
DRM002/D

M
6

8
H

C
0

8
M

6

0
8

M
6

8
H

C
0

8
M

8
H

C
0

8
M

6
8

H
C

USB08 Universal Serial Bus
Evaluation Board
Using the MC68HC908JB8

Designer Reference Manual

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

blank

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

USB08 Universal Serial Bus
Evaluation Board
Using the MC68HC908JB8

By: Dipl.-Ing. Oliver Thamm
MCT Elektronikladen GbR
Hohe Str. 9-13
04107 Leipzig
Germany

Telephone: +49 (0)341 2118354
Fax: +49 (0)341 2118355
Email: mct@elektronikladen.de
Web: http://www.elektronikladen.de/mct

Motorola and are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc. © Motorola, Inc., 2001
USB08 Evaluation Board Designer Reference Manual

MOTOROLA 3
For More Information On This Product,

 Go to: www.freescale.com

http://www.elektronikladen.de/mct

Designer Reference Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. "Typical" parameters which may be provided in Motorola data sheets and/or
specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals" must be validated for
each customer application by customer’s technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Designer Reference Manual USB08 Evaluation Board

4 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

List of Sections

Section 1. USB08 Quick Start .17

Section 2. Hardware Description27

Section 3. Software Module Descriptions.43

Section 4. Universal Serial Bus (USB) Interface 59

Appendix A. Supported Standard
Device Requests .81

Appendix B. USB08 Descriptors83

Appendix C. Source Code Files.89

Appendix D. Bill of Materials and Schematic 127

Appendix E. Universal USB Device
Driver (USBIO). .131
USB08 Evaluation Board Designer Reference Manual

MOTOROLA List of Sections 5
For More Information On This Product,

 Go to: www.freescale.com

List of Sections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Designer Reference Manual USB08 Evaluation Board

6 List of Sections MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Table of Contents

Section 1. USB08 Quick Start

1.1 Contents .17

1.2 Introduction .17

1.3 Required System Configuration .17

1.4 Connecting the Demo Board to the PC 18

1.5 Driver Installation .19

1.6 Starting the Windows Demo Application.24

Section 2. Hardware Description

2.1 Contents .27

2.2 Introduction .27

2.3 Technical Data .28
2.3.1 MC68HC908JB8 Microcontroller .28
2.3.2 USB08 Evaluation Board .29

2.4 Circuit Description. .30
2.4.1 MCU Core Circuit and USB Interface.31
2.4.2 Input/Output Functions .32
2.4.3 Monitor Mode Interface .33
2.4.4 User RS232 Port .35
2.4.5 Power Supply .36

2.5 Board Layout .36

2.6 Jumpers and Bridges .38
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Table of Contents 7
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.7 Connectors .40
2.7.1 Expansion Connector X1 .40
2.7.2 Monitor Mode Connector X2 .40
2.7.3 User RS232 Connector X3. .41

2.8 Memory Map. .41

Section 3. Software Module Descriptions

3.1 Contents .43

3.2 Introduction .43

3.3 General Structure of the M68HC08 Firmware 44

3.4 How to Build the Compiler Project .45

3.5 Main Module U08MAIN.C .48

3.6 Interrupt and Reset Vector Module VECJB8.C.49

3.7 C Startup Module CRTSJB8.S .50

3.8 Push Button Module U08KEY.C .50

3.9 LED Control with U08LED.H. .52

3.10 Software ADC Module U08ADC.C .52

3.11 RS232 Communication Module U08232.C.54

3.12 USB Communication Module U08USB.C56

3.13 Compiler Specific Adjustments .57

Section 4. Universal Serial Bus (USB) Interface

4.1 Contents .59

4.2 Introduction .59

4.3 Characteristics of the USB08 Reference Design60

4.4 USB Basics. .62
Designer Reference Manual USB08 Evaluation Board

8 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5 USB Implementation in the Reference Design65
4.5.1 Activation of the USB Module. .65
4.5.2 Endpoint Configuration. .65
4.5.3 USB Reset .67

4.6 Device Management with Endpoint 0 .69
4.6.1 Enumeration .69
4.6.2 Assignment of the Device Address 69
4.6.3 Requesting Descriptors .72
4.6.4 Device Configuration .74
4.6.5 STALL Condition .74

4.7 Data Communication via Endpoints EP1 and EP275
4.7.1 Receiving Data .76
4.7.2 Transmission of Data .76

4.8 Host Interaction: Vendor ID and Product ID78

4.9 Windows Device Driver. .78

Appendix A. Supported Standard Device Requests

Supported Standard Device Requests81

Appendix B. USB08 Descriptors

B.1 Contents .83

B.2 Introduction .83

B.3 Device Descriptor .84

B.4 Configuration Descriptor .84

B.5 Interface Descriptor .85

B.6 Endpoint 1 Descriptor .85

B.7 Endpoint 2 Descriptor .85

B.8 String Descriptors .86
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Table of Contents 9
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix C. Source Code Files

C.1 Contents .89
HC908JB8.H .90
U08USB.H .93
U08232.H .96
U08LED.H .96
U08MAIN.C .97
U08DESC.C .100
U08USB.C .104
U08232.C .113
U08KEY.C .116
U08ADC.C .117
VECJB8.C .119
CRTSJB8.S .120
USB08.LKF .121
BUILD.BAT .121
USB08.MAP .122
USB08.S19 .125

Appendix D. Bill of Materials and Schematic

Bill of Materials and Schematic. .127

Appendix E. Universal USB Device Driver (USBIO)

E.1 Contents .132

E.2 Introduction .135

E.3 Overview. .135
E.3.1 Platforms .136
E.3.2 Features .136

E.4 Architecture. .138
E.4.1 USBIO Object Model .140
E.4.1.1 USBIO Device Objects. .140
E.4.1.2 USBIO Pipe Objects .142
E.4.2 Establishing a Connection to the Device144
E.4.3 Power Management .146
Designer Reference Manual USB08 Evaluation Board

10 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.4.4 Device State Change Notifications.148

E.5 Programming Interface .149
E.5.1 Programming Interface Overview.149
E.5.2 Control Requests .150
E.5.3 Data Transfer Requests .182
E.5.3.1 Bulk and Interrupt Transfers .182
E.5.3.2 Isochronous Transfers .184
E.5.4 Input and Output Structures .185
E.5.5 Enumeration Types .214
E.5.6 Error Codes .218

E.6 USBIO Class Library. .220
E.6.1 CUsbIo Class .220
E.6.2 CUsbIoPipe Class .221
E.6.3 CUsbIoThread Class .222
E.6.4 CUsbIoReaderClass. .222
E.6.5 CUsbIoWriter Class .222
E.6.6 CUsbIoBufClass .223
E.6.7 CUsbIoBufPool Class. .223

E.7 USBIO Demo Application .223
E.7.1 Dialog Pages for Device Operations 224
E.7.1.1 Device .224
E.7.1.2 Descriptors .224
E.7.1.3 Configuration .225
E.7.1.4 Interface .225
E.7.1.5 Pipes .225
E.7.1.6 Class or Vendor Request .226
E.7.1.7 Feature. .226
E.7.1.8 Other .226
E.7.1.9 Dialog Pages for Pipe Operations227
E.7.1.10 Pipe .227
E.7.1.11 Buffers .227
E.7.1.12 Control .228
E.7.1.13 Read from Pipe to Output Window 228
E.7.1.14 Read from Pipe to File .228
E.7.1.15 Write from File to Pipe .229
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Table of Contents 11
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.8 Installation Issues .229
E.8.1 Automated Installation: The USBIO Installation Wizard . . .229
E.8.2 Manual Installation: The USBIO Setup Information File. . .232
E.8.3 Uninstalling USBIO. .236
E.8.4 Building a Customized Driver Setup.237

E.9 Registry Entries .239

E.10 Related Documents .241

E.11 Light Version Limitations. .241
Designer Reference Manual USB08 Evaluation Board

12 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

List of Figures

Figure Title Page

1-1 Demo Board Connected to the USB Hub18
1-2 Found New Hardware Screen .19
1-3 Found New Hardware Wizard Start Screen20
1-4 Locate Driver Files Screen .21
1-5 Driver Files Search Results Screen .22
1-6 Found New Hardware Wizard Finish Screen23
1-7 Windows Demo Application IO08USB24
1-8 Driver Entry for USB08 in the Device Manager Window 25

2-1 USB08 Evaluation Board .30
2-2 PCB Component Side Layout Plan. .37
2-3 Detailed Layout Plan. .37
2-4 Solder Bridge Placement on Downside of the PCB39

3-1 Structure and Dependencies of the Firmware Files45
3-2 Measurement of Resistor Values Using a Digital Input 52

4-1 USB Address Register (UADDR) .65
4-2 USB Control Register 3 (UCR3) .66
4-3 USB Interrupt Register 0 (UIR0) .68
4-4 USB Control Register 0 (UCR0) .68
4-5 USB Interrupt Register 1 (UIR1) .69
4-6 USB Status Register 0 (USR0). .70
4-7 USB Control Register 0 (UCR0) .71
4-8 USB Address Register (UADDR) .72
4-9 USB Interrupt Register 1 (UIR1) .75
4-10 USB Status Register 1 (USR1). .76
4-11 USB Control Register 1 (UCR1) .77
USB08 Evaluation Board Designer Reference Manual

MOTOROLA List of Figures 13
For More Information On This Product,

 Go to: www.freescale.com

List of Figures

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure Title Page

D-1 USB08 Evaluation Board Schematic 129

E-1 USB Driver Stack .138
E-2 USBIO Device and Pipe Objects Example143
E-3 Layout of an Isochronous Transfer Buffer 183
E-4 USBIO Class Library. .220
Designer Reference Manual USB08 Evaluation Board

14 List of Figures MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

List of Tables

Table Title Page

2-1 Port A Monitor Mode Entry Levels .33
2-2 Monitor Mode Cable Pin Configuration.34
2-3 Jumper Configuration .38
2-4 Solder Bridges Configuration .39
2-5 MC68HC908JB8 Memory Map. .41

3-1 Memory Utilization .47

4-1 Low-Speed USB Packet Types .62
4-2 MC68HC908JB8 Endpoint Configuration66

D-1 Bill of Materials for USB08 V 1.01 .128

E-1 I/O Operations Supported by the USBIO Device Driver149
E-2 Error Codes Defined by the USBIO Device Driver218
E-3 Registry Parameters Supported by the USBIO Driver239
USB08 Evaluation Board Designer Reference Manual

MOTOROLA List of Tables 15
For More Information On This Product,

 Go to: www.freescale.com

List of Tables

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Designer Reference Manual USB08 Evaluation Board

16 List of Tables MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Section 1. USB08 Quick Start

1.1 Contents

1.2 Introduction .17

1.3 Required System Configuration .17

1.4 Connecting the Demo Board to the PC 18

1.5 Driver Installation .19

1.6 Starting the Windows Demo Application.24

1.2 Introduction

This section describes the connection and startup of the USB08
(universal serial bus) evaluation board demo application. The main
component of the USB08 is the Motorola MC68HC908JB8 8-bit
microcontroller (MCU).

1.3 Required System Configuration

To connect the USB08, you will need a personal computer (PC) with one

of the following Microsoft® operating systems:

• Windows® 98

• Windows ME

• Windows 2000 Professional

NOTE: Ensure that the PC has the necessary hardware (universal serial bus
(USB) host controller and USB root hub) and that the necessary system
drivers are installed.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Quick Start 17
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.4 Connecting the Demo Board to the PC

Since low-speed USB devices should be equipped with a captive
connection, the USB cable is fixed on the USB08 board (downstream
direction). In the upstream direction (PC/host side), the USB
connections are always type A. Therefore, the cable of the USB08 demo
board has a type A plug.

The connection of the demo board is made directly to the USB socket of
the PC or, as shown in the Figure 1-1, to a USB hub.

Figure 1-1. Demo Board Connected to the USB Hub

The board supply current can be delivered by the USB connection.
Therefore, the jumper JP2, which is directly beside the USB cable, has
to be in the position Bus Powered. The jumper JP1-A (jumper block,
highest position) must be opened, which corresponds to the default
shipping configuration.
Designer Reference Manual USB08 Evaluation Board

18 USB08 Quick Start MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start
Driver Installation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.5 Driver Installation

For this example, the installation of the driver software is described using
the Windows 2000 operating system. The installation using Windows 98
(second edition) looks quite similar.

After the electrical connection of the demo board, the Windows
operating system recognizes the presence of a new hardware
component and shows the message Found New Hardware.

Figure 1-2. Found New Hardware Screen
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Quick Start 19
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The hardware assistant, Figure 1-3, now tries to find the suitable driver
information for the USB08 evaluation board. Click the Next button.

NOTE: The installation using the Windows 2000 operating system requires
administrator rights.

Figure 1-3. Found New Hardware Wizard Start Screen
Designer Reference Manual USB08 Evaluation Board

20 USB08 Quick Start MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start
Driver Installation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Insert the USB08 product CD into the CD-ROM drive and mark the
appropriate check box CD-ROM drives as shown in Figure 1-4. Click
the Next button.

Figure 1-4. Locate Driver Files Screen
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Quick Start 21
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As shown in Figure 1-5, the hardware assistant will find the driver
information file usbio_el.inf in the root directory of the CD ROM. Confirm
this selection by clicking Next.

Figure 1-5. Driver Files Search Results Screen
Designer Reference Manual USB08 Evaluation Board

22 USB08 Quick Start MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start
Driver Installation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Windows operating system now copies the INF file and the driver file
usbio_el.sys to the appropriate Windows directories. After clicking
Finish (Figure 1-6), the driver installation will be completed and the
USB device will be ready for use.

Figure 1-6. Found New Hardware Wizard Finish Screen

NOTE: The installation does not require a restart of the computer, since this is
a true Plug & Play installation.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Quick Start 23
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.6 Starting the Windows Demo Application

The windows demo application:

• Shows the measured values and push button information coming
from the demo board

• Allows the controlling of the demo board light-emitting diodes
(LED)

The demo application is located in the root directory of the USB08
product CD. The file name of the demo application is IO08USB.EXE.
This program can be started directly from the CD.

Figure 1-7. Windows Demo Application IO08USB

As shown in Figure 1-7, the bottom line of the application window shows
the status of the connection established to the USB08 demo board. The
LED symbols on the left upper side of the application window can be
switched on or off by pressing the keys of the USB08 demo board.
Designer Reference Manual USB08 Evaluation Board

24 USB08 Quick Start MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start
Starting the Windows Demo Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

By setting the check boxes on the upper right side it is possible to switch
on or off the LEDs of the demo board. The needle pointer instruments on
the lower side of the application window indicate the measured values of
the three variable resistors:

• Input 1 represents the photo sensor.

• Input 2 shows the thermistor value.

• Input 3 can be varied using the turnable regulator.

The USB08 evaluation board can be disconnected from the USB port
and reconnected at any time, because the drivers are automatically
activated or deactivated by the Windows operating system. The
activation/deactivation of the drivers can be watched in the operating
system’s device manager window (start button/settings/control panel/
system/device manager). The catalog entry USBIO controlled devices
and the device entry USB08 Evaluation Board are visible only if the
hardware is present. See Figure 1-8.

Figure 1-8. Driver Entry for USB08 in the Device Manager Window
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Quick Start 25
For More Information On This Product,

 Go to: www.freescale.com

USB08 Quick Start

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Windows demo application, IO08USB.EXE, must be re-started in
the case of a hardware connection interrupt. This is because an
automatic resynchronization (though it would be possible) was not
implemented here. The demo application is arranged as simply and as
understandable as possible.
Designer Reference Manual USB08 Evaluation Board

26 USB08 Quick Start MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Section 2. Hardware Description

2.1 Contents

2.2 Introduction .27

2.3 Technical Data .28
2.3.1 MC68HC908JB8 Microcontroller .28
2.3.2 USB08 Evaluation Board .29

2.4 Circuit Description. .30
2.4.1 MCU Core Circuit and USB Interface.31
2.4.2 Input/Output Functions .32
2.4.3 Monitor Mode Interface .33
2.4.4 User RS232 Port .35
2.4.5 Power Supply .36

2.5 Board Layout .36

2.6 Jumpers and Bridges .38

2.7 Connectors .40
2.7.1 Expansion Connector X1 .40
2.7.2 Monitor Mode Connector X2 .40
2.7.3 User RS232 Connector X3. .41

2.8 Memory Map. .41

2.2 Introduction

The USB08 evaluation board is the hardware platform for the universal
serial bus (USB) reference design. The board serves the provided demo
application, which is contained in the integrated FLASH memory of the
M68HC08 microcontroller (MCU).
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 27
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Beyond that, the USB08 enables the implementation and testing of its
own M68HC08 software for evaluation purposes. For that purpose, the
board contains a monitor mode interface for reprogramming and
debugging. The monitor mode interface of the USB08 is compatible with
Motorola development tools such as the M68ICS08JB8 and other
third-party tools.

2.3 Technical Data

This subsection provides technical data for both the MC68HC908JB8
and the USB08 evaluation board.

2.3.1 MC68HC908JB8 Microcontroller

The main component of the USB08 evaluation board is the
MC68HC908JB8, a Motorola 8-bit MCU. Features of the
MC68HC908JB8 include:

• Efficient M68HC08 MCU core

• 8 Kbytes of on-chip FLASH memory with security feature

• 256 bytes of random-access memory (RAM)

• 3-MHz bus clock (6-MHz quartz crystal)

• 2 × 16-bit timer with:

– Input capture

– Output compare

– Pulse-width modulator (PWM)

• Low-speed USB 1.1 interface module

• Integrated 3-V voltage regulator

• Computer operating properly (COP) watchdog timer

• Low-voltage interrupt (LVI) reset controller

• Inputs for RESET and IRQ pins

• Up to 21 input/output (I/O) lines
Designer Reference Manual USB08 Evaluation Board

28 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description
Technical Data

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.3.2 USB08 Evaluation Board

Features of the USB08 evaluation board include:

• M68HC908JB8 MCU packaged in a 28-pin small-outline
integrated circuit package (SOIC)

• Three light-emitting diodes (LED)

• Three input keys

• Three analog sensors:

– Light

– Temperature

– Angle of rotation

• Current supplied alternatively via USB connection or on-board
voltage regulator

• Monitor mode interface for in-system programming and debugging

• Additional RS232 interface for connection to PC or serial liquid
crystal display (LCD)

• Push buttons for reset and IRQ

• Jumper for power-on reset (POR)

• All MCU pins are accessible via a 26-pin universal expansion
connector

• Small user breadboard area reserved for customer circuit
extensions

The USB08 evaluation board is shown in Figure 2-1.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 29
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-1. USB08 Evaluation Board

2.4 Circuit Description

A schematic of the USB08 demo board is provided in Appendix D. Bill
of Materials and Schematic. The MC68HC908JB8 MCU needs few
external elements. A wide range of peripheral functions including the
USB module and an 8-Kbyte FLASH memory are integrated on-chip.
The MC68HC908JB8 is offered in several packages. For the USB08
reference design, the 28-pin SOIC version was chosen instead of the
20-pin dual in-line package (DIP) because the SOIC package has some
additional I/O pins.
Designer Reference Manual USB08 Evaluation Board

30 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description
Circuit Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.4.1 MCU Core Circuit and USB Interface

The operating voltage, VDD, is supported by the capacitors C6 and C3
close to the MCU. Out of this primary operating voltage of approximately
5 V, the MCU produces an internal operating voltage, VREG, of 3.3 V,
using an integrated voltage regulator. This voltage is supported by two
capacitors, C4 and C5, and continues in the circuit as VCC.

In particular, the internal voltage VCC/VREG is used as the USB interface
driver voltage supply. VCC/VREG is accessible over the expansion plug
connector X1. However, it must be noted that VCC/VREG can be
additionally loaded only with a few milliamps.

For clock generation, the external elements Q1, C1, C2, and R18 are
used. These elements form a Pierce oscillator together with the active
elements integrated in the MCU. This oscillator produces a clock
frequency of 6 MHz. The internal bus clock of the MCU (3 MHz) as well
as the USB clock (1.5 MHz) are derived from the main clock frequency.

The USB data lines are connected to the MCU pins PTE3 (USB D+) and
PTE4 (USB D–). So that the USB hub will be able to classify this
equipment as a low-speed USB device, a pullup resistance of 1.5 kΩ
(R7) to the data line D– is required.

On the demo board, R7 is not installed. This is because the
MC67HC908JB8 has an additional internal pullup at PTE4 which can be
activated and de-activated by software.

To optimize the connection adjustment, the serial resistors in the data
lines R16 and R17 and inductances (ferrite beads) in the current supply
path L1 and L2 are used. However, these measures are optional.

The reset system of the M68HC08 shows clear differences from other
Motorola MCUs (M68HC11 and M68HC12). For example, the capacitor
C19 at the reset pin of this circuit could never be used in an M68HC11
system. This is because the MC68HC908JB8 has an integrated
low-voltage inhibit (LVI) circuit. Therefore, no external reset controller is
required.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 31
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.4.2 Input/Output Functions

For demonstration purposes, the board has:

• Three push buttons

• Three light-emitting diodes (LED)

• Sensor resistors

The push buttons are connected to the three port pins PTA4, PTA5, and
PTA6. By pushing the buttons, a low level is produced on the appropriate
input. Since the port pins have internal pullup resistors, no external
resistors are required. The buttons are bridged with capacitors, to
support correct reading of the inputs by the software and to avoid noise.
The occurrence of the high-low edge at the respective pin of port A is an
input event which results in the generation of a keyboard interrupt by the
MC68HC08JB8. This interrupt is then used by the program (see
Section 3. Software Module Descriptions).

For optical signalling, three LEDs are attached to port D. These port pins
have a high drive capability of up to 25 mA. Therefore, it is not necessary
to use a driver. On the board, PTD0, PTD1, and PTD2 are used for LED
control. All outputs generated by the port D pins have an open-drain
characteristic and are 5-V tolerant.

The remaining port D pins (PTD3–PTD6) are used for controlling the
software analog-to-digital converter (ADC). The ADC implementation is
described in detail in Section 3. Software Module Descriptions as well
as in the application note entitled Simple A/D for MCUs without Built-in
A/D Converters, Motorola document order number AN477/D. This
application note can be found on the World Wide Web at:

http://www.motorola.com/semiconductors/

The software ADC senses the resistance of:

• R1 (photo resistor)

• R2 (thermistor)

• R3 (potentiometer)

To determine capacitor load times, the MCU pins PTE0–PTE2 serve as
trigger inputs for the software ADC.
Designer Reference Manual USB08 Evaluation Board

32 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

http://www.motorola.com/semiconductors/

Hardware Description
Circuit Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The I/O pins of the MCU are accessible on the expansion connector X1.
User specific peripheral circuits can be attached to X1.

NOTE: It may be that not all functions of the demo board may be used with
user-specific peripheral circuits attached to X1.

2.4.3 Monitor Mode Interface

For FLASH programming and software debugging, the MC68HC908JB8
uses a special operating mode, monitor mode. The difference between
monitor mode and normal user mode is that firmware out of the read-only
memory (ROM) is executed instead of the user program. First, this
firmware examines a set of I/O pins and specifies the concrete operating
parameters. Finally, this firmware establishes an asynchronous serial
interface function on the port pin PTA0. This interface works
bidirectionally (half duplex) and corresponds to the usual RS232
conventions. The baud rate equals 9600 baud. An additional
requirement, besides the quartz clock (6 MHz), is the allocation of
certain logic levels to some port pins as listed in Table 2-1.

The monitor mode circuitry on the evaluation board produces the levels
shown in Table 2-1 using four pullup or pulldown resistors. These
resistors are connected to the MCU using the jumpers JP1-C–JP1-F.
After removing these jumpers, a previously loaded user program can
access the four port A pins without restrictions.

Apart from the above requirements, to enter monitor mode it is
necessary to apply a voltage of approximately 7–10 V to the IRQ pin of
the MCU. This voltage is generated by the RS232 transceiver’s (IC2)
charge pump and limited to 8.2 V using the breakdown diode D7. JP1-A

Table 2-1. Port A Monitor Mode Entry Levels

Port Pin Level

PTA0 High

PTA1 High

PTA2 Low

PTA3 High
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 33
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

is the first jumper of the jumper block JP1, and it must be set in order to
apply high voltage to IRQ.

If the monitor mode interface is not needed or if it disturbs the
investigation of certain circuit configurations, it can be uncoupled
completely from the MCU core. For this purpose:

• All jumpers of jumper block JP1 have to be removed.

• RS232 receiver IC2 has to be removed from the socket.

Using the X2 plug connector, the monitor mode interface is connected to
the PC. The monitor mode cable consists of:

• A flat cable with a Berg connector (2 × 5 pin, crimping connection)
on the device side

• A sub-D9 connector (crimping connection) on the PC side

A one-to-one connection is implemented by this cable configuration, as
shown in Table 2-2.

The MC68HC908JB8 logic levels are based on the operating voltage
VCC (3.3 V); however, the transceiver IC2 works with VDD (5 V). The
adjustment of the logic levels according to specification is not difficult
(refer to the individual integrated circuit data sheets). The Schottky
diode, D6, enables the push/pull exit R1OUT to be wired-OR capable
and prevents a feeding of levels beyond the tolerance limit of the input
PTA0.

Table 2-2. Monitor Mode Cable Pin Configuration

X2 Pin USB08 Monitor PC RS232 Sub-D 9 Pin

3 T1OUT RxD 2

5 R1IN TxD 3

9 GND GND 5
Designer Reference Manual USB08 Evaluation Board

34 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description
Circuit Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.4.4 User RS232 Port

The monitor mode interface uses only one sending/receiving channel of
the RS232 transceiver IC2. The remaining channel is used for an
additional user RS232 port.

In contrast to the RS232 channel for the monitor mode interface, the user
RS232 port incorporates separate sending and receiving lines. The
PTA7 pin of the MCU is used for receiving and the PTC0 pin is used for
sending.

NOTE: The MC68HC908JB8 does not have a serial communications interface
(SCI) hardware module for asynchronous serial communication.
Therefore, the necessary timing has to be generated by software.

If PTA7 and/or PTC0 are to be used, the diode D5 serves for the
adjustment of the logic levels between 5 V and 3 V. Otherwise, the
RS232 transceiver can be uncoupled from the MCU by removing the
jumpers JP1-G and JP1-H.

X3 is the user RS232 port plug connector. If this interface is attached to
a PC, a line connection similar to the monitor mode interface is
necessary. In this case, the bridges BR1 and BR2 on the downside of
the printed circuit board (PCB) (see Figure 2-3) have to be connected in
positions 1 and 2. For this configuration, the PC works as a host and the
USB08 board represents the device side.

The reverse case happens, if a serial liquid crystal display (LCD) is to be
operated at the user RS232 port. In this configuration, the USB08 board
is the host and the LCD module represents the device side. The
necessary RxD/TxD crossing is done by configuration of the bridges
BR1 and BR2 in positions 2 and 3. At the same time, the serial LCD can
be supplied with operating voltage by closing the bridge BR3.

NOTE: This specification deviates from standard RS232 mapping.

Serial alphanumeric LCDs are offered by several vendors. In the test
configuration, the LCDs used are from the Canadian manufacturer
Matrix Orbital (http://www.matrixorbital.com).
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 35
For More Information On This Product,

 Go to: www.freescale.com

http://www.matrixorbital.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.4.5 Power Supply

Power can be supplied to the USB08 board by using the USB or via the
voltage regulator IC3. The change between these options is done by
replacing the jumper JP2. If the jumper is placed in position 2–3 (Bus
Powered), the operating power is supplied by VBus and VGND from the

USB.

If a dc voltage between 8 V and 20 V is fed into the power plug X4 in
jumper position 1–2 (Self Powered), the voltage regulator IC3 supplies
5 V in the case. The solder bridge BR4 on the downside of the PCB (see
Figure 2-3) has to be in position 1–2. Alternatively, if the bridge BR4 is
in position 2–3, a stabilized 5-V power supply can be used to feed VDD
directly.

The voltage regulator IC3 is specified with 1 ampere. Although no
special cooling measures are intended, IC3 is more than sufficiently
dimensioned. The input current of the board, even in the worst case, is
clearly smaller than 100 mA.

A USB hub supplies at least 100 mA. Therefore, the power supply of the
board via the USB is possible without any problem. The USB08 board
power input specification should be registered in the device descriptor of
the USB device (see Section 4. Universal Serial Bus (USB) Interface).

2.5 Board Layout

Figure 2-2 and Figure 2-3 show the components and parts layout, as
well as a general picture of the board.

On the component side, Figure 2-2:

• The jumpers, plugs, push buttons, and LEDs are marked.

• The USB cable is fixed on the board with a cable strap, and the
four line ends are soldered directly to the X5 connection points
(without patch cord). This kind of connection is usual for
low-speed USB devices.

A detailed layout plan of the USB08 board with the names of all
components is shown in Figure 2-3.
Designer Reference Manual USB08 Evaluation Board

36 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description
Board Layout

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-2. PCB Component Side Layout Plan

Figure 2-3. Detailed Layout Plan
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 37
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.6 Jumpers and Bridges

The jumper configuration is shown in Table 2-3.

Placement of the solder bridges on the downside of the PCB is shown in
Figure 2-4. Table 2-4 shows the solder bridges configuration.

Table 2-3. Jumper Configuration

Jumper Position(a)

a. * = delivery status

Function

JP1-A
Open* Normal user mode

Closed High voltage on IRQ to enter monitor mode

JP1-B
Open RS232 is disconnected from the power supply.

Closed* RS232 is connected to the power supply.

JP1-C
Open PTA0 can be used without restriction.

Closed* PTA0 is used for monitor mode communication.

JP1-D
Open PTA1 can be used without restriction.

Closed* PTA1 is used for monitor mode configuration.

JP1-E
Open PTA2 can be used without restriction.

Closed* PTA2 is used for monitor mode configuration.

JP1-F
Open PTA3 can be used without restriction.

Closed* PTA3 is used for monitor mode configuration.

JP1-G
Open PTA7 can be used without restriction.

Closed* PTA7 serves as receiving line for the user RS232.

JP1-H
Open PTC0 can be used without restriction.

Closed* PTC0 serves as transmission line for the user RS232.

JP2
1-2 Self-powered: power supply via voltage regulator

2-3* Bus-powered: power supply via USB
Designer Reference Manual USB08 Evaluation Board

38 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description
Jumpers and Bridges

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-4. Solder Bridge Placement
on Downside of the PCB

Table 2-4. Solder Bridges Configuration

Solder
Bridge Position(1)

1. * = delivery status

Function

BR1
and BR2

1-2* User RS232 configured in external device mode (PC)

2-3 User RS232 configured in host mode (LCD connection)

BR3
Open* VCC is not present at user RS232 port (standard).

Closed VCC is present at pin 9 of the user RS232.

BR4
1-2* Power supply via voltage regulator, 8–20 V needed at X4

2-3 Power supply directly from X4, must be stabilized at 5 V
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 39
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.7 Connectors

The connectors are described here.

2.7.1 Expansion Connector X1

2.7.2 Monitor Mode Connector X2

VDD 1 2 VCC

RTS 3 4 PTA0

PTD0 5 6 PTA1

PTD1 7 8 PTA2

PTD2 9 10 PTA3

PTD3 11 12 PTA4

PTD4 13 14 PTA5

PTD5 15 16 PTA6

PTD6 17 18 PTA7

PTE3 19 20 PTE0

PTE4 21 22 PTE1

PTC0 23 24 PTE2

GND 25 26 GND

X1

N.C. 1 2 N.C.

PC_RxD 3 4 N.C.

PC_TxD 5 6 N.C.

N.C. 7 8 N.C.

GND 9 10 N.C.

X2
Designer Reference Manual USB08 Evaluation Board

40 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description
Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.7.3 User RS232 Connector X3

2.8 Memory Map

For a detailed description of the MC68HC908JB8 memory map, in
particular the addresses of control registers and interrupt vectors, refer
to the MC68HC908JB8 Technical Data, Motorola document order
number MC68HC908JB8/D.

N.C. 1 2 N.C.

Rx (Tx) 3 4 N.C.

Tx (Rx) 5 6 N.C.

N.C. 7 8 VDD

GND 9 10 N.C.

X3

Table 2-5. MC68HC908JB8 Memory Map

From To Size Content

0x0000 0x003F 64 bytes Control registers

0x0040 0x013F 256 bytes RAM

0x0140 0xDBFF — Reserved

0xDC00 0xFBFF 8 Kbytes FLASH memory

0xFC00 0xFFDF — Reserved

0xFFE0 0xFFFF 32 bytes Interrupt vector table (FLASH)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Hardware Description 41
For More Information On This Product,

 Go to: www.freescale.com

Hardware Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Designer Reference Manual USB08 Evaluation Board

42 Hardware Description MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Section 3. Software Module Descriptions

3.1 Contents

3.2 Introduction .43

3.3 General Structure of the M68HC08 Firmware 44

3.4 How to Build the Compiler Project .45

3.5 Main Module U08MAIN.C .48

3.6 Interrupt and Reset Vector Module VECJB8.C.49

3.7 C Startup Module CRTSJB8.S .50

3.8 Push Button Module U08KEY.C .50

3.9 LED Control with U08LED.H. .52

3.10 Software ADC Module U08ADC.C .52

3.11 RS232 Communication Module U08232.C.54

3.12 USB Communication Module U08USB.C56

3.13 Compiler Specific Adjustments .57

3.2 Introduction

This section describes the structure and interaction of the software
modules. These software modules, running on the Motorola
microcontroller MC68HC908JB8, form the firmware of the USB08
reference design.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 43
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3 General Structure of the M68HC08 Firmware

The firmware of the M68HC08 consists of several source code modules
which are embedded into a common compiler project. The main()
function is contained in the module U08MAIN.C. It controls the program
sequence via an endless loop (as usual in embedded software). The
module U08KEY.C settles the scanning of the input keys. Control of the
light-emitting diodes (LED) on the board is done using simple C macros;
no special C module is required for this purpose. The module
U08ADC.C is responsible for reading of the resistive sensors.

These modules are supported by the file VECJB8.C, which contains the
interrupt and reset vectors. The four C source code modules are merged
into a common compiler project. In addition, the assembler module
CRTSJB8.S which contains the C startup code is required.

The control of keys, LEDs, and analog-to-digital (A/D) transmitters are
support functions to the demonstration project because the main
attention is paid to the communication interface. The communication
functions are implemented directly by means of “#include” instructions in
the main module U08MAIN.C.

Two ways of communication are implemented in the demonstration:
RS232 or USB. The selection takes place by defining USE_USB_PIPE
in the head of the main module. If this macro is defined, U08USB.C
automatically becomes a part of the main module; otherwise, the RS232
communication module U08232.C is merged.

