBCn0452A SDH Country Specific 1 byte value received in
last frame for position (9,3,9).

CS1, STS #10 1 0xBC(n+1)0452A SDH Country Specific 1 byte value received in
last frame for position (9,3,10).

CS1, STS #11 2 0xBC(n+2)0452A SDH Country Specific 1 byte value received in
last frame for position (9,3,11).

CS1, STS #12 3 0xBC(n+3)0452A SDH Country Specific 1 byte value received in
last frame for position (9,3,12).

* n can be CP0, CP4, CP8, or CP12

Table 244 Receive SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

774 APPENDIX C: SONET/SDH CP SUPPORT
Receive OC-12/OC-12c Path Overhead Definitions
Table 245 on page 774 lists the SONET/SDH Path Overhead definitions and addresses.

Table 245 Receive SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses

PATH OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES

J1, STS #1 0 0xBCn0452C For OC12c and OC12nc: The J1 register
contains the Nth J1 of the 64 (or 16) byte path
trace message. The value N is obtained by the
hardware from the RxSonet J1 Index field of
the SDP_Mode2 register and is under CPRC
software control. To read the complete
message for the first time, increment the
index N after every frame.

J1, STS #2 1 0xBC(n+1)0452C For OC12c: One of the fixed stuff bytes.
For OC12nc: J1 for the second OC3c of 4.

J1, STS #3 2 0xBC(n+2)0452C For OC12c: One of the fixed stuff bytes.
For OC12nc: J1 for the third OC3c of 4.

J1, STS #4 3 0xBC(n+3)0452C For OC12c: One of the fixed stuff bytes.
For OC12nc: J1 for the last OC3c of 4.

B3_CNT, STS #1 0 0xBCn0452D For OC12c and OC12nc: The actual B3 parity
byte value is not written to the B3_CNT STS
#1 register. Instead, the sum of the number of
bit lanes in error for B3 STS #1 is provided. The
number of errors reported is therefore 0
through 8.

B3_CNT, STS #2 1 0xBC(n+1)0452D For OC12c: One of the fixed stuff bytes.
For OC12nc: B3 for the second OC3c of 4.

B3_CNT, STS #3 2 0xBC(n+2)0452D For OC12c: One of the fixed stuff bytes.
For OC12nc: B3 for the third OC3c of 4.

B3_CNT, STS #4 3 0xBC(n+3)0452D For OC12c: One of the fixed stuff bytes.
For OC12nc: B3 for the last OC3c of 4.

C2, STS #1 0 0xBCn0452E For OC12c: The C2 value.
For OC12nc: C2 for the first OC3c of 4.

C2, STS #2 1 0xBC(n+1)0452E For OC12c: The C2 value.
For OC12nc: C2 for the second OC3c of 4.
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 775
C2, STS #3 2 0xBC(n+2)0452E For OC12c: The C2 value.
For OC12nc: C2 for the third OC3c of 4.

C2, STS #4 3 0xBC(n+3)0452E For OC12c: The C2 value.
For OC12nc: C2 for the last OC3c of 4.

G1, STS #1 0 0xBCn0452F For OC12c: The G1 value.
For OC12nc: G1 for the first OC3c of 4.

G1, STS #2 1 0xBC(n+1)0452F For OC12c: The G1 value.
For OC12nc: G1 for the second OC3c of 4.

G1, STS #3 2 0xBC(n+2)0452F For OC12c: The G1 value.
For OC12nc: G1 for the third OC3c of 4.

G1, STS #4 3 0xBC(n+3)0452F For OC12c: The G1 value.
For OC12nc: G1 for the last OC3c of 4.

F2, STS #1 0 0xBCn04530 For OC12c: The F2 value.
For OC12nc: F2 for the first OC3c of 4.

F2, STS #2 1 0xBC(n+1)04530 For OC12c: The F2 value.
For OC12nc: F2 for the second OC3c of 4.

F2, STS #3 2 0xBC(n+2)04530 For OC12c: The F2 value.
For OC12nc: F2 for the third OC3c of 4.

F2, STS #4 3 0xBC(n+3)04530 For OC12c: The F2 value.
For OC12nc: F2 for the last OC3c of 4.

H4, STS #1 0 0xBCn04531 For OC12c: The H4 value.
For OC12nc: H4 for the first OC3c of 4.

H4, STS #2 1 0xBC(n+1)04531 For OC12c: The H4 value.
For OC12nc: H4 for the second OC3c of 4.

H4, STS #3 2 0xBC(n+2)04531 For OC12c: The H4 value.
For OC12nc: H4 for the third OC3c of 4.

H4, STS #4 3 0xBC(n+3)04531 For OC12c: The H4 value.
For OC12nc: H4 for the last OC3c of 4.

Z3, STS #1 0 0xBCn04532 For OC12c: The Z3 value.
For OC12nc: Z3 for the first OC3c of 4.

Table 245 Receive SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses (continued)

PATH OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

776 APPENDIX C: SONET/SDH CP SUPPORT
Z3, STS #2 1 0xBC(n+1)04532 For OC12c: The Z3 value.
For OC12nc: Z3 for the second OC3c of 4.

Z3, STS #3 2 0xBC(n+2)04532 For OC12c: The Z3 value.
For OC12nc: Z3 for the third OC3c of 4.

Z3, STS #4 3 0xBC(n+3)04532 For OC12c: The Z3 value.
For OC12nc: Z3 for the last OC3c of 4.

Z4, STS #1 0 0xBCn04533 For OC12c: The Z4 value.
For OC12nc: Z4 for the first OC3c of 4.

Z4, STS #2 1 0xBC(n+1)04533 For OC12c: The Z4 value.
For OC12nc: Z4 for the second OC3c of 4.

Z4, STS #3 2 0xBC(n+2)04533 For OC12c: The Z4 value.
For OC12nc: Z4 for the third OC3c of 4.

Z4, STS #4 3 0xBC(n+3)04533 For OC12c: The Z4 value.
For OC12nc: Z4 for the last OC3c of 4.

Z5, STS #1 0 0xBCn04534 For OC12c: The Z5 value.
For OC12nc: Z5 for the first OC3c of 4.

Z5, STS #2 1 0xBC(n+1)04534 For OC12c: The Z5 value.
For OC12nc: Z5 for the second OC3c of 4.

Z5, STS #3 2 0xBC(n+2)04534 For OC12c: The Z5 value.
For OC12nc: Z5 for the third OC3c of 4.

Z5, STS #4 3 0xBC(n+3)04534 For OC12c: The Z5 value.
For OC12nc: Z5 for the last OC3c of 4.

* n can be CP0, CP4, CP8, or CP12

Table 245 Receive SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses (continued)

PATH OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 777
Receive OC-12/OC-12c Statistics Counters for Both Transport and Path Overhead
Table 246 on page 777 lists the SONET/SDH Statistics Counters for both Transport and
Path Overhead. Their definitions and addresses are provided. Statistics Counters collect
both SONET/SDH Transport and Path Overhead on a per frame basis and can be read on a
one second basis.

When using the frame count mechanism to interrupt errors every n frame (frame
mode=1), the internal accumulators written to the statistics counters are automatically
cleared. This allows the number of errors in the last n frames to be read. In this case, there
is no need to manually clear the statistics counters with the frame mode bit.

Multi-byte counters are aligned so as to be read in one 16bit or 32bit read operation.

Table 246 Receive SONET/SDH OC-12 and OC-12c Statistics Counters Byte Addresses

TRANSPORT AND
PATH OVERHEAD
BYTES

CP#
WITH A
CLUSTER C-5E NP ADDRESS NOTES

B1_ACCUM[15:8] 0 0xBCn04536 Bits [15:8] of B1_ACCUM, the Accumulated
B1 Bit Interleaved Parity Error registers. The
accumulated B1 registers contain a running
total of the number of B1 errors. If a rising
edge is observed on the FrameMode signal,
this count is cleared to zero and begins
incrementing again as errors are observed.
Note: These registers are sized to allow up
to 1 seconds worth of errors to be
accumulated before wrapping.

B1_ACCUM[7:0] 0 0xBCn04537 Bits [7:0] of B1_ACCUM, the Accumulated
B1 Bit Interleaved Parity Error registers.

B2_ACCUM[19:16] 2 0xBC(n+2)04538 Bits [19:16] of B2_ACCUM, the Accumulated
B2 Bit Interleaved Parity Error registers. The
accumulated B2 registers contain a running
total of the number of B2 errors. If a rising
edge is observed on the FrameMode signal,
this count is cleared to zero and begins
incrementing again as errors are observed.
Note that these registers are sized to allow
up to 1 seconds worth of errors to be
accumulated before wrapping.

B2_ACCUM[15:8] 2 0xBC(n+2)04539 Bits [15:8] of B2_ACCUM, the Accumulated
B2 Bit Interleaved Parity Error registers.
C5EC3EARCH-RM REV 04

778 APPENDIX C: SONET/SDH CP SUPPORT
B2_ACCUM[7:0] 2 0xBC(n+2)0453A Bits [7:0] of B2_ACCUM, the Accumulated
B2 Bit Interleaved Parity Error registers.

B3_ACCUM[15:8],
STS#1

0 0xBCn0453C Bits [15:8] of B3_ACCUM, the Accumulated
B3 Bit Interleaved Parity Error registers. The
accumulated B3 registers contain a running
total of the number of B3 errors. If a rising
edge is observed on the FrameMode signal,
this count is cleared to zero and begins
incrementing again as errors are observed.
Note: These registers are sized to allow up
to 1 seconds worth of errors to be
accumulated before wrapping.

B3_ACCUM[7:0],
STS#1

0 0xBC(n)0453D Bits [7:0] of B3_ACCUM, the Accumulated
B3 Bit Interleaved Parity Error registers.

B3_ACCUM[15:8],
STS#2

1 0xBC(n+1)0453C For OC12c: Unused.
For OC12nc: B3 for second OC3 of 4.

B3_ACCUM[7:0],
STS#2

1 0xBC(n+1)0453D For OC12c: Unused.
For OC12nc: B3 for second OC3 of 4.

B3_ACCUM[15:8],
STS#3

2 0xBC(n+2)0453C For OC12c: Unused.
For OC12nc: B3 for third OC3 of 4.

B3_ACCUM[7:0],
STS#3

2 0xBC(n+2)0453D For OC12c: Unused.
For OC12nc: B3 for third OC3 of 4.

B3_ACCUM[15:8],
STS#4

3 0xBC(n+3)0453C For OC12c: Unused.
For OC12nc: B3 for last OC3 of 4.

B3_ACCUM[7:0],
STS#4

3 0xBC(n+3)0453D For OC12c: Unused.
For OC12nc: B3 for last OC3 of 4.

Table 246 Receive SONET/SDH OC-12 and OC-12c Statistics Counters Byte Addresses (continued)

TRANSPORT AND
PATH OVERHEAD
BYTES

CP#
WITH A
CLUSTER C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 779
REI_P_ACCUM[15:8],
STS#1

0 0xBCn0453E Bits [15:8] of REI_P_ACCUM, the
Accumulated Path Remote Error Indication
registers. The accumulated REI_P registers
contain a running total of the number of
REI_P errors seen by the far end. If a rising
edge is observed on the FrameMode signal,
this count is cleared to zero and begins
incrementing again as errors are observed.
Note: These registers are sized to allow up
to 1 seconds worth of errors to be
accumulated before wrapping.

REI_P_ACCUM[7:0],
STS#1

0 0xBCn0453F Bits [7:0] of REI_P_ACCUM, the
Accumulated Path Remote Error Indication
registers.

REI_P_ACCUM[15:8],
STS#2

1 0xBC(n+1)0453E For OC12c: Unused.
For OC12nc: B3 for second OC3 of 4.

REI_P_ACCUM[7:0],
STS#2

1 0xBC(n+1)0453F For OC12c: Unused.
For OC12nc: B3 for second OC3 of 4.

REI_P_ACCUM[15:8],
STS#3

2 0xBC(n+2)0453E For OC12c: Unused.
For OC12nc: B3 for third OC3 of 4.

REI_P_ACCUM[7:0],
STS#3

2 0xBC(n+2)0453F For OC12c: Unused.
For OC12nc: B3 for third OC3 of 4.

REI_P_ACCUM[15:8],
STS#4

3 0xBC(n+3)0453E For OC12c: Unused.
For OC12nc: B3 for last OC3 of 4.

REI_P_ACCUM[7:0],
STS#4

3 0xBC(n+3)0453F For OC12c: Unused.
For OC12nc: B3 for last OC3 of 4.

Table 246 Receive SONET/SDH OC-12 and OC-12c Statistics Counters Byte Addresses (continued)

TRANSPORT AND
PATH OVERHEAD
BYTES

CP#
WITH A
CLUSTER C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

780 APPENDIX C: SONET/SDH CP SUPPORT
REI_L_ACCUM[19:16] 2 0xBC(n+2)04541 Bits [19:16] of REI_L_ACCUM, the
Accumulated Line Remote Error Indication
registers. The accumulated REI_L registers
contain a running total of the number of
REI_L errors seen by the far end. If a rising
edge is observed on the FrameMode signal,
this count is cleared to zero and begins
incrementing again as errors are observed.
This count can be read as a single 32bit
word at address 0xBCn04540.
Note: These registers are sized to allow up
to 1 seconds worth of errors to be
accumulated before wrapping.

REI_L_ACCUM[15:8] 2 0xBC(n+2)04542 Bits [15:8] of REI_L_ACCUM, the
Accumulated Line Remote Error Indication
registers.

REI_L_ACCUM[7:0] 2 0xBC(n+2)04543 Bits [7:0] of REI_L_ACCUM, the
Accumulated Line Remote Error Indication
registers.

Table 246 Receive SONET/SDH OC-12 and OC-12c Statistics Counters Byte Addresses (continued)

TRANSPORT AND
PATH OVERHEAD
BYTES

CP#
WITH A
CLUSTER C-5E NP ADDRESS NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 781
Transmit OC-12/OC-12c Writable Overhead Bytes Positions
Figure 126 on page 781 shows the writable bytes in the OC-12/OC-12c SONET/SDH
Overhead.

Figure 126 Tx SONET/SDH OC-12/OC-12c Writable Overhead Bytes

1 2 3

A1

B1

D1

H1

B2

D4

D7

D10

S1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

A1 A1 A1 A1 A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A2

E1

D2

H2

K1

D5

D8

D11

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

M1

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

H2

Z2

A2

H2

Z2

A2

H2

Z2

A2

H2

Z2

J0

F1

D3

H3

K2

D6

D9

D12

E2

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

R
o
w

1

2

3

4

5

6

7

8

9

Column

STS

= Special Manual FEBE

= Unconditionally writable SONET bytes

Section
Overhead

Line
Overhead

= Reserved for future use

STS 1

Path
Overhead
for OC-12c

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

Path
Overhead
for OC-12

STS 1 2 3 4

= Fixed Stuff

NOTE: The transmit pointer (H1 and H2) is set to 0x40.

Tx Pointer Byte
(H1 and H2).
C5EC3EARCH-RM REV 04

782 APPENDIX C: SONET/SDH CP SUPPORT
Transmit OC-12/OC-12c Transport Overhead Definitions
Table 247 on page 782 lists the SONET/SDH Transport Overhead definitions and
addresses.

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES

Z0, STS #2 1 0xBC(n+1)04580 Z0 growth byte value to be sent in the next
frame for position (1,3,2).

Z0, STS #3 2 0xBC(n+2)04580 Z0 growth byte value to be sent in the next
frame for position (1,3,3).

Z0, STS #4 3 0xBC(n+3)04580 Z0 growth byte value to be sent in the next
frame for position (1,3,4).

Z0, STS #5 0 0xBCn04581 Z0 growth byte value to be sent in the next
frame for position (1,3,5).

Z0, STS #6 1 0xBC(n+1)04581 Z0 growth byte value to be sent in the next
frame for position (1,3,6).

Z0, STS #7 2 0xBC(n+2)04581 Z0 growth byte value to be sent in the next
frame for position (1,3,7).

Z0, STS #8 3 0xBC(n+3)04581 Z0 growth byte value to be sent in the next
frame for position (1,3,8).

Z0, STS #9 0 0xBCn04582 Z0 growth byte value to be sent in the next
frame for position (1,3,9).

Z0, STS #10 1 0xBC(n+1)04582 Z0 growth byte value to be sent in the next
frame for position (1,3,10).

Z0, STS #11 2 0xBC(n+2)04582 Z0 growth byte value to be sent in the next
frame for position (1,3,11).

Z0, STS #12 3 0xBC(n+3)04582 Z0 growth byte value to be sent in the next
frame for position (1,3,12).

MD0, STS #2 1 0xBC(n+1)04583 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,2).

MD0, STS #3 2 0xBC(n+2)04583 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,3).

MD0, STS #4 3 0xBC(n+3)04583 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,4).

MD0, STS #5 0 0xBCn04584 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,5).
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 783
MD0, STS #6 1 0xBC(n+1)04584 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,6).

MD0, STS #7 2 0xBC(n+2)04584 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,7).

MD0, STS #8 3 0xBC(n+3)04584 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,8).

MD0, STS #9 0 0xBCn04585 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,9).

MD0, STS #10 1 0xBC(n+1)04585 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,10).

MD0, STS #11 2 0xBC(n+2)04585 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,11).

MD0, STS #12 3 0xBC(n+3)04585 SDH Media Dependent byte value to be sent in
the next frame for position (2,1,12).

E1 0 0xBCn04586 Orderwire E1 byte value to be sent in the next
frame for position (2,2,1).

MD1, STS #2 1 0xBC(n+1)04586 SDH Media Dependent byte value to be sent in
the next frame for position (2,2,2).

MD1, STS #3 2 0xBC(n+2)04586 SDH Media Dependent byte value to be sent in
the next frame for position (2,2,3).

MD1, STS #4 3 0xBC(n+3)04586 SDH Media Dependent byte value to be sent in
the next frame for position (2,2,4).

MD1, STS #5 0 0xBCn04587 SDH Media Dependent byte value to be sent in
the next frame for position (2,2,5).

MD1, STS #6 1 0xBC(n+1)04587 SDH Media Dependent byte value to be sent in
the next frame for position (2,2,6).

MD1, STS #7 2 0xBC(n+2)04587 SDH Media Dependent byte value to be sent in
the next frame for position (2,2,7).

MD1, STS #8 3 0xBC(n+3)04587 SDH Media Dependent byte value to be sent in
the next frame for position (2,2,8).

F1 0 0xBCn04588 F1 byte value to be sent in the next frame for
position (2,3,1).

CS0, STS #2 1 0xBC(n+1)04588 SDH Country Specific byte value to be sent in
the next frame for position (2,3,2).

