h -

L |

CodeWarrior™
Development Studio

Assembler Reference
for ColdFire®
Processors

frees_calfew

Revised: 19 October 2006 aaieon ductor

y
A

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2002-2006 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www. freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

g |

Table of Contents

1 Introduction 7
Release NOeS . . oot e e e 7

InThis BOOKot e e e e 7

Whereto Learn Moreo o 8

2 Assembly Language Syntax 9
Assembly Language Statements.t 9

Statement SYNLAX . ..o .vvt e 10

SymbOls .. 11

Labels ... 11

Equates 13

Case-Sensitive Identifiers i i 15

COMSTANLS. « . e ottt ettt e e e e 15

Integer Constants.ou ittt e 15

Floating-Point Constants.t 16

Character CONSLANLS. v\ttt e et et ee e 16

EXPIessiOnS . . . o vttt et 17

COMMENLS . . o .ttt ettt e et e e e e e e e e e e 19

Data ALGNMENt.ottt e 20

3 Using Directives 21
Preprocessor DIrectives.o vt 22

Hdefine. 22

Helif . 23

LS. o ot 24

Hendif. 25

53) L 25

i 25

Hifdef . . 26

#ifndef 27

#include. o 27

211 T 28

Coldfire Assembler Reference 3

Table of Contents

HPIagMA. . . ottt e e 28
#undefine e 28
Native Assembler Directives. oui it e e 29
AlIgN . 32
ASCTT. « ottt 32
ASCIZ & ottt et 33
DS e 34
DY e . ot e 34
data . .o e 35
debug. . .o 35
doubleo 35
ClSE L e 36
elSeif . . 36
ENAIAN . . o .t e 37
endif ... 38
ENAM . . o 38
QU+t e 38
equal SIZN (Z). . oot 39
1<) 0 () PO 39
EXLETTL & . vttt e e ettt et e e e e 39
FIl . o e 40
float. . ..o e 41
fUnCtion. 41
global ... 42
P 42
e e 43
et .o 43
T o 44
e o e 44
i 45
L. o e 45
i PP 46
NG L 46
ifndef. ... 47
e e 47

4 Coldfire Assembler Reference

Table of Contents

INClude . ..o 48
e . . 48
Jong. o 49
TNACTO &« « v v et e et et e e e e e e e e e e e e e e e e e 49
INEXIL. « ottt e e 50

Off St ot e 50

103 015 707§ S 51
O e o e e e e 52
0T 10 P 53
PIEVIOUS .« . ottt ettt e e e e e e e e 54
PUDLIC . . 54
FOAata . .ot 54
DS L 54
SDSS D L 55
SAALA . v vt e e 55
sdatal ..o 55
SAata L 55
BT 5 o) 1 VP 55

R 58
SHOTt . .o 58

] /P 58

] 0221 =P 59
L7 PP 59

L7 Q<o L PP 60
7 1 P 60
Providing Debugging Information 61
4 Using Macros 63
Defining Macroso vt it e 63
Using Macro Arguments.ovu vttt et 65
Macro Repeat Directives.ot 67
/()0 P 67

AP e et 67
ITPC e et e e 68
Creating Unique Labels and Equates 69
Coldfire Assembler Reference 5

Table of Contents

Number of Arguments.ttt e 70

InvoKing Macros oot e 70

5 Common Assembler Settings 71
Displaying Assembler Target Settings Panel 71

Common Assembler Settings Descriptions. 72

6 ColdFire-Specific Information 73
Index 75

6 Coldfire Assembler Reference

g |

Introduction

The CodeWarrior™ IDE includes assemblers that support several specific processors.
This manual explains the corresponding assembly-language syntax and IDE settings for
these assemblers.

Release Notes

Release notes contain important information about new features, bug fixes, and
incompatibilities. Release notes reside in directory:

(CodeWarrior directory}\Release_Notes

In This Book

This manual explains the syntax for assembly-language statements that the CodeWarrior
assemblers use. These explanations cover macros and directives, as well as simple
statements.

NOTE For information on the inline assembler of the CodeWarrior C/C++ compiler,
see the Targeting manual for your target processor or the C Compilers
Reference.

All the assemblers share the same basic assembly-language syntax. but instruction
mnemonics and register names are different for each target processor.

To get the most from this manual, you should be familiar with assembly language and
with your target processor.

Unless otherwise stated, all the information in this manual applies to all the assemblers.
Table 1.1 lists the general chapters of this manual — the chapters that pertain to all the
assemblers. This manual also includes a chapter that is specific to your target processor.

Coldfire Assembler Reference 7

V¥ ¢
i

Introduction
Where to Learn More

Table 1.1 Chapter Descriptions

Chapter Title Description
Introduction This chapter, which describes this manual.
Assembly Language Syntax Describes the main syntax of assembly

language statements.

Using Directives Describes the assembler directives.
Using Macros Describes how to define and invoke macros.
Common Assembler Settings Describes the assembler settings that are

common among the assemblers.

The code examples in the general chapters are for x86 processors. If the corresponding
code is different for your target processor, the processor-specific chapter includes
counterpart examples.

Where to Learn More

Each assembler uses the standard assembly-language mnemonics and register names that
the processor manufacturer defines. The processor-specific chapter of this manual
includes references to documents that provide additional information about your target
processor.

8 Coldfire Assembler Reference

2
Assembly Language Syntax

This chapter explains the syntax of assembly language statements. It consists of these
topics:

¢ Assembly Language Statements

* Statement Syntax
¢ Symbols

» Constants

* Expressions

¢ Comments

* Data Alignment

Assembly Language Statements

The three types of assembly language statements are:
* Machine instructions
¢ Macro calls
* Assembler directives

Instructions, directives, and macro names are case insensitive: the assembler considers
MOV, Mov, and moV to be the same instruction.

Remember these rules for assembly language statements:

1. A statement must reside on a single line; the maximum length of a statement is 512
characters.

2. You can concatenate two or more lines into one statement by typing a backslash (\)
character at the end of lines. But such a concatenated statement must not exceed the
512-character limit.

3. There is no limit to macro expansion, but individual statements and concatenated
statements must not exceed the 512-character limit.

4. Each line of the source file can contain only one statement unless the assembler is
running in GNU mode. (This mode allows multiple statements on one line, with
semicolon separators.)

Coldfire Assembler Reference 9

'
A

Assembly Language Syntax
Statement Syntax

The processor-specific chapter of this manual tells you where find machine instructions
for your target processor. Other chapters of this manual provide more information about
assembler directives and macros.

Statement Syntax

Listing 2.1 shows the syntax of an assembly language statement. Table 2.1 describes the
elements of this syntax.

Listing 2.1 Statement Syntax

statement :-:= [symbol]| operation [operand | [,operand]--.. [
comment]

operation ::= machine_instruction | assembler_directive | macro_call
operand ::= symbol | constant | expression | register_name

Table 2.1 Syntax Elements

Element Description

symbol A combination of characters that represents a value.
machine_instruction A machine instruction for your target processor.
assembler_directive A special instruction that tells the assembler how to process

other assembly language statements. For example, certain
assembler directives specify the beginning and end of a

macro.

macro_call A statement that calls a previously defined macro.

constant A defined value, such as a string of characters or a numeric
value.

expression A mathematical expression.

register_name The name of a register; these names are processor-
specific.

comment Text that the assembler ignores, useful for documenting
your code.

10 Coldfire Assembler Reference

Assembly Language Syntax
Symbols

Symbols

A symbol is a group of characters that represents a value, such as an address, numeric
constant, string constant, or character constant. There is no length limit to symbols.

The syntax of a symbol is:
symbol ::= label | equate
In general, symbols have file-wide scope. This means:

1. You can access the symbol from anywhere in the file that includes the symbol
definition.

2. You cannot access the symbol from another file.

However, it is possible for symbols to have a different scope, as the Local Labels
subsection explains.

Labels

A label is a symbol that represents an address. A label’s scope depends on whether the
label is local or non-local.

The syntax of a label is:
label ::= local_label [:] | non-local_label[:]

The default settings are that each label ends with a colon (:), a label can begin in any
column. However, if you port existing code that does not follow this convention, you
should clear the Labels must end with ":' checkbox of the Assembler settings panel. After
you clear the checkbox, you may use labels that do not end with colons, but such labels
must begin in column 1.

NOTE For more information, see the Common Assembler Settings chapter.

Non-Local Labels

A non-local label is a symbol that represents an address and has file-wide scope. The first
character of a non-local label must be a:

¢ letter (a-z or A-Z),
e period (.),
¢ question mark (?), or an
¢ underscore (_).
Subsequent characters can be from the preceding list or a:

¢ numeral (0-9), or

Coldfire Assembler Reference 11

3
4

y
A

Assembly Language Syntax

Symbols

e dollar sign ($).

Local Labels

A local label is a symbol that represents an address and has local scope: the range forward
and backward within the file to the points where the assembler encounters non-local
labels.

The first character of a local label must be an at-sign (@). The subsequent characters of a
local label can be:

¢ letters (a-z or A-Z)
¢ numerals (0-9)

¢ underscores (_)

e question marks (?)
« dollar sign. ($)

e periods (.)