If the USB implementation in the file U08USB.C is used, the file
U08DESC.C is also translated at the same time. It contains the static
data for all necessary USB descriptors.

For each of the C files U08KEY.C, U08ADC.C, U08USB.C, and
U08232.C there is a corresponding header file (* H) with the same base
name. The functions for controlling the LEDs on the board are contained
as macros in the file U08LED.H. In several cases, the header
MC68HC08JB8.H contains the register and bit mask definitions required
by the MC68HC908JB8 microcontroller (MCU).
Designer Reference Manual USB08 Evaluation Board

44 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions
How to Build the Compiler Project

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-1 shows the structure and interaction of the modules and files
that could be included by means of “#include” instructions. To
accomplish a complete compiler build, the grey modules have to be
included in a compiler project.

3.4 How to Build the Compiler Project

The Cosmic C Compiler can to arrange a project within the compiler IDE.
The compiler project owns:

• A list of source modules to be complied

• Translation options

• Additional tools such as S-record generation

Figure 3-1. Structure and Dependencies of the Firmware Files

HC08JB8.H
Register Definitions

U08USB.H
USB Communication

U08232.H
RS232 Communication

U08KEY.H
Push Button Module

U08LED.H
LED Functions

U08ADC.H
Soft ADC Module

U08DESC.C
USB Descriptors

U08USB.C*)
USB Communication

U08232.C*)
RS232 Communication

*) = Alternative

CRTSJB8.S
C-Startup Module

U08ADC.C
Soft ADC Module

VECJB8.C
Interrupt Vectors

U08MAIN.C
Main Module

U08KEY.C
Push Button Module

Project Files
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 45
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The compiler project for the USB08 reference design covers these C
modules (see Figure 3-1):

• U08MAIN.C

• U08KEY.C

• U08ADC.C

• VECJB8.C

An alternative possibility consists of controlling the translation of the
project via a batch file as shown in this example (BUILD.BAT).

cx6808 -v -l u08main.c u08adc.c u08key.c vecjb8.c
clnk -o usb08.h08 usb08.lkf
chex -fm -h -o usb08.s19 usb08.h08

This batch file can be invoked under the MS-DOS® system environment
to translate and link USB08 firmware components. The result of this
process is a S-record file named USB08.S19, which can be loaded into
the FLASH memory of the MC68HC908JB8.

Another important file for controlling the translation is the linker file
USB08.LKF:

USB08 LINK COMMAND FILE
COSMIC HC08 C COMPILER
#
+seg .text -b 0xdc00 -n .text # program start address
+seg .const -a .text # constants follow code
+seg .bsct -b 0x0040 -n .bsct # zero page start address
+seg .ubsct -a .bsct -n .ubsct # data start address
+seg .data -a .ubsct # data start address
+def __sbss=@.bss # start address of bss
Put your startup file here
crtsjb8.o # startup routine
Put your files here
u08main.o
u08key.o
u08adc.o
"c:\programs\cosmic\cx08\Lib\libi.h08"
"c:\programs\cosmic\cx08\Lib\libm.h08"
+seg .const -b 0xfff0 # vectors start address
Put your interrupt vectors file here if needed
vecjb8.o
+def __memory=@.bss # symbol used by library
+def __stack=0x013f # stack pointer initial value

MS-DOS is a registered trademark of Microsoft Corporation in the United States and/or other
countries.
Designer Reference Manual USB08 Evaluation Board

46 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions
How to Build the Compiler Project

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the linker file:

• The starting addresses of the various segments are set.

• The text segment starts at the address 0xDC00 (for example, at
the beginning of the internal FLASH memory).

• The constants immediately follow the text segment.

• The zero page starts at 0x0040 instead of the usual 0x0000.

• The MC68HC908JB8 control registers are located in the address
range 0x0000–0x0040.

• The data segment follows the zero page in the random-access
memory (RAM).

• The interrupt vectors start at 0xFFF0 and the stack pointer is set
to 0x013F (end of the internal RAM memory).

Table 3-1 shows the approximate values for memory utilization when
USB communication has been implemented.

Table 3-1. Memory Utilization

Starting
Address

End
Address

Length Contents

0x0000 0x003F 64 byte MC68HC908JB8 control registers

0x0040 0x0075 53 byte Variables in RAM

0x0076 0x0117 163 byte Free RAM

0x0118 0x013F 40 byte Stack in RAM

0xDC00 0xE2FF 1.8 Kbyte Code and constant values

0xE300 0xFBFF 6.2 Kbyte Free FLASH memory

0xFFF0 0xFFFF 16 byte Interrupt and reset vectors
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 47
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5 Main Module U08MAIN.C

Which variant to be compiled is specified at the head of this module
using the macro USE_USB_PIPE. If defined, the USB version will be
produced; otherwise, the RS232 version will be produced.

The two versions are formed by merging different “#include” files. In
addition, the names of the interface functions used in the main program
are standardized. For example:

• If the RS232 version is active, the getSSCI() (for receiving a
character via RS232) is renamed by a macro to getPipe().

• If the USB version is active, getPipe() is mapped to getUSB().

This enables the use of uniform function names in the main program,
independent of the version selected in each case.

The function main() contains the continuous loop of the master program.
As usual, it is called by the C startup module after all fundamental
hardware and system initializations are finished. Also, at the beginning
of these initializations, the C startup module calls the function
_HC08Setup(). In this function, all register accesses and initializations,
which must take place immediately after system resets, are
summarized. The summarizing of these initializations within its own
function keeps the C startup module static. It has the advantage that the
C startup module does not have to be changed and retranslated, even if
further initialization steps become necessary.

At the beginning of function main() the peripheral modules used by the
program are initialized:

• initPipe() — communication module (RS232 or USB)

• initLED() — LED readouts

• initKey() — keyboard entry

• initSADC() — software analog-to-digital converter (ADC)

Subsequently, the I flag is deleted to enable global interrupts.
Designer Reference Manual USB08 Evaluation Board

48 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions
Interrupt and Reset Vector Module VECJB8.C

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The main program loop uses this operational sequence:

1. An analog-to-digital (A/D) conversion is performed. One of three
conversion channels is updated in each cycle run. This procedure
was selected because the transformation, with the simple ADC
software implemented in the module U08ADC.C, takes several
milliseconds.

2. Subsequently, the delivery of an 8-byte data telegram by the input
pipe is accomplished. This length was chosen because it
corresponds to the number of bytes sent by the PC program.

The necessary information for the control of the three LEDs is
contained in the first three bytes. If the received byte is 0, the
respective LED is switched off; otherwise, it is switched on.

3. To send an answer telegram back at the host PC, first fill the send
buffer utilizing the first six bytes of the eight bytes available. In the
first three bytes, the status of the input keys is coded. The next
three bytes transmit the last values of the three analog converter
channels.

4. Now the function putPipe() is called eight times to send the data
telegram. Afterward, the entire cycle run is repeated.

All further program functions, in particular the communication via USB
and the processing of the push button events, are processed by interrupt
functions.

3.6 Interrupt and Reset Vector Module VECJB8.C

The file VECJB8.C contains the definitions of the interrupt vector table
placed at the end of the M68HC08 memory map. The entries in this table
are the start addresses of the respective interrupt service routines. The
MC68HC908JB8 uses eight (7 + 1) vectors. The last, highest position
(address 0xFFFE/0xFFFF) is used by the reset vector.

In the USB08 reference design, the key pad interrupts of the input/output
(I/O) port A are used as well as the USB interrupts in case the USB
implementation was activated. The other interrupt vectors refer to an
empty dummy interrupt service routine (ISR). This dummy ISR is
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 49
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

practically without function; however, it can be used in the debugging
phase for seeking out unexpected (spurious) interrupts. In addition, the
allocation of all interrupt vectors is important for the implementation of
the FLASH memory security feature (read-out protection). For additional
information, refer to the MC68HC908JB8 Technical Data, Motorola
document order number MC68HC908JB8/D.

The reset vector refers to the start address of the application. This point
of entrance is located in the C startup module.

3.7 C Startup Module CRTSJB8.S

The C startup module used essentially corresponds to the standard
startup module from the Cosmic C Compiler package with one
exception. Immediately after a reset (and after the initialization of the
stack pointer), a subroutine reference was inserted to _HC08Setup().
This subfunction is defined in U08MAIN.C and performs urgent
accesses to M68HC08 control registers which should be completed
immediately after the reset.

3.8 Push Button Module U08KEY.C

Port A (PTA) of the MC68HC908JB8 has eight port bits for keyboard
connection. Each of these lines can cause an interrupt. The port bits
individually can be configured for use within the MC68HC908JB8
keyboard interrupt module (KBI).

The USB08 evaluation board uses three single keys which are
connected to port lines PTA[4:6]. The switch noise reduction is
performed via a resistor-capacitor (RC) combination at each key. This
combination is made by:

• M68HC08 internal pullup resistors and a capacitor (parallel to the
key)

• Hysteresis of the port A input Schmitt triggers
Designer Reference Manual USB08 Evaluation Board

50 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions
Push Button Module U08KEY.C

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The KBI module of the MC68HC908JB8 greatly simplifies the scanning
of the attached buttons. The software necessary for this takes only 20
lines of C code.

The conditions are created in the initialization function initKey(). First the
internal pullup resistors at the port A pins are activated. A short pulse of
an active H level is driven at the port A pins which accelerates the rising
of the logic levels at these pins. This prevents a false reading of the initial
low level on the lines.

The initialization function ends with the resetting of the status variable,
KeyState, and the enabling of the keyboard interrupt.

During the manipulation of a key, the interrupt service routine isrKey() is
called. At port A, the pressed key is seen as a 0 bit. The appropriate bit
location is set accordingly in the status variable KeyState. By activation
of a key the key status is inverted. This implementation simulates an
on/off push button.

If the main program wants to know the current status of a key (on/off), it
uses the access function getKey(). The number of the key (1...) will be
handed over as a function argument. The function getKey() calculates a
bit mask for access to an individual bit of the (internal) status variable
KeyState. The return value amounts to 0, if the key is off; otherwise, a 1
is returned.

This module provides an easy way to specify the desired number of
possible keys. For this purpose, two macros are used. KEY_MASK
defines the used lines of port A by setting a “one” flag at the appropriate
bit location. The macro KEY_FIRST defines at which bit location the first
key is attached. Some examples:

KEY_MASK=0x01; KEY_FIRST=0; / / one key at PTA[0]
KEY_MASK=0x02; KEY_FIRST=1; / / onea key at PTA[1]
KEY_MASK=0x80; KEY_FIRST=7; / / one key at PTA[7]
KEY_MASK=0x70; KEY_FIRST=4; / / three keys at PTA[4..6]
KEY_MASK=0xF0; KEY_FIRST=4; / / four keys at PTA[4..7]
KEY_MASK=0xFF; KEY_FIRST=0; / / eight keys at PTA[0..7]

The port bits included in the key scan have to follow one after another.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 51
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: It has to be pointed out for completeness, that with the KBI module of the
MC68HC908JB8 not only single keys but also extensive key fields in
matrix arrangement can be easily scanned.

3.9 LED Control with U08LED.H

Controlling the three light-emitting diodes (LED) attached to port D is
easy. For initialization, the data direction of the used port pins PTD[0..2]
has to be switched to an output state. The initialization as well as the
switching of the LEDs is performed via four macros. Therefore, a header
file is enough for the realization of these functions. A special C module
is not required in this case.

The LEDs are addressed, beginning with a 1. The switching on of the
first LED (at PTD[0]) takes place, for example, by means of:

onLED(1);

3.10 Software ADC Module U08ADC.C

Although the MC68HC908JB8 does not have an integrated ADC, it is
nevertheless possible to measure analog values (and in particular
resistance values) in a simple way. For this purpose, an RC combination
is attached to a conventional digital port pin and the load time of the
capacitor is measured. The working principle is shown in Figure 3-2.

Figure 3-2. Measurement of Resistor Values Using a Digital Input

VCC

R

C

GND

S

E

Designer Reference Manual USB08 Evaluation Board

52 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions
Software ADC Module U08ADC.C

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

First, the switch S is closed and the capacitor C uncharged. As soon as
the switch S is opened, the charging procedure begins. The voltage at
the input E of the microcontroller rises according to the exponential
function:

UE(t) = VCC (1 – e(–t/RC))

The threshold voltage at the input pin of the MC68HC908JB8, from
which a level change from low to high takes place, is approximately
50 percent of the operating voltage VCC. Until this threshold is reached,

the loading time, tx, amounts to:

tx = K * RxC with K~0,7 for VCC/2

Since k represents a constant value (in the considered short time frame),
a linear connection between the measured time and the product RxC
appears. Since C is constant, one can draw a direct conclusion from the
charge time to the value of the resistance Rx.

To determine the absolute resistance of Rx, first the value of the capacity
C and the constant k have to be determined. However, that is not
economical (particularly with series products having a certain distribution
of its value). Instead, one can accomplish a calibration cycle before the
actual measurement. This calibration cycle uses a reference resistance
value R0 and determines the time t0. The following measure cycle uses
series connection Rx, consisting of the reference resistance R0 and the
variable resistance R1 (for example, RX = R0 + R1), to determine the
time tx. The result can be calculated using the relationship:

R1/R0 = (Rx–R0)/R0 = (tx–t0)/t0

The range of values of the result is between 0 and 1, if R1max = R0.

The software ADC module of the USB08 application serves three A/D
channels (see Section 2. Hardware Description). Reaching the
threshold voltage is sensed via the port pins PTE[0..2]. The switch
function for charging/discharging the capacitor is realized by switching
the port pins as outputs. In contrast to the circuit diagram (Figure 3-1),
the polarity is exchanged (for instance, the point of reference is VCC
instead of ground) and the charge of the capacitor is made by activating
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 53
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the ground potential at the resistors via the port pins PTD[3..5]
(calibration cycle) and PTD[6] (measuring cycle).

Before the software of the ADC module can be used, the initialization
function initSADC() has to be called. In addition, the main timer is
required to run with 3 MHz (prescaler 0). The clocking of three impulses
per microsecond is the basis of the time measurement in this module.

The function responsible for the A/D conversion of one channel at a time
is getSADC(). The channel number (1..3) is handled as a parameter.
The A/D conversion is performed in the two mentioned steps: calibration
and measurement.

The desired 8-bit range for the results (values of 0…255) is a result of
scaling of the A/D output. In order to keep the run time of the necessary
division and multiplication operations small, the scaling function is
implemented using some in-line assembler directives.

A detailed discussion of the software A/D converter used here is
contained in the application note entitled Simple A/D for MCUs without
Built-in A/D Converters, Motorola document order number AN477/D.
This application note can be found on the World Wide Web at:

http://www.motorola.com/semiconductors/

3.11 RS232 Communication Module U08232.C

The RS232 communication module performs the sending and the
receiving of data to the host PC. The RS232 implementation is one of the
two possible alternatives. By the definition of the macro
USE_USB_PIPE in the main module U08MAIN.C, it is possible to switch
from the RS232 version to the USB version of the communication
module.

Since the MC68HC908JB8 does not have a hardware serial
communications interface (SCI) peripheral module, an RS232
transceiver has to be implemented by a software-based SCI module.
Two general-purpose I/O pins are used as receiving and transmission
lines. The timing necessary for the desired baud rate is derived from a
time loop.
Designer Reference Manual USB08 Evaluation Board

54 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

http://www.motorola.com/semiconductors/

Software Module Descriptions
RS232 Communication Module U08232.C

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The module contains these three interface functions:

• initSSCI() — initialization of the software SCI module

• getSSCI() — receiving of a character

• putSSCI() — transmission of a character

The module initialization function initSSCI() sets the data direction
registers for the output and input port. Before this setting, a 1 is written
to the data register of the transmission line so that the output value of
this line is the standard high state.

The receive function getSSCI() waits until the state of the receiving line
changes to low. This indicates the beginning of the start bit of an arriving
byte. The following eight data bits are scanned suitably, in each case in
the center of the bit time. The result of this scanning is finally returned to
the calling function.

The available implementation does not examine whether the arriving
stop bit shows incorrect low levels (framing error). Also, an over
scanning for the purpose of noise reduction does not take place.

The production of the bit rate is controlled by the module-internal
function delayHalfBit(). The function is implemented with help from some
in-line assembly code to ensure an accurate time performance, which
can be simply changed by the user if necessary. The possible changes
necessary for the adjustment to different baud rates is documented in
the source text on the basis of two examples.

Adjustments regarding the port pins used as sending or receiving lines
are easily possible. The module uses five macros for the control and
scanning in of these pins. These macros are defined in the head of the
file U08232.C. Almost all port pins can be used for the software serial
communications interface (SCI) module by changing the bit masks
and/or the port designators in these macros.

In this demo application, the moderate baud rate of 2400 baud is
selected. An increase to 9600 baud is possible, but tests first must show
that the application runs without problems. It has to be taken into account
that the bit rate production is determined by a certain number of
execution cycles by the central processor unit (CPU), which temporarily
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 55
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

disables any interrupts. Also, in an application with permanent interrupt
use, the software SCI should run in an interrupt-controlled way. Since
the receiving of a character is performed using port pin PTA7, the use of
the keyboard interrupt associated with this pin would be possible for the
recognition of the start bit. The timing for the scanning of the following
received data bits could be made using the available main timer (TIM) of
the MC68HC908JB8 as well as the sending of characters using the
PTC0 pin.

3.12 USB Communication Module U08USB.C

The USB communication module U08USB.C demonstrates how data
can be exchanged between the microcontroller and host PC over an
USB connection. This module can be linked (alternatively to the RS232
communication module U08232.C) into the USB08 application when the
macro USE_USB_PIPE in the main module U08MAIN.C is activated.

Just like RS232, the USB uses serial streams for the data
communication. The substantially more complex operational sequence
of the USB can be encapsulated so that the integration into existing
projects is possible without problems. Therefore, the USB
implementation shown here is just as simple to manage for the firmware
programmer as the classical RS232 version. Only three interface
functions are needed:

• initUSB() — initialization of the USB communication module

• getUSB() — receiving a character

• putUSB() — transmitting a character

The integrated USB peripheral module of the MC68HC908JB8 is
controlled using some control registers within the address range of
0x020 to 0x03F; the function initUSB() takes care of the initialization of
these registers. In addition, the status of the USB equipment is set to the
initial status (Powered) and the two software buffers which buffer the
sending and/or the receiving of data in the application are initialized.

If data should be received, the routine getUSB() is called by the
application. First, this routine stays in a waiting loop until data from the
Designer Reference Manual USB08 Evaluation Board

56 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions
Compiler Specific Adjustments

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USB peripheral module arrives. As soon as the data has arrived, the next
character is taken from the buffer and the read index is incremented.
Since we are dealing with a ring buffer, this index, if it overflows beyond
the upper buffer border, is set back to the lower buffer border (index 0).

The size of the receiving ring buffer is specified by the macro
MAX_RXBUF_SIZE. The selected value has to be a power-of-two
number.

The transmission function putUSB() uses another buffer area which is
independent of the receive buffer including index variables for read and
write access. Again, the buffer size is specified using a macro
(MAX_TXBUF_SIZE). Concerning the size, the restriction on
power-of-two numbers applies here as well.

The character handed over to putUSB() is placed into the buffer. If the
buffer is full, the routine waits until the send buffer again is able to store
data. After placing the character into the send buffer, the access index
variable is updated.

Interrupt-controlled implementation of these functions is performed in
the background of the microcontroller application:

• Filling of the receive buffer

• Sending of the characters in the send buffer via the USB

For this purpose, an interrupt-controlled USB handler was implemented
and can be used in many other applications without any changes. The
principle of operation and the places of possible or necessary
modifications are described in detail in Section 4. Universal Serial Bus
(USB) Interface.

3.13 Compiler Specific Adjustments

The source text modules were written and translated with the M68HC08
Cosmic C Compiler. This compiler supports the complete language
scope available for ANSI-C. The porting of the firmware to another
M68HC08 ANSI-C compiler should be possible without any problems,
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Software Module Descriptions 57
For More Information On This Product,

 Go to: www.freescale.com

Software Module Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

because this application does not use problematic constructions, like bit
fields in the source code.

In some places, using individual assembler instructions in the form of
in-line assembler directives is considered useful, for example, for the
interrupt enable in the main module U08MAIN.C. For this purpose, the
Cosmic C Compiler offers the following instruction:

_asm("<assembly statement >");

When using other compilers, similar instructions should be available.
However, some small syntactic adjustments can be necessary. Beside
the main module, the modules U08232.C and U08ADC.C also contain
such in-line assembler constructions.

The marking of a function as an interrupt service routine is not regulated
in the ANSI-C standard. For lack of a uniform regulation, the different
compilers handle this necessary marking in a different way. For
example, the Cosmic C Compiler uses the modification @interrupt:

@interrupt void interrupt_handler();

Other compilers use “#pragma” instructions to mark interrupt functions.
Designer Reference Manual USB08 Evaluation Board

58 Software Module Descriptions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Section 4. Universal Serial Bus (USB) Interface

4.1 Contents

4.2 Introduction .59

4.3 Characteristics of the USB08 Reference Design60

4.4 USB Basics. .62

4.5 USB Implementation in the Reference Design65
4.5.1 Activation of the USB Module. .65
4.5.2 Endpoint Configuration. .65
4.5.3 USB Reset .67

4.6 Device Management with Endpoint 0 .69
4.6.1 Enumeration .69
4.6.2 Assignment of the Device Address 69
4.6.3 Requesting Descriptors .72
4.6.4 Device Configuration .74
4.6.5 STALL Condition .74

4.7 Data Communication via Endpoints EP1 and EP275
4.7.1 Receiving Data .76
4.7.2 Transmission of Data .76

4.8 Host Interaction: Vendor ID and Product ID78

4.9 Windows Device Driver. .78

4.2 Introduction

The universal serial bus (USB) is an interface for the connection of
peripheral devices, for example, printers, scanners, keyboards, and
pointing devices to a PC or a similar host.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 59
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The USB specification(1) which can be found on the World Wide Web at:

http://www.usb.org

is an industry standard, which exactly defines this bus system beginning
with the electrical interface up to the higher protocol layers to guarantee
the inter-operability of all the different devices. A simple way of handling
is the most important requirement for USB devices from the view of the
user.

Several versions of the USB specification exist. Apart from the already
established release 1.1, on which the MC68HC908JB8 and the available
reference design is based, the specification 2.0 was compiled in the year
2000 by the USB Implementers Forum (USB-IF). This version ensures
compatibility to the version 1.1 and contains the already known speed
classifications “low speed” and “full speed”. Beyond that, release 2.0
introduces a high-speed device type. First high-speed devices are
expected to be established in the market by end of the year 2001.

The basic specification of the USB is supplemented by several class
specifications for certain types of device classes, which can be found
frequently (for example, human interface device class for keyboards,
mouse pointers, etc.). Further information regarding conditions and
contents of basic and class specifications can be found on the World
Wide Web at:

http://www.usb.org

4.3 Characteristics of the USB08 Reference Design

The USB08 reference design shows, via a detailed example, how the
integrated USB module of the Motorola microcontroller unit (MCU)
MC68HC908JB8 can be used. The MCU is used for a measuring and
control application and exchanges data with a PC via the USB. This
reference design shows that communication to a PC using USB can be
just as simple as a normal RS232 link.

1. Universal Serial Bus Specification Revision 1.1; September 23, 1998
Designer Reference Manual USB08 Evaluation Board

60 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

http://www.usb.org
http://www.usb.org

Universal Serial Bus (USB) Interface
Characteristics of the USB08 Reference Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The integrated USB module of the MC68HC908JB8 works at a data rate
of 1.5 Mbit/s, thus it is defined as a low-speed USB device. For
measuring and control applications, typically only small data rates are
needed, and this is already realized using low-speed USB devices. A
low-speed USB device ensures an information flow rate, which can be
compared roughly with an RS232 link with 9600 baud. At first glance,
that doesn’t seem to be much; however, the USB variant offers a set of
other advantages.

While RS232 always represents point-to-point connection, USB
supports a bus structure. The PC serves as bus master and several USB
devices can be attached. If the connections (ports) at the PC (host) are
not sufficient, USB hubs can be inserted. Hubs can be cascaded up to
five levels. Each USB device is addressed by the host via a unique
address. The address range supports up to 127 addresses. Thus, a
whole measurement and recording system can be arranged easily using
a dozen low-speed USB devices and two or three commercial hubs.

This reference design contains USB08 evaluation board firmware;
therefore, this Plug & Play demo application can be evaluated
immediately. Beyond that, all source code is provided in the form of C
modules for the M68HC08 Cosmic C compiler. The user can use these
sources as a starting point for their own USB development.

The most important modules for the USB implementation are the source
code modules U08USB.C, U08DESC.C, and the header file U08USB.H
(see Section 3. Software Module Descriptions). The USB functional
description refers to these source code modules.

Administration of the USB device takes the largest portion of the
referenced implementation source code. This is done via so-called
standard device service requests. These transfers take place via the
control endpoint 0 and are multi-level, complex communication
procedures. Since the implementation of these complex functions
virtually can be transferred as a block from the reference design to any
other application, the practical work for the administration of a USB
device should not be overestimated. Simply, the actual data
communication functions (which take place using the interrupt endpoints
1 and 2) can be adapted to the concrete user application.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 61
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4 USB Basics

Concerning the electrical interface, the plug and the cable, as well as
questions on the bus topology we refer to the Universal Serial Bus
Specification Revision 1.1 standard reference. The volume of
information contained in this specification exceeds by far this manual.
Also some good introductions are offered by books, for example the
book by Kelm(1).

NOTE: Some terms and procedures from the USB specification, which are
important for the implementation of the reference design, will be
repeated here and described briefly.

Packets form the basic modules of the USB communication in the levels
above the electrical connection. Packets are atomic, for instance, they
cannot be interrupted or divided into sections. The packet types shown
in Table 4-1 are relevant for low-speed USB.

In addition to the packets shown in Table 4-1, the bus traffic consists of
further quasi-static bus conditions (reset, suspend, resume) and the
“Keep-alive-EOP” (refer to Universal Serial Bus Specification
Revision 1.1 standard for more detailed information).

1. Kelm, H.J.: USB1.1; Franzis 2000

Table 4-1. Low-Speed USB Packet Types

Name Group Function

SETUP Token Starts a control transfer

IN Token Starts a data transfer to the host

OUT Token Starts a data transfer to the device

DATA0 Data Transfers 0 to 8 data bytes

DATA1 Data As before (toggle Data0/1)

ACK Handshake Information was accepted

NAK Handshake Busy — send again later

STALL Handshake Information was incorrect
Designer Reference Manual USB08 Evaluation Board

62 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
USB Basics

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A USB transaction is a series of packets to transmit information between
a host and a device. A transaction is always initiated by sending a token
packet (SETUP, IN, or OUT). This packet is always sent by the host
because devices cannot initiate a USB transaction. The token packet
contains the address and the desired endpoint of the device.

SETUP and OUT packets are supplemented by a DATA packet from the
host, which contains up to eight bytes of data. The packets DATA0 and
DATA1 are always sent in an alternating sequence. This procedure is
called data toggle and serves for error protection. Following the data
packet, the device answers with a handshake packet. If the device could
receive the data, it sends an ACK packet. If the device was not
immediately ready, it sends a NAK packet signalling to the host that the
packet should be sent again at a later time. In the event of an error, the
device sends a STALL packet.

SETUP Transaction

OUT Transaction

Regarding IN transactions, the data packet is sent by the device and the
host closes the transaction with a handshake packet.

IN Transaction

Host Host Device

SETUP (ADDR,EP) DATA0 (D1..D8) ACK

Host Host Device

OUT (ADDR,EP) DATA0 (D1..D8) ACK

Host Device Host

IN (ADDR,EP) DATA0 (D1..D8) ACK
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 63
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If the device does not hold any data ready for sending, it sends a busy
handshake NAK instead of the data packets.

IN Transaction (Device Busy)

While the actual data communication via the stream pipes is based on
simple IN and OUT transactions, the management of the device uses
more complex control transfers via the control endpoint 0. These control
transfers are secured using a double handshake. Control transfers
consist of two or three transaction stages, like those shown here.

2-Stage Control Transfer (No Data)

3-Stage Control Transfer (Host Read)

The setup stage starts with a SETUP transaction (see above). The data
stage is necessary if data has to be sent from the device to the host and
consists of several IN transactions. The status stage serves for the back
confirmation that the information was processed correctly. In the status
stage, empty DATA1 packets are sent.

Host Device

IN (ADDR,EP) NAK

Setup Stage Status Stage

SETUP,DATA0,ACK IN,DATA1,ACK

Setup Stage Data Stage Status Stage

SETUP,DATA0,ACK IN,DATA1,ACK (...) OUT,DATA1,ACK
Designer Reference Manual USB08 Evaluation Board

64 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
USB Implementation in the Reference Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5 USB Implementation in the Reference Design

The following paragraphs describe the implementation of the USB into
the reference design.

4.5.1 Activation of the USB Module

For initialization of the MC68HC908JB8 USB module, the user program
must call the initialization routine initUSB(). This routine writes all
registers with the same default values, which are present after a
power-on reset. Beyond that, the USB module is activated by setting the
bit USBEN in the USB address register UADDR.

In addition, the bit PULLEN in USB control register UCR3 is set resulting
in the internal pullup resistor at D-/PTE4 being activated if this option
was selected in the source code. For this, the macro USB_IPUE must be
defined as 1. Alternatively, it is possible to add an external resistor on the
USB08 evaluation board (see Section 2. Hardware Description).

4.5.2 Endpoint Configuration

The integrated USB module of the MCHC908JB8 supports three
endpoints. In addition to the mandatory bidirectional control endpoint
EP0, two unidirectional interrupt endpoints, EP1 and EP2, are available.

The data direction is always indicated from the view of the host. An
IN endpoint serves for the data transfer from the device to the host and
an OUT endpoint is used for the data transfer from the host to the device.

EP1 is always configured as an IN endpoint, since the MCU sends data
via this endpoint. The endpoint EP2 of the MC68HC908JB8 can be

Bit 7 6 5 4 3 2 1 Bit 0

Read:
USBEN UADD6 UADD5 UADD4 UADD3 UADD2 UADD1 UADD0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 4-1. USB Address Register (UADDR)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 65
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

configured as an IN or as an OUT endpoint. The reference design uses
this endpoint as an OUT endpoint, to do data transfers to the MCU.

Table 4-2 provides an overview of the endpoint configuration.

Some adjustments in the control registers of the USB module are
necessary for the configuration of the endpoints. While EP0 is always
active as a control endpoint, the bit ENABLE1 in control register 3
(UCR3) has to be set to activate the endpoint EP1. Likewise, the bit
ENABLE2 has to be set for activation of the endpoint EP2.

However, the activation of the endpoints EP1 and EP2 takes place not
in the initialization routine initUSB(), but only after the device receives a
USB reset.

Table 4-2. MC68HC908JB8 Endpoint Configuration

Endpoint Type Direction Function

EP0 Control IN/OUT Device configuration

EP1 Interrupt IN Data transfer to the host

EP2 Interrupt OUT(a)

a. Alternatively as IN configurable, this option is not used here.

Data transfer to the device

Bit 7 6 5 4 3 2 1 Bit 0

Read: TX1ST 0
OSTALL0 ISTALL0

0
PULLEN ENABLE2 ENABLE1

Write: TX1STR

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-2. USB Control Register 3 (UCR3)
Designer Reference Manual USB08 Evaluation Board

66 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
USB Implementation in the Reference Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.3 USB Reset

An USB reset is an event which is used by the USB hub to reset the
attached devices to the initial state. Electrically, the reset signal is a
special bus condition (single ended zero) which is initiated by the host
and then passed on by the hub(s).

The USB module of the MC68HC908JB8 reacts to this either with a
hardware reset or with an interrupt, dependent on the configuration
selected in the CONFIG (configuration) register. Since a hardware reset
(in particular during the debugging via monitor mode) is not without side
effects, the generation of an interrupt is preferred here. For this purpose,
the URSTD bit in the CONFIG register has to be set. It has to be
considered that a write access to the CONFIG register is possible only
once after each power-on reset. Therefore, write access to this control
register is done in the function _HC08Setup() in the module
U08MAIN.C.

The USB reset interrupt, together with all the other USB sources of
interrupt, points to a central USB interrupt vector. The USB interrupt has,
apart from the software interrupt (SWI), the highest priority in the
interrupt system of the MC68HC908JB8. The USB interrupt vector is
stored at the vector address 0xFFFA/0xFFFB (see 3.6 Interrupt and
Reset Vector Module VECJB8.C). In the reference design, it points to
the function isrUSB(), which is responsible for the entire
interrupt-controlled USB handling.

In the interrupt service routine all applicable interrupt flags are
successively examined. If it is recognized that the RSTF bit in the USB
interrupt register 1 (UIR1) is set, it means that a USB reset interrupt has
occurred.

In this case, first the function initUSB() is called to set all control registers
of the USB module into the default condition. Afterward, the two interrupt
endpoints, EP1 and EP2, will be enabled to prepare for the following
transfer of data. Now, the local interrupt enable bits TXD0IE, RXD0IE,
TXD1IE and RXD1IE in the USB interrupt register 0 (UIR0) are set so
they can react on the information sent or received from the endpoints
using interrupts. In addition, the end-of-packet interrupt will be enabled
with EOPIE (suspend handling).
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 67
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 At the end of the USB reset interrupt, the control endpoint 0 will be
enabled for receiving, thus the configuration instructions which follow
after the reset (device requests) are received by the USB receiver. This
option will be enabled by setting the RX0E bit in the USB control register
0 (UCR0).

The USB device is now in the DEFAULT state. That means the device is
attached to the bus and is supplied with current. In addition, it has
received a USB reset and reacts to instructions with the default address
zero. For further information, refer to Universal Serial Bus Specification
Revision 1.1, Chapter 9.1 — USB Device States.

After these fundamental initialization steps, further setup steps
summarized under the term of enumeration follow.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
EOPIE SUSPND TXD2IE RXD2IE TXD1IE

0
TXD0IE RXD0IE

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-3. USB Interrupt Register 0 (UIR0)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOSEQ

0
TX0E RX0E TP0SIZ3 TP0SIZ2 TP0SIZ1 TP0SIZ0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-4. USB Control Register 0 (UCR0)
Designer Reference Manual USB08 Evaluation Board

68 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
Device Management with Endpoint 0

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.6 Device Management with Endpoint 0

4.6.1 Enumeration

After the basic initialization described in the previous paragraphs, the
USB module is now able to react with an interrupt on packets which are
addressed to the control endpoint EP0. Now, the process of the
enumeration (that is, the configuration and integration into the system)
at the USB is continued.