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

784 APPENDIX C: SONET/SDH CP SUPPORT
CS0, STS #3 2 0xBC(n+2)04588 SDH Country Specific byte value to be sent in
the next frame for position (2,3,3).

CS0, STS #4 3 0xBC(n+3)04588 SDH Country Specific byte value to be sent in
the next frame for position (2,3,4).

CS0, STS #5 0 0xBCn04589 SDH Country Specific byte value to be sent in
the next frame for position (2,3,5).

CS0, STS #6 1 0xBC(n+1)04589 SDH Country Specific byte value to be sent in
the next frame for position (2,3,6).

CS0, STS #7 2 0xBC(n+2)04589 SDH Country Specific byte value to be sent in
the next frame for position (2,3,7).

CS0, STS #8 3 0xBC(n+3)04589 SDH Country Specific byte value to be sent in
the next frame for position (2,3,8).

CS0, STS #9 0 0xBCn0458A SDH Country Specific byte value to be sent in
the next frame for position (2,3,9).

CS0, STS #10 1 0xBC(n+1)0458A SDH Country Specific byte value to be sent in
the next frame for position (2,3,10).

CS0, STS #11 2 0xBC(n+2)0458A SDH Country Specific byte value to be sent in
the next frame for position (2,3,11).

CS0, STS #12 3 0xBC(n+3)0458A SDH Country Specific byte value to be sent in
the next frame for position (2,3,12).

D1 0 0xBCn0458B Datacom Channel 1 byte value to be sent in the
next frame for position (3,1,1).

MD2, STS #2 1 0xBC(n+1)0458B SDH Media Dependent byte value to be sent in
the next frame for position (3,1,2).

MD2, STS #3 2 0xBC(n+2)0458B SDH Media Dependent byte value to be sent in
the next frame for position (3,1,3).

MD2, STS #4 3 0xBC(n+3)0458B SDH Media Dependent byte value to be sent in
the next frame for position (3,1,4).

MD2, STS #5 0 0xBCn0458C SDH Media Dependent byte value to be sent in
the next frame for position (3,1,5).

MD2, STS #6 1 0xBC(n+1)0458C SDH Media Dependent byte value to be sent in
the next frame for position (3,1,6).

MD2, STS #7 2 0xBC(n+2)0458C SDH Media Dependent byte value to be sent in
the next frame for position (3,1,7).

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 785
MD2, STS #8 3 0xBC(n+3)0458C SDH Media Dependent byte value to be sent in
the next frame for position (3,1,8).

MD2, STS #9 0 0xBCn0458D SDH Media Dependent byte value to be sent in
the next frame for position (3,1,9).

MD2, STS #10 1 0xBC(n+1)0458D SDH Media Dependent byte value to be sent in
the next frame for position (3,1,10).

MD2, STS #11 2 0xBC(n+2)0458D SDH Media Dependent byte value to be sent in
the next frame for position (3,1,11).

MD2, STS #12 3 0xBC(n+3)0458D SDH Media Dependent byte value to be sent in
the next frame for position (3,1,12).

D2 0 0xBCn0458E Datacom Channel 2 byte value to be sent in the
next frame for position (3,2,1).

MD3, STS #2 1 0xBC(n+1)0458E SDH Media Dependent byte value to be sent in
the next frame for position (3,2,2).

MD3, STS #3 2 0xBC(n+2)0458E SDH Media Dependent byte value to be sent in
the next frame for position (3,2,3).

MD3, STS #4 3 0xBC(n+3)0458E SDH Media Dependent byte value to be sent in
the next frame for position (3,2,4).

MD3, STS #5 0 0xBCn0458F SDH Media Dependent byte value to be sent in
the next frame for position (3,2,5).

MD3, STS #6 1 0xBC(n+1)0458F SDH Media Dependent byte value to be sent in
the next frame for position (3,2,6).

MD3, STS #7 2 0xBC(n+2)0458F SDH Media Dependent byte value to be sent in
the next frame for position (3,2,7).

MD3, STS #8 3 0xBC(n+3)0458F SDH Media Dependent byte value to be sent in
the next frame for position (3,2,8).

D3 0 0xBCn04590 Datacom Channel 3 byte value to be sent in the
next frame for position (3,3,1).

K1 0 0xBCn04591 K1 byte position (5,2,1) read from this register is
transmitted in the next frame.

K2 0 0xBCn04592 K2 byte position (5,3,1) read from this register is
transmitted in the next frame. See Manual_FEBE
description in SDP_Mode3 register for
exceptions.

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

786 APPENDIX C: SONET/SDH CP SUPPORT
D4 0 0xBCn04593 Datacom Channel 4 byte value to be sent in the
next frame for position (6,1,1).

D5 0 0xBCn04594 Datacom Channel 5 byte value to be sent in the
next frame for position (6,2,1).

D6 0 0xBCn04595 Datacom Channel 6 byte value to be sent in the
next frame for position (6,3,1).

D7 0 0xBCn04596 Datacom Channel 7 byte value to be sent in the
next frame for position (7,1,1).

D8 0 0xBCn04597 Datacom Channel 8 byte value to be sent in the
next frame for position (7,2,1).

D9 0 0xBCn04598 Datacom Channel 9 byte value to be sent in the
next frame for position (7,3,1).

D10 0 0xBCn04599 Datacom Channel 10 byte value to be sent in the
next frame for position (8,1,1).

D11 0 0xBCn0459A Datacom Channel 11 byte value to be sent in the
next frame for position (8,2,1).

D12 0 0xBCn0459B Datacom Channel 12 byte value to be sent in the
next frame for position (8,3,1).

S1 0 0xBCn0459C S1 Synchronization Status byte value to be sent
in the next frame for position (9,1,1).

Z1, STS #2 1 0xBC(n+1)0459C Z1 growth byte value to be sent in the next
frame for position (9,1,2).

Z1, STS #3 2 0xBC(n+2)0459C Z1 growth byte value to be sent in the next
frame for position (9,1,3).

Z1, STS #4 3 0xBC(n+3)0459C Z1 growth byte value to be sent in the next
frame for position (9,1,4).

Z1, STS #5 0 0xBCn0459D Z1 growth byte value to be sent in the next
frame for position (9,1,5).

Z1, STS #6 1 0xBC(n+1)0459D Z1 growth byte value to be sent in the next
frame for position (9,1,6).

Z1, STS #7 2 0xBC(n+2)0459D Z1 growth byte value to be sent in the next
frame for position (9,1,7).

Z1, STS #8 3 0xBC(n+3)0459D Z1 growth byte value to be sent in the next
frame for position (9,1,8).

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 787
Z1, STS #9 0 0xBCn0459E Z1 growth byte value to be sent in the next
frame for e position (9,1,9).

Z1, STS #10 1 0xBC(n+1)0459E Z1 growth byte value to be sent in the next
frame for position (9,1,10).

Z1, STS #11 2 0xBC(n+2)0459E Z1 growth byte value to be sent in the next
frame for position (9,1,11).

Z1, STS #12 3 0xBC(n+3)0459E Z1 growth byte value to be sent in the next
frame for position (9,1,12).

Z2, STS #1 0 0xBCn0459F Z2 growth byte value to be sent in the next
frame for position (9,2,1).

Z2, STS #2 1 0xBC(n+1)0459F Z2 growth byte value to be sent in the next
frame for position (9,2,2).

M1 2 0xBC(n+2)0459F M1 REI-L byte value to be sent in the next frame
for position (9,2,3). See Manual_FEBE description
in SDP_Mode3 register for exceptions.

Z2, STS #4 3 0xBC(n+3)0459F Z2 growth byte value to be sent in the next
frame for position (9,2,4).

Z2, STS #5 0 0xBCn045A0 Z2 growth byte value to be sent in the next
frame for position (9,2,5).

Z2, STS #6 1 0xBC(n+1)045A0 Z2 growth byte value to be sent in the next
frame for position (9,2,6).

Z2, STS #7 2 0xBC(n+2)045A0 Z2 growth byte value to be sent in the next
frame for position (9,2,7).

Z2, STS #8 3 0xBC(n+3)045A0 Z2 growth byte value to be sent in the next
frame for position (9,2,8).

Z2, STS #9 0 0xBCn045A1 Z2 growth byte value to be sent in the next
frame for position (9,2,9).

Z2, STS #10 1 0xBC(n+1)045A1 Z2 growth byte value to be sent in the next
frame for position (9,2,10).

Z2, STS #11 2 0xBC(n+2)045A1 Z2 growth byte value to be sent in the next
frame for position (9,2,11).

Z2, STS #12 3 0xBC(n+3)045A1 Z2 growth byte value to be sent in the next
frame for position (9,2,12).

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

788 APPENDIX C: SONET/SDH CP SUPPORT
E2 0 0xBCn045A2 Orderwire E2 byte value to be sent in the next
frame for position (9,3,1).

CSE2, STS #2 1 0xBC(n+1)045A2 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,2).

CSE2, STS #3 2 0xBC(n+2)045A2 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,3).

CSE2, STS #4 3 0xBC(n+3)045A2 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,4).

CS2, STS #5 0 0xBCn045A3 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,5).

CS2, STS #6 1 0xBC(n+1)045A3 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,6).

CS2, STS #7 2 0xBC(n+2)045A3 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,7).

CS2, STS #8 3 0xBC(n+3)045A3 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,8).

CS3, STS #9 0 0xBCn045A4 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,9).

CS3, STS #10 1 0xBC(n+1)045A4 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,10).

CS3, STS #11 2 0xBC(n+2)045A4 SDH Country Specific 1 byte value to be sent in
the next frame for position (9,3,11).

J0_BUF 0 0xBCn045F0 to FF The J0 section trace message to be transmitted
is written to these registers.

H1_SS, STS #1 0 0xBCn045EC For SDH, the transmit SS bits must be initialized
for backward compatibility. This register allows
the SS bits of the pointer to be initialized. The
two LSB of the register are written to the H1 SS
bits of the Transmit SONET/SDH frame.

H1_SS, STS #2 1 0xBC(n+1)045EC For OC12c: The H1 value.
For OC12nc: H1 for second OC3 of 4.

H1_SS, STS #3 2 0xBC(n+2)045EC For OC12c: The H1 value.
For OC12nc: H1 for third OC3 of 4.

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 789
H1_SS, STS #4 3 0xBC(n+3)045EC For OC12c: The H1 value.
For OC12nc: H1 for last OC3 of 4.

* n can be CP0, CP4, CP8, or CP12

Table 247 Transmit SONET/SDH OC-12 and OC-12c Transport Overhead Byte Addresses

TRANSPORT
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

790 APPENDIX C: SONET/SDH CP SUPPORT
Transmit OC-12/OC-12c Path Overhead Definitions
Table 248 on page 790 lists the SONET/SDH Path Overhead definitions and addresses.

Table 248 Transmit SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses

PATH
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES

C2, STS #1 0 0xBCn045A5 For OC12c: The C2 value to be transmitted in the
next frame.
For OC12nc: C2 for first OC3c of 4.

C2, STS #2 1 0xBC(n+1)045A5 For OC12c: The C2 value.
For OC12nc: C2 for second OC3c of 4.

C2, STS #3 2 0xBC(n+2)045A5 For OC12c: The C2 value.
For OC12nc: C2 for third OC3c of 4.

C2, STS #4 3 0xBC(n+3)045A5 For OC12c: The C2 value.
For OC12nc: C2 for last OC3c of 4.

G1, STS #1 0 0xBCn045A6 For OC12c: The G1 value to be transmitted in the
next frame. See Manual_FEBE description in
SDP_Mode3 register for G1 transmit exceptions.
For OC12nc: G1 for first OC3c of 4.

G1, STS #2 1 0xBC(n+1)045A6 For OC12c: The G1 value.
For OC12nc: G1 for second OC3c of 4.

G1, STS #3 2 0xBC(n+2)045A6 For OC12c: The G1 value.
For OC12nc: G1 for third OC3c of 4.

G1, STS #4 3 0xBC(n+3)045A6 For OC12c: The G1 value.
For OC12nc: G1 for last OC3c of 4.

F2, STS #1 0 0xBCn045A7 For OC12c: The F2 value to be transmitted in the
next frame.
For OC12nc: F2 for first OC3c of 4.

F2, STS #2 1 0xBC(n+1)045A7 For OC12c: The F2 value.
For OC12nc: F2 for second OC3c of 4.

F2, STS #3 2 0xBC(n+2)045A7 For OC12c: The F2 value.
For OC12nc: F2 for third OC3c of 4.

F2, STS #4 3 0xBC(n+3)045A7 For OC12c: The F2 value.
For OC12nc: F2 for last OC3c of 4.
C5EC3EARCH-RM REV 04

SONET/SDH Overhead Access 791
H4, STS #1 0 0xBCn045A8 For OC12c: The H4 value to be transmitted in the
next frame.
For OC12nc: H4 for first OC3c of 4.

H4, STS #2 1 0xBC(n+1)045A8 For OC12c: The H4 value.
For OC12nc: H4 for second OC3c of 4.

H4, STS #3 2 0xBC(n+2)045A8 For OC12c: The H4 value.
For OC12nc: H4 for third OC3c of 4.

H4, STS #4 3 0xBC(n+3)045A8 For OC12c: The H4 value.
For OC12nc: H4 for last OC3c of 4.

Z3, STS #1 0 0xBCn045A9 For OC12c: The Z3 value to be transmitted in the
next frame.
For OC12nc: Z3 for first OC3c of 4.

Z3, STS #2 1 0xBC(n+1)045A9 For OC12c: The Z3 value.
For OC12nc: Z3 for second OC3c of 4.

Z3, STS #3 2 0xBC(n+2)045A9 For OC12c: The Z3 value.
For OC12nc: Z3 for third OC3c of 4.

Z3, STS #4 3 0xBC(n+3)045A9 For OC12c: The Z3 value.
For OC12nc: Z3 for last OC3c of 4.

Z4, STS #1 0 0xBCn045AA For OC12c: The Z4 value to be transmitted in the
next frame.
For OC12nc: Z4 for first OC3c of 4.

Z4, STS #2 1 0xBC(n+1)045AA For OC12c: The Z4 value.
For OC12nc: Z4 for second OC3c of 4.

Z4, STS #3 2 0xBC(n+2)045AA For OC12c: The Z4 value.
For OC12nc: Z4 for third OC3c of 4.

Z4, STS #4 3 0xBC(n+3)045AA For OC12c: The Z4 value.
For OC12nc: Z4 for last OC3c of 4.

Z5, STS #1 0 0xBCn045AB For OC12c: The Z5 value to be transmitted in the
next frame.
For OC12nc: Z5 for first OC3c of 4.

Table 248 Transmit SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses (continued)

PATH
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

792 APPENDIX C: SONET/SDH CP SUPPORT
Z5, STS #2 1 0xBC(n+1)045AB For OC12c: The Z5 value.
For OC12nc: Z5 for second OC3c of 4.

Z5, STS #3 2 0xBC(n+2)045AB For OC12c: The Z5 value.
For OC12nc: Z5 for third OC3c of 4.

Z5, STS #4 3 0xBC(n+3)045AB For OC12c: The Z5 value.
For OC12nc: Z5 for last OC3c of 4.

J1_BUF,
STS #1

0 0xBCn045AC to
0xBCn045EB

The J1 path trace message to be transmitted is
written to these registers.

• To support a 64Byte path, write the complete
64Byte message to these registers.

• To support a 16Byte path trace, write the 16Byte
message consecutively 4 times to these
registers.

J1_BUF,
STS #2

1 0xBC(n+1)045AC
to
0xBC(n+1)045EB

For OC12c: The J1 path trace message.
For OC12nc: J1 for second OC3c of 4.

J1_BUF,
STS #3

2 0xBC(n+2)045AC
to
0xBC(n+2)045EB

For OC12c: The J1 path trace message.
For OC12nc: J1 for third OC3c of 4.

J1_BUF,
STS #4

3 0xBC(n+3)045AC
to
0xBC(n+3)045EB

For OC12c: The J1 path trace message.
For OC12nc: J1 for last OC3c of 4.

* n can be CP0, CP4, CP8, or CP12

Table 248 Transmit SONET/SDH OC-12 and OC-12c Path Overhead Byte Addresses (continued)

PATH
OVERHEAD
BYTE

CP#
WITHIN A
CLUSTER C-5E NP ADDRESS* NOTES
C5EC3EARCH-RM REV 04

CP Configuration Space (SONET/SDH Specific) 793
CP Configuration Space
(SONET/SDH Specific)

In addition to the previous mentioned SONET registers that relate to SONET overhead,
there are additional registers that relate to Configuration Space of the CPs. Some of them
are described here.

CP Mode (SONET/SDH
Specific Enable) Registers

The RxSONET and TxSONET blocks are enabled and disabled using the SDP_Mode3
register bit [31] RxRestx field, bit [30] RxEnable field, bit [27] RxSonetEna field and the
SDP_Mode5 register bit [31] TxRestx field, bit [30] TxEnable field, bit [27] TxSonetEna field.
The mode registers also contain other configuration bits which control SONET scrambling,
OC-12/OC-12c/OC-3c modes, automatic insertion of far-end alarms (via clearing the
Manual_FEBE bit) and other SONET configurations.

CP Event and Interrupt
(SONET/SDH Specific

Event) Registers

SONET/SDH events including LOS, LOF, LOP, RDI-L, RDI-P, AIS-L, and AIS-P are monitored
via the SONET_Event, SONET_Event_Mask, and SDP_Mode2 registers. The SONET_Event
register indicates whether a change in the state of any SONET event has occurred. The
SONET_Event_Mask register is used to select which SONET events are of interest. If a
SONET event occurs and that particular event has been enabled in the SONET_Event_Mask
register, the Event0 register bit [50] SONETOH field is set. This mechanism can be used to
generate interrupts on state changes for various SONET defect conditions. Refer to
“Event0 Register (CP Event and Interrupt Function)” on page 552.

The SDP_Mode2 register bits [31:22] SONET State field detail the current defect condition
(ON or OFF). Using this mechanism, defects can be monitored via interrupts on the CPRC
(where interrupts are generated when the defect condition goes ON or OFF).

Table 249 SONET/SDH Specific Configuration Registers

REGISTER
NAME PURPOSE ADDRESS DETAILS

SDP_Mode3 Collects configuration mode bits
relevant for programming the RxSDP
machines.

0xBCn0464C See “SDP_Mode3 Register
(CP Mode Configuration
Function)” on page 529.

SDP_Mode5 Collects configuration mode bits
relevant for programming the TxSDP
machines.