NOTE You cannot export local labels; local labels do not appear in debugging tables.

Within an expanded macro, the scope of local labels works differently:
* The scope of local labels defined in macros does not extend outside the macro.

* A non-local label in an expanded macro does not end the scope of locals in the
unexpanded source.

Listing 2.2 shows the scope of local labels in macros: the @SK 1P label defined in the
macro does not conflict with the @SK P label defined in the main body of code.

Listing 2.2 Local Label Scope in a Macro

MAKEPOS -MACRO

cmp eax, 1
jne @SKIP
neg eax
@SKIP: ;Scope of this label is within the macro
-ENDM
START:
mov eax, COUNT
cmp eax, 1
jne @SKIP
MAKEPOS
@SKIP: ;Scope of this label is START to END

;excluding lines arising from
;macro expansion

12 Coldfire Assembler Reference

Assembly Language Syntax
Symbols

add eax, 1
END: ret

Relocatable Labels

The assembler assumes a flat 32-bit memory space. You can use the expressions of Table
2.2 to specify the relocation of a 32-bit label.

NOTE The assembler for your target processor may not allow all of these expressions.

Table 2.2 Relocatable Label Expressions

Expression Represents

Iabel The offset from the address of the label to the base of its section,
relocated by the section base address. It also is the PC-relative
target of a branch or call. It is a 32-bit address.

Iabel@l The low 16-bits of the relocated address of the symbol.

label@h The high 16-bits of the relocated address of the symbol. You can
OR this with /abel@l to produce the full 32-bit relocated address.

Iabel@ha The adjusted high 16-bits of the relocated address of the symbol.
You can add this to /abel@l to produce the full 32-bit relocated
address.

label@sdax For labels in a small data section, the offset from the base of the
small data section to the label. This syntax is not allowed for labels
in other sections.

Iabel@got For processors with a global offset table, the offset from the base of
the global offset table to the 32-bit entry for label.

Equates

An equate is a symbol that represents any value. To create an equate, use the -equ or

.set directive.

The first character of an equate must be a:

e letter (a-z or A-Z),

e period (.),

¢ question mark (?), or

¢ underscore (_)

Coldfire Assembler Reference

13

3
4

y
A

Assembly Language Syntax
Symbols

Subsequent characters can be from the preceding list or a:
¢ numeral (0-9) or
« dollar sign ($)

The assembler allows forward equates. This means that a reference to an equate can be in
a file before the equate’s definition. When an assembler encounters such a symbol whose
value is not known, the assembler retains the expression and marks it as unresolved. After
the assembler reads the entire file, it reevaluates any unresolved expressions. If necessary,
the assembler repeatedly reevaluates expressions until it resolves them all or cannot
resolve them any further. If the assembler cannot resolve an expression, it issues an error
message.

NOTE The assembler must be able to resolve immediately any expression whose
value affects the location counter.
If the assembler can make a reasonable assumption about the location counter,
it allows the expression. For example, in a forward branch instruction for a 68K
processor, you can specify a default assumption of 8, 16, or 32 bits.

The code of Listing 2.3 shows a valid forward equate.

Listing 2.3 Valid Forward Equate

.data

-long alloc_size

alloc_size .set rec_size + 4

; a valid forward equate on next line
rec_size .set table_start-table_end
-text;...

table_start:

Eable_end:

However, the code of Listing 2.4 is not valid. The assembler cannot immediately resolve
the expression in the . space directive, so the effect on the location counter is unknown.

Listing 2.4 Invalid Forward Equate

;invalid forward equate on next line
rec_size .set table_start-table_end
-Space rec_size
-text; ...
table_start:

Eable_end:

14 Coldfire Assembler Reference

Assembly Language Syntax
Constants

Case-Sensitive Identifiers

The Case-sensitive identifiers checkbox of the Assembler settings panel lets you control
case-sensitivity for symbols:

¢ Check the checkbox to make symbols case sensitive — SYM1, sym1, and Sym1 are
three different symbols.

¢ Clear the checkbox to make symbols not case-sensitive — SYM1, syml1, and Sym1l
are the same symbol. (This is the default setting.)

Constants

The assembler recognizes three kinds of constants:

¢ Integer Constants
* Floating-Point Constants

¢ Character Constants

Integer Constants

Table 2.3 lists the notations for integer constants. Use the preferred notation for new code.
The alternate notations are for porting existing code.

Table 2.3 Preferred Integer Constant Notation

Type Preferred Notation Alternate Notation
Hexadecimal Ox followed by a string of hexadecimal $ followed by string of hexadecimal digits,
digits, such as Oxdeadbeef. such as $deadbeef. (For certain

processors, this is the preferred notation.)

0 followed by a string of hexadecimal
digits, ending with h, such as

Odeadbeefh.
Decimal String of decimal digits, such as String of decimal digits followed by d,
12345678. such as 12345678d.
Binary % followed by a string of binary digits, Ob followed by a sting of binary digits,
such as %01010001. such as 0b01010001.

String of binary digits followed by b, such
as 01010001b.

Coldfire Assembler Reference 15

|
y

'
A

Assembly Language Syntax

Constants

NOTE The assembler uses 32-bit signed arithmetic to store and manipulate integer
constants.

Floating-Point Constants

You can specify floating-point constants in either hexadecimal or decimal format. The
decimal format must contain a decimal point or an exponent. Examples are 1E-10 and
1.0

You can use floating-point constants only in data generation directives such as . Float
and .double, or in floating-point instructions. You cannot such constants in expressions.

Character Constants

Enclose a character constant in single quotes. However, if the character constant includes
a single quote, use double quotes to enclose the character constant.

NOTE A character constant cannot include both single and double quotes.

The maximum width of a character constant is 4 characters, depending on the context.
Examples are "A", *ABC*, and "TEXT".

A character constant can contain any of the escape sequences that Table 2.4 lists.

Table 2.4 Character Constant Escape Sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)
\r Return (ASCII character 13)

\t Tab

v Single quote

\" Double quote

\ Backslash

\xnn Hexadecimal value of nn

\nnn Octal value of nn

16

Coldfire Assembler Reference

Assembly Language Syntax
Expressions

During computation, the assembler zero-extends a character constant to 32 bits. You can
use a character constant anywhere you can use an integer constant.

Expressions

The assembler uses 32-bit signed arithmetic to evaluates expressions; it does not check for
arithmetic overflow.

As different processors use different operators, the assembler uses an expression syntax
similar to that of the C language. Expressions use C operators and follow C rules for
parentheses and associativity.

NOTE To refer to the program counter in an expression, use a period (.), dollar sign
($), or asterisk (*).

Table 2.5 lists the expression operators that the assembler supports.

Coldfire Assembler Reference 17

y
A

Assembly Language Syntax

Expressions

Table 2.5 Expression Operators

Category

Operator

Description

Binary

+

add

subtract

multiply

divide

modulo

logical OR

logical AND

bitwise OR

bitwise AND

bitwise XOR

shift left

shift right (zeros are shifted into high order bits)

equal to

not equal to

less than or equal to

greater than or equal to

less than

greater than

Unary

unary plus

unary minus

unary bitwise complement

Alternate

<>

not equal to

18

Coldfire Assembler Reference

Assembly Language Syntax
Comments

Operator precedence is:

)

N
*
N
=

1311

(Gnu- or ADS-compatibility modes change some of these operator precedences.)

Comments

There are several ways to specify comments:

1. Use either type of C-style comment, which can start in any column:
// This is a comment.
/* This is a comment. */

2. Start the comment with an asterisk (*) in the first column of the line. Alternate
comment specifiers, for compatibility with other assemblers, are #, .*, and —-.

NOTE The asterisk (*) must be the first character of the line for it to specify a
comment. The asterisk has other meanings if it occurs elsewhere in a line.

3. Use a processor-specific comment character anywhere on the line (the processor-
specific chapter of this document explains whether such a character exists for your
target processor). A 68K/Coldfire example is:

move.l dO,d1 ;This Is a comment
A PowerPC example is;

mr rl,r0 #This 1Is a comment

Coldfire Assembler Reference 19

y
A

Assembly Language Syntax
Data Alignment

NOTE Gnu compatibility mode may involve a different comment character, and may

involve a different meaning for the ; character.

4. Clear the Allow space in operand field checkbox of the Assembler settings panel.

Subsequently, if you type a space in an operand field, all the remaining text of the line
is a comment.

Data Alignment

The assembler’s default alignment is on a natural boundary for the data size and for the

target processor family. To turn off this default alignment, use the al ignment keyword
argument with to the .option directive.

NOTE The assembler does not align data automatically in the . debug section.

20

Coldfire Assembler Reference

g |

Using Directives

This chapter explains available directives for the preprocessor and the main, or native,
assembler. Remember these key points:

* Some directives may not be available for your target processor.

¢ The starting character for preprocessor directives is the hash or pound sign (#); the
default starting character for native assembler directives is the period (-).

* Many preprocessor directives have native-assembler counterparts, but the directives
of each set are not the same.