4.6.2 Assignment of the Device Address

In the following step, the host assigns a unique USB address to the
device, which is located in the range from 1 to 127. For this purpose, the
host sends a SET_ADDRESS standard device request. Standard device
requests are always served by the EP0. These transfers are control
transfers which are implemented for the EP0 only (the other endpoints
are used exclusively for the data communication by means of interrupt
transfers).

USB device requests are started, by the host sending a SETUP packet.
The MCU receives this information and generates an EP0 receive
interrupt. In the interrupt service routine isrUSB(), the interrupt is
identified by the controller on the basis of the RXD0F flag in the USB
interrupt register 1 (UIR1).

Since a receive interrupt could be initiated by an OUT packet for the
endpoint EP0, it must be determined whether the received information

Bit 7 6 5 4 3 2 1 Bit 0

Read: EOPF RSTF TXD2F RXD2F TXD1F RESUMF TXD0F RXD0F

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-5. USB Interrupt Register 1 (UIR1)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 69
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

refers to a SETUP or an OUT packet. Therefore, the flag SETUP in the
USB status register 0 (USR0) has to be examined. If this flag is set, the
last token received by EP0 was a SETUP token and the interrupt routine
is branched to the function for handling of SETUP transactions,
handleSETUP().

In the USB status register 0 (USR0) the function handleSETUP() finds
not only the type of the transaction (SETUP or OUT), but can also
determine the number of received bytes. In the case of a SETUP
transaction, the data length is always defined as eight bytes. Therefore,
USR0 should contain the value 0×48.

The eight bytes received by endpoint 0 are available in the eight
registers UE0D0–UE0D7 and will be transferred into the buffer variable
SetupBuffer. This variable of the type setup_buffer is explained in the
following excerpt from U08USB.H.

// Structure of Setup Packet sent during
// SETUP Stage of Standard Device Requests
// according to USB1.1 spec page 183
//
typedef struct {
 uchar bmRequestType; // Characteristics (Dir,Type,Recipient)
 uchar bRequest; // Standard Request Code
 iword wValue; // Value Field
 iword wIndex; // Index or Offset Field
 iword wLength; // No. of Bytes to transfer (Data Stage)
 } setup_buffer;

The field bmRequestType must contain the value 0 in bits 5 and 6;
otherwise, it is not a standard device request.

Bit 7 6 5 4 3 2 1 Bit 0

Read: R0SEQ SETUP 0 0 RP0SIZ3 RP0SIZ2 RP0SIZ1 RP0SIZ0

Write:

Reset: Unaffected by reset

= Unimplemented

Figure 4-6. USB Status Register 0 (USR0)
Designer Reference Manual USB08 Evaluation Board

70 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
Device Management with Endpoint 0

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The type of standard request is coded in the field bRequest. For
continuation of the enumeration, the host should send the standard
device request SET_ADDRESS and the handleSETUP() routine should
branch to the function setAddress().

The function first validates the contents of the fields of SetupBuffer. In
the case of an error, a STALL handshake is initiated to give the host
problem feedback.

Before the device address in the field wValue is finally accepted, the
MCU has to prepare the transmission of a receive acknowledgment.
This acknowledgement still is completed using the old device address
zero. An additional safety feature is the mandatory control transfer status
stage.

The handshake takes place via a telegram with a data length of zero,
which is requested by the host by means of an IN transaction. For this
purpose, the length TP0SIZx is defined as zero and the TX0E bit is set
in the USB control register 0 (UCR0). This enables the transmitter of the
endpoint 0.

This handshake transaction always uses a DATA1 packet; therefore,
T0SEQ is set.

The routine setAddress() now returns to handleSETUP() where the
receive interrupt for EP0 is re-enabled. Finally, the MCU terminates the
interrupt service routine isrUSB().

The device address is still located in the SetupBuffer. The service
routine isrUSB() is again activated by a transmit interrupt for EP0. After
decoding, if it was determined that the cause of the interrupt was an IN

Bit 7 6 5 4 3 2 1 Bit 0

Read:
T0SEQ

0
Tx0E Rx0E TP0SIZ3 TP0SIZ2 TP0SIZ1 TP0SIZ0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-7. USB Control Register 0 (UCR0)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 71
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

transaction, the function handleIN() is called. In the field bRequest of the
SetupBuffer, SET_ADDRESS is still contained as the current standard
request type. The function handleIN() now reacts by transferring the
device address from the buffer to the USB address register (UADDR).

The device is now turned into an ADDRESSED status. An exception
would be if the transmitted device address was zero again. This case
would mean an uncoupling of the device from the USB system.

With the completion of the IN transaction as a status stage, the control
transfer for the treatment of the standard device request
SET_ADDRESS is finished. The completion is noted in the SetupBuffer
by setting the flag REQUEST_COMPLETE.

4.6.3 Requesting Descriptors

Further in the process of enumeration, the host will request the
configuration of the device. For this purpose, descriptors which contain
information about the status and one or more possible configurations,
are made available by the device . The host loads these descriptors,
selects a suitable driver, and forces the device to take a certain
configuration. As a consequence, the device will be ready for use and
will be able to transfer data via the interrupt endpoints EP1 and EP2.

Sending descriptor information takes place during a standard device
request. The request is of the type GET_DESCRIPTOR and in principle
is handled the same way as that for the standard device request,
SET_ADDRESS, described above.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
USBEN UADD6 UADD5 UADD4 UADD3 UADD2 UADD1 UADD0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-8. USB Address Register (UADDR)
Designer Reference Manual USB08 Evaluation Board

72 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
Device Management with Endpoint 0

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Within the setup stage, the function handleSETUP() is called. The
request type is recognized as GET_DESCRIPTOR and branched to the
subfunction getDescriptor(). There, it is determined if a device
configuration or string descriptor was requested. According to this
requirement, a pointer will be set on the respective data source. After
examination of the data length, this data will be written into the USB
endpoint 0 send registers UE0D0–UE0D7.

The number of bytes is limited (at least for low-speed USB devices) to
eight bytes per DATA packet. If more data has to be transferred, the
device has to divide the data into blocks of eight bytes and distribute
these portions using several sequential IN transactions. The last data
block is identified by the host due to a length smaller than eight bytes.
That means, if the length of the transmitted data amounts to an integral
multiple of eight, there has to be an additional empty IN transaction (data
length zero).

The data length and the transmitter release bit TX0E are inserted into the
USB control register 0 (UCR0) (see SET_ADDRESS), then the data is
available for the host to pick up.

If there is only one packet (length smaller eight), the
GET_DESCRIPTOR standard device request is marked as complete
(REQUEST_COMPLETE).

If several packets have to be sent, the send buffer is filled up again by
the routine handleIN() during the following EP0 transmit interrupt, until
all data is sent.

Sequential IN transactions are served with interchanging data packets.
The interchanging between DATA0 and DATA1 packets is called a data
toggle and serves for error protection.

Detailed information about the descriptors used in the reference design
are contained in Appendix B. USB08 Descriptors.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 73
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.6.4 Device Configuration

After the host processes all descriptors claimed by the device, it will set
up the device with a SET_CONFIGURATION standard device request.
A device can have several configurations (for example, with different
power options, resolutions, or speed options). The configuration
characteristics supported by the device are coded in the device
descriptors.

The reference design is limited to the simplest case with only one
possible configuration. The SET_CONFIGURATION request is passed
on by the routine isrUSB() to handleSETUP(), after which branches to
setConfiguration() take place. The configuration specified by the host is
coded in the field wValue.lo of the structure SetupBuffer. If this field is
larger than zero, the USB08 is ready to be put into operation. For this
purpose, the transmitter of endpoint 1 and the receiver of endpoint 2 will
be enabled and the internal status of the device changed to
CONFIGURED.

In reverse, the host is able to return the device to the status
ADDRESSED by transmission of a SET_CONFIGURATION instruction
with the value 0.

For the status stage of this control transfer, the routine ends by preparing
to send an empty DATA1 packet. This is completed by the following IN
transaction.

4.6.5 STALL Condition

If the device discovers an error during communication via the USB which
requires the involvement of the host, the device sends a STALL packet
in place of the usual handshake packets ACK (ready/OK) or NAK (not
ready).
Designer Reference Manual USB08 Evaluation Board

74 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
Data Communication via Endpoints EP1 and EP2

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To force the device not to send further STALL packets after the recovery
of the error, the host can use the standard device request
CLEAR_FEATURE. The responsible standard request handler
clearFeature():

• Hands over the code for the endpoint concerned (0×81 for EP1,
0×02 for EP2) to wIndex

• Writes ENDPOINT_HALT into wValue

• Forces the deletion of the STALL condition for the endpoint 1 or 2

A STALL condition of the EP0 resulting from an incorrect SETUP
request is reset automatically by the next arriving SETUP token.

4.7 Data Communication via Endpoints EP1 and EP2

The transmission of user data from or to the USB device takes place via
the endpoints 1 and 2. EP1 is an endpoint of the type IN and serves for
sending of information to the host. EP2 possesses the direction OUT
and is used by the device to receive data from the host.

All data traffic of the pay load endpoints EP1 and EP2, as well as the
administrative traffic of the endpoint EP0, leads to interrupt handling via
the interrupt service routine isrUSB(). The USB interrupt register 1
(UIR1) contains information about the exact source of the USB interrupt.
If the flag TXD1F is set, a transmit complete interrupt was indicated by
endpoint 1. If RXD2F is set, an endpoint 2 receive interrupt is pending.

Bit 7 6 5 4 3 2 1 Bit 0

Read: EOPF RSTF TXD2F RXD2F TXD1F RESUMF TXD0F RXD0F

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-9. USB Interrupt Register 1 (UIR1)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 75
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.7.1 Receiving Data

If data for endpoint 2 arrives, the interrupt handler calls handleOUT2().
The number of received bytes is noted in bits RPSIZ3–RPSIZ0 with the
allowed values in the range of 0–8.

The received data bytes are transferred from the USB endpoint data
registers UE2D0–UE2D7 to the buffer RxBuffer. This is a software ring
buffer, which can be filled by the interrupt service routine isrUSB() and
be read out by means of getUSB().

If the ring buffer is full, handleOUT2() waits until RxBuffer is able to store
data again. In this case, the USB module answers further transmission
attempts of the host with a NAK handshake.

NOTE: In a real application, you should not leave the buffer unserviced over a
longer period of time.

4.7.2 Transmission of Data

The transmit data for EP1 is placed by the user program, via the function
putUSB(), into the send buffer TxBuffer. This is (just like RxBuffer) a ring
buffer, which blocks the application as soon as the buffer is about to
overflow.

The host polls all interrupt end points cyclically, taking into account a
guaranteed maximum latency time. That polling interval can be specified
in the endpoint descriptor. For low-speed USB devices with interrupt
endpoints the shortest specified polling interval is 10 ms. That means,

Bit 7 6 5 4 3 2 1 Bit 0

Read: R2SEQ TXACK TXNAK TXSTL RP2SIZ3 RP2SIZ2 RP2SIZ1 RP2SIZ0

Write:

Reset: 0 0 0 0 0U U U U

= Unimplemented U = Unaffected

Figure 4-10. USB Status Register 1 (USR1)
Designer Reference Manual USB08 Evaluation Board

76 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface
Data Communication via Endpoints EP1 and EP2

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

after 10 ms the host asks whether further data has to be fetched from
endpoint 1 or not.

NOTE: In practice, the host uses only intervals of 2n ms, the demanded 10 ms
is then rounded to 8 ms.

The USB interrupt routine is called cyclically and branches to the handler
handleIN1. From there, data is taken from the ring buffer TxBuffer (if
available) and transferred into the USB endpoint 1 data registers
UE1D0–UE1D7. Subsequently, the number of bytes which should be
sent is registered in the fields TP1SIZ3–TP1SIZ0. If no data is in the
buffer, this number is registered as 0. The T1SEQ bit is inverted to switch
between DATA0 and DATA1 packets (data toggle). Finally, by setting
the bit TX1E in the USB control register 1 (UCR1), the transmission of
the data is enabled.

The operation mode selected here is based on a continuous data
stream. If there is no transmit data in the buffer, the device will send data
packets with zero byte contents. If this condition continues for a longer
time, sending of empty data packets means a waste of bus bandwidth.
If this turns out as critical, a change of the operation mode is
recommended. Alternatively, it is possible to disable TX1E, as long as
no data is present in the buffer. Then, the endpoint answers a polling
only with a NAK packet and does not occupy any additional bandwidth
by sending an empty data packet.

Bit 7 6 5 4 3 2 1 Bit 0

Read: T1SEQ STALL1 TX1E FRESUM TP1SIZ3 TP1SIZ2 TP1SIZ1 TP1SIZ0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 4-11. USB Control Register 1 (UCR1)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 77
For More Information On This Product,

 Go to: www.freescale.com

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.8 Host Interaction: Vendor ID and Product ID

Two identifiers are used to mark a USB device and make it possible for
the host to assign a suitable driver: The vendor ID and the product ID.
Both IDs are registered in the device descriptor of the USB equipment.

1. The vendor ID (VID) marks the manufacturer. Normally, vendor
IDs are assigned by the USB Implementers Forum. The requestor
is charged for this registration.

2. The product ID is (just like the VID) a 16-bit number. The PID
marks a certain product. The allocation is done by the
manufacturer of the device. Unlike the VID, for the PID there are
no administrative restrictions from the USB Implementers Forum.

The USB08 reference design uses the registered vendor ID of the
manufacturer MCT Elektronikladen, which is 0x0C70. The product ID for
the demo application is 0x0000.

To avoid collisions and complications, every type of device is requested
to have a unique vendor ID and/or product ID. Devices which have
fantasy IDs cannot be used as that would lead to the immediate collapse
of the compatibility of different devices at the USB.

Registered users of the USB08 evaluation board can receive their own
PID out of the PID pool of the VID 0x0C70, which is exclusively allocated
to the user. With these unique VID/PID combinations, the user can
develop and sell USB equipment without having to request his own
vendor ID beforehand.

Contact MCT Elektronikladen for additional information on obtaining a
unique USB08 PID. Refer to http://www.hc08web.de/usb08

4.9 Windows Device Driver

Both VID and PID represent the search criteria for the suitable Windows
device driver. The link between the driver and VID/PID is done by a *.inf
file. To deliver to the operating system the suitable driver for the USB
equipment, the manufacturer of the USB device has to provide only a
data medium, on which (preferably in the root directory) the suitable *.inf
Designer Reference Manual USB08 Evaluation Board

78 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

http://www.hc08web.de/usb08

Universal Serial Bus (USB) Interface
Windows Device Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

file and the driver file are specified. The Windows Hardware Assistant
copies these two files into the appropriate Windows directory and
updates the driver data base as necessary. Then, during the following
"Plug Event," the Windows operating system finds the driver
immediately in this data base.

With the help of Microsoft SDK it would be possible for a USB device
manufacturer to develop the necessary kernel mode drivers for
themselves. However, this kind of programming task requires a deep
knowledge of the structure and working principles of the Windows driver
modules. For those engineers, who occasionally do some programming
work on a PC, it is urgently recommended not to try such a task.

A possible workaround could be the operation of the USB device using
a Windows standard driver for human interface devices (HID). The
device class HID summarizes PC input devices, for example, a keyboard
attached to the PC. It is possible to camouflage the measuring data as
an HID input packet and tunnel through the HID driver. The advantage
of this approach is that a kernel mode driver doesn’t have to be
developed. Instead you can program your own PC application on top of
the existing operating system driver.

However, there are two major disadvantages of the HID method. They
are:

1. First, the complexity of the USB handling increases, particularly on
the firmware side. There are additional procedures, protocols, and
descriptors to implement. Definitions of these additions are not a
part of the original USB specification, but are in an HID
specification, which can be loaded from the USB Web site:

http://www.usb.org

2. Secondly and by far more devastating, is the circumstance that
half a dozen implementation variants exist. With each version of
Windows and each new service pack or release, the user risks that
some details of the USB drivers have changed. In this case, the
expenses for testing may be quite high.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal Serial Bus (USB) Interface 79
For More Information On This Product,

 Go to: www.freescale.com

http://www.usb.org

Universal Serial Bus (USB) Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The USB08 reference design uses a third possibility, the universal USB
device driver (USBIO) from the company Thesycon. This third-party
USB driver is professionally maintained and updated as soon as new
operating system conditions occur. The USBIO driver is used for the
USB08 reference design as a free-of-charge adapted "Light EL" version.

For detailed documentation, components, and demo programs refer to:

• Appendix E. Universal USB Device Driver (USBIO)

• World Wide Web at http://www.thesycon.de
Designer Reference Manual USB08 Evaluation Board

80 Universal Serial Bus (USB) Interface MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

http://www.thesycon.de

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Appendix A. Supported Standard Device Requests

Definition of the supported standard device requests are given here.

Standard Device Request ID Supported Options

SET_ADDRESS 5 Any

GET_DESCRIPTOR 6
DEVICE
CONFIGURATION
STRING

SET_CONFIGURATION 9 0/1

CLEAR_FEATURE 1 ENDPOINT_HALT
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Supported Standard Device Requests 81
For More Information On This Product,

 Go to: www.freescale.com

Supported Standard Device Requests

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Designer Reference Manual USB08 Evaluation Board

82 Supported Standard Device Requests MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Appendix B. USB08 Descriptors

B.1 Contents

B.2 Introduction .83

B.3 Device Descriptor .84

B.4 Configuration Descriptor .84

B.5 Interface Descriptor .85

B.6 Endpoint 1 Descriptor .85

B.7 Endpoint 2 Descriptor .85

B.8 String Descriptors .86

B.2 Introduction

This appendix defines the USB08 descriptors.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Descriptors 83
For More Information On This Product,

 Go to: www.freescale.com

USB08 Descriptors

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3 Device Descriptor

const device_descriptor DeviceDesc =
 { // Size of this Descriptor in Bytes
 sizeof(device_descriptor),
 DT_DEVICE, // Descriptor Type (=1)
 {0x10, 0x01}, // USB Spec Release Number in BCD = 1.10
 0, // Device Class Code (none)
 0, // Device Subclass Code (none)
 0, // Device Protocol Code (none)
 8, // Maximum Packet Size for EP0
 {0x70, 0x0c}, // Vendor ID = MCT Elektronikladen
 {0x00, 0x00}, // Product ID = Generic Demo
 {0x00, 0x01}, // Device Release Number in BCD
 1, // Index of String Desc for Manufacturer
 2, // Index of String Desc for Product
 0, // Index of String Desc for SerNo
 1 // Number of possible Configurations
 }; // end of DeviceDesc

B.4 Configuration Descriptor

const configuration_descriptor ConfigDesc =
 { // Size of this Descriptor in Bytes
 sizeof(configuration_descriptor),
 DT_CONFIGURATION, // Descriptor Type (=2)
 {sizeof(configuration_descriptor) + sizeof(interface_descriptor) +
 sizeof(endpoint_descriptor) + sizeof(endpoint_descriptor),
 0x00}, // Total Length of Data for this Conf
 1, // No of Interfaces supported by this Conf
 1, // Designator Value for *this* Configuration
 0, // Index of String Desc for this Conf
 0xc0, // Self-powered, no Remote-Wakeup
 0 // Max. Power Consumption in this Conf (*2mA)
 }; // end of ConfigDesc
Designer Reference Manual USB08 Evaluation Board

84 USB08 Descriptors MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USB08 Descriptors
Interface Descriptor

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.5 Interface Descriptor

const interface_descriptor InterfaceDesc =
 { // Size of this Descriptor in Bytes
 sizeof(interface_descriptor),
 DT_INTERFACE, // Descriptor Type (=4)
 0, // Number of *this* Interface (0..)
 0, // Alternative for this Interface (if any)
 2, // No of EPs used by this IF (excl. EP0)
 0xff, // IF Class Code (0xff = Vendor specific)
 0x01, // Interface Subclass Code
 0xff, // IF Protocol Code (0xff = Vendor specific)
 0 // Index of String Desc for this Interface
 }; // end of InterfaceDesc

B.6 Endpoint 1 Descriptor

const endpoint_descriptor Endpoint1Desc =
 { // Size of this Descriptor in Bytes
 sizeof(endpoint_descriptor),
 DT_ENDPOINT, // Descriptor Type (=5)
 0x81, // Endpoint Address (EP1, IN)
 0x03, // Interrupt
 {0x08, 0x00}, // Max. Endpoint Packet Size
 10 // Polling Interval (Interrupt) in ms
 }; // end of Endpoint1Desc

B.7 Endpoint 2 Descriptor

const endpoint_descriptor Endpoint2Desc =
 { // Size of this Descriptor in Bytes
 sizeof(endpoint_descriptor),
 DT_ENDPOINT, // Descriptor Type (=5)
 0x02, // Endpoint Address (EP2, OUT)
 0x03, // Interrupt
 {0x08, 0x00}, // Max. Endpoint Packet Size
 10 // Polling Interval (Interrupt) in ms
 }; // end of Endpoint2Desc
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Descriptors 85
For More Information On This Product,

 Go to: www.freescale.com

USB08 Descriptors

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.8 String Descriptors

// Language IDs
//--------------
#define SD0LEN 4
//--------------

const uchar String0Desc[SD0LEN] = {
 // Size, Type
 SD0LEN, DT_STRING,
 // LangID Codes
 0x09, 0x04
 };

// Manufacturer String
//--
#define SD1LEN sizeof("MCT Elektronikladen")*2
//--
const uchar String1Desc[SD1LEN] = {
 // Size, Type
 SD1LEN, DT_STRING,
 // Unicode String
 ’M’, 0,
 ’C’, 0,
 ’T’, 0,
 ’ ’, 0,
 ’E’, 0,
 ’l’, 0,
 ’e’, 0,
 ’k’, 0,
 ’t’, 0,
 ’r’, 0,
 ’o’, 0,
 ’n’, 0,
 ’i’, 0,
 ’k’, 0,
 ’l’, 0,
 ’a’, 0,
 ’d’, 0,
 ’e’, 0,
 ’n’, 0
 };
Designer Reference Manual USB08 Evaluation Board

86 USB08 Descriptors MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USB08 Descriptors
String Descriptors

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// Product String
//---
#define SD2LEN sizeof("USB08 Evaluation Board")*2
//---
const uchar String2Desc[SD2LEN] = {
 // Size, Type
 SD2LEN, DT_STRING,
 // Unicode String
 ’U’, 0,
 ’S’, 0,
 ’B’, 0,
 ’0’, 0,
 ’8’, 0,
 ’ ’, 0,
 ’E’, 0,
 ’v’, 0,
 ’a’, 0,
 ’l’, 0,
 ’u’, 0,
 ’a’, 0,
 ’t’, 0,
 ’i’, 0,
 ’o’, 0,
 ’n’, 0,
 ’ ’, 0,
 ’B’, 0,
 ’o’, 0,
 ’a’, 0,
 ’r’, 0,
 ’d’, 0
 };

// Table of String Descriptors
//
uchar * const StringDescTable[] = {
 String0Desc,
 String1Desc,
 String2Desc
 };
USB08 Evaluation Board Designer Reference Manual

MOTOROLA USB08 Descriptors 87
For More Information On This Product,

 Go to: www.freescale.com

USB08 Descriptors

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Designer Reference Manual USB08 Evaluation Board

88 USB08 Descriptors MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Appendix C. Source Code Files

C.1 Contents

HC908JB8.H .90

U08USB.H .93

U08232.H .96

U08LED.H .96

U08MAIN.C .97

U08DESC.C .100

U08USB.C .104

U08232.C .113

U08KEY.C .116

U08ADC.C .117

VECJB8.C .119

CRTSJB8.S .120

USB08.LKF .121

BUILD.BAT .121

USB08.MAP .122

USB08.S19 .125
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 89
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

HC908JB8.H

#ifndef __HC08_H
#define __HC08_H1

// Control Register Definitions for HC908JB8 ---------------------------------

#define _IO_BASE 0
#define _P(off) *(unsigned char volatile *)(_IO_BASE + off)
#define _LP(off) *(unsigned short volatile *)(_IO_BASE + off)

#define PTA _P(0x00)
#define PTB _P(0x01)
#define PTC _P(0x02)
#define PTD _P(0x03)
#define DDRA _P(0x04)
#define DDRB _P(0x05)
#define DDRC _P(0x06)
#define DDRD _P(0x07)
#define PTE _P(0x08)
#define DDRE _P(0x09)
#define TSC _P(0x0A)
//not implemented (0x0B)
#define TCNTH _P(0x0C)
#define TCNTL _P(0x0D)
#define TMODH _P(0x0E)
#define TMODL _P(0x0F)
#define TSC0 _P(0x10)
#define TCH0H _P(0x11)
#define TCH0L _P(0x12)
#define TSC1 _P(0x13)
#define TCH1H _P(0x14)
#define TCH1L _P(0x15)
#define KBSCR _P(0x16)
#define KBIER _P(0x17)
#define UIR2 _P(0x18)
#define UCR2 _P(0x19)
#define UCR3 _P(0x1A)
#define UCR4 _P(0x1B)
#define IOCR _P(0x1C)
#define POCR _P(0x1D)
#define ISCR _P(0x1E)
#define CONFIG _P(0x1F)
#define UE0D0 _P(0x20)
#define UE0D1 _P(0x21)
#define UE0D2 _P(0x22)
#define UE0D3 _P(0x23)
#define UE0D4 _P(0x24)
#define UE0D5 _P(0x25)
#define UE0D6 _P(0x26)
#define UE0D7 _P(0x27)
#define UE1D0 _P(0x28)
#define UE1D1 _P(0x29)
#define UE1D2 _P(0x2A)
Designer Reference Manual USB08 Evaluation Board

90 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

#define UE1D3 _P(0x2B)
#define UE1D4 _P(0x2C)
#define UE1D5 _P(0x2D)
#define UE1D6 _P(0x2E)
#define UE1D7 _P(0x2F)
#define UE2D0 _P(0x30)
#define UE2D1 _P(0x31)
#define UE2D2 _P(0x32)
#define UE2D3 _P(0x33)
#define UE2D4 _P(0x34)
#define UE2D5 _P(0x35)
#define UE2D6 _P(0x36)
#define UE2D7 _P(0x37)
#define UADDR _P(0x38)
#define UIR0 _P(0x39)
#define UIR1 _P(0x3A)
#define UCR0 _P(0x3B)
#define UCR1 _P(0x3C)
#define USR0 _P(0x3D)
#define USR1 _P(0x3E)
//not implemented (0x3F)

// 16-Bit Registers:
#define TCNT _LP(0x0C)
#define TMOD _LP(0x0E)
#define TCH0 _LP(0x11)
#define TCH1 _LP(0x14)

//-- Bit Mask Definitions --

// Bits in UADDR:
#define BM_USBEN 0x80 // USB Module Enable

// Bits in UIR0:
#define BM_EOPIE 0x80 // End-of-Packet Detect Interrupt Enable
#define BM_RXD2IE 0x10 // EP2 Rx Interrupt Enable
#define BM_TXD1IE 0x08 // EP1 Tx Interrupt Enable
#define BM_TXD0IE 0x02 // EP0 Tx Interrupt Enable
#define BM_RXD0IE 0x01 // EP0 Rx Interrupt Enable

// Bits in UIR1:
#define BM_EOPF 0x80 // End-of-Packet Detect Flag
#define BM_RSTF 0x40 // Clear Reset Indicator Bit
#define BM_RXD2F 0x10 // EP2 Data Receive Flag
#define BM_TXD1F 0x08 // EP1 Data Transmit complete Flag
#define BM_TXD0F 0x02 // EP0 Data Transmit complete Flag
#define BM_RXD0F 0x01 // EP0 Data Receive Flag

// Bits in UIR2:
#define BM_EOPFR 0x80 // End-of-Packet Flag Reset
//#define BM_RSTFR 0x40 // Clear Reset Indicator Bit
#define BM_RXD2FR 0x10 // EP2 Receive Flag Reset
#define BM_TXD1FR 0x08 // EP1 Transmit complete Flag Reset
#define BM_TXD0FR 0x02 // EP0 Transmit complete Flag Reset
#define BM_RXD0FR 0x01 // EP0 Receive Flag Reset
// Bits in UCR0:
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 91
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

#define BM_T0SEQ 0x80 // EP0 Tx Sequence Bit (DATA0/1)
#define BM_TX0E 0x20 // EP0 Tx Enable
#define BM_RX0E 0x10 // EP0 Rx Enable
//#define BM_TP0SIZ 0x0f // EP0 Tx Data Packet Size

// Bits in UCR1:
#define BM_T1SEQ 0x80 // EP1 Tx Sequence Bit (DATA0/1)
#define BM_STALL1 0x40 // EP1 Force Stall Bit
#define BM_TX1E 0x20 // EP1 Tx Enable
//#define BM_TP1SIZ 0x0f // EP1 Tx Data Packet Size

// Bits in UCR2:
#define BM_STALL2 0x40 // EP2 Force Stall Bit
#define BM_RX2E 0x10 // EP2 Rx Enable

// Bits in UCR3:
#define BM_TX1STR 0x40 // Clear EP0 Transmit-1st Flag
#define BM_OSTALL0 0x20 // EP0 force STALL Bit for OUT Token
#define BM_ISTALL0 0x10 // EP0 force STALL Bit for IN Token
#define BM_PULLEN 0x04 // Pull-up Enable
#define BM_ENABLE2 0x02 // EP2 Enable
#define BM_ENABLE1 0x01 // EP1 Enable

// Bits in USR0:
// #define BM_R0SEQ 0x80 // EP0 Rx Sequence Bit (DATA0/1)
#define BM_SETUP 0x40 // Setup Token Detect Bit
//#define BM_RP0SIZ 0x0f // EP0 Rx Data Packet Size

// Bits in USR1:
//#define BM_R2SEQ 0x80 // EP2 Rx Sequence Bit (DATA0/1)
#define BM_RP2SIZ 0x0f // EP2 Rx Data Packet Size

//--

#endif
Designer Reference Manual USB08 Evaluation Board

92 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08USB.H

//==
// File: U08_USB.H
// Func: Definitions for USB Data Types & Constants
// Header File for USB08 Demo Application
// Auth: (C)2000 by MCT Elektronikladen GbR, Oliver Thamm
// http://www.elektronikladen.de/mct
// Rem.: View/Edit this File with TAB-Size=4
//==

//-- Data Type Definitions ---

typedef struct { // Data Type "Intel Word"
uchar lo; // (High/Low Byte swapped)
uchar hi;
} iword;

//--

// Standard Device Descriptor
// according to USB1.1 spec page 197
//
typedef struct {

uchar bLength; // Size of this Descriptor in Bytes
uchar bDescriptorType; // Descriptor Type (=1)
iword bcdUSB; // USB Spec Release Number in BCD
uchar bDeviceClass; // Device Class Code
uchar bDeviceSubClass; // Device Subclass Code
uchar bDeviceProtocol; // Device Protocol Code
uchar bMaxPacketSize0; // Maximum Packet Size for EP0
iword idVendor; // Vendor ID
iword idProduct; // Product ID
iword bcdDevice; // Device Release Number in BCD
uchar iManufacturer; // Index of String Desc for Manufacturer
uchar iProduct; // Index of String Desc for Product
uchar iSerialNumber; // Index of String Desc for SerNo
uchar bNumConfigurations; // Number of possible Configurations
} device_descriptor;

//--

// Standard Configuration Descriptor
// according to USB1.1 spec page 199
//
typedef struct {

uchar bLength; // Size of this Descriptor in Bytes
uchar bDescriptorType; // Descriptor Type (=2)
iword wTotalLength; // Total Length of Data for this Conf
uchar bNumInterfaces; // No of Interfaces supported by this Conf
uchar bConfigurationValue; // Designator Value for *this* Configuration
uchar iConfiguration; // Index of String Desc for this Conf
uchar bmAttributes; // Configuration Characteristics (see below)
uchar bMaxPower; // Max. Power Consumption in this Conf (*2mA)
} configuration_descriptor;
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 93
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

//--

// Standard Interface Descriptor
// according to USB1.1 spec page 202
//
typedef struct {

uchar bLength; // Size of this Descriptor in Bytes
uchar bDescriptorType; // Descriptor Type (=4)
uchar bInterfaceNumber; // Number of *this* Interface (0..)
uchar bAlternateSetting; // Alternative for this Interface (if any)
uchar bNumEndpoints; // No of EPs used by this IF (excl. EP0)
uchar bInterfaceClass; // Interface Class Code
uchar bInterfaceSubClass; // Interface Subclass Code
uchar bInterfaceProtocol; // Interface Protocol Code
uchar iInterface; // Index of String Desc for this Interface
} interface_descriptor;

//--

// Standard Endpoint Descriptor
// according to USB1.1 spec page 203
//
typedef struct {

uchar bLength; // Size of this Descriptor in Bytes
uchar bDescriptorType; // Descriptor Type (=5)
uchar bEndpointAddress; // Endpoint Address (Number + Direction)
uchar bmAttributes; // Endpoint Attributes (Transfer Type)
iword wMaxPacketSize; // Max. Endpoint Packet Size
uchar bInterval; // Polling Interval (Interrupt) in ms
} endpoint_descriptor;

//--

// Structure of Setup Packet sent during
// SETUP Stage of Standard Device Requests
// according to USB1.1 spec page 183
//
typedef struct {

uchar bmRequestType; // Characteristics (Direction,Type,Recipient)
uchar bRequest; // Standard Request Code
iword wValue; // Value Field
iword wIndex; // Index or Offset Field
iword wLength; // Number of Bytes to transfer (Data Stage)
} setup_buffer;

//--

// USB Status Codes
//
#define US_ATTACHED 0x00 // (not used here)
#define US_POWERED 0x01
#define US_DEFAULT 0x02
#define US_ADDRESSED 0x03
#define US_CONFIGURED 0x04
#define US_SUSPENDED 0x80
Designer Reference Manual USB08 Evaluation Board

94 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

//--

// USB Standard Device Request Codes
// according to USB1.1 spec page 187
//
#define GET_STATUS 0x00
#define CLEAR_FEATURE 0x01
#define SET_FEATURE 0x03
#define SET_ADDRESS 0x05
#define GET_DESCRIPTOR 0x06
#define SET DESCRIPTOR 0x07 // optional
#define GET_CONFIGURATION 0x08
#define SET_CONFIGURATION 0x09
#define GET_INTERFACE 0x0a
#define SET_INTERFACE 0x0b
#define SYNCH_FRAME 0x0c // optional

#define REQUEST_COMPLETE 0xff // not part of the Standard - just
// a Flag to indicate that the recent
// Request has been finished

//--

// Descriptor Types
// according to USB1.1 spec page 187
//
#define DT_DEVICE 1
#define DT_CONFIGURATION 2
#define DT_STRING 3
#define DT_INTERFACE 4
#define DT_ENDPOINT 5

//--

// Function Prototypes
//
void initUSB();
uchar getUSB();
void putUSB(uchar c);
@interrupt void isrUSB();

//==
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 95
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08232.H

//==
// File: U08_232.H
// Func: Header File for RS232 Module of USB08 Demo App
// Ver.: 1.00
// Auth: (C)2000,2001 by Oliver Thamm
// MCT Elektronikladen GbR
// http://hc08web.de/usb08
// Rem.: View/Edit this File with TAB-Size=4
//==

//-- Function Prototypes ---

void initSSCI();
void putSSCI(char c);
char getSSCI();

//==

U08LED.H

//==
// File: U08LED.H
// Func: LED Functions for USB08
// Auth: (C)2000 by MCT Elektronikladen GbR, Oliver Thamm
// http://www.elektronikladen.de/mct
//==

// No code in this Module - just Macros!