0xBCn04654 See “SDP_Mode5 Register
(CP Mode Configuration
Function)” on page 538.
C5EC3EARCH-RM REV 04

794 APPENDIX C: SONET/SDH CP SUPPORT
Table 250 SONET/SDH Specific Event Registers

REGISTER
NAME PURPOSE ADDRESS DETAILS

SDP_Mode2 Collects SONET/SDH alarm and
status information.

0xBCn04648 See “SDP_Mode2 Register (CP
Mode Configuration Function)”
on page 526.

SONET_Event Collects together SONET/SDH
event bits from the SDP’s.

0xBCn046C0 See “SONET_Event Register (CP
Event and Interrupt Function)” on
page 560.

SONET_Mask Provides mask that selects bits
in the SONET_Event register for
event access.

0xBCn046C4 See “SONET_Mask Register (CP
Event and Interrupt Function)” on
page 569.
C5EC3EARCH-RM REV 04

SONET/SDH Monitoring Example 795
SONET/SDH Monitoring
Example

The following is an example of a procedure for monitoring a given defect in the C-5e NP.
Specifically, to detect loss of signal (LOS) in an interrupt handler.

1 Set bit [31] Loss of Signal field in the SONET_Mask register. This allows LOS to be
flagged in the SONET_Event register.

2 Set bit [50] SONETOH Event field in the Event_Mask0 register. This allows interrupts to
be generated from changes in the SONET_Event register.

3 Using KsEventRegisterInterrupt(), link the interrupt handler function with the interrupt

using the Freescale CPI software. This allows the CPRC to call the SONET interrupt
handler when the SONETOH Event field, bit [50] state changes, in the Event_Mask0
register.

4 In the interrupt handler function, check bit [31] Loss of Signal field in the SDP_Mode2
register to determine the state of the defect (on or off).

5 Set bit [31] Loss of Signal field in the SONET_Event register to clear the event, so that
future LOS events are not missed.

6 Perform any notification services required to the XPRC, or write information to local
DMEM.

7 Exit the interrupt handler function.

8 The CPI clears the SONETOH Event field bit [50] before exiting, thus enabling new
SONET/SDH events to generate future interrupts.
C5EC3EARCH-RM REV 04

796 APPENDIX C: SONET/SDH CP SUPPORT
Automatic Protection
Switch (APS) Overview

Linear Automatic Protection Switch (APS) is defined for SONET/SDH to provide protection
switching at the line layer. This means that all SPEs (Synchronous Payload Envelopes)
carried in an OC-N signal are protected together and all SPEs are switched simultaneously.

There are 2 types of linear APS architectures: 1+1 and 1:n.

• In the 1+1 architecture, the transmitted signal is continuously bridged at the electrical
level to a working and a protection line so that the same payloads are transmitted
identically to the far end. The receiving equipment chooses either the working or the
protection signal as the one from which to select the traffic.

• In the 1:n architecture, any of n working channels can be bridged to a single protection
line. The protection line can be used to transport extra traffic.

Signal Failure (SF)
Definition

Signal Failure (SF) is “hard failure” condition resulting from the Line BER exceeding a
pre-selected threshold. The BER threshold for an SF condition shall be configurable over
the range of 10-3 to 10-5.

Signal Degrade (SD)
Definition

Signal Degrade (SD) is a “soft failure” condition resulting from the Line BER exceeding a
pre-selected threshold. The BER threshold for an SD condition shall be configurable over
the range of 10-5 to 10-9.

Bit Error Rate algorithms should be designed such that the number of errors detected in a
particular time period is less than the threshold for detecting an SD or SF condition and a
corresponding probability that the number of errors are greater than or equal to the
threshold. The goals below were written assuming a Poisson distribution of errors.

The goals are as follows:

• When the actual BER is greater than or equal to an SD or SF threshold, it is quickly
detected and a switch is initiated.

• The probability of detecting a threshold crossing when the actual BER is below the
threshold is very small and tolerant to burst errors.

One optional requirement is that for SD/SF conditions based on the BER, the probability
that the switch initiation time is less than the objective curve should be greater than .95.
C5EC3EARCH-RM REV 04

Automatic Protection Switch (APS) Overview 797
Switch Initiation Timing There are timing requirements for switch initiation. Since statistically, a large sampling
period is preferred to meet the above goals, the maximum timing requirements come into
play. There are two (2) GR-253 requirements which detail this:

• For SF and SD conditions based on BER, the switch initiation time shall be below the
“maximum” curve. Refer to Table 251 on page 797 with data from the maximum curve.

• Switch completion time is required to be 50ms or less once initiated.

Clearing of SD /SF
Conditions

These rules must be implemented based upon the conditions listed:

• The clearing threshold for an SD or SF condition based on the BER shall be one-tenth
the threshold for declaring the SD or SF.

• If an SD/SF condition is detected and the incoming signal’s BER is greater than or equal
to that SD or SF threshold, the probability that the Lite Terminating Equipment (LTE)
detects that the BER is less than the SD or SF clearing threshold within the “maximum
clearing” time listed shall be less than or equal to 10 -6. Refer to Table 252 on page 798.

• If an SD or SF condition is detected and the incoming signal’s BER is less than or equal
to the SD or SF clearing threshold, the probability that the LTE detects that the BER is
less than that threshold within the “maximum clearing” time listed shall be greater
than or equal to 0.99. Refer to Table 252 on page 798.

Table 251 Maximum Switch Initiation Times

ERROR RATE OC-3C OC-12C

10 -3 8ms 8ms

10 -4 13ms 8ms

10 -5 100ms 25ms

10 -6 1s 250ms

10 -7 10s 2.5s

10 -8 83s 21s

10 -9 667s 167s
C5EC3EARCH-RM REV 04

798 APPENDIX C: SONET/SDH CP SUPPORT
APS Protocol Using the K1
and K2 Bytes

Once detecting the SD/SF condition, a protection switch is initiated. This may be signaled
to the far-end with the K1 and K2 bytes but is not required for 1+1. K1 indicates the
request by a channel for a switch action. K2 indicates the bridging actions performed at
the LTE and the provisioned architecture and mode of operation. For more information,
see section 5.3.5 APS Channel Protocol in GR-253 core.

Table 252 Maximum Switch Clearing Time

SIGNAL
DEGRADE/SIGNAL
FAILURE
THRESHOLD

CLEARING
THRESHOLD MAXIMUM/OBJECTIVE

10 -3 10 -4 10ms/none

10 -4 10 -5 100ms/25ms (OC12)

10 -5 10 -6 1s/250ms (OC12)

10 -6 10 -7 10s/2.5s (OC12)

10 -7 10 -8 100s/21s (OC12) 83s (OC3)

10 -8 10 -9 1,000s/167s (OC12) 667s (OC3)

10 -9 10 -10 10,000s/1,333s (OC12) 5,360s (OC3)
C5EC3EARCH-RM REV 04

Determining Signal Degrade/Signal Failure Conditions with C-5e NP 799
Determining Signal
Degrade/Signal Failure
Conditions with C-5e NP

As described in the earlier section describing GR-253 requirements, Bit Error Rates (BER)
are noted in units of number of bits in error for every x bits. For example, 1bit error in
1000bits (10 -3). In order to determine the bit error rate, SONET/SDH standards assume a
Poisson or Binomial distribution of errors. These can be approximated using a Normal
(Gaussian) distribution when collected over a large sample period. For the purposes of this
discussion, a binomial curve is approximated using the normal distribution.

Because of the random nature of the bit errors, it is impossible to specify a perfect
maximum detection time. The standard reads that the detection time should be less than
the objective in more than 95% of error events.

The normal curve can be used to obtain thresholds for given detection times to obtain the
appropriate threshold values. An example follows to illustrate this. A normal random
variable with a mean of 0 and a variance of 1 is called a standard normal random variable
and this is denoted as Z.

The following equation is used to convert from a binomial distribution to the
approximated normal distribution. If X is a binomial random variable, then Z is
approximately a standard normal random variable where np is the mean and the square
root of np(1-p) is the standard deviation. The approximation is good when n is large
relative to p. For our discussion, n is the number of bits received and p is the error rate.
Refer to Figure 127 on page 799.

Figure 127 Converting from Binomial to Approximate Normal Distribution Formula

To determine the values to use for the detection threshold for bit error rate detection for
SD/SF with a surety of 95% correctness, the following equation is used to convert from the
standard normal distribution to the normal distribution we have.

If X is a normal random variable with E(X)= mean and V(X)= variance, then the random
variable is a normal random variable with E(Z)=0 and V(Z)=1. That is, Z is a standard
normal random variable. Refer to Figure 128 on page 800.

Z X np–()
np 1 p–()

--------------------------=
C5EC3EARCH-RM REV 04

800 APPENDIX C: SONET/SDH CP SUPPORT
Figure 128 Converting from Standard Normal to Normal Distribution Formula

If this is true, the probability of 95% surety can be obtained using a standardization table.

Looking up .95 in the standardized normal distribution table, a standard deviation of less
than 1.65 is required. To calculate the threshold once the mean and standard deviation
are determined, use the following equation to determine the detection threshold. Refer to
Figure 129 on page 800.

Figure 129 Detection Threshold Formula

Let’s take an OC-3c case and run some numbers through the equation for a given
detection time:

np = (2430 bytes/frame) * (32 frames) * (8 bits/byte) (1 x 10 -3 BER) = 622.08

Figure 130 OC-3c Detection Example

So, the detection threshold is 622.08 + (1.645)24.929 = 663 errors in 32frames or 4ms and
an error rate of 1x10-3.

Table 253 on page 800 indicates the possible settings for detection times which could be
used for OC-3c.

Table 253 Possible Settings for OC-3c Detection Times

OC-3C
ERROR RATE

MAXIMUM
TIME
ALLOWED

EQUIVALENT
NUMBER OF
FRAMES

CHOSEN
FRAME
COUNT THRESHOLD

10 -3 8ms 64 32 663

10 -4 13ms 104 52 85

10 -5 100ms 800 400 63

10 -6 1s 8000 4000 63

Z X µ–()
σ----------------=

X µ 1.645σ+=

np 1 p–() 622 1 1
3–×10)–() 24.929= =
C5EC3EARCH-RM REV 04

Determining Signal Degrade/Signal Failure Conditions with C-5e NP 801
Table 254 on page 801 indicates the possible settings for detection times which could be
used for OC-12c.

The chosen frame count value is not the same as the maximum time allowed. This still
meets the requirements statistically, if the sample is large. The examples use half of the
maximum time allowed value for the chosen frame count values.

For lower error rate thresholds (10-7 to 10-9), the hardware is limited by the maximum
frame count value of 8000 frames. To work around this issue in software, set the frame
count value to the maximum (8000) and set the threshold to 1 and accumulate the larger
range in software. Refer to Table 255 on page 801 and Table 256 on page 801.

Table 254 Possible Settings for OC-12c Detection Times

OC-12C
ERROR RATE

MAXIMUM
TIME
ALLOWED

EQUIVALENT
NUMBER OF
FRAMES

CHOSEN
FRAME
COUNT THRESHOLD

10 -3 8ms 64 32 2417

10 -4 8ms 64 32 224

10 -5 25ms 200 100 64

10 -6 250ms 2000 1000 64

Table 255 OC-3c Desired Thresholds for Lower Error Rates

OC-3C
ERROR RATE

MAXIMUM
TIME
ALLOWED

EQUIVALENT
NUMBER OF
FRAMES

CHOSEN
FRAME
COUNT THRESHOLD

10 -7 10s 80000 40000 64

10 -8 83s 664000 332000 52

10 -9 667s 5336000 2668000 41

Table 256 OC-12c Desired Thresholds for Lower Error Rates

OC-12C
ERROR RATE

MAXIMUM
TIME
ALLOWED

EQUIVALENT
NUMBER OF
FRAMES

CHOSEN
FRAME
COUNT THRESHOLD

10 -7 2.5s 20000 10000 64

10 -8 21s 168000 84000 53

10 -9 167s 1336000 668000 41
C5EC3EARCH-RM REV 04

802 APPENDIX C: SONET/SDH CP SUPPORT
The information in “Determining Signal Degrade/Signal Failure Conditions with C-5e NP”
is preliminary and the values in Table 253 on page 800, Table 254 on page 801, Table 255
on page 801 and Table 256 on page 801 are subject to change.
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Appendix D
RISC CORE CUSTOM INSTRUCTIONS
Appendix Overview This appendix covers the following topic:

• RISC Core Enhancements
C5EC3EARCH-RM REV 04

804 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
RISC Core Enhancements Twenty-four (24) total instructions have been added to the CPRC and XPRC. Sixteen (16)
instructions are in addition to the subset of a MIPSTM1 instruction set (excluding multiply,
divide, floating point, unaligned loads and stores, move to hi and move to lo), mentioned
earlier in this manual. In addition, eight (8) Branch Likely instructions from the standard
MIPSTM 2 instruction set are provided in the CPRC and XPRC. They include: BEQL (Branch
on Equal Likely), BNEL (Branch on Not Equal Likely), BLEZL (Branch on Less than or Equal
to Zero Likely), BGTZL (Branch on Greater Than Zero Likely), BLTZL Branch on Less Than
Zero Likely), BGEZL (Branch on Greater than or Equal to Zero Likely), BLTZALL (Branch on
Less Than Zero And Link Likely), and BGEZALL (Branch on Greater than or Equal to Zero
And Link Likely). Refer to the MIPSTM 2 RISC architecture manual for their detail
descriptions.

The unaligned load and store instructions LWL (Load Word Left), LWR (Load Word Right),
SWL (Store Word Left), and SWR (Store Word Right) are not supported C-5e NP. Execution
of these instructions results in an illegal instruction exception.

Individual Custom
Instructions

The name, format, description and operation for each custom instruction is provided in
this section.

CLZ - Count leading zeros

Format:
CLZ rd, rs

Description:
Register rs is scanned from bit 31 to bit 0, and the number of zeros before the first set bit is
stored in register rd. If register rs is zero, then a value of 32 is stored in register rd.

Operation:
T: GPR[rd] <- # of leading zeros{GPR[rs]}

Bit Position 31 26 25 21 20 16 15 11 10 6 5 0

Field Name
SPECIAL2

011100
rs 00000 rd 00000

CLZ

100000

Number of Bits 6 5 5 5 5 6
C5EC3EARCH-RM REV 04

RISC Core Enhancements 805
CSWAP - Context swap

Format:
CSWAP rt

Description:
The program unconditionally jumps to the Program Counter (PC) saved for “new context”
and switches to the register file saved for “new context”. The PC for current context for the
instruction after the delay slot is saved. The “new context” value is stored in rt and its legal
range is 0 to 3. Fixed mapping between the context and coprocessor zero’s (CP0) registers
are as follows:

Context0 is mapped to CP0 register16,
Context1 is mapped to CP0 register17,
Context2 is mapped to CP0 register18,
Context3 is mapped to CP0 register19.

In addition, CP0 register3 holds the current context number as it changes. Its content can
be read.

Operation:
T: SAVED_PC[“active context”] <- PC+8
T+1: PC <- SAVED_PC[RT1:0]
“active context” <- RT[1:0]

Bit Position 31 26 25 21 20 16 15 11 10 6 5 0

Field Name
COPO

010000
10000 rt unused unused

CSWAP

010001

Number of Bits 6 5 5 5 5 6
C5EC3EARCH-RM REV 04

806 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
BEQNL - Branch on equal not likely

Format:
BEQNL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. The
contents of general register rs and the contents of general register rt are compared. If the
two registers are equal, the target address is branched to, with a delay of one instruction.
If the conditional branch is taken, the instruction in the branch delay slot is nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- (GPR[rs] = GPR[rt])
T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name
BEQNL

011000
rs rt offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

RISC Core Enhancements 807
BGEZALNL - Branch on greater than or equal to zero and link not likely

Format:
BGEZALNL rs, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits.
Unconditionally, the address of the instruction after the delay slot is placed in the link
register, r31. If the contents of general register rs have the sign bit cleared, then the
program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not trapped, however. If the
conditional branch is taken, the instruction in the branch delay slot is nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs]31 = 0
GPR[31] <- PC+8
T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name REGIMM rs
BGEZANLNL

10111
offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

808 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
BGEZNL - Branch on greater than or equal to zero not likely

Format:
BGEZNL rs, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. If the
contents of general register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. If the conditional branch is taken, the
instruction in the branch delay slot is nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs]31 = 0
T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name REGIMM rs
BGEZNL

00111
offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

RISC Core Enhancements 809
BGTZNL - Branch on greater than zero not likely

Format:
BGTZNL rs, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. The
contents of general register rs are compared to zero. If the contents of general register rs
have the sign bit cleared and not equal to zero, then the program branches to the target
address, with a delay of one instruction. This instruction is only valid when rt=0. If the
conditional branch is taken, the instruction in the branch delay slot is nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs]31 = 0 and GPR[rs] != 032

T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name
BGTZNL

011001
rs 00000 offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

810 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
BLEZNL - Branch on less than or equal to zero not likely

Format:
BLEZNL rs, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. The
contents of general register rs are compared to zero. If the contents of general register rs
have the sign bit set or are equal to zero, then the program branches to the target address,
with a delay of one instruction. This instruction is only valid when rt=0. If the conditional
branch is taken, the instruction in the branch delay slot is nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs]31 = 1 or GPR[rs] = 032

T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name
BLEZNL

011010
rs 00000 offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

RISC Core Enhancements 811
BLTZALNL - Branch on less than zero and link not likely

Format:
BLTZALNL rs, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits.
Unconditionally, the address of the instruction after the delay slot is placed in the link
register, r31. If the contents of general register rs have the sign bit set, then the program
branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not trapped, however. If the
conditional branch is taken, the instruction in the branch delay slot is nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs]31 = 1
GPR[31] <- PC+8
T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name REGIMM rs
BLTZALNL

10110
offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

812 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
BLTZNL - Branch on less than zero not likely

Format:
BLTZNL rs, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. If the
contents of general register rs have the sign bit set, then the program branches to the
target address, with a delay of one instruction. If the conditional branch is taken, the
instruction in the branch delay slot is nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs]31 = 1
T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name REGIMM rs
BLTZNL

00110
offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

RISC Core Enhancements 813
BNENL - Branch on not equal not likely

Format:
BNENL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. The
contents of general register rs and the contents of general register rt are compared. If the
two registers are not equal, the target address is branched to, with a delay of one
instruction. If the conditional branch is taken, the instruction in the branch delay slot is
nullified.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs] != GPR[rt]
T+1: if condition then
PC <- PC + target
NullifyCurrentInstruction
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name
BNENL

011011
rs rt offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

814 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
BBIT0 - Branch on bit clear

Format:
BBIT0 rs, p, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. If the
contents of general register rs have bit p clear, then the program branches to the target
address, with a delay of one instruction.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs] [p] =0
T+1: if condition then
PC <- PC + target
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name
BBIT0

011110
rs p offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

RISC Core Enhancements 815
BBIT1 - Branch on bit set

Format:
BBIT1 rs, p, offset

Description:
A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16bit offset, shifted left two bits and sign-extended to 32 bits. If the
contents of general register rs have bit p set, then the program branches to the target
address, with a delay of one instruction.