When you submit source files to the assembler, the code goes through the preprocessor.
Then the preprocessor-output code goes through the native assembler. This leads to a
general rule of not mixing preprocessor and native-assembler directives.

For example, consider the simple symbol-definition test of Listing 3.1:

Listing 3.1 Mixed-Directive Example

#define ABC MyVal
.ifdef ABC ;Definition test

Before the native assembler sees this code, the C preprocessor converts the line
.ifdef ABCto .ifdef MyVal. This means that the native assembler tests for a
definition of MyVal, not ABC.

For a definition test of ABC, you should use either the preprocessor directives of Listing
3.2 or the native assembler syntax of Listing 3.3:

Listing 3.2 Preprocessor-Directive Example

#define ABC MyVal
#ifdef ABC ;Definition test

Listing 3.3 Native-Assembler-Directive Example

ABC = 1
.ifdef ABC ;Definition test

The sections of this chapter are:

Coldfire Assembler Reference 21

'
A

Using Directives
Preprocessor Directives

Preprocessor Directives

¢ Preprocessor Directives

¢ Native Assembler Directives

¢ Providing Debugging Information

Table 3.1 lists the preprocessor directives. Explanations follow the table.

Table 3.1 Preprocessor Directives

Directive Description

#define Defines a preprocessor macro.

#elif Starts an alternative conditional assembly block, with another
condition.

#else Starts an alternative conditional assembly block.

#endif Ends a conditional assembly block.

#error Prints the specified error message.

#if Starts a conditional-assembly block.

#ifdef Starts a symbol-defined conditional assembly block.

#ifndef Starts a symbol-not-defined conditional assembly block.

#include Takes input from the specified file.

#line Specifies absolute line number.

#pragma Uses setting of specified pragma.

#undefine Removes the definition of a preprocessor macro.

#define

Defines a preprocessor macro.

#define name [(parms)] assembly_statement

22

Coldfire Assembler Reference

Using Directives
Preprocessor Directives

Parameters
name
Name of the macro.
parms
List of parameters, separated by commas. Parentheses must enclose the list.
assembly_ statement

Any valid assembly statement.

Remarks

To extend an assembly_statement, type a backslash (\) and continue the statement
on the next line. In GNU mode, multiple statements can be on one line of code —
separate them with semicolon characters (;).

#elif

Starts an optional, alternative conditional-assembly block, adding another boolean-
expression condition.

#elif bool-expr statement-group

Parameters
bool-expr

Any boolean expression.
statement-group

Any valid assembly statements.

Remarks

This directive must be part of an #iF ... #elif ... [#else] ...
#endi T conditional structure (with each of these directives starting a new line).
The preprocessor implements the assembly statements that #e l 1T introduces
only if (1) the bool-expr condition of the #if directive is false, and (2) the bool-expr
condition of the #elif directive is true.

Coldfire Assembler Reference 23

3
4

y
A

Using Directives

Preprocessor Directives

For a logical structure of multiple levels, you can use the #elif directive several
times, as in this pattern:

#iT bool-expr-1

statement-group-1

#elif bool-expr-2

statement-group-2

#elif bool-expr-3

statement-group-3

#elif bool-expr-4

statement-group-4

#else

statement-group-5

#endif

If this structure’s bool-expr-1 is true, the preprocessor executes the
statement-group-1 statements, then goes to the #endif directive.

If bool-expr-1 is false, the preprocessor skips statement-group-1,
executing the first #elif directive. If bool-expr-2 is true, the
preprocessor executes Statement-group-2, then goes to the #endif
directive.

If bool-expr-2 also is false, the preprocessor skips statement-
group-2, executing the second #el i ¥ directive.

The preprocessor continues evaluating the boolean expressions of succeeding
#el i T directives until it comes to a boolean expression that is true.

If none of the boolean expressions are true, the preprocessor processes
statement-group-5, because this structure includes an #e lse directive.

If none of the boolean values were true and there were no #else directive, the
preprocessor would not process any of the statement groups.)

#else

Starts an optional, alternative conditional assembly block.

#else statement-group

24

Coldfire Assembler Reference

Using Directives
Preprocessor Directives

Parameter
statement—group

Any valid assembly statements.

Remarks

This directive must be part of an #iF ... [#elif] ... #else ...
#endi T conditional structure (with each of these directives starting a new line).
The preprocessor implements the assembly statements that #e I se introduces only
if the bool-expr condition of the #1F directive is false.

If this directive is part of a conditional structure that includes several #el i f
directives, the preprocessor implements the assembly statements that #e lse
introduces only if all the bool-expr conditions are false.

#endif

Ends a conditional assembly block; mandatory for each #1F, #1 fde¥f, and #ifndef
directive.

.endif

#error

Prints the specified error message to the IDE Errors and Warnings window.

#error ''message"’

Parameter
message

Error message, in double quotes.

#if

Starts a conditional assembly block, making assembly conditional on the truth of a
boolean expression.

#if bool-expr statement-group

Coldfire Assembler Reference 25

3
4

y
A

Using Directives

Preprocessor Directives

Parameters

bool-expr

Any boolean expression.

statement-group

Any valid assembly statements.

Remarks

This directive starts an #iF ... [#elif] ... [#else] ... #endif
conditional structure (with each of these directives starting a new line). There must
be a corresponding #end i F directive for each #1 F directive. An #else directive
is optional; one or more #e 1 i F directives are optional.

The simplest such conditional structure follows the pattern #1F ... assembly
statements ... #endiT. The preprocessor implements the assembly
statements only if the #1F directive’s bool-expr condition is true.

The next simplest conditional structure follows the pattern #i ¥ ... assembly
statements 1 ... #else ... assembly statements 2 ...
#endif. The preprocessor implements the assembly statements 1 if the #1F
directive’s bool-expr condition is true; the preprocessor implements assembly
statements 2 if the condition is false.

You can use #e l i T directives to create increasingly complex conditional
structures.

#ifdef

Starts a conditional assembly block, making assembly conditional on the definition of a
symbol.

#ifdef symbol statement-group

Parameters
symbol

Any valid symbol.

statement-group

Any valid assembly statements.

26

Coldfire Assembler Reference

Using Directives
Preprocessor Directives

Remarks

If previous code includes a definition for symbol, the preprocessor implements
the statements of the block. If symbol is not defined, the preprocessor skips the
statements of the block.

Each #1 fdef directive must have a matching #end i ¥ directive.

#ifndef

Starts a conditional assembly block, making assembly conditional on a symbol not being
defined.

#ifndef symbol statement-group

Parameter
symbol

Any valid symbol.
statement-group

Any valid assembly statements.

Remarks

If previous code does not include a definition for Symbol, the preprocessor
implements the statements of the block. If there is a definition for symbol, the
preprocessor skips the statements of the block.

Each #1fndef directive must have a matching #end i F directive.

#include

Tells the preprocessor to take input from the specified file.

#include filename

Parameter
filename

Name of an input file.

Coldfire Assembler Reference 27

y
A

Using Directives
Preprocessor Directives

Remarks

When the preprocessor reaches the end of the specified file, it takes input from the
assembly statement line that follows the #include directive. The specified file
itself can contain an #include directive that specifies yet another input file.

#line

Specifies the absolute line number (of the current source file) for which the preprocessor
generates subsequent code or data.

#line number

Parameter
number

Line number of the file; the file’s first line is number 1.

#pragma

Tells the assembler to use a particular pragma setting as it assembles code.

#pragma pragma-type setting

Parameters
pragma-type

Type of pragma.
setting

Setting value.

#undefine

Removes the definition of a preprocessor macro.

#undefine name

28 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

Parameters
name

Name of the macro.

Native Assembler Directives

The default starting character for native assembler directives is the period (.). But you can
omit this starting period if you clear the Directives begin with *." checkbox of the
Assembler settings panel.

Table 3.2 lists these directives by type. Explanations of the directives follow the table, in
alphabetic order.

Table 3.2 Assembler Directives

Type Directive Description

Macro .endm Ends a macro definition.
.macro Starts a macro definition.
.mexit Ends macro execution early.

Conditional .else Starts an alternative conditional assembly block.
.elseif Starts an alternative conditional assembly block,

adding another condition.

.endif Ends a conditional assembly block.

Jf Starts a conditional assembly block.

.ifc Starts a 2-strings-equal conditional assembly
block.

.ifdef Starts a symbol-defined conditional assembly
block

.ifnc Starts a 2-strings-not-equal conditional assembly
block.

ifndef Starts a symbol-not-defined conditional assembly
block.