#define initLED() (DDRD |= 0x07)
#define toggleLED(x) (PTD ^= (1 << (x-1)))
#define offLED(x) (PTD |= (1 << (x-1)))
#define onLED(x) (PTD &= ~(1 << (x-1)))

//==
Designer Reference Manual USB08 Evaluation Board

96 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08MAIN.C

//==
// File: U08MAIN.C
// Func: Main Module for USB08 Demo Application
// Ver.: 1.00
// Auth: (C)2000,2001 by Oliver Thamm, MCT Elektronikladen GbR
// http://hc08web.de/usb08
// Make: Build the project using U08MAIN.C, U08KEY.C,
// and VECJB8.C, use CRTSJB8.S as C-Startup Module
// Rem.: View/Edit this File with TAB-Size=4
//==

//-- Select Interface! ---

#define USE_USB_PIPE // by defining or NOT defining this
 // label before compiling, you can
 // select the communication interface
 // (if defined => USB, if not => RS232)

//-- Includes --

#include "hc08jb8.h" // HC908JB8 Register and Bitmap Definitions
#include "u08key.h" // Keyboard Module Header File
#include "u08led.h" // LED Module Header File (just Macros)
#include "u08adc.h" // Soft ADC Module Header File

//-- Compiler-dependent Stuff --

#define cli() _asm("cli")
#define nop() _asm("nop")

//-- Data Type Definitions ---

typedef unsigned char uchar;

//-- Code Starts here --

#ifdef USE_USB_PIPE
#include "u08usb.c" // use USB implementation
#define initPipe initUSB
#define getPipe getUSB
#define putPipe putUSB
#else
#include "u08232.c" // use RS232 implementation
#define initPipe initSSCI
#define getPipe getSSCI
#define putPipe putSSCI
@interrupt void isrUSB() { }
#endif

//--
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 97
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// Things that should be done immediately after Reset
// (this is called by the C-Startup Module)
//
void _HC08Setup() {

CONFIG = 0x21; // USB Reset Disable, COP Disable
TSC = 0x00; // clear TSTOP, Prescaler=0
}

//--

// Dummy Interrupt Handler
// Place a Breakpoint here in case you are looking for spurious Interrupts
//
@interrupt void isrDummy() {

nop(); // just for Debugging
}

//--

void main() {

uchar n, a;
uchar io_buffer[8];
uchar adc[3];

initPipe(); // init RS232 or USB Pipe
initLED(); // init LED Output
initKey(); // init Key Input
initSADC(); // init Soft ADC

cli();

a = 0;
while(1) {

// update ADC results (1 out of 3 at one time)

adc[a] = getSADC(a+1);
if(++a==3) a=0;

// get data from input pipe

n=0;
do {

io_buffer[n++] = getPipe();
} while(n<8);

// process input data

if(io_buffer[0]==0) offLED(1);
else onLED(1);
if(io_buffer[1]==0) offLED(2);
else onLED(2);
if(io_buffer[2]==0) offLED(3);
else onLED(3);
Designer Reference Manual USB08 Evaluation Board

98 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// send data to output pipe

io_buffer[0] = getKey(1);
io_buffer[1] = getKey(2);
io_buffer[2] = getKey(3);
io_buffer[3] = adc[0];
io_buffer[4] = adc[1];
io_buffer[5] = adc[2];

n=0;
do {

putPipe(io_buffer[n++]);
} while(n<8);

}
}

//==
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 99
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08DESC.C

//==
// File: U08DESC.C
// Func: Device-, Configuration- and String-Descriptors for
// USB08 Demo Application (all const Data, placed in Flash-ROM)
// Ver.: 1.00
// Auth: (C)2000,2001 by Oliver Thamm, MCT Elektronikladen GbR
// http://hc08web.de/usb08
// Rem.: View/Edit this File with TAB-Size=4
//==

//--

const device_descriptor DeviceDesc =
{ // Size of this Descriptor in Bytes
sizeof(device_descriptor),
DT_DEVICE, // Descriptor Type (=1)
{0x10, 0x01}, // USB Spec Release Number in BCD = 1.10
0, // Device Class Code (none)
0, // Device Subclass Code(none)
0, // Device Protocol Code (none)
8, // Maximum Packet Size for EP0
{0x70, 0x0c}, // Vendor ID = MCT Elektronikladen
{0x00, 0x00}, // Product ID = Generic Demo
{0x00, 0x01}, // Device Release Number in BCD
1, // Index of String Desc for Manufacturer
2, // Index of String Desc for Product
0, // Index of String Desc for SerNo
1 // Number of possible Configurations
}; // end of DeviceDesc

//--

const configuration_descriptor ConfigDesc =
{ // Size of this Descriptor in Bytes
sizeof(configuration_descriptor),
DT_CONFIGURATION,// Descriptor Type (=2)
{sizeof(configuration_descriptor) +sizeof(interface_descriptor) +
 sizeof(endpoint_descriptor) + sizeof(endpoint_descriptor),
 0x00}, // Total Length of Data for this Conf
1, // No of Interfaces supported by this Conf
1, // Designator Value for *this* Configuration
0, // Index of String Desc for this Conf
0xc0, // Self-powered, no Remote-Wakeup
0 // Max. Power Consumption in this Conf (*2mA)
}; // end of ConfigDesc

//--
Designer Reference Manual USB08 Evaluation Board

100 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

const interface_descriptor InterfaceDesc =
{ // Size of this Descriptor in Bytes
sizeof(interface_descriptor),
DT_INTERFACE, // Descriptor Type (=4)
0, // Number of *this* Interface (0..)
0, // Alternative for this Interface (if any)
2, // No of EPs used by this IF (excl. EP0)
0xff, // IF Class Code (0xff = Vendor specific)
0x01, // Interface Subclass Code
0xff, // IF Protocol Code (0xff = Vendor specific)
0 // Index of String Desc for this Interface
}; // end of InterfaceDesc

//--

const endpoint_descriptor Endpoint1Desc =
{ // Size of this Descriptor in Bytes
sizeof(endpoint_descriptor),
DT_ENDPOINT, // Descriptor Type (=5)
0x81, // Endpoint Address (EP1, IN)
0x03, // Interrupt
{0x08, 0x00}, // Max. Endpoint Packet Size
10 // Polling Interval (Interrupt) in ms
}; // end of Endpoint1Desc

//--

const endpoint_descriptor Endpoint2Desc =
{ // Size of this Descriptor in Bytes
sizeof(endpoint_descriptor),
DT_ENDPOINT, // Descriptor Type (=5)
0x02, // Endpoint Address (EP2, OUT)
0x03, // Interrupt
{0x08, 0x00}, // Max. Endpoint Packet Size
10 // Polling Interval (Interrupt) in ms
}; // end of Endpoint2Desc

//--

// Language IDs
//--------------
#define SD0LEN 4
//--------------

const uchar String0Desc[SD0LEN] = {
// Size, Type
SD0LEN, DT_STRING,
// LangID Codes
0x09, 0x04
};
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 101
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// Manufacturer String
//--
#define SD1LEN sizeof("MCT Elektronikladen")*2
//--
const uchar String1Desc[SD1LEN] = {

// Size, Type
SD1LEN, DT_STRING,
// Unicode String
’M’, 0,
’C’, 0,
’T’, 0,
’ ’, 0,
’E’, 0,
’l’, 0,
’e’, 0,
’k’, 0,
’t’, 0,
’r’, 0,
’o’, 0,
’n’, 0,
’i’, 0,
’k’, 0,
’l’, 0,
’a’, 0,
’d’, 0,
’e’, 0,
’n’, 0
};
Designer Reference Manual USB08 Evaluation Board

102 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// Product String
//---
#define SD2LEN sizeof("USB08 Evaluation Board")*2
//---
const uchar String2Desc[SD2LEN] = {

// Size, Type
SD2LEN, DT_STRING,
// Unicode String
’U’, 0,
’S’, 0,
’B’, 0,
’0’, 0,
’8’, 0,
’ ’, 0,
’E’, 0,
’v’, 0,
’a’, 0,
’l’, 0,
’u’, 0,
’a’, 0,
’t’, 0,
’i’, 0,
’o’, 0,
’n’, 0,
’ ’, 0,
’B’, 0,
’o’, 0,
’a’, 0,
’r’, 0,
’d’, 0
};

// Table of String Descriptors
//
uchar * const StringDescTable[] = {

String0Desc,
String1Desc,
String2Desc
};

//==
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 103
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08USB.C

//==
// File: U08USB.C
// Func: USB Implementation Module for USB08 Demo Application
// Ver.: 1.00
// Auth: (C)2000,2001 by Oliver Thamm, MCT Elektronikladen GbR
// http://hc08web.de/usb08
// Rem.: View/Edit this File with TAB-Size=4
//==

//--
#include "u08usb.h" // Definitions for USB Data Types & Constants
#include "u08desc.c" // const USB Descriptor Data
//--

// Source Code Option - set as required by Hardware!
//
#define USB_IPUE1 // Internal Pull-up Enable

// 1=Enable(use build-in Pull-up Resistor)
// 0=Disable (external Pull-up required)

//-- Variables ---

volatile uchar USB_State;

#define MAX_TXBUF_SIZE 16 // must be 2^x!
volatile uchar TxBuffer[MAX_TXBUF_SIZE];
volatile uchar TxBuf_RdIdx;
volatile uchar TxBuf_WrIdx;

#define MAX_RXBUF_SIZE 16 // must be 2^x!
volatile uchar RxBuffer[MAX_RXBUF_SIZE];
volatile uchar RxBuf_RdIdx;
volatile uchar RxBuf_WrIdx;

volatile uchar SuspendCounter;

setup_buffer SetupBuffer;
uchar SetupSize;
uchar * SetupDataPtr;

uchar R0Sequence; // DATA0/1 Flag for EP0 Rx
uchar R2Sequence; // DATA0/1 Flag for EP2 Rx

//--

// Force STALL Condition for EP0 (both IN and OUT)
// as a Response to an invalid SETUP Request
// Flags will be auto-cleared by the next SETUP Token
//
void forceSTALL() {

UCR3 |= BM_OSTALL0 + BM_ISTALL0;
}

Designer Reference Manual USB08 Evaluation Board

104 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

//--

#define ENDPOINT_HALT0x00
#define RT_ENDPOINT0x02

// CLEAR_FEATURE Standard Device Request Handler
// called by handleSETUP();
//
void clearFeature() {

if(SetupBuffer.wValue.hi ||
SetupBuffer.wIndex.hi ||
SetupBuffer.wLength.hi ||
SetupBuffer.wLength.lo) // check 0-fields
forceSTALL();

else if((SetupBuffer.bmRequestType == RT_ENDPOINT) &&
(SetupBuffer.wValue.lo == ENDPOINT_HALT) &&
((SetupBuffer.wIndex.lo==0x81) || (SetupBuffer.wIndex.lo==0x02))) {
// clear EP1/2 Force STALL Bit
if(SetupBuffer.wIndex.lo == 0x81) {// EP1

UCR1 &= ~(BM_T1SEQ+BM_STALL1); // clear STALL, Sequence = DATA0
}

else { // EP2
UCR2 &= ~BM_STALL2; // clear STALL
R2Sequence = 0; // Sequence = DATA0
}

// prepare to send empty DATA1 at next IN Transaction
UCR0 = BM_T0SEQ + BM_TX0E + 0;
}

else forceSTALL();
}

//--

// SET_ADDRESS Standard Device Request Handler
// called by handleSETUP();
//
void setAddress() {

if(SetupBuffer.wIndex.hi ||
SetupBuffer.wIndex.lo ||
SetupBuffer.wLength.hi ||
SetupBuffer.wLength.lo ||
SetupBuffer.wValue.hi ||
(SetupBuffer.wValue.lo & 0x80))
forceSTALL();

else {
// prepare to send empty DATA1 at next IN Transaction
UCR0 = BM_T0SEQ + BM_TX0E + 0;
}

}

//--
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 105
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// SET_CONFIGURATION Standard Device Request Handler
// called by handleSETUP();
//
void setConfiguration() {

if(SetupBuffer.wIndex.hi ||
SetupBuffer.wIndex.lo ||
SetupBuffer.wLength.hi ||
SetupBuffer.wLength.lo ||
SetupBuffer.wValue.hi ||
(SetupBuffer.wValue.lo > 1) ||
(USB_State == US_DEFAULT)) {
forceSTALL();
}

else {
if(SetupBuffer.wValue.lo > 0) {

// no need to remember the Configuration Value
// since we support only one Configuration anyway
USB_State = US_CONFIGURED;
// Activate Interrupt Endpoints, reset STALL and DATA-Toggle
UCR1 = BM_TX1E + 0; // EP1 Tx Enable, Data Size is 0
UCR2 = BM_RX2E; // EP2 Rx Enable
}

else {
// Zero means: go back to Adressed State
USB_State = US_ADDRESSED;
UCR1 = 0; // deactivate EP1
UCR2 = 0; // deactivate EP2
}

// prepare to send empty DATA1 at next IN Transaction
UCR0 = BM_T0SEQ + BM_TX0E + 0;
}

}

//--
Designer Reference Manual USB08 Evaluation Board

106 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// GET_DESCRIPTOR Standard Device Request Handler
// called by handleSETUP();
//
void getDescriptor() {

uchar n;
uchar *dest;

switch(SetupBuffer.wValue.hi) {

case DT_DEVICE: // Get Device Descriptor
SetupDataPtr = (uchar *)&DeviceDesc;
SetupSize = DeviceDesc.bLength;
break;

case DT_CONFIGURATION: // Get Configuration Descriptor
SetupDataPtr = (uchar *)&ConfigDesc;
SetupSize = ConfigDesc.wTotalLength.lo;
break;

case DT_STRING: // Get String Descriptor
// ### Table Index Boundary should be checked

SetupDataPtr = StringDescTable[SetupBuffer.wValue.lo];
SetupSize = *SetupDataPtr;
break;

default:
forceSTALL();
break;

}

if(SetupBuffer.wValue.hi == DT_DEVICE ||
SetupBuffer.wValue.hi == DT_CONFIGURATION ||
SetupBuffer.wValue.hi == DT_STRING) {

// check if requested Length is less than Descriptor Length
if((SetupBuffer.wLength.lo < SetupSize) && (SetupBuffer.wLength.hi == 0))

SetupSize = SetupBuffer.wLength.lo;
// copy (up to) 8 Bytes to EP0 Data Registers
n = 0;
dest = (uchar *)&UE0D0;
while(SetupSize!=0 && n<8) {

*dest = *SetupDataPtr;
dest++;
SetupDataPtr++;
SetupSize--;
n++;
}

// prepare to send n Bytes as DATA1 at next IN Transaction
// Rem: RX0E (currently disabled) will be re-enabled at end of handleSETUP()
UCR0 = BM_T0SEQ + BM_TX0E + n;
// check if this is the last DATA packet to send
if(n < 8) SetupBuffer.bRequest = REQUEST_COMPLETE;
}

}

//--
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 107
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

void handleSETUP() {

UCR0 &= ~BM_RX0E; // Deactivate EP0 Receiver
UIR2 = BM_RXD0FR; // Reset EP0 Receive Flag

SetupBuffer = *(setup_buffer *)(&UE0D0);

if(USR0 != 0x48) { // SETUP Transaction must be DATA0 with Size=8
forceSTALL(); // otherwise we have an Error Condition
}

else { // now we will check the Request Type
if((SetupBuffer.bmRequestType & 0x60) != 0) {

forceSTALL(); // Non-Standard Requests will not be handled!
}

else { // Standard Request Decoder:
switch(SetupBuffer.bRequest) {

case CLEAR_FEATURE: // 1
clearFeature();
break;

case SET_ADDRESS: // 5
setAddress();
break;

case GET_DESCRIPTOR: // 6
getDescriptor();
break;

case SET_CONFIGURATION: // 9
setConfiguration();
break;

default:
forceSTALL();
break;

}
}

}
UCR0 |= BM_RX0E; // Activate EP0 Receiver
}

//--

void handleOUT() {

UCR0 &= ~(BM_RX0E+BM_TX0E); // Deactivate EP0 Receiver + Transmitter
UIR2 = BM_RXD0FR; // Reset EP0 Receive Flag

// OUT Transactions over EP0 appear as Status Stage
// of a Standard Device Request only

UCR0 |= BM_RX0E; // Activate EP0 Receiver
}

//--
Designer Reference Manual USB08 Evaluation Board

108 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

void handleIN() {

uchar n;
uchar *dest;

UCR0 &= ~BM_TX0E; // Deactivate EP0 Transmitter
UIR2 = BM_TXD0FR; // Reset EP0 Transmit complete Flag

switch(SetupBuffer.bRequest) {
case SET_ADDRESS:

UADDR = SetupBuffer.wValue.lo | BM_USBEN;
if(SetupBuffer.wValue.lo != 0) USB_State = US_ADDRESSED;
else USB_State = US_DEFAULT;
SetupBuffer.bRequest = REQUEST_COMPLETE;
break;

case GET_DESCRIPTOR:
// copy (up to) 8 Bytes to EP0 Data Registers
n = 0;
dest = (uchar *)&UE0D0;
while(SetupSize!=0 && n<8) {

*dest = *SetupDataPtr;
dest++;
SetupDataPtr++;
SetupSize--;
n++;
}

// prepare to send n Bytes at next IN Transaction
// toggle DATA0/1
UCR0 = ((UCR0^BM_T0SEQ) & BM_T0SEQ) + BM_TX0E + BM_RX0E + n;
// check if this is the last DATA packet to send
if(n < 8) SetupBuffer.bRequest = REQUEST_COMPLETE;
break;

case CLEAR_FEATURE:
case SET_CONFIGURATION:

// nothing to do - handshake finished
SetupBuffer.bRequest = REQUEST_COMPLETE;
break;

case REQUEST_COMPLETE:
// Request is finished - just clear the TXD0F Flag (see above)
// and do not re-enable EP0 Transmitter, since there is no more
// data to send
break;

default:
forceSTALL();
break;

}
}

//--
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 109
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// handle IN Packet Transmit complete over EP1
//
void handleIN1() {

uchar n;
uchar *dest;

UCR1 &= ~BM_TX1E; // Deactivate EP1 Transmitter
UIR2 = BM_TXD1FR; // Reset EP1 Transmit complete Flag

// refill EP1 Tx Data Buffer
n = 0;
dest = &UE1D0;
while((TxBuf_RdIdx != TxBuf_WrIdx) && n<8) {

*dest = TxBuffer[TxBuf_RdIdx];
TxBuf_RdIdx = (TxBuf_RdIdx+1) & (MAX_TXBUF_SIZE-1);
dest++;
n++;
}

// Activate EP1 Transmitter to send n Bytes
UCR1 = ((UCR1^BM_T1SEQ) & BM_T1SEQ) + BM_TX1E + n;
}

//--
// handle OUT Packet received over EP2
//
void handleOUT2() {

uchar n;
uchar newIdx;
uchar *src;

UCR2 &= ~BM_RX2E; // Deactivate EP2 Receiver
UIR2 = BM_RXD2FR; // Reset EP2 Receive Flag

// ### Sender’s DATA Toggle should be checked!

// read out EP2 Rx Data Buffer
src = &UE2D0;
n = USR1 & BM_RP2SIZ; // Check Transfer Size
while(n) {

newIdx = (RxBuf_WrIdx+1) & (MAX_RXBUF_SIZE-1);
while(newIdx == RxBuf_RdIdx)

; // wait if TxBuffer is full
RxBuffer[RxBuf_WrIdx] = *src;
RxBuf_WrIdx = newIdx;
src++;
n--;
}

UCR2 = BM_RX2E; // Activate EP2 Receiver
}

//--
Designer Reference Manual USB08 Evaluation Board

110 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

void initUSB() {

UADDR = BM_USBEN + 0; // USB enable, default address
UCR0 = 0; // reset EP0
UCR1 = 0; // reset EP1
UCR2 = 0; // reset EP2
UCR3 = BM_TX1STR + // clear TX1ST Flag

 USB_IPUE*BM_PULLEN; // enable/disable internal Pull-up
UCR4 = 0; // USB normal operation
UIR0 = 0; // disable Interrupts
UIR2 = 0xff; // clear all Flags in UIR1
R0Sequence = 0; // EP0 Rx starts with DATA0
R2Sequence = 0; // EP2 Rx starts with DATA0
USB_State = US_POWERED; // powered, but not yet reset
TxBuf_RdIdx = 0; // reset Buffer Indexes
TxBuf_WrIdx = 0;
RxBuf_RdIdx = 0;
RxBuf_WrIdx = 0;
}

//--

uchar getUSB() {

uchar c;

while(RxBuf_RdIdx == RxBuf_WrIdx)
; // wait if RxBuffer is empty

c = RxBuffer[RxBuf_RdIdx];
RxBuf_RdIdx = (RxBuf_RdIdx+1) & (MAX_RXBUF_SIZE-1);
return c;
}

//--

void putUSB(uchar c) {

uchar newIdx;

newIdx = (TxBuf_WrIdx+1) & (MAX_TXBUF_SIZE-1);
while(newIdx == TxBuf_RdIdx)

; // wait if TxBuffer is full
TxBuffer[TxBuf_WrIdx] = c;
TxBuf_WrIdx = newIdx;
}

//--
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 111
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// USB Interrupt Handler
// All Interrupt Sources of the JB8’s integrated USB peripheral
// will be treated by this ISR
//
@interrupt void isrUSB() {

if(UIR1 & BM_EOPF) { // End of Packet detected?
SuspendCounter = 0; // reset 3ms-Suspend Counter
UIR2 = BM_EOPFR; // reset EOP Intr Flag
}

else if(UIR1 & BM_RXD0F) { // has EP0 received some data?
if(USR0 & BM_SETUP) // was it a SETUP Packet?

handleSETUP();
else // or a normal OUT Packet

handleOUT();
}

else if(UIR1 & BM_TXD0F) { // has EP0 sent Data?
handleIN();
}

else if(UIR1 & BM_TXD1F) { // has EP1 sent Data?
handleIN1();
}

else if(UIR1 & BM_RXD2F) { // has EP2 received Data?
handleOUT2();
}

else if(UIR1 & BM_RSTF) { // USB Reset Signal State detected?
initUSB(); // Soft Reset of USB Systems
UCR3 |= BM_ENABLE1+BM_ENABLE2; // Enable EP1 and EP2
UIR0 = BM_TXD0IE + BM_RXD0IE + // EP0 Rx/Tx Intr Enable and

 BM_TXD1IE + BM_RXD2IE + // EP1 Tx and EP2 Rx Intr Enable
 BM_EOPIE; // and End-of-Packet Intr Enable

UCR0 |= BM_RX0E; // EP0 Receive Enable
USB_State = US_DEFAULT; // Device is powered and reset
}

}

//==
Designer Reference Manual USB08 Evaluation Board

112 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08232.C

//==
// File: U08232.C
// Func: RS232 Implementation Module for USB08 Demo Application
// Ver.: 1.00
// Auth: (C)2000,2001 by Oliver Thamm, MCT Elektronikladen GbR
// http://hc08web.de/usb08
// Rem.: View/Edit this File with TAB-Size=4
//==

//--
#include "hc08jb8.h" // HC08JB8 Register Definitions
#include "u08232.h" // Header File for RS232 Module
//--

//--
// Hardware Dependencies - Physical Port Usage for Software SCI Tx/Rx
// Change the following Definitions to meet your Hardware Requirements:
//--

// Transmit Line is PTC[0]

#define setTxLow() (PTC &= ~0x01)
#define setTxHigh() (PTC |= 0x01)
#define enaTxOut() (DDRC |= 0x01)

// Receive Line is PTA[7]

#define tstRxLvl() (PTA & 0x80)
#define enaRxIn() (DDRA &= ~0x80)

//--
// Hardware Dependencies - SSCI Bit Timing generated by System Timer TIM
// Change the following Definitions to meet your Hardware Requirements:
//--

// clear TSTOP Bit in TSC Register to activate Counter
// PS0..PS2 Prescaler Bits in TSC Register must be 0 (default)
// so the Counter Rate is 3 MHz (0.333µs)

// 9600 Baud -> 104.1666 us per Bit -> 312.5 Clocks per Bit @ 3MHz
// 2400 Baud -> 416.6666 us per Bit -> 1250 Clocks per Bit @ 3MHz
// Adjust Value depending on Subroutine Call Overhead

//--
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 113
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

void delayHalfBit() {

// subtract ~20 Clocks for Overhead!
// 120 * 5 Clocks = 600 Clocks
_asm("\

lda #120 \n\
__dhbl:deca \n\

nop \n\
bne __dhbl \n\
");

}

void delayBitTime() {
delayHalfBit();
delayHalfBit();
}

//--

void initSSCI() {
setTxHigh(); // set Output Data Latch H
enaTxOut(); // enable Output Driver for Tx
enaRxIn(); // Rx is an Input Line
}

//--

void putSSCI(char c) {

unsigned char n;
unsigned char ccr_save;

// ccr_save = getCCR(); // save current Interrupt Mask
// disableINTR(); // disable Interrupts

setTxLow(); // send Startbit
delayBitTime();

n=8;
do { // send 8 Databits, LSB first

if((c&1)==0)
setTxLow();

else
setTxHigh();

delayBitTime();
c >>= 1;
} while(--n);

setTxHigh(); // send Stopbit
delayBitTime();
delayBitTime();

// setCCR(ccr_save); // restore previous Interrupt Mask
}

Designer Reference Manual USB08 Evaluation Board

114 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

//--

char getSSCI() {

char c;
unsigned char n;
unsigned char ccr_save;

// ccr_save = getCCR(); // save current Interrupt Mask
// disableINTR(); // disable Interrupts

while(tstRxLvl()!=0) ; // wait for H-L transition
delayHalfBit();
n=8;
do { // get 8 Databits

delayBitTime();
c >>= 1;
if(tstRxLvl()!=0)

c |= 0x80;
} while(--n);

delayBitTime();
if(tstRxLvl()==0) { // check Rx Line during Stopbit

// add framing error
// handling if desired
}

delayHalfBit();
// setCCR(ccr_save); // restore previous Interrupt Mask

return c;
}

//==
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 115
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08KEY.C

//==
// File: U08KEY.C
// Func: Key Input Functions for USB08
// Ver.: 1.00
// Auth: (C)2000,2001 by Oliver Thamm, MCT Elektronikladen GbR
// http://hc08web.de/usb08
// Rem.: View/Edit this File with TAB-Size=4
//==

#include "hc08jb8.h"
#include "u08key.h"

//-- Definitions ---

// Specification of *active* Key Inputs:
// PTA[4,5,6] = %01110000 = 0x70
// First Key connected to Port Bit 4

#define KEY_MASK 0x70
#define KEY_FIRST 4

//-- Variables ---

// Var used to track the Key Status

unsigned char KeyState;

//--

void initKey() {

POCR |= 0x01; // enable PTA Pullups
PTA |= KEY_MASK; // write 1 to Output Latches
DDRA |= KEY_MASK; // output H-Level Pulse
DDRA &= ~KEY_MASK; // back to Input
KBIER = KEY_MASK; // enable Interrupts
KBSCR = 0x04; // reset ACKK (just in case)
KeyState = 0; // reset internal Status Var
}

//--

char getKey(unsigned char x) {

x += KEY_FIRST-1; // calculate Bit Position
x = 1 << x; // create Bit Mask
if(KeyState & x) // test the relevant Status Bit

return 1;
return 0;
}

//--

@interrupt void isrKey() {

KeyState ^= ~(PTA | ~KEY_MASK);
KBSCR = 0x04; // reset ACKK (for noise safety only)
}

//==
Designer Reference Manual USB08 Evaluation Board

116 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U08ADC.C

//==
// File: U08ADC.C
// Func: Software ADC for USB08
// Ver.: 1.00
// Auth: (C)2000,2001 by Oliver Thamm, MCT Elektronikladen GbR
// http://hc08web.de/usb08
// Rem.: View/Edit this File with TAB-Size=4
//==

#include "hc08jb8.h"
#include "u08adc.h"

//--

void initSADC() {

// disable internal Pull-Ups on PTE
POCR &= ~0x80;// disable PTE20P
}

//--

unsigned scaleSADC(unsigned t1, unsigned t2) {

t1 >>= 4;
t2 <<= 4;
_asm("lda 5,sp");
_asm("psha");
_asm("pulh");
_asm("ldx 2,sp");
_asm("lda 6,sp");
_asm("div"); // A = H:A/X
_asm("clrx"); // 0:A = t2/t1
}

//--

int getSADC(char channel) {

unsigned t0, t1, t2;
unsigned char p;
unsigned volatile zz;

// convert channel # 1/2/3 to 0x01/0x02/0x04
if(channel == 3) channel++;
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 117
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// *** calibration cycle ***

PTD &= ~0x78; // PTD[3..6] = L
DDRD |= 0x78; // Output
PTE |= 0x07; // PTE[0..2] = H;
DDRE |= 0x07; // Output
for(zz=0;zz<1000;zz--) ;

DDRE &= ~0x07; // PTE HiZ (Input)
t0 = TCNT;
while((PTE & channel) != 0) ;
t1 = TCNT;
t1 -= t0;

// *** acquisition cycle ***

DDRD &= ~0x38; // PTD[3..5] = HiZ
DDRE |= 0x07; // Output
for(zz=0;zz<1000;zz--) ;

DDRE &= ~0x07; // PTE HiZ (Input)
t0 = TCNT;
while((PTE & channel) != 0) ;
t2 = TCNT;
t2 = t2 - t0 - t1 - 100;
if(t2 > 50000u) t2=0; // underflow
if(t2 >= t1) t2 = t1-1; // overflow

// *** calculate scaled result ***
t2 = scaleSADC(t1,t2);
return t2;
}

//==
Designer Reference Manual USB08 Evaluation Board

118 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

VECJB8.C

// INTERRUPT VECTORS TABLE FOR HC908JB8
// Cosmic HC08 C Compiler

extern void _stext(); /* startup routine */

extern void isrDummy();
extern void isrUSB();
//extern void timer0ISR();
extern void isrKey();

void (* const _vectab[])() = {
isrKey, /* Keypad */
isrDummy, /* TIMER overflow */
isrDummy, /* TIMER channel 1 */
isrDummy, /* TIMER channel 0 */
isrDummy, /* IRQ1 */
isrUSB, /* USB */
isrDummy, /* SWI */
_stext, /* RESET */
};
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 119
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CRTSJB8.S

; C STARTUP FOR HC08JB8
; Copyright (c) 1995 by COSMIC Software
;

xref _main, __sbss, __memory, __stack, __HC08Setup
xdef _exit, __stext

;
__stext:

ldhx #__stack ; initialize stack pointer
txs
jsr __HC08Setup

;
ldhx #__sbss ; start of bss
bra loop ; start loop

zbcl:
clr 0,x ; clear byte
aix #1 ; next byte

loop:
cphx #__memory ; up to the end
bne zbcl ; and loop

prog:
ldhx #__stack ; initialize stack pointer
txs
jsr _main ; execute main

_exit:
bra _exit ; and stay here

;
end
Designer Reference Manual USB08 Evaluation Board

120 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USB08.LKF

USB08 LINK COMMAND FILE
COSMIC HC08 C COMPILER
#
+seg .text -b 0xdc00 -n .text # program start address
+seg .const -a .text # constants follow code
+seg .bsct -b 0x0040 -n .bsct # zero page start address
+seg .ubsct -a .bsct -n .ubsct # data start address
+seg .data -a .ubsct # data start address
+def __sbss=@.bss # start address of bss

Put your startup file here
crtsjb8.o # startup routine

Put your files here
u08main.o
u08key.o
u08adc.o
#"c:\programs\cosmic\cx08\Lib\libi.h08"
"c:\programs\cosmic\cx08\Lib\libm.h08"

+seg .const -b 0xfff0 # vectors start address
Put your interrupt vectors file here if needed
vecjb8.o

+def __memory=@.bss # symbol used by library
+def __stack=0x013f # stack pointer initial value

BUILD.BAT

cx6808 -v -l u08main.c u08adc.c u08key.c vecjb8.c
clnk -m usb08.map -o usb08.h08 usb08.lkf
chex -fm -h -o usb08.s19 usb08.h08
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 121
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USB08.MAP

Map of usb08.h08 from link file usb08.lkf - Sun Jan 07 19:29:30 2001

Segments:

start 0000dc00 end 0000e263 length 1635 segment .text
start 0000e263 end 0000e2f5 length 146 segment .const
start 00000040 end 00000040 length 0 segment .bsct
start 00000040 end 00000041 length 1 segment .ubsct
start 00000041 end 00000041 length 0 segment .data
start 00000041 end 00000075 length 52 segment .bss
start 0000fff0 end 00010000 length 16 segment .const

Modules:

crtsjb8.o:
start 0000dc00 end 0000dc1d length 29 section .text

u08main.o:
start 0000dc1d end 0000e0e0 length 1219 section .text
start 00000041 end 00000074 length 51 section .bss
start 0000e263 end 0000e2f5 length 146 section .const

u08key.o:
start 0000e0e0 end 0000e133 length 83 section .text
start 00000074 end 00000075 length 1 section .bss

u08adc.o:
start 0000e133 end 0000e263 length 304 section .text

(c:\programme\cosmic\cx08\Lib\libm.h08)ireg.o:
start 00000040 end 00000041 length 1 section .ubsct

vecjb8.o:
start 0000fff0 end 00010000 length 16 section .const

Stack usage:

u08adc.o:
_getSADC 18 (12)
_initSADC 2 (2)
_scaleSADC 6 (6)

u08key.o:
_getKey 4 (4)
_initKey 2 (2)
_isrKey > 7 (7)

u08main.o:
__HC08Setup > 2 (2)
_clearFeature 4 (2)
_forceSTALL 2 (2)
Designer Reference Manual USB08 Evaluation Board

122 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

_getDescriptor 7 (5)
_getUSB 3 (3)
_handleIN 7 (5)
_handleIN1 5 (5)
_handleOUT 2 (2)
_handleOUT2 6 (6)
_handleSETUP 9 (2)
_initUSB 2 (2)
_isrDummy > 6 (6)
_isrUSB > 17 (8)
_main > 33 (15)
_putUSB 5 (5)
_setAddress 4 (2)
_setConfiguration 4 (2)