Operation:
T: target <- (offset15)14 ||offset||02

Condition <- GPR[rs] [p] =1
T+1: if condition then
PC <- PC + target
endif

Bit Position 31 26 25 21 20 16 15 0

Field Name
BBIT1

011111
rs p offset

Number of Bits 6 5 5 16
C5EC3EARCH-RM REV 04

816 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
INS - Insert bit field

Format:
INS rt, rs, p, len

Description:
The contents of general purpose register rt from bit location p + (len-1) to bit location p
are replaced with the contents of general purpose register rs from bit location len-1 to bit
location 0. If p +(len-1) >31 then the results are undefined.

Operation:
T: GPR[rt][p+(len-1): p] <- GPR[rs] [(len-1):0]

Bit Position 31 26 25 21 20 16 15 11 10 6 5 0

Field Name
SPECIAL2

011100
rs rt len p

INS

100010

Number of Bits 6 5 5 5 5 6
C5EC3EARCH-RM REV 04

RISC Core Enhancements 817
CINS - Clear then insert bit field

Format:
CINS rt, rs, p, len

Description:
The contents of general purpose register rt are zeroed and the contents of register rt from
bit location p + (len-1) to bit location p are replaced with the contents of general purpose
register rs from bit location len-1 to bit location 0. If p +(len-1) >31 then the results are
undefined.

Operation:
T: GPR[rt] <- 0
GPR[rt][p+(len-1): p] <- GPR[rs] [(len-1):0]

Bit Position 31 26 25 21 20 16 15 11 10 6 5 0

Field Name
SPECIAL2

011100
rs rt len p

INS

100101

Number of Bits 6 5 5 5 5 6
C5EC3EARCH-RM REV 04

818 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
EXTU - Extract bit field unsigned

Format:
EXTU rt, rs, p, len

Description:
The contents of general purpose register rt are replaced with the contents of general
purpose register rs from bit location p+(len-1) to bit location p shifted right by p bits and
zero extended to 32 bits. If p +(len-1) >31 then the results are undefined.

Operation:
T: GPR[rt] <- zero extend {GPR[rs] [p+(len-1):p] >> p }

Bit Position 31 26 25 21 20 16 15 11 10 6 5 0

Field Name
SPECIAL2

011100
rs rt len p

EXTU

100011

Number of Bits 6 5 5 5 5 6
C5EC3EARCH-RM REV 04

RISC Core Enhancements 819
EXTS - Extract bit field signed

Format:
EXTS rt, rs, p, len

Description:
The contents of general purpose register rt are replaced with the contents of general
purpose register rs from bit location p+(len-1) to bit location p shifted right by p bits and
sign extended to 32 bits. If p +(len-1) >31 then the results are undefined.

Operation:
T: GPR[rt] <- sign extend {GPR[rs] [p+(len-1):p] >> p }

Bit Position 31 26 25 21 20 16 15 11 10 6 5 0

Field Name
SPECIAL2

011100
rs rt len p

EXTS

100100

Number of Bits 6 5 5 5 5 6
C5EC3EARCH-RM REV 04

820 APPENDIX D: RISC CORE CUSTOM INSTRUCTIONS
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Appendix E
PCI BYTE SWAPPING
Appendix Overview This appendix covers the following topics:

• PCI Byte Swapping Overview

• PCI Inbound and Outbound Byte Swap Registers
C5EC3EARCH-RM REV 04

822 APPENDIX E: PCI BYTE SWAPPING
PCI Byte Swapping
Overview

The C-5e NP provides a byte swapping feature used to move data between the PCI Bus
Little Endian environment and the C-5e NP Big Endian environment.

Most endianess issues come from the difference in the addressing (and/or byte enable
assignment) and the position of bytes within a 32bit double word between the two (2)
environments as shown in Figure 131 on page 822.

Figure 131 Little Endian vs. Big Endian

These differences create a problem when 32bit double word and byte transactions pass
from one environment to the other.

Default Mode The current hardware handles this transition by maintaining the data byte positions
within the 32bit double word and effectively swapping the byte address of the bytes.
Figure 132 on page 823 illustrates a 32bit double word write from the PCI bus into a
register somewhere in the Big Endian C-5e NP environment. Notice how the data that was
in bits [31:24] on the PC I bus are stored in bits [31:24] in the C-5e NP register even though
the address of that byte is 3 on the PCI Bus and 0 within the C-5e NP.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Environment

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5e NP Big Endian Environment

Bits
Address
Contents
C5EC3EARCH-RM REV 04

PCI Byte Swapping Overview 823
Figure 132 PCI 32bit Aligned Double Word Access to C-5e NP

This means that software must be very careful with the address when performing
accesses to smaller than a 32bit double word. For example, in Figure 133 on page 823 the
PCI performs a byte write to address 3 on the PCI Bus. Again the data on bits [31:24] on the
PCI Bus arrives in bits [31:24] in the C-5e NP register; however, as far as a processing
element within the C-5e NP is concerned that byte is at address 0.

Figure 133 PCI Byte Access to C-5e NP (PCI Address 3)

The same rules apply when data flows in the opposite direction. Byte position remain the
same, but the addresses associated with the bytes swap as the data crosses the interface.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5e NP Big Endian Env.

Bits
Address
Contents

31:24
3

0xAA

23:16
2

15:8
1

7:0
0

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

15:8
2

7:0
3

C-5e NP Big Endian Env.

Bits
Address
Contents
C5EC3EARCH-RM REV 04

824 APPENDIX E: PCI BYTE SWAPPING
Figure 134 on page 824 illustrates a 32bit double word access and Figure 135 on page 824
shows a byte access flowing from the C-5e NP to the PCI.

Figure 134 C-5e NP 32bit Aligned Double Word Access to PCI

Figure 135 C-5e NP Byte Access to PCI (C-5e NP Address 0)

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5e NP Big Endian Env.

Bits
Address
Contents

31:24
3

0xAA

23:16
2

15:8
1

7:0
0

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

15:8
2

7:0
3

C-5e NP Big Endian Env.

Bits
Address
Contents
C5EC3EARCH-RM REV 04

PCI Byte Swapping Overview 825
Byte Swapping Mode The Byte Swapping Mode is an alternative to the Default Mode that handles this transition
by maintaining consistent byte addresses and swapping the data byte positions.
Figure 136 on page 825 illustrates a 32bit double word write from the PCI bus into a
register somewhere in the Big Endian C-5e NP environment. Notice how the data that was
in bits [31:24] on the PC I bus are stored in bits [7:0] in the C-5e NP register, which is the
byte at the same address as that on the PCI bus. This means that if a C-5e NP internal
processing element accesses the same 32bit double word, the data will be byte swapped
from what the PCI originally wrote.

Figure 136 PCI 32bit Aligned Double Word Access to C-5e NP

In this mode, the software does not have to worry about the byte addresses, because they
remain consistent across the interface. For example, in Figure 137 on page 826 the PCI is
doing a byte write to address 3 on the PCI Bus. Again the data on bits [31:24] on the PCI
Bus arrive in bits [7:0] in the C-5e NP register, which is also C-5e NP internal byte address 3.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xDD

23:16
1

0xCC

15:8
2

0xBB

7:0
3

0xAA

C-5e NP Big Endian Env.

Bits
Address
Contents
C5EC3EARCH-RM REV 04

826 APPENDIX E: PCI BYTE SWAPPING
Figure 137 PCI Byte Access to C-5e NP (PCI Address 3)

The same rules apply when data is flowing in the opposite direction. Byte address remains
the same, but the byte positions are swapped as the data crosses the interface. Figure 138
on page 826 illustrates a 32bit double word access and Figure 139 on page 827 shows a
byte access flowing from the C-5e NP to the PCI.

Figure 138 C-5e NP 32bit Aligned Double Word Access to PCI

31:24
3

0xAA

23:16
2

15:8
1

7:0
0

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

23:16
1

15:8
2

7:0
3

0xAA

C-5e NP Big Endian Env.

Bits
Address
Contents

31:24
3

0xDD

23:16
2

0xCC

15:8
1

0xBB

7:0
0

0xAA

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5e NP Big Endian Env.

Bits
Address
Contents
C5EC3EARCH-RM REV 04

PCI Byte Swapping Overview 827
Figure 139 C-5e NP Byte Access to PCI (C-5e NP Address 0)

Primary Application Using Byte Swapping Mode
The primary application of the Byte Swapping Mode is when the host processor in the
system is a Big Endian processor and the processor’s bridge to the Little Endian PCI Bus
performs byte swapping, as illustrated in Figure 140 on page 828.

The two (2) byte swapping operations that occur as data passes from or to the PowerPC
Big Endian Environment, over the PCI Bus and to or from the C-5e NP Big Endian
Environment cancel each other out. This provides both processing environments with a
consistent view of all of the data.

31:24
3

23:16
2

15:8
1

7:0
0

0xAA

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

15:8
2

7:0
3

C-5e NP Big Endian Env.

Bits
Address
Contents
C5EC3EARCH-RM REV 04

828 APPENDIX E: PCI BYTE SWAPPING
Figure 140 C-5e NP 32bit Aligned Double Word Access to PCI

Implementing Byte Swapping Mode
The default configuration for access to or from the C-5e NP does not perform byte
swapping, that is, the Default Mode. The Byte Swapping Mode can be enabled for specific
accesses based on programmable bits within the two (2) PCI Inbound BARn Translation
registers, the eight (8) PCI Outbound BARn Translation registers, or the control registers
associated with the PCI transmit and receive transfer control blocks. Table 257 on
page 829 defines the details for each transaction source/target pair that uses the PCI
interface. Table 258 on page 830 lists the Inbound and Outbound Bar Translation
registers.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

Bits
Address
Contents

31:24
0

0xDD

23:16
1

0xCC

15:8
2

0xBB

7:0
3

0xAA

Bits
Address
Contents

PowerPC Big Endian Env.

PCI Little Endian Env.

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

Bits
Address
Contents

PCI Little Endian Env.

C-5e NP Big Endian Env.
C5EC3EARCH-RM REV 04

PCI Byte Swapping Overview 829
Table 257 Byte Swapping Support Specification

SOURCE TARGET BYTE SWAPPING SUPPORT

PCI Bus C-5e NP PCI Config.
Registers

No Byte Swapping

PCI Bus XP Config. Registers
C-5e NP Serial Bus
PROM Interface
CPs via Global Bus
C-5e NP Ring Bus
DMEM24
DMEM25

Byte swapping controlled by bit 0 (BAR0 accesses)
and bit 1 (BAR 1 accesses) of the PCI Inbound Byte
Swap Control register. If the bit is set to a 1, byte
swapping occurs as the data passes through the PCI.
Each enable bit control s the byte swapping for only
transactions decoded by its corresponding base
address register.

XP/RC C-5e NP PCI Config Regs No Byte Swapping

XP/RC External PCI Space Byte swapping controlled by bits 0 through 7 of the
PCI Outbound Byte Swap Control register. If the bit is
set to a 1, byte swapping occurs as the data passes
through the PCI. Each enable bit controls the byte
swapping for only transactions decoded by its
corresponding base address register, where bits 0
through 7 correspond with BARs 0 through 7,
respectively.

Rx XCB#24
(Scope 0)

External PCI Space Byte swapping controlled by bit 8 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.

Rx XCB#24
(Scope 1)

External PCI Space Byte swapping controlled by bit 9 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.

Tx XCB #24
(Scope 0)

External PCI Space Byte swapping controlled by bit 10 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.

Tx XCB #24
(Scope 1)

External PCI Space Byte swapping controlled by bit 11 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.
C5EC3EARCH-RM REV 04

830 APPENDIX E: PCI BYTE SWAPPING
Table 258 Inbound and Outbound Barn Transaction Registers

ADDRESS REGISTER NAME DETAILS

0xBD808040 PCI Inbound BAR0 Translation See “PCI Inbound BAR0 Translation
Register (XP PCI Configuration
Function)” on page 598

0xBD808044 PCI Inbound BAR1 Translation See “PCI Inbound BAR1 Translation
Register (XP PCI Configuration
Function)” on page 598

0xBD808220 to
0xBD80823C

Outbound BAR0 Transaction to
Outbound Bar7 Transaction

See “Outbound BAR0 Translation
Register (XP Configuration
Function)” on page 607
C5EC3EARCH-RM REV 04

PCI Inbound and Outbound Byte Swap Registers 831
PCI Inbound and Outbound
Byte Swap Registers

The control bits for byte swapping are located in dedicated configuration registers, to
allow these bits to be configured and then “forgotten”. This makes it possible for more of
the code to be written without knowing about the proper setting of these bits. Table 259
on page 831 lists the two (2) PCI Inbound and Outbound Byte Swap Control registers.

Table 259 PCI Inbound and Outbound Byte Swap Control Registers

ADDRESS REGISTER NAME DETAILS

0xBD808050 PCI Inbound Byte Swap Control See “PCI Inbound Byte Swap Control
Register (XP PCI Configuration Function)”
on page 600.

0xBD80828C PCI Outbound Byte Swap Control See “PCI Outbound Byte Swap Control
Register (XP Configuration Function)” on
page 616.
C5EC3EARCH-RM REV 04

832 APPENDIX E: PCI BYTE SWAPPING
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
Appendix F
C-5E NP SYSTEM CONFIGURATION
Appendix Overview This appendix covers the following topics:

• C-5e NP System Configuration and Overview

• C-5e and M-5 Configuration Types and Their Options

• C-5e Methods for Handling High Speed (OC-48) PDUs

• M-5 Channel Adapter Overview
C5EC3EARCH-RM REV 04

834 APPENDIX F: C-5E NP SYSTEM CONFIGURATION
C-5e NP System
Configuration and
Overview

The C-5e NP product offers OC-48c line speeds using the M-5 Channel Adapter. Table 260
on page 834 describes each device and its role within the C-5e NP system.

Table 260 Roles of Each Device Within the C-5e NP System

ITEM FUNCTION

C-5e The C-5e individual channels each support up to a single OC-3c stream. The C-5e has
16 CPs that can be clustered together into four (4) clusters. These four (4) clusters can
be grouped together (aggregation) to support higher bandwidth streams. Through
aggregation, a cluster can support a single OC-12c stream. A cluster’s CPs each
represents a stage in a pipeline, thus providing the processor cycles required by each
PDU.
For the C-5e to support OC-48c with the front ports, all 16 CPs have to be aggregated
together (4 clusters, each running OC-12c =OC-48c). A cluster, due to its logical and
physical organization, has the ability to share data and synchronize in order to
support cluster aggregation. However, this communication does not exist across
cluster boundaries. The 16 CPs required for OC-48c cannot share data, or enforce
order across the CPs when descriptors are enqueued for PDU transmission (Rx or Tx).
The C-5e uses a method called Aggregation Queueing. Aggregation queueing
provides two benefits: it allows clustered CPs to share queues, and allows all 16 CPs to
share one (1) single queue to transmit one (1) single concatenated stream (up to four
(4) clusters can transmit from one (1) queue).
Another method used by the C-5e is called Speculative Enqueue. Speculative Enqueue
allows a fixed latency for PDU streams, from the start to enqueue. This accommodates
the QMU since it uses sequence numbers to order PDU enqueues in a concatenated
stream. Also, this method prevents uneven PDU flows that can cause overruns of
PDUs, and large gaps in the streams, thus, providing a more efficient bandwidth of
PDU flow. The enqueues are speculative because at the time they are enqueued, the
CRC is not calculated. Typically, speculative enqueues are used on CPs for enqueue
(only) operations.

M-5 The Channel Adapter (M-5), used with the C-5e provides the required PDU ordering
for both packet and cells for the front ports (CPs). In addition, it provides bus
translation from multi-physical layer (MPHY), 32bit UTOPIA Level 3 (UTOPIA-L3) to the
C-5e front ports (CPs) and back port (FP), as well as, bus translation from Saturn
POS-PHY Level 3 (POS-PHY-L3) to the C-5e front ports (CPs) and back port (FP), thus
allowing OC-48c bandwidths. Additionally, the front ports (CPs) use a Gigabit Media
Independent Interface (GMII) that can be modified to provide flow control that
interfaces with the SDPs.
The method that the M-5 uses to provide PDU ordering is called Sequence Numbers.
Sequencer numbers are 13bits long and are included as part of the enqueue and
dequeue operations. Sequence Numbers are used whenever a flow is spread across
more than one cluster in the case of the front ports (CPs). The FPRx does not need
sequence numbers since it maintains strict ordering internally. Refer to “M-5 Channel
Adapter Overview” on page 843.
C5EC3EARCH-RM REV 04

C-5e and M-5 Configuration Types and Their Options 835
C-5e and M-5
Configuration Types and
Their Options

Numerous configurations are supported using the C-5e with the M-5 companion device.

In general, three (3) types of system configurations are supported using chip set
combinations. The three (3) system configuration types are:

• Basic Port Aggregation !OC-48 System Configuration, Using 1 C-5e

• Basic OC-48c to OC-48c System Configurations, Using 2 C-5e and 2 M-5s

• Basic OC-48(c) to Switch Fabric System Configurations, Using 1 C-5e, and 1 M-5

Table 261 on page 837 indicates the supported C-5e system configurations and details
some of their parameters. Table 261 on page 837 groups the C-5e supported system
configurations into three (3) types. Illustrations of the three (3) system configuration types
are shown in Figure 141 on page 839, Figure 142 on page 840, and Figure 143 on
page 841.

The configurations listed in Table 261 on page 837 are specified by the mode of the front
ports (CPs) and back port (FP). Also, the configurations specify three (3) C-5e methods that
are used. They include: queueing model, sequence numbers queueing aggregation, and
external scheduler mode. Notes are provided that pertain to specific configurations. These
items are described here:

Front Ports (CPs) and Back
Port (FP) Configurations

The modes of the front ports (CPs) consist of:

• Clustered (M-5)

• Configurable (non-clustered, completely configurable)

• Requires Freescale Reference Application Software

Clustered means that the front ports (CPs) are connected to a M-5, the four (4) CPs are
aggregated together for OC-12c traffic, and the SDP are set for Gigabit Media
Independent Interface (GMII). Configurable means the front ports (CPs) are set to support

any mode up to and including two 1Gbit Ethernet ports. Requires Freescale Reference
Application Software, means that certain application software is needed.