Coldfire Assembler Reference 29

y
A

Using Directives
Native Assembler Directives

Table 3.2 Assembler Directives (continued)

Type Directive Description
Compatibility .ifeq Starts a string-equals-0 conditional assembly
Conditional block.
.ifge Starts a string->=-0 conditional assembly block.
.ifgt Starts a string->-0 conditional assembly block.
.fle Starts a string-<=-0 conditional assembly block.
(flt Starts a string-<-0 conditional assembly block.
.ifne Starts a string-not-equals-0 conditional assembly
block.
Section Control | .bss Specifies an unititialized, read-only data section.
.data Specifies an initialized, read-write data section.
.debug Specifies a debug section.
.offset Starts a record definition.
.previous Reverts to the previous section.
.rodata Specifies an initialized, read-only data section.
.sbss Specifies an uninitialized, read-write small data
section.
.shss2 Specifies an uninitialized, read-write small data
section.
.sdata Specifies an initialized, read-write small data
section.
.sdata0 Specifies an initialized, read-write small data
section.
.sdata2 Specifies an initialized, read-only small data
section.
.section Defines an ELF object-file section.
.text Specifies an executable code section.

30 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

Table 3.2 Assembler Directives (continued)

Type Directive Description
Scope Control .extern Imports specified labels.
.global Exports specified labels.
.public Declares specified labels public.
Symbol .equ Defines an equate; assigns a permanent value.
Definition
equal sign (=) Defines an equate; assigns an initial value.
.set Defines an equate.
.textequ Defines an equate; assigns a string value.
Data .ascii Declares a storage block for a string.
Declaration
.asciz Declares a 0-terminated storage block for a
string.
.byte Declares an initialized block of bytes.
double Declares an initialized block of 64-bit, floating-
point numbers.
float Declares an initialized block of 32-bit, floating-
point numbers.
Jong Declares an initialized block of 32-bit short
integers.
short Declares an initialized block of 16-bit short
integers.
.space Declares a O-initialized block of bytes.
Assembler .align Aligns location counter to specified power of 2.
Control
endian Specifies target-processor byte ordering.
error Prints specified error message.
.include Takes input from specified file.
.option Sets an option.
.org Changes location-counter value.
.pragma Uses setting of specified pragma.

Coldfire Assembler Reference

31

'
A

Using Directives
Native Assembler Directives

Table 3.2 Assembler Directives (continued)

Type Directive Description

Debugging file Specifies source-code file.
.function Generates debugging data.
Jline Specifies absolute line number.
.Size Specifies symbol length.
type Specifies symbol type.

.align

Aligns the location counter on the specified value.

.align expression

Parameter
expression

Alignment value.

Remarks

The expression value is the actual alignment value, so -align 2 specifies 2-
byte alignment. (For certain other assemblers, expression is an exponent for 2,
so -align 2 would specify 4-byte alignment.)

.ascii

Declares a block of storage for a string; the assembler allocates a byte for each character.
[label] .ascii "string”

Parameters
label

Name of the storage block.

32

Coldfire Assembler Reference

Using Directives
Native Assembler Directives

string

String value to be stored, in double quotes. This string can contain any of the
escape sequences that Table 3.3 lists.

Table 3.3 Escape Sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)
\r Return (ASCII character 13)

\t Tab

\ Single quote

\" Double quote

\\ Backslash

\nnn Octal value of \nnn

\xnn Hexadecimal value of nn

.asciz

Declares a zero-terminated block of storage for a string.

[label] .asciz "string"

Parameters
label

Name of the storage block.
string

String value to be stored, in double quotes. This string can contain any of the
escape sequences that Table 3.4 lists.

Coldfire Assembler Reference 33

y
A

Using Directives
Native Assembler Directives

Table 3.4 Escape Sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)

\r Return (ASCII character 13)

\t Tab

\ Single quote

\" Double quote

\\ Backslash

\nnn Octal value of \nnn

\xnn Hexadecimal value of nn
Remarks

The assembler allocates a byte for each String character. The assembler then allocates
an extra byte at the end, initializing this extra byte to zero.

.bss

Specifies an uninitialized read-write data section.

.bss

.byte
Declares an initialized block of bytes.

[label] .byte expression [, expression]

Parameters
label
Name of the block of bytes.

34 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

expression

Value for one byte of the block; must fit into one byte.

.data

Specifies an initialized read-write data section.
.data

.debug

Specifies a debug section.

-debug

Remarks

This directive is appropriate if you must provide certain debugging information
explicitly, in a debug section. But this directive turns off automatic generation of
debugging information (which the assembler does if you enable the debugger).
Furthermore, this directive tells the assembler to ignore the debugging directives
_file, . function, _.line, .size, and - type.

As Providing Debugging Information explains, using the .debug directive may be
the least common method of providing debugging information to the assembler.

.double

Declares an initialized block of 64-bit, floating-point numbers; the assembler allocates 64
bits for each value.

[label] .double value [, value]

Parameters
label
Name of the storage block.

value

Floating-point value; must fit into 64 bits.

Coldfire Assembler Reference 35

3
4

y
A

Using Directives
Native Assembler Directives

.else
Starts an optional, alternative conditional assembly block.
.else statement-group
Parameter
statement-group
Any valid assembly statements.
Remarks
This directive must be partof an .iF ... [-elseif]else ...
-endi f conditional structure (with each of these directives starting a new line).
The assembler processes the assembly statements that . el se introduces only if
the bool-expr condition of the . i F directive is false.
If this directive is part of a conditional structure that includes several .elseif
directives, the assembler processes the assembly statements that . e I se introduces
only if all the bool-expr conditions are false.
.elseif
Starts an optional, alternative conditional assembly block, adding another boolean-
expression condition.
-elseif bool-expr statement-group
Parameters
bool-expr
Any boolean expression.
statement-group
Any valid assembly statements.
Remarks
This directive must be partof an .iFelseif ... [.else] ...
-endif conditional structure (with each of these directives starting a new line).
The assembler processes the assembly statements that . e lse 1T introduces only if
(1) the bool-expr condition of the . 1 F directive is false, and (2) the bool-expr
condition of the .elseif directive is true.
36 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

For a logical structure of multiple levels, you can use the -elseif directive
several times, as in this pattern:

-if bool-expr-1
statement-group-1
-elseif bool-expr-2
statement-group-2
-elseif bool-expr-3
statement-group-3
.elseif bool-expr-4
statement-group-4
.else
statement-group-5
-endif

 If this structure’s bool -expr-1 is true, the assembler executes the
statement-group-1 statements, then goes to the . endi T directive.

e If bool-expr-1 is false, the assembler skips Statement-group-1,
executing the first .else i directive. If bool -expr-2 is true, the assembler
executes Statement-group-2, then goes to the .endiF directive.

e If bool-expr-2 also is false, the assembler skips statement-group-2,
executing the second .elseiF directive.

* The assembler continues evaluating the boolean expressions of succeeding
-elseif directives until it comes to a boolean expression that is true.

* If none of the boolean expressions are true, the assembler processes
statement-group-5, because this structure includes an -else directive.

* If none of the boolean values were true and there were no . e lse directive, the
assembler would not process any of the statement groups.)

.endian

Specifies byte ordering for the target processor; valid only for processors that permit
change of endianness.

-.endian big | little

Coldfire Assembler Reference 37

A 4
4\

Using Directives
Native Assembler Directives

Parameters
big

Big-endian specifier.
little

Little-endian specifier.

.endif
Ends a conditional assembly block. A matching -endiF directive is mandatory for each
type of . iF directive.
-endif
.endm
Ends the definition of a macro.
-endm
.equ

Defines an equate, assigning a permanent value. You cannot change this value at a later
time.

equate .equ expression

Parameters
equate

Name of the equate.
expression

Permanent value for the equate.

38 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

equal sign (=)

Defines an equate, assigning an initial value. You can change this value at a later time.

equate = expression

Parameters
equate

Name of the equate.
expression

Temporary initial value for the equate.

Remarks

This directive is equivalent to . set. It is available only for compatibility with
assemblers provided by other companies.

.error
Prints the specified error message to the IDE Errors and Warnings window.
.error "error"
Parameter
error
Error message, in double quotes.
.extern

Tells the assembler to import the specified labels, that is, find the definitions in another
file.

-extern label [, label]

Parameter
label
Any valid label.

Coldfire Assembler Reference 39

y
A

Using Directives
Native Assembler Directives

Remarks
You cannot import equates or local labels.

An alternative syntax for this directive is -extern section:label, asin
.extern _sdata:current_line. Some processor architectures require this
alternative syntax to distinguish text from data.

file

Specifies the source-code file; enables correlation of generated assembly code and source
code.

-File "filename"

Parameter
filename

Name of source-code file, in double quotes.

Remarks

This directive is appropriate if you must explicitly provide a filename to the
assembler as debugging information. Providing Debugging Information explains
additional information about debugging.

Example
Listing 3.4 shows how to use the . Fi le directive for your own DWARF code.

Listing 3.4 DWARF Code Example

-File “MyFile.c”

-text

-Ffunction “MyFunction”,start,end-start
start:

-line 1

Iwz r3, 0(r3)

-line 2

blr

end:

40 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

float

Declares an initialized block of 32-bit, floating-point numbers; the assembler allocates 32
bits for each value.

[label] .float value [, value]

Parameters
label

Name of the storage block.
value

Floating-point value; must fit into 32 bits.

.function

Tells the assembler to generate debugging data for the specified subroutine.

-function "func", label, length

Parameters
func

Subroutine name, in double quotes.
label

Starting label of the subroutine.
length

Number of bytes in the subroutine.