Symbols:

_ConfigDesc 0000e275 defined in u08main.o section .const
_DeviceDesc 0000e263 defined in u08main.o section .const
_Endpoint1Desc 0000e287 defined in u08main.o section .const
 *** not used ***
_Endpoint2Desc 0000e28e defined in u08main.o section .const
 *** not used ***
_InterfaceDesc 0000e27e defined in u08main.o section .const
 *** not used ***
_KeyState 00000074 defined in u08key.o section .bss
_R0Sequence 00000042 defined in u08main.o section .bss
_R2Sequence 00000041 defined in u08main.o section .bss
_RxBuf_RdIdx 00000050 defined in u08main.o section .bss
_RxBuf_WrIdx 0000004f defined in u08main.o section .bss
_RxBuffer 00000051 defined in u08main.o section .bss
_SetupBuffer 00000046 defined in u08main.o section .bss
_SetupDataPtr 00000043 defined in u08main.o section .bss
_SetupSize 00000045 defined in u08main.o section .bss
_String0Desc 0000e295 defined in u08main.o section .const
_String1Desc 0000e299 defined in u08main.o section .const
_String2Desc 0000e2c1 defined in u08main.o section .const
_StringDescTable 0000e2ef defined in u08main.o section .const
_SuspendCounter 0000004e defined in u08main.o section .bss
_TxBuf_RdIdx 00000062 defined in u08main.o section .bss
_TxBuf_WrIdx 00000061 defined in u08main.o section .bss
_TxBuffer 00000063 defined in u08main.o section .bss
_USB_State 00000073 defined in u08main.o section .bss
__HC08Setup 0000dff8 defined in u08main.o section .text
 used in crtsjb8.o
__memory 00000075 defined in command file section .bss
 used in crtsjb8.o
__sbss 00000041 defined in command file section .bss
 used in crtsjb8.o
__stack 0000013f defined in command file
 used in crtsjb8.o
__stext 0000dc00 defined in crtsjb8.o section .text
 used in vecjb8.o
__vectab 0000fff0 defined in vecjb8.o section .const
 *** not used ***
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 123
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

_clearFeature 0000dc25 defined in u08main.o section .text
_exit 0000dc1b defined in crtsjb8.o section .text
_forceSTALL 0000dc1d defined in u08main.o section .text
_getDescriptor 0000dce1 defined in u08main.o section .text
_getKey 0000e106 defined in u08key.o section .text
 used in u08main.o
_getSADC 0000e15d defined in u08adc.o section .text
 used in u08main.o
_getUSB 0000df5e defined in u08main.o section .text
_handleIN 0000ddfd defined in u08main.o section .text
_handleIN1 0000de8d defined in u08main.o section .text
_handleOUT 0000dded defined in u08main.o section .text
_handleOUT2 0000dee0 defined in u08main.o section .text
_handleSETUP 0000dd94 defined in u08main.o section .text
_initKey 0000e0e0 defined in u08key.o section .text
 used in u08main.o
_initSADC 0000e133 defined in u08adc.o section .text
 used in u08main.o
_initUSB 0000df2f defined in u08main.o section .text
_isrDummy 0000dfff defined in u08main.o section .text
 used in vecjb8.o
_isrKey 0000e122 defined in u08key.o section .text
 used in vecjb8.o
_isrUSB 0000df9d defined in u08main.o section .text
 used in vecjb8.o
_main 0000e001 defined in u08main.o section .text
 used in crtsjb8.o
_putUSB 0000df7c defined in u08main.o section .text
_scaleSADC 0000e13b defined in u08adc.o section .text
_setAddress 0000dc6e defined in u08main.o section .text
_setConfiguration 0000dc95 defined in u08main.o section .text
c_reg 00000040 defined in (c:\programme\cosmic\cx08\Lib\libm.h08)

ireg.o section .ubsct
 used in u08main.o
Designer Reference Manual USB08 Evaluation Board

124 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USB08.S19
S123DC0045013F94CDDFF845004120037FAF0165007526F845013F94CDE00120FE45001A2F
S123DC20F6AA30F781C60049260FC6004B260AC6004D2605C6004C270220E2C60046A102E9
S123DC4026F7C6004826F2C6004A418104A10226E8A181260945003CF6A43FF7200B4500E4
S123DC6019F6A4BFF74FC70041A6A0B73B81C6004B261BC6004A2616C6004D2611C6004C2D
S123DC80260CC600492607C60048A5802702208DA6A0B73B81C6004B2622C6004A261DC6DE
S123DCA0004D2618C6004C2613C60049260EC60048A1022407C60073A1022603CCDC1DC6DB
S123DCC00048270FA604C70073A620B73CA610B7192009A603C700733F3C3F19A6A0B73B88
S123DCE081A7FDC6004941010B410216410321CDDC1D2033AEE2CF0043A663C70044A6125A
S123DD002022AEE2CF0043A675C70044A6202014CE0048588CD6E2EFC70043DEE2F0CF00D1
S123DD2044878AF6C70045C60049410107410204A103265DC6004CC10045240BC6004D2642
S123DD4006C6004CC70045957FA620E7026F012027C60043CE0044878AF695EE01899EEE66
S123DD60048AF7956C0226026C014500436C0126017C4500457A957CC600452705F6A108FF
S123DD8025CFF6ABA0B73BF6A1082405A6FFC70047A7038145003BF6A4EFF7A601B7188CB0
S123DDA0AE08E61FD700455BF9B63D414805CDDC1D2023C60046A5602705CDDC1D2017C6AA
S123DDC0004741010E41051641061841091ACDDC1D2003CDDC2545003BF6AA10F781CDDC81
S123DDE06E20F3CDDCE120EECDDC9520E945003BF6A4CFF7A601B718F6AA10F781A7FD4558
S123DE00003BF6A4DFF7A602B718C60047A101277441050F410623A109276A4C276CCDDC10
S123DE201D2067C60048AA80B738C600482704A6032002A602C70073204B957FA620E702FF
S123DE406F012027C60043CE0044878AF695EE01899EEE048AF7956C0226026C01450043A7
S123DE606C0126017C4500457A957CC600452705F6A10825CFB63BA880A480FBAB30B73BAA
S123DE80F6A1082405A6FFC70047A70381A7FD45003CF6A4DFF7A608B718957FA628E702FB
S123DEA06F012021CE00628CD6006395EE01899EEE048AF7C600624CA40FC70062956C0247
S123DEC026026C017CC60062C100612705F6A10825D2B63CA880A480FBAB20B73CA70381FF
S123DEE0A7FC450019F6A4EFF7A610B718A63095E7036F02B63EA40FE7012028C6004F4C1A
S123DF00A40FF7C1005027FB95E602EE03878AF6CE004F8CD7005195F6C7004F6C032602A2
S123DF206C026A016D0126D4A610B719A70481A680B7383F3B3F3C3F19A644B71A3F1B3F34
S123DF4039A6FFB7184FC70042C700414CC700734FC70062C70061C70050C7004F8187C68F
S123DF600050C1004F27F8CE00508CD6005195F7C600504CA40FC70050F68A81878987C637
S123DF8000614CA40F95F7C1006227FBE602CE00618CD7006395F6C70061A703818BB64010
S123DFA0870F3A0A4FC7004EA680B7182045013A0D0D3D05CDDD94203ACDDDED2035033A6D
S123DFC005CDDDFD202D073A05CDDE8D2025093A05CDDEE0201D0D3A1ACDDF2F45001AF6E0
S123DFE0AA03F7A69BB73945003BF6AA10F7A602C7007386B7408A80A621B71F3F0A819DB4
S123E00080A7F3CDDF2F450007A607FAF7CDE0E0CDE1339A956F09AF0A9F9EEB0A9724055D
S123E0208B9E6C018A898B95E60B5F4C26015CCDE15D8A88F7956C09E609A10326026F09A3
S123E0404FE7086C08BF40BB409724058B9E6C018A898BCDDF5E8A88F795E608A10825E3D5
S123E0607D2608450003F6AA012006450003F6A4FEF7956D012608450003F6AA0220064585
S123E0800003F6A4FDF7956D022608450003F6AA042006450003F6A4FBF75FA601CDE10619
S123E0A095F75FA602CDE10695E7015FA603CDE10695E702E60AE703E60BE704E60CE705CA
S123E0C04FE7086C08BF40BB409724058B9E6C018AF65FCDDF7C95E608A10825E6CCE01739
S123E0E045001DF6AA01F7450000F6AA70F7450004F6AA70F7F6A48FF7A670B717A604B721
S123E100164FC70074818789A60395EB01E701A601EE012703485BFDC400742702A601A7A9
S123E12002818BB600AA8F43450074F8F7A604B7168A8045001DF6A47FF7818789A6049530
S123E1407466014BFAA604680569044BFA9EE605878A9EEE029EE606525FA702818789A78E
S123E160F8A1032603956C09450003F6A487F7450007F6AA78F7450008F6AA07F7450009D8
S123E180F6AA07F79E6F019E6F029EE602A0019EE70224039E6A019EE602A0E89EE601A2AD
S123E1A00325E7F6A4F8F7B60C95E706B60DE707B608E40926FAB60CE704B60DE007E705C0
S123E1C0E604E206E704450007F6A4C7F7450009F6AA07F79E6F019E6F029EE602A0019E0C
S123E1E0E70224039E6A019EE602A0E89EE601A20325E7F6A4F8F7B60C95E706B60DE70740
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Source Code Files 125
For More Information On This Product,

 Go to: www.freescale.com

Source Code Files

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S123E200B608E40926FABE0C9EEF03B60D9EE7049EE008879F95E20797869EE006879F9503
S123E220E2059786A0649EE7049FA20095E702E603A051E602A2C325046F026F03E603E08E
S123E24005E602E204250CE605A001E703E604A200E702E60387E60287E605EE04CDE13B26
S106E260A70C8183
S123E2631201100100000008700C000000010102000109022000010100C0000904000002EE
S123E283FF01FF000705810308000A0705020308000A0403090428034D0043005400200070
S123E2A345006C0065006B00740072006F006E0069006B006C006100640065006E002E030A
S123E2C35500530042003000380020004500760061006C0075006100740069006F006E00AD
S115E2E3200042006F00610072006400E295E299E2C188
S113FFF0E122DFFFDFFFDFFFDFFFDF9DDFFFDC004C
S903FFFFFE
Designer Reference Manual USB08 Evaluation Board

126 Source Code Files MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Appendix D. Bill of Materials and Schematic

This appendix includes:

• USB08 V 1.01 bill of materials — Table D-1

• USB08 evaluation board schematic — Figure D-1
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Bill of Materials and Schematic 127
For More Information On This Product,

 Go to: www.freescale.com

Bill of Materials and Schematic

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table D-1. Bill of Materials for USB08 V 1.01

Part Value

C1, C2 22 pF

C3, C4, C7, C8, C9, C10, C11, C12, C13, C14,
C15, C17, C18, C19

100 nF

C5, C6 10 µF

C16 100 µF/25 V

C20, C21, C22 10 nF

D1, D2, D3, D4 LED

D5, D6 BAT42

D7 ZD8.2V

D8 1N4001

IC1 MC68HC908JB8ADW

IC2 MAX232A

IC3 7805

JP1 Header 2x8

JP2 Header 1x3

L1, L2 Ferrite

Q1 XTAL 6 MHz

R1 MPY7P (photoresistor)

R2 K164-4.7k (NTC)

R3 10 k (potentiometer)

R4, R5, R6 10 k

R7 1.5 k/5 % (optional)

R8, R13, R14, R15 10 k

R9 2.2 k

R10, R11, R12, R19 330 R

R16, R17 27 R

R18 10 M

S1, S2, S3, S4, S5 Push Button

X1 Header 2x13

X2, X3 Header 2x5

X4 Power Jack
Designer Reference Manual USB08 Evaluation Board

128 Bill of Materials and Schematic MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Bill of Materials and Schematic

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

F
ig

u
re

 D
-1

. U
S

B
08

 E
va

lu
at

io
n

 B
o

ar
d

 S
ch

em
at

ic
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Bill of Materials and Schematic 129
For More Information On This Product,

 Go to: www.freescale.com

Bill of Materials and Schematic

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Designer Reference Manual USB08 Evaluation Board

130 Bill of Materials and Schematic MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Designer Reference Manual — USB08 Evaluation Board

Appendix E. Universal USB Device Driver (USBIO)

USBIO
Universal USB Device Driver
for Windows 98, Windows Millennium,
and Windows 2000

Reference Manual

Version 1.41
2000, December 20

By: Thesycon® Systemsoftware & Consulting GmbH
Wetzlarer Platz 1
D-98693 Ilmenau
Germany

Telephone: +49 3677 / 8462-0
Fax: +49 3677 / 8462-18
Email: USBIO@thesycon.de
Web: http://www.thesycon.de

Copyright 1998-2000 Thesycon Systemsoftware and Consulting GmbH
All Rights Reserved

Reprinted with permission from Thesycon Systemsoftware & Consulting GmbH. For inclusion in
this document, the manual has been reformatted only.

The following trademarks are referenced throughout this manual:
Microsoft, Windows, Win32, Windows NT, and Visual C++ are either trademarks or registered

trademarks of Microsoft Corporation.
Other brand and product names are trademarks or registered trademarks of their respective

holders.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 131
For More Information On This Product,

 Go to: www.freescale.com

http://www.thesycon.de

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.1 Contents

E.2 Introduction .135

E.3 Overview. .135
E.3.1 Platforms .136
E.3.2 Features .136

E.4 Architecture. .138
E.4.1 USBIO Object Model .140
E.4.1.1 USBIO Device Objects. .140
E.4.1.2 USBIO Pipe Objects .142
E.4.2 Establishing a Connection to the Device 144
E.4.3 Power Management .146
E.4.4 Device State Change Notifications .148

E.5 Programming Interface .149
E.5.1 Programming Interface Overview .149
E.5.2 Control Requests .150

IOCTL_USBIO_GET_DESCRIPTOR.151
IOCTL_USBIO_SET_DESCRIPTOR152
IOCTL_USBIO_SET_FEATURE .153
IOCTL_USBIO_CLEAR_FEATURE154
IOCTL_USBIO_GET_STATUS .155
IOCTL_USBIO_GET_CONFIGURATION 156
IOCTL_USBIO_GET_INTERFACE 157
IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR158
IOCTL_USBIO_SET_CONFIGURATION.159
IOCTL_USBIO_UNCONFIGURE_DEVICE160
IOCTL_USBIO_SET_INTERFACE 161
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST . . .162
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST .163
IOCTL_USBIO_GET_DEVICE_PARAMETERS 164
IOCTL_USBIO_SET_DEVICE_PARAMETERS.165
IOCTL_USBIO_GET_CONFIGURATION_INFO166
IOCTL_USBIO_RESET_DEVICE .167
IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER.168
IOCTL_USBIO_SET_DEVICE_POWER_STATE 169
IOCTL_USBIO_GET_DEVICE_POWER_STATE170
IOCTL_USBIO_GET_DRIVER_INFO 171
IOCTL_USBIO_CYCLE_PORT .172
IOCTL_USBIO_BIND_PIPE. .174
Designer Reference Manual USB08 Evaluation Board

132 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_UNBIND_PIPE .175
ICOTL_USBIO_RESET_PIPE .176
IOCTL_USBIO_ABORT_PIPE .177
IOCTL_USBIO_GET_PIPE_PARAMETERS178
IOCTL_USBIO_SET_PIPE_PARAMETERS179
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN180
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT181

E.5.3 Data Transfer Requests .182
E.5.3.1 Bulk and Interrupt Transfers .182
E.5.3.2 Isochronous Transfers .184
E.5.4 Input and Output Structures .185

USBIO_DRIVER_INFO .186
USBIO_DESCRIPTOR_REQUEST187
USBIO_FEATURE_REQUEST .188
USBIO_STATUS_REQUEST. .189
USBIO_STATUS_REQUEST_DATA190
USBIO_GET_CONFIGURATION_DATA191
USBIO_GET_INTERFACE. .192
USBIO_GET_INTERFACE_DATA.193
USBIO_INTERFACE_SETTING .194
USBIO_SET_CONFIGURATION .195
USBIO_CLASS_OR_VENDOR_REQUEST 196
USBIO_DEVICE_PARAMETERS .198
USBIO_INTERFACE_CONFIGURATION_INFO200
USBIO_PIPE_CONFIGURATION_INFO202
USBIO_CONFIGURATION_INFO .204
USBIO_FRAME_NUMBER .205
USBIO_DEVICE_POWER .206
USBIO_BIND_PIPE .207
USBIO_PIPE_PARAMETERS .208
USBIO_PIPE_CONTROL_TRANSFER209
USBIO_ISO_TRANSFER. .210
USBIO_ISO_PACKET .212
USBIO_ISO_TRANSFER_HEADER213

E.5.5 Enumeration Types .214
USBIO_PIPE_TYPE. .214
USBIO_REQUEST_RECIPIENT .215
USBIO_REQUEST_TYPE .216
USBIO_DEVICE_POWER_STATE217

E.5.6 Error Codes .218
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 133
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.6 USBIO Class Library. .220
E.6.1 CUsbIo Class .220
E.6.2 CUsbIoPipe Class .221
E.6.3 CUsbIoThread Class .222
E.6.4 CUsbIoReaderClass. .222
E.6.5 CUsbIoWriter Class .222
E.6.6 CUsbIoBufClass .223
E.6.7 CUsbIoBufPool Class .223

E.7 USBIO Demo Application .223
E.7.1 Dialog Pages for Device Operations 224
E.7.1.1 Device .224
E.7.1.2 Descriptors .224
E.7.1.3 Configuration .225
E.7.1.4 Interface .225
E.7.1.5 Pipes .225
E.7.1.6 Class or Vendor Request .226
E.7.1.7 Feature. .226
E.7.1.8 Other .226
E.7.1.9 Dialog Pages for Pipe Operations227
E.7.1.10 Pipe .227
E.7.1.11 Buffers .227
E.7.1.12 Control .228
E.7.1.13 Read from Pipe to Output Window 228
E.7.1.14 Read from Pipe to File .228
E.7.1.15 Write from File to Pipe .229

E.8 Installation Issues .229
E.8.1 Automated Installation: The USBIO Installation Wizard229
E.8.2 Manual Installation: The USBIO Setup Information File232
E.8.3 Uninstalling USBIO. .236
E.8.4 Building a Customized Driver Setup.237

E.9 Registry Entries .239

E.10 Related Documents .241

E.11 Light Version Limitations. 241/
Designer Reference Manual USB08 Evaluation Board

134 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.2 Introduction

USBIO is a generic Universal Serial Bus (USB) device driver for
Windows 98, Windows Millennium (ME), and Windows 2000. It is able to
control any type of USB device and provides a convenient programming
interface that can be used by Win32 applications.

This document describes the architecture, the features, and the
programming interface of the USBIO device driver. Furthermore it
includes instructions for installing and using the device driver.

The reader of this document is assumed to be familiar with the
specification of the Universal Serial Bus and with common aspects of
Win32-based application programming.

E.3 Overview

Support for the Universal Serial Bus (USB) is built into the Windows 98,
Windows Millennium, and Windows 2000 operating systems. These
systems include device drivers for the USB Host Controller hardware, for
USB Hubs, and for some classes of USB devices. The USB device
drivers provided by Microsoft support devices that conform with the
appropriate USB device class definitions made by the USB
Implementers Forum. USB devices that do not conform to one of the
USB device class specifications, e.g. in the case of a new device class
or a device under development, are not supported by device drivers
included with the operating system.

In order to use devices that are not supported by the operating system
itself the vendor of such a device is required to develop an USB device
driver. This driver has to conform to the Win32 Driver Model (WDM) that
defines a common driver architecture for Windows 98, Windows
Millennium, and Windows 2000. Writing, debugging, and testing of such
a driver means considerable effort and requires a lot of knowledge about
development of kernel mode drivers.

By using the generic USB device driver USBIO it is possible to get any
USB device up and running without spending the time and the effort of
developing a device driver. Especially, this might be useful during
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 135
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

development or test of a new device. But in many cases it is also suitable
to include the USBIO device driver in the final product. So there is no
need to develop and test a custom device driver for the USB-based
product at all.

E.3.1 Platforms

The USBIO driver supports the following operating system platforms:

• Windows 98 (Gold), the first release of Windows 98

• Windows 98 Second Edition (SE), the second release of
Windows 98

• Windows Millennium, the successor to Windows 98

• Windows 2000, the successor to Windows NT

• Windows 2000 Service Pack 1

NOTE: Windows NT 4.0 and Windows 95 are not supported by USBIO.

E.3.2 Features

The USBIO driver provides the following features:

• Compiles with the Win32 Driver Model (WDM)

• Supports Plug&Play

• Supports Power Management

• Provides an interface to USB devices that can be used by any
Win32 application

• Provides an interface to USB endpoints (pipes) that is similar to
files

• Fully supports asynchronous (overlapped) data transfer
operations

• Supports the USB transfer types Control, Interrupt, Bulk, and
Isochronous
Designer Reference Manual USB08 Evaluation Board

136 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Multiple USB devices can be controlled by USBIO at the same
time

• Multiple applications can use USBIO at the same time

The USBIO device driver can be used to control any USB device from a
Win32 application running in user mode. Examples of such devices are

• telephone and fax devices

• telephone network switches

• audio and video devices (e.g. cameras)

• measuring devices (e.g. oscilloscopes, logic analyzers)

• sensors (e.g. temperature, pressure)

• data converters (e.g. A/D converters, D/A converters)

• bus converters or adapters (e.g. RS 232, IEEE 488)

• chip card devices

If a particular kernel mode interface (e.g. WDM Kernel Mode Streaming,
NDIS) has to be supported in order to integrate the device into the
operating system, it is not possible to use the generic USBIO driver.
However, in such a case it is possible to develop a custom device driver
based on the source code of the USBIO though. Please contact
Thesycon if you need support on such kind of project.

Although the USBIO device driver fully supports isochronous data pipes,
there are some limitations with respect to isochronous data transfers.
They result from the fact that the processing of the isochronous data
streams has to be performed by the application which runs in user mode.
There is no guaranteed response time for threads running in user mode.
This may be critical for the implementation of some synchronization
methods, for example when the data rate is controlled by loop-back
packets (see the USB Specification, Chapter 5 for synchronization
issues of isochronous data streams).

However, it is possible to support all kinds of isochronous data streams
using the USBIO driver. But the delays that might be caused by the
thread scheduler of the operating system should be taken into
consideration.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 137
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.4 Architecture

Figure E-1 shows the USB driver stack that is part of the Windows 98,
Windows Millennium, and Windows 2000 operating systems. All drivers
are embedded within the WDM layered architecture.

Figure E-1. USB Driver Stack

The following modules are shown in Figure E-1:

• USB Host Controller is the hardware component that controls the
Universal Serial Bus. It also contains the USB Root Hub.

• OpenHCI.SYS is the host controller driver for controllers that
conform with the Open Host Controller Interface specification.
Optionally, it can be replaced by UHCD.SYS that is the Universal
Host Controller Driver. Which driver is used depends on the
main-board chip set for the PC. For instance, Intel chipsets
contain an Universal Host Controller.

Win32 Application

User Mode

Kernel Mode

USBIO.SYS
Other USB device

drivers

USB Driver Interface (USBDI)

USBD.SYS USBHUB.SYS

OpenHCI.SYS

Hardware

USB Host Controller
Designer Reference Manual USB08 Evaluation Board

138 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• USBD.SYS is the USB Bus Driver that controls and manages all
devices connected to the USB. It is provided by Microsoft as part
of the operating system.

• USBHUB.SYS is the USB Hub Driver. It is responsible for
managing and controlling USB Hubs.

• USBIO.SYS is the generic USB device driver USBIO.

The software interface that is provided by the operating system for use
by USB device drivers is called USB Driver Interface (USBDI). It is
exported by the USBD at the top of the driver stack. USBDI is an
IRP-based interface. This means that each individual request is
packaged into an I/O request packet (IRP), a data structure that is
defined by WDM. The I/O request packets are passed to the next driver
in the stack for processing and returned to the caller after completion.

The USB Driver Interface is accessible for kernel mode drivers only.
Normally, there is no way to use this interface directly from applications
that run in user mode. The USBIO device driver was designed to
overcome this limitation. It connects to the USBDI at its lower edge and
provides a private interface at its upper edge that can be used by Win32
applications. Thus, the USB driver stack becomes accessible to
applications. A Win32 application is able to communicate with one or
more USB devices by using the programming interface exported by the
USBIO device driver. Furthermore, the USBIO programming interface
may be used by more than one application or by multiple instances of
one application at the same time.

The main design goal for the USBIO device driver was to make available
to applications all the features that the USB driver stack provides at the
USBDI level. For that reason the programming interface of the USBIO
device driver (USBIOI) is closely related to the USBDI. But many of the
functions cannot be translated in an one-to-one relationship.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 139
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.4.1 USBIO Object Model

The USBIO device driver provides a communication model that consists
of device objects and pipe objects. The objects are created, destroyed,
and managed by the USBIO driver. An application can open handles to
device objects and bind these handles to pipe objects.

E.4.1.1 USBIO Device Objects

Each USBIO device object is associated with a physical USB device that
is connected to the USB. A device object is created by the USBIO driver
in response to an Add Device request from the Plug&Play Manager of
the operating system. The USBIO driver is able to handle multiple device
objects at the same time.

Each device object created by USBIO is registered with the operating
system by using a unique identifier (GUID, Globally Unique Identifier).
This identifier is called “Device Interface ID”. All device objects managed
by USBIO are identified by the same GUID.The GUID is defined in the
USBIO Setup Information (INF) file. Based on the GUID and an instance
number, the operating system generates a unique name for each device
object. This name should be considered as opaque by applications. It
should never be used directly or stored permanently.

It is possible to enumerate all the device objects associated with a
particular GUID by using functions provided by the Windows Setup API.
The Functions used for this purpose are:

SetupDiGetClassDevs()

SetupDiEnumDeviceInterfaces()

SetupDiGetDeviceInterfaceDetail()

The result of the enumeration process is a list of device objects currently
created by USBIO. Each of the USBIO device objects corresponds to a
device currently connected to the USB. For each device object an
opaque device name string is returned. This string can be passed to
CreateFile() to open the device object.

A default Device Interface ID (GUID) is built into the USBIO driver. This
default ID is defined in USBIO_I.H. Each device object created by
USBIO is registered by using this default ID. The default Device
Designer Reference Manual USB08 Evaluation Board

140 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Interface ID is used by the USBIO demo application for device
enumeration. This way, it is always possible to access devices
connected to the USBIO from the demo application.

In addition, an user-defined Device Interface ID is supported by USBIO.
This user-defined GUID is specified in the USBIO INF file by the
USBIO_UserInterfaceGuid variable. If the user-defined interface ID
is present at device initialization time USBIO registers the device with
this ID. Thus, two interfaces — default and user-defined — are
registered for each device. The default Device Interface ID should only
be used by the USBIO demo application. Custom applications should
always use a private user-defined Device Interface ID. This way, device
naming conflicts are avoided.

IMPORTANT: Every USBIO customer should generate its own private device interface
GUID. This is done by using the tool GUIDGEN.EXE from the Microsoft
Platform SDK or the VC++ package. This private GUID is specified as
user-defined interface in USBIO_UserInterfaceGuid in the USBIO
INF file. The private GUID is also used by the customer’s application for
device enumeration. For that reason the generated GUID must also be
included in the application. The macro DEFINE_GUID() can be used for
that purpose. See the Microsoft Platform SDK documentation for further
information.

As stated above, all devices connected to USBIO will be associated with
the same device interface ID that is also used for device object
enumeration. Because of that, the enumeration process will return a list
of all USBIO device objects. In order to differentiate the devices an
application should query the device descriptor or string descriptors. This
way, each device instance can be identified unambiguously.

After the application has received one or more handles for the device,
operations can be performed on the device by using a handle. If there is
more than one handle to the same device, it makes no difference which
handle is used to perform a certain operation. All handles that are
associated with the same device behave the same way.

NOTE: Former versions of USBIO (up to V1.16) used a different device naming
scheme. The device name was generated by appending an instance
number to a common prefix. So the device names were static. In order
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 141
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

to ensure compatibility USBIO still supports the old naming scheme.
This feature can be enabled by defining a device name prefix in the
variable USBIO_DeviceBaseName in the USBIO INF file. However, it is
strongly recommended to use the new naming scheme based on Device
Interface IDs (GUIDs), because it conforms with current Windows 2000
guidelines. The old-style static names should only be used if
backward-compatibility with former versions of USBIO is required.

E.4.1.2 USBIO Pipe Objects

The USBIO driver uses pipe objects to represent an active endpoint of
the device. The pipe objects are crated when the deice configuration is
set. The number and type of created pipe objects depend on the
selected configuration. The USBIO driver does not control the default
endpoint (endpoint zero) of a device. This endpoint is owned by the USB
bus driver USBD. Because of that, there is no pipe object for endpoint
zero and there are no pipe objects available until the device is
configured.

In order to access a pipe the application has to create a handle by
opening the device object as described above and attach it to a pipe.
This operation is called “bind”. After a binding is successfully established
the application can use the handle to communicate with the endpoint
that the pipe object represents. Each pipe maybe bound only once, and
a handle may be bound to one pipe only. So there is always an
one-to-one relation of pipe handles and pipe objects. This means that
the application has to create a separate handle for each pipe it wants to
access.

The USBIO driver also supports an “unbind” operation. That is used to
delete a binding between a handle and a pipe. After an unbind is
performed the handle may be reused to bind another pipe object and the
pipe object can be used to establish a binding with another handle.

The following example is intended to explain the relationships described
above. In Figure E-2 a configuration is shown where one device object
and two associated pipe objects exist within the USBIO data base.
Designer Reference Manual USB08 Evaluation Board

142 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure E-2. USBIO Device and Pipe Objects Example

The device object is identified by a device name as described in
E.4.1.1 USBIO Device Objects. A pipe object is identified by its
endpoint address that also includes the direction flag at bit 7 (MSB). Pipe
0x81 is an IN pipe (transfer direction from device to host) and pipe 0x02
is an OUT pipe (transfer direction from host to device). The application
has created three handles for the device by calling CreateFile().

Handle1 is not bound to any pipe, therefore it can be used to perform
device-related operations only. It is called a device handle.

Handle2 is bound to the IN pipe 0x81. By using this handle with the
Win32 function ReadFile() the application can initiate data transfers
from endpoint 0x81 to its buffers.

Handle3 is bound to the OUT pipe 0x02. By using Handle3 with the
function WriteFile() the application can initiate data transfers from its
buffers to endpoint 0x02 of the device.

User Mode

Kernel Mode

Handle1 Handle2 Handle3

Application

Device Object
identified by device name

Pipe 0x81 Pipe 0x02
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 143
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Handle2 and Handle3 are called pipe handles. Note that while Handle1
cannot be used to communicate with a pipe, any operation on the device
can be executed by using Handle2 or Handle3, too.

E.4.2 Establishing a Connection to the Device

The following code sample demonstrates the steps that are necessary
at the USBIO API to establish a handle for a device and a pipe. The code
is not complete, no error handling is included.

// include the interface header file of USBIO.SYS
#include “usbio_i.h”

// device instance number
#define DEVICE_NUMBER 0

// some local variables
HANDLE FileHandle;
USBIO_SET_CONFIGURATION SetConfiguration;
USBIO_BIND_PIPE BindPipe;
HDEVINFO DevInfo;
GUID g_UsbioID = USBIO_IID;
SP_DEVICE_INTERFACE_DATA DevData;
SP_INTERFACE_DEVICE_DETAIL_DATA *DevDetail = NULL;
DWORD ReqLen;
DWORD BytesReturned;

// enumerate the devices
// get a handle to the device list
DevInfo = SetupDiGetClassDevs (&g_UsbioID,

NULL,NULL,DIGCF_DEVICEINTERFACE|DIGCF_PRESENT);
// get the device with index DEVICE_NUMBER
SetupDiEnumDeviceInterfaces (DevInfo, NULL,

&g_usbioID, DEVICE_NUMBER, &DevData);
// get length of detailed information
SetupDiGetDeviceInterfaceDetail (DevInfo, &DevData, NULL,

0, &ReqLen, NULL);
// allocate a buffer
DevDetail = (SP_INTERFACE_DEVICE_DETAIL_DATA*) malloc (ReqLen);
// now get the detailed device information
DevDetail->cbSize = sizeof(SP_INTERFACE_DEVICE_DETAIL_DATA);
SetupDiGetDeviceInterfaceDetail (DevInfo, &DevData, DevDetail,

ReqLen, &ReqLen, NULL);
// open the device, use OVERLAPPED flag if necessary
// use DevDetail->DevicePath as device name
FileHandle = CreateFile(

DevDetail->DevicePath,
GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_WRITE|FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
0 /* or FILE_FLAG_OVERLAPPED */,
NULL);
Designer Reference Manual USB08 Evaluation Board

144 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

// setup the data structure for configuration
// use the configuration descriptor with index 0
SetConfiguration.ConfigurationIndex = 0;
// device has 1 interface
SetConfiguration.NbOfInterfaces = 1;
// first interface is 0
SetConfiguration.InterfaceList[0].InterfaceIndex = 0;
// alternate setting for first interface is 0
SetConfiguration.InterfaceList[0].AlternateSettingIndex = 0;
// maximum buffer size for read/write operation is 4069 bytes
SetConfiguration.InterfaceList[0].MaximumTransferSize = 4096;

// configure the device
DeviceIoControl(FileHandle,

IOCTL_USBIO_SET_CONFIGURATION,
&SetConfiguration, sizeof(SetConfiguration),
NULL,0,
&BytesReturned,
NULL
);

// setup the data structure to bind the file handle
BindPipe.EndpointAddress = 0x81; // the device has an endpoint 0x81
// bind the file handle
DeviceIoControl(FileHandle,

IOCTL_USBIO_BIND_PIPE
&BindPipe, sizeof(BindPipe),
NULL,0,
&BytesReturned,
NULL
);

// read (or write) data from (to) the device
// use OVERLAPPED structure if necessary
ReadFile(FileHandle, ...);

// close file handle
CloseHandle(FileHandle);

Refer to the Win32 API documentation for the syntax and the
parameters of the functions SetupDiXxx, CreateFile,
DeviceIoControl, ReadFile, WriteFile, CloseHandle. The file
handle can be opened with the FILE_FLAG_OVERLAPPED flag if
asynchronous behaviour is required.