Freescale Reference Application Software refers to a segmented, interleaved application
that manages the bandwidth and individual flow control of up to 3 STS-1 (Synchronous
Transport Signal level 1) flows for up to 16 STS-1s per cluster. Any combination of STS-1,
STS-3, STS-12, and Gbit are supported.
C5EC3EARCH-RM REV 04

836 APPENDIX F: C-5E NP SYSTEM CONFIGURATION
External Scheduler Mode The C-5e provides two (2) modes for managing queues:

• Internal Mode (using the internal QMU only)

• External Mode

The Internal Mode (QMU) functions as described in the QMU section.

Refer to “External Scheduler Mode” on page 457 for information on the External Mode
operation.

Queueing Model
Configurations

The Queueing Model refers to the organization of either the QMU or the Q-5. Three (3)
configurations are possible:

• Clustered front ports (CPs) and QMU= the CPs share up to 128 queues for transmit
using the queue aggregation method

• Clustered Front ports (CPs) and QMU= the CPs share one Queue in 16 way
Aggregation.

• Normal configured back port (FP) and QMU = 32 port groups with 4 priorities or 16

Sequence Numbers
Configurations

The Sequence Numbers are generated values associated with PDUs to maintain their
order. Sequence numbers are required in one (1) configuration:

• For front ports (CPs), when one (1) flow is spread across multiple cluster’s of CPs (>1)

C-5e Methods Three (3) C-5e methods are used to support the various system configurations. In general,
these methods are used to handle high speed (OC-48) PDU streams.

• Sequence Numbers

• Aggregated Queueing (x16)

• Speculative Enqueue

Refer to “C-5e Methods for Handling High Speed (OC-48) PDUs” on page 842 for
descriptions of each method.

Notes To ensure proper system configuration, refer to the notes for that particular configuration.
C5EC3EARCH-RM REV 04

C-5e and M-5 Configuration Types and Their Options 837
Table 261 Supported C-5e System Configurations

FRONT
PORT
(CPS)
(CONFIGU
RATIONS

BACK PORT
(FP)/OTHER
PORT (>1 C-5E)
(CONFIGURATI
ONS)

FRONT PORT
(CONFIGURATI
ONS)

QUEUEING
MODEL
(FRONT
PORT)

QUEUEING
MODEL
(BACK PORT)

SEQUENCE
NUMBERS
FOR FRONT
PORT
(ENQUEUE/D
EQUEUE)

SEQUENCE
NUMBERS
FOR BACK
PORT
(ENQUEUE/
DEQUEUE)

REQUIRED
C-5E
METHODS NOTES

Basic Port Aggregation !OC-48 System Configuration, Using 1 C-5e

Standard
Ports
(Not
including
Gbit
Ethernet)

UTOPIA L3 Configurable <=128
queues per
port

4<= queues
<=48

No/No No/No Refer to
Figure 141 on
page 839.

Basic OC-48c to OC-48c System Configurations (allows max.aggregation configuration), Using 2 C-5es, 2M-5s

OC-48c
SPHY

OC-48c SPHY* Clustered
(M-5)

<= 128
queues for
all CPs

N/A Yes/Yes N/A N/A x16 Queue
Aggregation,
Speculative
Enqueues

Needs two
C-5e’s
half-duplex
configuration
Refer to
Figure 142 on
page 840.

OC-48c
SPHY

OC-48c SPHY* Clustered
(M-5)

1 Queue for
all CPs

N/A Yes/Yes N/A N/A x16 Queue
Aggregation,
Speculative
Enqueues,
External Q-5

Needs two
C-5e’s
half-duplex
configuration
Refer to
Figure 142 on
page 840.

OC-48
MPHY

OC-48c MPHY* Requires
Freescale
Reference
Application
Software and
(M-5)

<= 128
queues per
CP/Cluster

No No/No N/A N/A Needs two
C-5e’s
half-duplex
configuration
Refer to
Figure 142 on
page 840.
C5EC3EARCH-RM REV 04

838 APPENDIX F: C-5E NP SYSTEM CONFIGURATION
OC-48
MPHY

OC-48c MPHY* Requires
Freescale
Reference
Application
Software and
(M-5)

1Queue per
CP/Cluster

N/A No/No N/A N/A Needs two
C-5e’s
half-duplex
configuration
Refer to
Figure 142 on
page 840

Basic OC-48(c) to Switch Fabric System Configurations, Using 1 C-5e, 1 M-5

OC-48(c)
SPHY

Switch Fabric
(like UTOPIA,
CSIX, etc.)

Clustered
(M-5)

<=
128queues
for all CPs

32x4 or,
16x8

Yes/Yes No/No Speculative
Enqueues,
x16 Queue
Aggregation

OC-12 max flow
Refer to
Figure 143 on
page 841.

OC-48(c)
SPHY

Switch Fabric
(like UTOPIA,
CSIX, etc.)

Clustered
(M-5)

1 Queue for
all CPs

32 or 16
Queues

Yes/Yes No/No Speculative
Enqueues,
x16 Queue
Aggregation

OC-12 max flow
Refer to
Figure 143 on
page 841.

OC-48
MPHY

Switch Fabric
(like UTOPIA,
CSIX, etc.)

Requires
Freescale
Reference
Application
Software and
(M-5)

<= 128
queues per
CP/Cluster

32x4 or,
16x8

No/No No/No
OC-12 max flow
Refer to
Figure 143 on
page 841.

OC-48
MPHY

Switch Fabric
(like UTOPIA,
CSIX, etc.)

Requires
Freescale
Reference
Application
Software and
(M-5)

1 Queue
per
CP/Cluster

32 or,
16 Queues

No/No No/No
Speculative
Enqueues

OC-12 max flow
Refer to
Figure 143 on
page 841.

* Other port refers to other front port of a second C-5e in a two chip set configuration.

Table 261 Supported C-5e System Configurations (continued)

FRONT
PORT
(CPS)
(CONFIGU
RATIONS

BACK PORT
(FP)/OTHER
PORT (>1 C-5E)
(CONFIGURATI
ONS)

FRONT PORT
(CONFIGURATI
ONS)

QUEUEING
MODEL
(FRONT
PORT)

QUEUEING
MODEL
(BACK PORT)

SEQUENCE
NUMBERS
FOR FRONT
PORT
(ENQUEUE/D
EQUEUE)

SEQUENCE
NUMBERS
FOR BACK
PORT
(ENQUEUE/
DEQUEUE)

REQUIRED
C-5E
METHODS NOTES
C5EC3EARCH-RM REV 04

C-5e and M-5 Configuration Types and Their Options 839
Figure 141 Basic Port Aggregation !OC-48 System Configuration, Using 1 C-5e

GigaByte Ethernet
4xOC-12c,

16xOC-3c . . .

UtopiaL3

Front CPs

Back FP

CP0 CP4 CP8 CP12

32b

TxRx

C-5e

Fabric
C5EC3EARCH-RM REV 04

840 APPENDIX F: C-5E NP SYSTEM CONFIGURATION
Figure 142 OC-48c to OC-48c Configuration, Using 2 C-5es, and 2 M-5s

Full line rate for OC-48c applications are not realized when both the CP’s and the FP are
used. However, the full OC-48c line rate (using 64byte packets) is realized when only
using the CPs.

OC-48c
S/MPHY
Framer

UtopiaL3/
Saturn PoS-PHYL3

(100MHz)

GMII (16b)Front CP
Clusters

Back FP

M-5

M-5

Tx Rx

CL0 CL3

TxRx

32b

CL0 CL3CL1 CL2

32b

CL1 CL2

C-5e

C-5e

PHY2

PHY1

PHY3

PHY4

PHY2

PHY1

PHY3

PHY4

PHYn PHYn
1<=n<=48 1<=n<=48

PCI

OC-48c
S/MPHY
Framer

OC-48
Aggregate
Bandwidth

OC-48
Aggregate
Bandwidth

GMII (16b)

Back FP
C5EC3EARCH-RM REV 04

C-5e and M-5 Configuration Types and Their Options 841
Figure 143 OC-48(c) to Switch Fabric Configuration, Using 1 C-5e, and 1 M-5

Full line rate for OC-48c applications are not realized when both the CP’s and the FP are
used. However, the full OC-48c line rate (using 64byte packets) is realized when only
using the CPs.

OC-48c
S/MPHY
Framer

M-5

PHY1 PHY2 PHY3 PHY4

UtopiaL3/
Saturn PoS-PHYL3

(100MHz)32b

GMII (16b)

UtopiaL3

Front CP
Clusters

Back FP

CL0 CL1CL2CL3

32b

TxRx

OC-48c
Fabric

C-5e

OC-48
Aggregate
Bandwidth

1<=n<=48PHYn

Supported Fabric protocols include:
Utopia 1, 2, and 3, Power X, PRIZMA, and CSIXL1
C5EC3EARCH-RM REV 04

842 APPENDIX F: C-5E NP SYSTEM CONFIGURATION
C-5e Methods for
Handling High Speed
(OC-48) PDUs

This section provides an overview of the three (3) C-5e methods used to implement
higher line speeds. Some are used in conjunction with an external companion device
(M-5). Table 262 on page 842 lists the methods and some related aspects as an overview.

Table 262 C-5e Methods and Purpose in Relation to Components, Operation, and Companion Devices

C-5E
METHODS PURPOSE

APPLICABLE
C-5E
COMPONENT

APPLICABLE
OPERATION USED WITH DETAILS

Sequence
Numbers

Provides ordering inside the C-5e that enables
extracting and merging of the associated
descriptors with their payloads.

CPs Enqueue and
Dequeue

M-5 Refer to “Sequence
Numbers for CPs”
on page 148.

Aggregated
Queueing

Provides two benefits: allows clustered CPs to
share queues, and allows all 16 CPs to share a
single queue in order to transmit a single
concatenated stream. Both are used in order
to reduce latency when operating at higher
line speeds.

CPs Dequeue N/A Refer to
“Aggregated
Queueing for CPs”
on page 150.

Speculative
Enqueue

Allows a fixed latency for PDU streams, from
the start to enqueue. It prevents uneven PDU
flows that can cause overruns of PDUs, and
large gaps in the streams. This provides a
more efficient bandwidth of PDU flow. The
enqueues are speculative because at the time
they are enqueued, the CRC is not calculated.

CPs Enqueue Only M-5 Optional Refer to
“Speculative
Enqueues for CPs”
on page 153.
C5EC3EARCH-RM REV 04

M-5 Channel Adapter Overview 843
M-5 Channel Adapter
Overview

The Channel Adapter (M-5) is a programmable coprocessor that is used for OC-48c line
speed applications. The M-5 accepts both PoS Level3 and Utopia Level3 framer interfaces
(refer to Figure 144 on page 843) into the C-5e’s 16 clustered CPs, as well as, its FP port at
OC-48c wire line speeds. Both SPHY and MPHY framer are supported on the CPs, and the
FP supports SPHY framer. OC-1, OC-3, OC-12c stream configurations are also
accommodated. Packet-based and cell-based PDU streams are provided for through
configuration to furnish the flexibility of different protocols. Table 263 on page 844
provides some specifications on the M-5. For more detail information, refer to the M-5
Channel Adapter Architecture Guide (part number M5CAARCH-RM/D).

Figure 144 M-5 Block Diagram

(32bit PoSL3
 MPHY/SHPY

or
32bit UtopiaL3
 MPHY/SHPY

Interface)

From Framer

(32bit PoSL3
MPHY/SHPY

or
32bit UtopiaL3

MPHY/SHPY
Interface)

To Framer

4xGMII Ingress
Interface
for CPs

PoSL3/UtopiaL3
Ingress Interface

4xGMII Egress
Interface

for CPs

To C-5II

From C-5II

MDIO
or
I C

Interface

Ingress FIFOs

UtopiaL3 Ingress
Interface for FP

Egress FIFOs

UtopiaL3 Egress
Interface for FP

Config Registers Config Register
Interface

JTAG

PoSL3/UtopiaL3
Egress Interface

 2
C5EC3EARCH-RM REV 04

844 APPENDIX F: C-5E NP SYSTEM CONFIGURATION
Table 263 M-5 Specifications

Electrical Power Consumption 2.0W@100MHz Typical (Preliminary)

Frequency 80MHz Typical, 104MHz Maximum

Processing Throughput 5Gbps aggregate

Physical Layout 352 pin Ball Grid Array (BGA) package

Environmental Operating Temperature -40° to +85°C

Configuration Ingress Channels 1 to 48

Channel Rates Supported For CPs

OC-1

OC-3c

OC-12c

OC-48

OC-48c

For FP

OC-48

PDU Stream Interfaces For CPs

32bit @ 80 to 104MHz Utopia Level3 with optional parity (fixed-sized) ATM for C-5e
CPs (16), with both direct and polling status modes

32bit @ 80 to 104MHz PoS-PHY Level3 with optional parity and packet transfer
control (variable-sized) IP for C-5e CPs (16)

For FP

32bit @ 80 to 104MHz Utopia Level3 with optional parity (fixed-sized) ATM for C-5e
CPs (16), with direct status mode

32bit @ 80 to 104MHz PoS-PHY Level3 with optional parity and packet transfer
control (variable-sized) IP for C-5e CPs (16)

Mapping OC-1 maps as 3M-5 Ingress channel to 1 C-5e CP channel
OC-3c maps as 1 M-5 Ingress channel to 1 C-5e CP channel
OC-12c maps as 1 M-5 Ingress channel to 1 C-5e CP Cluster (4 CP channels)
OC-48c maps as 1 M-5 Ingress channel to 4 C-5e CP Clusters (16 CP channels) or maps as
1 M-5 Ingress channel to 1 C-5e FP channel

External PHY Buses Up to 4 MPHY for C-5e CPs
1 SPHY for C-5e FP
C5EC3EARCH-RM REV 04

M-5 Channel Adapter Overview 845
Configuration
(continued)

Selected Configurations
for 1 Aggregated OC-48
Channel (C-5e CPs only)

48 channels @ OC-1 with total aggregated data rate of OC-48
16 channels @ OC-3c with total aggregated data rate of OC-48
4 channels @ OC-12c with total aggregated data rate of OC-48
3 channels @ OC-1, 3 channels @ OC-3c, 3 channels @ OC-12c with total aggregated
data rate of OC-48
12 channels @ OC-1, 12 channels @ OC-3c with total aggregated data rate of OC-48

PDU Sizes For ATM

52Byte cells

For IP

28Bytes to 9216Bytes packets

Error Detection Ingress Errors

Parity errors reported via status byte in packet frame

Protocol errors reported via PoS or Utopia interfaces

FIFO overrun, packet FCS error, packet abort, and illegal packet configuration size,
reported via packet frame status byte

Egress Errors

FCS packet error, optionally can abort packet

FCS cell error, optionally can drop cell

Table 263 M-5 Specifications (continued)
C5EC3EARCH-RM REV 04

846 APPENDIX F: C-5E NP SYSTEM CONFIGURATION
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
GLOSSARY
Aggregate Channel
Mode

A mode of the C-5e NP that use the CPs in parallel clusters for wider data stream
processing for higher OC speeds like OC-12 or Gigabit Ethernet.

Aggregated Queueing A method that allows clustered CPs to share queues, and allows all 16 CPs to share a single
queue in order to transmit a single concatenated stream. Both are used in order to reduce
latency when operating at higher line speeds. Used with CPs.

Allocate To assign a BTag to a given requester (CP, XP or FP) from the BTags configured in BMU.

Buffer A partitioned area of the BMU’s SDRAM that holds data.

Buffer Tag (BTag) A partitioned area of the BMU’s SDRAM that is used to identify a buffer’s location in a pool.
It points the buffer.

Buffer Pool A partitioned area of SDRAM that contains buffers.

Common Switch
Interface Level (CSIX-L1)

Mode

A FP mode that interfaces to a n industry standard switching fabric as specified by the
Network Processing Forum, formerly CSIX/CPIX.

Configure Queue To send configuration information from the DMEM of a requesting processor (CP, or XP).

Congestion Indicator The dequeue descriptor message contains a discard priority field used for tagging
non-conforming packet descriptors and a congestion indicator field for tagging packet
descriptors that experienced congestion.
C5EC3EARCH-RM REV 04

848 GLOSSARY
Constant Bit Rate (CBR) Specifies a fixed bit rate so that data is sent in a steady stream. This is analogous to a
leased line.

Content Addressable
Memory (CAM)

A memory area that contains programmable content that can be searched.

Deallocate To return a BTag from a given requester (CP, XP or FP) back to the BMU.

Descriptor A specific type of data used for traffic forwarding.

Descriptor Buffer A specific type of data used for traffic forwarding stored in a buffer in the QMU’s external
SRAM.

Discard Priority The dequeue descriptor message contains a discard priority field used for tagging
non-conforming packet descriptors.

Discard Reason The dequeue descriptor message defined by the traffic management interface (TMI)
contains a type field that specifies the discard reason for packet descriptors that have
been selected for discard.

Dequeue To read descriptor data from a queue in QMU’s SRAM into the DMEM of the requesting
processor (CP, or XP).

Dynamic Descriptor
Buffer Pool

A partitioned area of the QMU’s external SRAM that contains descriptor buffers.

End of Message The enqueue message received from the traffic management interface that contains an
end of message indicator bit used to identify the last packet descriptor of a larger
message.

FP Payload A portion of segment, after the header, that is taken from or stored into a BMU buffer.

FP Protocol Data Unit
(PDU)

Data to be transmitted from or received into a BMU buffer.
C5EC3EARCH-RM REV 04

GLOSSARY 849
FP PDU ID An identifier that allows a receiving FP to associate segments for reassembly. This ID need
only be unique in the FPRx while the PDU is being reassembled; that is, a given PDU ID can
be reused by a subsequent PDU. Typically, a "flow" of PDUs, transmitted from a single
queue of a Network Processor, might all use the same PDU ID.

FP Segment A basic package of FP data and header information that is transferred on fabric interface,
usually a fixed size.

FP Segment Header The beginning portion of a segment containing information used to route the segment
through the fabric and allow the receiving FP to reassemble the PDU from segments.

FP Segment Type Indicates the portion of the PDU that the segment carries. There are four types; first,
middle, last, and only (first and last).

FP Scope A set of internal hardware resources. The FPTx has 8 scopes. The FPRx can be configured
for either 8 or 16 scopes.

Fixed-Use Control Blocks A group of programming short-cuts dedicated to make data moves to/from SDRAM, the
BMU, or the QMU invoked by using WrCB_ and RdCB_.

Link-List Tracks the free descriptor buffers, used descriptor buffers for queueing, and the location of
the data (descriptor data) in queues in the SRAM.

Literals A value written exactly as it’s meant to be interpreted.