Remarks

This directive is appropriate if you must explicitly provide debugging information
to the assembler. Providing Debugging Information explains additional
information about debugging.

Coldfire Assembler Reference 41

3
4

y
A

Using Directives
Native Assembler Directives

.global
Tells the assembler to export the specified labels, that is, make them available to other
files.
-global label [, label]
Parameter
label
Any valid label.
Remarks
You cannot export equates or local labels.
if
Starts a conditional assembly block, making assembly conditional on the truth of a
boolean expression.
-iT bool-expr statement-group
Parameters
bool-expr
Any boolean expression.
statement-group
Any valid assembly statements.
Remarks
This directive startsan . iF ... [-.elseif] ... [-else]endif
conditional structure (with each of these directives starting a new line). There must
be a corresponding - end i directive for each . I f directive. An -else directive
is optional; one or more . e lseif directives are optional.
The simplest such conditional structure follows the pattern . ¥ ... assembly
statementsendiT. The preprocessor implements the assembly
statements only if the . 1 F directive’s bool-expr condition is true.
The next simplest conditional structure follows the pattern . if ... assembly
statements 1else ... assembly statements 2 ...
-endif. The preprocessor implements the assembly statements 1 if the . i F
42 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

directive’s bool-expr condition is true; the preprocessor implements assembly
statements 2 if the condition is false.

You can use .elseif directives to create increasingly complex conditional
structures.

.ifc
Starts a conditional assembly block, making assembly conditional on the equality of two
strings.
.ifc stringl, string2 statement-group
Parameters
stringl
Any valid string.
string2
Any valid string.
statement-group
Any valid assembly statements.
Remarks
If stringl and string?2 are equal, the assembler processes the statements of
the block. (The equality comparison is case-sensitive.) If the strings are not equal,
the assembler skips the statements of the block.
Each . i fc directive must have a matching .endif directive.
.ifdef

Starts a conditional assembly block, making assembly conditional on the definition of a
symbol.

-ifdef symbol statement-group

Parameters
symbol
Any valid symbol.

Coldfire Assembler Reference 43

3
4

y
A

Using Directives
Native Assembler Directives

statement-group

Any valid assembly statements.

Remarks

If previous code includes a definition for symbol, the assembler processes the
statements of the block. If symbol is not defined, the assembler skips the
statements of the block.

Each . i fdef directive must have a matching - end i directive.

.ifeq

Starts a conditional assembly block, making assembly conditional on an expression value
being equal to zero.

.ifeq expression statement-group

Parameters
expression

Any valid expression.
statement-group

Any valid assembly statements

Remarks

If the expression value equals 0, the assembler processes the statements of the
block. If the expression value does not equal 0, the assembler skips the
statements of the block.

.ifge

Starts a conditional assembly block, making assembly conditional on an expression value
being greater than or equal to zero.

.ifge expression statement-group

Parameters
expression

Any valid expression.

44

Coldfire Assembler Reference

Using Directives
Native Assembler Directives

statement-group

Any valid assembly statements.

Remarks

If the expression value is greater than or equal to 0, the assembler processes
the statements of the block. If the expression value is less than 0, the assembler
skips the statements of the block.

.ifgt

Starts a conditional assembly block, making assembly conditional on an expression value
being greater than zero.

.ifgt expression statement-group

Parameters
expression

Any valid expression.
statement-group

Any valid assembly statements.

Remarks

If the expression value is greater than 0, the assembler processes the
statements of the block. If the expression value is less than or equal to 0, the
assembler skips the statements of the block.

.ifle

Starts a conditional assembly block, making assembly conditional on an expression value
being less than or equal to zero.

.ifle expression statement-group

Parameters
expression

Any valid expression.

Coldfire Assembler Reference 45

y
A

Using Directives
Native Assembler Directives

statement-group

Any valid assembly statements.

Remarks

If the expression value is less than or equal to 0, the assembler processes the
statements of the block. If the expression value is greater than 0, the assembler
skips the statements of the block.

iflt

Starts a conditional assembly block, making assembly conditional on an expression value
being less than zero.

.iflt expression statement-group

Parameters
expression

Any valid expression.
statement-group

Any valid assembly statements.

Remarks

If the expression value is less than 0, the assembler processes the statements of
the block. If the expression value equals or exceeds 0, the assembler skips the
statements of the block.

.ifnc

Starts a conditional assembly block, making assembly conditional on the inequality of two
strings.

-ifnc stringl, string2 statement-group

Parameters
stringl
Any valid string.

46

Coldfire Assembler Reference

Using Directives
Native Assembler Directives

string2
Any valid string.
statement-group

Any valid assembly statements.

Remarks

If stringl and string?2 are not equal, the assembler processes the statements
of the block. (The inequality comparison is case-sensitive.) If the strings are equal,
the assembler skips the statements of the block.

Each . i fnc directive must have a matching - end i F directive.

.ifndef
Starts a conditional assembly block, making assembly conditional on a symbol not being
defined.
-.ifndef symbol statement-group

Parameters
symbol

Any valid symbol.
statement-group

Any valid assembly statements.

Remarks

If previous code does not include a definition for symbol, the assembler processes
the statements of the block. If there is a definition for symbol, the assembler skips
the statements of the block.

Each . ifndef directive must have a matching -endif directive.

.ifne

Starts a conditional assembly block, making assembly conditional on an expression value
not being equal to zero.

.ifne expression statement-group

Coldfire Assembler Reference 47

y
A

Using Directives
Native Assembler Directives

Parameters
expression

Any valid expression.
Statement-group

Any valid assembly statements.

Remarks

If the expression value is not equal to 0, the assembler processes the statements
of the block. If the expression value does equal 0, the assembler skips the
statements of the block.

.include
Tells the assembler to take input from the specified file.
-include filename
Parameter
filename
Name of an input file.
Remarks
When the assembler reaches the end of the specified file, it takes input from the
assembly statement line that follows the - include directive. The specified file
can itself contain an . include directive that specifies yet another input file.
dine
Specifies the absolute line number (of the current source file) for which the assembler
generates subsequent code or data.
-line number
Parameter
number
Line number of the file; the file’s first line is number 1.
48

Coldfire Assembler Reference

Using Directives
Native Assembler Directives

Remarks

This directive is appropriate if you must explicitly provide a line number to the
assembler as debugging information. But this directive turns off automatic
generation of debugging information (which the assembler does if you enable the
debugger). Providing Debugging Information explains additional information
about debugging.

.long

Declares an initialized block of 32-bit short integers.

[label] .long expression [, expression]

Parameters
label
Name of the block of integers.
expression
Value for 32 bits of the block; must fit into 32 bits.

«Macro

Starts the definition of a macro.

label .macro [parameter] [,parameter] ...

Parameters
label

Name you give the macro.
parameter

Optional parameter for the macro.

Coldfire Assembler Reference 49

Using Directives
Native Assembler Directives

.mexit
Stops macro execution before it reaches the .endm directive. Program execution
continues with the statement that follows the macro call.
-mexit

.offset

Starts a record definition, which extends to the start of the next section.

.offset [expression]

Parameter
expression

Optional initial location-counter value.

Remarks

Table 3.5 lists the only directives you can use inside a record.

Table 3.5 Directives Allowed in a Record

.align .double .org .textequ
.ascii .equ .set

.asciz float .short

.byte .long .space

Data declaration directives such as - byte and - short update the location
counter, but do not allocate any storage.

Example
Listing 3.5 shows a sample record definition.

Listing 3.5 Record Definition with Offset Directive

.offset
top: .short O
left: .short 0

50 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

bottom: .short O
right: .short O
rectSize -equ *
.option

Sets an assembler control option as Table 3.6 describes.

-option keyword setting

Parameters
keyword

Control option.
setting

Setting value appropriate for the option: OFF, ON, RESET, or a particular number
value. RESET returns the option to its previous setting.

Table 3.6 Option Keywords

Keyword Description

alignment off | on | reset Controls data alignment on a natural boundary.
Does not correspond to any option of the
Assembler settings panel.

branchsize 8 | 16 | 32 Specifies the size of forward branch displacement.
Applies only to x86 and 68K assemblers. Does not
correspond to any option of the Assembler settings
panel.

case off | on | reset Specifies case sensitivity for identifiers.
Corresponds to the Case-sensitive identifiers
checkbox of the Assembler settings panel.

colon off | on | reset Specifies whether labels must end with a colon (:).
The OFF setting means that you can omit the
ending colon from label names that start in the first
column. Corresponds to the Labels must end
with ':' checkbox of the Assembler settings panel.