More code samples that show the usage of the USBIO programming
interface can be found in the USBIO Class Library (USBIOLIB), the
USBIO demo application (USBIOAPP), and the simple console
applications ReaderCpp and ReadPipe.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 145
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.4.3 Power Management

Windows 98, Windows Millennium, and Windows 2000 support system
power management. That means that if the computer is idle for a given
time, some parts of the computer can go into a sleeping mode. A system
power change can be initiated by the user or by the operating system
itself, on a low battery condition for example. An USB device driver has
to support the system power management. Each device which supports
power switching has to have a device power policy owner. It is
responsible for managing the device power states in response to system
power state changes. The USBIO driver is the power policy owner of the
USB devices that it controls. In addition to the system power changes the
device power policy owner can initiate device power state changes.

Before the system goes into a sleep state the operating system asks
every driver if its device can go into the sleep state. If all active drivers
return success the system goes down. Otherwise, a message box
appears on the screen and informs the user that the system is not able
to go into the sleeping mode.

Before the system goes into a sleeping state the driver has to save all
the information that it needs to reinitialize the device (device context) if
the system is resumed. Furthermore, all pending requests have to be
completed and further requests have to be queued. In the device power
states D1 or D2 (USB Suspend) the device context stored in the USB
device will be lost. Therefore, a device sleeping state D1 or D2 is
handled transparent for the application. In the state D3 (USB Off) the
device context is lost. Because the information stored in the device is
known to the application only (e.g. the current volume level of an audio
device), the generic USBIO driver cannot restore the device context in a
general way. This has to be done by the application. Note that Windows
2000 restores the USB configuration of the device
(SET_CONFIGURATION request) after the system is resumed.

The behaviour with respect to power management can be customized by
registry parameters. For example, if a long time measurement should be
performed the computer has to be prevented from going power down.
For a description of the supported registry parameters, see E.9 Registry
Entries.
Designer Reference Manual USB08 Evaluation Board

146 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

All registry entries describing device power states are DWORD
parameters where the value 0 corresponds to DevicePowerD0, 1 to
DevicePowerD1, and so on.

The parameter PowerStateOnOpen specifies the power state to which
the device is set if the first file handle is opened. If the last file handle is
closed the USB device is set to the power state specified in the entry
PowerStateOnClose.

If at least one file handle is open for the device the key
MinPowerStateUsed describes the minimal device power state that is
required. If the value is set to 0 the computer will never go into a sleep
state. If this key is set to 2 the device can go into a suspend state but not
into D3 (Off). A power-down request caused by a low battery condition
cannot be suppressed by using this parameter.

If no file handle is currently open for the device, the key
MinPowerStateUnused defines the minimal power state the device
can go into. Thus, its meaning is similar to that of the parameter
MinPowerStateUsed.

If the parameter AbortPipesOnPowerDown is set to 1 all pending
requests submitted by the application are returned before the device
enters a sleeping state. This switch should be set to 1 if the parameter
MinPowerStateUsed is different from D0. The pending I/O requests
are returned with the error code USBIO_ERR_POWER_DOWN. This
signals to the application that the error was caused by a power down
event. The application may ignore this error and repeat the request. The
re-submitted requests will be queued by the USBIO driver. They will be
executed after the device is back in state D0.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 147
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.4.4 Device State Change Notifications

The application is able to receive notifications when the state of an USB
device changes. The Win32 API provides the function
RegisterDeviceNotification for this purpose. This way, an
application will be notified if an USB device is plugged in or removed.

Please refer to the Microsoft Platform SDK documentation for detailed
information on the functions RegisterDeviceNotification and
UnregisteredDeviceNotification. In addition, the source code
of the USBIO demo application USBIOAPP provides an usage example.

The device notification mechanism is only available if the USBIO device
naming scheme is based on Device Interface IDs (GUIDs). See
E.4.1.1 USBIO Device Objects for details. We strongly recommend to
use this new naming scheme.

NOTE: The function UnregisteredDeviceNotification should not be
used on Windows 98. There is a bug in the implementation that causes
the system to become unstable. So it may crash at some later point in
time. The bug seems to be “well known”, it was discussed in some
Usenet groups.
Designer Reference Manual USB08 Evaluation Board

148 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.5 Programming Interface

E.5.1 Programming Interface Overview

Table E-1. I/O Operations Supported by the USBIO Device Driver

Operation Used On Bus Action

IOCTL_USBIO_GET_DRIVER_INFO device —

IOCTL_USBIO_GET_DESCRIPTOR device request on default pipe

IOCTL_USBIO_SET_DESCRIPTOR device request on default pipe

IOCTL_USBIO_SET_FEATURE device request on default pipe

IOCTL_USBIO_CLEAR_FEATURE device request on default pipe

IOCTL_USBIO_GET_STATUS device request on default pipe

IOCTL_USBIO_GET_CONFIGURATION device request on default pipe

IOCTL_USBIO_GET_INTERFACE device request on default pipe

IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR device —

IOCTL_USBIO_SET_CONFIGURATION device request on default pipe

IOCTL_USBIO_UNCONFIGURE_DEVICE device request on default pipe

IOCTL_USBIO_SET_INTERFACE device request on default pipe

IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST device request on default pipe

IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST device request on default pipe

IOCTL_USBIO_GET_DEVICE_PARAMETERS device —

IOCTL_USBIO_SET_DEVICE_PARAMETERS device —

IOCTL_USBIO_GET_CONFIGURATION_INFO device —

IOCTL_USBIO_RESET_DEVICE device
reset on hub port, USBD

assigns USB address

IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER device —

IOCTL_USBIO_GET_DEVICE_POWER_STATE device —

IOCTL_USBIO_SET_DEVICE_POWER_STATE device set properties on hub port

IOCTL_USBIO_BIND_PIPE device —

IOCTL_USBIO_UNBIND_PIPE pipe —

IOCTL_USBIO_RESET_PIPE pipe request on default pipe

IOCTL_USBIO_ABORT_PIPE pipe —

IOCTL_USBIO_GET_PIPE_PARAMETERS pipe —

IOCTL_USBIO_SET_PIPE_PARAMETERS pipe —

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN pipe request on pipe

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT pipe request on pipe

ReadFile pipe data transfer from pipe (IN)

WriteFile pipe data transfer to pipe (OUT)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 149
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.5.2 Control Requests

This section provides a detailed description of the I/O Control operations
the USBIO driver supports through its programming interface. The I/O
Control requests are submitted to the driver using the Win32 function
DeviceIoControl (see E.4 Architecture). The DeviceIoControl
function is defined as follows:

BOOL DeviceIoControl (
HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive

// output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure

// for asynchronous operation
);

Refer to the Microsoft Platform SDK documentation for more
information.

The following sections describe the I/O Control codes that may be
passed to the DeviceIoControl function as dwIoControlCode and
the parameters required for lpInBuffer, nInBufferSize,
lpOutBuffer, nOutBufferSize.
Designer Reference Manual USB08 Evaluation Board

150 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_DESCRIPTOR

The IOCTL_USBIO_GET_DESCRIPTOR operation requests a specific
descriptor from the device.

lpInBuffer Pointer to a buffer that contains an USBIO_DESCRIPTOR_REQUEST
(page 187) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer point to by lpInBuffer, which
has to be sizeof(USBIO_DESCRIPTOR_REQUEST) for this operation.

lpOutBuffer Pointer to a buffer that will receive the descriptor data.

nOutBufferSize Specifies the size in bytes, of the buffer pointed to be lpOutBuffer.

Comments The buffer that is passed to this function in lpOutBuffer should be
large enough to hold the requested descriptor, otherwise only a part of
the descriptor will be returned. The size of the output buffer should be a
multiple of the packet size of the default pipe (endpoint zero).
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 151
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_SET_DESCRIPTOR

The IOCTL_USBIO_SET_DESCRIPTOR operation sets a specific
descriptor of the device.

lpInBuffer Pointer to a buffer that contains an USBIO_DESCRIPTOR_REQUEST
(page 187) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_DESCRIPTOR_REQUEST) for this
operation.

lpOutBuffer Pointer to a buffer that contains the descriptor data to be set.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

Comments USB devices do not have to support this operation.
Designer Reference Manual USB08 Evaluation Board

152 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_SET_FEATURE

The IOCTL_USBIO_SET_FEATURE operation is used to set or enable
a specific feature.

lpInBuffer Pointer to a buffer that contains an USBIO_FEATURE_REQUEST
(page 188) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_FEATURE_REQUEST) for this
operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments The SET_FEATURE request appears on the bus with the parameters
specified in the IOCTL_USBIO_SET_FEATURE structure.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 153
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_CLEAR_FEATURE

The IOCTL_USBIO_CLEAR_FEATURE operation is used to clear or
disable a specific feature.

lpInBuffer Pointer to a buffer that contains an USBIO_FEATURE_REQUEST
(page 188) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_FEATURE_REQUEST) for this
operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments The CLEAR_FEATURE request appears on the bus with the parameters
specified in the IOCTL_USBIO_CLEAR_FEATURE structure.
Designer Reference Manual USB08 Evaluation Board

154 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_STATUS

The IOCTL_USBIO_GET_STATUS operation requests status for a
specific recipient.

lpInBuffer Pointer to a buffer that contains an USBIO_STATUS_REQUEST
(page 189) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_STATUS_REQUEST) for this operation.

lpOutBuffer Pointer to a buffer that will receive an
USBIO_STATUS_REQUEST_DATA (page 190) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_STATUS_REQUEST_DATA) for
this operation.

Comments The GET_STATUS request appears on the bus with the parameters
specified in the USBIO_STATUS_REQUEST (page 189) structure. The
function returns the structure USBIO_STATUS_REQUEST_DATA
(page 190) which contains two bytes of data.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 155
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_CONFIGURATION

The IOCTL_USBIO_GET_CONFIGURATION operation returns the
current configuration of the device.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Pointer to a buffer that will receive an
USBIO_GET_CONFIGURATION_DATA (page 191) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_GET_CONFIGURATION_DATA)
for this operation.

Comments A GET_CONFIGURATION request appears on the bus. The structure
USBIO_GET_CONFIGURATION_DATA (page 191) returns the
configuration value. A value of zero means “not configured”.
Designer Reference Manual USB08 Evaluation Board

156 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_INTERFACE

The IOCTL_USBIO_GET_INTERFACE operation returns the current
alternate setting of a specific interface.

lpInBuffer Pointer to a buffer that contains an USBIO_GET_INTERFACE
(page 192) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_GET_INTERFACE) for this operation.

lpOutBuffer Pointer to a buffer that will receive an
USBIO_GET_INTERFACE_DATA (page 193) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_GET_INTERFACE_DATA) for
this operation.

Comments A GET_INTERFACE request appears on the bus. The structure
USBIO_GET_INTERFACE_DATA (page 193) returns the current
alternate setting of the interface specified in USBIO_GET_INTERFACE.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 157
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR

The IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR operation stores
the configuration descriptor to be used for set configuration requests
within the USBIO device driver.

lpInBuffer Pointer to a buffer that contains the configuration descriptor data.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero

Comments This request may be used to store an user-defined configuration
descriptor within the USBIO driver. The stored descriptor is used by the
USBIO driver in subsequent IOCTL_USBIO_SET_CONFIGURATION
(page 159) operations. The usage of
IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR is optional. If no
user-defined configuration descriptor is stored, USBIO uses the
descriptor from the device.

There may be cases where the USBD driver provided by Microsoft with
Windows does not process correctly the configuration descriptor that is
reported by the device. This means it would not be possible to configure
the device. In this situation the
IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR request may be used to
work around the problem. This request enables the application to use a
modified configuration descriptor. The application can get the
configuration descriptor using ISOCTL_USBIO_GET_DESCRIPTOR
(page 151), modify it appropriately and store it in the USBIO driver using
the IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR request. Thus, the
modified configuration descriptor will be passed to USBD when the
device is configured.

The following is an example for the problem described above:
In the endpoint descriptor of an audio device the bmAttributes
field contains two additional bits of information as defined by the
audio class specification. The USBD does not recognize the pipe
correctly and returns an invalid pipe type, when the additional bits
in bmAttributes are not masked off. This has to be done by the
application.
Designer Reference Manual USB08 Evaluation Board

158 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_SET_CONFIGURATION

The IOCTL_USBIO_SET_CONFIGURATION operation is used to set
the device configuration.

lpInBuffer Pointer to a buffer that contains an USBIO_SET_CONFIGURATION
(page 195) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_SET_CONFIGURATION) for this
operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments A SET_CONFIGURATION request appears on the bus. The USBD
generates additional SET_INTERFACE requests on the bus if
necessary.

All available interfaces have to be configured, or the request will fail. The
number of interfaces and the alternate setting for each interface have to
be specified in the structure USBIO_SET_CONFIGURATION
(page 195).

All pipe handles associated with the device will be unbound and all
pending requests will be cancelled. If this request returns with success,
new pipe objects are available. The operation
IOCTL_USBIO_GET_CONFIGURATION_INFO (page 166) may be
used to query all available pipes and interfaces.

By default, the configuration descriptor that is reported by the device is
passed to the USBD. If an user-defined configuration descriptor is stored
with IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR (page 158), this
descriptor is used.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 159
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_UNCONFIGURE_DEVICE

The IOCTL_USBIO_UNCONFIGURE_DEVICE operation is used to set
the device to its unconfigured state.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments A SET_CONFIGURATION request with the configuration value 0
appears on the bus. All pipe handles associated with the device will be
unbound and all pending requests will be cancelled.
Designer Reference Manual USB08 Evaluation Board

160 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_SET_INTERFACE

The IOCTL_USBIO_SET_INTERFACE operation sets the alternate
setting of a specific interface.

lpInBuffer Pointer to a buffer that contains an USBIO_INTERFACE_SETTING
(page 194) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_INTERFACE_SETTING) for this
operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments A SET_INTERFACE request appears on the bus.

All pipe handles associated with the interface will be unbound and all
pending requests will be cancelled. If this request returns with success,
new pipe objects are available. The operation
IOCTL_USBIO_GET_CONFIGURATION_INFO (page 166) may be
used to query all available pipes and interfaces.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 161
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST

The IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST operation
is used to generate a class or vendor specific device request with a data
transfer direction from device to host.

lpInBuffer Pointer to a buffer that contains an
USBIO_CLASS_OR_VENDOR_REQUEST (page 196) data structure.
This data structure has to be filled completely by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_CLASS_OR_VENDOR_REQUEST) for
this operation.

lpOutBuffer Pointer to a buffer that receives the data transferred from the device
during the data phase of the control transfer. If the request does not
return any data, this value can be NULL.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. If
this value is set to zero then there is no data transfer phase.

Comments A SETUP request appears on the default pipe (endpoint zero) of the
USB device with the given parameters. If a data phase is required an IN
token appears on the bus and the successful transfer is acknowledged
by an OUT token with a zero length data packet. If no data phase is
required an IN token appears on the bus with a zero length data packet
from the USB device for acknowledge.
Designer Reference Manual USB08 Evaluation Board

162 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST

The IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST
operation is used to generate a class or vendor specific device request
with a data transfer direction from host to device.

lpInBuffer Pointer to a buffer that contains an
USBIO_CLASS_OR_VENDOR_REQUEST (page 196) data structure.
This data structure has to be filled completely by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_CLASS_OR_VENDOR_REQUEST) for
this operation.

lpOutBuffer Pointer to a buffer that contains the data to be transferred to the device
during the data phase of the control transfer. If the request has no data
phase this value can be NULL.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. If
this value is set to zero then there is no data transfer phase.

Comments A SETUP request appears on the default pipe (endpoint zero) of the
USB device with the given parameters. If a data phase is required an
OUT token appears on the bus and the successful transfer is
acknowledged by an IN token with a zero length data packet from the
device. If no data phase is required an IN token appears on the bus and
the device acknowledges with a zero length data packet.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 163
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_DEVICE_PARAMETERS

The IOCTL_USBIO_GET_DEVICE_PARAMETERS operation returns
USBIO settings related to a device.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Pointer to a buffer that will receive an USBIO_DEVICE_PARAMETERS
(page 198) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_DEVICE_PARAMETERS) for
this operation.

Comments The default state of the device parameters is defined by a set of registry
parameters which are read by the USBIO driver at startup. The current
state may be queried using this request.
Designer Reference Manual USB08 Evaluation Board

164 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_SET_DEVICE_PARAMETERS

The IOCTL_USBIO_SET_DEVICE_PARAMETERS operation is used to
set USBIO parameters related to a device.

lpInBuffer Pointer to a buffer that contains an USBIO_DEVICE_PARAMETERS
(page 198) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to be lpInBuffer,
which has to be sizeof(USBIO_DEVICE_PARAMETERS) for this
operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments The default state of the device parameters is defined by a set of registry
parameters which are read by the USBIO driver at startup.The current
state may be modified using this request.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 165
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_CONFIGURATION_INFO

The IOCTL_USBIO_GET_CONFIGURATION_INFO operation returns
information about the pipes and interfaces that are available after the
device is configured.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Pointer to a buffer that will receive an USBIO_CONFIGURATION_INFO
(page 204) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_CONFIGURATION_INFO) for
this operation.

Comments This operation returns information about all active pipes and interfaces
that are available in the current configuration.
Designer Reference Manual USB08 Evaluation Board

166 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_RESET_DEVICE

The IOCTL_USBIO_RESET_DEVICE operation causes a reset at the
hub port in which the device is plugged in.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments The following events occur on the bus if this request is issued:
USB Reset
GET_DEVICE_DESCRIPTOR
USB Reset
SET_ADDRESS
GET_DEVICE_DESCRIPTOR
GET_CONFIGURATION_DESCRIPTOR

All pipes associated with the device will be unbound and all pending
requests will be cancelled. Note that the device receives two USB
Resets and a new USB address is assigned by USBD. After this
operation the device is in the unconfigured state.

The USBIO driver allows an USB reset request only if the device is
configured. That means IOCTL_USBIO_SET_CONFIGURATION
(page 159) was successfully executed. If the device is in the
unconfigured state this request returns with an error status. This
limitation is caused by the behaviour of Windows 2000. A system crash
would occur on Windows 2000 if an USB Reset would be issued for an
unconfigured device. Therefore, USBIO does not allow to issue an USB
Reset while the device is configured.

If the device changes its USB descriptor set during an USB Reset the
IOCTL_USBIO_CYCLE_PORT (page 172) request should be used
instead of IOCTL_USBIO_RESET_DEVICE.

This request does not work if the system-provided multi-interface driver
is used.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 167
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER

The IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER operation
returns the current value of the frame number counter that is maintained
by the USBD.

lpInBuffer Not used with this operation. Set to Null.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Pointer to a buffer that will receive an USBIO_FRAME_NUMBER
(page 205) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_FRAME_NUMBER) for this
operation.

Comments The returned frame number is a 32 bit value. The lower 11 bits of this
value correspond to the frame number value in the Start Of Frame token
on the bus.
Designer Reference Manual USB08 Evaluation Board

168 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_SET_DEVICE_POWER_STATE

The IOCTL_USBIO_SET_DEVICE_POWER_STATE operation sets the
power state of the device.

lpInBuffer Pointer to a buffer that contains an USBIO_DEVICE_POWER
(page 206) data structure.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be at least sizeof(USBIO_DEVICE_POWER) for this
operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments The device power state is maintained internally by the USBIO driver.
This request may be used to change the current power state.

If the device is set to a power state different from D0 all pending requests
should be cancelled before.

See Also See E.4.3 Power Management (page 146) and the description of the
data structure USBIO_DEVICE_POWER (page 206) for details.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 169
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_DEVICE_POWER_STATE

The IOCTL_USBIO_GET_DEVICE_POWER_STATE operation returns
the current power state of the device.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Pointer to a buffer that will receive an USBIO_DEVICE_POWER
(page 206) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_DEVICE_POWER) for this
operation.

Comments The device power state is maintained internally by the USBIO driver.
This request may be used to query the current power state.
Designer Reference Manual USB08 Evaluation Board

170 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_DRIVER_INFO

The IOCTL_USBIO_GET_DRIVER_INFO operation returns version
information about the USBIO API and the driver binary that is currently
running.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Pointer to a buffer that will receive an USBIO_DRIVER_INFO
(page 186) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_DRIVER_INFO) for this
operation.

Comments An application should check if the API version of the driver that is
currently running matches with the version it expects.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 171
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_CYCLE_PORT

The IOCTL_USBIO_CYCLE_PORT operation causes a new
enumeration of the device.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments The IOCTL_USBIO_CYCLE_PORT request is similar to the
IOCTL_USBIO_RESET_DEVICE (page 167) request, except that from
the software point of view a disconnect/connect is simulated. This
request causes the following events to occur:

– The USBIO device instance that is associated with the USB
device will be removed. The corresponding device handles
become invalid and should be closed by the application.

– The operating system starts a new enumeration of the device. The
following events occur on the bus:

USB Reset
GET_DEVICE_DESCRIPTOR
USB Reset
SET_ADDRESS
GET_DEVICE_DESCRIPTOR
GET_CONFIGURATION_DESRIPTOR

– A new device instance is created by the USBIO driver.

– The application receives a PnP notification that informs it about
the new device instance.

After an application issued this request it should close all handles for the
current device. It can open the newly created device instance after it
receives the appropriate PnP notification.
Designer Reference Manual USB08 Evaluation Board

172 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This request should be used instead of
IOCTL_USBIO_RESET_DEVICE (page 167) if the USB device modifies
its descriptors during an USB Reset. Particularly, this is required to
implement the Device Firmware Upgrade (DFU) device class
specification. Note that the USB device receives two USB Resets after
this call. This does not conform to the DFU specification. However, this
is the standard device enumeration method used by the Windows USB
bus driver (USBD).

This request does not work if the system-provided multi-interface driver
is used. This driver expects that all function device drivers send a
CYCLE_PORT request within 5 seconds.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 173
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_BIND_PIPE

The IOCTL_USBIO_BIND_PIPE operation is used to establish a binding
between a file handle and a pipe object.

lpInBuffer Pointer to a buffer that contains an USBIO_BIND_PIPE (page 207) data
structure. This data structure has to be filled completely by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO__BIND_PIPE) for this operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments This pipe is identified by its endpoint address. Only endpoints from the
current configuration can be bound. After this operation is successfully
completed the pipe can be accessed using pipe related requests (e.g.
read or write).

See Also IOCTL_USBIO_SET_CONFIGURATION (page 159) and
IOCTL_USBIO_GET_CONFIGURATION_INFO (page 166)
Designer Reference Manual USB08 Evaluation Board

174 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_UNBIND_PIPE

The IOCTL_USBIO_UNBIND_PIPE operation deletes the binding
between a file handle and a pipe object.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments After this operation is successfully completed the handle is unbound and
may be used to bind another pipe. It is not necessary to unbind a pipe
handle before it is closed. Closing a handle unbinds it implicitly.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 175
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ICOTL_USBIO_RESET_PIPE

The IOCTL_USBIO_RESET_PIPE operation clears an error condition
on a pipe.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments If an error occurs while transferring data from or to a pipe the USBD halts
the pipe and returns an error code. No further transfers can be
performed while the pipe is halted. To recover from this error condition
and to restart the pipe an IOCTL_USBIO_RESET_PIPE has to be sent
to the pipe.

This request causes that a CLEAR_FEATURE(ENDPOINT_STALL)
request appears on the bus. In addition, the endpoint handling in the
USB host controller will be reinitialized.

Isochronous pipes will never be halted by the USBD. This is because on
isochronous pipes no handshake is used to detect errors in data
transmission.
Designer Reference Manual USB08 Evaluation Board

176 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_ABORT_PIPE

The IOCTL_USBIO_ABORT_PIPE operation causes that all
outstanding requests for the pipe are cancelled.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments All outstanding read or write requests on the pipe are aborted and
returned with an error status of USBIO_ERR_CANCELLED.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 177
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_GET_PIPE_PARAMETERS

The IOCTL_USBIO_GET_PIPE_PARAMETERS operation returns
USBIO settings related to a pipe.

lpInBuffer Not used with this operation. Set to NULL.

nInBufferSize Not used with this operation. Set to zero.

lpOutBuffer Pointer to a buffer that will receive an USBIO_PIPE_PARAMETERS
(page 208) data structure.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer,
which has to be at least sizeof(USBIO_PIPE_PARAMETERS) for this
operation.

Comments The default state of the pipe parameters is defined by a set of registry
parameters which are read by the USBIO driver at startup. The current
state can be queried by using this request.
Designer Reference Manual USB08 Evaluation Board

178 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_SET_PIPE_PARAMETERS

The IOCTL_USBIO_SET_PIPE_PARAMETERS operation is used to
set USBIO parameters related to a pipe.

lpInBuffer Pointer to a buffer that contains an USBIO_PIPE_PARAMETERS
(page 208) data structure. This data structure has to be filled completely
by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_PIPE_PARAMETERS) for this operation.

lpOutBuffer Not used with this operation. Set to NULL.

nOutBufferSize Not used with this operation. Set to zero.

Comments The default state of the pipe parameters is defined by a set of registry
parameters which are read by the USBIO driver at startup. The current
state can be modified by using this request.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 179
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN

The IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN operation is
used to generate a specific request (setup packet) for a control pipe with
a data transfer direction from device to host.

lpInBuffer Pointer to a buffer that contains an
USBIO_PIPE_CONTROL_TRANSFER (page 209) data structure. This
data structure has to be filled completely by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_PIPE_CONTROL_TRANSFER) for this
operation.

lpOutBuffer Pointer to a buffer that receives the data transferred from the device
during the data phase of the control transfer. If no data transfer is
required the pointer may be NULL.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. If
this value is set to zero then there is no data transfer phase.

Comments This request is intended to be used with additional control pipes a device
might provide. It is not possible to generate a control transfer for the
default endpoint zero with this operation.
Designer Reference Manual USB08 Evaluation Board

180 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT

The IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT operation is
used to generate a specific request (setup packet) for a control pipe with
a data transfer direction from host to device.

lpInBuffer Pointer to a buffer that contains an
USBIO_PIPE_CONTROL_TRANSFER (page 209) data structure. This
data structure has to be filled completely by the caller.

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by lpInBuffer,
which has to be sizeof(USBIO_PIPE_CONTROL_TRANSFER) for this
operation.

lpOutBuffer Pointer to a buffer that contains the data transferred to the device during
the data phase of the control transfer. If no data transfer is required the
pointer may be NULL.

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. If
this value is set to zero then there is no data transfer phase.

Comments This request is intended to be used with additional control pipes a device
might provide. It is not possible to generate a control transfer for the
default endpoint zero with this operation.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 181
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.5.3 Data Transfer Requests

The USBIO device driver exports an interface to USB pipes that is similar
to files. For that reason the Win32 API functions ReadFile and
WriteFile are used to transfer data from or to a pipe. The handle that
is associated with the USB pipe is passed as hFile to this function.

The ReadFile function is defined as follows:

BOOL ReadFile (
HANDLE hFile, // handle of file to read
LPVOID lpBuffer, // pointer to buffer that receives data
DWORD nNumberOfBytesToRead, // number of bytes to read
LPDWORD lpNumberOfBytesRead, // pointer to number of bytes read
LPOVERLAPPED lpOverlapped // pointer to OVERLAPPED structure
);

The WriteFile function is defined as follows:

BOOL WriteFile (
HANDLE hFile, // handle of file to write
LPVOID lpBuffer, // pointer to data to write to file
DWORD nNumberOfBytesToWrite, // number of bytes to write
LPDWORD lpNumberOfBytesWritten,// pointer to number of bytes written
LPOVERLAPPED lpOverlapped // pointer to OVERLAPPED structure
);

By using these functions it is possible to implement both synchronous
and asynchronous data transfer operations. Both methods are fully
supported by the USBIO driver. Refer to the Microsoft Platform SDK
documentation for more information on using the ReadFile and
WriteFile functions.

E.5.3.1 Bulk and Interrupt Transfers

For interrupt and bulk transfers the buffer size can be larger than the
maximum packet size of the endpoint (physical FIFO size) as reported
in the endpoint descriptor. But the buffer size has to be equal or smaller
than the value specified in the MaximumTransferSize field of the
USBIO_INTERFACE_SETTING (page 194) structure on the Set
Configuration call.
Designer Reference Manual USB08 Evaluation Board

182 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Bulk or Interrupt Write Transfers
The write operation is used to transfer data from the host (PC) to the
USB device. The buffer is divided into data pieces (packets) of the
FIFO size of the endpoint. These packets are sent to the USB device.
If the last packet of the buffer is smaller than the FIFO size a smaller
data packet is transferred. If the size of the last packet of the buffer is
equal to the FIFO size this packet is sent. No additional zero packet
is sent automatically. To send a data packet with length zero, set the
buffer length to zero and use a NULL buffer pointer.

Bulk or Interrupt Read Transfers
The read operation is used to transfer data from the USB device to the
host (PC). The buffer is divided into data pieces (packets) of the FIFO
size of the endpoint. The buffer size should be a multiple of the FIFO
size. Otherwise the last transaction can cause a buffer overflow error.

Figure E-3. Layout of an Isochronous Transfer Buffer

USBIO_ISO_TRANSFER (
NumberOfPackets = N;
...

)

1. USBIO_ISO_PACKET

2. USBIO_ISO_PACKET

N. USBIO_ISO_PACKET

1. Data Packet

2. Data Packet

N. Data Packet

T
ra

ns
fe

r
B

uf
fe

r

Offset

Offset

Offset
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 183
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A read operation will be completed if the whole buffer is filled or a short
packet is transmitted. A short packet is a packet that is shorter than the
FIFO size of the endpoint. For more information on receiving short
packets see below. To read a data packet with a length of zero, the
buffer size has to be at least one byte. A read operation with a NULL
buffer will be completed with success by the system without performing
a read operation of the USB.

The behavior of the read operation depends on the state of the flag
USBIO_SHORT_TRANSFER_OK of the related pipe. This setting may be
changed by using the IOCTL_USBIO_SET_PIPE_PARAMETERS
(page 179) operation. The default state is defined by the registry
parameter ShortTransferOk. If the flag
USBIO_SHORT_TRANSFER_OK is set a read operation that returns a
data packet that is shorter than the FIFO size of the endpoint is
completed with success. Otherwise, every data packet from the endpoint
that is smaller than the FIFO size causes an error.

E.5.3.2 Isochronous Transfers

For isochronous transfers the data buffer that is passed to the
ReadFile or WriteFile function has to contain a header that
describes the location and the size of the data packets to be transferred.
Therefore, the buffer that follows the header is divided into packets.
Each packet is transmitted within an USB frame (normally 1 ms). The
size of the packet can be different in each frame. This allows to support
any data rate of the isochronous data stream.

The structure of the data buffer is shown in Figure E-3. The buffer
contains an USBIO_ISO_TRANSFER_HEADER (page 213) structure
of variable size at offset zero and the data packets. The header contains
an USBIO_ISO_TRANSFER (page 210) structure that provides general
information about the transfer buffer. An important member of this
structure is the NumberOfPackets parameter. This parameter specifies
the number of data packets contained in the transfer buffer. The
maximum number of packets that can be used in a single transfer is
limited by the registry parameter MaxIsoPackets. Each data packet
has to be described by an USBIO_ISO_PACKET (page 212) structure
Designer Reference Manual USB08 Evaluation Board

184 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

in the header. Because of that, the header contains a variable size array
of USBIO_ISO_PACKET (page 212) elements.

The Offset member of the USBIO_ISO_PACKET structure specifies the
byte offset of the corresponding packet relative to the beginning of the
whole buffer and has to be filled by the application for write and for read
transfers. The Length member defines the length, in bytes, of the packet.
The packet length has to be specified by the application for write
transfers and is returned by the USBIO on read transfers. The Status
member is used to return the completion status of the transfer of the
packet.

Isochronous Write Transfers
The sizes of the packets have to be less than or equal to the FIFO size
of the endpoint. There must not be gaps between the data packets in
the transfer buffer. The Offset and Length member of the
USBIO_ISO_PACKET structures have to be initialized correctly
before the transfer is started.

Isochronous Read Transfers
The size of each packet should be equal to the FIFO size. Otherwise
a data overrun error can occur. The Offset member of the
USBIO_ISO_PACKET structures has to be initialized correctly before
the transfer is started. There must not be gaps between the data
packets in the transfer buffer. The length of each received data packet
is returned in the Length member of the corresponding
USBIO_ISO_PACKET structure when the transfer completes.

NOTE: Because the size of the received packets may be less than the FIFO size
the data packets are not arranged continuously within the transfer buffer.

E.5.4 Input and Output Structures

This section provides a detailed description of the data structures that
are used with the various input and output requests.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 185
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_DRIVER_INFO

The USBIO_DRIVER_INFO structure contains version information
about the driver binary and the programming interface.

Definition typedef struct _USBIO_DRIVER_INFO{
USHORT APIVersion;
USHORT DriverVersion;
ULONG DriverBuildNumber;
ULONG Flags;

} USBIO_DRIVER_INFO;

Members APIVersion
Contains the version number of the application programming
interface (API) the driver supports.

The format is as follows: upper 8 bit = major version,
lower 8 bit = minor version. The numbers are encoded in BCD format.

DriverVersion
Contains the version number of the driver executable.

The format is as follows: upper 8 bit = major version,
lower 8-bit = minor version.

DriverBuildNumber
Contains the build number of the driver executable.

Flags
This field contains zero or any combination (bit-wise or) of the
following values.

USBIO_INFOFLAG_CHECKED_BUILD
If this flag is set, the driver that is currently running is a checked
(debug) build.

USBIO_INFOFLAG_DEMO_VERSION
If this flag is set,the driver that is currently running is a DEMO
version that has some restrictions. Refer to ReadMe.txt for a
description of the restrictions.

USBIO_INFOFLAG_LIGHT_VERSION
If this flag is set, the driver that is currently running is a LIGHT
version that has some restrictions. Refer to ReadMe.txt for a
description of the restrictions.

Comments This structure is an output of the IOCTL_USBIO_GET_DRIVER_INFO
(page 171) operation.
Designer Reference Manual USB08 Evaluation Board

186 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_DESCRIPTOR_REQUEST

The USBIO_DESCRIPTOR_REQUEST structure provides information
used to get or set a descriptor.

Definition typedef struct _USBIO_DESCRIPTOR_REQUEST{

USBIO_REQUEST_RECIPIENT Recipient;

UCHAR DescriptorType;

UCHAR DescriptorIndex;

USHORT LanguageId;

} USBIO_DESCRIPTOR_REQUEST;

Members Recipient

Specifies the recipient of the get or set descriptor request. The values
are defined by the enumeration type
USBIO_REQUEST_RECIPIENT (page 215).

DescriptorType

Specifies the type of descriptor to get or set. The values are defined
by the Universal Serial Bus Specification 1.1, Chapter 9 and
additional device class specifications.

Value Meaning
1 Device Descriptor
2 Configuration Descriptor
3 String Descriptor
4 Interface Descriptor
5 Endpoint Descriptor
21 HID Descriptor

DescriptorIndex

Specifies the index of the descriptor to get or set.