Multicast Enqueue To write a single descriptor’s data into multiple queues in the QMU’s SRAM from the
DMEM of the requesting processor (CP, or XP).

Multicast Group A bit in the traffic management interface enqueue message is used to indicate that an
enqueue operation is destined for a multicast group. The enqueue processor enqueues
the descriptor from the enqueue message to each destination traffic queue in a multicast
group or discards it.
C5EC3EARCH-RM REV 04

850 GLOSSARY
Multicast Replication
Identifier

When multiple copies of an enqueued descriptor are multicast elaborated to multiple
traffic queues destined for the same virtual output port, the receiver of the dequeued
descriptor on the traffic management interface can require a unique identifier to
distinguish one dequeued descriptor from another. In this situation, a multicast
replication identifier is specified in each destination traffic queue’s parameter block. The
destination traffic queue’s multicast replication identifier is placed in each of its traffic
management interface dequeue messages for use by the receiver.

Multi-Use Control Blocks A group of registers that can be programmed to make data moves to/from SDRAM, the
BMU, or the QMU. (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr, WrCB0_SDP_Addr;
RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr; RdCB0_Sys_Addr,
RdCB0_Ctl, RdCB0_DMA_Addr, RdCB0_SDP_Addr; and TxCB0_Sys_Addr, TxCB0_Ctl,
TxCB0_DMA_Addr, TxCB0_SDP_Addr).

Multi-Use Counter When a BTag is assigned to more than one target (CP, XP or FP), a counter is needed to
track the multi-use BTag.

Packet Byte Length An enqueued packet’s Byte count comes from the packet Byte length field of its
associated enqueue message, which is received through the traffic management
interface.

Packet Byte Remainder The dequeue messages will contain a remainder field which indicates how much of the
encapsulated packet remained before this segment was transmitted.

Pipeline Channel Mode A mode of the C-5e NP that links the individual CPs together for processing a single data
stream to achieve higher processing speeds.

PowerX Mode (CSIXL-0) A FP mode that interfaces to a Power X TeraChannel® switch fabric product.

PRIZMA Mode A FP mode that interfaces to a IBM PRIZMA-E™ or PRIZMA-EP™ switch fabric product.

Queue A FIFO that contains descriptor data.

Queue Level A index to the queue number with a port to a processor (CP, or XP). It’s purpose is to copy
a single descriptor to multiple queues mapped to multiple processors.
C5EC3EARCH-RM REV 04

GLOSSARY 851
Queue Status To read a single queue’s length and weight from the QMU into the DMEM of the
requesting processor (CP, or XP).

Recirculation A method used to pipeline your C-5e NP. To configure the C-5e Channel Processors (CPs)
RxSDP and TxSDP so that the output from the TxSDP is routed to the input of its
corresponding RxSDP.

Reference Count An initial count that is entered by hardware into the 8bit counter that is used to track
multi-use BTags.

Sequence Numbers A method that provides ordering inside the C-5e NP that enables extracting and merging
of the associated descriptors with their payloads. Used with CPs and/or FPTx.

Single Channel Mode A mode of the C-5e NP where the CPs operate independently of each other at full duplex
and can support for example, OC-3.

Speculative Enqueue A method that allows a fixed latency for PDU streams, from the start to enqueue. It
prevents uneven PDU flows that can cause overruns of PDU’s, and large gaps in the
stream. Thus, it provides a more efficient bandwidth of PDU flow. The enqueues are
speculative because at the time they are enqueued, the CRC is not calculated. Used with
CPs.

Traffic Queue Identifier Traffic queue identifiers are 18bits wide and a link memory word holds 17bits. The
following restriction is made to reduce the number of bits of storage required for traffic
queue links to 17bits:

Type The dequeue descriptor message defined by the traffic management interface (TMI)
contains a type field that specifies the discard reason for packet descriptors that have
been selected for discard.

Unicast Enqueue To write descriptor data into a queue in the QMU’s SRAM from the DMEM of the
requesting processor (CP, or XP).
C5EC3EARCH-RM REV 04

852 GLOSSARY
User-Defined
Inter-processor Message

Small fixed-sized (12, 16, 24, or 32Bytes) data structures that contain user defined
information. Generally, inter-processor messages are used to orchestrate control plane
activities such as flow control, statistics gathering, or table maintenance.

Variable Bit Rate (VBR) A specified throughput capacity but data is not sent evenly. This is a popular choice for
voice and video-conference data.

Virtual Queuing A method that allows one (1) transmit queue to be spread out over multiple output ports
(CPs and/or FPTx).
C5EC3EARCH-RM REV 04

C5EC3EARCH-RM

Rev 04
INDEX
Symbols
8b/10b Decode block 88
8b/10b Encode block 97

A
Add Value to Table Entry command 370
Aggregated Queueing for CPs

Channel Processors (CPs) 150
aggregation

Channel Processor RISC Core receive program, role of 728
Channel Processor RISC Core transmit program, role of 729
clock distribution 731
C-Ware Reference Library application examples 731
hardware support for

using receive tokens 727
using transmit tokens 729

implications for C-5e NP components 726
receive processing 727
transmit processing 729

audience, for this guide 45
automatic idle cell and PPP flag insertion option 94
Automatic Protection Switch

SONET 796

B
Bridge Address Table sizing example 396
Buffer Management Unit (BMU) 279

block diagram of 281
BTag allocation 295
BTag deallocation 297
BTag initialization 292
buffer pools 284
Buffer Tags 284
buffer usage and access 285
components of 280
Configuration Space 307
functionality, overview of 280
memory organization of 282
multi-use counters allocation 300
register memory map 655
SDRAM error correction, support for 283
unaligned buffer access 291

buffer pools
in Buffer Management Unit’s SDRAM 284

Buffer Tags (BTags) 284
buffers

Buffer Management Unit
unaligned access in 291
usage and access in 285

multi-use counters 299

C
C-3e NP

architecture
diagram of 73
differences compared to the C-5e NP 74
overview of 73

C-5e NP
architecture

diagram of 63
overview of 58

component integration 58
coprocessors

Buffer Management Unit 61
Fabric Processor 61
Queue Management Unit 61
Table Lookup Unit 61

data buses
C5EC3EARCH-RM REV 04

854 INDEX
Global Bus 62, 472
Payload Bus 62, 472
Ring Bus 62, 472

interface support 59
methods 836
packet forwarding example

receiving packets (65
transmitting packets (66
transmitting packets (OC-48) 68

physical address memory map 70
processors

Channel Processor 61
Executive Processor 61

protocol support 59
system companion components 834

cell forwarding
example of 64

Chained Hash
(TLU)

recommended memory organization 340
transition states 337

Chained Hash algorithm
(TLU) 337

Chained Index
(TLU)

recommended memory organization 345
transition states 343

Chained Index algorithm
(TLU) 343

Channel Processor Configuration Space
memory map 112

Channel Processor memory interface transactions 107
Channel Processor RISC Core

interacts with Serial Data Processor 80
Channel Processor RISC Core (CPRC)

component of Channel Processor 78
context switching 102
instruction set for 100

Channel Processors (CPs)
aggregated

clock distribution among 731
Aggregated Queueing for CPs 150
block diagram of 79
clusters of 59
components of 78
C5EC3EARCH-RM REV 04
Configuration Space 112
Event Access Registers 138
Extract Space 114
Merge Space 115
Queue Status Registers 140
Read Control Blocks 120
Receive Control Blocks 123
Ring Bus Registers 133, 482
Transmit Control Blocks 128
Write Control Blocks 116

cycle counter 140
data scoping 110
event registers 137
event timer 141
external interfaces 80
functionality, overview of 78
instruction memory 105
interrupt mask registers 139
memory transactions

Configuration Space registers, global reads/writes of 109
Configuration Space registers, RISC core reads/writes of 109
data memory, Global Bus reads/writes of 109
RISC core instruction fetch 108
RISC core reads/writes data memory 108
RISC core reads/writes global memory 108
Rx payload buffer write 107
RxByte processor accesses data memory 107
Tx payload buffer read 107

OC-48 PDU handling 148
receive clock mux 81
register memory map 486
RISC Core 100

context switching 102
interacts with Serial Data Processor 80

Sequence Numbers for CPs 148
Serial Data Processor

interacts with Channel Processor RISC Core 80
Speculative Enqueues for CPs 153
transmit clock mux 80

clocks
distribution, for aggregated Channel Processors 731

clusters
Channel Processors 59

Configuration Space 112, 307
Event Access Registers 138

INDEX 855
Extract Space 114
in Buffer Management Unit (BMU) 654
in Channel Processors 79, 486
in Executive Processor 157, 576
in Fabric Processor 668
in Queue Management Unit 633
Merge Space 115
Queue Status Registers 140
Read Control Blocks 120
Receive Control Blocks 123
Transmit Control Blocks 128
Write Control Blocks 116

context switching
Channel Processor RISC Core 102

control registers
for Serial Data Processor 135

C-Ware Reference Library applications
aggregation examples 731

cycle counter
in Channel Processor 140

cyclic redundancy check (CRC)
performed by RxByte processor 92

D
Data Engine

in Queue Management Unit 408
data memory (DMEM)

in Executive Processor 165
data scoping

overview of 110
receive 110
transmit 111

Diagram
Fabric Processor 181

Direct Access Controller
in Queue Management Unit 408

dynamic descriptor buffer pools
in Queue Management Unit’s SRAM 412

E
Echo command 379
Event Access Registers 138
event registers
in Channel Processors 137
event timer

in Channel Processor 141
Executive Processor

memory map Slot #24 176
Executive Processor (XP)

block diagram of 158
components of 156

data memory 157
instruction memory 157
PCI bus interface 157
PROM interface 157, 169
RISC Core 156
Serial Bus interface 157, 171

data memory 165
DMA access to SDRAM 165
functionality, overview of 156
initializing the C-5e NP 172

PCI initialization 172
PROM interface initialization 172

instruction memory 165
IROM 166
network interfaces, supervisory control of 167
other interfaces, accessibility of 173
PCI bus interface 167

PCI address space, access to 169
PCI Configuration registers 169

register memory map 576
Executive Processor Configuration Space (Slot#24)

memory map 176
Executive Processor Configuration Space (Slot#24) for PCI, XP and

Miscellaneous Registers
memory map 178

Executive Processor Configuration Space (Slot#25)
memory map 177

Executive Processor RISC Core (XPRC) 156, 159
context switching 160
Event Registers 164
hardware interrupts 104, 162
instruction set for 159

External algorithm
(TLU) 356

Extract Space 114
C5EC3EARCH-RM REV 04

856 INDEX
F
Fabric Port Interface

in Queue Management Unit 408
Fabric Processor (FP)

C-5e NP to C-5e NP operation 243
C-5e NP to fabric, link-level flow control 237
CSIX-L1 interface mode 243

configuration 249
flow control 247
pin mapping 249

debug and test features 268
descriptor sizes supported 240
fabric interface modes and configurations 243
fabric to network processor, link-level flow control 237
FPRx block diagram and sequence 205
FPRx building descriptors (DBE) 225
FPRx data memory (DMEM) 224
FPRx enqueuing PDUs 233
FPRx header and payload splitting 207
FPRx receive sequence 203
FPRx storing payload to BMU 224
FPRx writing payload 223
FPTx and FPRx general considerations 237
FPTx block diagram and sequence 187
FPTx data memory (DMEM) 190
FPTx decoding descriptors 190
FPTx dequeuing PDUs 189
FPTx error reporting and interrupts 201
FPTx fabric interface transmit operation 199
FPTx header and payload merging 199
FPTx reading payload 190
FPTx transmit sequence 185
FPTx weighting algorithm 199
high level block diagram 181
multiple C-5e NP configurations 182
multiple C-5e NPs with switching port 182
per-queue flow control 238
PowerX(CSIX-L0) interface mode 263

Byte Processor unloading 264
configuration 265
constraints 263
pin mapping 266
requirements 263
C5EC3EARCH-RM REV 04
PRIZMA interface mode 258
configuration 261
pin mapping 262

receiving multicast queue descriptors from Queue Management
Unit 446

register memory map 668
RxByte Processor mapping and details 214
RxByte Processor’s control space 211
RxByte Processor’s extract space 211
RxByte Processor’s general purpose configuration space 211
RxByte Processor’s memory space and registers 210
RxByte Processor’s ring bus space 212
RxByte Processor’s shared space 211
RxByte Processors microcoding 208
two C-5e NP application 183
TxByte Processor mapping and details 197
TxByte Processor’s control space 195
TxByte Processor’s general purpose configuration space 195
TxByte Processor’s memory space and registers 194
TxByte Processor’s merge space 195
TxByte Processors microcoding 191
UTOPIA interface modes 250
UTOPIA interpretation and C-5e implementation 250
UTOPIA1-2-3 interface mode

pin mapping 256
ATM mode 256
PHY mode 256

UTOPIA2 implementation 253
UTOPIA3 implementation 251
UTOPIA3 like to M-5 interface mode 267

Fabric Processor Rx Global Address
memory map 206

Fabric Processor RxByte Processor
memory map 213

Fabric Processor Tx Global Address
memory map 188

Fabric Processor TxByte Processor
memory map 196

FibreChannel
aggregation 731
specifications 89

Find and Read Table Entry command 368
Find and Write Table Entry command 366
Find Table Entry command 364
Flat Data

INDEX 857
(TLU)
recommended memory organization 355

Flat Data Table algorithm
(TLU) 354

G
Gigabit Ethernet

aggregation 731
Global Bus 484

H
Hash-Trie-Key

(TLU)
recommended memory organization 330
transition states 327

Hash-Trie-Key algorithm
(TLU) 327

I
IEEE 802.3 specification 88
IEEE 802.3z specification 89
instruction memory (IMEM)

in Channel Processors 79, 105
in Executive Processor 165

instruction set
for Channel Processor RISC Core 100

interrupt mask registers
in Channel Processors 139

IP Routing Table sizing example 396
IROM, processor utilization instructions 166

M
Memory Map

Channel Processor Configuration Space 112
Executive Processor Configuration Space (Slot#24) 176
Executive Processor Configuration Space (Slot#24) for PCI, XP and

Miscellaneous Registers 178
Executive Processor Configuration Space (Slot#25) 177
Fabric Processor Rx Global Address 206
Fabric Processor RxByte Processor 213
Fabric Processor Tx Global Address 188
Fabric ProcessorTxByte Processor 196
Merge Space 115
multicasting packets and frames 453

flow of processing 453
queue limit testing 445
queuing levels 446
receive flow 453
role of Queue Management Unit 443
success versus failure 445
to Fabric Processor 446
transmit flow 455

N
NOP command 380

O
OC-12

aggregation 737
OC-12c

aggregation 737
OC-48 PDU handling

CPs 148

P
packet forwarding

example of (64
example of (OC-48) 68

Payload Bus 475
latency 475
operation 475

PCI bus interface 167
compliance with PCI Specification, Revision 2.1 167
external PCI Initiator, support for 168
PCI address space, access from Executive Processor 169
PCI Configuration registers 169

PCI Specification, Revision 2.1 167
PFX (Longest-Prefix Match)

(TLU)
recommended memory organization 350
transition states 348

PFX (Longest-Prefix Match) algorithm
(TLU) 348
C5EC3EARCH-RM REV 04

858 INDEX
PROM interface
in Executive Processor 169

Q
Queue Command Mailbox

in Queue Management Unit 408
Queue Management Engine (QME)

in Queue Management Unit 407
Queue Management Unit (QMU)

block diagram of 409
components of

Data Engine 408
Direct Access Controller 408
Fabric Port Interface 408
Queue Command Mailbox 408
Queue Management Engine 407
SRAM 408

Configure Queue Operation 431
Dequeue Operation 441
Dequeue Operation in External Mode 467
dynamic descriptor buffer pools 412
functionality, overview of 406
initialization

assigning queue owners 418
enabling execution 422
limiting dynamic pools usage 413
specifying queue parameters 420

Multicast Enqueue Operation 439
Multicast Enqueue Operation in External Mode 466
multicasting packets and frames 443

queue limit testing 445
queuing levels 446
success versus failure 445
to Fabric Processor 446

performance of 452
descriptor size and execution speed 452
latency 452

Queue Status Operation 433
Queue Status Operation in External Mode 463
queuing operations 422

dequeing 423
enqueing descriptors 422
obtaining queue statuses 425
C5EC3EARCH-RM REV 04
specifying queue service policy 423
using mailboxes 424

register memory map 634
setup in external mode 462
setup in internal mode 450
Speculative Unicast Enqueue Operation in External Mode 465
Speculative Unicast Enqueue Operation in Internal Mode 437
Unicast Enqueue Operation 435
Unicast Enqueue Operation in External Mode 464

Queue Status Registers 140
queue statuses 425

dequeue status 426
extended queue status information 426
queue non-empty transition status 425

R
Read Control Blocks (RdCBs) 120
Read Indexed Table Entry command 362
Read TLU Register command 378
receive clock mux 81
Receive Control Blocks (RxCBs) 123
recirculating data

debug and test 98, 99
within a Serial Data Processor 98

Ring Bus 477
control register response slot usage 392
interface registers 482
nodes

’receive from upstream’ action 480
’send downstream’ action 479
components of 477

supported message transactions 477
Table Lookup Unit commands 357
transaction latency 480

Ring Bus Registers 133, 482
Rx_SONETOH0 — Rx_SONETOH31 registers

Overhead Byte Addresses 745
RxBit processor 89

token bus for 727
RxByte processor 92
RxLargeFIFO block 91
RxSmallFIFO block 89
RxSONETFramer block 90

INDEX 859
token bus for 727
RxSync processor 91

token bus for 727

S
Sequence Numbers for CPs

Channel Processors (CPs) 148
Serial Bus interface

in Executive Processor 171
Serial Data Processors (SDPs) 80

8b/10b Decode block 88
8b/10b Encode block 97
alternate recirculation paths 98
common processor components 84
component of Channel Processor 78
control registers 135
interact with Channel Processor RISC Cores 80
processors and blocks

differentiating 83
in Receive Serial Data Processor 88
in Transmit Serial Data Processor 93
pipelining 83

recirculating data 98
debug and test 99
normal operation 98

RxBit processor 89
RxByte processor 92
RxLargeFIFO block 91
RxSmallFIFO block 89
RxSONETFramer block 90
RxSync processor 91
TxBit processor 96
TxByte processor 93
TxLargeFIFO block 93

automatic idle cell and PPP flag insertion option 94
transmit FIFO high water mark option 94

TxSmallFIFO block 96
TxSONETFramer block 95

Single Error Correcting, Double Error Detecting (SECDED) Error
Correction Code (ECC) 283