Coldfire Assembler Reference 51

Using Directives
Native Assembler Directives

Table 3.6 Option Keywords (continued)

Keyword Description

no_at_macros off | on Controls $AT use in macros. The OFF setting
means that the assembler issues a warning if a
macro uses $AT. Applies only to the MIPS

Assembler.

no_section_resume on | Specifies whether section directives such as

off | reset .text resume the last such section or creates a
new section.

period off | on | reset Controls period usage for directives. The ON

setting means that each directive must start with a
period. Corresponds to the Directives begin with
"' checkbox of the Assembler settings panel.

processor procname | Specifies the target processors for the assembly
reset code; tells the assembler to confirm that all
instructions are valid for those processors.
Separate names of multiple processors with
vertical bars (]).

reorder off | on | reset Controls NOP instructions after jumps and
branches. The ON setting means that the
assembler inserts a NOP instruction, possibly
preventing pipeline problems. The OFF setting
means that the assembler does not insert a NOP
instruction, so that you can specify a different
instruction after jumps and branches. Applies only
to the MIPS Assembler.

space off | on | reset Controls spaces in operand fields. The OFF setting
means that a space in an operand field starts a
comment. Corresponds to the Allow space in
operand field checkbox of the Assembler settings
panel.

.org

Changes the location-counter value, relative to the base of the current section.

.org expression

52 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

Parameter
expression

New value for the location counter; must be greater than the current location-
counter value.

Remarks

Addresses of subsequent assembly statements begin at the new expression value
for the location counter, but this value is relative to the base of the current section.

Example

In Listing 3.6, the label Al pha reflects the value of . text + 0x1000. If the
linker places the . text section at 0x10000000, the runtime Alpha value is
0x10001000.

Listing 3.6 Address-Change Example

-text
.org 0x1000
Alpha:
blr
NOTE You must use the CodeWarrior IDE and linker to place code at an absolute
address.
pragma

Tells the assembler to use a particular pragma setting as it assembles code.

.pragma pragma-type setting

Parameters
pragma-type

Type of pragma.
setting

Setting value.

Coldfire Assembler Reference 53

Using Directives
Native Assembler Directives

.previous

Reverts to the previous section; toggles between the current section and the previous
section.

-previous

.public

Declares specified labels to be public.
-public label [, label]

Parameter
label
Any valid label.

Remarks

If the labels already are defined in the same file, the assembler exports them
(makes them available to other files). If the labels are not already defined, the
assembler imports them (finds their definitions in another file).

.rodata

Specifies an initialized read-only data section.

.rodata

.sbss

Specifies a small data section as uninitialized and read-write. (Some architectures do not
support this directive.)

.sbss

54 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

.sbss2

Specifies a small data section as uninitialized and read-write. (Some architectures do not
support this directive.)

.sbss2

.sdata

Specifies a small data section as initialized and read-write. (Some architectures do not
support this directive.)

.sdata

.sdata0

Specifies a small data section as read/write. (Some architectures do not support this
directive.)

.sdata2

.sdata2

Specifies a small data section as initialized and read-only. (Some architectures do not
support this directive.)

.sdata2

.section

Defines a section of an object file.

-section name [,alignment] [,type] [.flags]

Coldfire Assembler Reference 55

Using Directives
Native Assembler Directives

Parameters
name

Name of the section.
alignment

Alignment boundary.
type

Numeric value for the ELF section type, per Table 3.7. The default type value is
1: (SHT_PROGBITS).

flags

Numeric value for the ELF section flags, per Table 3.8. The default Flags value
is 0Xx00000002, 0x00000001: (SHF_ALLOC+SHF_WRITE).

Table 3.7 ELF Section Header Types (SHT)

Type Name Meaning

0 NULL Section header is inactive.

1 PROGBITS Section contains information that the program
defines.

2 SYMTAB Section contains a symbol table.

3 STRTAB Section contains a string table.

4 RELA Section contains relocation entries with explicit
addends.

5 HASH Section contains a symbol hash table.

6 DYNAMIC Section contains information used for dynamic
linking.

7 NOTE Section contains information that marks the file,
often for compatibility purposes between
programs.

8 NOBITS Section occupies no space in the object file.

9 REL Section contains relocation entries without explicit
addends.

56 Coldfire Assembler Reference

Using Directives
Native Assembler Directives

Table 3.7 ELF Section Header Types (SHT) (continued)

Type Name Meaning

10 SHLIB Section has unspecified semantics, so does not
conform to the Application Binary Interface (ABI)
standard.

11 DYNSYM Section contains a minimal set of symbols for
dynamic linking.

Table 3.8 ELF Section Header Flags (SHF)

Flag Name Meaning

0x00000001 WRITE Section contains data that is writable
during execution.

0x00000002 ALLOC Section occupies memory during
execution.

0x00000004 EXECINSTR Section contains executable machine
instructions.

0xF0000000 MASKPROC Bits this mask specifies are reserved for

processor-specific purposes.

Remarks

You can use this directive to create arbitrary relocatable sections, including
sections to be loaded at an absolute address.

Most assemblers generate ELF (Executable and Linkable Format) object files, but
a few assemblers generate COFF (Common Object File Format) object files.

The assembler supports this alternative syntax, which you may find convenient:
.section name,typestring

(The name parameter has the same role as in the full syntax. The typestring
value can be text, data, rodata, bss, sdata, or so forth.)

Normally, repeating a . text directive would resume the previous . text section.
But to have each . text directive create a separate section, include in this
relocatable section the statement .option no_section_resume_on.

Coldfire Assembler Reference 57

Using Directives
Native Assembler Directives

Example

This example specifies a section named vector, with an alignment of 4 bytes,
and default type and flag values:

.section vector,4

.set

Defines an equate, assigning an initial value. You can change this value at a later time.

equate .set expression

Parameters
equate

Name of the equate.
expression

Temporary initial value for the equate.

.short

Declares an initialized block of 16-bit short integers.

[label] .short expression [, expression]

Parameters
label

Name of the block of integers.
expression

Value for 16 bits of the block; must fit into 16 bits.

.Size

Specifies a length for a symbol.

-size symbol, expression

58

Coldfire Assembler Reference

Using Directives
Native Assembler Directives

Parameters
symbol

Symbol name.
expression

Number of bytes.

Remarks

This directive is appropriate if you must explicitly provide a symbol size to the
assembler as debugging information. Providing Debugging Information explains
additional information about debugging.

.space

Declares a block of bytes, initializing each byte to zero or to a specified fill value.

[label] .space expression [, Fill_value]

Parameters
label

Name of the block of bytes.
expression

Number of bytes in the block.
fill_value

Initialization value for each bytes in the block; the default value is zero.

text

Specifies an executable code section; must be in front of the actual code in a file.
-text

Remarks

Normally, repeating a . teXt directive would resume the previous . text section.
But to have each . text directive create a separate section, include the statement
.option no_section_resume_on in a relocatable section. (Use the
.section directive to create such a section.)

Coldfire Assembler Reference 59

Using Directives
Native Assembler Directives

textequ

Defines a text equate, assigning a string value.

equate .textequ "'string"

Parameters
equate

Name of the equate.
string

String value for the equate, in double quotes.

Remarks

This directive helps port existing code. You can use it to give new names to
machine instructions, directives, and operands.

Upon finding a text equate, the assembler replaces it with the string value before
performing any other processing on that source line.
Examples
dc.b -textequ " _byte"
endc -textequ "_endif"”

type

Specifies the type of a symbol.
-type symbol, @function | @object

Parameters
symbol

Symbol name.
@function

Function type specifier.
@object

Variable specifier

60

Coldfire Assembler Reference

Using Directives
Providing Debugging Information

Remarks

This directive is appropriate if you must explicitly provide a type to the assembler
as debugging information. Providing Debugging Information explains additional
information about debugging.

Providing Debugging Information

Perhaps the most common way to provide project debugging information to the assembler
is to let the assembler itself automatically generate the information. This level of

debugging information means that the debugger source window can display the assembly
source file. It also means that you can step through the assembly code and set breakpoints.

For this automatic generation of debugging information, important points are:

1. Avoid directives .debug and . I ine; using either directive turns off automatic
generation.

2. For some implementations, the linker requires instructions to be in the . text section,
in order for automatic generation to happen.

3. In automatic-debug mode, the assembler puts everything into a single function (the
assembler does not know how source code may be divided into functions).
Accordingly, you may see names such as @DummyFn1 in the debugger stack window.
But if you wish, you can use the . function directive to divide the code into
sections.

4. When you debug the assembly-language code, the code may seem spaghetti-like and it
may not create valid call frames on the stack. This is normal for the assembler.
Because of this, however, the debugger cannot provide stack-crawl information.

An alternative method is providing debugging information to the assembler explicitly, via
the debugging directives - File, . function, . line, .size, and - type. This would
be particularly appropriate if you were developing a new compiler that output assembly
source code: these directives would relate the assembler code back to the original source-
code input to the new compiler. But you must avoid the . debug directive, which tells the
assembler to ignore the debugging directives.

A final method of providing debugging information, rare in normal use, is using the
-debug directive to create an explicit debug section. Such a section might begin:

-debug
-long 1
.asciz “MyDebuglnfo”

But remember that the - debug directive deactivates any of the debugging directives.

Coldfire Assembler Reference 61

Using Directives
Providing Debugging Information

62 Coldfire Assembler Reference

g |

Using Macros

This chapter explains how to define and use macros. You can use the same macro
language regardless of your target processor.