LanguageId

Specifies the Language ID for string descriptors. Set to zero for other
descriptors.

Comments This structure has to be used as an input for
IOCTL_USBIO_GET_DESCRIPTOR (page 151) and
IOCTL_USB_SET_DESCRIPTOR (page 152) requests.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 187
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_FEATURE_REQUEST

The USBIO_FEATURE_REQUEST structure provides information used
to set or clear a specific feature.

Definition typedef struct _USBIO_FEATURE_REQUEST{

USBIO_REQUEST_RECIPIENT Recipient;

USHORT FeatureSelector;

USHORT Index;

} USBIO_FEATURE_REQUEST;

Members Recipient

Specifies the recipient of the set feature or clear feature request. The
values are defined by the enumeration type
USBIO_REQUEST_RECIPIENT (page 215).

FeatureSelector

Specifies the feature selector value for the set feature or clear feature
request. The values are defined by the recipient. Refer to the
Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

Index

Specifies the index value for the set feature or clear feature request.
The values are defined by the device. Refer to the Universal Serial
Bus Specification 1.1, Chapter 9 for more information.

Comments This structure has to be used as an input for
IOCTL_USBIO_SET_FEATURE (page 153) and
IOCTL_USBIO_CLEAR_FEATURE (page 154) requests.
Designer Reference Manual USB08 Evaluation Board

188 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_STATUS_REQUEST

The USBIO_STATUS_REQUEST structure provides information used
to request status for a specified recipient.

Definition typedef struct _USBIO_STATUS_REQUEST{

USBIO_REQUEST_RECIPIENT Recipient;

USHORT Index;

} USBIO_STATUS_REQUEST;

Members Recipient

Specifies the recipient of the get status request. The values are
defined by the enumeration type USBIO_REQUEST_RECIPIENT
(page 215).

Index

Specifies the index value for the get status request. The values are
defined by the device. Refer to the Universal Serial Bus Specification
1.1, Chapter 9 for more information.

Comments This structure has to be used as an input for
IOCTL_USBIO_GET_STATUS (page 155) requests.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 189
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_STATUS_REQUEST_DATA

The USBIO_STATUS_REQUEST_DATA structure contains information
returned by a get status operation.

Definition typedef struct _USBIO_STATUS_REQUEST_DATA{

USHORT Status;

} USBIO_STATUS_REQUEST_DATA;

Member Status

Contains the 16-bit value that is returned by the recipient in response
to the get status request. The interpretation of the value is specific to
the recipient. Refer to the Universal Serial Bus Specification 1.1,
Chapter 9 for more information.

Comments This structure is an output of IOCTL_USBIO_GET_STATUS (page 155)
requests.
Designer Reference Manual USB08 Evaluation Board

190 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_GET_CONFIGURATION_DATA

The USBIO_GET_CONFIGURATION_DATA structure contains
information returned by a get configuration operation.

Definition typedef struct _USBIO_GET_CONFIGURATION_DATA{

UCHAR ConfigurationValue;

} USBIO_GET_CONFIGURATION_DATA;

Member ConfigurationValue

Contains the 8-bit value that is returned by the device in response to
the get configuration request. The meaning of the value is defined by
the device. A value of zero means the device is not configured. Refer
to the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

Comments This structure is an output of IOCTL_USBIO_GET_CONFIGURATION
(page 156) requests.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 191
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_GET_INTERFACE

The USBIO_GET_INTERFACE structure provides information used to
request the current alternate setting of an interface.

Definition typedef struct _USBIO_GET_INTERFACE{

USHORT Interface;

} USBIO_GET_INTERFACE;

Member Interface

Specifies the interface number. The meaning is device-specific. Refer
to the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

Comments This structure has to be used as an input for
IOCTL_USBIO_GET_INTERFACE (page 157) requests.
Designer Reference Manual USB08 Evaluation Board

192 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_GET_INTERFACE_DATA

The USBIO_GET_INTERFACE_DATA structure contains information
returned by a get interface operation.

Definition typedef struct _USBIO_GET_INTERFACE_DATA{

UCHAR AlternateSetting;

} USBIO_GET_INTERFACE_DATA;

Member AlternateSetting

Contains the 8-bit value that is returned by the device in response to
a get interface request. The interpretation of the value is specific to
the device. Refer to the Universal Serial Bus Specification 1.1,
Chapter 9 for more information.

Comments This structure is an output of IOCTL_USBIO_GET_INTERFACE
(page 157) requests.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 193
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_INTERFACE_SETTING

The USBIO_INTERFACE_SETTING structure provides information
used to configure an interface and its endpoints.

Definition typedef struct _USBIO_INTERFACE_SETTING{

USHORT InterfaceIndex;

USHORT AlternateSettingIndex;

ULONG MaximumTransferSize;

} USBIO_INTERFACE_SETTING;

Members InterfaceIndex

Specifies the interface. The value is defined by the device. Refer to
the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

AlternateSettingIndex

Specifies the alternate setting to be set for this interface. The value is
defined by the device. Refer to the Universal Serial Bus Specification
1.1, Chapter 9 for more information.

MaximumTransferSize

Specifies the maximum size, in bytes, of data transfers to or from
endpoints of this interface. The value is user-defined and is valid for
all endpoints of this interface. If no special requirement exists a value
of 4096 (4K) should be used.

Comments This structure has to be used as an input for
IOCTL_USBIO_SET_INTERFACE (page 161) and
IOCTL_USBIO_SET_CONFIGURATION (page 159) requests.
Designer Reference Manual USB08 Evaluation Board

194 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_SET_CONFIGURATION

The USBIO_SET_CONFIGURATION structure provides information
used to set the device configuration.

Definition typedef struct _USBIO_SET_CONFIGURATION{

USHORT ConfigurationIndex;

USHORT NbOfInterfaces;

USBIO_INTERFACE_SETTING

InterfaceList[USBIO_MAX_INTERFACES];

} USBIO_SET_CONFIGURATION;

Members ConfigurationIndex

Specifies the configuration to be set. The meaning of the value is
defined by the device. Refer to the Universal Serial Bus Specification
1.1, Chapter 9 for more information.

NbOfInterface

Specifies the number of interfaces in this configuration. This is the
number of valid entries in InterfaceList.

InterfaceList [USBIO_MAX_INTERFACES]

An array of USBIO_INTERFACE_SETTING (page 194) structures
that describes each interface in the configuration. There have to be
NbOfInterfaces valid entries in this array.

Comments This structure has to be used as an input for
IOCTL_USBIO_SET_CONFIGURATION (page 159) requests.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 195
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_CLASS_OR_VENDOR_REQUEST

The USBIO_CLASS_OR_VENDOR_REQUEST structure provides
information used to generate a class or vendor specific device request.

Definition typedef struct _USBIO_CLASS_OR_VENDOR_REQUEST{
ULONG Flags;
USBIO_REQUEST_TYPE Type;
USBIO_REQUEST_RECIPIENT Recipient;
UCHAR RequestTypeReservedBits;
UCHAR Request;
USHORT Value;
USHORT Index;

} USBIO_CLASS_OR_VENDOR_REQUEST;

Members Flags
This field contains zero or the following value.

USBIO_SHORT_TRANSFER_OK
If this flag is set, the USBIO driver does not return an error if a data
packet received from the device is shorter than the maximum
packet size of the endpoint. Otherwise, a short packet causes an
error condition.

Type
Specifies the type of the device request. The values are defined by
the enumeration type USBIO_REQUEST_TYPE (page 216).

Recipient
Specifies the recipient of the device request. The values are defined
by the enumeration type USBIO_REQUEST_RECIPIENT
(page 215).

RequestTypeReservedBits
Specifies the reserved bits of the bmRequestType field of the setup
packet.

Request
Specifies the value of the bRequest field of the setup packet.

Value
Specifies the value of the wValue field of the setup packet.

Index
Specifies the value of the wIndex field of the setup packet.
Designer Reference Manual USB08 Evaluation Board

196 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Comments The values defined by this structure are used to generate an eight byte
setup packet for the control endpoint of the device. The format of the
setup packet is defined by the Universal Serial Bus Specification 1.1,
Chapter 9. The meanings of the values are device dependent.

This structure has to be used as an input for
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST (page 162) and
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST (page 163)
operations.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 197
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_DEVICE_PARAMETERS

The USBIO_DEVICE_PARAMETERS structure contains
device-specific parameter settings of the USBIO driver.

Definition typedef struct _USBIO_DEVICE_PARAMETERS{

ULONG Options;

ULONG RequestTimeout;

} USBIO_DEVICE_PARAMETERS;

Members Options

This field contains zero or any combination (bit-wise or) of the
following values.

USBIO_RESET_DEVICE_ON_CLOSE
If this option is set, the USBIO driver generates an USB device
reset after the last handle to the device was closed by the
application. When this option is active the
USBIO_UNCONFIGURE_ON_CLOSE flag will be ignored.

The default state of this option is defined by the registry parameter
ResetDeviceOnClose.

USBIO_UNCONFIGURE_ON_CLOSE
If this option is set, the USBIO driver sets the USB device to its
unconfigured state after the last handle to the device was closed
by the application.

The default state of this option is defined by the registry parameter
UnconfigureOnClose.

USBIO_ENABLE_REMOTE_WAKEUP
If this option is set and the USB device supports the Remote
Wakeup feature the USBIO driver will support Remote Wakeup for
the operating system. The USB device is able to wake the system
from a sleep state. The Remote Wakeup feature is defined by the
USB 1.1 specification.
The Remote Wakeup feature requires that the device is opened by
an application and an USB configuration is set (device is
configured).

The default state of this option is defined by the registry parameter
EnableRemoteWakeup.
Designer Reference Manual USB08 Evaluation Board

198 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RequestTimeout

Specifies the time-out interval, in milliseconds, to be used for
synchronous operations. A value of zero means an infinite interval
(time-out disabled).

The default time-out value is defined by the registry parameter
RequestTimeout.

Comments This structure is intended to be used with
IOCTL_USBIO_GET_DEVICE_PARAMETERS (page 164) and
IOCTL_USBIO_SET_DEVICE_PARAMETERS (page 165) operations.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 199
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_INTERFACE_CONFIGURATION_INFO

The USBIO_INTERFACE_CONFIGURATION_INFO structure provides
information about an interface.

Definition typedef struct _USBIO_INTERFACE_CONFIGURATION_INFO{

UCHAR InterfaceNumber;

UCHAR AlternateSetting;

UCHAR Class;

UCHAR SubClass;

UCHAR Protocol;

UCHAR NumberOfPipes;

UCHAR reserved1;

UCHAR reserved2;

} USBIO_INTERFACE_CONFIGURATION_INFO;

Members InterfaceNumber

Specifies the index of the interface as reported by the device in the
configuration descriptor.

AlternateSetting

Specifies the index of the alternate setting as reported by the device
in the configuration descriptor. The default alternate setting of an
interface is zero.

Class

Specifies the class code as reported by the device in the configuration
descriptor. The meaning of this value is defined by the USB class
specifications.

SubClass

Specifies the subclass code as reported by the device in the
configuration descriptor. The meaning of this value is defined by the
USB class specifications.

Protocol

Specifies the protocol code as reported by the device in the
configuration descriptor. The meaning of this value is defined by the
USB class specifications.

NumberOfPipes

Specifies the number of pipes that belong to this interface and
alternate setting.
Designer Reference Manual USB08 Evaluation Board

200 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

reserved1

Reserved field, set to zero.

reserved2

Reserved field, set to zero.

Comments This structure is an output of
IOCTL_USBIO_GET_CONFIGURATION_INFO (page 166) operations.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 201
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_PIPE_CONFIGURATION_INFO

The USBIO_PIPE_CONFIGURATION_INFO structure provides
information about a pipe.

Definition typedef struct _USBIO_PIPE_CONFIGURATION_INFO{

USBIO_PIPE_TYPE PipeType;

ULONG MaximumTransferSize;

USHORT MaximumPacketSize;

UCHAR EndpointAddress;

UCHAR Interval;

UCHAR InterfaceNumber;

UCHAR reserved1;

UCHAR reserved2;

UCHAR reserved3;

} USBIO_PIPE_CONFIGURATION_INFO;

Members PipeType

Specifies the type of the pipe. The values are defined by the
enumeration type USBIO_PIPE_TYPE (page 214).

MaximumTransferSize

Specifies the maximum size, in bytes, of data transfers the USBD
supports on this pipe. This is the maximum size of buffers that can be
used with read or write operations on this pipe.

MaximumPacketSize

Specifies the maximum packet size of USB data transfers the
endpoint is capable of sending or receiving as reported by the device
in the corresponding endpoint descriptor. Refer to the Universal Serial
Bus Specification 1.1, Chapter 9 for more information.

EendpointAddress

Specifies the address of the endpoint on the USB device as reported
in the corresponding endpoint descriptor.

The endpoint address includes the direction flag at bit position 7
(MSB)

Bit 7 = 0: OUT endpoint
Bit 7 = 1: IN endpoint

Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.
Designer Reference Manual USB08 Evaluation Board

202 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Interval

Specifies the interval, in milliseconds, for polling the endpoint for data
as reported in the corresponding endpoint descriptor. The value is
meaningful for interrupt endpoints only. Refer to the Universal Serial
Bus Specification 1.1, Chapter 9 for more information.

InterfaceNumber

Specifies the index of the interface the pipe belongs to. The value
corresponds to the field InterfaceNumber of an
USBIO_INTERFACE_CONFIGURATION_INFO (page 200)
structure.

reserved1

Reserved field set to zero.

reserved2

Reserved field, set to zero.

reserved3

Reserved field, set to zero.

Comments This structure is an output of
IOCTL_USBIO_GET_CONFIGURATION_INFO (page 166) operations.
Only active pipes from the current configuration are returned.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 203
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_CONFIGURATION_INFO

The USBIO_CONFIGURATION_INFO structure provides information
about all interfaces and all pipes available in the current configuration.

Definition typedef struct _USBIO_CONFIGURATION_INFO{

ULONG NbOfInterfaces;

ULONG NbOfPipes;

USBIO_INTERFACE_CONFIGURATION_INFO

InterfaceInfo[USBIO_MAX_INTERFACES];

USBIO_PIPE_CONFIGURATION_INFO

PipeInfo[USBIO_MAX_PIPES];

} USBIO_CONFIGURATION_INFO;

Members NbOfInterface

Contains the number of interfaces. This is the number of valid entries
in the InterfaceInfo structure.

NbOfPipes

Contains the number of pipes. This is the number of valid entries in
the PipeInfo structure.

InterfaceInfo[USBIO_MAX_INTERFACES]

An array of USBIO_INTERFACE_CONFIGURATION_INFO
(page 200) structures that describes the interfaces.There are
NbOfInterfaces valid entries in this array.

PipeInfo[USBIO_MAX_PIPES]

An array of USBIO_PIPE_CONFIGURATION_INFO (page 202)
structures that describes the pipes. There are NbOfPipes valid
entries in this array.

Comments This structure is an output of
IOCTL_USBIO_GET_CONFIGURATION_INFO (page 166) operations.
Only active pipes from the current configuration are returned.
Designer Reference Manual USB08 Evaluation Board

204 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_FRAME_NUMBER

The USBIO_FRAME_NUMBER structure contains information about the
USB frame counter value.

Definition typedef struct _USBIO_FRAME_NUMBER{

ULONG FrameNumber;

} USBIO_FRAME_NUMBER;

Members FrameNumber

Contains the current value of the frame counter maintained by the
USBD.

Comments This structure is an output of
IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER (page 168)
requests.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 205
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_DEVICE_POWER

The USBIO_DEVICE_POWER structure contains information about the
USB device power states.

Definition typedef struct _USBIO_DEVICE_POWER{

USBIO_DEVICE_POWER_STATE DevicePowerState;

} USBIO_DEVICE_POWER;

Member DevicePowerState

Contains the power state of the USB device. The values are defined
by the USBIO_DEVICE_POWER_STATE (page 217) enumeration
type.

Comments This structure is used with
IOCTL_USBIO_GET_DEVICE_POWER_STATE (page 170) and
IOCTL_USBIO_SET_DEVICE_POWER_STATE (page 169) requests.
Designer Reference Manual USB08 Evaluation Board

206 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_BIND_PIPE

The USBIO_BIND_PIPE structure provides information about the pipe to
bind to.

Definition typedef struct _USBIO_BIND_PIPE{

UCHAR EndpointAddress;

} USBIO_BIND_PIPE;

Member EndpointAddress

Specifies the address of the endpoint on the USB device that shall be
associated with the pipe. The endpoint address is specified as
reported in the corresponding endpoint descriptor.

The endpoint address includes the direction flag at bit position 7
(MSB).

Bit 7 = 1: OUT endpoint
Bit 7 = 0: IN endpoint

Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

Comments This structure has to be used as an input for IOCTL_USBIO_BIND_PIPE
(page 174) operations. Only active endpoints from the current
configuration can be bound.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 207
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_PIPE_PARAMETERS

The USBIO_PIPE_PARAMETERS structure contains pipe specific
parameter settings of the USBIO driver.

Definition typedef struct _USBIO_PIPE_PARAMETERS{

ULONG Flags;

} USBIO_PIPE_PARAMETERS;

Member Flags

This field contains zero or the following value.

USBIO_SHORT_TRANSFER_OK
If this flag is set, the USBIO driver does not return an error during
read operations from a Bulk or Interrupt pipe if a packet received
from the device is shorter than the maximum packet size of the
endpoint. Otherwise, a short packet causes an error condition.
This option is meaningful for IN pipes only.

Comments This structure is intended to be used with
IOCTL_USBIO_GET_PIPE_PARAMETERS (page 178) and
IOCTL_USBIO_SET_PIPE_PARAMETERS (page 179) operations.
The default setting of this parameter can be changed by means of the
registry parameter ShortTransferOk. This parameter has an effect
only for read operations from Bulk or Interrupt pipes. For Isochronous
pipes the flags in the appropriate ISO data structures are used (see
USBO_ISO_TRANSFER (page 210)).
Designer Reference Manual USB08 Evaluation Board

208 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_PIPE_CONTROL_TRANSFER

The USBIO_PIPE_CONTROL_TRANSFER structure provides
information used to generate a specific control request.

Definition typedef struct _USBIO_PIPE_CONTROL_TRANSFER{

ULONG Flags;

UCHAR SetupPacket[8];

} USBIO_PIPE_CONTROL_TRANSFER;

Members Flags

This field contains zero or the following value.

USBIO_SHORT_TRANSFER_OK
If this flag is set, the USBIO driver does not return an error if a data
packet received from the device is shorter than the maximum
packet size of the endpoint. Otherwise, a short packet causes an
error condition.

SetupPacket[8]

Specifies the setup packet to be sent to the device. The format of the
eight byte setup packet is defined by the Universal Serial Bus
Specification 1.1, Chapter 9.

Comments This structure has to be used as an input for
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN (page 180) and
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT (page 181)
operations.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 209
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_ISO_TRANSFER

The USBIO_ISO_TRANSFER structure provides information used for
isochronous data transfers.

Definition typedef struct _USBIO_ISO_TRANSFER{

ULONG NumberOfPackets;

ULONG Flags;

ULONG StartFrame;

ULONG ErrorCount;

} USBIO_ISO_TRANSFER;

Members NumberOfPackets

Specifies the number of packets to be sent to or received from the
device. Each packet corresponds to an USB frame. The maximum
number of packets in a read or write operation is limited by the registry
parameter MaxIsoPackets.

Flags

This field contains zero or any combination (bit-wise or) of the
following values.

USBIO_SHORT_TRANSFER_OK
If this flag is set, the USBIO driver does not return an error if a data
packet received from the device is shorter than the maximum
packet size of the endpoint. Otherwise, a short packet causes an
error condition.

USBIO_START_TRANSFER_ASAP
If this flag is set, the transfer will be started as soon as possible
and the StartFrame parameter is ignored. This flag has to be
used if a continuous data stream shall be sent to the isochronous
endpoint of the USB device.

StartFrame

Specifies the frame number the transfer shall start with. The value has
to be within a system-defined range relative to the current frame. The
range is normally set to 1024 frames.

If USBIO_START_TRANSFER_ASAP is specified in Flags, this
member has not to be set by the caller. It contains the frame number
that the transfer started with, when the request is returned by the
USBIO.
Designer Reference Manual USB08 Evaluation Board

210 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If USBIO_START_TRANSFER_ASAP is not specified in Flags, this
member has to be set by the caller to the frame number this transfer
shall start with. An error occurs if the frame number is outside of the
valid range.

ErrorCount

Contains the total number of errors occurred during this transaction
when the request is returned by the USBIO.

Comments This structure is the fixed size part of the
USBIO_ISO_TRANSFER_HEADER (page 213) that has to be used as
an input for ReadFile and WriteFile operations with an isochronous
pipe. the transfer buffer has to contain an
USBIO_ISO_TRANSFER_HEADER (page 213) structure at offset zero.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 211
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_ISO_PACKET

The USBIO_ISO_PACKET structure defines the size and location of a
single isochronous data packet within the transfer buffer that is used for
isochronous data transfers.

Definition typedef struct _USBIO_ISO_PACKET{

ULONG Offset;

ULONG Length;

ULONG Status;

} USBIO_ISO_PACKET;

Members Offset

Specifies the offset, in bytes, of the packet relative to the start of the
data buffer. This parameter has to be specified by the caller for read
and write operations.

Length

Specifies the size, in bytes, of the packet. This parameter has to be
set by the caller for write operations. On read operations this field is
set by the USBIO when the request is returned.

Status

Contains the final status code for the transfer of this packet when the
request is returned by the USBIO.

Comments A variable size array of USBIO_ISO_PACKET structures is part of the
USBIO_ISO_TRANSFER_HEADER (page 213) that has to be used as
an input for ReadFile and WriteFile operations with an isochronous
pipe. An USBIO_ISO_PACKET structure is required for each data packet
to be transferred. The maximum number of data packets is limited by the
registry parameter MaxIsoPackets.
Designer Reference Manual USB08 Evaluation Board

212 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_ISO_TRANSFER_HEADER

The USBIO_ISO_TRANSFER_HEADER structure defines the header
that has to be contained in the data buffers that are used for isochronous
transfers.

Definition typedef struct _USBIO_ISO_TRANSFER_HEADER{

USBIO_ISO_TRANSFER IsoTransfer;

USBIO_ISO_PACKET IsoPacket[1];

} USBIO_ISO_TRANSFER_HEADER;

Members IsoTransfer

This is the fixed size part of the header. See the description of the
USBIO_ISO_TRANSFER (page 210) structure for more information.

IsoPacket[1]

This is a variable length array of USBIO_ISO_PACKET (page 212)
structures. Each member defines an isochronous packet to be
transferred. The number of valid entries in this array is defined by the
NumberOfPackets field of IsoTransfer. The maximum number of
data packets is limited by the registry parameter MaxIsoPackets.

Comments The data buffer passed to ReadFile or WriteFile operations with an
isochronous pipe has to contain a valid
USBIO_ISO_TRANSFER_HEADER (page 213) structure at offset zero.
After this header the buffer contains the isochronous data which is
divided into packets. The IsoPacket array describes the location and
the size of the data packets. Each data packet is transferred in a
separate USB frame.

There must not be gaps between the data packets in the transfer buffer.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 213
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.5.5 Enumeration Types

USBIO_PIPE_TYPE

The USBIO_PIPE_TYPE enumeration type contains values that identify
the type of an USB pipe or an USB endpoint respectively.

Definition typedef enum _USBIO_PIPE_TYPE{

PipeTypeControl = 0,;

PipeTypeIsochronous,

PipeTypeBulk,

PipeTypeInterrupt

} USBIO_PIPE_TYPE;

Comments The meaning of the values is defined by he Universal Serial Bus
Specification 1.1, Chapter 9.
Designer Reference Manual USB08 Evaluation Board

214 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_REQUEST_RECIPIENT

The USBIO_REQUEST_RECIPIENT enumeration type contains values
that identify the recipient of an USB device request.

Definition typedef enum _USBIO_REQUEST_RECIPIENT{

RecipientDevice = 0,

RecipientInterface,

RecipientEndpoint,

RecipientOther

} USBIO_REQUEST_RECIPIENT;

Comments The meaning of the values is defined by the Universal Serial Bus
Specification 1.1, Chapter 9.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 215
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_REQUEST_TYPE

The USBIO_REQUEST_TYPE enumeration type contains values that
identify the type of an USB device request.

Definition typedef enum _USBIO_REQUEST_TYPE{

RequestTypeClass = 1,

RequestTypeVendor

} USBIO_REQUEST_TYPE;

Comments The meaning of the values is defined by the Universal Serial Bus
Specification 1.1, Chapter 9.

The enumeration does not contain the Standard request type defined by
the USB Specification. This is because only Class and Vendor requests
are supported by the USBD interface. Standard requests are generated
internally by the USBD.
Designer Reference Manual USB08 Evaluation Board

216 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_DEVICE_POWER_STATE

The USBIO_DEVICE_POWER_STATE enumeration type contains
values that identify the power state of a device.

Definition typedef enum _USBIO_DEVICE_POWER_STATE{

DevicePowerStateD0 = 0,

DevicePowerStateD1,

DevicePowerStateD2,

DevicePowerStateD3

} USBIO_DEVICE_POWER_STATE;

Entries DevicePowerStateD0

Device fully on, normal operation
DevicePowerStateD1

Suspend
DevicePowerStateD2

Suspend
DevicePowerStateD3

Device off

Comments The meaning of the values is defined by the Power Management
specification.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 217
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.5.6 Error Codes

Table E-2. Error Codes Defined by the USBIO
Device Driver

USBIO_ERR_SUCCESS (0x00000000L)
USBIO_ERR_CRC (0xE0000001L)
USBIO_ERR_BTSTUFF (0xE0000002L)
USBIO_ERR_DATA_TOGGLE_MISMATCH (0xE0000003L)
USBIO_ERR_STALL_PID (0xE0000004L)
USBIO_ERR_DEV_NOT_RESPONDING (0xE0000005L)
USBIO_ERR_PID_CHECK_FAILURE (0xE0000006L)
USBIO_ERR_UNEXPECTED_PID (0xE0000007L)
USBIO_ERR_DATA_OVERRUN (0xE0000008L)
USBIO_ERR_DATA_UNDERRUN (0xE0000009L)
USBIO_ERR_RESERVED1 (0xE000000AL)
USBIO_ERR_RESERVED2 (0xE000000BL)
USBIO_ERR_BUFFER_OVERRUN (0xE000000CL)
USBIO_ERR_BUFFER_UNDERRUN (0xE000000DL)
USBIO_ERR_NOT_ACCESSED (0xE000000FL)
USBIO_ERR_FIFO (0xE0000010L)
USBIO_ERR_ENDPOINT_HALTED (0xE0000030L)
USBIO_ERR_NO_MEMORY (0xE0000100L)
USBIO_ERR_INVALID_URB_FUNCTION (0xE0000200L)
USBIO_ERR_INVALID_PARAMETER (0xE0000300L)
USBIO_ERR_ERROR_BUSY (0xE0000400L)
USBIO_ERR_REQUEST_FAILED (0xE0000500L)
USBIO_ERR_INVALID_PIPE_HANDLE (0xE0000600L)
USBIO_ERR_NO_BANDWIDTH (0xE0000700L)
USBIO_ERR_INTERNAL_HC_ERROR (0xE0000800L)
USBIO_ERR_ERROR_SHORT_TRANSFER (0xE0000900L)
USBIO_ERR_BAD_START_FRAME (0xE0000A00L)
USBIO_ERR_ISOCH_REQUEST_FAILED (0xE0000B00L)
USBIO_ERR_FRAME_CONTROL_OWNED (0xE0000C00L)
USBIO_ERR_FRAME_CONTROL_NOT_OWNED (0xE0000D00L)
USBIO_ERR_CANCELED (0xE0010000L)
USBIO_ERR_CANCELING (0xE0020000L)
USBIO_ERR_FAILED (0xE0001000L)
USBIO_ERR_INVALID_INBUFFER (0xE0001001L)
USBIO_ERR_INVALID_OUTBUFFER (0xE0001002L)
USBIO_ERR_OUT_OF_MEMORY (0xE0001003L)
USBIO_ERR_PENDING_REQUESTS (0xE0001004L)
USBIO_ERR_ALREADY_CONFIGURED (0xE0001005L)
USBIO_ERR_NOT_CONFIGURED (0xE0001006L)
USBIO_ERR_OPEN_PIPES (0xE0001007L)
USBIO_ERR_ALREADEY_BOUND (0xE0001008L)
Designer Reference Manual USB08 Evaluation Board

218 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Programming Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

USBIO_ERR_NOT_B0UND (0xE0001009L)
USBIO_ERR_DEVICE_NOT_PRESENT (0xE000100AL)
USBIO_ERR_CONTROL_NOT_SUPPORTED (0xE000100BL)
USBIO_ERR_TIMEOUT (0xE000100CL)
USBIO_ERR_INVALID_RECIPIENT (0xE000100DL)
USBIO_ERR_INVALID_TYPE (0xE000100EL)
USBIO_ERR_INVALID_IOCTL (0xE000100FL)
USBIO_ERR_INVALID_DIRECTION (0xE0001010L)
USBIO_ERR_TOO_MUCH_ISO_PACKETS (0xE0001011L)
USBIO_ERR_POOL_EMPTY (0xE0001012L)
USBIO_ERR_PIPE_NOT_FOUND (0xE0001013L)
USBIO_ERR_INVALID_ISO_PACKET (0xE0001014L)
USBIO_ERR_OUT_OF_ADDRESS_SPACE (0xE0001015L)
USBIO_ERR_INTERFACE_NOT_FOUND (0xE0001016L)
USBIO_ERR_INVALID_DEVICE_STATE (0xE0001017L)
USBIO_ERR_INVALID_PARAM (0xE0001018L)
USBIO_ERR_DEMO_EXPIRED (0xE0001019L)
USBIO_ERR_INVALID_POWER_STATE (0xE000101AL)
USBIO_ERR_POWER_DOWN (0xE000101BL)
USBIO_ERR_VERSION_MISMATCH (0xE000101CL)
USBIO_ERR_SET_CONFIGURATION_FAILED (0xE000101DL)
USBIO_ERR_VID_RESTRICTION (0xE0001080L)
USBIO_ERR_ISO_RESTRICTION (0xE0001081L)
USBIO_ERR_BULK_RESTRICTION (0xE0001082L)
USBIO_ERR_EP0_RESTRICTION (0xE0001083L)
USBIO_ERR_PIPE_RESTRICTION (0xE0001084L)
USBIO_ERR_PIPE_SIZE_RESTRICTION (0xE0001085L)
USBIO_ERR_DEVICE_NOT_FOUND (0xE0001100L)
USBIO_ERR_DEVICE_NOT_OPEN (0xE0001102L)
USBIO_ERR_NO_SUCH_DEVICE_INSTANCE (0xE0001104L)
USBIO_ERR_INVALID_FUNCTION_PARAM (0xE0001105L)

Table E-2. Error Codes Defined by the USBIO
Device Driver (Continued)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 219
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.6 USBIO Class Library

The USBIO Class Library (USBIOLIB) contains classes which provide
wrapper functions for all of the features supported by the USBIO
programming interface. Using these classes in an application is more
convenient than using the USBIO interface directly. The classes are
designed to be capable of being extended. In order to meet the
requirements of a particular application new classes may be derived
from the existing ones. The class library is provided fully in source code.

Figure E-4 shows the classes included in the USBIOLIB and their
relations.

Figure E-4. USBIO Class Library

E.6.1 CUsbIo Class

The class CUsbIo implements the basic interface to the USBIO device
driver. It includes all functions that are related to an USBIO device
object. Thus, by using an instance of the CUsbIo class all operations
which do not require a pipe context can be performed.

The CUsbIo class supports device enumeration and an Open function
that is used to connect an instance of the class to an USBIO device
object. The handle that represents the connection is stored inside the
class instance. It is used for all subsequent requests to the device.

CUsbIoPipe

CUsbIoThread

CUsbIo

CUsbIoReader CUsbIoWriter

CUsbIoBuf CUsbIoBufPool
Designer Reference Manual USB08 Evaluation Board

220 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
USBIO Class Library

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For each device-related operation the USBIO driver supports, a member
function exists in the CUsbIo class. The function takes the parameters
that are required for the operation and returns the status that is reported
by the USBIO driver.

E.6.2 CUsbIoPipe Class

The class CUsbIoPipe extends the CUsbIo class by functions that are
related to an USBIO pipe object. An instance of the CUsbIoPipe class
is associated directly with an USBIO pipe object. In order to establish the
connection to the pipe the class provides a Bind function. After a
CUsbIoPipe instance is bound, pipe-related functions can be
performed by using member functions of the class.

For each pipe-related operation that the USBIO driver supports a
member function exists in the CUsbIoPipe class. The function takes
the parameters that are required for the operation and returns the status
that is reported by the USBIO driver.

The CusbIoPipe class supports an asynchronous communication
model for data transfers from or to the pipe. The Read or Write function
is used to submit a data buffer to the USBIO driver. The function returns
immediately indicating success if the buffer was sent to the driver
successfully. There is no blocking within the Read or Write function.
Therefore, it is possible to send multiple buffers to the pipe. The buffers
are processed sequentially in the same order as they were submitted.
The WaitForCompletion member function is used to wait until the
data transfer from or to a particular buffer is finished. This function blocks
the calling thread until the USBIO driver has completed the I/O operation
with the buffer.

In order to use a data buffer with the Read, Write, and
WaitForCompletion functions of the CUsbIoPipe class the buffer
has to be described by a CUsbIoBuf object. The CUsbIoBuf helper
class stores context information while the read or write operation is
pending.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 221
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.6.3 CUsbIoThread Class

The class CUsbIoThread provides basic functions needed to
implement a worker thread that performs input or output operations on a
pipe. It includes functions that are used to start and stop the worker
thread.

The CUsbIoThread class does not implement the thread’s main
routine. This has to be done in a derived class. Thus, CUsbIoThread is
an universal base class that simplifies the implementation of a worker
thread that performs I/O operations on a pipe.

NOTE: The worker thread created by CUsbIoThread is a native system thread.
That means it cannot be used to class MFC (Microsoft Foundation
Classes) functions. It is necessary to use PostMessage,
SendMessage or some other communication mechanism to switch over
to MFC-aware threads.

E.6.4 CUsbIoReaderClass

The class CUsbIoReader extends the CUsbIoThread class by a
specific worker thread routine that continuously sends Read requests to
the pipe. The thread’s main routine gets buffers from an internal buffer
pool and submits them to the pipe using the Read function of the
CUsbIoPipe class. After all buffers are submitted the routine waits for
the first pending buffer to complete. If a buffer is completed by the
USBIO driver the virtual member function ProcessData is called with
this buffer. Within this function the data received from the pipe should be
processed. The ProcessData function has to be implemented by a
class that is derived from CUsbIoReader. After that, the buffer is put
back to the pool and the main loop is stated from the beginning.