SONET
Automatic Protection Switch 796

SONET Mask register 794
SONET overhead bytes
OC-12/OC-12c 762
OC-3c 748

SONET overhead readable bytes
OC-12/OC-12c 762
OC-3c 749

SONET overhead writable bytes
OC-12/OC-12c 781
OC-3c 757

SONET registers
Rx SONET OC-12/OC-12c Path Overhead Byte Addresses 774
Rx SONET OC-12/OC-12c Statistics Counters for both Transport

and Path Overhead Byte Addresses 777
Rx SONET OC-12/OC-12c Transport Overhead Byte Addresses 763
Rx SONET OC-3c Path Overhead Byte Addresses 754
Rx SONET OC-3c Statistics Counters for both Transport and Path

Overhead Byte Addresses 755
Rx SONET OC-3c Transport Overhead Byte Addresses 750
Rx_SONETOH0 — Rx_SONETOH31

Overhead Byte Addresses 745
SONET_MASK register 794
Tx SONET OC-12/OC-12c Path Overhead Byte Addresses 790
Tx SONET OC-12/OC-12c Transport Overhead Byte Addresses 782
Tx SONET OC-3c Path Overhead Byte Addresses 761
Tx SONET OC-3c Transport Overhead Byte Addresses 758
Tx_SONETOH0 — Tx_SONETOH31

Overhead Byte Addresses 745
Speculative Enqueues for CPs

Channel Processors (CPs) 153
SRAM

in Queue Management Unit 408

T
Table Lookup Unit (TLU)

Address Generation block 319
algorithm type

Chained Hash 337
Chained Index 343
External 356
Flat Data Table 354
Hash-Trie-Key 327
PFX (Longest-Prefix Match) 348

application design issues 392
Ring Bus control register response slot usage 392
sizing tables 395
C5EC3EARCH-RM REV 04

860 INDEX
TLU performance 393
block diagram of 316
Bridge Address Table sizing example 396
Chained Hash

recommended memory organization 340
transition states 337

Chained Index
recommended memory organization 345
transition states 343

Compare Register Fetch block 319
components of 315
configuration and status registers 383
Flat Data

recommended memory organization 355
functionality, overview of 314
Hash sub-table type 330
Hash-Trie-Key

recommended memory organization 329
transition states 327

Index Generation block 319
Initial Index Generation block 318
IP Routing Table sizing example 396
Key sub-table type 335
lookup commands 359

Add Value to Table Entry 370
Echo 379
Find and Read Table Entry 368
Find and Write Table Entry 366
Find Table Entry 364
NOP 380
Read TLU Register 378
Write Table Entry 359
Write TLU Register 377
C5EC3EARCH-RM REV 04
PFX (Longest-Prefix Match)
recommended memory organization 350
transition states 349

PFX Stage1 and PFX Stage2 block 319
physical storage 314
Ring Bus commands 357
Ring Bus Interface block 318
SRAM Data Latch block 319
SRAM Memory Controller 320
sub-table type

Hash sub-table 330
Key sub-table 335
Trie sub-table 332

supported algorithms 314
supported table types 381
TLU Registers block 318
transactional flow 317

tables
physical 381
virtual 381

token buses
among aggregated Receive Serial Data Processors 727
among aggregated Transmit Serial Data Processors 729

transmit clock mux 80
Transmit Control Blocks (TxCBs) 128
transmit FIFO high water mark option 94
Trie sub-table type 332
Tx_SONETOH0 — Tx_SONETOH31 registers

Overhead Byte Addresses 745
TxBit processor 96

aggregation of 729
TxByte processor 93

token bus for aggregation 729

INDEX 861
TxLargeFIFO block 93
TxSmallFIFO block 96
TxSONETFramer block 95

V
virtual tables 381

W
Write Control Blocks (WrCBs) 116
Write Table Entry command 359
Write TLU Register command 377

X
XOR a Value to Table Entry command 372
XP Configuration Space 175
C5EC3EARCH-RM REV 04

862 INDEX
C5EC3EARCH-RM REV 04

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Architecture Guide
	Architecture Guide
	Contents
	Note: All Contents listings are hyperlinks.
	List of Figures
	List of Tables
	About This Guide
	Guide Overview
	Architecture Guide Classifications
	Using PDF Documents
	Guide Conventions
	Related Product Documentation
	Revision History

	Note: Throughout this book, all blue text is a hyperlink.
	Introduction
	Chapter Overview
	C-5e NP Architecture Overview
	Highly-Integrated Architecture
	C-5e NP Modes of Operation
	Single Channel Mode
	Pipeline Channel Mode
	Aggregate Channel Mode

	C-5e NP Supported Interfaces
	Major Components of the C-5e NP
	C-5e NP Interconnect Components
	Other Supported Features

	C-5e NP Block Diagram and Flow Processes
	Cell and Packet Forwarding Overview (! OC-48)
	Receiving Packets
	Transmitting Packets

	Cell and Packet Forwarding Overview (OC-48)
	Receiving Packets
	Transmitting Packets

	C-5e NP Address Mapping
	Configuration Register Definitions
	Processor Base Address Offsets
	Configuration Register Address Offsets
	Byte Ordering

	C-3e NP Architecture Overview

	Channel Processors
	Chapter Overview
	Channel Processors (CPs) Overview
	CP Major Components

	Serial Data Processors (SDPs) Overview
	Supported External Interfaces
	SDPs Functions
	SDPs Major Components
	Common Components of the Programmable Processors
	RxSDP Detail Operations
	8b/10b Decode Configurable Logic Block
	RxSmallFIFO Configurable Logic Block
	RxBit Programmable Processor
	RxSONET Framer Configurable Logic Block
	RxSync Programmable Processor
	RxLargeFIFO Configurable Logic Block
	RxByte Programmable Processor

	TxSDP Detail Operations
	TxByte Programmable Processor
	TxLargeFIFO Configurable Logic Block and Options
	TxSONET Framer Configurable Logic Block
	TxBit Programmable Processor
	TxSmallFIFO Configurable Logic Block
	8b/10b Encode Configurable Logic Block

	Configuration for Recirculation Operations Using RxSDP and TxSDP

	CP RISC (CPRC) Overview
	RISC Instruction Set Supported
	Fast Context Switching Configuration Using the CPRC
	Fast Context Switching Detail Operations
	Interrupts

	CP Memory (IMEM and DMEM)
	Instruction Memory (IMEM)
	Data Memory (DMEM)

	CP Memory Interface Transactions
	DataScope Purpose
	Data Scope Detail Operations

	CP Configuration Space
	Address Mapping of the CPs
	Understanding CP Functions
	Extract Space
	Merge Space
	Control Block Registers
	Ring Bus Registers
	SDP Control and Status Registers
	Miscellaneous Control Registers

	Understanding Block Moves of Data
	External Handling Overview
	Internal Handling Overview
	Using Multi-Use Control Blocks to Achieve Different Functions

	C-5e Methods for Handling High Speed (OC-48) PDUs
	Sequence Numbers for CPs
	Enqueue Operations Using Sequence Numbers
	Dequeues Operations Using Sequence Numbers

	Aggregated Queueing for CPs
	Queue Length and Queue Status Trade-Offs
	Changes in the Dequeue Paradigm
	Implementation of Aggregated Queueing for CPs

	Speculative Enqueues for CPs
	Implementation of Speculative Enqueues for CPs

	Executive Processor
	Chapter Overview
	Executive Processor (XP) Overview
	XP Major Components

	XP RISC (XPRC) Overview
	XPRC Instruction Set
	XPRC Registers
	Context Switching
	Interrupts
	Hardware Programming Resources
	Event Registers

	XP Memory (IMEM and DMEM)
	Instruction Memory
	Data Memory
	SDRAM
	IROM

	XP Supported Interfaces
	PCI Bus Interface
	PCI Access to C-5e NP Physical Address Space
	C-5e NP Access to PCI Address Space
	PCI Registers

	PROM Interface
	Serial Bus Interface

	C-5e NP Interface Options for Initialization
	Using the PCI Interface Initialization Option
	Using the PROM Interface Initialization Option

	Other XP Interfaces
	XP Configuration Space

	Fabric Processor
	Chapter Overview
	Fabric Processor (FP) Overview
	Terminology
	FP Block Diagram
	Multiple C-5e NP Configurations
	General FP Specifications
	FPTx Overview
	FPRx Overview

	FP Transmit (FPTx) Sequence
	FPTx Dequeuing PDUs
	FPTx Decoding Descriptors
	FPTx Reading Payload
	FPTx Data Memory (DMEM)

	FP TxByte Processors Microcoding
	FP TxByte Processors
	TxByte Processor’s Memory Space and Registers

	FPTx Header and Payload Merging
	FPTx Fabric Interface Transmit Operation
	FPTx Advanced Features
	Weighting Algorithm

	FPTx Error Reporting and Interrupts

	FP Receive (FPRx) Sequence
	Fabric Interface Receive Operation
	FPRx Header and Payload Splitting
	FP RxByte Processors Microcoding
	FP RxByte Processors
	RxByte Processor Memory Space and Registers
	RxByte Processors Datascopes
	RxByte Processors Set Up Control Information
	RxByte Processors Writing to Extract Space
	RxByte Processors Performing TLU Lookups
	RxByte Shared Registers
	RxByte General Purpose Configuration Registers
	RxByte Processors Discarding Segments
	RxByte Processors Token Passing

	FPRx Writing Payload
	Storing the Payload to the BMU Process
	FPRx Data Memory (DMEM)

	FPRx Building Descriptors
	Descriptor Build Engine’s (DBE) Microcode Programming to Build the Descriptor
	Descriptor Build Engine’s (DBE) Descriptor Control Word

	FPRx Enqueuing PDUs
	TLU Error Handling
	Enqueue Race Condition Handling
	Failed Enqueue Operation Handling

	Congestion Handling
	FPRx Interrupts

	FPTx and FPRx General Considerations
	Link-Level Flow Control
	Fabric to C-5e NP Link-Level Flow Control
	C-5e NP to Fabric Link-Level Flow Control

	Per-Queue Flow Control
	Fabric to C-5e NP Per-Queue Flow Control
	TxFlow CAM Configuration Procedure

	FP Descriptor Size
	FP CRC
	FP Endianness (Byte and Bit Ordering)
	Byte Order Requirements per Fabric Interface Mode

	FP Payload Bus Bandwidth

	Fabric Interface Modes and Configurations
	CSIX-L1 Interface Mode
	CSIX-L1 Flow Control
	CSIX-L1 Configuration
	CSIX-L1 Pin Mapping

	UTOPIA Interface Modes
	UTOPIA Interpretation and C-5e Implementation
	UTOPIA Configuration
	UTOPIA Pin Mapping

	PRIZMA Interface Mode
	Packet Sizes
	In-Band Flow Control
	Link-Level Flow Control
	Idle Packets
	Queue Grants
	RxByte Processor’s Drop Mode
	PRIZMA Configuration
	PRIZMA Pin Mapping

	PowerX(CSIX-L0) Interface Mode
	PowerX(CSIX-L0) Constraints
	PowerX(CSIX-L0) Requirements
	PowerX(CSIX-L0) Byte Processor Unloading
	PowerX(CSIX-L0) Configuration
	PowerX(CSIX-L0) Pin Mapping

	UTOPIA3 Like to M-5 Interface Mode

	FP Debug and Test
	FP Debug Mux
	FPRx Statistics Registers
	FP Internal Debug State Registers
	Debug and Test of Selected FP Internal Memories
	Rx PDU ID CAM Access
	Rx Flow Table and Descriptor Table Access
	Tx Flow Table Access
	Merge Space Access
	DMEMs Access
	TLU Response Space Access
	FP Read and Write Control Blocks (RdCBs and WrCBs) Access

	FP Setup
	FP Initialization Steps
	Initialization Options for SDRAM

	Initialization of Selected FP Internal Memories
	FPTx Flow Control CAM
	TxByte Processor’s WCSs/CAMs Access
	RxByte Processor’s WCSs/CAMs and the RxDescriptor Build Engines’s WCS Access

	Buffer Management Unit
	Chapter Overview
	Buffer Management Unit (BMU) Overview
	BMU Major Components

	BMU Physical Memory Organization
	Out-of-Band Bits
	SECDED ECC Support

	BMU Buffer Memory Organization
	Buffer Pools
	Buffers
	Buffer Tags (BTags)
	Storage Space (SDRAM Partitions)

	Buffer Access

	Types of Transactions
	Buffer Memory Transactions
	Using Wr/Rd Control Blocks for Payload Transactions
	Using Rx/Tx Control Blocks for Payload Transactions
	Read/Write Ordering
	Unaligned Buffers

	BTag Management Transactions
	BTag Transaction Functions (Operation and Examples)
	BTag Initialization Operation
	BTag Initialization Example
	BTag Allocation Operation
	BTag Allocation Example
	BTag Deallocation Operation
	BTag Deallocation Example

	Multi-Use Counter (MUC) Management Transactions
	MUC Transaction Functions (Operation and Examples)
	MUC Allocation Operation
	MUC Allocation Example
	MUC Decrement Operation
	MUC Decrement Example
	MUC Read Operation
	MUC Read Example

	BMU Configuration Space
	Test and Debug Registers
	Memory Error Reporting
	ECC Test Modes
	Debug Register

	BMU Setup

	Table Lookup Unit
	Chapter Overview
	Table Lookup Unit (TLU) Overview
	TLU Major Components

	TLU Flow Process
	TLU Flow Process Details
	Ring Bus Interface and Command Parser
	TLU Registers
	Initial Index Generation
	Address Generation
	Compare Register Fetch
	SRAM Data Latch
	PFX Stage1 and PFX Stage2
	Index Generation
	TLU SRAM

	TLU Supported Table Types
	Implementation Considerations

	TLU Operation Overview
	TLU Operation Details
	TLU Operation Example

	Software Algorithms
	Hash-Trie-Key
	Hash Sub-Table
	Trie Sub-Table
	Key Sub-Table

	Chained Hash
	Chained Hash Data Entry Format
	Chained Hash Example

	Chained Index
	Chained Index Data Entry Format
	Chained Index Example

	PFX (Longest-Prefix Match)
	PFX (Longest-Prefix Match) Data Entry Format
	PFX (Longest-Prefix Match) Chunk Types Details

	Flat Data
	Flat Data Example

	External

	TLU Commands Overview
	TLU Command Parameters
	Detail TLU Commands
	Write Command
	Read Command
	Find Command
	Findw Command
	Findr Command
	Add Command
	XOR Command
	CRC Mode (Using the Non-zero XOR Command Options)
	Write Register Command
	Read Register Command
	Echo Command
	No-Operation (NOP) Command

	TLU Table Mapping
	Mapping Virtual Tables to Physical Tables

	TLU Configuration and Status Registers
	TLU Registers
	CRC-32_Checkvalue Register
	CRC-32_FCS_Correction_Table_Base_Address Register
	TLU_Statistics Register
	TLU_Memory Register
	External_Data_Table Register
	Table_Configuration1 Register
	Virtual_Table_Configuration Register

	TLU Application Considerations
	TLU/Ring Bus Control Register Response Slot Usage
	TLU Performance
	TLU Throughput
	TLU Latency

	Table Sizing Examples
	Bridge Address Table Sizing Example
	IP Routing Table Sizing Example

	TLU Special Applications
	Using the RxByte Processor for Long Lookups
	Long Lookup Example for an Ethernet Application

	Partial CRC-32 Support
	Partial CRC-32 Data Entry Format

	Queue Management Unit
	Chapter Overview
	Queue Management Unit (QMU) Overview
	Payload Descriptors Enqueued to the QMU
	User-Defined Inter-processor Messages Enqueued to the QMU
	QMU Major Components

	QMU Flow Process
	Flow Details for CPs/XP Inputs and FP Inputs
	CPs and XP Input Flow
	FP Input Flow

	Queue Organization
	External SRAM
	Descriptor Buffer
	Dynamic Descriptor Pools
	Dynamic Descriptor Usage Limit Pooln

	Internal SRAM

	QMU Variables
	Queue Mapping and Parameter Characteristics
	Queue to Processor Mapping
	Queue to Processor Mapping Rules

	Queue Length Allowance and Length Limit Parameters

	Queueing Operations
	QMU Run Enable
	Enqueue Operation
	Payload (Wr/Rd) Servicing Order During Enqueue Operation
	Causes of Enqueue Failure

	Dequeue Operation
	Queue Servicing Policy During Dequeueing Operation
	Causes of Dequeue Failures

	Status Reporting
	Mailbox Availability and Status Reporting of Mailboxes
	Queue Status Information

	Types of Transactions
	Queue Management Transactions
	Queue Transaction Functions (Operation and Examples)
	Configure Queue Operation
	Configure Queue Example
	Queue Status Operation
	Queue Status Example
	Unicast Enqueue Operation
	Unicast Enqueue Example
	Speculative Unicast Enqueue Operation
	Speculative Unicast Enqueue Example
	Multicast Enqueue Operation
	Multicast Enqueue Example
	Dequeue Operation
	Dequeue Example

	QMU Multicast Support (Non-System Level)
	Multicast Operations Success or Failure
	Multicast Operation Throughput Considerations
	Queue Levels Supported in Multicast Operations
	Multicasting to the Fabric Processor

	QMU Configuration Space
	QMU Setup
	QMU Performance
	Execution Speed and Descriptor Size Relationship

	Multicast Support (System Level)
	Multicast Flow in the C-5e�NP
	Multicast Receive Flow Transaction Process
	Multicast Transmit Flow Transaction Process

	External Scheduler Mode
	Operation of the External Scheduler Mode
	Implementation of External Scheduler Mode
	VOP Descriptors for CPs and/or FPTx
	QMU Multicast in External Mode
	Queue Organization in External Mode
	QMU Setup in External Mode

	Queue Management Transactions in External Mode
	Queue Transaction Functions (Operation and Examples) in External Mode
	Queue Status Operation in External Mode
	Queue Status Example in External Mode
	Unicast Enqueue Operation in External Mode
	Unicast Enqueue Example in External Mode
	Speculative Unicast Enqueue Operation in External Mode
	Speculative Unicast Enqueue Example in External Mode
	Multicast Enqueue Operation in External Mode
	Multicast Enqueue Example in External mode
	Dequeue Operation in External Mode
	Dequeue Example in External Mode

	Internal Buses
	Chapter Overview
	Internal Buses Overview
	Internal Buses Characteristics
	Bus Bandwidth General Formulas

	Payload Bus Overview
	Payload Bus Operation
	Payload Bus Latency
	Payload Bus Latency (Default Mode)
	Payload Bus Latency (FP Mode)

	Ring Bus Overview
	Ring Bus Major Components
	Ring Bus Node Operation
	Sending Downstream
	Receiving from Upstream