This chapter includes these topics:

¢ Defining Macros

¢ Invoking Macros

Defining Macros

A macro definition is one or more assembly statements that define:
 the name of a macro
* the format of the macro call
* the assembly statements of the macro

To define a macro, use the .macro directive.

NOTE If you use a local label in a macro, the scope of the label is limited to the
expansion of the macro. (Local labels begin with the @ character.)

The .macro directive is part of the first line of a macro definition. Every macro
definition ends with the . endm directive .Listing 4.1 shows the full syntax, and Table 4.1
explains the syntax elements.

Listing 4.1 Macro Definition Syntax: .macro Directive

name: .macro [parameter]| [,parameter] ...
macro_body
-endm

Coldfire Assembler Reference 63

Using Macros
Defining Macros

Table 4.1 Syntax Elements: .macro Directive

Element Description
name Label that invokes the macro.
parameter Operand the assembler passes to the macro

for us in the macro body.

macro_body One or more assembly language statements.
Invoking the macro tell the assembler to
substitutes these statements.

The body of a simple macro consists of just one or two statements for the assembler to
execute. Then, in response to the . endm directive, the assembler resumes program
execution at the statement immediately after the macro call.

But not all macros are so simple. For example, a macro can contain a conditional assembly
block, The conditional test could lead to the . mex it directive stopping execution early,
before it reaches the -endm directive.

Listing 4.2 is the definition of macro addto, which includes an .mex it directive.
Listing 4.3 shows the assembly-language code that calls the addto macro. Listing 4.4
shows the expanded addto macro calls.

Listing 4.2 Conditional Macro Definition

//define a macro
addto .macro dest,val
-iF val==
no-op
.mexit // execution goes to the statement
// immediately after the _endm directive
-elseif val==
// use compact instruction
inc dest
.mexit // execution goes to the statement
// immediately after the .endm directive
-endif
// if val is not equal to either O or 1,
// add dest and val
add dest,val
// end macro definition
-endm

64 Coldfire Assembler Reference

Using Macros
Defining Macros

Listing 4.3 Assembly Code that Calls addto Macro

// specify an executable code section

-text

Xor

eax,eax

// call the addto macro
addto eax,0
addto eax,1
addto eax,?2
addto eax,3

Listing 4.4 Expanded addto Macro Calls

Xor
nop
inc
add
add

eax,eax

Using Macro Arguments

You can refer to parameters directly by name. Listing 4.5 shows the Setup macro, which
moves an integer into a register and branches to the label _Final_setup. Listing 4.6
shows a way to invoke the Setup macro., and Listing 4.7 shows how the assembler

expands the setup macro.

Listing 4.5 Setup Macro Definition

setup: .macro name
mov eax, name
call _final_setup
-endm

Listing 4.6 Calling Setup Macro

#define VECT=0
setup VECT

Listing 4.7 Expanding Setup Macro

move eax, VECT

Coldfire Assembler Reference

65

Using Macros
Defining Macros

call _final_setup

If you refer to named macro parameters in the macro body, you can precede or follow the
macro parameter with &&. This lets you embed the parameter in a string. For example,
Listing 4.8 shows the smal Inum macro, which creates a small float by appending the
string E-20 to the macro argument. Listing 4.9 shows a way to invoke the smal Inum
macro, and Listing 4.10 shows how the assembler expands the smal Inum macro.

Listing 4.8 Smallnum Macro Definition

smal Inum: .macro mantissa
-float mantissa&&E-20
.endm

Listing 4.9 Invoking Smallnum Macro

smallnum 10

Listing 4.10 Expanding Smallnum Macro

-float 10E-20

Macro syntax includes positional parameter references (this feature can provide
compatibility with other assemblers). For example, Listing 4.11 shows a macro with
positional references \1 and \2. Listing 4.12 shows an invocation of this macro, with
parameter values 10 and print. Listing 4.13 shows the macro expansion.

Listing 4.11 Doit Macro Definition

doit: .macro
mov eax,\1
call \2
.endm

Listing 4.12 Invoking Doit Macro

doit 10,print

Listing 4.13 Expanding Doit Macro

move eax,10

66 Coldfire Assembler Reference

Using Macros
Defining Macros

call print

Macro Repeat Directives

The assembler macro language includes the repeat directives - rept, - irp, and - irpc,
along with the . endr directive, which must end any of the other three.

.rept
Repeats the statements of the block the specified number of times; the - endr directive
must follow the statements.
.rept expression
statement-group
.endr

Parameters
expression

Any valid expression that evaluates to a positive integer.
statement-group

Any statements valid in assembly macros.

.irp
Repeats the statements of the block, each time substituting the next parameter value. The
-endr directive must follow the statements.
-irp name expl[,exp2[,exp3]---.]
statement-group
.endr

Parameters
name

Placeholder name for expression parameter values.

Coldfire Assembler Reference 67

Using Macros
Defining Macros

expl, exp2, exp3

Expression parameter values; the number of these expressions determines the

number of repetitions of the block statements.

statement-group

Any statements valid in assembly macros.

Example

Listing 4.14 specifies three repetitions of . byte, with successive name values 1,

2, and 3. Listing 4.15 shows this expansion.

Listing 4.14 .irp Directive Example

-irp databyte 1,2,3
-byte databyte
.endr

Listing 4.15 .irp Example Expansion

.byte 1
_byte 2
.byte 3

.irpc

Repeats the statements of the block as many times as there are characters in the string
parameter value. For each repetition, the next character of the string replaces the name

par ameter.

-irpc name,string
statement-group
-endr

Parameters
name

Placeholder name for string characters.

string

Any valid character string.

68

Coldfire Assembler Reference

Using Macros
Defining Macros

statement-group

Any statements valid in assembly macros.

Creating Unique Labels and Equates

Use the backslash and at characters \@) to have the assembler generate unique labels and
equates within a macro. Each time you invoke the macro, the assembler generates a unique

symbol of the form ??nnnn, such as 7?0001 or ??0002.

In your code, you refer to such unique labels and equates just as you do for regular labels
and equates. But each time you invoke the macro, the assembler replaces the \@ sequence

with a unique numeric string and increments the string value.

Listing 4.16 shows a macro that uses unique labels and equates. Listing 4.17 shows two
calls to the my_macro macro, with my_count initialized to 0. Listing 4.18 shows the

expanded my_macro code after the two calls.

Listing 4.16 Unique Label Macro Definition

my_macro: .macro
alpha\@ = my_count
my _count .set my count + 1
add ebx, alpha\@
Jjmp label\@
add eax, ebx
label\@:
nop
-endm

Listing 4.17 Invoking my_macro Macro

my _count .set O
my_macro
my_macro

Listing 4.18 Expanding my_macro Calls

alpha??0000 = my_count
my_count .set my_count + 1
add ebx, alpha??0000
Jmp label??0000
add eax, ebx
label??0000
nop
alpha??0001 = my_count

Coldfire Assembler Reference

69

Using Macros
Invoking Macros

my_count .set my_count + 1
add ebx, alpha??0001
Jmp label??0001
add eax, ebx
1abel??0001
nop

Number of Arguments

To refer to the number of non-null arguments passed to a macro, use the special symbol
narg. You can use this symbol during macro expansion.

Invoking Macros

To invoke a macro, use its name in your assembler listing, separating parameters with
commas. To pass a parameter that includes a comma, enclose the parameter in angle
brackets.

For example, Listing 4.19 shows macro pattern, which repeats a pattern of bytes
passed to it the number of times specified in the macro call. Listing 4.20 shows a statement
that calls pattern, passing a parameter that includes a comma. Listing 4.21 is another
example calling statement; the assembler generates the same code in response to the
calling statement of either Listing 4.20 or Listing 4.21.

Listing 4.19 Pattern Macro Definition

pattern: .macro times,bytes
.rept times
_byte bytes
.endr
.endm

Listing 4.20 Macro Argument with Commas

.data
halfgrey: pattern 4,<0xAA,0x55>

Listing 4.21 Alternate Byte-Pattern Method

halfgrey: .byte OxAA,0x55,0xAA,0x55,0xAA,0x55,0xAA,0x55

70 Coldfire Assembler Reference

Common Assembler
Settings

The Assembler target settings panel includes settings common to all the assemblers. This
chapter explains these settings.

Displaying Assembler Target Settings Panel

To modity the settings for an assembler:

1. From the main menu bar, select Edit > Project Settings. A dialog box appears.
2. Select the name of the assembler. Its settings panel appears.

Figure 5.1 shows the settings common to all the assemblers. For information on other

settings that pertain to your assembler, see the processor-specific chapter of this manual.

Figure 5.1 Common Assembler Settings

H =86 &ssembler

_ Source contral

[V Labels must end with "

¥ Directives begin with .

[T Case-sensitive identifiers
v &llow space in operand fisld
JE | oy GHLL evterisions

¥ Generate listing filz

Prefis file |asmp[eﬁ:-:.h

Coldfire Assembler Reference 71

Common Assembler Settings
Common Assembler Settings Descriptions

Common Assembler Settings Descriptions

Table 5.1 explains the common assembler settings.