E.6.5 CUsbIoWriter Class

The class CUsbIoWriter extends the CUsbIoThread class by a
specific worker thread routine that continuously sends Write requests to
the pipe. The thread’s main routine gets a buffer from an internal buffer
pool and calls the virtual member function ProcessBuffer to fill the
Designer Reference Manual USB08 Evaluation Board

222 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
USBIO Demo Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

buffer with data. After that, the buffer is sent to the pipe using the Write
function of the CUsbIoPipe class. After all buffers are submitted the
routine waits for the first pending buffer to complete. If a buffer is
completed by the USBIO driver the buffer is put back to the pool and the
main loop is started from the beginning.

E.6.6 CUsbIoBufClass

The helper class CUsbIoBuf is used as a descriptor for buffers that are
processed by the class CUsbIoPipe and derived classes. One instance
of the CUsbIoBuf class has to be created for each buffer. The
CUsbIoBuf object stores context and status information that is needed
to process the buffer asynchronously.

The CUsbIoBuf class contains a link element (Next pointer). This may
be used to build a chain of linked buffer objects to hold them in a list. This
way, the management of buffers can be simplified.

E.6.7 CUsbIoBufPool Class

The class CUsbIoBufPool is used to manage a pool of free buffers. It
provides functions used to allocate an initial number of buffers, to get a
buffer from the pool, and to put a buffer back to the pool.

E.7 USBIO Demo Application

The USBIO Demo Application demonstrates the usage of the USBIO
driver interface. It is based on the USBIO Class Library which covers the
native API calls. The Application is designed to handle one USB driver
that can contain multiple pipes. It is possible to run multiple instances of
the application, each connected to another USB device.

The USBIO Demo Application is a dialog based MFC (Microsoft
Foundation Classes) application. The main dialog contains a button that
allows to open an output window. All output data and all error messages
are directed to this window. The button “Clear Output Window” discards
the actual contents of the window.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 223
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The main dialog contains several dialog pages which allow to access the
device-related driver operations. From the dialog page “Pipes” a
separate dialog can be started for each configured pipe. The pipe
dialogs are non-modal. More than one pipe dialog can be opened at a
given point in time.

E.7.1 Dialog Pages for Device Operations

E.7.1.1 Device

This page allows to scan for available devices. The application
enumerates the USBIO device objects currently available. It opens each
device object and queries the USB device descriptor. The USB devices
currently attached to USBIO are listed in the output window. A device
can be opened and closed, and the device parameters can be requested
or set.

Related driver interfaces:

• CreateFile();

• CloseHandle();

• IOCTL_USBIO_GET_DEVICE_PARAMETERS (page 164)

• IOCTL_USBIO_SET_DEVICE_PARAMETERS (page 165)

E.7.1.2 Descriptors

This page allows to query standard descriptors from the device. The
index of the configuration and the strong descriptors can be specified.
The descriptors are dumped to the output window. Some descriptors are
interpreted. Unknown descriptors are presented as HEX dump.

Related driver interfaces:

• IOCTL_USBIO_GET_DESCRIPTOR (page 151)
Designer Reference Manual USB08 Evaluation Board

224 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
USBIO Demo Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.7.1.3 Configuration

This page is used to set a configuration, to unconfigure the device, or to
request the current configuration.

Related driver interfaces:

• IOCTL_USBIO_GET_DESCRIPTOR (page 151)

• IOCTL_USBIO_GET_CONFIGURATION (page 156)

• IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR (page 158)

• IOCTL_USBIO_SET_CONFIGURATION (page 159)

• IOCTL_USBIO_UNCONFIGURE_DEVICE (page 160)

E.7.1.4 Interface

By using this page the alternate setting of a configured interface can be
changed.

Related driver interfaces:

• IOCTL_USBIO_SET_INTERFACE (page 161)

• IOCTL_USBIO_GET_INTERFACE (page 157)

E.7.1.5 Pipes

This page allows to show all configured endpoints and interfaces by
using the button “Get Configuration Info”. A new non-modal dialog for
each configured pipe can be opened as well.

Related driver interfaces:

• IOCTL_USBIO_GET_CONFIGURATION_INFO (page 166)

• IOCTL_USBIO_BIND_PIPE (page 174)

• IOCTL_USBIO_UNBIND_PIPE (page 175)
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 225
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.7.1.6 Class or Vendor Request

By using this page a class or vendor specific request can be send to the
USB device.

Related driver interfaces:

• IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST
(page 162)

• IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST
(page 163)

E.7.1.7 Feature

This page can be used to send set or clear feature requests.

Related driver interfaces:

• IOCTL_USBIO_SET_FEATURE (page 153)

• IOCTL_USBIO_CLEAR_FEATURE (page 154)

E.7.1.8 Other

This page allows to query the device state, to reset the USB device, to
get the current frame number, and to query or set the device power state.

Related driver interfaces:

• IOCTL_USBIO_GET_STATUS (page 155)

• IOCTL_USBIO_RESET_DEVICE (page 167)

• IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER (page 168)

• IOCTL_USBIO_SET_DEVICE_POWER_STATE (page 169)

• IOCTL_USBIO_GET_DEVICE_POWER_STATE (page 170)
Designer Reference Manual USB08 Evaluation Board

226 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
USBIO Demo Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.7.1.9 Dialog Pages for Pipe Operations

Three different types of pipe dialogs can be selected. For IN pipes a
Read from pipe to file dialog and a Read from pipe to output window
dialog can be activated. For OUT pipes a Write from file to pipe dialog
can be started. The pipe dialog Read from pipe to output window
cannot be used with isochronous pipes.

When a new pipe dialog is opened it is bound to a pipe. If the dialog is
closed the pipe is unbound. Each pipe dialog contains pipe-related and
transfer-related functions. The first three dialog pages are the same in
all pipe dialogs. The last page has a special meaning.

E.7.1.10 Pipe

By using this page it is possible to access functions Reset Pipe, Abort
Pipe, Get Pipe Parameters, and Set Pipe Parameters.

Related driver interfaces:

• IOCTL_USBIO_RESET_PIPE (page 176)

• IOCTL_USBIO_ABORT_PIPE (page 177)

• IOCTL_USBIO_GET_PIPE_PARAMETERS (page 178)

• IOCTL_USBIO_SET_PIPE_PARAMETERS (page 179)

E.7.1.11 Buffers

By means of this page the size and the number of buffers can be
selected. For Interrupt and Bulk pipes the “Size of Buffer” field is
relevant. For Isochronous pipes the “Number of Packets” field is relevant
and the required buffer size is calculated internally. In the “Max Error
Count” field a maximum number of errors can be specified. When this
number is exceeded, the data transfer is aborted. Each successful
transfer resets the error counter to zero.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 227
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.7.1.12 Control

This dialog page allows to access user-defined control pipes. It cannot
be used to access the default pipe (endpoint zero) of an USB device.

Related driver interfaces:

• IOCTL_USBIO_PIPE_CONTROL_TRANSER_IN (page 180)

• IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT (page 181)

E.7.1.13 Read from Pipe to Output Window

This dialog page allows to read data from an Interrupt or Bulk pipe and
to dump it to the output window.For large amounts of data the transfer
may be slowed down because of the overhead involved with printing to
the output window. The printing of the data can be enabled/disabled by
the switch Print to Output Window.

Related driver interfaces:

• ReadFile();

• IOCTL_USBIO_ABORT_PIPE (page 177)

E.7.1.14 Read from Pipe to File

This dialog page allows to read data from the pipe to a file. This transfer
type can be used for Isochronous pipes as well. The synchronization
type of the Isochronous pipe has to be “asynchronous”. The application
does not support data rate feedback.

Related driver interfaces:

• ReadFile();

• IOCTL_USBIO_ABORT_PIPE (page 177)
Designer Reference Manual USB08 Evaluation Board

228 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Installation Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.7.1.15 Write from File to Pipe

This dialog page allows to write data from a file to the pipe. This transfer
type can be used for Isochronous pipes as well. The synchronization
type of the isochronous pipe has to be “asynchronous”. The application
does not support data rate feedback.

Related driver interfaces:

• WriteFile();

• IOCTL_USBIO_ABORT_PIPE (page 177)

E.8 Installation Issues

This section discusses the topics related to installation of the USBIO
device driver. Included is a description of how a customized driver setup
can be built.

IMPORTANT: On Windows 2000 administrator rights are required to install a device
driver. Because the USBIO driver is installed in the same way as any
other Plug&Play device driver the installation requires administrator
rights. Once the USBIO driver is installed standard user rights are
sufficient to load the driver and to use the driver by accessing its
programming interface.

E.8.1 Automated Installation: The USBIO Installation Wizard

Using the USBIO Installation Wizard is the quickest and easiest way for
installing the USBIO device driver. This wizard performs the driver
installation automatically in a step-by-step procedure. The device the
USBIO driver will be installed for can be selected from a list. It is not
necessary to manually edit or copy any files. After installation is
complete the wizard allows to save the specific setup files that has been
generated for the selected device. These files can be used at a later time
to manually install the USBIO driver for the same device, without using
the Installation Wizard.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 229
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The steps required to install the USBIO driver by using the Installation
Wizard are described below.

• On Windows 2000 make sure you are logged on as an
administrator or have enough privileges to install device drivers on
the system. In general, special privileges are required to install
device drivers on Windows 2000.

• Connect your USB device to the system. After pugging in the
device Windows launches the New Hardware Wizard and prompts
you for a device driver. Complete the New Hardware Wizard by
clicking Next on each page and Finish on the last page. Windows
either installs a system-provided driver or registers the device as
“Unknown”.

Do not abort the New Hardware Wizard by clicking the Cancel
button. This will prevent Windows from enumerating the device
and storing enumeration information in the registry. As a result of
this, the device is not visible in the system and USBIO Installation
Wizard is not able to install the driver for it.

For some kinds of devices the system does not launch the New
Hardware Wizard. A system-provided device driver will be
installed silently. This will happen if the device belongs to a
predefined device class, Human Interface Devices (HID), Audio
Devices, or Printer Devices for example. The USBIO Installation
Wizard is able to install the USBIO driver for such devices but this
will disable any system-provided driver.

• Start the USBIO Installation Wizard by selecting the appropriate
shortcut from the Start menu. It is also possible to start the wizard
directly by executing USBIOwiz.exe.

• The first page shows some hints concerning the installation
process. Click the Next button to continue. Note that you can abort
the Installation Wizard at any time by clicking the Cancel button.

• On the next page the wizard shows a list containing all USB
devices currently connected to the system. Select the device the
USBIO driver shall be installed for. The Hardware ID will be shown
for the selected device. A Hardware ID is a string that is used
internally by the operating system to unambiguously identify the
Designer Reference Manual USB08 Evaluation Board

230 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Installation Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

device. It is built from a bus identifier (USB), the 16-bit vendor ID
(VID), the 16-bit product ID (PID), and optionally the revision code
(REV). The IDs and the revision code are reported by the device
in he USB Device Descriptor.

If your device is not shown in the list make sure it is plugged in
properly and you have finished the New Hardware Wizard as
described above. You may use the Device Manager to check if the
device was enumerated by the system. The Device Manager can
be accessed by right-clicking the “My Computer” icon on the
desktop and then choosing Properties.

Use the Refresh button to rescan for active devices and to rebuild
the list.

To continue, click the Next button.

• The next page shows detailed information about the selected USB
device. If a driver is already installed for the device information
about the driver is also shown. Verify that you selected the correct
device. If not, use the Back button to return to the device list and
select another device.

To install the USBIO driver for the selected device, click the Next
button.

WARNING: If you install the USBIO driver for a device that is currently controlled by
another device driver the existing driver will be disabled. This will happen
immediately. As a result, the device may no longer be used by the
operating system and by applications. If the device belongs to the HID
class, a mouse or a keyboard for example, this can cause problems.

• On the last page the Installation Wizard shows the completion
status of driver installation. If the installation was successful the
USBIO driver is running. It has been dynamically loaded by the
operating system.

The USBIO Installation Wizard allows you to save the specific
driver installation file (INF) that it generated for the device. The INF
file is specific for the selected device because it contains the
Hardware ID of that device. You can use the button labeled “Save
INF file” to save the generated INF file with a name of your choice
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 231
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

and in a location of your choice. The Installation Wizard copies
also the USBIO driver binary file usbio.sys to the same location as
the INF file. You can use these files at a later time to install the
USBIO driver manually.

You can use the button labeled “Run USBIO Application” to start
the demo application that is included in the USBIO package. The
application allows you to test several USB operations manually.
Please refer to E.7 USBIO Demo Application for further
information.

To quit the USBIO Installation Wizard, click Finish.

E.8.2 Manual Installation: The USBIO Setup Information File

A Setup Information File (INF) is required for proper installation of the
USBIO device driver. This file describes the driver to be installed and
defines the operations to be performed during the installation process.

An INF file is in ASCII text format. It can be viewed and modified with any
text editor, Notepad for example. The contents and the syntax of an INF
file are documented in the Microsoft Windows 2000 DDK.

The INF file is loaded and interpreted by a software component that is
built into the operating system, called Device Installer. The Device
Installer is closely related to the Plug&Play Manager that handles hot
plugging and removal of USB devices. After the Plug&Play Manager has
detected a new USB device the system searches its internal INF file data
base, located in %WINDIR%\INF\, for a matching driver. If no driver can
be found the New Hardware Wizard pops up and the user will be asked
for a driver.

The association of device and driver is based on a string that is called
Hardware ID. The Plug&Play Manager builds the Hardware ID string
from the 16-bit vendor ID (VID), the 16-bit product ID (PID), and
optionally the revision code (REV). The string is prefixed by the bus
identifier USB. Examples for Hardware ID strings are:

USB/VID_046D&PID_0100
USB/VID_046D&PID_C001&REV_0401
USB/CLASS_09&SUBCLASS_01&PROT_00
Designer Reference Manual USB08 Evaluation Board

232 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Installation Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As shown in the last example a Hardware ID can also describe a device
class and subclass. This makes it possible to provide a driver that will be
used whenever the system detects a device that belongs to a specific
device class. An example for such a kind of driver is the system-provided
HID mouse driver. This driver is installed for any type of USB mouse,
regardless of the vendor, the USB Vendor ID, and the USB Product ID.
The driver selection is based on the class, subclass, and protocol
identifiers. Please refer to the Microsoft Windows 2000 DDK for detailed
information on Hardware IDs and driver selection algorithms. Another
good source of information are the INF files that ship with the operating
system. They are located in a subdirectory of the Windows system
directory, named “INF”. Note that on Windows 2000 this subdirectory
has a Hidden attribute by default.

In order to prepare an installation disk that can be used to install the
USBIO driver for your device the following steps are required.

• Copy the USBIO driver binary usbio.sys to a floppy disk or to a
directory location of your choice. Copy the INF file usbio.inf
provided with the USBIO package to the same location. Note that
you can choose any name for the INF file, based on your company
name or your product name for example. But the file name
extension has to be .inf. In the following discussion it is assumed
the INF file is named usbio.inf.

• Open the usbio.inf file using a text editor, Notepad for example.
Edit the [_Devices] section. There are various examples of
Hardware ID strings prepared in this section. Select one of the
examples that matches your needs. Usually, the very first example
is appropriate. It associates the USBIO driver with your device by
using the USB Vendor ID and Product ID. Remove the semi-colon
at the start of the line and replace the VID_XXXX and PID_XXXX
placeholders in the Hardware ID string by your USB Vendor ID
and Product ID as shown in the examples above. Note that the IDs
are given as 4-digit hexadecimal numbers.

• Edit the [Strings] section at the end of the usbio.inf file to
modify the device description string for your device, defined by the
value of S_DeviceDesc1. The device description text will be
displayed in the Device Manager next to the icon that represents
your device.

• Save the INF file to accommodate your changes.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 233
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Now you are prepared to start the driver installation. The required steps
are described below.

• Connect your USB device to the system. After plugging in the
device Windows launches the New Hardware Wizard and prompts
you for a device driver. Provide the New Hardware Wizard with the
location of your installation files (usbio.inf and usbio.sys).
Complete the wizard by following the instructions shown on
screen. If the INF file matches with your device the driver should
be installed successfully.

Note that on Windows 2000 and Windows Millennium the New
Hardware Wizard shows a warning message that complains about
the fact that the driver is not certified and digitally signed. You may
ignore this warning and continue with driver installation. The
USBIO driver is not certified because it is not an end-user product.
When the USBIO driver is integrated into such a product it is
possible to get a certification and a digital signature from the
Windows Hardware Quality Labs (WHQL).

• If the device belongs to a predefined device class that is supported
by the operating system, the system does not launch the New
Hardware Wizard after the device is plugged in. Instead of that a
system-provided device driver will be installed silently. Human
Interface Devices (HID) like mice and keyboards, Audio Devices,
or Printer Devices are examples for such devices. The operating
system does not ask for a driver because it finds a matching entry
for the device’s class and subclass ID in its internal INF file data
base, as mentioned above.

Use the Device Manager to install the USBIO driver for a device
for that a driver is already running. To start the Device Manager
choose Properties on the “My Computer” icon on the desktop. In
the Device Manager locate your device and choose Properties on
the entry. On the property page that pops up choose Driver and
click the button labeled “Update Driver”. The Upgrade Device
Driver Wizard is started which is similar to the New Hardware
Wizard mentioned above. Provide the wizard with the location of
your installation files (usbio.inf and usbio.sys) and complete the
driver installation by following the instructions shown on screen.
Designer Reference Manual USB08 Evaluation Board

234 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Installation Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• For some device classes, especially HID devices like mice and
keyboards, Windows does not allow you to install a driver with a
different device class. That means you have to modify the device
class entry in the [Version] section of the usbio.inf file to match
with the device’s class. The device class is specified by the
keywords Class and ClassGUID in the [Version] section.

For example, if you want to use a keyboard or a mouse to test the
USBIO driver the new entries should be

Class=HIDClass and
ClassGUID={745a17a0-74d3-11d0-b6fe-00a0c90f57da}.

The ClassGUID value that is associated with a device class can
be found in system-provided INF files in %WINDIR%\INF\ or in
the Windows 2000 DDK documentation.

NOTE: At least two drivers are used for USB keyboard and mouse devices. One
belongs to the USB HID class and the other one belongs to the keyboard
or mouse class. The keyboard or mouse driver runs on top of the USB
HID driver. The USBIO driver can replace the USB HID driver only. In the
Device Manager the HID driver is shown in a section labeled “Human
Interface Devices”. To be sure to replace the correct driver refer to the
“Driver File Details” dialog in the Properties page of the entry. If the driver
stack contains the file HIDUSB.SYS then you have selected the correct
entry in the Device Manager.

• In the Device manager the section “Universal Serial Bus
controllers” contains an item labeled “USB Root Hub”.

Do not install USBIO for the USB Root HUB!

The USB Root Hub is not an USB device. It is built into the USB
host controller and is controlled by a special device driver provided
by the operating system.

• After the driver installation was successfully completed your
device should be shown in the Device Manager in the section that
corresponds to the device class you specified in the usbio.inf file.
You may use the Properties dialog box of that entry to verify that
the USBIO driver is installed and running.

• In order to verify that the USBIO driver is working properly with
your device you should use the USBIO Demo Application
USBIOAPP.EXE. Please refer to E.7 USBIO Demo Application
for detailed information on the Demo Application.
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 235
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.8.3 Uninstalling USBIO

In order to uninstall USBIO for a given device the Device Manager has
to be used. The Device Manager can be accessed by right-clicking on
“My Computer” icon on the desktop and then choosing Properties. In the
Device Manager double-click on the entry of the device and choose the
property page that is labeled “Driver”. There are two options:

• Remove the device from the system by clicking the button
“Uninstall”. The operating system will reinstall a driver the next
time the device is connected or the system is rebooted.

• Install a new driver for the device by clicking the button “Update
Driver”. The operating system launchs the Upgrade Device Driver
Wizard which searches for driver files or lets you select a driver.

In order to avoid that USBIO is reinstalled automatically and silently by
the operating system it is necessary to manually remove the INF file that
was used to install the USBIO driver.

During driver installation Windows stores a copy of the INF file in its
internal INF file data base that is located in %WINDIR%\INF\. The
original INF file is renamed and stored as oemX.inf for example, where
X is a decimal number. The exact INF naming scheme depends on the
operating system (Windows 2000 uses a slightly different scheme than
Windows 98). The best way to find the correct INF file is to do a search
for some significant string in all the INF files in the directory
%WINDIR%\INF\ and its sudirectories.

Note that on Windows 98 and Windows ME the INF file may also be
stored in a directory named %WINDIR%\INF\OTHER\. Another naming
scheme based on the provider name is used in that case.

Note also that on Windows 2000 the %WINDIR%\INF\ directory has a
Hidden attribute by default. Therefore, the directory is not shown in
Windows Explorer by default.

Once you have located the INF file, delete it. This will prevent Windows
from reinstalling the USBIO driver. Instead of that the New Hardware
Wizard will be launched and you will be asked for a driver.
Designer Reference Manual USB08 Evaluation Board

236 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Installation Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.8.4 Building a Customized Driver Setup

When the USBIO driver is included and shipped with a retail product
some setup parameters should be customized. This is necessary
because the USBIO device driver might be used by several vendors and
it is possible that an user has two products and that both of them use the
USBIO driver. This can cause conflicts with respect to the file name of
the driver executable, the location of registry parameters, the device
names, and the driver interface GUIDs used.To avoid such problems a
vendor who redistributes the USBIO driver for use with a hardware
product should choose a new file name for the driver binary, generate a
private interface GUID, and select a private location in the registry to be
used to store startup parameters. In order to do that the usbio.inf file has
to be customized as well.

The following list shows the steps required to build a customized USBIO
setup:

• Choose a new name for the driver binary file usbio.sys. The name
should not cause conflicts with drivers provided by Windows.
Rename the file usbio.sys to your new name.

• Rename the Setup Information file usbio.inf. You can choose any
name you want. For instance, the name may be based on your
companie’s or your product’s name. Note that the file extension
should not be changed. It has to be “.inf”.

• Edit the [_CopyFiles_sys] section in the INF file to include the
new name of the driver binary.

• Edit the value S_DriverName in the [Strings] section to
match with the new name you defined for the driver binary.

• Edit the [Strings] section in the INF file to modify text strings
that are shown at the user interface level. You may change the
following parameters:

S_Provider

S_Mfg

S_DeviceClassDisplayName

S_DeviceDesc1

S_DiskName

S_ServiceDisplayName
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 237
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Edit the following values in the [Strings] section to specify a
location in the Registry that is used to store the USBIO driver’s
configuration parameters:

S_ConfigPath

S_DeviceConfigPath1

Note the S-ConfigPath should specify a location that is a
subkey of
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services.
The name of the subkey should be the same as the name you
choosed for the driver binary.

• Generate a private Globally Unique Identifier (GUID) to
unambiguously identify the device instances that will be created
by USBIO for your device. Use GUIDGEN.EXE from the Microsoft
Platform SDK or from the Visual C++ package for this purpose.
Copy the text representation of the GUID to the line in the INF file
that defines the registry value USBIO_UserInterfaceGuid.
Activate this line by removing the “;” at the beginning. Use the
private GUID in your application to search for available devices.
GUIDGEN.EXE allows you to export a
static const struct GUID = {...} statement that can be
included in the source code of an application. For an example,
refer to the source code of USBIOAPP or ReaderCpp.

• Edit the driver parameter settings in the sections
_Parameters1_98 and _Parameters1_NT. The parameters in
_Parameters1_98 define the default behaviour of the USBIO
driver on Windows 98. The parameters in _Parameters1_NT
define the default behaviour of the USBIO driver on
Windows 2000. For a detailed description of the supported
settings, refer to E.9 Registry Entries.

• After you finished testing your INF file remove any lines and
comments that are not needed. Especially, make sure that the
word USBIO does not occur in the files you ship with your product.
This is a requirement that is defined by the USBIO licensing
conditions. See also the License Agreement you received with the
USBIO package.
Designer Reference Manual USB08 Evaluation Board

238 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Registry Entries

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.9 Registry Entries

The behaviour of the driver can be customized by startup parameters
stored in the registry. The parameters are stored under a path that is
specified in the INF file. This registry path is

\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\USBIO\Parameters

by default.

The location can be customized by changing the S_ConfigPath and
S_DeviceConfigPath1 variables in the [Strings] section of the
INF file.

The driver reads the parameters when a new device object is added. If
a parameter does not exist when the driver attempts to read it, the driver
creates the entry using an internal default value.

Table E-3 lists all registry parameters.

Table E-3. Registry Parameters Supported by the USBIO Driver

Value Min Default Max Description

RequestTimeout 0 1000
Time-out interval for synchronous I/O requests, in

milliseconds.
Zero means infinite (no time-out).

ShortTransferOk 0 1 1

If set to 1 short packets in read transfers are
allowed.

If set to 0 short packets in read transfers cause
errors.

UnconfigureOnClose 0 1 1
If set to 1 the device will be unconfigured when the

last file handle is closed.
If set to 0 the device state is not changed.

ResetDeviceOnClose 0 0 1
If set to 1 the device receives an USB reset if the

last file handle is closed.
If set to 0 the device state is not changed.

EnableRemoteWakeup 0 1 1
If set to 1 Remote Wakeup is enabled.
If set to 0 Remote Wakeup is disabled.

MaxIsoPackets 16 64 512
Maximum number of packets allowed is an

isochronous data transfer.

PowerStateOnOpen 0 0 3
Device power state that will be set when the device

is opened (first handle is opened).
0...3 correspond to D0...D3
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 239
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PowerStateOnClose 0 3 3
Device power state that will be set when the device

is closed (last handle is closed).
0...3 correspond to D0...D3

MinPowerStateUsed 0 3 3

The minimum power state of the device while it is
used (open handles exist). On system suspend
the device is not allowed to go into states higher
than this value.

0...3 correspond to D0...D3
The value 0 (D0) means: no suspend allowed if the

device is in use.
The value 3 (D3) means: full suspend (off) allowed

if the device is in use.

MinPowerStateUnused 0 3 3

The minimum power state of the device while it is
not used (no open handles exist). On system
suspend the device is not allowed to go into
states higher than this value.

0...3 correspond to D0...D3
The value 0 (D0) means: no suspend allowed if the

device is not in use.
The value 3 (D3) means: full suspend (off) allowed

if the device is not in use

AbortPipesOnPowerDown 0 0 1

Handling of outstanding read or write requests
when the device goes into a suspend state
(leaves D0):

1 = abort pending requests
0 = do not abort pending requests

SuppressPnPRemoveDlg 0 1 1
If this flag is set, Windows 2000 does not show a

warning dialog if the device is removed.

DebugPort 0 0 3

Destination of trace messages for debugging
purposes:

0 = kernel debugger or debug monitor
1...3 = COM1...COM3

This parameter is available only if the debug
(checked) build of the USBIO driver is used.

DebugMask 0 3
Control of message output for debugging. This

parameter is available only if the debug (checked)
build of the USBIO driver is used.

DebugBaud 2.400 57.600 115.200
Baudrate selection for debug output to COM port.

This parameter is available only if the debug
(checked) build of the USBIO driver is used.

Table E-3. Registry Parameters Supported by the USBIO Driver (Continued)

Value Min Default Max Description
Designer Reference Manual USB08 Evaluation Board

240 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)
Related Documents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E.10 Related Documents

• Universal Serial Bus Specification 1.0, 1.1

• USB device class specifications (Audio, HID, Printer, etc.)

• Windows 2000 DDK Documentation

• Windows 98 DDK Documentation

• Microsoft Platform SDK Documentation

E.11 Light Version Limitations

The light version for MCT Elektronikladen of the USBIO driver has the
following limitations:

1. The Vendor ID of your device has to match with the Vendor ID
0x0C70 of MCT Elektronikladen. You can contact MCT
Elektronikladen to receive a unique product ID.

Possible error codes when this restriction is offended:
USBIO_ERR_VID_RESTRICTION

2. Only one Interrupt IN endpoint and one Interrupt OUT endpoint is
supported. If your device has more endpoints or other endpoint
types configuring the device (SET_CONFIGURATION) will fail.

Possible error codes when this restriction is offended:
USBIO_ERR_PIPE_RESTRICTION
USBIO_ERR_BULK_RESTRICTION
USBIO_ERR_ISO_RESTRICTION

3. The maximum FIFO size of an endpoint is limited to eight bytes.

Possible error codes when this restriction is offended:
USBIO_ERR_PIPE_SIZE_RESTRICTION

4. The maximum size of the data stage for a Class or Vendor
Request is limited to eight bytes.

Possible error codes when this restriction is offended:
USBIO_ERR_EP0_RESTRICTION
USB08 Evaluation Board Designer Reference Manual

MOTOROLA Universal USB Device Driver (USBIO) 241
For More Information On This Product,

 Go to: www.freescale.com

Universal USB Device Driver (USBIO)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Designer Reference Manual USB08 Evaluation Board

242 Universal USB Device Driver (USBIO) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

blank

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DRM002/D

M
C

6
8

H
C

0
8

A
S

6
0

Technical D
ata

How to Reach Us:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-303-675-2140
1-800-441-2447

TECHNICAL INFORMATION CENTER:
1-800-521-6274

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://www.motorola.com/semiconductors/

Q4/00
REV 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. USB08 Quick Start
	1.1 Contents
	1.2 Introduction
	1.3 Required System Configuration
	1.4 Connecting the Demo Board to the PC
	1.5 Driver Installation
	1.6 Starting the Windows Demo Application

	Section 2. Hardware Description
	2.1 Contents
	2.2 Introduction
	2.3 Technical Data
	2.3.1 MC68HC908JB8 Microcontroller
	2.3.2 USB08 Evaluation Board

	2.4 Circuit Description
	2.4.1 MCU Core Circuit and USB Interface
	2.4.2 Input/Output Functions
	2.4.3 Monitor Mode Interface
	2.4.4 User RS232 Port
	2.4.5 Power Supply

	2.5 Board Layout
	2.6 Jumpers and Bridges
	2.7 Connectors
	2.7.1 Expansion Connector X1
	2.7.2 Monitor Mode Connector X2
	2.7.3 User RS232 Connector X3

	2.8 Memory Map

	Section 3. Software Module Descriptions
	3.1 Contents
	3.2 Introduction
	3.3 General Structure of the M68HC08 Firmware
	3.4 How to Build the Compiler Project
	3.5 Main Module U08MAIN.C
	3.6 Interrupt and Reset Vector Module VECJB8.C
	3.7 C Startup Module CRTSJB8.S
	3.8 Push Button Module U08KEY.C
	3.9 LED Control with U08LED.H
	3.10 Software ADC Module U08ADC.C
	3.11 RS232 Communication Module U08232.C
	3.12 USB Communication Module U08USB.C
	3.13 Compiler Specific Adjustments

	Section 4. Universal Serial Bus (USB) Interface
	4.1 Contents
	4.2 Introduction
	4.3 Characteristics of the USB08 Reference Design
	4.4 USB Basics
	4.5 USB Implementation in the Reference Design
	4.5.1 Activation of the USB Module
	4.5.2 Endpoint Configuration
	4.5.3 USB Reset

	4.6 Device Management with Endpoint 0
	4.6.1 Enumeration
	4.6.2 Assignment of the Device Address
	4.6.3 Requesting Descriptors
	4.6.4 Device Configuration
	4.6.5 STALL Condition

	4.7 Data Communication via Endpoints EP1 and EP2
	4.7.1 Receiving Data
	4.7.2 Transmission of Data

	4.8 Host Interaction: Vendor ID and Product ID
	4.9 Windows Device Driver

	Appendix A. Supported Standard Device Requests
	Appendix B. USB08 Descriptors
	B.1 Contents
	B.2 Introduction
	B.3 Device Descriptor
	B.4 Configuration Descriptor
	B.5 Interface Descriptor
	B.6 Endpoint 1 Descriptor
	B.7 Endpoint 2 Descriptor
	B.8 String Descriptors

	Appendix C. Source Code Files
	C.1 Contents
	HC908JB8.H
	U08USB.H
	U08232.H
	U08LED.H
	U08MAIN.C
	U08DESC.C
	U08USB.C
	U08232.C
	U08KEY.C
	U08ADC.C
	VECJB8.C
	CRTSJB8.S
	USB08.LKF
	BUILD.BAT
	USB08.MAP
	USB08.S19

	Appendix D. Bill of Materials and Schematic
	Appendix E. Universal USB Device Driver (USBIO)
	E.1 Contents
	E.2 Introduction
	E.3 Overview
	E.3.1 Platforms
	E.3.2 Features

	E.4 Architecture
	E.4.1 USBIO Object Model
	E.4.1.1 USBIO Device Objects
	E.4.1.2 USBIO Pipe Objects

	E.4.2 Establishing a Connection to the Device
	E.4.3 Power Management
	E.4.4 Device State Change Notifications

	E.5 Programming Interface
	E.5.1 Programming Interface Overview
	E.5.2 Control Requests
	E.5.3 Data Transfer Requests
	E.5.3.1 Bulk and Interrupt Transfers
	E.5.3.2 Isochronous Transfers

	E.5.4 Input and Output Structures
	E.5.5 Enumeration Types
	E.5.6 Error Codes

	E.6 USBIO Class Library
	E.6.1 CUsbIo Class
	E.6.2 CUsbIoPipe Class
	E.6.3 CUsbIoThread Class
	E.6.4 CUsbIoReaderClass
	E.6.5 CUsbIoWriter Class
	E.6.6 CUsbIoBufClass
	E.6.7 CUsbIoBufPool Class

	E.7 USBIO Demo Application
	E.7.1 Dialog Pages for Device Operations
	E.7.1.1 Device
	E.7.1.2 Descriptors
	E.7.1.3 Configuration
	E.7.1.4 Interface
	E.7.1.5 Pipes
	E.7.1.6 Class or Vendor Request
	E.7.1.7 Feature
	E.7.1.8 Other
	E.7.1.9 Dialog Pages for Pipe Operations
	E.7.1.10 Pipe
	E.7.1.11 Buffers
	E.7.1.12 Control
	E.7.1.13 Read from Pipe to Output Window
	E.7.1.14 Read from Pipe to File
	E.7.1.15 Write from File to Pipe

	E.8 Installation Issues
	E.8.1 Automated Installation: The USBIO Installation Wizard
	E.8.2 Manual Installation: The USBIO Setup Information File
	E.8.3 Uninstalling USBIO
	E.8.4 Building a Customized Driver Setup

	E.9 Registry Entries
	E.10 Related Documents
	E.11 Light Version Limitations