	Ring Bus Latency
	Ring Bus Interface Registers
	Ring Bus Transmit (Tx) Message Registers
	Ring Bus (Rx) Receive Message Registers
	Ring Bus Receive (Rx) Response Registers

	Global Bus Overview

	C-5e NP Registers
	Appendix Overview
	Channel Processor (CP) Configuration Registers
	CP Registers
	CP Detailed Descriptions
	RxSDP0_Ext0 to RxSDP0_Ext15 Registers (CP Rx Extract Space0 Function)
	TxSDP0_Merge0 to TxSDP0_Merge15 Registers (CP Tx Merge Space0 Function)
	RxCB0_Sys_Addr Register (CP Rx Control Block0 Function)
	RxCB0_Ctl Register (CP Rx Control Block0 Function)
	RxCB0_DMA_Addr Register (CP Rx Control Block0 Function)
	RxCB0_SDP_Addr Register (CP Rx Control Block0 Function)
	RxCtl0_Status Register (CP Rx Control Block0 Function)
	WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function)
	WrCB0_Ctl Register (CP Wr Control Block0 Function)
	WrCB0_DMA_Addr Register (CP Wr Control Block0 Function)
	RdCB0_Sys_Addr Register (CP Rd Control Block0 Function)
	RdCB0_Ctl Register (CP Rd Control Block0 Function)
	RdCB0_DMA_Addr Register (CP Rd Control Block0 Function)
	TxCB0_Sys _Addr Register (CP Tx Control Block0 Function)
	TxCB0_Ctl Register (CP Tx Control Block0 Function)
	TxCB0_DMA_Addr Register (CP Tx Control Block0 Function)
	TxCB0_SDP_Addr Register (CP Tx Control Block0 Function)
	TxCtl0_Status Register (CP Tx Control Block0 Function)
	TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function)
	TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function)
	TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function)
	RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function)
	RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function)
	RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function)
	RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function)
	RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function)
	Rx_SONETOH0 to Rx_SONETOH31 Registers (CP SONET Rx Control Function)
	Tx_SONETOH0 to Tx_SONETOH31 Registers (CP SONET Tx Control Function)
	RxCtl_ByteSeq0 Register (CP SDP Rx Control Function)
	RxCtl_SyncSeq Register (CP SDP Rx Control Function)
	RxCtl_BitSeq0 Register (CP SDP Rx Control Function)
	TxCtl_ByteSeq0 Register (CP SDP Tx Control Function)
	TxCtl_BitSeq0 Register (CP SDP Tx Control Function)
	CP_Mode0 Register (CP Mode Configuration Function)
	CP_Mode1 Register (CP Mode Configuration Function)
	SDP_Mode2 Register (CP Mode Configuration Function)
	SDP_Mode3 Register (CP Mode Configuration Function)
	SDP_Mode4 Register (CP Mode Configuration Function)
	SDP_Mode5 Register (CP Mode Configuration Function)
	Debug_Mode Register (CP Mode Configuration Function)
	PIN_Mode Register (CP Mode Configuration Function)
	Queue_Status0 Register (CP Queue Status Function)
	Queue_Update0 Register (CP Queue Status Function)
	Queue_Empty Register (Aggregated Queueing Function)
	Event_Timer Register (CP Miscellaneous Control Function)
	Cycle_Count_H Register (CP Miscellaneous Control Function)
	Cycle_Count_L Register (CP Miscellaneous Control Function)
	Queue_Ctl Register (Aggregated Queueing Function)
	Event0 Register (CP Event and Interrupt Function)
	Event1 Register (CP Event and Interrupt Function)
	Event_Mask0 Register (CP Event and Interrupt Function)
	Event_Access Register (CP Event and Interrupt Function)
	Mask_Access Register (CP Event and Interrupt Function)
	Interrupt_Mask0 Register (CP Event and Interrupt Function)
	SONET_Event Register (CP Event and Interrupt Function)
	SONET_Mask Register (CP Event and Interrupt Function)
	RdCB0_BTag_Alloc (CP Rd Control Block0 Fixed Function)
	RdCB0_Dequeue (CP Rd Control Block0 Fixed Function)
	WrCB0_BTag_Deallocate (CP Wr Control Block0 Fixed Function)
	WrCB0_MUC_Allocate (CP Wr Control Block0 Fixed Function)
	WrCB0_MUC_Decrement (CP Wr Control Block0 Fixed Function)
	WrCB0_Uni_Enq (CP Wr Control Block0 Fixed Function)
	WrCB0_Multi_Enq (CP Wr Control Block0 Fixed Function)
	WrCB0_Spec_Uni_Enq (CP Wr Control Block0 Fixed Function)

	Executive Processor (XP) Configuration Registers
	XPSlot 24 Configuration Registers
	XP Detailed Descriptions
	PCI Device ID Register (XP PCI Configuration Function)
	PCI Vendor ID Register (XP PCI Configuration Function)
	PCI Status Register (XP PCI Configuration Function)
	PCI Command Register (XP PCI Configuration Function)
	PCI Class Code Register (XP PCI Configuration Function)
	PCI Revision ID Register (XP PCI Configuration Function)
	PCI Header Type Register (XP PCI Configuration Function)
	PCI Latency Timer Register (XP PCI Configuration Function)
	PCI Inbound Memory Base Address0 Register (XP PCI Configuration Function)
	PCI Inbound Memory Base Address2 Register (XP PCI Configuration Function)
	PCI Subsystem ID Register (Read Only) (XP PCI Configuration Function)
	PCI Subsystem Vendor ID Register (Read Only) (XP PCI Configuration Function)
	PCI Interrupt Pin Register (XP PCI Configuration Function)
	PCI Interrupt Line Register (XP PCI Configuration Function)
	PCI Inbound BAR0 Translation Register (XP PCI Configuration Function)
	PCI Inbound BAR1 Translation Register (XP PCI Configuration Function)
	PCI Auxiliary Control Register (XP PCI Configuration Function)
	PCI Subsystem ID Register (XP PCI Configuration Function)
	PCI Subsystem Vendor ID Register (XP PCI Configuration Function)
	PCI Inbound Byte Swap Control Register (XP PCI Configuration Function)
	PCI Inbound BAR2 Translation Register (XP PCI Configuration Function)
	Serial Bus Configuration Register (XP Miscellaneous Control Function)
	Serial Bus Data Register (XP Miscellaneous Control Function)
	XP to CP Interrupt Request Registers (XP Miscellaneous Control Function)
	Software Warm Reset Request Register (XP Miscellaneous Control Function)
	Outbound PCI Base Address0 Register (XP Configuration Function)
	Outbound BAR0 Translation Register (XP Configuration Function)
	DMA Transmit Channel0 PCI Target Register (XP Configuration Function)
	DMA Receive Channel0 PCI Target Register (XP Configuration Function)
	DMA Receive Channel0 Transfer Count Register (XP Configuration Function)
	XP Miscellaneous Control Register (XP Configuration Function)
	XP Auxiliary Event Register (XP Configuration Function)
	Inbound PCI Mailbox0 Register (XP Configuration Function)
	IMEM Overlay Target Address Register (XP Configuration Function)
	RxCB #25 Transfer Count Register (XP Configuration Function)
	XP Diagnostic Register (XP Configuration Function)
	PCI Outbound Byte Swap Control Register (XP Configuration Function)
	Debug Counter0 Start Value Register (XP Configuration Function)
	Debug Counter0 Control Register (XP Configuration Function)
	Debug Counter0 Current Value Register (XP Configuration Function)
	RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function)
	TxCB0_Ctl Register (XP DMEM#24 Transfer Tx Control Block0 Function)
	TxCtl0_Status Register (XP DMEM#24 Transfer Tx Control Block0 Function)
	XP_Mode Register (XP Mode Configuration Function)
	XP Debug Mode Register (XP Mode Configuration Function)
	Event0 Register (Event and Interrupt Control Function)
	Event1 Register (Event and Interrupt Control Function)
	RxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)
	TxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)

	Queue Management Unit (QMU) Configuration Registers
	QMU Registers
	QMU Detailed Descriptions
	QMU_Run_Enable Register (QMU Enable Queue Function)
	Clear_Statistics Register (QMU Statistics Function)
	Base_Queue_CP0 to Base_Queue_CP15 Registers (QMU CP’s Queue Allocation Function)
	Base_Queue_FP Register (QMU FP’s Queue Allocation Function)
	Base_Queue_XP Register (QMU XP’s Queue Allocation Function)
	Num_Queues Register (QMU Configuration Function)
	Num_Descriptors Register (QMU Configuration Function)
	Dyn_Des_Usage_Lim_Pool0 Register (QMU Configuration Function)
	Operation_Mode Register (QMU Configuration Function)
	Descriptor_Size Register (QMU Configuration Function)
	Config_Q_Cnt Register (QMU Statistics Function)
	Rd_Q_Status_Cnt Register (QMU Statistics Function)
	CP_Uni_Enq_Cnt Register (QMU Statistics Function)
	CP_Multi_Enq_Cnt Register (QMU Statistics Function)
	CP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)
	CP_Dequeue_Cnt Register (QMU Statistics Function)
	FP_Uni_Enq_Cnt Register (QMU Statistics Function)
	FP_Multi_Enq_Cnt Register (QMU Statistics Function)
	FP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)
	FP_Dequeue_Cnt Register (QMU Statistics Function)
	QMU_Idle_Cycles Register (QMU Statistics Function)
	Payload_NACK_Cnt Register (QMU Statistics Function)
	Global_NACK_Cnt Register (QMU Statistics Function)
	Payload_Read_Failures_Cnt Register (QMU Statistics Function)
	Cmd_Processor_Err_Cnt Register (QMU Statistics Function)
	Dq_H_Par_Err_Cnt Register (QMU Sequence Numbers Function)
	Dq_L_Par_Err_Cnt Register (QMU Sequence Numbers Function)
	Missing_Front_Seq_Num_Cnt Register (QMU Sequence Numbers Function)
	Front_Seq_Num Register (QMU Sequence Numbers Function)
	Back_Seq_Num Register (QMU Sequence Numbers Function)
	Front_Seq_Num_Timeout Register (QMU Sequence Numbers Function)
	Multicast_Destination0 to Multicast_Destination255 Registers (QMU Configuration Function)
	Free_Descriptor_List_Head Register (QMU Control Function)
	Free_Descriptor_List_Tail Register (QMU Control Function)
	Free_Descriptor_Buffer_List Register (QMU Control Function)
	Dyn_Descriptor_Pool0_Usage Register (QMU Status Function)

	Buffer Management Unit (BMU) Configuration Registers
	BMU Registers
	BMU Detailed Descriptions
	Pool0 Base to Pool29 Base Registers (Buffer Pool Base Address Function)
	Pool0 BTag Shift to Pool29 BTag Shift Registers (Buffer Size for a Pool Function)
	BTag FIFO Base0 to BTag FIFO Base29 Registers (BTag FIFO Base Address Function)
	Num BTags0 to Num BTags29 Registers (Number of BTags in a Pool Function)
	Memory Size Register (Miscellaneous Function)
	SDRAM Config Register (Miscellaneous Function)
	Single ECC Errors Register (Miscellaneous Function)
	ECC Enable and Test Enable Register (Miscellaneous Function)
	Debug Config Register (Miscellaneous Function)
	Wr_Mem_Violation_Hi Register (Miscellaneous Function)
	Wr_Mem_Violation_Lo Register (Miscellaneous Function)

	Fabric Processor (FP) Configuration Registers
	FP Registers
	FP Details Descriptions
	TxFP_Enable Register (FP Tx Enable Function)
	TxFI_Configuration Register (FP Tx Configuration Function)
	TxDescInfo Register (FP Tx Configuration Function)
	TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function)
	TxQueueWeight_Configuration Register (FP Tx Configuration Function)
	TxSysConfig Register (FP Tx Configuration Function)
	TxFI_CRC Register (FP Tx Configuration)
	TxFCE_Configuration Register (FP Tx Configuration Function)
	TxFP_Debug_Mux_Control Register (FP Tx Debug Function)
	TxWCS_CAM (Tx WCS CAM Function)
	TxFlowTbI Register (FP Tx Debug Function)
	TxFlowTbl_Data_Low Register (FP Tx Debug Function)
	TxFlowTbl_Data_High Register (FP Tx Debug Function)
	TxFlowCAM Register (FP Tx Debug Function)
	TxMergeAddr Register (FP Tx Debug Function)
	TxMergeData Register (FP Tx Debug Function)
	TxIdleData Register (FP Tx Configuration Function)
	TxByte_Ctl0 Register (FP TxByte General Purpose Function)
	TxByte_Ctl1 Register (FP TxByte General Purpose Function)
	TxDebug_Internal_State Register (FP Tx Debug Function)
	Absolute Priority_Configuration Register (FP Tx Configuration Function)
	RxExtractSpace0 Space (FP RxByte Processor0 Function)
	RxStatus0 Register (FP RxByte Processor0 Function)
	RxFlowSeg0 Register (FP RxByte Processor Function)
	RxFlowSize0 Register (FP Rx Byte Processor Function)
	RxTxCgs0 Register (FP Rx Byte Processor Function)
	RxFP_Enable Register (FP Rx Enable Function)
	RxFI_Configuration Register (FP Rx Configuration Function)
	RxDS_Header_Change1 Register (FP Rx Configuration Function)
	RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function)
	RxDS_Configuration Register (FP Rx Configuration Function)
	RxFI_CRC Register (FP Rx Configuration Function)
	RxWCS_CAM Register (FP RxWCS CAM Function)
	RxByte0 General Purpose Configuration Register (FP Rx Configuration Function)
	RxFCE_Configuration0 Register (FP Rx Configuration Function)
	RxFCE_Configuration1 Register (FP Rx Configuration Function)
	RxFCE_Configuration2 Register (FP Rx Configuration Function)
	Pool0_CFG0 Register (FP Rx Pool Configuration Function)
	Pool0_CFG1 Register (FP Rx Pool Configuration Function)
	RxByte_Shared_Low Register (FP Rx Shared Function)
	RxByte_Shared_High Register (FP Rx Shared Function)
	RxFP_Interrupt_Event Register (FP Rx Interrupt Function)
	RxFP_Interrupt_Enable Register (FP Rx Interrupt Function)
	RxFP_Debug_Mux_Control Register (FP Rx Debug Function)
	RxMemory_Address Register (FP Rx Debug Function)
	RxMemory_Data Register (FP Rx Debug Function)
	RxPDU_ID_CAM Register (FP Rx Debug Function)
	RxFP_Statistics Registers (FP Rx Statistics Function)
	RxDebug_Internal_State Register (FP Rx Statistics Function)

	Using Aggregate Mode
	Appendix Overview
	Purpose of the C-5e NP Channel Aggregate Mode
	Aggregate Mode Requirements on the C-5e NP
	Packet/Cell Ordering Handling for Rx in Aggregate Mode
	Hardware Receive Tokens
	Software Receive� Tokens

	Packet/Cell Ordering Handling for Tx in Aggregate Mode
	Hardware Transmit Tokens
	Software Transmit Tokens

	Clock Distribution in Aggregate Mode
	Aggregate Mode Application Examples
	Gigabit Ethernet and FibreChannel Applications
	PHY Connectivity
	SDP Components
	Implementation Options

	OC-12 and OC-12c Applications
	PHY Connectivity
	SDP Components

	SONET/SDH CP Support
	Appendix Overview
	C-5e NP SONET Support Overview
	SONET/SDH Overview
	SONET/SDH Overhead Access
	SONET/SDH Frame Format Overview
	SONET/SDH OC-3c Overhead Bytes
	Receive OC-3c Readable Overhead Bytes Positions
	Receive OC-3c Transport Overhead Definitions
	Receive OC-3c Path Overhead Definitions
	Receive OC-3c Statistics Counters for Both Transport and Path Overhead
	Transmit OC-3c Writable Overhead Bytes Positions
	Transmit OC-3c Transport Overhead Definitions
	Transmit OC-3c Path Overhead Definitions

	SONET/SDH OC-12 and OC-12c Overhead Bytes
	Receive OC-12/OC-12c Readable Overhead Bytes
	Receive OC-12/OC-12c Transport Overhead Definitions
	Receive OC-12/OC-12c Path Overhead Definitions
	Receive OC-12/OC-12c Statistics Counters for Both Transport and Path Overhead
	Transmit OC-12/OC-12c Writable Overhead Bytes Positions
	Transmit OC-12/OC-12c Transport Overhead Definitions
	Transmit OC-12/OC-12c Path Overhead Definitions

	CP Configuration Space (SONET/SDH Specific)
	CP Mode (SONET/SDH Specific Enable) Registers
	CP Event and Interrupt (SONET/SDH Specific Event) Registers

	SONET/SDH Monitoring Example
	Automatic Protection Switch (APS) Overview
	Signal Failure (SF) Definition
	Signal Degrade (SD) Definition
	Switch Initiation Timing
	Clearing of SD /SF Conditions
	APS Protocol Using the K1 and K2 Bytes

	Determining Signal Degrade/Signal Failure Conditions with C-5e NP

	RISC Core Custom Instructions
	Appendix Overview
	RISC Core Enhancements
	Individual Custom Instructions
	CLZ - Count leading zeros
	CSWAP - Context swap
	BEQNL - Branch on equal not likely
	BGEZALNL - Branch on greater than or equal to zero and link not likely
	BGEZNL - Branch on greater than or equal to zero not likely
	BGTZNL - Branch on greater than zero not likely
	BLEZNL - Branch on less than or equal to zero not likely
	BLTZALNL - Branch on less than zero and link not likely
	BLTZNL - Branch on less than zero not likely
	BNENL - Branch on not equal not likely
	BBIT0 - Branch on bit clear
	BBIT1 - Branch on bit set
	INS - Insert bit field
	CINS - Clear then insert bit field
	EXTU - Extract bit field unsigned
	EXTS - Extract bit field signed

	PCI Byte Swapping
	Appendix Overview
	PCI Byte Swapping Overview
	Default Mode
	Byte Swapping Mode
	Primary Application Using Byte Swapping Mode
	Implementing Byte Swapping Mode

	PCI Inbound and Outbound Byte Swap Registers

	C-5e NP System Configuration
	Appendix Overview
	C-5e NP System Configuration and Overview
	C-5e and M-5 Configuration Types and Their Options
	Front Ports (CPs) and Back Port (FP) Configurations
	External Scheduler Mode
	Queueing Model Configurations
	Sequence Numbers Configurations
	C-5e Methods
	Notes

	C-5e Methods for Handling High Speed (OC-48) PDUs
	M-5 Channel Adapter Overview

	Glossary
	Index
	Note: All page numbers are hyperlinks.