Table 5.1 Common Assembler Settings

Element

Purpose

Comments

Labels must end
with : checkbox

Clear — Symbols that start in column 1 or
end with colons are labels.

Checked — All labels must end with
colons, but can start in any column.

Default: Checked.

Corresponds to the colon
keyword of the .option directive.
Clearing this checkbox makes
sense if you import existing code
that has symbols without colons.

Directives begin
with . checkbox

Clear — You may omit starting period
from directives.

Checked — Directives must start with
periods.

Default: Checked.

Corresponds to the period
keyword of the .option directive.

Case-sensitive
identifiers
checkbox

Clear — Symbols are not case sensitive.

Checked — Symbols are case sensitive.

Default: Checked.

Corresponds to the case keyword
of the _option directive.

Instructions, directives, and macro
names never are case sensitive.

Allow space in
operand field
checkbox

Clear — Space character in an operand
field starts a comment.

Checked — Spaces are allowed in
operand fields.

Default: Checked.

Corresponds to the space
parameter of the .option
directive.

Generate listing file
checkbox

Clear — Assembler does not create a
listing file.

Checked — Assembler creates a listing
file. The filename is that of the source file,
but with extension _ list.

Default: Clear.

A listing file is a text file useful for
comparing source and machine
code.

Prefix file text box

Tells the assembler to process the
specified file before processing each file
of your project.

Default: None.

Specifying a file is like putting the
same . include directive at the
start of each assembly file.

72

Coldfire Assembler Reference

ColdFire-Specific
Information

Almost all the information of earlier chapters pertains to ColdFire® target processors. The
few differences are:

1. Comments — Assembly Language Syntax explains these common ways to specify
comments:

¢ Characters //, starting in any column.
e Characters /* ... */, starting in any column.
¢ An asterisk (*), starting in the first column of the line.

¢ A space in an operand field, provided that you clear the Allow space in operand
field checkbox of the Assembler settings panel.

A ColdFire target processor gives you these additional ways to specify comments:
¢ In GNU mode: starting the comment with a vertical stroke (]) character.
¢ Not in GNU mode: starting the comment with a semicolon (;).

Such comments may begin in any column of a line.

2. Hexadecimal Notation — For ColdFire processors, the preferred hexadecimal
notation is $, as in $deadbeeT. This contrasts with Chapter 2, which explains that
the preferred notation for most processors is OX.

3. Sections — As Using Directives explains, not all target architectures support the
small-data assembler directives . Sbss, .sbss2, .sdat, .sdata0, or .sdata?2.
For the ColdFire architecture, the linker can be more restrictive than the assembler.
You may need to experiment to find out which of these directives are supported by
both your assembler and linker.

As with most assemblers, the ColdFire assembler generates ELF, not COFF, object
files.

4. Automatic Debugging — For automatic generation of debugging information, your
linker may require that instructions be in the . text section.

Coldfire Assembler Reference 73

ColdFire-Specific Information

74 Coldfire Assembler Reference

g |

Index

Symbols

#define preprocessor directive 22,23
#elif preprocessor directive 23, 24
#else preprocessor directive 24, 25
#endif preprocessor directive 25
#error preprocessor directive 25
#if preprocessor directive 25, 26
#ifdef preprocessor directive 26
#ifndef preprocessor directive 27
#include preprocessor directive 27
#line preprocessor directive 28
#pragma preprocessor directive 28
#undefine preprocessor directive 28
.align assembler directive 32

.ascii assembler directive 32, 33
.asciz assembler directive 33, 34
.bss assembler directive 34

.byte assembler directive 34

.data assembler directive 35
.debug assembler directive 35
.double assembler directive 35
.else assembler directive 36

.elseif assembler directive 36, 37
.endian assembler directive 37, 38
.endif assembler directive 38
.endm assembler directive 38

.equ assembler directive 38

.error assembler directive 39
.extern assembler directive 39, 40
file assembler directive 40

float assembler directive 41
function assembler directive 41
.global assembler directive 42

.if assembler directive 42,43

.ifc assembler directive 43

.ifdef assembler directive 43, 44
.ifeq assembler directive 44

.ifge assembler directive 44, 45
.ifgt assembler directive 45

.ifle assembler directive 45, 46
.iflt assembler directive 46

.ifnc assembler directive 46, 47

.ifndef assembler directive 47
.ifne assembler directive 47, 48
.include assembler directive 48
.irp assembler directive 67, 68
.rpc assembler directive 68, 69
line assembler directive 48, 49
long assembler directive 49
.macro assembler directive 49
.mexit assembler directive 50
.offset assembler directive 50
.option assembler directive 51, 52
.org assembler directiv 53

.org assembler directive 52
.pragma assembler directive 53
.previous assembler directive 54
.public assembler directive 54
.rept assembler directive 67
.rodata assembler directive 54
.sbss assembler directive 54
.sbss2 assembler directive 55
.sdata assembler directive 55
.sdata0 assembler directive 55
.sdata2 assembler directive 55
.section assembler directive 55-58
.set assembler directive 58
.short assembler directive 58
.size assembler directive 58
.space assembler directive 59
.text assembler directive 59
.textequ assembler directive 60
.type assembler directive 60

A

alignment, data 20

allow space in operand field checkbox 20

argument-number symbol 70

assembler control assembler directives 31

assembler directives 29-61
.align 32
.ascii 32,33
.asciz 33,34
.bss 34

Coldfire Assembler Reference

.byte 34 .sdata 55

.data 35 .sdata0 55

.debug 35 .sdata2 55

.double 35 .section 55-58

.else 36 .set 58

.elseif 36,37 .short 58

.endian 37, 38 .size 58

.endif 38 .space 59

.endm 38 .text 59

.equ 38 .textequ 60

.error 39 .type 60

.extern 39,40 =39

file 40 assembler control directives 31
float 41 compatibility conditional directives 30
function 41 conditional directives 29
.global 42 data declaration directives 31
if 42,43 debugging directives 32

.ifc 43 equal sign 39

.ifdef 43, 44 macro directives 29

.ifeq 44 macro repeat directives 67-69
.ifge 44,45 scope control directives 31
.ifgt 45 section control directives 30
.ifle 45,46 symbol definition directives 31
iflt 46 assembler settings, common 71
.ifnc 46, 47 assembly language

.ifndef 47 statement syntax 10

.ifne 47,48 statements 9, 10

.include 48 syntax 9-20

.irp 67, 68 automatic debugging symbols 73
.irpc 68, 69

line 48,49 C

Jong 49 case-sensitive identifiers 15
-macro 49 character constants 16, 17

-mexit 50 coldfire-specific information 73
.offset 50 comment format 73

.option 51, 52 comments 19, 20

org 52,53 common assembler settings 71
.pragma 53 compatibility conditional assembler directives 30
previous 54 conditional assembler directives 29
-public 54 constants 15-17

xept 67 character 16, 17

Todata 54 floating point 16

sbss 54 floating-point 16

.sbss2 55 integer 15, 16

Coldfire Assembler Reference

D

data alignment 20
data declaration assembler directives 31
debugging assembler directives 32
debugging information, providing 61
defining macros 63-70
directives

assembler 29-61

preprocessor 22-29

using 21-61
directives begin with ’.” checkbox 72
E
equal sign assembler directive 39
equates 13

equates, creating unique 69, 70
expressions 17-19

F

floating-point constants 16
format, comment 73

G

generate listing file checkbox 72

H

hexadecimal notation 73

identifiers, case-sensitive 15
integer constants 15, 16
introduction 7

L
labels 11-13
creating unique 69, 70
labels must end with *:” checkbox 11
local 12
non-local 11
relocatable 13
local labels 12

M

macro assembler directives 29
macros
arguments 65-67
defining 63-70
invoking 70
repeat directives 67-69
unique labels, equates 69, 70
using 63-70

N

narg symbol 70

native assembler directives 29-61
non-local labels 11

notation, hexadecimal 73

P
prefix file field 72
preprocessor directives 22-29
#define 22,23
#elif 23,24
#else 24,25
#endif 25
#error 25
#if 25,26
#ifdef 26
#ifndef 27
#include 27
#line 28
#pragma 28
#undefine 28
providing debugging information 61

R

release note location 7
relocatable labels 13

S

scope control assembler directives 31
section control assembler directives 30
sections 73

settings, common assembler 71
statements, assembly language 9, 10

Coldfire Assembler Reference

symbol definition assembler directives 31
symbols 11-13

case-sensitive identifiers 15

equates 13

labels 11-13

number of arguments 70
syntax

assembly language 9-20

assembly language statement 10

U

using directives 21-61
using macros 63-70

78 Coldfire Assembler Reference

	Introduction
	Release Notes
	In This Book
	Where to Learn More

	Assembly Language Syntax
	Assembly Language Statements
	Statement Syntax
	Symbols

	Using Directives
	Preprocessor Directives
	Native Assembler Directives
	Providing Debugging Information

	Using Macros
	Defining Macros
	Invoking Macros

	Common Assembler Settings
	Displaying Assembler Target Settings Panel
	Common Assembler Settings Descriptions

	ColdFire-Specific Information
	Index

